WO2005004341A1 - Digital signal reception device - Google Patents

Digital signal reception device Download PDF

Info

Publication number
WO2005004341A1
WO2005004341A1 PCT/JP2004/009294 JP2004009294W WO2005004341A1 WO 2005004341 A1 WO2005004341 A1 WO 2005004341A1 JP 2004009294 W JP2004009294 W JP 2004009294W WO 2005004341 A1 WO2005004341 A1 WO 2005004341A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
amplifier
gain
rfagc
microcomputer
Prior art date
Application number
PCT/JP2004/009294
Other languages
French (fr)
Japanese (ja)
Inventor
Masami Takigawa
Hiroaki Ozeki
Hideki Ouchi
Akira Ito
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2005004341A1 publication Critical patent/WO2005004341A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages

Definitions

  • the present invention relates to a digital signal receiver for receiving a digitally modulated broadcast signal.
  • a receiver for receiving the digitized broadcast signal there is a receiver called a single tuner.
  • This single tuner has one local oscillator, which is used to convert a high-frequency signal (hereinafter, referred to as an RF signal) as the broadcast signal into an intermediate frequency signal (hereinafter, referred to as an IF signal).
  • RF signal high-frequency signal
  • IF signal intermediate frequency signal
  • the advantage of a single tuner is that, unlike a double tuner having two local oscillators, no phase noise leaks from the two local oscillators occurs, and therefore, the bit error rate of the received signal does not deteriorate. That is, the reception interference due to the phase noise does not occur.
  • the digital signal receiver of the present invention controls the gain of the RFAGC amplifier and the gain of the IFAGC amplifier independently while receiving the signal from the level detector.
  • a gain controller; and a microcomputer that receives a signal from the level detector and outputs a channel selection data of a target channel to a tuner in response to a channel selection command and a reproduction transmission layer signal output from a host system. Therefore, it is possible to move the adjacent interference characteristic curve of the received signal to the optimum area in view of the received electric field strength value, and as a result, it is possible to receive the digital broadcast signal stably.
  • FIG. 1 is a block diagram of a digital signal receiver according to Embodiment 1 of the present invention.
  • Figure 2 shows the relationship between input electric field strength and AGC gain attenuation.
  • 3A and 3B are diagrams showing the relationship between input electric field strength and AGC gain attenuation.
  • Fig. 4 is a graph showing the relationship between the input electric field strength and the AGC gain attenuation showing the adjacent interference characteristics of the tuner.
  • FIG. 5 is a block diagram showing a configuration of a digital signal receiver according to Embodiment 2 of the present invention.
  • FIG. 6 is a diagram showing an example of a delay point set value according to a modulation method, showing a relationship between an input electric field strength and an AGC gain attenuation.
  • FIG. 7 is a correlation diagram between the moving speed and the Dobler frequency.
  • FIG. 8 is a diagram showing an example of a delay point set value according to a reception channel frequency, showing a relationship between an input electric field strength and an AGC gain attenuation.
  • the digital signal receiver of the present invention has a terminal for inputting a received signal, and an RFAGC amplifier for amplifying the received signal input from the terminal, and receives a target channel from the received signal amplified by the RFAGC amplifier.
  • a tuner that selects a signal and converts it to an intermediate frequency signal, a filter that selectively passes the intermediate frequency signal, an IFAGC amplifier that amplifies the signal that has passed through this filter, and an IF AGC amplifier Signal with a frequency lower than the frequency of the signal
  • a local oscillator that generates a local oscillation frequency signal input to the mixer, a demodulator that digitally demodulates an output signal output from the mixer and outputs the demodulated signal to a host system, and detects a level of the output signal.
  • a level detector that receives a signal from the level detector, a gain controller that independently controls the gains of the RFAGC amplifier and the IFAGC amplifier, and a signal that is input from the level detector.
  • a microcomputer for outputting a channel selection command of a target channel to the tuner in response to a channel selection command output from the host system and a signal of a reproduction transmission layer. The characteristic force can be moved to the optimum region in view of the received electric field strength value, and as a result, the digital broadcast signal can be stabilized. Can be received.
  • the digital signal receiver of the present invention further includes a modulation state detector. This allows the modulation state detector to perform gain control according to the modulation scheme of the received signal, so that stable reception can be performed regardless of the modulation scheme.
  • FIG. 1 is a block diagram showing the configuration of the digital signal receiver according to the first embodiment.
  • the microcomputer 10 sets channel selection data to the tuner 1 in response to a channel selection command from the host system 11.
  • the tuner 1 is provided with a terminal 1a for inputting a received signal, and a received signal input from an antenna (not shown) or the like is supplied with an RFAGC amplifier (not shown) built into the tuner 1 via this terminal. ) Is entered.
  • the target channel of the received signal is selected by the tuner 1, passed through the filter 2, the IFAGC amplifier 3, and the mixer 4, input to the demodulator 6, digitally demodulated by the demodulator 6, and the demodulated signal is output.
