WO2005005664A1 - Method of detecting and method of identifying nucleic acid - Google Patents

Method of detecting and method of identifying nucleic acid Download PDF

Info

Publication number
WO2005005664A1
WO2005005664A1 PCT/JP2004/010170 JP2004010170W WO2005005664A1 WO 2005005664 A1 WO2005005664 A1 WO 2005005664A1 JP 2004010170 W JP2004010170 W JP 2004010170W WO 2005005664 A1 WO2005005664 A1 WO 2005005664A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
specificity
stranded nucleic
base sequence
stranded
Prior art date
Application number
PCT/JP2004/010170
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Nemoto
Joji Oshima
Original Assignee
G & G Science Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G & G Science Co., Ltd. filed Critical G & G Science Co., Ltd.
Priority to JP2005511598A priority Critical patent/JPWO2005005664A1/en
Publication of WO2005005664A1 publication Critical patent/WO2005005664A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means

Definitions

  • the present invention provides a method for synthesizing a single-stranded nucleic acid having relatively low specificity under low-temperature annealing conditions to detect and identify a nucleic acid having an arbitrary base sequence with high sensitivity, and under high-temperature annealing conditions. Synthesize single-stranded nucleic acids with relatively high specificity, increase the physical quantity of single-stranded interfering substances by mixing the former and the latter, or by adding synthetic single-stranded nucleic acids to increase specificity and The present invention relates to a nucleic acid detection and identification method that achieves high sensitivity and implements them with one type of primer. Background art
  • nucleic acids have been amplified by using complementary specific primers that bind one end of one strand of a specific site of double-stranded DNA to the other end of the other strand using an enzyme DNA polymerase as a catalyst.
  • the polymerase chain reaction (PCR) method for amplifying a target nucleic acid is widely used.
  • the principle of the PCR method is to amplify a DNA fragment between primers by forming a double-stranded DNA into a ⁇ shape and repeating extension of the two primer strands sandwiching a specific region by DNA polymerase.
  • Various DNA and RNA analysis techniques have been devised based on the method (see, for example, Japanese Patent Publication No.
  • the above-mentioned method for synthesizing single-stranded nucleic acids using one type of primer and recognizing the dissociation curve of the mutual interference product as a dissociation curve waveform pattern to detect and identify nucleic acids is easy and diverse. Although useful as a method for analysis, there is room for improvement in the low efficiency of single-stranded nucleic acid synthesis and the resulting low detection sensitivity. In other words, in order to improve the low detection sensitivity due to low synthesis efficiency, a method of increasing the nucleic acid synthesis efficiency by adapting the low annealing temperature can be considered, but this method has a specificity for the detection and identification of the target base sequence.
  • An object of the present invention is to provide a method for improving the detection sensitivity and at the same time maintaining the specificity of a nucleic acid detection and identification method utilizing single-stranded nucleic acid synthesis, which is more effective.
  • a method for adding a synthetic nucleic acid or a chemical substance having a function was used as a means for solving the problem.
  • the present invention uses a single type of primer having specific complementarity to any specific nucleotide sequence region on a nucleic acid, and a single strand having a high relative specificity to the specific nucleotide sequence region under high temperature annealing conditions.
  • the present invention has realized a method for synthesizing a nucleic acid, detecting and identifying the nucleic acid, and improving the reduction in sensitivity due to the low efficiency of single-stranded nucleic acid synthesis. Specifically, (i) at the beginning of the synthesis cycle, set low-temperature annealing conditions and
  • a method of adding a separately synthesized single-stranded nucleic acid was devised. All of these methods are applicable to single-stranded synthetic nucleic acids that are synthesized under high-temperature annealing conditions and have relatively high specificity, but are insufficient in quantity and do not provide sufficient sensitivity in the detection step.
  • the physical quantity of hydrogen bonds is increased, and the effect of improving the sensitivity in the detection step is obtained.
  • This embodiment uses a single type of primer that amplifies only a single strand in response to a specific base sequence of a target double-stranded nucleic acid, and improves the sensitivity while improving the specificity.
  • anneal means that a nucleotide chain forms a double-stranded structure by base pair bonding based on the Watson-Crick law.
  • the annealing temperature is changed between a low temperature and a high temperature; Less likely 1 Synthesize single-stranded nucleic acids together with target single-stranded nucleic acids with high specificity.In high-temperature annealing, synthesize only single-stranded target nucleic acids with high specificity, and form a single-stranded nucleic acid mutual interference product in the presence of both.
  • FIG. Figure 1 shows the nucleic acid synthesis status during low-temperature annealing, where a single type of primer is used to increase the detection sensitivity for a large amount of low-specificity single-stranded nucleic acid, and the target base sequence X Both a synthetic nucleic acid of interest, a small amount of a target single-stranded nucleic acid with high specificity, and a synthetic nucleic acid of the target base sequence X are synthesized.
  • FIG. 1 (B) shows the synthesis status of nucleic acids in high-temperature annealing, in which only a single-stranded target nucleic acid having high specificity and a synthetic nucleic acid derived from the target base sequence X are synthesized with one kind of primer.
  • low-temperature annealing annealing occurs even if there is no perfect complementarity between the primer and type I nucleic acid, and nucleic acid synthesis proceeds
  • high-temperature annealing annealing occurs when there is no perfect complementarity between the primer and type II nucleic acid. This indicates that only a specific target nucleic acid is synthesized because no reaction is performed.
  • FIG. 2 schematically shows the state of incomplete complementary annealing between the primer and the type I nucleic acid during low-temperature annealing, and the mutual interaction in the case where various single-stranded synthetic nucleic acids synthesized by the above-mentioned temperature change annealing are mixed.
  • Figure 3 shows a schematic diagram of the interference products.
  • a single-stranded nucleic acid with low specificity to increase detection sensitivity coexists with the target single-stranded nucleic acid with high specificity, causing a reaction between the two and increasing the physical quantity of hydrogen bond.
  • the amount of intercalator increases, resulting in high sensitivity.
  • the hydrogen-bonding site is present when the target single-stranded nucleic acid with high specificity is present at the time of self-loop or hairpin structure formation by itself, or only at the time of dimer formation.
  • the physical quantity is also small, resulting in lower sensitivity.
  • the concept of the method for adding a synthetic single-stranded nucleic acid is the same as that in Fig. 3, and by separately synthesizing and adding a synthetic nucleic acid derived from outside the target base sequence X (synthetic nucleic acid for increasing the fluorescence intensity) in the same figure. An effect similar to the above-described method of performing low-temperature annealing and high-temperature annealing continuously or discontinuously is obtained.
  • the method of performing low-temperature annealing and high-temperature annealing continuously or discontinuously, and the method of adding a single-stranded nucleic acid use primers in the presence of the enzyme DNA polymerase.
  • a surfactant such as a nonionic type or a sulfuric acid compound such as sodium sulfate or sodium hydrogen sulfate, and it is particularly effective at low temperature annealing.
  • FIG. 1 is a diagram schematically illustrating nucleic acid synthesis according to an embodiment of the present invention.
  • A shows a state of nucleic acid synthesis in low-temperature annealing of the present invention
  • B shows a state of nucleic acid synthesis in high-temperature annealing. It is shown.
  • FIG. 2 is a diagram schematically illustrating annealing between a primer and a type III nucleic acid in low-temperature annealing.