  • the data is output to the host system 11 as reproduction data.
  • a local oscillator 5 is connected to the mixer 4, and an IF signal amplified by the IFAGC amplifier 3 and a constant frequency signal output from the local oscillator 5 Are mixed in the mixer 4.
  • the level detector 7 detects the level of the signal input to the demodulator 6 and inputs the detected data to the gain controller 9 and the microcomputer 10.
  • the gain controller 9 keeps the gain of the IFAGC amplifier 3 constant, and sets the operation start point (hereinafter, referred to as a delay point) of the gain control of the RF AGC amplifier. As a result, the gain distribution of the RFAGC amplifier and the IFAGC amplifier 3 is determined.
  • the gain of the RF AGC amplifier is controlled by the AGC loop via the level detector 7 and the gain controller 9 so as to keep the input level to the demodulator 6 constant.
  • FIG. Figure 2 shows the relationship between input electric field strength and AGC gain attenuation when the delay point is -70 dBm and the received signal electric field strength is 50 dBm.
  • the IFAGC gain attenuation amount becomes a constant value at the delay point (-70 dBm), and the AGC loop acts by applying the RF AGC gain attenuation to the high electric field strength side by the delay point.
  • the delay point is set to the upper limit in the direction of the strong electric field, and the channel is selected. This delay point is set so that the gain of the RFAGC amplifier in the preceding stage is larger than the gain of the IFAGC amplifier in the subsequent stage, and is a receiver characteristic that is advantageous for noise (C / N) interference. Do.
  • Fig. 4 is a diagram showing the relationship between the input electric field strength and the amount of AGC gain attenuation and the adjacent interference characteristics of the tuner.
  • the received electric field strength When the deviation from the peak of the improvement curve (A in Fig. 4) of the characteristic curve (B in Fig. 4), the adjacent disturbance is displaced by moving the delay point in the direction of the weak electric field so that the adjacent disturbance characteristic force of tuner 1 is shifted. It can be adjusted to a region where the interference characteristics are improved. In other words, the received electric field strength was moved from B in Fig.
  • the present invention can adaptively adjust the received electric field strength to the region where the adjacent interference characteristics are improved, and as a result, can stably receive digital terrestrial broadcasting.
  • Embodiment 2 will be described with reference to FIG.
  • FIG. 5 is a block diagram of a digital signal receiver in which a modulation state detector 8 for detecting a modulation scheme for each transmission layer is provided in the block diagram of FIG. 1 and an output of the modulation state detector 8 is input to the microcomputer 10.
  • It is a block diagram.
  • a digital terrestrial broadcast channel a plurality of transmission layers are modulated by different modulation schemes. The layers are separated by the host system 11, and a certain layer is selected and reproduced. If the modulation method is different, the required CZN (carrier Z noise ratio) will be different, so the required CZN level will increase as the modulation scheme becomes more multi-valued in the order of QPSK, 16 QAM, and 64 QAM.
  • the required CZN carrier Z noise ratio
  • Fig. 6 shows a specific example.
  • Fig. 6 shows an example of the delay point set value according to the modulation method in a diagram showing the relationship between the input electric field strength and the AGC gain attenuation.
  • the delay point set value for obtaining the required C / N in the order of the QPSK method, 16 QAM method, and 64 QAM method is the set value toward the strong electric field direction.
  • Equation 1 assuming that the moving speed is Vs (km /), the receiving channel frequency is Fch (MHz), and the Doppler frequency is Fdopp (Hz), Equation 1 holds.
  • Equation 1 the denominator of Equation 1 is the speed of light per hour (mZh).
  • Equation 1 shows that the Doppler frequency Fd0pp increases as the receiving channel frequency Fch increases and the moving speed Vs increases. In other words, it can be seen that the influence of fusing interference increases.
  • Figure 7 shows this relationship. Equivalent materials are also published in the Radio Industry Association's document “Standard No. ARIB STD-B29 (standard name: terrestrial digital audio transmission system)”. The disturbing wave due to fading impairs the desired wave with the phase and amplitude components, which is equivalent to disturbing as noise. Therefore, setting the delay point in the direction of the strong electric field as a receiver characteristic provides an advantageous state against fading interference.
  • the Doppler frequency Fd opp generated when the moving speed Vs is assumed to be, for example, 100 kmZhr. This indicates that the set value of the delay point for satisfying the required Doppler frequency Fd0pp changes according to the reception channel frequency Fch.
  • Fig. 8 shows an example of the delay point setting value according to the reception channel frequency.
  • the setting value of the delay point for obtaining the required Doppler frequency F dop as the frequency changes from the low frequency to the high frequency becomes the setting value in the direction of the strong electric field.
  • the receiver front end such as a tuner and a demodulation unit has been described as an example.
  • the present invention is not limited to this, and includes a set top box including a data reproduction unit and a display unit, a television system, It can be applied to mobile reception systems and in-vehicle systems.
  • a digital signal receiver can be provided.

Abstract

A digital signal reception device includes: a tuner (1) having a terminal (1a) and an RFAGC amplifier; a filter (2); an IFAGC amplifier (3) for amplifying the signal which has passed through the filter (2); a mixer (4) for converting the signal amplified by the IFAGC amplifier (3) to a signal of lower frequency; a local oscillator (5); a demodulator (6); a level detector (7) for detecting the level of an output signal from the mixer (4); a gain controller (9) which receives the signal from the level detector (7) and controls the gain of the RFAGC amplifier and the gain of the IFAGC amplifier (3) independently from each other; and a microcomputer (10) which receives the signal from the level detector (7) and outputs channel selection data of the target channel to the tuner (1) by a channel selection instruction issued from a host system (11) and a signal of the reproduction transmission hierarchy. Thus, it is possible to stably receive a digital broadcast signal.

Description

明細書  Specification
デジタル信号受信機 技術分野  Digital signal receiver Technical field
本発明は、 デジタル変調された放送信号を受信するデジタル信号受信機に関す るものである。 背景技術  The present invention relates to a digital signal receiver for receiving a digitally modulated broadcast signal. Background art
近年、 テレビジョン放送のデジタル化が進みつつある。 このデジタル化された 放送信号は、 様々な変調方式により変調された放送信号が多重化されている。 こ れにより、 1チャネルで複数の番組を送信することができる。  In recent years, digitalization of television broadcasting has been progressing. This digitized broadcast signal is multiplexed with broadcast signals modulated by various modulation methods. Thus, a plurality of programs can be transmitted on one channel.
このデジタル化された放送信号を受信する受信機としては、 シングルチューナ と呼ばれるものがある。 このシングルチューナは一つの局部発振器を有しており、 これを用いて前記放送信号である高周波信号 (以下、 R F信号と記す) を中間周 波数信号 (以下、 I F信号と記す) に変換している。 シングルチューナの利点は、 二つの局部発振器を有するダブルチューナと異なり二つの局部発振器から漏洩す る位相雑音は発生せず、 それ故受信信号のビット誤り率を劣化させることがない。 つまり、 .上記位相雑音による受信妨害が起きないという点である。  As a receiver for receiving the digitized broadcast signal, there is a receiver called a single tuner. This single tuner has one local oscillator, which is used to convert a high-frequency signal (hereinafter, referred to as an RF signal) as the broadcast signal into an intermediate frequency signal (hereinafter, referred to as an IF signal). I have. The advantage of a single tuner is that, unlike a double tuner having two local oscillators, no phase noise leaks from the two local oscillators occurs, and therefore, the bit error rate of the received signal does not deteriorate. That is, the reception interference due to the phase noise does not occur.
一方、 放送信号においては周波数の比較的近いところに、 受信信号レベルと同 等もしくはそれ以上の強度の放送信号 (隣接チャネル信号) が現れることが多く なってきた。 そのためこの隣接チャネル信号からの妨害特性 (混変調特性) が安 定とならず、 その結果、 デジタル放送信号を安定して受信しにくいという問題が あった。 発明の開示  On the other hand, in a broadcast signal, a broadcast signal (adjacent channel signal) having an intensity equal to or higher than the received signal level appears relatively close to the frequency. As a result, the interference characteristics (cross-modulation characteristics) from adjacent channel signals were not stable, and as a result, there was a problem that it was difficult to receive digital broadcast signals stably. Disclosure of the invention
本発明のデジタル信号受信機は、 レベル検出器からの信号が入力されるととも に R F A G C増幅器おょぴ I F A G C増幅器の利得をそれぞれ独立して制御する 利得制御器と、 前記レベル検出器からの信号が入力されるとともにホストシステ ムから出力されたチャネル選局指令および再生伝送階層の信号によりチューナに 目的チャネルの選局データを出力するマイコンを備えたものであり、 受信信号の 隣接妨害特性カーブを受信電界強度値からみて最適領域に移動させることができ、 その結果、 デジタル放送信号を安定して受信することができる。 図面の簡単な説明 The digital signal receiver of the present invention controls the gain of the RFAGC amplifier and the gain of the IFAGC amplifier independently while receiving the signal from the level detector. A gain controller; and a microcomputer that receives a signal from the level detector and outputs a channel selection data of a target channel to a tuner in response to a channel selection command and a reproduction transmission layer signal output from a host system. Therefore, it is possible to move the adjacent interference characteristic curve of the received signal to the optimum area in view of the received electric field strength value, and as a result, it is possible to receive the digital broadcast signal stably. Brief Description of Drawings
図 1は本発明の実施の形態 1のデジタル信号受信機のプロック図である。 FIG. 1 is a block diagram of a digital signal receiver according to Embodiment 1 of the present invention.
図 2は入力電界強度対 AGC利得減衰量の関係図である。 Figure 2 shows the relationship between input electric field strength and AGC gain attenuation.
図 3A、 3Bは、 ともに入力電界強度対 AGC利得減衰量の関係図である。 3A and 3B are diagrams showing the relationship between input electric field strength and AGC gain attenuation.
図 4は、 チューナの隣接妨害特性を示した入力電界強度対 AGC利得減衰量の関 係図である。 Fig. 4 is a graph showing the relationship between the input electric field strength and the AGC gain attenuation showing the adjacent interference characteristics of the tuner.
図 5は、 本発明の実施の形態 2のデジタル信号受信機の構成を示すプロック図で ある。 FIG. 5 is a block diagram showing a configuration of a digital signal receiver according to Embodiment 2 of the present invention.
図 6は変調方式に応じたディレイポイント設定値の一例を示した入力電界強度対 AG C利得減衰量の関係図である。 FIG. 6 is a diagram showing an example of a delay point set value according to a modulation method, showing a relationship between an input electric field strength and an AGC gain attenuation.
図 7は移動速度とドッブラ周波数の相関図である。 FIG. 7 is a correlation diagram between the moving speed and the Dobler frequency.