  • FIG. 3 is a diagram schematically illustrating a mutual interference product of a nucleic acid synthesis product according to the embodiment of the present invention.
  • FIG. 4 is a dissociation curve waveform pattern obtained by the protocol of the present invention shown in Table 2.
  • Figure 5 shows the dissociation curve waveform patterns obtained with the comparative protocols (A) and (B) shown in Table 2.
  • FIG. 6 is an electrophoresis photograph of the present invention and a comparative protocol.
  • FIG. 7 shows a dissociation curve waveform pattern when a synthetic nucleic acid was added.
  • FIG. 8 is a dissociation curve waveform pattern when no synthetic nucleic acid was added.
  • rRNA DNA sequence encoding bacterial 16S ribosomal RNA
  • select 12 bases that are conserved in about 3000 bacterial species and have a low frequency of occurrence in non-bacterial DNA, and use this as a BSS primer.
  • the protocol of the present invention in which the annealing temperature was changed and the protocol in which the annealing was not changed were compared, and the effect of improving the sensitivity and specificity was performed as an example.
  • a sequence having homology to 163 rRNA, such as 23 S rRNA and 8 S is 1 and so on. Amplified at the same time.
  • the mutual interference products composed of synthetic single-stranded nucleic acids can be obtained in a sufficient physical quantity in the detection process, but have low relative specificity in many regions. Unnecessary presence of the single-stranded nucleic acid reduces specificity. Under high-temperature annealing conditions alone, the mutual interference products composed of synthetic single-stranded nucleic acids have high specificity because only single-stranded nucleic acids with high relative specificity to the target gene region are synthesized. However, it is difficult to ensure a sufficient physical quantity in the detection process.
  • a plurality of single-stranded nucleic acids having low relative specificity in multiple regions are simultaneously and simultaneously synthesized from regions other than these target gene regions under low-temperature annealing conditions.
  • Single-stranded nucleic acids with low relative specificity from regions other than the target gene region are not synthesized, and only single-stranded nucleic acids with high relative specificity to the target gene region are synthesized.
  • the mutual interference products composed of these synthetic single-stranded nucleic acids are expected to secure sufficient physical quantity in the detection step and also obtain specificity.
  • the 10X PCR buffer was supplied with Taq DNA polymerase or Taq-REX (TAKARA), and the 5X Cyber Green dilution was prepared by diluting the stock solution with sterile distilled water.
  • the one-fold dilution was used as a 5X Genopattern buffer, a product manufactured by Adgene, and a Taq DNA polymerase was used, Taq-REX (TAKARA).
  • the BSS primer is composed of 5, 1 ATCGCTATGTGC 13 ′ (base sequence 1),
  • Table 2 shows the protocol of the present invention and the comparative protocol.
  • each peak of the waveform pattern is sharp and clear, the difference in Dip i cate is small, and a sufficient amount of fluorescence is obtained.
  • the comparative protocol A in Fig. 5 (A) that is, the protocol under only low-temperature annealing conditions, was used, the same amount of fluorescence was obtained as compared to Fig. 4, but the sharpness of each peak in the waveform pattern was clear.
  • the synthetic nucleic acid can secure a sufficient amount of fluorescence in the detection step, the specificity is reduced by the presence of unnecessarily large single-stranded nucleic acid with low relative specificity in multiple regions. Show.
  • the present protocol makes it possible to obtain a sufficient amount of detected fluorescence while increasing the specificity required for nucleic acid identification with only one primer for synthesizing a single-stranded nucleic acid.
  • This protocol By using this protocol, highly sensitive nucleic acid detection that focuses on the presence of the target nucleotide sequence of nucleic acids, and various waveform patterns can be stably observed. Nucleic acid identification is achieved.
  • FIG. 6 shows electrophoresis photographs of the protocol of the present invention and the comparative protocol.
  • Lane 1 is the protocol of the present invention
  • lane 2 is comparative protocol A
  • lane 3 is comparative protocol B.
  • sufficient nucleic acid synthesis is performed by the protocol of the present invention and comparative protocol A, that is, the protocol using only low-temperature annealing conditions, but the detailed identification of nucleic acids must be performed by electrophoresis. And a step of detecting the dissociation curve waveform pattern is required.
  • the nucleic acid was not sufficiently synthesized, and unreacted primers were observed.
  • rRNA bacterial 16S ribosome RNA
  • coli was selected as a bacterium to be used, and DNA was extracted using ISOGEN-LS (manufactured by Nippon Gene Co., Ltd.) according to the manual. Each sample D NA was adjusted to 3 0 0 ng / 5 ⁇ 1 ( ⁇ 2 0), as shown in Table 1 below, 5 0 mu This was added to the reaction solution of No. 1 and performed as a composition solution having a total amount of 551. In addition, the examples were each performed in duplicate experiments. Table 3 shows examples of formulation of the composition for implementing the present invention.
  • Table 4 shows the protocol for implementing the present invention.
  • FIGS. 7 (A), (B), (C) and FIG. 8 when the synthetic nucleic acid of the present invention is added, it becomes the basis of the fluorescence intensity which was insufficient under the high temperature annealing condition. It was possible to capture the hydrogen bonding site, and the effect of improving the nucleic acid detection sensitivity, which was lacking when no addition was performed, was recognized.
  • this example suggests that by devising the base sequence of the added synthetic nucleic acid, it is possible to adjust the dissociation curve waveform pattern of the detected nucleic acid, and it is easy to detect and identify various nucleic acids according to the purpose. Industrial applicability shown to be feasible
  • any base sequence of a target nucleic acid can be specifically detected with high sensitivity and easily detected and identified.
  • the advantage of using one type of primer is that by synthesizing any nucleotide sequence of the target nucleic acid widely including its related region, the information is reflected in the dissociation curve waveform pattern, which is extremely useful. Can be observed. Therefore, after using one type of primer, Combining the present invention as an improved method of low sensitivity due to the low synthesis efficiency of the problem can be used as an easy nucleic acid detection and identification method.
  • the present invention makes it possible to detect and identify any base sequence of a target nucleic acid with high sensitivity and high specificity.
  • the advantage of using one type of primer is that By widely synthesizing the nucleotide sequence including its related region, it is extremely useful to reflect the information derived from the nucleotide sequence on the waveform pattern of the dissociation curve, so that the properties of the nucleic acid can be widely observed. Therefore, it can be applied not only to identification of bacteria, but also to genetic analysis of humans, such as genetic diagnosis of hereditary diseases, cancerous diseases or infectious diseases, drug metabolism, and gender discrimination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The method in which single-stranded nucleic acids are synthesized with 1-primer and nucleic acid detection and identification are carried out on the basis of dissociation curve waveform pattern of mutual interference product thereof is advantageous but has had a problem of detection sensitivity because of low synthesis efficiency of single-stranded synthetic nucleic acid. For resolving the problem, there is realized a method comprising synthesizing by low-temperature annealing a single-stranded nucleic acid of low specificity for enhancing detection sensitivity together with a target single-stranded nucleic acid of high specificity; synthesizing by high-temperature annealing only a target single-stranded nucleic acid of high specificity and forming a single-stranded nucleic acid mutual interference product in the presence of both thereof; and carrying out high-sensitivity specific nucleic acid detection and identification on the basis of dissociation curve waveform pattern thereof. Further, there is realized a method comprising adding a synthetic single-stranded nucleic acid for enhancing detection sensitivity; forming a synthetic single-stranded nucleic acid mutual interference product in the presence of both the same and a target single-stranded nucleic acid of high specificity synthesized by high-temperature annealing; and carrying out high-sensitivity specific nucleic acid detection and identification.