図 8は受信チャネル周波数に応じたディレイボイント設定値の一例を示した入力 電界強度対 A G C利得減衰量の関係図である。 発明を実施するための最良の形態 FIG. 8 is a diagram showing an example of a delay point set value according to a reception channel frequency, showing a relationship between an input electric field strength and an AGC gain attenuation. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のデジタル信号受信機は、 受信信号を入力するための端子と、 この端子 から入力された前記受信信号を増幅する R F A G C増幅器を有しこの RFAGC 増幅器によって増幅された受信信号から目的チャネルの受信信号を選択し中間周 波数信号に変換するチューナと、 前記中間周波数信号を選択的に通過させるフィ ル夕と、 このフィルタを通過した信号を増幅する I FAGC増幅器と、 この I F AGC増幅器によって増幅された信号をその信号の周波数より低い周波数の信号 に変換するミキザと、 このミキサへ入力する局部発振周波数信号を発生する局部 発振器と、 前記ミキザより出力された出力信号をデジタル復調しホストシステム へ出力する復調器と、 前記出力信号のレベルを検出するレベル検出器と、 このレ ベル検出器からの信号が入力されるとともに前記 R F A G C増幅器および前記 I F A G C増幅器の利得をそれぞれ独立して制御する利得制御器と、 前記レベル検 出器からの信号が入力されるとともに前記ホストシステムから出力されたチヤネ ル選局指令および再生伝送階層の信号により前記チューナに目的チャネルの選局 デ一夕を出力するマイコンとを備えたものであり、 受信信号の隣接妨害特性力一 ブを受信電界強度値からみて最適領域に移動させることができ、 その結果、 デジ タル放送信号を安定して受信することができる。 The digital signal receiver of the present invention has a terminal for inputting a received signal, and an RFAGC amplifier for amplifying the received signal input from the terminal, and receives a target channel from the received signal amplified by the RFAGC amplifier. A tuner that selects a signal and converts it to an intermediate frequency signal, a filter that selectively passes the intermediate frequency signal, an IFAGC amplifier that amplifies the signal that has passed through this filter, and an IF AGC amplifier Signal with a frequency lower than the frequency of the signal A local oscillator that generates a local oscillation frequency signal input to the mixer, a demodulator that digitally demodulates an output signal output from the mixer and outputs the demodulated signal to a host system, and detects a level of the output signal. A level detector that receives a signal from the level detector, a gain controller that independently controls the gains of the RFAGC amplifier and the IFAGC amplifier, and a signal that is input from the level detector. A microcomputer for outputting a channel selection command of a target channel to the tuner in response to a channel selection command output from the host system and a signal of a reproduction transmission layer. The characteristic force can be moved to the optimum region in view of the received electric field strength value, and as a result, the digital broadcast signal can be stabilized. Can be received.
また、 本発明のデジタル信号受信機は、 変調状態検出器をさらに有する。 これ により、 前記変調状態検出器により受信信号の変調方式に応じた利得制御を行う ことができるので、 変調方式に関係なく安定して受信することができる。  Further, the digital signal receiver of the present invention further includes a modulation state detector. This allows the modulation state detector to perform gain control according to the modulation scheme of the received signal, so that stable reception can be performed regardless of the modulation scheme.
以下、 本発明のデジタル信号受信機について実施の形態に沿って、 図面を用い て説明する。  Hereinafter, a digital signal receiver according to the present invention will be described with reference to the drawings according to embodiments.
(実施の形態 1 )  (Embodiment 1)
実施の形態 について、 図 1〜図 3を用いて説明する。 図 1は本実施の形態 1 におけるデジタル信号受信機の構成を示すプロック図である。  An embodiment will be described with reference to FIGS. FIG. 1 is a block diagram showing the configuration of the digital signal receiver according to the first embodiment.
ホストシステム 1 1からの選局指令によりマイコン 1 0はチューナ 1にチヤネ ル選局デ一タを設定する。 チューナ 1には受信信号を入力するための端子 1 aが 設けられており、 アンテナ (図示せず) 等から入力された受信信号はこの端子を 介してチューナ 1に内蔵された R F A G C増幅器 (図示せず) に入力される。 こ の受信信号はチューナ 1により目的とするチャネルが選択され、 フィル夕 2、 I F A G C増幅器 3 , ミキサ 4を経て復調器 6に入力され、 この復調器 6でデジタ ル復調され、 復調された信号が再生データとしてホストシステム 1 1に出力され る。 なお、 前記ミキサ 4には局部発振器 5が接続されており、 I F A G C増幅器 3にて増幅された I F信号と、 局部発振器 5から出力される一定の周波数信号と を前記ミキサ 4にて混合している。 復調器 6に入力する信号のレベルをレベル検 出器 7が検出しこの検出データを利得制御器 9とマイコン 10に入力する。 この マイコン 10により利得制御器 9は I FAGC増幅器 3の利得を一定に保持し、 RF AG C増幅器の利得制御の動作開始点 (以下ディレイポイントと記す) が設 定される。 これにより RFAGC増幅器と I FAGC増幅器 3の利得配分が決定 される。 すなわち復調器 6への入力レベルを一定に保つようにレベル検出器 7、 利得制御器 9を介した AG Cループで R F AG C増幅器の利得量が制御される。 これについて図 2を用いてさらに説明する。 図 2はディレイポイントがー 70 d Bm、 受信信号の電界強度が一 50 d Bmの場合の入力電界強度対 AG C利得減 衰量の関係図である。 I FAGC利得減衰量はディレイポイント (― 70 dB m) で一定値となり、 このディレイポイントにより高電界強度側に対しては RF AG C利得減衰がかかることで前記 AG Cループが作用する。 The microcomputer 10 sets channel selection data to the tuner 1 in response to a channel selection command from the host system 11. The tuner 1 is provided with a terminal 1a for inputting a received signal, and a received signal input from an antenna (not shown) or the like is supplied with an RFAGC amplifier (not shown) built into the tuner 1 via this terminal. ) Is entered. The target channel of the received signal is selected by the tuner 1, passed through the filter 2, the IFAGC amplifier 3, and the mixer 4, input to the demodulator 6, digitally demodulated by the demodulator 6, and the demodulated signal is output. The data is output to the host system 11 as reproduction data. Note that a local oscillator 5 is connected to the mixer 4, and an IF signal amplified by the IFAGC amplifier 3 and a constant frequency signal output from the local oscillator 5 Are mixed in the mixer 4. The level detector 7 detects the level of the signal input to the demodulator 6 and inputs the detected data to the gain controller 9 and the microcomputer 10. With this microcomputer 10, the gain controller 9 keeps the gain of the IFAGC amplifier 3 constant, and sets the operation start point (hereinafter, referred to as a delay point) of the gain control of the RF AGC amplifier. As a result, the gain distribution of the RFAGC amplifier and the IFAGC amplifier 3 is determined. That is, the gain of the RF AGC amplifier is controlled by the AGC loop via the level detector 7 and the gain controller 9 so as to keep the input level to the demodulator 6 constant. This will be further described with reference to FIG. Figure 2 shows the relationship between input electric field strength and AGC gain attenuation when the delay point is -70 dBm and the received signal electric field strength is 50 dBm. The IFAGC gain attenuation amount becomes a constant value at the delay point (-70 dBm), and the AGC loop acts by applying the RF AGC gain attenuation to the high electric field strength side by the delay point.
ここで例えば図 3 (a) に示すように、 前記ディレイポイントをより弱電界方 向に設定すると I F A G C利得がより多くなり (すなわち、 I F A G C利得減衰 量が低下) 、 R FAGC利得がより少ない (すなわち、 R FAGC利得減衰量が 増加) ゲイン配分となる。 逆に図 3 (b) に示すようにディレイポイントをより 強電界方向に設定すると I F A G C利得がより少なくなり、 R F A G C利得がよ り多くなるゲイン配分となる。 このディレイポイントを設定出来る範囲は受信機 のシステムを組む上で決まる。 強電界方向の上限値は I FAGC利得減衰量によ り決まる。 目的チャネル選択時には、 ディレイポイントを強電界方向の上限値に 設定し選局を行う。 このディレイポイントの設定は、 前段の RFAGC増幅器の 利得を後段の I FAGC増幅器の利得に比べ大きく設定しており、 雑音 (C/ N) 妨害に有利な受信機特性でありこの特性として選局を行う。  Here, for example, as shown in FIG. 3 (a), when the delay point is set to the direction of the weaker electric field, the IFAGC gain increases (that is, the IFAGC gain attenuation decreases) and the RFAGC gain decreases (that is, the RFAGC gain decreases). , R FAGC gain attenuation increases). Conversely, as shown in Fig. 3 (b), when the delay point is set in the direction of the stronger electric field, the gain distribution becomes smaller, and the gain becomes larger. The range in which this delay point can be set is determined when building a receiver system. The upper limit in the strong electric field direction is determined by the IFAGC gain attenuation. When selecting the target channel, the delay point is set to the upper limit in the direction of the strong electric field, and the channel is selected. This delay point is set so that the gain of the RFAGC amplifier in the preceding stage is larger than the gain of the IFAGC amplifier in the subsequent stage, and is a receiver characteristic that is advantageous for noise (C / N) interference. Do.
マイコン 10はレベル検出器 7で検出されるレベル信号を読み取ることにより 受信電界強度 (RFAGC利得減衰量および I FAGC利得減衰量) を検知する ことができる。 図 4は、 入力電界強度対 AG C利得減衰量の関係図にチューナの 隣接妨害特性を示した図である。 図 4に示すように、 受信電界強度が隣接妨害特 性カーブの良化ピーク点 (図 4の A) からずれている場合 (図 4の B ) 、 ディレ ィポィントを弱電界方向に移動することにより、 チューナ 1の隣接妨害特性力一 ブをずらせて隣接妨害特性が良化する領域に合わせることができる。 すなわち隣 接妨害特性力一ブをずらすことにより、 受信電界強度を図 4の Bから同図の Cへ 移動したことになり、 移動後の隣接妨害特性カーブの良化ピーク点 (同図の D) に近づけることができる。 このように本発明は、 適応的に受信電界強度を隣接妨 害特性の良化領域に合わせることができ、 その結果、 安定してデジタル地上波放 送を受信することができる。 The microcomputer 10 can detect the received electric field strength (RFAGC gain attenuation and IFAGC gain attenuation) by reading the level signal detected by the level detector 7. Fig. 4 is a diagram showing the relationship between the input electric field strength and the amount of AGC gain attenuation and the adjacent interference characteristics of the tuner. As shown in Fig. 4, the received electric field strength When the deviation from the peak of the improvement curve (A in Fig. 4) of the characteristic curve (B in Fig. 4), the adjacent disturbance is displaced by moving the delay point in the direction of the weak electric field so that the adjacent disturbance characteristic force of tuner 1 is shifted. It can be adjusted to a region where the interference characteristics are improved. In other words, the received electric field strength was moved from B in Fig. 4 to C in Fig. 4 by shifting the adjacent disturbance characteristic force, and the improved peak point of the adjacent disturbance characteristic curve after the movement (D in Fig. 4). ). As described above, the present invention can adaptively adjust the received electric field strength to the region where the adjacent interference characteristics are improved, and as a result, can stably receive digital terrestrial broadcasting.
(実施の形態 2 )  (Embodiment 2)
次に本実施の形態 2について図 5を用いて説明する。  Next, Embodiment 2 will be described with reference to FIG.
図 5は、 図 1のブロック図に伝送階層毎の変調方式を検出する変調状態検出器 8を設けこの変調状態検出器 8の出力をマイコン 1 0に入力する構成としたデジ タル信号受信機のブロック図である。 デジタル地上波放送のチャネル中には複数 の伝送階層が異なった変調方式で変調されており、 ホストシステム 1 1にて階層 分離され、 その中のある階層が選択されて再生される。 変調方式が異なると所要 CZN (キャリア Zノイズ比) が異なるので Q P S K方式、 1 6 QAM方式、 6 4 Q AM方式の順により多値化された変調方式となるにつれて所要 C ZNレベル が高くなる。 ディレイポイントをより強電界方向に設定すると CZN雑音特性に 有利な受信機状態となる。 受信機は変調方式に応じて所要 C ZNを満たす受信特 性を得ることが必要である。 したがって変調方式に応じて所要 CZNを得るため のディレイポイント設定値が変わってくる。 具体例を図 6に示す。 図 6は、 入力 電界強度対 A G C利得減衰量の関係図に変調方式に応じたディレイボイント設定 値の一例を示したものである。 図 6に示すように前述の Q P S K方式、 1 6 QA M方式、 6 4 QAM方式の順に、 所要 C/Nを得るためのディレイポイント設定 値は強電界方向に向かう設定値となる。 このように変調方式に応じて所要 CZN を得られるように、 ディレイポイント設定を切り換える構成とすることにより隣 接妨害特性に対する特性を高めることができる。 (実施の形態 3) FIG. 5 is a block diagram of a digital signal receiver in which a modulation state detector 8 for detecting a modulation scheme for each transmission layer is provided in the block diagram of FIG. 1 and an output of the modulation state detector 8 is input to the microcomputer 10. It is a block diagram. In a digital terrestrial broadcast channel, a plurality of transmission layers are modulated by different modulation schemes. The layers are separated by the host system 11, and a certain layer is selected and reproduced. If the modulation method is different, the required CZN (carrier Z noise ratio) will be different, so the required CZN level will increase as the modulation scheme becomes more multi-valued in the order of QPSK, 16 QAM, and 64 QAM. If the delay point is set in the direction of the stronger electric field, the receiver will be in an advantageous condition for CZN noise characteristics. It is necessary for the receiver to obtain reception characteristics that satisfy the required CZN according to the modulation method. Therefore, the delay point set value for obtaining the required CZN changes according to the modulation method. Fig. 6 shows a specific example. Fig. 6 shows an example of the delay point set value according to the modulation method in a diagram showing the relationship between the input electric field strength and the AGC gain attenuation. As shown in Fig. 6, the delay point set value for obtaining the required C / N in the order of the QPSK method, 16 QAM method, and 64 QAM method is the set value toward the strong electric field direction. In this way, by adopting a configuration in which the delay point setting is switched so that the required CZN can be obtained according to the modulation method, it is possible to enhance the characteristic with respect to the adjacent interference characteristic. (Embodiment 3)
次に本実施の形態 3について、 図 7、 図 8を用いて説明する。  Next, the third embodiment will be described with reference to FIGS.
移動しながらデジタル地上波放送を受信するという用途が今後更に広がること が考えられる。 移動しながら受信する場合には、 特有のフェージング妨害が発生 する。 このフェージング妨害の量は一般的にドッブラ周波数で表され、 ドッブラ 周波数が高いほど妨害程度が多い。  Applications for receiving digital terrestrial broadcasting while moving are expected to further expand in the future. When receiving while moving, peculiar fading interference occurs. The amount of this fading interference is generally represented by the Doppler frequency. The higher the Doppler frequency, the greater the degree of interference.
ここで移動速度を Vs (km/ ) 、 受信チャネル周波数を Fch (MHz) 、 ドッブラ周波数を Fdopp (Hz) とすると式 1が成り立つ。  Here, assuming that the moving speed is Vs (km /), the receiving channel frequency is Fch (MHz), and the Doppler frequency is Fdopp (Hz), Equation 1 holds.
(Fch χ 106) x (Vs 103) (Fch χ 10 6 ) x (Vs 10 3 )
Fdopp = (式 1)  Fdopp = (Equation 1)
299.792 x 106 x 3600  299.792 x 106 x 3600
ここで式 1の分母は、 1時間当たりの光速 (mZh) である。 Here, the denominator of Equation 1 is the speed of light per hour (mZh).
式 1は受信チャネル周波数 F c hが高いほど、 また移動速度 V sが速いほどド ップラ周波数 Fd 0 p pが大きくなることを示す。 すなわちフエ一ジング妨害の 影響が大きくなることが判る。 この関係を図 7に示す。 なお同等資料は社団法人 電波産業会資料 「規格番号 AR I B STD-B29 (標準規格名 地上デジ夕 ル音声放送の伝送方式) 」 にも掲載されている。 フェージングによる妨害波は希 望波に対して、 位相 ·振幅成分の妨害を与えており雑音としての妨害を与える事 と等価である。 従って受信機特性としてディレイポイントを強電界方向に設定す ることでフェージング妨害に対して有利な状態となる。 移動受信を想定する上で、 移動速度 V sを えば 100 kmZh r . と想定した場合発生するドップラ周波 数 Fd o p pは受信チャネルにより異なる。 これは受信チャネル周波数 F c hに 応じて所要ドッブラ周波数 F d 0 p pを満たすためのディレイポイントの設定値 が変わってくることを示している。  Equation 1 shows that the Doppler frequency Fd0pp increases as the receiving channel frequency Fch increases and the moving speed Vs increases. In other words, it can be seen that the influence of fusing interference increases. Figure 7 shows this relationship. Equivalent materials are also published in the Radio Industry Association's document “Standard No. ARIB STD-B29 (standard name: terrestrial digital audio transmission system)”. The disturbing wave due to fading impairs the desired wave with the phase and amplitude components, which is equivalent to disturbing as noise. Therefore, setting the delay point in the direction of the strong electric field as a receiver characteristic provides an advantageous state against fading interference. When assuming mobile reception, the Doppler frequency Fd opp generated when the moving speed Vs is assumed to be, for example, 100 kmZhr. This indicates that the set value of the delay point for satisfying the required Doppler frequency Fd0pp changes according to the reception channel frequency Fch.
ここで図 8に受信チャネル周波数に応じたディレイボイント設定値の一例を示 す。 図 8に示すように低周波数から高周波数になるに従い所要ドッブラ周波数 F d o p を得るためのディレイボイントの設定値は強電界方向の設定値となる。 このように受信周波数に従つたディレイポイントを設定することで、 各周波数の チャネル受信時の隣接妨害特性に対する特性を高める構成とすることができる。 なお本実施の形態ではチューナや復調部など受信機フロントエンドを例示して 説明したが、 本発明はこれに限定されることなくデータ再生部や表示部まで含ん だセットトップボックス、 テレビジョンシステム、 移動受信システム、 車載シス テムにも適用できるものである。 Here, Fig. 8 shows an example of the delay point setting value according to the reception channel frequency. You. As shown in FIG. 8, the setting value of the delay point for obtaining the required Doppler frequency F dop as the frequency changes from the low frequency to the high frequency becomes the setting value in the direction of the strong electric field. By setting the delay point according to the reception frequency in this way, it is possible to increase the characteristics of adjacent frequencies when receiving a channel at each frequency. In this embodiment, the receiver front end such as a tuner and a demodulation unit has been described as an example. However, the present invention is not limited to this, and includes a set top box including a data reproduction unit and a display unit, a television system, It can be applied to mobile reception systems and in-vehicle systems.
- 産業上の利用可能性 -Industrial applicability
以上説明したように、 本発明により、 受信信号の隣接妨害特性カーブを受信電 界強度値からみて最適領域に移動させることができ、 その結果、 デジタル放送信 号を安定して受信することができるデジタル信号受信機を提供することが出来る。  As described above, according to the present invention, it is possible to move the adjacent interference characteristic curve of a received signal to an optimal region in view of the received field strength value, and as a result, it is possible to receive a digital broadcast signal stably. A digital signal receiver can be provided.