Description

核酸の検出方法および同定方法 技術分野  Method for detecting and identifying nucleic acid
本発明は、 任意の塩基配列を有する核酸を高感度に検出および同定するため、 低温度アニーリング条件下で相対的に特異性の低い 1本鎖核酸を合成、 高温度ァニ 一リング条件下で相対的に特異性の高い 1本鎖核酸を合成、 前者と後者の合成産物 を混在させることにより、 あるいは合成 1本鎖核酸の添加により 1本鎖相互干渉物 の物理量を増加させ、 特異度および高感度を実現し、 なおかつこれらを 1種類の プライマーで実施する核酸検出および同定法に関する。 背景技術  The present invention provides a method for synthesizing a single-stranded nucleic acid having relatively low specificity under low-temperature annealing conditions to detect and identify a nucleic acid having an arbitrary base sequence with high sensitivity, and under high-temperature annealing conditions. Synthesize single-stranded nucleic acids with relatively high specificity, increase the physical quantity of single-stranded interfering substances by mixing the former and the latter, or by adding synthetic single-stranded nucleic acids to increase specificity and The present invention relates to a nucleic acid detection and identification method that achieves high sensitivity and implements them with one type of primer. Background art
従来、 核酸を増幅する方法としては、 酵素 DNAポリメラーゼを触媒として 2 本鎖 DNAの特定の部位の一方の鎖の一端と他方の鎖の他端とを結合する相補的 な特異プライマーを使用して目的核酸を増幅させるポリメラーゼ連鎖反応法 ( P CR法) が広く用いられている。 PCR法の原理は、 2本鎖の DNAを鍚型どし、 特定領域を挟む 2本のプライマー鎖の DNAポリメラーゼによる伸長をくり返す ことにより、 プライマー間の DNA断片を増幅するもので、 この PCR法を基盤 にさまざまな DNA、 RNA解析技術が考案されている (例えば、 特公平 4一 6 7957および関谷剛男、 蛋白質 核酸 酵素、 第 41卷、 No. 5, 415 (1996) 参照) 。 この PCR法では、 プライマーの铸型 DNAに対する特異 性を高め、 全 DNA中の特定の部位のみを認識するために、 1つの PC R産物の みが増幅される。 また、 遺伝性疾患、 癌性疾患或いは伝染性疾患等の遺伝子診断 の用途で核酸中の特定配列の存在を検出するために、 標的核酸の塩基配列に相捕 的プライマーを用いて、 僅かしか含まれていない核酸配列を増幅して検出する技 術が開示されている (例えば、 特公平 4— 67960参照) 。 発明の開示 Conventionally, nucleic acids have been amplified by using complementary specific primers that bind one end of one strand of a specific site of double-stranded DNA to the other end of the other strand using an enzyme DNA polymerase as a catalyst. The polymerase chain reaction (PCR) method for amplifying a target nucleic acid is widely used. The principle of the PCR method is to amplify a DNA fragment between primers by forming a double-stranded DNA into a 鍚 shape and repeating extension of the two primer strands sandwiching a specific region by DNA polymerase. Various DNA and RNA analysis techniques have been devised based on the method (see, for example, Japanese Patent Publication No. 46 7957 and Takeo Sekiya, Protein Nucleic Acid Enzyme, Vol. 41, No. 5, 415 (1996)). In this PCR method, only one PCR product is amplified to increase the specificity of the primer for type I DNA and to recognize only a specific site in the total DNA. In addition, in order to detect the presence of a specific sequence in a nucleic acid for use in genetic diagnosis of a hereditary disease, a cancerous disease, or an infectious disease, the base sequence of a target nucleic acid is slightly contained using a complementary primer. Technology to amplify and detect unidentified nucleic acid sequences The technique is disclosed (for example, see Japanese Patent Publication No. 4-67960). Disclosure of the invention
2本鎖核酸又は P CR法で增幅された 2本鎖の増幅産物に温度をかけていくと 各々 1本鎖に解離するが、 この急激に解離する温度点を Tm (Me 1 t i n g Temp e r a t u r e) という。 本件発明者らは、 先に出願した特許明細書及 び図面において、 核酸にサイバーグリーン等のインターカレーター色素を添加し て核酸增幅を行い、 この Tm値と該 Tm値を観察した溶解曲線 (Me 1 t Cu r v e) 、 或いは該溶解曲線を微分して得られた解離曲線 (D i s s o c i a t i o n Cu r v e) 等の解離曲線波形パターンとから核酸を同定する技術を提 案している (特開 2003-180374) 。 さらに、 1種類のプライマーを用いて 1本鎖核酸 を同時かつ複数領域で合成し、 その相互干渉産物の解離曲線を解離曲線波形パタ ーンとして認識し、 核酸の検出および同定を行う方法も提案されている (特開 200 3-334082) 。  When a double-stranded nucleic acid or a double-stranded amplification product amplified by the PCR method is heated, it is dissociated into single strands each time the temperature is applied.The temperature point at which this rapid dissociation occurs is determined by Tm (Metting Temperature). That. In the patent specification and drawings filed earlier, the inventors of the present invention performed nucleic acid amplification by adding an intercalator dye such as cyber green to nucleic acid, and measured the Tm value and the melting curve (Me 1t Curve) or a dissociation curve waveform pattern such as a dissociation curve (Dissociation Curve) obtained by differentiating the dissolution curve has been proposed (Japanese Patent Application Laid-Open No. 2003-180374). ). Furthermore, we propose a method for synthesizing single-stranded nucleic acids simultaneously and in multiple regions using one type of primer, recognizing the dissociation curve of the mutual interference product as a dissociation curve waveform pattern, and detecting and identifying nucleic acids. (Japanese Patent Application Laid-Open No. 2003-334082).
上述の、 1種類のプライマーを用いて 1本鎖核酸を合成、 その相互干渉産物の解 離曲線を解離曲線波形パターンとして認識し核酸の検出および同定を行う方法は、 核酸を容易にかつ多様に分析する方法として有用であるが、 1本鎖核酸の合成効率 が低いこと、 およびこれに起因する低検出感度には改善の余地があった。 つまり、 低合成効率による低検出感度化を改善するためには、 低アニーリング温度を適応 して核酸合成効率を増加させる方法が考えられるが、 これは目的塩基配列の検出 および同定に対し、 特異度の低下を引き起こす原因となる。 し力 し、 特異度を改 善するために高アニーリング温度を適応すると、 核酸合成の効率はより一層低下 して検出感度は悪化する。 このような矛盾点を解決することが 1種類のプライマー を用いて 1本鎖核酸を合成し、 その相互干渉産物の解離曲線を解離曲線波形パター ンとして認識し核酸の検出および同定を行う方法の課題であった。  The above-mentioned method for synthesizing single-stranded nucleic acids using one type of primer and recognizing the dissociation curve of the mutual interference product as a dissociation curve waveform pattern to detect and identify nucleic acids is easy and diverse. Although useful as a method for analysis, there is room for improvement in the low efficiency of single-stranded nucleic acid synthesis and the resulting low detection sensitivity. In other words, in order to improve the low detection sensitivity due to low synthesis efficiency, a method of increasing the nucleic acid synthesis efficiency by adapting the low annealing temperature can be considered, but this method has a specificity for the detection and identification of the target base sequence. Causes a decrease in However, if a high annealing temperature is applied to improve specificity, the efficiency of nucleic acid synthesis is further reduced and the detection sensitivity is deteriorated. Solving such inconsistencies involves a method for synthesizing single-stranded nucleic acid using one type of primer, recognizing the dissociation curve of the mutual interference product as a dissociation curve waveform pattern, and detecting and identifying the nucleic acid. It was an issue.
本発明は従来の実情に鑑み、 鋭意研究の結果、 提案されたものであり、 容易か つ効果的な 1本鎖核酸合成を利用した核酸検出おょぴ同定法に対し、 検出感度を改 善すると同時にその特異度を維持する方法を提供することを目的とするとするも ので、 本発明に係る請求項 1に記載のアニーリング温度を変化させる方法、 つま り低温度アニーリングと高温度アニーリングを組み合わせる方法、 また、 請求項 2に記載の相対的に特異性の低い 1本鎖核酸と同等の機能を有する合成核酸また は化学物質を添加する方法を課題解決の手段とした。 The present invention has been proposed as a result of earnest research in view of the conventional situation, An object of the present invention is to provide a method for improving the detection sensitivity and at the same time maintaining the specificity of a nucleic acid detection and identification method utilizing single-stranded nucleic acid synthesis, which is more effective. A method for changing the annealing temperature according to claim 1 according to claim 1, that is, a method combining low-temperature annealing and high-temperature annealing, and a method similar to the relatively low-specificity single-stranded nucleic acid according to claim 2. A method for adding a synthetic nucleic acid or a chemical substance having a function was used as a means for solving the problem.
本発明は、 核酸上の任意の特定塩基配列領域に対し特異的な相補性を有する 1 種類のプライマーを用い、 高温度アニーリング条件で特定塩基配列領域に対し相 対的特異性の高い 1本鎖核酸を合成し、 核酸を検出、 同定する方法で、 1本鎖核酸 の低合成効率に起因する感度の低下を改善する方法を本発明で実現した。 具体的 には、 (i ) 合成サイクルの初期に、 低温度アニーリング条件を設定し、 十分な The present invention uses a single type of primer having specific complementarity to any specific nucleotide sequence region on a nucleic acid, and a single strand having a high relative specificity to the specific nucleotide sequence region under high temperature annealing conditions. The present invention has realized a method for synthesizing a nucleic acid, detecting and identifying the nucleic acid, and improving the reduction in sensitivity due to the low efficiency of single-stranded nucleic acid synthesis. Specifically, (i) at the beginning of the synthesis cycle, set low-temperature annealing conditions and
5 ' 側の完全相補性がない類似塩基配列領域でも不完全相補鎖を形成し、 特定塩 基配列領域に対し相対的特異性の低い 1本鎖核酸を複数かつ同時に合成する方法、 ( ϋ ) 別途合成した 1本鎖核酸を添加する方法、 の 2種類の方法を考案した。 これ らはいずれも、 高温度アニーリング条件で合成される相対的特異性の高い、 しか し量的に不十分で、 検出工程において十分な感度を得られない 1本鎖合成核酸に対 し、 該 1本鎖核酸と部分的相補鎖を形成することにより水素結合の物理的量を増加 させ、 検出工程における感度を改善する効果が得られる。 A method of simultaneously forming a plurality of single-stranded nucleic acids having low relative specificity to a specific base sequence region by forming an incomplete complementary chain even in a similar base sequence region having no complete complementarity at the 5 ′ side, (ϋ) A method of adding a separately synthesized single-stranded nucleic acid was devised. All of these methods are applicable to single-stranded synthetic nucleic acids that are synthesized under high-temperature annealing conditions and have relatively high specificity, but are insufficient in quantity and do not provide sufficient sensitivity in the detection step. By forming a partially complementary strand with a single-stranded nucleic acid, the physical quantity of hydrogen bonds is increased, and the effect of improving the sensitivity in the detection step is obtained.
以下、 本発明を適用した具体的な実施の形態について、 図面を参照しながら詳 細に説明する。 この実施の形態は、 対象 2本鎖核酸の特異的な塩基配列に反応し て 1本鎖のみを増幅する 1種類のプライマーを用い、 その特異度を高めつつ感度を 改善する核酸検出および同定法について説明するものである。 ここで 「ァニー ル」 とは、 ヌクレオチド鎖が、 ワトソン一クリックの法則に基づく塩基対結合に よって 2本鎖構造を形成することをいう。 本発明では、 特異度を高めた合成 1本鎖 核酸のみでは得られない検出感度を高めるため、 (i ) アニーリング温度を低温 と高温に変ィ匕させ、 低温ァユーリングでは検出感度を高めるための特異性の低い 1 本鎖核酸を特異性の高い目的 1本鎖核酸とともに合成し、 高温アニーリングでは特 異性の高い目的 1本鎖核酸のみを合成し、 両者共存下に合成 1本鎖核酸相互干渉産 物を形成させ、 その解離曲線波形パターンから高感度かつ特異的な核酸を検出お よび同定を実現する方法、 (ii ) 検出感度を高めるための合成 1本鎖核酸を添加す ることにより、 高温アニーリングで合成された特異性の高い目的 1本鎖核酸との両 者共存下に合成 1本鎖核酸相互干渉産物を形成させ、 その解離曲線波形パターンか ら高感度かつ特異的な核酸を検出および同定を実現する方法を用いた。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. This embodiment uses a single type of primer that amplifies only a single strand in response to a specific base sequence of a target double-stranded nucleic acid, and improves the sensitivity while improving the specificity. Is explained. Here, “anneal” means that a nucleotide chain forms a double-stranded structure by base pair bonding based on the Watson-Crick law. In the present invention, in order to increase the detection sensitivity that cannot be obtained only with a synthetic single-stranded nucleic acid having an increased specificity, (i) the annealing temperature is changed between a low temperature and a high temperature; Less likely 1 Synthesize single-stranded nucleic acids together with target single-stranded nucleic acids with high specificity.In high-temperature annealing, synthesize only single-stranded target nucleic acids with high specificity, and form a single-stranded nucleic acid mutual interference product in the presence of both. A method for detecting and identifying a nucleic acid with high sensitivity and specificity from its dissociation curve waveform pattern. (Ii) Synthesis for increasing the detection sensitivity.Synthesis by high-temperature annealing by adding single-stranded nucleic acid. Highly specific purpose Synthesize single-stranded nucleic acid mutual interference products in the presence of both single-stranded nucleic acids and realize highly sensitive and specific nucleic acid detection and identification from its dissociation curve waveform pattern The method was used.
上記 (i ) の概念を図 1に模式的に示す。 図 1 (A) では、 低温アニーリングに おける核酸の合成状況を示しており、 1種類のプライマーで、 多量の検出感度を高 めるための特異性の低い 1本鎖核酸、 目的塩基配列 X外由来合成核酸と、 少量の特 異性の高い目的 1本鎖核酸、 目的塩基配列 X由来合成核酸の両者が合成されている。 図 1 (B) では、 高温アニーリングにおける核酸の合成状況を示しており、 1種類 のプライマーで、 特異性の高い目的 1本鎖核酸、 目的塩基配列 X由来合成核酸のみ が合成されている。 低温アニーリングでは、 プライマーと錶型核酸間の完全相補 性がなくともァニールが行われ、 核酸合成が進行するのに対し、 高温ァニーリン グでは、 プライマーと铸型核酸間の完全相補性がないとァニールがおこなわれな いため、 特異的な目的核酸のみが合成されることを示す。  The concept of the above (i) is schematically shown in FIG. Figure 1 (A) shows the nucleic acid synthesis status during low-temperature annealing, where a single type of primer is used to increase the detection sensitivity for a large amount of low-specificity single-stranded nucleic acid, and the target base sequence X Both a synthetic nucleic acid of interest, a small amount of a target single-stranded nucleic acid with high specificity, and a synthetic nucleic acid of the target base sequence X are synthesized. FIG. 1 (B) shows the synthesis status of nucleic acids in high-temperature annealing, in which only a single-stranded target nucleic acid having high specificity and a synthetic nucleic acid derived from the target base sequence X are synthesized with one kind of primer. In low-temperature annealing, annealing occurs even if there is no perfect complementarity between the primer and type I nucleic acid, and nucleic acid synthesis proceeds, whereas in high-temperature annealing, annealing occurs when there is no perfect complementarity between the primer and type II nucleic acid. This indicates that only a specific target nucleic acid is synthesized because no reaction is performed.
低温アニーリングにおけるプライマーと铸型核酸間の不完全相補的なァニール の状況を模式的に図 2で示し、 上述の温度変化アニーリングにより合成された各 種 1本鎖合成核酸が混在した状況における、 相互干渉産物の模式図を図 3に示す。 検出感度を高めるための特異性の低い 1本鎖核酸が、 特異性の高い目的 1本鎖核酸 と共存することにより両者間に反応が起こり、 水素結合の物理量が増加するため、 水素結合に取り込まれるインターカレーター量が増加し、 結果的に高感度が実現 する。 特異性の低い 1本鎖核酸が存在しない場合は、 水素結合部位は特異性の高い 目的 1本鎖核酸自身による自己ループ、 ヘアピン構造形成時に存在するか、 ダイマ 一形成時にのみ存在するため、 その物理量も少なく、 結果的に感度も低下する。 合成 1本鎖核酸を添加する方法の概念は図 3と同等であり、 同図の目的塩基配列 X 外由来合成核酸 (蛍光強度増加用合成核酸) を、 別途に合成し添加することによ り上述の低温アニーリングと高温ァニーリングを連続的あるいは不連続的に行う 方法と同様の効果を得るものである。 FIG. 2 schematically shows the state of incomplete complementary annealing between the primer and the type I nucleic acid during low-temperature annealing, and the mutual interaction in the case where various single-stranded synthetic nucleic acids synthesized by the above-mentioned temperature change annealing are mixed. Figure 3 shows a schematic diagram of the interference products. A single-stranded nucleic acid with low specificity to increase detection sensitivity coexists with the target single-stranded nucleic acid with high specificity, causing a reaction between the two and increasing the physical quantity of hydrogen bond. The amount of intercalator increases, resulting in high sensitivity. When there is no single-stranded nucleic acid with low specificity, the hydrogen-bonding site is present when the target single-stranded nucleic acid with high specificity is present at the time of self-loop or hairpin structure formation by itself, or only at the time of dimer formation. The physical quantity is also small, resulting in lower sensitivity. The concept of the method for adding a synthetic single-stranded nucleic acid is the same as that in Fig. 3, and by separately synthesizing and adding a synthetic nucleic acid derived from outside the target base sequence X (synthetic nucleic acid for increasing the fluorescence intensity) in the same figure. An effect similar to the above-described method of performing low-temperature annealing and high-temperature annealing continuously or discontinuously is obtained.
目的核酸の検出感度を高めるために、 低温アニーリングと高温アニーリングを 連続的あるいは不連続的に行う方法およぴ合成 1本鎖核酸を添加する方法におい て、 酵素 D NAポリメラーゼの存在下でプライマーのアニーリングを安定させる ためには非イオン型などの界面活性剤や硫酸ナトリゥム、 硫酸水素ナトリゥムの ような硫酸化合物の添加が有用であり、 殊に低温ァニーリングで効果が大きい。 図面の簡単な説明  In order to increase the detection sensitivity of the target nucleic acid, the method of performing low-temperature annealing and high-temperature annealing continuously or discontinuously, and the method of adding a single-stranded nucleic acid, use primers in the presence of the enzyme DNA polymerase. In order to stabilize annealing, it is useful to add a surfactant such as a nonionic type or a sulfuric acid compound such as sodium sulfate or sodium hydrogen sulfate, and it is particularly effective at low temperature annealing. Brief Description of Drawings
図 1は、 本発明の形態における核酸合成を模式的に説明する図であり、 (A) は本発明の低温アニーリングにおける核酸合成の様子を、 (B ) は高温ァニーリ ングにおける核酸合成の様子を示すものである。  FIG. 1 is a diagram schematically illustrating nucleic acid synthesis according to an embodiment of the present invention. (A) shows a state of nucleic acid synthesis in low-temperature annealing of the present invention, and (B) shows a state of nucleic acid synthesis in high-temperature annealing. It is shown.
図 2は、 低温アニーリングにおけるプライマーと铸型核酸間のァニールを模式 的に説明する図である。  FIG. 2 is a diagram schematically illustrating annealing between a primer and a type III nucleic acid in low-temperature annealing.
図 3は、 本発明の形態における核酸合成産物の相互干渉物を模式的に説明する 図である。  FIG. 3 is a diagram schematically illustrating a mutual interference product of a nucleic acid synthesis product according to the embodiment of the present invention.
図 4は、 表 2に示した本発明のプロトコールで得た解離曲線波形パターン。 図 5は、 表 2に示した比較プロトコール (A) および (B ) で得た解離曲線波 形パターン。  FIG. 4 is a dissociation curve waveform pattern obtained by the protocol of the present invention shown in Table 2. Figure 5 shows the dissociation curve waveform patterns obtained with the comparative protocols (A) and (B) shown in Table 2.
図 6は、 本発明と比較プロトコールの電気泳動写真。  FIG. 6 is an electrophoresis photograph of the present invention and a comparative protocol.
図 7は、 合成核酸を添加した場合の解離曲線波形パターンである。  FIG. 7 shows a dissociation curve waveform pattern when a synthetic nucleic acid was added.
図 8は、 合成核酸を添加しなかった場合の解離曲線波形パターンである。 発明を実施するための最良の形態 以下、 実施例に基づいて本発明をさらに具体的に説明するが、 本発明が以下の 実施例に限定されるものないことは勿論であり、 本発明の要旨を逸脱しない範囲 において種々の変更が可能である。 FIG. 8 is a dissociation curve waveform pattern when no synthetic nucleic acid was added. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically with reference to Examples. However, it is needless to say that the present invention is not limited to the following Examples, and various changes may be made without departing from the gist of the present invention. It is possible.
(1) アニーリング温度変化の効果  (1) Effect of annealing temperature change
細菌の 16 Sリボソーム RNA (r RNA) をコードする DNA配列のうち、 約 3000菌種で保存されており、 かつ細菌以外の DNAでは出現頻度の低い 1 2塩基を選択しこれを B S Sプライマーとして使用、 アニーリング温度変化を行 つた本発明プロトコールとアニーリング変化を行わないプロトコールを比較し、 その感度おょぴ特異度の改善効果を実施例として行った。 具体的には、 両プロト コールともに、 細菌の 16 Sリボソーム RNA (r RNA) をコードする配列以 外に、 23 S r RNA、 8 S で1 等の163 r RN Aと相同性のある配列 が同時に増幅される。 低温度アニーリング条件のみのプロトコールでは、 合成 1本 鎖核酸で構成される相互干渉産物は、 検出工程における十分な物理量を確保する ことは可能であっても、 多領域で相対的特異性の低い 1本鎖核酸の必要以上の存在 により特異性が低下する。 また、 高温度アニーリング条件のみでは、 合成 1本鎖核 酸で構成される相互干渉産物は、 目的遺伝子領域に対し相対的特異性の高い 1本鎖 核酸のみが合成されるため特異性は高いが、 検出工程における十分な物理量を確 保することが困難である。 本発明プロトコールでは、 低温度アニーリング条件下 においてこれらの目的遺伝子領域以外からも、 多領域で相対的特異性の低い 1本鎖 核酸が複数かつ同時に合成され、 さらに高温度アニーリング条件下では、 これら の目的遺伝子領域以外からの相対的特異性の低い 1本鎖核酸は合成されず、 目的遣 伝子領域に対し相対的特異性の高い 1本鎖核酸のみが合成されるため、 両者がパラ ンスよく混在することにより、 これら合成 1本鎖核酸で構成される相互干渉産物は、 検出工程における十分な物理量を確保すると同時に、 特異性も得ることが期待さ れる。 使用する細菌としては、 大腸菌 (E. c o 1 i) を選択し、 I SOGEN -LS (日本ジーン株式会社製) をマニュアルに従って使用して DNAを抽出し た。 この各検体 DNAは、 3 0011 §/5 1 (H2O) に調整し、 以下の表 1に 示す通り、 50 1の反応液に添加、 総量を 5 5 /X 1の糸且成液として実施した。 また、 実施例は各々 Du p 1 i c a t e (繰り返し実験) で確認を行った。 本発 明実施のための組成液処方例を表 1に示す。 Of the DNA sequence encoding bacterial 16S ribosomal RNA (rRNA), select 12 bases that are conserved in about 3000 bacterial species and have a low frequency of occurrence in non-bacterial DNA, and use this as a BSS primer. Then, the protocol of the present invention in which the annealing temperature was changed and the protocol in which the annealing was not changed were compared, and the effect of improving the sensitivity and specificity was performed as an example. Specifically, in both protocols, in addition to the sequence encoding bacterial 16 S ribosomal RNA (rRNA), a sequence having homology to 163 rRNA, such as 23 S rRNA and 8 S, is 1 and so on. Amplified at the same time. In the protocol using only low-temperature annealing conditions, the mutual interference products composed of synthetic single-stranded nucleic acids can be obtained in a sufficient physical quantity in the detection process, but have low relative specificity in many regions. Unnecessary presence of the single-stranded nucleic acid reduces specificity. Under high-temperature annealing conditions alone, the mutual interference products composed of synthetic single-stranded nucleic acids have high specificity because only single-stranded nucleic acids with high relative specificity to the target gene region are synthesized. However, it is difficult to ensure a sufficient physical quantity in the detection process. According to the protocol of the present invention, a plurality of single-stranded nucleic acids having low relative specificity in multiple regions are simultaneously and simultaneously synthesized from regions other than these target gene regions under low-temperature annealing conditions. Single-stranded nucleic acids with low relative specificity from regions other than the target gene region are not synthesized, and only single-stranded nucleic acids with high relative specificity to the target gene region are synthesized. By being mixed, the mutual interference products composed of these synthetic single-stranded nucleic acids are expected to secure sufficient physical quantity in the detection step and also obtain specificity. E. coli (E.co1i) was selected as the bacterium to be used, and DNA was extracted using ISOGEN-LS (manufactured by Nippon Gene Co., Ltd.) according to the manual. It was. Each sample DNA was adjusted to 30011 § / 51 (H 2 O) and added to 501 reaction solution as shown in Table 1 below, and the total amount was converted to 55 / X 1 Carried out. In the examples, each was confirmed by Dup 1 icate (repeated experiment). Table 1 shows examples of composition liquid formulations for implementing the present invention.
表 1  table 1
Figure imgf000008_0002
Figure imgf000008_0002
表 1中、 1 0 X PCR緩衝液は、 T a qDNAポリメラーゼまたは T a q— R EX (TAKARA社製) に添付のものを、 5 Xサイバーグリーン希釈液は、 原 液を滅菌蒸留水で 1 0 0 0倍希釈したものを、 5 XG e n o p a t t e r n緩衝液は、 Ad g e n e社製の製品を、 T a q D N Aポリメラーゼは、 T a q-REX (TAKARA社製) をそれぞれ使用した。 また、 B S Sプライマー は、 5, 一 ATCGCTATGTGC 一 3 ' (塩基配列 1 ) 、  In Table 1, the 10X PCR buffer was supplied with Taq DNA polymerase or Taq-REX (TAKARA), and the 5X Cyber Green dilution was prepared by diluting the stock solution with sterile distilled water. The one-fold dilution was used as a 5X Genopattern buffer, a product manufactured by Adgene, and a Taq DNA polymerase was used, Taq-REX (TAKARA). In addition, the BSS primer is composed of 5, 1 ATCGCTATGTGC 13 ′ (base sequence 1),
の塩基配列を用いた。 表 2に本発明プロトコールおよび比較プロトコールを示す。 Was used. Table 2 shows the protocol of the present invention and the comparative protocol.
表 2  Table 2
Figure imgf000008_0001
上記各プロトコールは i一 c y c 1 e r i Q (パイオラッドネ土製) を用いて行 い、 発明の効果は温度範囲 6 5〜 9 5 °C、 温度ステップ 0 . 1 °Cの条件で各温度 で 1秒間観察することにより、 合成核酸相互干渉産物の解離曲線波形パターンを 観察し判定した。
Figure imgf000008_0001
Each of the above protocols was performed using i-cyc 1 eri Q (made of pioradne earth), and the effect of the invention was observed at a temperature range of 65 to 95 ° C and a temperature step of 0.1 ° C for 1 second at each temperature. As a result, the dissociation curve waveform pattern of the synthetic nucleic acid interference product was observed and judged.
次に、 これら反応終了後のサンプル 2 0 μ 1に 5 μ 1のローデイングバッファ 一を添加し、 2 %ァガロースゲルを使って、 2 0分間、 1 0 0 Vで電気泳動後、 ゲルをェチジゥムブロマイドで染色して合成核酸を確認した。 なお、 分子サイズ マーカとして、 2 0 0 b p l a d d e r m a r k e rを使用した。 本発明と 比較プロトコール A, Bの解離曲線波形パターンをそれぞれ図 4およぴ図 5 (A) 、 ( B ) に示す。 図 4から分かるように、 本発明プロトコールを用いた場 合、 波形パターンの各ピークは鋭利かつ鮮明で、 D i p 1 i c a t eの差も少な く、 十分な蛍光量も得られている。 これに対し、 図 5 (A) の比較プロトコール A、 つまり低温度アニーリング条件のみのプロトコールを用いた場合、 図 4と比 較し同等の蛍光量は得られるものの、 波形パターンの各ピークの鮮明さに劣り、 合成核酸が検出工程における十分な蛍光量を確保することは可能であっても、 多 領域で相対的特異性の低い 1本鎖核酸の必要以上の存在により特異性が低下する ことを示す。 図 5 ( B ) の比較プロトコール B、 つまり高温度アニーリング条件 のみのプロトコールを用いた場合、 図 4と比較し十分な蛍光量が得られておらず、 単純な 1本鎖合成のみでは波形パターンとしての検出が困難であることを示して いる。 これら本発明プロトコールと比較プロトコールの波形パターンから、 本発 明プロトコールでは 1本鎖核酸を合成する 1プライマーのみで、 核酸同定に必要 な特異性を高めつつ十分な検出蛍光量を得ることを可能としていることが認めら れた。 本プロトコールを利用することにより、 核酸の目的塩基配列の存在に着目 した高感度の核酸検出、 また、 多様な波形パターンが安定的に観察されることか ら、 この波形パターンを調べることにより多様な核酸同定が実現される。  Next, 5 μl of loading buffer was added to 20 μl of the sample after the completion of the reaction, and electrophoresis was performed at 100 V for 20 minutes using a 2% agarose gel. The synthetic nucleic acid was confirmed by staining with ゥ mbromide. In addition, 200 bpl ad d e r m a r k er was used as a molecular size marker. The dissociation curve waveform patterns of the present invention and comparative protocols A and B are shown in FIGS. 4 and 5 (A) and (B), respectively. As can be seen from FIG. 4, when the protocol of the present invention is used, each peak of the waveform pattern is sharp and clear, the difference in Dip i cate is small, and a sufficient amount of fluorescence is obtained. In contrast, when the comparative protocol A in Fig. 5 (A), that is, the protocol under only low-temperature annealing conditions, was used, the same amount of fluorescence was obtained as compared to Fig. 4, but the sharpness of each peak in the waveform pattern was clear. Although the synthetic nucleic acid can secure a sufficient amount of fluorescence in the detection step, the specificity is reduced by the presence of unnecessarily large single-stranded nucleic acid with low relative specificity in multiple regions. Show. When the comparative protocol B in Fig. 5 (B), that is, the protocol under only the high-temperature annealing condition, was used, a sufficient amount of fluorescence was not obtained as compared with Fig. 4, and the waveform pattern was obtained only with simple single-strand synthesis. This indicates that it is difficult to detect Based on the waveform patterns of the protocol of the present invention and the comparative protocol, the present protocol makes it possible to obtain a sufficient amount of detected fluorescence while increasing the specificity required for nucleic acid identification with only one primer for synthesizing a single-stranded nucleic acid. Was recognized. By using this protocol, highly sensitive nucleic acid detection that focuses on the presence of the target nucleotide sequence of nucleic acids, and various waveform patterns can be stably observed. Nucleic acid identification is achieved.
本発明プロトコールと比較プロトコールの電気泳動写真を図 6に示す。 ここで、 レーン 1は本発明プロトコール、 レーン 2は比較プロトコール A、 レーン 3は比 較プロトコール Bである。 図 6から分かるように、 本発明プロトコールおよび比 較プロトコール A、 つまり低温度アニーリング条件のみのプロトコールでは、 十 分な核酸合成が行われているが、 核酸の詳細な同定に関しては電気泳動では行う ことができず、 解離曲線波形パターンの検出工程が必要である。 また、 高温度ァ ニーリング条件のみのプロトコ一ルでは、 十分な核酸合成が行われておらず、 未 反応のプライマーも観察されている。 本法では、 解離曲線波形パターンの検出ェ 程を行っても安定的な核酸同定は困難である。 このことからも、 本発形パターン の検出工程を行っても安定的な核酸同定は困難である。 このことから本発明の有 用十生が確認された。 FIG. 6 shows electrophoresis photographs of the protocol of the present invention and the comparative protocol. here, Lane 1 is the protocol of the present invention, lane 2 is comparative protocol A, and lane 3 is comparative protocol B. As can be seen from FIG. 6, sufficient nucleic acid synthesis is performed by the protocol of the present invention and comparative protocol A, that is, the protocol using only low-temperature annealing conditions, but the detailed identification of nucleic acids must be performed by electrophoresis. And a step of detecting the dissociation curve waveform pattern is required. In addition, in the protocol only under the high-temperature annealing condition, the nucleic acid was not sufficiently synthesized, and unreacted primers were observed. In this method, stable nucleic acid identification is difficult even if the dissociation curve waveform pattern is detected. For this reason, it is difficult to identify nucleic acids stably even if the step of detecting the present pattern is performed. This confirmed the useful life of the present invention.
( 2 ) 添加合成核酸の効果 (2) Effect of added synthetic nucleic acid
細菌の 1 6 Sリボソーム R NA ( r R NA) をコードする D NA配列のうち、 約 3 0 0 0菌種で保存されており、 かつ細菌以外の D N Aでは出現頻度の低い 1 2塩基を選択しこれを B S Sプライマーとして使用、 高温度アニーリング条件の みでは検出工程における十分な核酸の物理量を確保することが困難である欠点を 捕う目的で、 この条件で合成された 1本鎖核酸と反応する合成核酸を添加し、 蛍 光強度の改善効果を実施例として行った。 高温度アニーリング条件下では特異性 の高い 1本鎖核酸が合成されるが、 この 1本鎖核酸のみでは、 例えばインター力 レーターを用いた場合、 各々の自己ループあるいはダイマー形^しか水素結合が 形成されないため、 蛍光強度の基盤となる水素結合部位の不足が蛍光強度低下の 原因となる。 従って、 合成 1本鎖核酸に対し、 水素結合部位を提供する核酸を合 成反応終了後に添加することにより、 この欠点の解消が期待される。 使用する細 菌としては、 大腸菌 (E . c o l i ) を選択し、 I S O G E N— L S (日本ジー ン株式会社製) をマニュアルに従って使用して D N Aを抽出した。 この各検体 D NAは、 3 0 0 n g / 5 μ 1 (Η 20) に調整し、 以下の表 1に示す通り、 5 0 μ 1の反応液に添加、 総量 5 5 1の組成液として実施した。 また、 実施例は各々 重複実験で行つた。 本発明実施のための組成液処方例を表 3に示す。 Of the DNA sequence encoding the bacterial 16S ribosome RNA (rRNA), select 12 bases that are conserved in about 300 species and have a low frequency of appearance in non-bacterial DNA. It was used as a BSS primer, and reacted with single-stranded nucleic acid synthesized under these conditions to capture the drawback that it was difficult to ensure a sufficient amount of nucleic acid in the detection step only under high-temperature annealing conditions. The effect of improving the fluorescence intensity was performed as an example. Under high-temperature annealing conditions, single-stranded nucleic acids with high specificity are synthesized, but with this single-stranded nucleic acid alone, for example, when an interlator is used, hydrogen bonds are formed only in each self-loop or dimer form. Insufficient hydrogen bonding sites, which are the basis of fluorescence intensity, cause a decrease in fluorescence intensity. Therefore, by adding a nucleic acid providing a hydrogen bonding site to the synthesized single-stranded nucleic acid after the completion of the synthesis reaction, it is expected that this disadvantage will be solved. E. coli was selected as a bacterium to be used, and DNA was extracted using ISOGEN-LS (manufactured by Nippon Gene Co., Ltd.) according to the manual. Each sample D NA was adjusted to 3 0 0 ng / 5 μ 1 (Η 2 0), as shown in Table 1 below, 5 0 mu This was added to the reaction solution of No. 1 and performed as a composition solution having a total amount of 551. In addition, the examples were each performed in duplicate experiments. Table 3 shows examples of formulation of the composition for implementing the present invention.
表 3  Table 3
6 97 6 97
o 82  o 82
秒 o o Seconds o o
秒秒
Figure imgf000011_0002
表 3中、 1 0 X P CR緩衝液は、 T a q DNAポリメラーゼまたは T a q · R EX (TAKARA社製) に添付のものを、 5 Xサイバーグリーン希釈液は、 原 液を滅菌蒸留水で 1 0 0 0倍希釈したものを、 5 X G e n o p a t t e r n緩衝液は、 A d g e n e社製の製品を、 T a q DNAポリメラーゼは、 T a q - REX (TAKARA社製) をそれぞれ使用した。 また、 B S Sプライマー は、 5, - ATCGCTATGTGC - 3 ' (塩基配列 1 ) 、
Seconds seconds
Figure imgf000011_0002
In Table 3, 10 XP CR buffer was supplied with Taq DNA polymerase or Taq REX (TAKARA), and 5X Cyber Green diluent was prepared by diluting the stock solution with sterile distilled water. The one-fold dilution, 5 X Genopattern buffer, Adgene product, and Taq DNA polymerase, Taq-REX (TAKARA) were used. The BSS primers are 5, -ATCGCTATGTGC-3 '(base sequence 1),
の塩基配列を用いた。 表 4に本発明実施プロトコールを示す。 Was used. Table 4 shows the protocol for implementing the present invention.
表 4  Table 4
プロ 卜 3—ル
Figure imgf000011_0001
Protocol 3
Figure imgf000011_0001
5 0サイクル 上記プロトコールは i 一 c y c 1 e r i Q (パイオラッド社製) を用いて行 い、 その後、 1 0 0 pino 1 Z/ 1の濃度の各種合成核酸を 2 μ 1添加した。 こ の実施例による発明の効果は、 温度範囲 6 0〜9 5°C、 温度ステップ 0. 1°Cの 条件において各温度で 1秒間観察することにより、 合成核酸相互干渉産物の解離 曲線波形パターンを観察し判定した。 表 5に実験に使用した添加合成核酸の塩基 配列を示す。 50 cycles The above protocol was performed using i-cyc 1 eri Q (manufactured by Piorad), and then 2 μl of various synthetic nucleic acids at a concentration of 100 pino 1 Z / 1 was added. The effect of the invention according to this embodiment is that the temperature range of 60 to 95 ° C and the temperature step of 0.1 ° C By observing at each temperature for 1 second under the conditions, the dissociation curve waveform pattern of the synthetic nucleic acid mutual interference product was observed and judged. Table 5 shows the base sequence of the added synthetic nucleic acid used in the experiment.
表 5  Table 5
Figure imgf000012_0001
各合成核酸 A, B, Cを添加した後の解離曲線波形パターンを、 それぞれ図 7 (A) 、 (B ) ( C ) に、 また、 無添加添加解離曲線波形パターンを図 8に示す。 図 7 (A) , ( B ) , ( C ) と図 8の比較から分かるように、 本発明の合成核酸 を添加した場合、 高温度アニーリング条件下で不足していた蛍光強度の基盤とな る水素結合部位を捕うことが可能となり、 無添加の場合に不足していた核酸検出 感度を改善する効果が認められた。 同時に、 この実施例は、 添加合成核酸の塩基 配列を工夫することにより、 検出核酸の解離曲線波形パターンを調整できる可能 性を示唆しており、 目的にあわせた多様な核酸検出および同定が容易に実現可能 であることが示された 産業上の利用の可能性
Figure imgf000012_0001
The dissociation curve waveform patterns after addition of each of the synthetic nucleic acids A, B, and C are shown in FIGS. 7 (A), (B) and (C), respectively, and the dissociation curve waveform patterns without addition are shown in FIG. As can be seen from the comparison of FIGS. 7 (A), (B), (C) and FIG. 8, when the synthetic nucleic acid of the present invention is added, it becomes the basis of the fluorescence intensity which was insufficient under the high temperature annealing condition. It was possible to capture the hydrogen bonding site, and the effect of improving the nucleic acid detection sensitivity, which was lacking when no addition was performed, was recognized. At the same time, this example suggests that by devising the base sequence of the added synthetic nucleic acid, it is possible to adjust the dissociation curve waveform pattern of the detected nucleic acid, and it is easy to detect and identify various nucleic acids according to the purpose. Industrial applicability shown to be feasible
本発明により、 目的核酸の任意の塩基配列を特異的に高感度に、 かつ容易に検 出および同定することが可能となった。 1種類のプライマーを用いる利点は、 目 的核酸の任意の塩基配列をその関連領域も含め幅広く合成することにより、 その 情報を解離曲線波形パターンに反映させるため極めて有用であり、 核酸の性状を 広く観察することができる。 従って、 1種類のプライマーを用いたうえで、 その 問題点の低合成効率に起因する低感度の改善法として本発明を組み合わせること は、 容易な核酸の検出および同定法として利用可能である。 According to the present invention, any base sequence of a target nucleic acid can be specifically detected with high sensitivity and easily detected and identified. The advantage of using one type of primer is that by synthesizing any nucleotide sequence of the target nucleic acid widely including its related region, the information is reflected in the dissociation curve waveform pattern, which is extremely useful. Can be observed. Therefore, after using one type of primer, Combining the present invention as an improved method of low sensitivity due to the low synthesis efficiency of the problem can be used as an easy nucleic acid detection and identification method.
本発明は目的核酸の任意の塩基配列を特異的に高感度に、 かつ容易に検出およ ぴ同定することを可能とするもので、 殊に 1種類のプライマーを用いる利点は、 目的核酸の任意の塩基配列をその関連領域も含め幅広く合成することにより、 そ の塩基配列に起因する情報を解離曲線の波形パターンに反映させるために極めて 有用であり、 核酸の性状を広く観察することができる。 従って、 細菌類の同定は もとより遺伝性疾患、 癌性疾患或いは伝染性疾患等の遺伝子診断、 薬剤代謝、 男 女の鑑別など、 人の遺伝解析への応用が可能となる。  The present invention makes it possible to detect and identify any base sequence of a target nucleic acid with high sensitivity and high specificity.The advantage of using one type of primer is that By widely synthesizing the nucleotide sequence including its related region, it is extremely useful to reflect the information derived from the nucleotide sequence on the waveform pattern of the dissociation curve, so that the properties of the nucleic acid can be widely observed. Therefore, it can be applied not only to identification of bacteria, but also to genetic analysis of humans, such as genetic diagnosis of hereditary diseases, cancerous diseases or infectious diseases, drug metabolism, and gender discrimination.

Claims

請求の範囲 The scope of the claims
1 . 核酸上の任意の特定塩基配列領域に対し特異的な相補性を有する 1種類のプ ライマーで、 該塩基配列 3 ' 側に高い安定性が維持されるよう塩基配列を選定 し、 低温度ァユーリング条件下では該プライマーが任意の特定塩基配列領域で 完全相捕鎖を形成するのみならず、 十分な 5 ' 側の完全相補性がない類似塩基 配列領域でも不完全相補鎖を形成し、 D NAポリメラーゼ存在下に多領域で、 特定塩基配列領域に対し相対的特異性の低い 1本鎖核酸を複数かつ同時に合成 し、 高温度アニーリング条件下では該プライマーが任意の特定塩基配列領域の みで完全相補鎖を形成し、 D NAポリメラーゼ存在下に単あるいは少数領域で 特定塩基配列領域に対し相対的特異性の高い 1本鎖核酸を合成し、 両条件を連 続的あるいは非連続的に実行することにより相対的特異性の低い 1本鎖核酸お よび相対的特異性の高レ、 1本鎖核酸を混在させ、 適当な温度条件下においてこ れら 1本鎖核酸の相互干渉物を形成後、 物理化学的刺激による解離変性状況を 経時的に観測し、 その変化状況から核酸の検出および同定を行う核酸検出およ び同定法であって、 相対的に特異性の高い 1本鎖核酸のみでは十分な感度およ ぴ特異度を得られない対象に対しても、 相対的に特異性の低い 1本鎖核酸を混 在させ、 両者間の相互干渉物の物理量の増加から検出感度を上昇させることを 特徴とする核酸検出および同定法。 1. One base having specific complementarity to any specific base sequence region on nucleic acid, base sequence is selected to maintain high stability on the 3 'side of the base sequence, and low temperature Under the augmenting conditions, the primer not only forms a perfect complementary chain in any specific nucleotide sequence region, but also forms an incomplete complementary chain in a similar nucleotide sequence region without sufficient 5′-side perfect complementarity, In the presence of NA polymerase, multiple single-stranded nucleic acids with low relative specificity to a specific nucleotide sequence region are synthesized simultaneously and in multiple regions, and under high temperature annealing conditions, the primer can be used only in an arbitrary specific nucleotide sequence region. Form a completely complementary strand, synthesize a single-stranded nucleic acid with high relative specificity to a specific base sequence region in a single or a small number of regions in the presence of DNA polymerase, and execute both conditions continuously or discontinuously To do After mixing single-stranded nucleic acids with lower relative specificity and higher relative specificity, and forming single-stranded nucleic acids under appropriate temperature conditions, forming a mutual interference product of these single-stranded nucleic acids, This is a nucleic acid detection and identification method that observes the state of dissociation and denaturation due to physicochemical stimulation over time and detects and identifies nucleic acids based on the change. For targets that do not have sufficient sensitivity and specificity, mix single-stranded nucleic acids with relatively low specificity, and increase the detection sensitivity due to the increase in the physical quantity of interfering substances between the two. A method for detecting and identifying a nucleic acid, comprising:
2. 請求項 1の核酸検出および同定法であって、 相対的に特異性の高い 1本鎖核 酸と相互干渉物を形成し、 その感度および特異度を上昇させる目的の低温度条 件下で合成される相対的に特異性の低い 1本鎖核酸と同等の機能を有する合成 核酸または化学物質を、 別途添加することにより相互干渉物の物理量の増加か ら検出感度を上昇させることを特徴とする核酸検出および同定法。 2. The method for detecting and identifying a nucleic acid according to claim 1, wherein a low-temperature condition for forming a mutual interference with a single-stranded nucleic acid having relatively high specificity and increasing its sensitivity and specificity is provided. The feature is that the detection sensitivity is increased by adding a synthetic nucleic acid or chemical substance having the same function as a single-stranded nucleic acid with relatively low specificity synthesized by Nucleic acid detection and identification method.
3 . 請求項 1の核酸検出おょぴ同定法であって、 上記核酸合成効率、 検出効率、 同定効率などが目的核酸における特定塩基配列の出現頻度をもとに規定されう る塩基配列を骨格とするプライマーで、 かつ目的核酸のセンス鎖おょぴァンチ センス鎖の双方に同時にァニールし同時に核酸合成を行う場合でも、 完全相補 的 2本鎖核酸生成を伴わない 1種類のプライマーを用いることを特徴とする核 酸検出および同定法。 3. The nucleic acid detection and identification method according to claim 1, wherein the nucleic acid synthesis efficiency, detection efficiency, identification efficiency, and the like are defined based on the frequency of occurrence of a specific base sequence in the target nucleic acid. Primers whose base sequence is the base sequence of the target nucleic acid and which simultaneously anneals to both the sense strand and the sense strand of the target nucleic acid and simultaneously synthesizes the nucleic acid, does not involve the generation of a completely complementary double-stranded nucleic acid. A method for detecting and identifying a nucleic acid, comprising using a primer.
4. 請求項 1の核酸検出および同定法であって、 任意のプライマー塩基鎖長にお ける全ての塩基配列組み合わせについて鎳型核酸での出現頻度を検索し、 高出 現頻度塩基配列をその存在領域とは無関係に铸型核酸全体を代表する特異性を 持ち得る塩基配列として、 あるいは特定遺伝子における高出現頻度塩基配列に 遺伝子特異性を持ち得る塩基配列として設計概念上組み込まれたプライマーを 用いることを特徴とする核酸検出および同定法。  4. The method for detecting and identifying a nucleic acid according to claim 1, wherein the frequency of occurrence in type 核酸 nucleic acid is searched for all base sequence combinations at an arbitrary primer base chain length, and the high frequency base sequence is detected. Use primers that are incorporated in the design concept as a base sequence that can have specificity representing the entire type II nucleic acid irrespective of the region, or as a base sequence that can have gene specificity in a base sequence that frequently appears in a specific gene A nucleic acid detection and identification method characterized by the above-mentioned.
5. 請求項 1の核酸検出および同定法であって、 特に低温度アニーリング条件下 でのプライマーのアニーリングを安定化させるため、 界面活性剤および Zまた は硫酸化合物を添加すること特徴とする核酸検出および同定法。  5. The method for detecting and identifying a nucleic acid according to claim 1, wherein a surfactant and a Z or sulfate compound are added to stabilize annealing of the primer particularly under low-temperature annealing conditions. And identification methods.
6 . 請求項 1の核酸検出および同定法であって、 特に低温度アニーリング条件下 での温度設定を 40°C以下とすることを特徴とする核酸検出および同定法。  6. The method for detecting and identifying a nucleic acid according to claim 1, wherein the temperature is set at 40 ° C. or less, particularly under low-temperature annealing conditions.
7. 請求項 1の核酸検出および同定法であって、 1本鎖核酸の相互干渉物形成後、 物理化学的刺激による解離変性状況を経時的に観測する方法が、 物理化学的刺 激と変性解離状況の関係を描画あるいはグラフ化したものの図形認識から行わ れることを特徴とする核酸検出および同定法。  7. The method for detecting and identifying a nucleic acid according to claim 1, wherein the method for observing the state of dissociation and denaturation due to physicochemical stimulation over time after the formation of a mutual interference product of the single-stranded nucleic acid comprises physicochemical stimulation and denaturation A nucleic acid detection and identification method characterized in that the relation between dissociation states is drawn or graphed, and the recognition is performed from graphic recognition.
PCT/JP2004/010170 2003-07-15 2004-07-09 Method of detecting and method of identifying nucleic acid WO2005005664A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511598A JPWO2005005664A1 (en) 2003-07-15 2004-07-09 Nucleic acid detection and identification methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-294721 2003-07-15
JP2003294721 2003-07-15

Publications (1)

Publication Number Publication Date
WO2005005664A1 true WO2005005664A1 (en) 2005-01-20

Family

ID=34056216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010170 WO2005005664A1 (en) 2003-07-15 2004-07-09 Method of detecting and method of identifying nucleic acid

Country Status (2)

Country Link
JP (1) JPWO2005005664A1 (en)
WO (1) WO2005005664A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547514B2 (en) 2004-07-28 2009-06-16 Canon U.S. Life Sciences, Inc. Methods for monitoring genomic DNA of organisms
US7604938B2 (en) 2005-02-18 2009-10-20 Canon U.S. Life Sciences, Inc. Devices and methods for monitoring genomic DNA of organisms
CN110964782A (en) * 2019-12-09 2020-04-07 上海鹍远健康科技有限公司 Method for detecting efficiency of single-stranded nucleic acid ligation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670799A (en) * 1992-08-26 1994-03-15 Toshiba Corp Hybridization method
JP2003180374A (en) * 2001-10-12 2003-07-02 Adgene Co Ltd Method for detecting nucleic acid mutation by application of nucleic acid dissolution curve
JP2003274959A (en) * 2002-03-22 2003-09-30 Adgene Co Ltd Method for nonspecifically amplifying nucleic acid applying polymerase chain reaction thereto
JP2003334082A (en) * 2002-05-17 2003-11-25 Adgene Co Ltd Primer for producing wave-form, method for amplifying nucleic acid and method for identifying nucleic acid using the primer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670799A (en) * 1992-08-26 1994-03-15 Toshiba Corp Hybridization method
JP2003180374A (en) * 2001-10-12 2003-07-02 Adgene Co Ltd Method for detecting nucleic acid mutation by application of nucleic acid dissolution curve
JP2003274959A (en) * 2002-03-22 2003-09-30 Adgene Co Ltd Method for nonspecifically amplifying nucleic acid applying polymerase chain reaction thereto
JP2003334082A (en) * 2002-05-17 2003-11-25 Adgene Co Ltd Primer for producing wave-form, method for amplifying nucleic acid and method for identifying nucleic acid using the primer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7547514B2 (en) 2004-07-28 2009-06-16 Canon U.S. Life Sciences, Inc. Methods for monitoring genomic DNA of organisms
US7604938B2 (en) 2005-02-18 2009-10-20 Canon U.S. Life Sciences, Inc. Devices and methods for monitoring genomic DNA of organisms
US8841093B2 (en) 2005-02-18 2014-09-23 Canon U.S. Life Sciences, Inc. Devices and methods for monitoring genomic DNA of organisms
CN110964782A (en) * 2019-12-09 2020-04-07 上海鹍远健康科技有限公司 Method for detecting efficiency of single-stranded nucleic acid ligation

Also Published As

Publication number Publication date
JPWO2005005664A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP6480511B2 (en) Compositions and methods for quantifying nucleic acid sequences in a sample
EP2789689B1 (en) Chimeric primers with hairpin conformations and methods of using same
US20220307080A1 (en) Methods and reagents for nucleic acid amplification and/or detection
JP2013520980A (en) Enhanced multiplex FISH
KR20160096633A (en) Nucleic acid probe and method of detecting genomic fragments
EP2382330A1 (en) Cross priming amplification of target nucleic acids
US20230220495A1 (en) Compositions and methods for enhancing and/or predicting dna amplification
EP3802873B1 (en) Method for detecting a single nucleotide polymorphism (snp) using lamp and blocking primers
EP3292217B1 (en) Formation of hairpins in situ using force-induced strand invasion
JP2005518216A5 (en)
Gerasimova et al. Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors
JP7313645B2 (en) RNA detection method
US20080090238A1 (en) Increased sensitivity of proximity ligation assays
WO1995032306A1 (en) Method for detecting a target nucleic acid
CN104593483B (en) Selection and the method for amplifying polynucleotides
WO2003100095A1 (en) Method of detecting target nucleic acid
US20240229018A9 (en) Self-priming and replicating hairpin adaptor for constructing ngs library, and method for constructing ngs library using same
JP2008182974A (en) Nucleic acid probe set and method for using the same
WO2005005664A1 (en) Method of detecting and method of identifying nucleic acid
US20120058515A1 (en) Method of regulating oligonucleotide functionality
AU2012287207A1 (en) Method to amplify nucleic acids to generate fluorescence labeled fragments of conserved and arbitrary products
KR101795773B1 (en) A oligonucleotide comprising internal spacer and use of the same
US20230227896A1 (en) Compositions, Kits and Methods for Isolating Target Polynucleotides
JP2003334082A (en) Primer for producing wave-form, method for amplifying nucleic acid and method for identifying nucleic acid using the primer
WO2006059717A1 (en) Method of analyte organism identification, internal standard dna composition for use in this method and process for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005511598

Country of ref document: JP

122 Ep: pct application non-entry in european phase