Claims

請求の範囲 The scope of the claims
1. デジタル信号受信機であって、 1. a digital signal receiver,
受信信号を入力するための端子と、 前記端子から入力された前記受信信号 を増幅する RFAGC増幅器を有し、 前記 RFAGC増幅器によって増幅された 受信信号から目的チャネルの受信信号を選択し中間周波数信号に変換するチュー ナと、  A terminal for inputting a received signal, and an RFAGC amplifier for amplifying the received signal input from the terminal, selecting a received signal of a target channel from the received signal amplified by the RFAGC amplifier and converting the signal to an intermediate frequency signal A tuner to convert,
前記中間周波数信号を選択的に通過させるフィルタと、  A filter for selectively passing the intermediate frequency signal;
前記フィルタを通過した信号を増幅する I FAGC増幅器と、  An I FAGC amplifier for amplifying the signal passed through the filter;
前記 I F A G C増幅器によつて増幅された信号をその信号の周波数より低 レ周波数の信号に変換するミキサと、  A mixer for converting the signal amplified by the IFAGC amplifier into a signal having a frequency lower than the frequency of the signal;
前記ミキサへ入力する局部発振周波数信号を発生する局部発振器と、 前記ミキザより出力された出力信号をデジタル復調しホストシステムへ出 力する復調器と、  A local oscillator that generates a local oscillation frequency signal to be input to the mixer; a demodulator that digitally demodulates an output signal output from the mixer and outputs the signal to a host system;
前記出力信号のレベルを検出するレベル検出器と、  A level detector for detecting the level of the output signal;
前記レベル検出器からの信号が入力されるとともに前記 R FAGC増幅器 および前記 I FAGC増幅器の利得をそれぞれ独立して制御する利得制御器と、 前記レベル検出器からの信号が入力されるとともに、 前記ホストシステム から出力されたチャネル選局指令の信号および再生伝送階層の信号により前記チ ユーナに目的チャネルの選局データを出力するマイコンと、  A gain controller that receives a signal from the level detector and independently controls gains of the R FAGC amplifier and the I FAGC amplifier, and receives a signal from the level detector, and the host A microcomputer for outputting channel selection data of a target channel to the tuner in accordance with a channel selection command signal output from the system and a reproduction transmission layer signal;
を備えた受信機。 With receiver.
2. 前記マイコンが、 前記利得制御器を介した利得制御において、 2. In the gain control via the gain controller,
前記 RFAGC増幅器の利得制御を開始する動作開始点にて前記 I FAG At the operation start point for starting the gain control of the RFAGC amplifier, the I FAG
C増幅器の利得が一定になるように制御し、 かつ Control the gain of the C amplifier to be constant, and
前記 R F A G C増幅器の利得制御を開始する前記動作開始点を任意に設定 することを特徴とする請求項 1に記載のデジタル信号受信機。 Arbitrarily set the operation start point to start the gain control of the RFAGC amplifier The digital signal receiver according to claim 1, wherein:
3 . 前記マイコンが、 前記利得制御器を介した利得制御において目的チャネル選 択時に、 前記 R F A G C増幅器の利得制御を開始する前記動作開始点を一定値と することを特徴とする請求項 1に記載のデジタル信号受信機。 3. The microcomputer according to claim 1, wherein, when a target channel is selected in the gain control via the gain controller, the operation start point for starting the gain control of the RFAGC amplifier is a constant value. Digital signal receiver.
4. 前記マイコンが、 前記利得制御器を介した利得制御において前記レベル検出 器で検出されるレベル信号に応じた制御を行うことを特徴とする請求項 1に記載 のデジタル信号受信機。 4. The digital signal receiver according to claim 1, wherein the microcomputer performs control according to a level signal detected by the level detector in gain control via the gain controller.
5 . 前記ミキザより出力され、 前記復調器を経由した出力信号について、 伝送階 層毎の変調方式を検出する変調状態検出器をさらに有し、 5. With respect to an output signal output from the mixer and passing through the demodulator, a modulation state detector for detecting a modulation scheme for each transmission layer is further provided.
前記変調状態検出器からの信号が前記マイコンに入力されることを特徴と する請求項 1に記載のデジタル信号受信機。  The digital signal receiver according to claim 1, wherein a signal from the modulation state detector is input to the microcomputer.
6 . 前記マイコンが、 前記 R F A G C増幅器の利得制御の動作開始点を前記変調 状態検出器からの出力信号に応じて設定することを特徴とする請求項 5に記載の デジタル信号受信機。 6. The digital signal receiver according to claim 5, wherein the microcomputer sets an operation start point of gain control of the RFAGC amplifier in accordance with an output signal from the modulation state detector.
7 . 前記マイコンが、 前記 R F A G C増幅器の利得制御の動作開始点を目的チヤ ネルの周波数に応じて設定することを特徴とする請求項 5に記載のデジタル信号 受信機。 7. The digital signal receiver according to claim 5, wherein the microcomputer sets an operation start point of gain control of the RFAGC amplifier according to a frequency of a target channel.
PCT/JP2004/009294 2003-07-07 2004-06-24 Digital signal reception device WO2005004341A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-192654 2003-07-07
JP2003192654A JP2005033247A (en) 2003-07-07 2003-07-07 Digital signal receiver

Publications (1)

Publication Number Publication Date
WO2005004341A1 true WO2005004341A1 (en) 2005-01-13

Family

ID=33562417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009294 WO2005004341A1 (en) 2003-07-07 2004-06-24 Digital signal reception device

Country Status (3)

Country Link
JP (1) JP2005033247A (en)
CN (1) CN100411311C (en)
WO (1) WO2005004341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817923B2 (en) 2010-06-02 2014-08-26 Mitsubishi Electric Corporation Digital broadcast receiver

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222557A (en) * 2005-02-08 2006-08-24 Mitsubishi Electric Corp Receiver
JP2007324951A (en) * 2006-06-01 2007-12-13 Sony Corp Receiver
JP4849329B2 (en) * 2006-10-06 2012-01-11 ソニー株式会社 Receiving device, receiving method, and program
CN101536308B (en) 2006-12-11 2015-08-12 汤姆森许可贸易公司 Use the automatic growth control of the cross modulation improved
JP2008153913A (en) * 2006-12-18 2008-07-03 Sharp Corp Digital demodulation device, digital receiver, control method of digital demodulation device, control program of digital demodulation device and storage medium storing the control program
JP2008219448A (en) * 2007-03-05 2008-09-18 Sony Corp Reception apparatus, control method of reception apparatus, and program of control method of reception apparatus
JP4557057B2 (en) * 2008-06-30 2010-10-06 ソニー株式会社 Receiving apparatus and receiving method
US8913970B2 (en) 2010-09-21 2014-12-16 Apple Inc. Wireless transceiver with amplifier bias adjusted based on modulation scheme
US8738066B2 (en) * 2010-10-07 2014-05-27 Apple Inc. Wireless transceiver with amplifier bias adjusted based on modulation scheme and transmit power feedback

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669829A (en) * 1991-03-19 1994-03-11 Hitachi Ltd Receiver made into ic
JPH07273699A (en) * 1994-03-25 1995-10-20 Shinko Electric Co Ltd Receiving method for very weak signal and circuit therefor
JPH11355079A (en) * 1998-06-12 1999-12-24 Sharp Corp Automatic gain control circuit and tuner for receiving satellite broadcast
JP2000232389A (en) * 1999-02-10 2000-08-22 Matsushita Electric Ind Co Ltd Tuner for digital signal reception
JP2000312235A (en) * 1999-02-22 2000-11-07 Toshiba Corp Automatic gain controller
JP2001077713A (en) * 1999-09-02 2001-03-23 Toshiba Corp Digital broadcast receiver
JP2001177426A (en) * 1999-12-21 2001-06-29 Hitachi Kokusai Electric Inc Communication unit
JP2002094585A (en) * 2000-09-12 2002-03-29 Sony Corp Receiver, filter circuit controller and their methods
JP2002199296A (en) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd Digital broadcast receiver
JP2002344345A (en) * 2001-05-14 2002-11-29 Matsushita Electric Ind Co Ltd High frequency signal receiver

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669829A (en) * 1991-03-19 1994-03-11 Hitachi Ltd Receiver made into ic
JPH07273699A (en) * 1994-03-25 1995-10-20 Shinko Electric Co Ltd Receiving method for very weak signal and circuit therefor
JPH11355079A (en) * 1998-06-12 1999-12-24 Sharp Corp Automatic gain control circuit and tuner for receiving satellite broadcast
JP2000232389A (en) * 1999-02-10 2000-08-22 Matsushita Electric Ind Co Ltd Tuner for digital signal reception
JP2000312235A (en) * 1999-02-22 2000-11-07 Toshiba Corp Automatic gain controller
JP2001077713A (en) * 1999-09-02 2001-03-23 Toshiba Corp Digital broadcast receiver
JP2001177426A (en) * 1999-12-21 2001-06-29 Hitachi Kokusai Electric Inc Communication unit
JP2002094585A (en) * 2000-09-12 2002-03-29 Sony Corp Receiver, filter circuit controller and their methods
JP2002199296A (en) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd Digital broadcast receiver
JP2002344345A (en) * 2001-05-14 2002-11-29 Matsushita Electric Ind Co Ltd High frequency signal receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8817923B2 (en) 2010-06-02 2014-08-26 Mitsubishi Electric Corporation Digital broadcast receiver

Also Published As

Publication number Publication date
JP2005033247A (en) 2005-02-03
CN100411311C (en) 2008-08-13
CN1698276A (en) 2005-11-16

Similar Documents

Publication Publication Date Title
EP1679792B1 (en) System for dynamic control of automatic gain control-take-over-point and method of operation
JPH11136154A (en) Receiver
EP1089429A3 (en) Automatic gain control circuit and receiver having the same
US7623601B2 (en) Controlling gain in a satellite receiver
WO2005004341A1 (en) Digital signal reception device
JP4171764B2 (en) High frequency receiver and method for reducing adjacent interference wave
EP1670243A1 (en) Mobile high frequency receiver with quality based input control
US20070146550A1 (en) Receiving circuit, receiving apparatus, and receiving method
JP4554505B2 (en) Digital signal receiver
JP4557057B2 (en) Receiving apparatus and receiving method
CN101262573B (en) Receiving apparatus, method of controlling the apparatus
WO2004084432A1 (en) Digital broadcast receiver apparatus
US7386288B2 (en) Input signal detecting apparatus and method
JP2005192060A (en) Automatic gain control apparatus
JP4378263B2 (en) Receiver
US20050143030A1 (en) Receiving apparatus
JP2006270582A (en) Receiving circuit
JP3189163B2 (en) OFDM receiver
KR20060008858A (en) Agc circuit arrangement for a tuner
KR101427749B1 (en) Method and apparatus for seeking channel of digital tuner
JP2005102008A (en) Receiver and receiving method
JP3538054B2 (en) Digital broadcast receiver
KR101185561B1 (en) Apparatus and method for controlling gain of broadcasting receiver automatically
KR100771801B1 (en) Digital television receiver and automatic gain control method of if in digital televition receiver
JP2005159591A (en) Broadcast receiver

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004800701X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase