WO2005004168A1 - Range compensator and heavy charged particle beam irradiation system - Google Patents

Range compensator and heavy charged particle beam irradiation system Download PDF

Info

Publication number
WO2005004168A1
WO2005004168A1 PCT/JP2004/009318 JP2004009318W WO2005004168A1 WO 2005004168 A1 WO2005004168 A1 WO 2005004168A1 JP 2004009318 W JP2004009318 W JP 2004009318W WO 2005004168 A1 WO2005004168 A1 WO 2005004168A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
energy
leaves
energy absorbing
leaf
Prior art date
Application number
PCT/JP2004/009318
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Kanematsu
Original Assignee
National Institute Of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Radiological Sciences filed Critical National Institute Of Radiological Sciences
Publication of WO2005004168A1 publication Critical patent/WO2005004168A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/046Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers varying the contour of the field, e.g. multileaf collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges

Definitions

  • the present invention relates to a range compensator and a heavy-charged particle beam irradiator that three-dimensionally control the range (stop position) of radiation such as a heavy particle beam, a proton beam, and an ion beam to a target.
  • a heavy particle beam cancer treatment apparatus will be described as an example of a conventional heavy charged particle beam irradiation apparatus, and will be described with reference to Figs.
  • Fig. 15 is a schematic diagram showing the overall configuration of a conventional heavy ion beam cancer treatment device.
  • Fig. 16 is an enlarged view of the irradiation part and the patient of the heavy ion beam cancer treatment device in Fig. 15. It is sectional drawing.
  • heavy ions such as carbon ions (C 6+ ) generated by a radiation source (not shown) are converted into an irradiation beam 1 as radiation from an accelerator (not shown) to a bed 2. Irradiation is directed at target 4, the tumor site in patient 3 lying aside.
  • the irradiation field expansion device 5 the range modulation device 6, the range attenuation device 7, the multi-leaf collimator device 8, and the range compensation
  • the dose distribution is processed so as to have an effective diameter, thickness, and maximum range corresponding to the three-dimensional shape of the target 4, and the target 4 is irradiated.
  • the irradiation field enlarging device 5 is composed of electromagnets 5A, 5A and a scatterer 5B.
  • the range modulator 6 is a device formed by cutting an aluminum plate or the like into a ridge shape, and expands the irradiation beam 1 in the irradiation direction (vertical direction).
  • the range damping device 7 combines multiple energy absorbing plates 7A, 7B, 7C, 7D, 7E, and 7F with different thicknesses to uniformly shorten the range of the irradiation beam 1 to the target 4. It is to let.
  • the multi-leaf collimator device 8 is configured by arranging a plurality of rows of a pair of metal plates 8A, 8A that are detachably opposed to each other (for example, see Patent Reference 1). Then, the multi-leaf collimator device 8 separates and approaches the metal plates 8A, 8A facing each other in the longitudinal direction by using an actuator (not shown), thereby forming each metal plate 8A. An opening 8B corresponding to the cross-sectional shape of the target 4 is formed therebetween. Therefore, the irradiation beam 1 is processed into a beam shape corresponding to the target 4 and irradiates the target 4 by passing through the opening 8B.
  • the three-dimensional shape of the range compensation filter 9 is designed so that the range (stop position) of the irradiation beam 1 with respect to the target 4 matches the shape of the target 4 on the bottom side in the depth direction. I have. Therefore, it is possible to prevent exposure to normal tissue deeper than the target 4.
  • the range compensation filter 9 is also called a bolus, and is described in Non-Patent Document 1, for example.
  • Patent Document 1 Japanese Patent Publication No. 2001-509898 (page 9, FIG. 2)
  • Non-Patent Document 1 “Review of Science Instrument” (USA) (March 1993), Vol. 64, No. 8, P2072
  • an appropriate range compensation filter 9 differs depending on the shape of the target 4 in the patient 3, so that a filter that is suitable for each patient 3 and further for each direction of irradiation to the patient 3 must be manufactured individually. No. Therefore, the following problem occurs.
  • the present invention automatically adjusts the range of radiation to a target for each target. It is an object of the present invention to provide a range compensator and a heavy charged particle beam irradiation device capable of reducing the time and cost required for treatment.
  • the present invention is designed to solve the above-mentioned problems, and the invention described in claim 1 is
  • a range compensating device that is provided in a path of radiation irradiated from the radiation source toward the target and adjusts the range of the radiation to the target by absorbing the energy of the radiation;
  • a range compensating device comprising: a plurality of energy absorbers for absorbing energy; and an actuator for moving each of the energy absorbers separately and independently toward the path of the radiation.
  • the range compensating device of claim 1 when the radiation passes through the energy absorber, the energy of the radiation is weakened, and the range of the radiation to the target can be set small.
  • radiation directly radiated to the target without passing through the energy absorber does not have its energy weakened by the energy absorber, so that the range of the radiation to the target can be set to be large. .
  • the range of the radiation in the depth direction of the target can be appropriately adjusted according to the shape of the target. It can be adjusted automatically, for example, when irradiating the affected area targeted by the patient, unnecessary radiation to normal tissue can be prevented.
  • the invention according to claim 2 is characterized in that the energy absorber is a leaf having an elongated plate-like body strength, and the energy absorber is formed by arranging the leaves in a plurality of rows in a plate shape. Is a range compensating device.
  • the shape of the opening formed between the leaves is achieved by separately moving each leaf constituting the energy absorbing layer toward the path of radiation.
  • the range of radiation to the target can be adjusted more precisely according to the three-dimensional shape of the target.
  • the invention according to claim 3 is a range compensating device, wherein a plurality of energy absorbing layers are arranged along a path of radiation.
  • each resource is provided for each energy absorption layer.
  • the invention according to claim 4 is characterized in that the leaf of at least one of the plurality of energy absorbing layers is moved in a direction different from the direction of the leaves of the other energy absorbing layers. Range compensator.
  • At least one of the plurality of energy absorbing layers is moved in a direction different from that of the leaves of the other energy absorbing layers.
  • the leaf of at least one of the plurality of energy absorbing layers is formed to have a thickness different from that of the leaves of the other energy absorbing layers.
  • a range compensating device characterized by the following.
  • the radiation energy after passing through the leaf depends on whether the radiation has passed through a leaf having a small thickness or a leaf having a large thickness. Ghee can be changed.
  • the invention according to claim 6 is that the leaf of at least one of the plurality of energy absorbing layers is made of a material having an energy absorptivity different from the leaves of the other energy absorbing layers.
  • the radiation passes through the leaf having a small energy absorption rate and the radiation having passed through the leaf having a large energy absorption rate. Can change the energy of the radiation.
  • the leaf of at least one of the plurality of energy absorbing layers is formed to have a plate width different from the leaf of the other energy absorbing layer.
  • a range compensating device characterized by the following.
  • the range of radiation to the target can be adjusted with high accuracy in accordance with the three-dimensional shape of the target. Can be adjusted.
  • the energy absorbing layer has a pair of leaves each having a length corresponding to each row.
  • a range compensating device characterized in that the range compensating device is configured so as to be opposed to each other, to be separated from each other, and to approach each other.
  • the pair of leaves facing each other in the longitudinal direction are separated and approached to each other by using an actuator, so that an opening formed between the leaves is formed. It becomes possible to change the shape more closely according to the three-dimensional shape of the target.
  • the invention described in claim 9 is a range compensating apparatus characterized in that an obliquely tapered surface is formed on a leaf.
  • the energy of the radiation after passing can be changed in accordance with the position of the radiation passing through the tapered surface formed on the leaf, and the range of the radiation can be adjusted to the target range.
  • the invention described in claim 10 is a range compensating device, wherein the energy absorber is advanced and retracted during irradiation of radiation.
  • the range of the radiation with respect to the target is adjusted with higher accuracy in accordance with the three-dimensional shape of the target. be able to.
  • the invention according to claim 11 is a heavy charged particle beam irradiation device comprising a range compensation device.
  • a heavy charged particle beam irradiation device having a range compensating device is used instead of the range compensating filter described in the related art, so that the heavy charged particle beam is used.
  • the efficiency of treatment by the irradiation device can be increased.
  • each energy absorber is used.
  • the range of radiation to the target can be automatically changed for each target according to the position and shape of the target, and the irradiation area that matches the three-dimensional shape of the target Can be formed. Therefore, it is not necessary to separately manufacture or replace the range compensation filter as described in the prior art for each patient target, or to perform storage, disposal, etc., thereby greatly reducing the time and cost required for treatment.
  • J can be reduced.
  • the energy absorbing layer is formed by arranging a plurality of elongated plate-shaped body leaves as energy absorbers in a plate shape, the leaves constituting the energy absorbing layer are irradiated with radiation.
  • the shape of the opening formed between each leaf can be changed more finely, and the range of radiation to the target can be adjusted more precisely according to the three-dimensional shape of the target And the performance of the range compensator can be improved.
  • the range of radiation to the target can be reduced by moving each leaf for each energy absorbing layer. More fine adjustment is possible, and the performance of the range compensator can be further enhanced.
  • the invention according to claim 4 has a configuration in which the leaf of at least one of the plurality of energy absorbing layers is moved in a direction different from that of the leaves of the other energy absorbing layers.
  • the range of the radiation to the target can be adjusted with high accuracy, and the performance of the range compensator can be further improved.
  • the leaf of at least one of the plurality of energy absorbing layers is formed to have a thickness different from that of the leaves of the other energy absorbing layers.
  • the radiation energy after passing through the leaf can be changed between the case where the radiation passes through a leaf with a small thickness and the case where the radiation passes through a leaf with a large thickness. Can be adjusted with high precision.
  • the leaf of at least one of the plurality of energy absorbing layers is made of a material having a different energy absorption rate from the leaves of the other energy absorbing layers. Since the radiation has been formed, the energy of the radiation after passing through the leaf can be changed depending on whether the radiation passes through a leaf having a small energy absorption rate or a leaf having a large energy absorption rate, The range of radiation to the target can be adjusted with high precision.
  • the leaf of at least one of the plurality of energy absorbing layers has a plate width different from the leaf of the other energy absorbing layer.
  • the energy absorbing layer is configured such that a pair of leaves are opposed to each other in the length direction and separated from each other and approach each other in each row.
  • the shape of the opening formed between the leaves can be changed more finely in accordance with the three-dimensional shape of the target.
  • the range of radiation can be adjusted with high precision.
  • the energy of the radiation after passing therethrough depends on the position where the radiation passes through the tapered surface formed on the leaf.
  • Can be changed, and the range of the radiation can be set to a smoother shape that matches the shape of the target.
  • the invention according to claim 10 has a configuration in which the energy absorber moves forward and backward during irradiation of radiation, so that the range of radiation to the target can be adjusted with higher precision in accordance with the shape of the target. Can be.
  • the invention according to claim 11 uses a heavy charged particle beam irradiation device having a range compensating device instead of the range compensating filter described in the related art, so that the heavy charged particle beam is used.
  • the efficiency of treatment by the irradiation device can be increased.
  • FIG. 1 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment
  • FIG. 2 shows a range compensating apparatus shown by an arrow in FIG.
  • FIG. 3 is a front view as viewed from the direction ⁇ - ⁇ .
  • FIG. 3 is a partial perspective view showing a leaf in FIG. 2 in an enlarged manner.
  • the X direction indicates the width direction of the patient 3
  • the Y direction indicates the body axis direction of the patient 3
  • the Z direction indicates the axial direction (irradiation direction) of the irradiation beam 1.
  • RU As shown in FIG.
  • the heavy ion beam cancer treatment apparatus 11 applies the irradiation beam 1 to the patient 3 by the opening 8B formed between the metal plates 8A, 8A, almost in the same manner as the above-mentioned conventional technology.
  • the range compensator 12 includes an energy unit comprising a plurality of leaves 13, 13, ... as energy absorbers for absorbing the energy of the irradiation beam 1 (see Fig. 1). It is composed of an absorption layer 14 and a plurality of actuators 15, 15,... For independently and independently moving the leaves 13 of the energy absorption layer 14 toward the path of the irradiation beam 1, respectively.
  • each leaf 13 constituting the energy absorption layer 14 is formed as a rectangular plate having a certain plate thickness by using, for example, a metal material, a plastic material, or the like (see FIG.
  • the leaf 13 is, for example, a plate-like body having a width of 2 cm, a thickness of lcm, and a length of 40 cm. As shown in FIG. 2, two leaves face each other in the length direction (X direction) and a plurality of rows in the Y direction. (16 rows) They are arranged side by side.
  • the actuator 15 includes, for example, a rack attached to the leaf 13, a pin connected to the rack, a motor for rotating the pin, and a control mechanism for controlling the rotation of the motor (a shift mechanism). (Also not shown). The actuator 15 is configured to move the leaf 13 integrated with the rack in the X direction by rotating the pion using a motor and a control mechanism.
  • a pair of leaves 13 and 13 facing each other in the X direction are moved in the X direction by an actuator 15 so as to be separated from and approach to each other.
  • Form part 16 the range compensator 12 automatically changes the opening 16 to various shapes according to the three-dimensional shape of the target 4 by individually operating each leaf 13 using the actuator 15. is there.
  • the three-dimensional shape of the target 4 of the patient 3 is measured in advance using X-ray CT, MRI, or the like. Then, according to the measured shape of the target 4, each leaf 13 is individually moved by the actuator 15. It is operated individually to change the shape of the opening 16. Then, as shown in FIG. 1, the irradiation beam 1 is irradiated toward the target 4 of the patient 3. The irradiation beam 1 passes through the range compensator 12 in the middle of the path. At this time, the component passing through the opening 16 of the energy absorbing layer 14 reaches deep inside the body, while the component passing through each leaf 13 of the energy absorbing layer 14 absorbs a certain amount of energy by the leaf 13. The range becomes shallower by the minute. In other words, it is possible to compensate by changing the range of the irradiation beam 1 to the target 4 of the patient 3 in two stages.
  • the irradiation area dose (Distribution) can be formed, exposure to normal tissue deeper than the target 4 can be prevented, and the performance, reliability, etc. of the heavy ion beam cancer treatment device 11 can be improved.
  • each leaf 13 since each leaf 13 is moved using the actuator 15, the shape of the opening 16 is adjusted for each patient 3 according to the position and shape of the target 4. It can be changed automatically as appropriate. Therefore, it is not necessary to manufacture or replace the range compensation filter for each patient 3 as described in the prior art, or to store, dispose, etc., and to significantly reduce the time and cost required for treatment. Can be.
  • FIGS. 4 to 6 show a second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 4 is an enlarged partial cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment
  • FIG. 5 shows a range compensating apparatus shown by an arrow in FIG.
  • FIG. 5 is a front view as viewed from the V-V direction.
  • FIG. 6 is a partial perspective view showing a leaf in FIG. 5 in an enlarged manner.
  • the heavy ion beam cancer treatment apparatus 21 has a multi-leaf collimator apparatus 8, a range compensator 22, and a bed 2 in substantially the same manner as in the first embodiment.
  • the range compensator 22 used in the present embodiment includes a first energy absorbing layer 24 including a plurality of leaves 23, 23,.
  • the second consisting of It is different from that of the first embodiment in that it is constituted by an energy absorbing layer 26.
  • the first energy absorbing layer 24 and the second energy absorbing layer 26 are stacked along the path of the irradiation beam 1 as shown in FIG.
  • the leaves 23 are arranged in a plurality of rows in the Y direction so as to face each other in the X direction.
  • the leaves 23 are arranged in, for example, a 16-row plate shape in a direction orthogonal to the path of the irradiation beam 1 as a set of two leaves.
  • the second energy absorbing layers 26 are arranged in a 16-row plate shape in a direction orthogonal to the path of the irradiation beam 1 as a set of two sheets.
  • Each leaf 23 and each leaf 25 are individually and independently moved in the X direction by an actuator 27 and an actuator 28 (see FIG. 4).
  • the first energy absorbing layer 24 and the second energy absorbing layer 26 are arranged along the path of the irradiation beam 1, so that the first The shape of the opening 29 of the energy absorbing layer 24 and the shape of the opening 30 of the second energy absorbing layer 26 can be individually changed. Therefore, it is possible to compensate by changing the range of the irradiation beam 1 to the target 4 of the patient 3 at a maximum of four steps.
  • the irradiation beam 1 passes through the openings 29 and 30, passes only through the energy absorption layer 24, passes through only the energy absorption layer 26, and passes through both energy absorption layers 24 and 26.
  • the range of the irradiation beam 1 is different in each case. Therefore, the range of the irradiation beam 1 with respect to the target 4 can be more finely adjusted, and the performance, reliability, and the like of the heavy ion beam cancer treatment apparatus 21 can be further improved.
  • FIGS. 7 and 8 show a third embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 7 is an enlarged partial cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment
  • FIG. 8 shows a range compensator shown by an arrow in FIG. VIII- It is a rear view as seen from the VIII direction.
  • the heavy ion beam cancer treatment apparatus 31 is substantially the same as the second embodiment, It has a multi-leaf collimator 8, a range compensator 32 and a bed 2.
  • the range compensator 32 includes a first energy absorption layer 34 including a plurality of leaves 33, 33, and a first energy absorption layer 34 including a plurality of leaves 35, 35,.
  • the two energy absorbing layers 36 and are stacked along the path of the irradiation beam 1.
  • the leaves 33 of the first energy-absorbing layer 34 are opposed to each other in the X direction as a set of two sheets, and are arranged in a plurality of rows (16) in the Y direction. Row), whereas the leaves 35 of the second energy absorbing layer 36 are arranged in a row and are opposed to each other in the Y direction as a pair, and are arranged in a plurality of rows (16 rows) in the X direction. It differs from the second embodiment in that it is provided.
  • the leaf 33 of the first energy absorbing layer 34 can be moved in the X direction by the actuator 37, and the leaf 35 of the second energy absorbing layer 36 is moved to the actuator 35. Since it can be moved in the Y direction by 38, the openings 39, 40 of the energy absorption layers 34, 36 can be individually changed in the X, Y directions, respectively, and the range of the irradiation beam 1 can be further finely adjusted. It is possible to do. Therefore, by using the energy absorbing layers 34 and 36, the range of the irradiation beam 1 can be more matched even with, for example, a crescent-shaped target having a depression in the center.
  • the leaves 33 of the first energy absorption layer 34 are arranged to move in the X direction, and the leaves 35 of the second energy absorption layer 36 are arranged to move in the Y direction,
  • the actuator 37 attached to the leaf 33 and the actuator 38 attached to the leaf 35 do not interfere with each other, and the layout of these actuators 37, 38 can be easily designed.
  • FIG. 9 shows a fourth embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 9 is a partially enlarged cross-sectional view showing an irradiated part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment.
  • the heavy ion beam cancer treatment device 41 includes a multilobal collimator device 8, a range compensator 42, and a bed 2, almost in the same manner as in the second embodiment.
  • the range compensator 42 includes a first energy-absorbing layer 44 including a plurality of leaves 43, 43,... And a second energy-absorbing layer 44 including a plurality of leaves 45, 45,.
  • the energy absorption layer 46 is laminated along the path of the irradiation beam 1. By moving the leaves 43 and 45 independently by actuators 47 and 48, openings 49 and 50 are formed in the first and second energy absorbing layers 44 and 46, respectively.
  • the range compensating device 42 used in the present embodiment is different from the thickness of the leaf 43 constituting the first energy absorbing layer 44 in the thickness of the leaf 45 constituting the second energy absorbing layer 46. Is different from that of the second embodiment in that it is also formed large.
  • the range of the irradiation beam 1 is adjusted by using the leaf 45 having a large thickness for a portion where the shape change in the depth direction of the target 4 is large.
  • the range of the irradiation beam 1 can be adjusted using a leaf 43 with a small thickness for the part where the shape change in the depth direction of the target 4 is small, so that the irradiation beam 1 Range can be more closely matched.
  • FIG. 10 shows a fifth embodiment of the present invention. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 10 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment.
  • the heavy ion beam cancer treatment apparatus 51 has a multilobal collimator apparatus 8, a range compensator 52, and a bed 2, almost similarly to the second embodiment.
  • the range compensator 52 includes a first energy-absorbing layer 54 including a plurality of leaves 53, 53,... And a second energy-absorbing layer 54 including a plurality of leaves 55, 55,.
  • the energy absorption layer 56 is laminated along the path of the irradiation beam 1.
  • the leaves 53 and 55 are moved independently by the actuators 57 and 58 to form openings 59 and 60 in the first and second energy absorbing layers 54 and 56, respectively.
  • the leaves 53 constituting the first energy absorbing layer 54 are formed using a plastic material or the like having a relatively small energy absorption rate.
  • the leaf 55 forming the second energy absorption layer 56 The third embodiment differs from the second embodiment in that it is formed using a metal material or the like having a relatively large energy absorption.
  • the flight of the irradiation beam 1 is performed using the leaf 55 having a relatively large energy absorption rate.
  • the range of the irradiation beam 1 can be adjusted using the leaf 53 whose energy absorption is relatively small.
  • the range of the irradiation beam 1 can be made more consistent, and substantially the same effect as in the fourth embodiment can be obtained.
  • FIG. 11 and FIG. 12 show a sixth embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 11 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment
  • FIG. 12 is an enlarged view of a leaf in FIG. It is a perspective view.
  • the heavy ion beam cancer treatment apparatus 61 includes a multilobal collimator apparatus 8, a range compensator 62, and a bed 2.
  • the range compensator 62 includes a first energy absorbing layer 64 composed of a plurality of leaves 63, 63,... Arranged along the Y direction, as shown in FIG.
  • a second energy absorption layer 66 composed of a plurality of leaves 65, 65,...
  • a third energy absorption layer 68 composed of a plurality of leaves 67, 67,. They are sequentially stacked along the path of beam 1.
  • the first, second, and third energy absorbing layers 64, 66, 68 have Openings 69, 70, 71 are formed.
  • the plate width of the leaf 65 is formed smaller by J // than the plate width of the leaves 63, 67.
  • the leaf 63 and the leaf 67 are, for example, a plate of the leaf 65 so that the seam along the Y direction between the leaves 63 and 63 does not match the seam along the Y direction between the leaves 67 and 67. They are arranged alternately in the X direction by the width!
  • the leaves 65 constituting the second energy absorption layer 66 Since the plate width is formed smaller than the plate widths of the leaves 63, 67 constituting the first and third energy absorbing layers 64, 68, the target 4 has a large change in the shape (depth) in the width direction. Adjusts the range of the irradiation beam 1 using a leaf 65 with a small division width, that is, a small plate width, and divides the target 4 in the part where the shape (depth) change in the width direction is small.
  • the range of the irradiation beam 1 can be adjusted by using the wide leaves, that is, the leaves 63 and 67 having a large plate width, so that the range of the irradiation beam 1 can be more closely matched to the target 4. it can.
  • the irradiation beam 1 is unlikely to be emitted between the leaves 67, 67 and between the leaves 65, 67. Even if the radiation beam 1 passes through the gap between the target beams 4, the irradiation beam 1 hits the leaf 63, so that the phenomenon that the irradiation beam 1 penetrates the leaf 63 can be avoided, and the irradiation beam on the target 4 can be avoided.
  • the irradiation area of 1 can be made a gentle shape close to the shape of the target 4.
  • FIG. 13 shows a seventh embodiment of the present invention. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 13 is a partially enlarged cross-sectional view showing the irradiated part and the patient of the heavy ion beam cancer treatment apparatus according to the present embodiment.
  • the heavy ion beam cancer treatment apparatus 81 includes a multilobal collimator apparatus 8, a range compensator 82, and a bed 2.
  • the range compensator 82 includes a first energy absorbing layer 84 composed of a plurality of leaves 83, 83,... Arranged along the X direction, and a plurality of leaves 85, 85 arranged along the ⁇ direction.
  • a second energy absorbing layer 86 composed of a plurality of leaves 87, 87, arranged in the X direction
  • a third energy absorbing layer 88 composed of a plurality of leaves 87, 87, arranged in the X direction
  • a fourth energy absorbing layer 90 composed of a plurality of leaves 89, 89,... Is sequentially stacked along the path of the irradiation beam 1.
  • the leaves 83, 85, 87, and 89 are individually and independently moved by using actuators 91, 92, and the like, so that the first, second, third, and fourth energy absorbing layers 84, 89 can be moved.
  • openings 93, 94, 95, 96 are formed.
  • the range compensator 82 which has the same energy as the energy absorbing layers 84, 86, 88, 90 and the actuators 91, 92, is a multi-leaf collimator. It is located upstream of the irradiation beam 1 from the device 8.
  • the irradiation amount of the irradiation beam 1 in a specific range passing through the range compensator 82 can be changed during the irradiation of the irradiation beam 1 by moving back and forth. This makes it possible to make the range of the irradiation beam 1 more consistent with the target 4.
  • the shape of the bottom of the range of the irradiation beam 1 having a stepped shape in FIG. 13 may be changed to a gentle continuous curved shape.
  • the range of the irradiation beam 1 can be finely adjusted by compensating for the shortage of the number of layers (the number of layers) of the leaves 83, 85, 87, and 89. Further, since it is not necessary to replace the range compensating device 82 for each patient 3, the range compensating device 82 is located on the downstream side of the irradiation beam 1 from the multi-leaf collimator device 8 as in the prior art, that is, at a location where replacement is easy. This eliminates the necessity of arrangement, and facilitates layout design and the like of the range compensator 82.
  • FIG. 14 shows an eighth embodiment of the present invention. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • FIG. 14 is a partially enlarged cross-sectional view showing the irradiated part and the patient of the heavy ion beam cancer treatment apparatus according to the present embodiment.
  • the heavy ion beam cancer treatment apparatus 101 has a multilobal collimator apparatus 8, a range compensator 102, and a bed 2, almost in the same manner as in the second embodiment.
  • the range compensating device 102 includes a first energy absorbing layer 104 including a plurality of leaves 103, 103,... And a second energy absorbing layer 104 including a plurality of leaves 105, 105,.
  • the energy absorbing layer 106 are laminated along the path of the irradiation beam 1.
  • openings ⁇ 109 and 110 are formed in the first and second energy absorbing layers 104 and 106.
  • the range compensating device 102 used in the present embodiment is configured such that the distal ends of the leaves 103, 105 located on the openings 109, 110 are formed as tapered surfaces 103A, 105A that are obliquely inclined. Therefore, the second embodiment is different from the second embodiment. [0085] In the present embodiment configured as above, the distal ends of leaves 103 and 105 are formed as tapered surfaces 103A and 105A, so that the number of energy absorbing layers 104 and 106 (the number of layers) is reduced.
  • the range of the irradiation beam 1 can be set to a smoother shape matching the shape of the target 4 by the tapered surfaces 103A and 105A, and the performance of the range compensator 102 can be further enhanced. .
  • the range compensating device 12 is fixedly attached to the heavy ion beam cancer treatment device 11
  • the present invention is not limited to this.
  • a mechanism for rotating the range compensator 12 as shown by arrow A in FIG. 1 may be provided.
  • the range of the irradiation beam 1 with respect to the target 4 can be further finely adjusted. it can. This is the same for the second to eighth embodiments.
  • the range compensating device 12 is arranged on the downstream side of the irradiation beam 1 with respect to the multi-leaf collimator device 8.
  • the present invention is not limited to this.
  • the range compensator 12 may be provided on the upstream side of the irradiation beam with respect to the multi-leaf collimator 8. This is the same for the second to sixth and eighth embodiments.
  • the range compensating device 82 is configured by stacking the four energy absorbing layers 84, 86, 88, and 90 has been described as an example.
  • the range compensator 82 may be configured by laminating more than one.
  • the present invention is not limited to this, for example, in the X direction or the Y direction.
  • the actuator may be configured by a cylinder, a linear motor, etc. which can be extended and retracted.
  • a belt, a pulley, and a motor may be used in combination, or a screw, a screw, and a motor may be used in combination.
  • the position of each leaf can be detected directly on the leaf or by attaching an encoder to the cylinder or motor and counting the pulses generated from the encoder.
  • a ball re-avering may be used, a guide member for supporting the leaf slidably or the like may be used, and there is no particular limitation.
  • a guide mechanism (not shown) for supporting the movement of the leaf
  • a ball re-avering may be used, a guide member for supporting the leaf slidably or the like may be used, and there is no particular limitation.
  • This is the same for the second to eighth embodiments.
  • the first energy absorbing layer 24 and the second energy absorbing layer 26 are brought into abutment (surface contact) with each other is described.
  • the present invention is not limited to this.
  • the first energy absorbing layer 24 and the second energy absorbing layer 26 are arranged at intervals in the irradiation direction of the irradiation beam 1. The configuration is also good. This is the same also in the second to eighth embodiments.
  • each of the leaves 23, 23, the leaves 25, 25, and the leaves 23, 25, which are adjacent to each other have a gap force between them.
  • the case where the leaves 23 and 25 are arranged in close contact with each other has been described as an example, but the present invention is not limited to this.
  • One of the opposing surfaces (contact surfaces) between the leaves 23 and 25 is provided with a concave groove along the X-axis direction, and the other opposing surface (contact surface) is provided with a convex portion. It is good also as a structure slidably fitted in a concave groove. This is the same for the second to eighth embodiments.
  • the first energy absorbing layer 34 and the second energy absorbing layer 36 are arranged such that the direction of movement of the leaf 33 and the direction of movement of the leaf 35 are orthogonal to each other by 90 degrees.
  • the configuration in which the layers are stacked is described as an example, the configuration may be such that, for example, the reciprocating direction of the leaf 33 and the reciprocating direction of the leaf 35 intersect at an angle other than 90 degrees (eg, 60 degrees, 30 degrees).
  • a plurality of leaves 13 are used as an energy absorber
  • the present invention is not limited to this.
  • a plurality of leaves 13 may be used. 13 can be configured as one and used as one leaf. This is the same for the second to eighth embodiments.
  • the openings 29 and 30 are formed using all the energy absorbing layers 24 and 26 .
  • the present invention is not limited to this.
  • the opening 29 or the opening 30 may be formed by moving only the necessary energy absorbing layer according to the irradiation conditions. This is the same for the third to eighth embodiments.
  • the energy absorbing layer 14 is configured by arranging the leaves 13 in 16 rows has been described as an example.
  • the present invention is not limited to this. They may be arranged or 15 rows or less. This is the same for the second to eighth embodiments.
  • FIG. 1 is a partially enlarged cross-sectional view showing an irradiation part and a patient of a heavy ion beam cancer treatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a front view of the range compensator as viewed from the directions indicated by arrows in FIG. 1;
  • FIG. 3 is a partial perspective view showing a leaf in FIG. 2 in an enlarged manner.
  • FIG. 4 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the second embodiment of the present invention.
  • FIG. 5 is a front view of the range compensator as viewed from the direction indicated by arrows VV in FIG. 4.
  • FIG. 6 is a partial perspective view showing a leaf in FIG. 5 in an enlarged manner.
  • FIG. 7 is a partially enlarged cross-sectional view showing an irradiated part and a patient of a heavy ion beam cancer treatment apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a rear view of the range compensator as viewed in the direction indicated by arrows VIII-VIII in FIG. 7.
  • FIG. 9 is a partially enlarged cross-sectional view showing an irradiation part and a patient of a heavy ion beam cancer treatment apparatus according to a fourth embodiment of the present invention.
  • FIG. 10 is a partially enlarged cross-sectional view showing an irradiated part and a patient of a heavy ion beam cancer treatment apparatus according to a fifth embodiment of the present invention.
  • FIG. 11 is a partially enlarged cross-sectional view showing an irradiated portion and a patient of a heavy ion beam cancer treatment apparatus according to a sixth embodiment of the present invention.
  • FIG. 12 is a partial perspective view showing a leaf in FIG. 11 in an enlarged manner.
  • FIG. 13 is a partially enlarged cross-sectional view showing an irradiated part and a patient of a heavy ion beam cancer treatment apparatus according to a seventh embodiment of the present invention.
  • FIG. 14 is a partially enlarged cross-sectional view showing an irradiated part and a patient of a heavy ion beam cancer treatment apparatus according to an eighth embodiment of the present invention.
  • FIG. 15 is a schematic diagram showing an entire configuration of a conventional heavy ion beam cancer treatment apparatus.
  • FIG. 16 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus in FIG.
  • Heavy ion beam cancer therapy system Heavy charged particle beam irradiation
  • Second energy absorbing layer 26, 36, 46, 56, 66, 86, 106 Second energy absorbing layer

Abstract

A range compensator and a heavy charged particle beam irradiation system capable of automatically adjusting the range of radiant rays toward a target for each target to reduce the treatment time and cost. A heavy charge particle beam irradiation system (heavy charge particle beam cancer treatment system) (11) has a range compensator (12) for adjusting the range of an irradiation beam (1) toward a target (4) by absorbing the energy of the irradiation beam (1). The range compensator (12) comprises an energy-absorbing layer (14) that is composed of leaves (13) for absorbing the energy of the irradiation beam (1) and actuators (15) for independently and separately moving the leaves (13) back/forth along the track of the irradiation beam (1). Each leaf (13) is a rectangular plate. The leaves (13) are arranged parallel in the Y direction perpendicular to the length direction (X direction).

Description

明 細 書  Specification
飛程補償装置及び重荷電粒子線照射装置  Range compensator and heavy charged particle beam irradiation device
技術分野  Technical field
[0001] 本発明は、標的に対する重粒子線、陽子線、イオン線等の放射線の飛程 (停止位 置)を立体的に制御する飛程補償装置及び重荷電粒子線照射装置に関する。  The present invention relates to a range compensator and a heavy-charged particle beam irradiator that three-dimensionally control the range (stop position) of radiation such as a heavy particle beam, a proton beam, and an ion beam to a target.
背景技術  Background art
[0002] 従来技術による重荷電粒子線照射装置として重粒子線がん治療装置を例に挙げ、 図 15及び図 16を参照して説明する。図 15は、従来技術による重粒子線がん治療装 置の全体構成を示す概略図であり、図 16は、図 15中の重粒子線がん治療装置の照 射部分と患者を示す部分拡大断面図である。  [0002] A heavy particle beam cancer treatment apparatus will be described as an example of a conventional heavy charged particle beam irradiation apparatus, and will be described with reference to Figs. Fig. 15 is a schematic diagram showing the overall configuration of a conventional heavy ion beam cancer treatment device. Fig. 16 is an enlarged view of the irradiation part and the patient of the heavy ion beam cancer treatment device in Fig. 15. It is sectional drawing.
[0003] 図 15において、放射線源(図示せず)で生成された炭素イオン (C6+)等の重イオン は、放射線である照射ビーム 1となって加速器(図示せず)からベッド 2に横になつた 患者 3内の腫瘍部である標的 4に向けて照射される。また、照射ビーム 1は、患者 3内 の標的 4に照射されるまでの間に、照射野拡大装置 5、飛程変調装置 6、飛程減衰装 置 7、多葉コリメータ装置 8及び飛程補償フィルタ 9等を順次通過することにより、線量 分布が標的 4の立体形状に対応した有効径、厚さ及び最大飛程を有するように加工 されて、標的 4に照射される。 In FIG. 15, heavy ions such as carbon ions (C 6+ ) generated by a radiation source (not shown) are converted into an irradiation beam 1 as radiation from an accelerator (not shown) to a bed 2. Irradiation is directed at target 4, the tumor site in patient 3 lying aside. In addition, before the irradiation beam 1 is irradiated on the target 4 in the patient 3, the irradiation field expansion device 5, the range modulation device 6, the range attenuation device 7, the multi-leaf collimator device 8, and the range compensation By sequentially passing through the filter 9 and the like, the dose distribution is processed so as to have an effective diameter, thickness, and maximum range corresponding to the three-dimensional shape of the target 4, and the target 4 is irradiated.
[0004] ここで、照射野拡大装置 5は、電磁石 5A, 5 A及び散乱体 5Bからなり、照射ビーム  [0004] Here, the irradiation field enlarging device 5 is composed of electromagnets 5A, 5A and a scatterer 5B.
1の横断面形状を広げるものである。また、飛程変調装置 6は、アルミ板等をリッジ (峰 )状に切削加工して形成された装置で、照射ビーム 1をその照射方向(縦方向)に対 して広げるものである。また、飛程減衰装置 7は、厚さの異なる複数のエネルギー吸 収板 7A, 7B, 7C, 7D, 7E, 7Fを組み合わせることにより、標的 4に対する照射ビー ム 1の飛程を一様に短縮させるものである。  1 is to expand the cross-sectional shape. The range modulator 6 is a device formed by cutting an aluminum plate or the like into a ridge shape, and expands the irradiation beam 1 in the irradiation direction (vertical direction). In addition, the range damping device 7 combines multiple energy absorbing plates 7A, 7B, 7C, 7D, 7E, and 7F with different thicknesses to uniformly shorten the range of the irradiation beam 1 to the target 4. It is to let.
[0005] さらに、図 16に示すように、多葉コリメータ装置 8は、互いに離接可能に対向した 1 対の金属板 8A, 8Aを、板状に複数列並べて構成されている(例えば、特許文献 1参 照)。そして、多葉コリメータ装置 8は、長さ方向で対向した金属板 8A, 8A同士をそ れぞれァクチユエータ(図示せず)を用いて離間、接近させることにより、各金属板 8A 間に標的 4の断面形状と対応した開口部 8Bを形成する。このため、照射ビーム 1は、 前記開口部 8Bを通過することにより、標的 4と対応したビーム形状に加工されて標的 4に照射される。 Further, as shown in FIG. 16, the multi-leaf collimator device 8 is configured by arranging a plurality of rows of a pair of metal plates 8A, 8A that are detachably opposed to each other (for example, see Patent Reference 1). Then, the multi-leaf collimator device 8 separates and approaches the metal plates 8A, 8A facing each other in the longitudinal direction by using an actuator (not shown), thereby forming each metal plate 8A. An opening 8B corresponding to the cross-sectional shape of the target 4 is formed therebetween. Therefore, the irradiation beam 1 is processed into a beam shape corresponding to the target 4 and irradiates the target 4 by passing through the opening 8B.
[0006] また、飛程補償フィルタ 9は、標的 4に対する照射ビーム 1の飛程 (停止位置)が標 的 4の深さ方向の底側の形状に合うように、その立体形状が設計されている。このた め、標的 4を超えた深部の正常組織への被曝を防止することが可能となる。また、こ のような照射を同一の標的 4に対して複数の方向(例えば垂直方向と水平方向)から 行うことにより、標的 4の立体形状に合致した照射領域の形成が可能となる。飛程補 償フィルタ 9はボーラスとも呼ばれ、例えば非特許文献 1に記載されて ヽる。  [0006] The three-dimensional shape of the range compensation filter 9 is designed so that the range (stop position) of the irradiation beam 1 with respect to the target 4 matches the shape of the target 4 on the bottom side in the depth direction. I have. Therefore, it is possible to prevent exposure to normal tissue deeper than the target 4. In addition, by performing such irradiation on the same target 4 from a plurality of directions (for example, a vertical direction and a horizontal direction), it is possible to form an irradiation region that matches the three-dimensional shape of the target 4. The range compensation filter 9 is also called a bolus, and is described in Non-Patent Document 1, for example.
特許文献 1 :特表 2001— 509898号公報(9頁、図 2)  Patent Document 1: Japanese Patent Publication No. 2001-509898 (page 9, FIG. 2)
非特許文献 1 :「レヴュ^ ォブ'サイエンス'インストルメント(Review of science instrument)」(米国)(1993年 8月)第 64卷、第 8号 P2072  Non-Patent Document 1: “Review of Science Instrument” (USA) (August 1993), Vol. 64, No. 8, P2072
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] ところで、前記従来技術による重粒子線がん治療装置を用いた治療では、適切な 飛程補償フィルタ 9を用いなければ、腫瘍である標的 4を超えた深部の正常組織まで も高い線量をもった照射ビーム 1が照射されるために、副作用を生じさせる原因となる 。ところが、適切な飛程補償フィルタ 9は、患者 3内の標的 4の形状により異なるので、 患者 3毎に、さらには患者 3へ照射する方向毎にそれぞれ適合するものを個別に製 作しなければならない。このため、以下のような問題が生じる。  [0007] By the way, in the treatment using the heavy ion beam cancer treatment apparatus according to the above-described conventional technique, a high dose even to a deep normal tissue beyond the target 4 which is a tumor can be obtained unless an appropriate range compensation filter 9 is used. Irradiation with the irradiation beam 1 having the above causes a side effect. However, an appropriate range compensation filter 9 differs depending on the shape of the target 4 in the patient 3, so that a filter that is suitable for each patient 3 and further for each direction of irradiation to the patient 3 must be manufactured individually. No. Therefore, the following problem occurs.
[0008] 即ち、飛程補償フィルタ 9を製作する際には、基材であるプラスチック材料等に切削 加工を施すために高価な数値制御式の工作機械を用いなければならない。し力も、 飛程補償フィルタ 9の加工後の寸法精度の検査、飛程補償フィルタ 9の交換作業、さ らには、飛程補償フィルタ 9の保管、廃棄等を行うために、多くの設備、多くの手作業 及び管理業務が要となり、このような飛程補償フィルタ 9を用いた場合、治療に要する 時間、コスト等が高くつくばかりでなぐ手作業による人的エラーの原因になるという問 題がある。  [0008] That is, when manufacturing the range compensation filter 9, an expensive numerically controlled machine tool must be used in order to perform a cutting process on a plastic material or the like as a base material. In order to inspect the dimensional accuracy of the range compensating filter 9 after processing, replace the range compensating filter 9, and store and discard the range compensating filter 9, A lot of manual work and management work are required, and when such a range compensation filter 9 is used, the time and cost required for treatment are not only high but also cause a human error due to manual work. There is.
[0009] 本発明は、前記課題に鑑み、標的に対する放射線の飛程を標的毎に自動で調整 することができ、治療に要する時間、コスト等を削減できるようにした飛程補償装置及 び重荷電粒子線照射装置を提供することを目的とする。 [0009] In view of the above problems, the present invention automatically adjusts the range of radiation to a target for each target. It is an object of the present invention to provide a range compensator and a heavy charged particle beam irradiation device capable of reducing the time and cost required for treatment.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、前記課題を解決すべく構成されるものであり、請求項 1に記載の発明は [0010] The present invention is designed to solve the above-mentioned problems, and the invention described in claim 1 is
、放射線源から標的に向けて照射される放射線の経路の途中に設けられ、前記放射 線のエネルギーを吸収して前記標的に対する放射線の飛程を調整する飛程補償装 置において、前記放射線のエネルギーを吸収する複数のエネルギー吸収体と、前記 各エネルギー吸収体を前記放射線の経路に向けて別個独立に進退可能に移動さ せるァクチユエ一タとを備えることを特徴とする飛程補償装置である。 A range compensating device that is provided in a path of radiation irradiated from the radiation source toward the target and adjusts the range of the radiation to the target by absorbing the energy of the radiation; A range compensating device comprising: a plurality of energy absorbers for absorbing energy; and an actuator for moving each of the energy absorbers separately and independently toward the path of the radiation.
[0011] 請求項 1に記載の飛程補償装置によれば、放射線がエネルギー吸収体を通過する ときには、放射線のエネルギーが弱められ、標的に対する放射線の飛程を小さく設 定することができる。これに対し、エネルギー吸収体を通過することなく直接標的に照 射される放射線は、エネルギー吸収体によってエネルギーが弱められることがなくな るから、標的に対する放射線の飛程を大きく設定することができる。  [0011] According to the range compensating device of claim 1, when the radiation passes through the energy absorber, the energy of the radiation is weakened, and the range of the radiation to the target can be set small. On the other hand, radiation directly radiated to the target without passing through the energy absorber does not have its energy weakened by the energy absorber, so that the range of the radiation to the target can be set to be large. .
[0012] 従って、各エネルギー吸収体をァクチユエータを用いて放射線の経路に向けて別 個独立に進退させることにより、標的の深さ方向に対する放射線の飛程を標的の立 体形状に合わせて適宜に自動で調整することができ、例えば患者の標的となる患部 に放射線を照射する場合には、正常組織への不要な照射を阻止することができる。  [0012] Accordingly, by independently moving each energy absorber toward the path of the radiation using an actuator, the range of the radiation in the depth direction of the target can be appropriately adjusted according to the shape of the target. It can be adjusted automatically, for example, when irradiating the affected area targeted by the patient, unnecessary radiation to normal tissue can be prevented.
[0013] 請求項 2に記載の発明は、エネルギー吸収体は、細長い板状体力 なるリーフであ り、このリーフを板状に複数列並べて配置することによりエネルギー吸収層を構成す ることを特徴とする飛程補償装置である。  [0013] The invention according to claim 2 is characterized in that the energy absorber is a leaf having an elongated plate-like body strength, and the energy absorber is formed by arranging the leaves in a plurality of rows in a plate shape. Is a range compensating device.
[0014] 請求項 2に記載の飛程補償装置によれば、エネルギー吸収層を構成する各リーフ を放射線の経路に向けて別個に進退させることにより、各リーフ間に形成される開口 部の形状を細力べ変更することができ、標的に対する放射線の飛程を標的の立体形 状に合わせてさらに精度よく調整することができる。  [0014] According to the range compensator according to claim 2, the shape of the opening formed between the leaves is achieved by separately moving each leaf constituting the energy absorbing layer toward the path of radiation. The range of radiation to the target can be adjusted more precisely according to the three-dimensional shape of the target.
[0015] 請求項 3に記載の発明は、エネルギー吸収層を、放射線の経路に沿って複数配置 したことを特徴とする飛程補償装置である。  [0015] The invention according to claim 3 is a range compensating device, wherein a plurality of energy absorbing layers are arranged along a path of radiation.
[0016] 請求項 3に記載の飛程補償装置によれば、各エネルギー吸収層毎にそれぞれのリ ーフを移動させることにより、標的に対する放射線の飛程をより細力べ調整することが できる。 [0016] According to the range compensator of claim 3, each resource is provided for each energy absorption layer. By moving the probe, the range of the radiation to the target can be more finely adjusted.
[0017] 請求項 4に記載の発明は、複数のエネルギー吸収層のうち少なくともいずれか 1つ のエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフとは異なる方向に 移動させることを特徴とする飛程補償装置である。  [0017] The invention according to claim 4 is characterized in that the leaf of at least one of the plurality of energy absorbing layers is moved in a direction different from the direction of the leaves of the other energy absorbing layers. Range compensator.
[0018] 請求項 4に記載の飛程補償装置によれば、複数のエネルギー吸収層のうち少なく ともいずれか 1つのエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフと は異なる方向に移動させることにより、標的に対する放射線の飛程を標的の立体形 状に合わせて高精度に調整することができる。 [0018] According to the range compensating device of claim 4, at least one of the plurality of energy absorbing layers is moved in a direction different from that of the leaves of the other energy absorbing layers. By doing so, the range of radiation to the target can be adjusted with high accuracy in accordance with the three-dimensional shape of the target.
[0019] 請求項 5に記載の発明は、複数のエネルギー吸収層のうち少なくともいずれか 1つ のエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフとは異なる板厚をも つて形成したことを特徴とする飛程補償装置である。 [0019] In the invention according to claim 5, the leaf of at least one of the plurality of energy absorbing layers is formed to have a thickness different from that of the leaves of the other energy absorbing layers. A range compensating device characterized by the following.
[0020] 請求項 5に記載の発明によれば、放射線を、板厚の小さなリーフを通過させた場合 と板厚の大きなリーフを通過させた場合とで、リーフを通過した後の放射線のェネル ギーを変更することができる。 [0020] According to the invention set forth in claim 5, the radiation energy after passing through the leaf depends on whether the radiation has passed through a leaf having a small thickness or a leaf having a large thickness. Ghee can be changed.
[0021] 請求項 6に記載の発明は、複数のエネルギー吸収層のうち少なくともいずれか 1つ のエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフとは異なるエネルギ 一吸収率を有する材料をもって形成したことを特徴とする飛程補償装置である。 [0021] The invention according to claim 6 is that the leaf of at least one of the plurality of energy absorbing layers is made of a material having an energy absorptivity different from the leaves of the other energy absorbing layers. A range compensating device characterized by being formed.
[0022] 請求項 6に記載の発明によれば、放射線を、エネルギー吸収率が小さなリーフを通 過させた場合とエネルギー吸収率が大きなリーフを通過させた場合とで、リーフを通 過した後の放射線のエネルギーを変更することができる。 [0022] According to the invention set forth in claim 6, the radiation passes through the leaf having a small energy absorption rate and the radiation having passed through the leaf having a large energy absorption rate. Can change the energy of the radiation.
[0023] 請求項 7に記載の発明は、複数のエネルギー吸収層のうち少なくともいずれか 1つ のエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフとは異なる板幅をも つて形成したことを特徴とする飛程補償装置である。 [0023] In the invention according to claim 7, the leaf of at least one of the plurality of energy absorbing layers is formed to have a plate width different from the leaf of the other energy absorbing layer. A range compensating device characterized by the following.
[0024] 請求項 7に記載の発明によれば、板幅の小さなリーフと板幅の大きなリーフを組み 合わせて用いることにより、標的に対する放射線の飛程を標的の立体形状に合わせ て高精度に調整することができる。 [0024] According to the invention of claim 7, by using a combination of a leaf having a small plate width and a leaf having a large plate width, the range of radiation to the target can be adjusted with high accuracy in accordance with the three-dimensional shape of the target. Can be adjusted.
[0025] 請求項 8に記載の発明は、エネルギー吸収層を、各列毎に一対のリーフが長さ方 向で対向して互いに離間、接近するように構成したことを特徴とする飛程補償装置で ある。 [0025] In the invention according to claim 8, the energy absorbing layer has a pair of leaves each having a length corresponding to each row. A range compensating device characterized in that the range compensating device is configured so as to be opposed to each other, to be separated from each other, and to approach each other.
[0026] 請求項 8に記載の発明によれば、長さ方向で対向した一対のリーフ同士をそれぞ れァクチユエータを用いて互いに離間、接近させることにより、各リーフ間に形成され る開口部の形状を標的の立体形状に合わせてより細力べ変更することが可能となる。  [0026] According to the invention described in claim 8, the pair of leaves facing each other in the longitudinal direction are separated and approached to each other by using an actuator, so that an opening formed between the leaves is formed. It becomes possible to change the shape more closely according to the three-dimensional shape of the target.
[0027] 請求項 9に記載の発明は、リーフに、斜めに傾斜したテーパ面を形成したことを特 徴とする飛程補償装置である。  [0027] The invention described in claim 9 is a range compensating apparatus characterized in that an obliquely tapered surface is formed on a leaf.
[0028] 請求項 9に記載の発明によれば、リーフに形成したテーパ面に対する放射線の通 過位置に応じて、通過後の放射線のエネルギーを変更することができ、放射線の飛 程を、標的の形状に合致したより滑らかな形状に設定することができる。  [0028] According to the invention as set forth in claim 9, the energy of the radiation after passing can be changed in accordance with the position of the radiation passing through the tapered surface formed on the leaf, and the range of the radiation can be adjusted to the target range. Can be set to a smoother shape that matches the shape of.
[0029] 請求項 10に記載の発明は、放射線の照射中にエネルギー吸収体を進退させる構 成としたことを特徴とする飛程補償装置である。  [0029] The invention described in claim 10 is a range compensating device, wherein the energy absorber is advanced and retracted during irradiation of radiation.
[0030] 請求項 10に記載の発明によれば、放射線の照射中にエネルギー吸収体を進退さ せることにより、標的に対する放射線の飛程を標的の立体形状に合わせてより高精 度に調整することができる。  [0030] According to the invention set forth in claim 10, by moving the energy absorber back and forth during the irradiation of the radiation, the range of the radiation with respect to the target is adjusted with higher accuracy in accordance with the three-dimensional shape of the target. be able to.
[0031] 請求項 11に記載の発明は、飛程補償装置を備えたことを特徴とする重荷電粒子線 照射装置である。  [0031] The invention according to claim 11 is a heavy charged particle beam irradiation device comprising a range compensation device.
[0032] 請求項 11に記載の発明によれば、前記従来技術で述べた飛程補償フィルタの代 わりに飛程補償装置を備えた重荷電粒子線照射装置を用いることにより、重荷電粒 子線照射装置による治療の効率を高めることができる。  According to the eleventh aspect of the present invention, a heavy charged particle beam irradiation device having a range compensating device is used instead of the range compensating filter described in the related art, so that the heavy charged particle beam is used. The efficiency of treatment by the irradiation device can be increased.
発明の効果  The invention's effect
[0033] 以上、詳述した通り、請求項 1の発明によれば、複数のエネルギー吸収体をァクチ ユエータにより放射線の経路に向けて別個独立に移動させる構成としたので、各エネ ルギー吸収体をァクチユエータを用いて放射線の経路に向けて進退させることにより 、標的に対する放射線の飛程を標的の位置、形状に合わせて標的毎に自動で変更 することができ、標的の立体形状に合致した照射領域を形成することができる。従つ て、従来技術で述べたような飛程補償フィルタを患者の標的毎に個別に製作又は交 換したり、保管、廃棄等を行う必要がなくなり、治療に要する時間、コスト等を大幅に 肖 |J減することがでさる。 [0033] As described in detail above, according to the first aspect of the present invention, since a plurality of energy absorbers are moved independently and independently toward the path of radiation by the actuator, each energy absorber is used. By using an actuator to move back and forth toward the path of radiation, the range of radiation to the target can be automatically changed for each target according to the position and shape of the target, and the irradiation area that matches the three-dimensional shape of the target Can be formed. Therefore, it is not necessary to separately manufacture or replace the range compensation filter as described in the prior art for each patient target, or to perform storage, disposal, etc., thereby greatly reducing the time and cost required for treatment. Xiao | J can be reduced.
[0034] 請求項 2に記載の発明は、エネルギー吸収体である細長い板状体力 なるリーフを 、板状に複数列並べてエネルギー吸収層を構成したので、エネルギー吸収層を構成 する各リーフを放射線の経路に向けて別個に進退させることにより、各リーフ間に形 成される開口部の形状をより細かく変更することができ、標的に対する放射線の飛程 を標的の立体形状に合わせてさらに精度よく調整することができ、飛程補償装置の 性能を高めることができる。  [0034] In the invention according to claim 2, since the energy absorbing layer is formed by arranging a plurality of elongated plate-shaped body leaves as energy absorbers in a plate shape, the leaves constituting the energy absorbing layer are irradiated with radiation. By separately moving toward the path, the shape of the opening formed between each leaf can be changed more finely, and the range of radiation to the target can be adjusted more precisely according to the three-dimensional shape of the target And the performance of the range compensator can be improved.
[0035] 請求項 3に記載の発明は、エネルギー吸収層を、放射線の経路に沿って複数配置 したので、各エネルギー吸収層毎にそれぞれのリーフを移動させることにより、標的 に対する放射線の飛程をより細力べ調整することができ、飛程補償装置の性能をさら に高めることができる。  [0035] In the invention according to claim 3, since a plurality of energy absorbing layers are arranged along the path of radiation, the range of radiation to the target can be reduced by moving each leaf for each energy absorbing layer. More fine adjustment is possible, and the performance of the range compensator can be further enhanced.
[0036] 請求項 4に記載の発明は、複数のエネルギー吸収層のうち少なくともいずれか 1つ のエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフとは異なる方向に 移動させる構成としたので、標的に対する放射線の飛程を高精度に調整でき、飛程 補償装置の性能をさらに高めることができる。  [0036] The invention according to claim 4 has a configuration in which the leaf of at least one of the plurality of energy absorbing layers is moved in a direction different from that of the leaves of the other energy absorbing layers. The range of the radiation to the target can be adjusted with high accuracy, and the performance of the range compensator can be further improved.
[0037] 請求項 5に記載の発明は、複数のエネルギー吸収層のうち少なくともいずれか 1つ のエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフとは異なる板厚をも つて形成したので、放射線を、板厚の小さなリーフを通過させた場合と板厚の大きな リーフを通過させた場合とで、リーフを通過した後の放射線のエネルギーを変更する ことができ、標的に対する放射線の飛程を高精度に調整できる。 In the invention according to claim 5, the leaf of at least one of the plurality of energy absorbing layers is formed to have a thickness different from that of the leaves of the other energy absorbing layers. The radiation energy after passing through the leaf can be changed between the case where the radiation passes through a leaf with a small thickness and the case where the radiation passes through a leaf with a large thickness. Can be adjusted with high precision.
[0038] 請求項 6に記載の発明は、複数のエネルギー吸収層のうち少なくともいずれか 1つ のエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフとは異なるエネルギ 一吸収率を有する材料をもって形成したので、放射線を、エネルギー吸収率が小さ なリーフを通過させた場合とエネルギー吸収率が大きなリーフを通過させた場合とで 、リーフを通過した後の放射線のエネルギーを変更することができ、標的に対する放 射線の飛程を高精度に調整できる。 [0038] In the invention according to claim 6, the leaf of at least one of the plurality of energy absorbing layers is made of a material having a different energy absorption rate from the leaves of the other energy absorbing layers. Since the radiation has been formed, the energy of the radiation after passing through the leaf can be changed depending on whether the radiation passes through a leaf having a small energy absorption rate or a leaf having a large energy absorption rate, The range of radiation to the target can be adjusted with high precision.
[0039] 請求項 7に記載の発明は、複数のエネルギー吸収層のうち少なくともいずれか 1つ のエネルギー吸収層のリーフを、他のエネルギー吸収層のリーフとは異なる板幅をも つて形成したので、板幅の小さなリーフと板幅の大きなリーフを組み合わせて用いる ことにより、標的に対する放射線の飛程を標的の立体形状に合わせて高精度に調整 することができる。 [0039] In the invention according to claim 7, the leaf of at least one of the plurality of energy absorbing layers has a plate width different from the leaf of the other energy absorbing layer. By using a combination of a leaf with a small plate width and a leaf with a large plate width, the range of radiation to the target can be adjusted with high accuracy in accordance with the three-dimensional shape of the target.
[0040] 請求項 8に記載の発明は、エネルギー吸収層を、各列毎に一対のリーフが長さ方 向で対向して互いに離間、接近するように構成したので、長さ方向で対向した一対の リーフ同士をそれぞれァクチユエータを用いて互いに離間、接近させることにより、各 リーフ間に形成される開口部の形状を標的の立体形状に合わせてより細力べ変更す ることができ、標的に対する放射線の飛程を高精度に調整できる。  [0040] In the invention according to claim 8, the energy absorbing layer is configured such that a pair of leaves are opposed to each other in the length direction and separated from each other and approach each other in each row. By separating and approaching a pair of leaves with each other using an actuator, the shape of the opening formed between the leaves can be changed more finely in accordance with the three-dimensional shape of the target. The range of radiation can be adjusted with high precision.
[0041] 請求項 9に記載の発明は、リーフに、斜めに傾斜したテーパ面を形成する構成とし たので、リーフに形成したテーパ面に対する放射線の通過位置に応じて、通過後の 放射線のエネルギーを変更することができ、放射線の飛程を、標的の形状に合致し たより滑らかな形状に設定することができる。  According to the ninth aspect of the invention, since the tapered surface that is obliquely inclined is formed on the leaf, the energy of the radiation after passing therethrough depends on the position where the radiation passes through the tapered surface formed on the leaf. Can be changed, and the range of the radiation can be set to a smoother shape that matches the shape of the target.
[0042] 請求項 10に記載の発明は、放射線の照射中にエネルギー吸収体を進退させる構 成としたので、標的に対する放射線の飛程を標的の形状に合わせてより高精度に調 整することができる。  [0042] The invention according to claim 10 has a configuration in which the energy absorber moves forward and backward during irradiation of radiation, so that the range of radiation to the target can be adjusted with higher precision in accordance with the shape of the target. Can be.
[0043] 請求項 11に記載の発明は、前記従来技術で述べた飛程補償フィルタの代わりに 飛程補償装置を備えた重荷電粒子線照射装置を用いる構成としたので、重荷電粒 子線照射装置による治療の効率を高めることができる。  The invention according to claim 11 uses a heavy charged particle beam irradiation device having a range compensating device instead of the range compensating filter described in the related art, so that the heavy charged particle beam is used. The efficiency of treatment by the irradiation device can be increased.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] (第 1の実施の形態) (First Embodiment)
本発明の第 1の実施の形態に係る飛程補償装置及び重荷電粒子線照射装置を重 粒子線がん治療装置に用いた場合を例に挙げ、図 1ないし図 3を参照して説明する  An example in which the range compensating device and the heavy charged particle beam irradiation device according to the first embodiment of the present invention are used in a heavy particle beam cancer treatment device will be described with reference to FIGS. 1 to 3.
[0045] 図 1は、本実施の形態に係る重粒子線がん治療装置の照射部分と患者を示す部 分拡大断面図であり、図 2は、飛程補償装置を図 1中の矢示 Π-Π方向からみた正面 図である。図 3は、図 2中のリーフを拡大して示す部分斜視図である。なお、図 1、図 2 において、 X方向は患者 3の体の横幅方向を示し、 Y方向は患者 3の体軸方向を示し 、 Z方向は照射ビーム 1の軸方向(照射方向)を示して 、る。 [0046] 図 1に示すように、重粒子線がん治療装置 11は、前記従来技術とほぼ同様に、金 属板 8A, 8A間に形成される開口部 8Bにより照射ビーム 1を患者 3の標的 4と対応し たビーム形状に加工する多葉コリメータ装置 8と、多葉コリメータ装置 8の下流側の位 置で照射ビーム 1の経路の途中に設けられ、照射ビーム 1のエネルギーを吸収して 標的 4に対する飛程を調整する飛程補償装置 12と、患者 3が横になるベッド 2とを備 えている。 FIG. 1 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment, and FIG. 2 shows a range compensating apparatus shown by an arrow in FIG. FIG. 3 is a front view as viewed from the direction Π-Π. FIG. 3 is a partial perspective view showing a leaf in FIG. 2 in an enlarged manner. In FIGS. 1 and 2, the X direction indicates the width direction of the patient 3, the Y direction indicates the body axis direction of the patient 3, and the Z direction indicates the axial direction (irradiation direction) of the irradiation beam 1. RU As shown in FIG. 1, the heavy ion beam cancer treatment apparatus 11 applies the irradiation beam 1 to the patient 3 by the opening 8B formed between the metal plates 8A, 8A, almost in the same manner as the above-mentioned conventional technology. A multi-leaf collimator 8 for processing into a beam shape corresponding to the target 4, and provided at a location downstream of the multi-leaf collimator 8 in the path of the irradiation beam 1 to absorb the energy of the irradiation beam 1 It has a range compensator 12 for adjusting the range with respect to the target 4 and a bed 2 on which the patient 3 lies.
[0047] また、飛程補償装置 12は、図 2に示すように、照射ビーム 1 (図 1参照)のエネルギ 一を吸収するエネルギー吸収体としての複数のリーフ 13, 13,…からなるエネルギ 一吸収層 14と、エネルギー吸収層 14の各リーフ 13をそれぞれ照射ビーム 1の経路 に向けて別個独立に進退させる複数のァクチユエータ 15, 15,…とによって構成さ れている。  [0047] Further, as shown in FIG. 2, the range compensator 12 includes an energy unit comprising a plurality of leaves 13, 13, ... as energy absorbers for absorbing the energy of the irradiation beam 1 (see Fig. 1). It is composed of an absorption layer 14 and a plurality of actuators 15, 15,... For independently and independently moving the leaves 13 of the energy absorption layer 14 toward the path of the irradiation beam 1, respectively.
[0048] ここで、エネルギー吸収層 14を構成する各リーフ 13は、例えば金属材料、プラスチ ック材料等を用いることにより一定の板厚をもった長方形状の板体として形成され (図 Here, each leaf 13 constituting the energy absorption layer 14 is formed as a rectangular plate having a certain plate thickness by using, for example, a metal material, a plastic material, or the like (see FIG.
3参照)ている。そして、リーフ 13は、例えば幅 2cm厚さ lcm長さ 40cmの板状体であ り、図 2に示すように、その長さ方向(X方向)で 2枚が対向して Y方向に複数列(16列 )並んで配設されている。また、ァクチユエータ 15は、例えばリーフ 13に取り付けられ たラックと、このラックに嚙合するピ-オンと、このピ-オンを回転駆動するモータと、こ のモータの回転を制御する制御機構 ( 、ずれも図示せず)とを含んで構成されて 、る 。そして、ァクチユエータ 15は、前記ピ-オンをモータ及び制御機構を用いて回転駆 動することにより、ラックと一体となったリーフ 13を X方向に移動させるものである。 3). The leaf 13 is, for example, a plate-like body having a width of 2 cm, a thickness of lcm, and a length of 40 cm. As shown in FIG. 2, two leaves face each other in the length direction (X direction) and a plurality of rows in the Y direction. (16 rows) They are arranged side by side. Further, the actuator 15 includes, for example, a rack attached to the leaf 13, a pin connected to the rack, a motor for rotating the pin, and a control mechanism for controlling the rotation of the motor (a shift mechanism). (Also not shown). The actuator 15 is configured to move the leaf 13 integrated with the rack in the X direction by rotating the pion using a motor and a control mechanism.
[0049] このため、図 2に示すように、 X方向で対向した一対のリーフ 13, 13同士は、ァクチ ユエータ 15により互いに離間,接近するように X方向に移動し、各リーフ 13間で開口 部 16を形成する。つまり、飛程補償装置 12は、ァクチユエータ 15を用いて各リーフ 1 3をそれぞれ個別に作動させることにより、標的 4の立体形状に合わせて開口部 16が 様々な形状に自動で変更されるものである。  For this reason, as shown in FIG. 2, a pair of leaves 13 and 13 facing each other in the X direction are moved in the X direction by an actuator 15 so as to be separated from and approach to each other. Form part 16. In other words, the range compensator 12 automatically changes the opening 16 to various shapes according to the three-dimensional shape of the target 4 by individually operating each leaf 13 using the actuator 15. is there.
[0050] 次に、重粒子線がん治療装置 11の作用について説明する。  Next, the operation of the heavy ion beam cancer treatment apparatus 11 will be described.
まず、 X線 CT、 MRI等を用いて患者 3の標的 4の立体形状を予め測定する。そして 、この測定した標的 4の形状に応じて、ァクチユエータ 15により各リーフ 13をそれぞ れ個別に作動させ、開口部 16の形状を変更する。そして、図 1に示すように、照射ビ ーム 1を患者 3の標的 4に向けて照射する。照射ビーム 1は、その経路の途中で飛程 補償装置 12を通過する。このとき、エネルギー吸収層 14の開口部 16を通過する成 分は体内深くまで到達するのに対し、エネルギー吸収層 14の各リーフ 13を通過する 成分は、リーフ 13により一定のエネルギーが吸収される分だけ飛程が浅くなる。つま り、患者 3の標的 4に対する照射ビーム 1の飛程を 2段階に変化させて補償することが できる。 First, the three-dimensional shape of the target 4 of the patient 3 is measured in advance using X-ray CT, MRI, or the like. Then, according to the measured shape of the target 4, each leaf 13 is individually moved by the actuator 15. It is operated individually to change the shape of the opening 16. Then, as shown in FIG. 1, the irradiation beam 1 is irradiated toward the target 4 of the patient 3. The irradiation beam 1 passes through the range compensator 12 in the middle of the path. At this time, the component passing through the opening 16 of the energy absorbing layer 14 reaches deep inside the body, while the component passing through each leaf 13 of the energy absorbing layer 14 absorbs a certain amount of energy by the leaf 13. The range becomes shallower by the minute. In other words, it is possible to compensate by changing the range of the irradiation beam 1 to the target 4 of the patient 3 in two stages.
[0051] このように本実施の形態によれば、ァクチユエータ 15を用いて各リーフ 13を照射ビ ーム 1の経路に向けて進退させることにより、標的 4の立体形状に合致した照射領域( 線量分布)を形成することができ、標的 4を超えた深部の正常組織への被曝を防止 することができ、重粒子線がん治療装置 11の性能、信頼性等を向上することができる  As described above, according to the present embodiment, by moving each leaf 13 toward and away from the irradiation beam 1 using the actuator 15, the irradiation area (dose (Distribution) can be formed, exposure to normal tissue deeper than the target 4 can be prevented, and the performance, reliability, etc. of the heavy ion beam cancer treatment device 11 can be improved.
[0052] し力も、本実施の形態によれば、ァクチユエータ 15を用いて各リーフ 13を移動させ る構成としたので、開口部 16の形状を標的 4の位置、形状に合わせて患者 3毎に適 宜に自動で変更することができる。従って、従来技術で述べたような飛程補償フィル タを患者 3毎に製作又は交換したり、保管、廃棄等を行う必要がなくなり、治療に要す る時間、コスト等を大幅に削減することができる。 According to the present embodiment, since each leaf 13 is moved using the actuator 15, the shape of the opening 16 is adjusted for each patient 3 according to the position and shape of the target 4. It can be changed automatically as appropriate. Therefore, it is not necessary to manufacture or replace the range compensation filter for each patient 3 as described in the prior art, or to store, dispose, etc., and to significantly reduce the time and cost required for treatment. Can be.
[0053] (第 2の実施の形態)  (Second Embodiment)
次に、図 4ないし図 6は、本発明の第 2の実施の形態を示している。なお、本実施の 形態では、前記第 1の実施の形態と同一の構成要素に同一の符号を付し、その説明 を省略するものとする。  Next, FIGS. 4 to 6 show a second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0054] 図 4は、本実施の形態に係る重粒子線がん治療装置の照射部分と患者を示す部 分拡大断面図であり、図 5は、飛程補償装置を図 4中の矢示 V— V方向からみた正面 図である。図 6は、図 5中のリーフを拡大して示す部分斜視図である。  FIG. 4 is an enlarged partial cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment, and FIG. 5 shows a range compensating apparatus shown by an arrow in FIG. FIG. 5 is a front view as viewed from the V-V direction. FIG. 6 is a partial perspective view showing a leaf in FIG. 5 in an enlarged manner.
[0055] 図 4に示すように、重粒子線がん治療装置 21は、第 1の実施の形態とほぼ同様に、 多葉コリメータ装置 8、飛程補償装置 22及びベッド 2を有している。しかし、本実施の 形態に用いる飛程補償装置 22は、図 4ないし図 6に示すように、複数のリーフ 23, 23 ,…からなる第 1のエネルギー吸収層 24と、複数のリーフ 25, 25,…からなる第 2の エネルギー吸収層 26とによって構成されている点で、第 1の実施の形態のものとは 異なっている。 As shown in FIG. 4, the heavy ion beam cancer treatment apparatus 21 has a multi-leaf collimator apparatus 8, a range compensator 22, and a bed 2 in substantially the same manner as in the first embodiment. . However, as shown in FIGS. 4 to 6, the range compensator 22 used in the present embodiment includes a first energy absorbing layer 24 including a plurality of leaves 23, 23,. The second consisting of It is different from that of the first embodiment in that it is constituted by an energy absorbing layer 26.
[0056] ここで、第 1のエネルギー吸収層 24及び第 2のエネルギー吸収層 26は、図 4に示 すように照射ビーム 1の経路に沿って積層されている。そして、第 1のエネルギー吸 収層 24は、図 5に示すように各リーフ 23が X方向で互 、に対向して Y方向に複数列 並んで配設されている。つまり、リーフ 23は、 2枚を 1組として照射ビーム 1の経路と直 交する方向に例えば 16列板状に配置されている。また、第 2のエネルギー吸収層 26 についても、 2枚を 1組として照射ビーム 1の経路と直交する方向に 16列板状に配置 されている。そして、各リーフ 23及び各リーフ 25は、それぞれァクチユエータ 27及び ァクチユエータ 28 (図 4参照)により別個独立に X方向に移動するものである。  Here, the first energy absorbing layer 24 and the second energy absorbing layer 26 are stacked along the path of the irradiation beam 1 as shown in FIG. In the first energy absorbing layer 24, as shown in FIG. 5, the leaves 23 are arranged in a plurality of rows in the Y direction so as to face each other in the X direction. In other words, the leaves 23 are arranged in, for example, a 16-row plate shape in a direction orthogonal to the path of the irradiation beam 1 as a set of two leaves. Also, the second energy absorbing layers 26 are arranged in a 16-row plate shape in a direction orthogonal to the path of the irradiation beam 1 as a set of two sheets. Each leaf 23 and each leaf 25 are individually and independently moved in the X direction by an actuator 27 and an actuator 28 (see FIG. 4).
[0057] このように構成される本実施の形態では、第 1のエネルギー吸収層 24と第 2のエネ ルギー吸収層 26を照射ビーム 1の経路に沿って配置する構成としたので、第 1のェ ネルギー吸収層 24の開口部 29の形状及び第 2のエネルギー吸収層 26の開口部 30 の形状をそれぞれ個別に変更することができる。このため、患者 3の標的 4に対する 照射ビーム 1の飛程を最大で 4段階に変化させて補償することができる。つまり、照射 ビーム 1が開口部 29, 30を通過する場合と、エネルギー吸収層 24のみを通過する 場合と、エネルギー吸収層 26のみを通過する場合と、両方のエネルギー吸収層 24, 26を通過する場合とがあり、それぞれの場合で照射ビーム 1の飛程が異なることにな る。従って、標的 4に対する照射ビーム 1の飛程をより細力べ調整することが可能となり 、重粒子線がん治療装置 21の性能、信頼性等を一層高めることができる。  In the present embodiment configured as described above, the first energy absorbing layer 24 and the second energy absorbing layer 26 are arranged along the path of the irradiation beam 1, so that the first The shape of the opening 29 of the energy absorbing layer 24 and the shape of the opening 30 of the second energy absorbing layer 26 can be individually changed. Therefore, it is possible to compensate by changing the range of the irradiation beam 1 to the target 4 of the patient 3 at a maximum of four steps. In other words, the irradiation beam 1 passes through the openings 29 and 30, passes only through the energy absorption layer 24, passes through only the energy absorption layer 26, and passes through both energy absorption layers 24 and 26. In some cases, the range of the irradiation beam 1 is different in each case. Therefore, the range of the irradiation beam 1 with respect to the target 4 can be more finely adjusted, and the performance, reliability, and the like of the heavy ion beam cancer treatment apparatus 21 can be further improved.
[0058] (第 3の実施の形態)  (Third Embodiment)
次に、図 7および図 8は本発明の第 3の実施の形態を示している。なお、本実施の 形態では、前記第 1の実施の形態と同一の構成要素に同一の符号を付し、その説明 を省略するものとする。  Next, FIGS. 7 and 8 show a third embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0059] 図 7は、本実施の形態に係る重粒子線がん治療装置の照射部分と患者を示す部 分拡大断面図であり、図 8は、飛程補償装置を図 7中の矢示 VIII— VIII方向からみた 背面図である。  FIG. 7 is an enlarged partial cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment, and FIG. 8 shows a range compensator shown by an arrow in FIG. VIII- It is a rear view as seen from the VIII direction.
[0060] 図 7に示すように、重粒子線がん治療装置 31は、第 2の実施の形態とほぼ同様に、 多葉コリメータ装置 8、飛程補償装置 32及びベッド 2を有している。そして、飛程補償 装置 32は、図 7及び図 8に示すように、複数のリーフ 33, 33,…からなる第 1のエネ ルギー吸収層 34と、複数のリーフ 35, 35,…からなる第 2のエネルギー吸収層 36と が照射ビーム 1の経路に沿って積層されている。 As shown in FIG. 7, the heavy ion beam cancer treatment apparatus 31 is substantially the same as the second embodiment, It has a multi-leaf collimator 8, a range compensator 32 and a bed 2. As shown in FIGS. 7 and 8, the range compensator 32 includes a first energy absorption layer 34 including a plurality of leaves 33, 33, and a first energy absorption layer 34 including a plurality of leaves 35, 35,. The two energy absorbing layers 36 and are stacked along the path of the irradiation beam 1.
[0061] し力し、図 8に示すように、第 1のエネルギー吸収層 34のリーフ 33は、 2枚を 1組とし て X方向で互 、に対向して、 Y方向に複数列( 16列)並んで配設されて 、るのに対し 、第 2のエネルギー吸収層 36のリーフ 35は 2枚を 1組として Y方向で互いに対向して 、 X方向に複数列(16列)並んで配設されている点で、第 2の実施の形態のものとは 異なっている。 As shown in FIG. 8, the leaves 33 of the first energy-absorbing layer 34 are opposed to each other in the X direction as a set of two sheets, and are arranged in a plurality of rows (16) in the Y direction. Row), whereas the leaves 35 of the second energy absorbing layer 36 are arranged in a row and are opposed to each other in the Y direction as a pair, and are arranged in a plurality of rows (16 rows) in the X direction. It differs from the second embodiment in that it is provided.
[0062] このように構成される本実施の形態では、第 1のエネルギー吸収層 34のリーフ 33を ァクチユエータ 37により X方向に移動できると共に、第 2のエネルギー吸収層 36のリ ーフ 35をァクチユエータ 38により Y方向に移動できるから、エネルギー吸収層 34, 3 6の開口部 39, 40をそれぞれ X, Y方向で個別に変更することができ、照射ビーム 1 の飛程をより一層細力べ調整することが可能となる。従って、エネルギー吸収層 34, 3 6を用いることにより、例えば中央に窪みを有する三日月状の標的^ に対しても、照 射ビーム 1の飛程をより合致させることができる。  In the present embodiment configured as described above, the leaf 33 of the first energy absorbing layer 34 can be moved in the X direction by the actuator 37, and the leaf 35 of the second energy absorbing layer 36 is moved to the actuator 35. Since it can be moved in the Y direction by 38, the openings 39, 40 of the energy absorption layers 34, 36 can be individually changed in the X, Y directions, respectively, and the range of the irradiation beam 1 can be further finely adjusted. It is possible to do. Therefore, by using the energy absorbing layers 34 and 36, the range of the irradiation beam 1 can be more matched even with, for example, a crescent-shaped target having a depression in the center.
[0063] また、第 1のエネルギー吸収層 34のリーフ 33を X方向に移動するように配設し、第 2のエネルギー吸収層 36のリーフ 35を Y方向に移動するように配設したので、リーフ 33側に取り付けられるァクチユエータ 37とリーフ 35側に取り付けられるァクチユエ一 タ 38とが互いに干渉することがなくなり、これらァクチユエータ 37, 38のレイアウト設 計を容易に行うことができる。  [0063] Further, since the leaves 33 of the first energy absorption layer 34 are arranged to move in the X direction, and the leaves 35 of the second energy absorption layer 36 are arranged to move in the Y direction, The actuator 37 attached to the leaf 33 and the actuator 38 attached to the leaf 35 do not interfere with each other, and the layout of these actuators 37, 38 can be easily designed.
[0064] (第 4の実施の形態)  (Fourth Embodiment)
次に、図 9は本発明の第 4の実施の形態を示している。なお、本実施の形態では、 前記第 1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略する ものとする。  Next, FIG. 9 shows a fourth embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0065] 図 9は、本実施の形態に係る重粒子線がん治療装置の照射部分と患者を示す部 分拡大断面図である。図 9に示すように、重粒子線がん治療装置 41は、第 2の実施 の形態とほぼ同様に、多葉コリメータ装置 8、飛程補償装置 42及びベッド 2を有して いる。そして、飛程補償装置 42は、複数のリーフ 43, 43,…からなる第 1のエネルギ 一吸収層 44と、複数のリーフ 45, 45,…(いずれも 2個のみ図示)からなる第 2のエネ ルギー吸収層 46とが照射ビーム 1の経路に沿って積層されている。また、リーフ 43, 45をそれぞれァクチユエータ 47, 48によって別個独立に移動させることにより、第 1 ,第 2のエネルギー吸収層 44, 46〖こは、開口部 49, 50が形成される。 FIG. 9 is a partially enlarged cross-sectional view showing an irradiated part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment. As shown in FIG. 9, the heavy ion beam cancer treatment device 41 includes a multilobal collimator device 8, a range compensator 42, and a bed 2, almost in the same manner as in the second embodiment. Yes. The range compensator 42 includes a first energy-absorbing layer 44 including a plurality of leaves 43, 43,... And a second energy-absorbing layer 44 including a plurality of leaves 45, 45,. The energy absorption layer 46 is laminated along the path of the irradiation beam 1. By moving the leaves 43 and 45 independently by actuators 47 and 48, openings 49 and 50 are formed in the first and second energy absorbing layers 44 and 46, respectively.
[0066] しかし、本実施の形態に用いる飛程補償装置 42は、第 2のエネルギー吸収層 46を 構成するリーフ 45の板厚力 第 1のエネルギー吸収層 44を構成するリーフ 43の板厚 よりも大きく形成されている点で、第 2の実施の形態のものとは異なっている。  However, the range compensating device 42 used in the present embodiment is different from the thickness of the leaf 43 constituting the first energy absorbing layer 44 in the thickness of the leaf 45 constituting the second energy absorbing layer 46. Is different from that of the second embodiment in that it is also formed large.
[0067] このように構成される本実施の形態では、標的 4の深さ方向の形状変化が大きな部 分に対しては、板厚の大きなリーフ 45を用いて照射ビーム 1の飛程を調整できると共 に、標的 4の深さ方向の形状変化が小さな部分に対しては、板厚の小さなリーフ 43を 用いて照射ビーム 1の飛程を調整できるため、標的 4に対して照射ビーム 1の飛程を より合致させることができる。  In the present embodiment configured as described above, the range of the irradiation beam 1 is adjusted by using the leaf 45 having a large thickness for a portion where the shape change in the depth direction of the target 4 is large. At the same time, the range of the irradiation beam 1 can be adjusted using a leaf 43 with a small thickness for the part where the shape change in the depth direction of the target 4 is small, so that the irradiation beam 1 Range can be more closely matched.
[0068] (第 5の実施の形態)  (Fifth Embodiment)
次に、図 10は本発明の第 5の実施の形態を示している。なお、本実施の形態では 、前記第 1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略す るちのとする。  Next, FIG. 10 shows a fifth embodiment of the present invention. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0069] 図 10は、本実施の形態に係る重粒子線がん治療装置の照射部分と患者を示す部 分拡大断面図である。図 10に示すように、重粒子線がん治療装置 51は、第 2の実施 の形態とほぼ同様に、多葉コリメータ装置 8、飛程補償装置 52及びベッド 2を有して いる。そして、飛程補償装置 52は、複数のリーフ 53, 53,…からなる第 1のエネルギ 一吸収層 54と、複数のリーフ 55, 55,…(いずれも 2個のみ図示)からなる第 2のエネ ルギー吸収層 56とが照射ビーム 1の経路に沿って積層されている。また、リーフ 53, 55をそれぞれァクチユエータ 57, 58によって別個独立に移動させることにより、第 1 ,第 2のエネルギー吸収層 54, 56には、開口部 59, 60が形成される。  FIG. 10 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment. As shown in FIG. 10, the heavy ion beam cancer treatment apparatus 51 has a multilobal collimator apparatus 8, a range compensator 52, and a bed 2, almost similarly to the second embodiment. The range compensator 52 includes a first energy-absorbing layer 54 including a plurality of leaves 53, 53,... And a second energy-absorbing layer 54 including a plurality of leaves 55, 55,. The energy absorption layer 56 is laminated along the path of the irradiation beam 1. The leaves 53 and 55 are moved independently by the actuators 57 and 58 to form openings 59 and 60 in the first and second energy absorbing layers 54 and 56, respectively.
[0070] しかし、本実施の形態に用いる飛程補償装置 52は、第 1のエネルギー吸収層 54を 構成するリーフ 53が、エネルギー吸収率が比較的小さなプラスチック材料等を用い て形成されているのに対し、第 2のエネルギー吸収層 56を構成するリーフ 55が、ェ ネルギー吸収率が比較的大きな金属材料等を用いて形成されている点で、第 2の実 施の形態のものとは異なっている。 [0070] However, in the range compensating device 52 used in the present embodiment, the leaves 53 constituting the first energy absorbing layer 54 are formed using a plastic material or the like having a relatively small energy absorption rate. On the other hand, the leaf 55 forming the second energy absorption layer 56 The third embodiment differs from the second embodiment in that it is formed using a metal material or the like having a relatively large energy absorption.
[0071] このように構成される本実施の形態でも、標的 4の深さ方向の形状変化が大きな部 分に対しては、エネルギー吸収率が比較的大きなリーフ 55を用いて照射ビーム 1の 飛程を調整できると共に、標的 4の深さ方向の形状変化が小さな部分に対しては、ェ ネルギー吸収率が比較的小さなリーフ 53を用いて照射ビーム 1の飛程を調整できる ため、標的 4に対して照射ビーム 1の飛程をより合致させることができ、第 4の実施の 形態とほぼ同様の効果を得ることができる。  [0071] Also in the present embodiment configured as described above, for a portion where the shape change in the depth direction of the target 4 is large, the flight of the irradiation beam 1 is performed using the leaf 55 having a relatively large energy absorption rate. In addition to being able to adjust the range of the irradiation beam 1 for the part where the shape change in the depth direction of the target 4 is small, the range of the irradiation beam 1 can be adjusted using the leaf 53 whose energy absorption is relatively small. On the other hand, the range of the irradiation beam 1 can be made more consistent, and substantially the same effect as in the fourth embodiment can be obtained.
[0072] (第 6の実施の形態)  (Sixth Embodiment)
次に、図 11及び図 12は本発明の第 6の実施の形態を示している。なお、本実施の 形態では、前記第 1の実施の形態と同一の構成要素に同一の符号を付し、その説明 を省略するものとする。  Next, FIG. 11 and FIG. 12 show a sixth embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0073] 図 11は、本実施の形態に係る重粒子線がん治療装置の照射部分と患者を示す部 分拡大断面図であり、図 12は、図 11中のリーフを拡大して示す部分斜視図である。  FIG. 11 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the present embodiment, and FIG. 12 is an enlarged view of a leaf in FIG. It is a perspective view.
[0074] 図 11に示すように、重粒子線がん治療装置 61は、多葉コリメータ装置 8、飛程補償 装置 62及びベッド 2を有している。また、飛程補償装置 62は、図 12に示すように Y方 向に沿って配置された複数のリーフ 63, 63,…からなる第 1のエネルギー吸収層 64 と、 Y方向に沿って配置された複数のリーフ 65, 65,…からなる第 2のエネルギー吸 収層 66と、同じく Y方向に沿って配置された複数のリーフ 67, 67,…からなる第 3の エネルギー吸収層 68とが照射ビーム 1の経路に沿って順次積層されている。また、リ ーフ 63, 65, 67をそれぞれァクチユエータ(図示せず)によって別個独立に Y方向に 移動させることにより、第 1,第 2,第 3のエネルギー吸収層 64, 66, 68には、開口部 69, 70, 71力形成される。  As shown in FIG. 11, the heavy ion beam cancer treatment apparatus 61 includes a multilobal collimator apparatus 8, a range compensator 62, and a bed 2. The range compensator 62 includes a first energy absorbing layer 64 composed of a plurality of leaves 63, 63,... Arranged along the Y direction, as shown in FIG. A second energy absorption layer 66 composed of a plurality of leaves 65, 65,... And a third energy absorption layer 68 composed of a plurality of leaves 67, 67,. They are sequentially stacked along the path of beam 1. By moving the leafs 63, 65, 67 separately in the Y direction independently by an actuator (not shown), the first, second, and third energy absorbing layers 64, 66, 68 have Openings 69, 70, 71 are formed.
[0075] ここで、リーフ 63, 65, 67のうち、リーフ 65の板幅は、リーフ 63, 67の板幅よりも/ Jヽ さく形成されている。また、リーフ 63, 63間の Y方向に沿った継ぎ目は、リーフ 67, 6 7間の Y方向に沿った継ぎ目と一致しないように、リーフ 63とリーフ 67とは、例えばリ ーフ 65の板幅分だけ X方向に互 、に交互にずれて配設されて!/、る。  Here, among the leaves 63, 65, 67, the plate width of the leaf 65 is formed smaller by J // than the plate width of the leaves 63, 67. Also, the leaf 63 and the leaf 67 are, for example, a plate of the leaf 65 so that the seam along the Y direction between the leaves 63 and 63 does not match the seam along the Y direction between the leaves 67 and 67. They are arranged alternately in the X direction by the width!
[0076] このように本実施の形態では、第 2のエネルギー吸収層 66を構成するリーフ 65の 板幅を第 1,第 3のエネルギー吸収層 64, 68を構成するリーフ 63, 67の板幅よりも 小さく形成したので、標的 4の幅方向の形状 (深さ)変化が大きな部分に対しては、分 割幅の小さい、即ち板幅の小さなリーフ 65を用いて照射ビーム 1の飛程を調整し、標 的 4の幅方向の形状 (深さ)変化が小さな部分に対しては、分割幅の大きい、即ち板 幅の大きなリーフ 63, 67を用いて照射ビーム 1の飛程を調整することができ、これに より、標的 4に対して照射ビーム 1の飛程をより合致させることができる。 As described above, in the present embodiment, the leaves 65 constituting the second energy absorption layer 66 Since the plate width is formed smaller than the plate widths of the leaves 63, 67 constituting the first and third energy absorbing layers 64, 68, the target 4 has a large change in the shape (depth) in the width direction. Adjusts the range of the irradiation beam 1 using a leaf 65 with a small division width, that is, a small plate width, and divides the target 4 in the part where the shape (depth) change in the width direction is small. The range of the irradiation beam 1 can be adjusted by using the wide leaves, that is, the leaves 63 and 67 having a large plate width, so that the range of the irradiation beam 1 can be more closely matched to the target 4. it can.
[0077] また、リーフ 63, 63間の ϋぎ目を、リーフ 67, 67間の ϋぎ目と相対的にずらし たことで、照射ビーム 1が万が一各リーフ 67, 67間および各リーフ 65, 65間の隙 間を通過したとしても、この通過した照射ビーム 1がリーフ 63に当たることにより、照 射ビーム 1がリーフ 63を突き抜けてしまう現象を回避でき、標的 4に対する照射ビー ム [0077] Also, by shifting the gap between the leaves 63, 63 relatively to the gap between the leaves 67, 67, the irradiation beam 1 is unlikely to be emitted between the leaves 67, 67 and between the leaves 65, 67. Even if the radiation beam 1 passes through the gap between the target beams 4, the irradiation beam 1 hits the leaf 63, so that the phenomenon that the irradiation beam 1 penetrates the leaf 63 can be avoided, and the irradiation beam on the target 4 can be avoided.
1の照射領域を標的 4の形状に近いなだらかな形状にすることができる。  The irradiation area of 1 can be made a gentle shape close to the shape of the target 4.
[0078] (第 7の実施の形態) (Seventh Embodiment)
次に、図 13は本発明の第 7の実施の形態を示している。なお、本実施の形態では 、前記第 1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略す るちのとする。  Next, FIG. 13 shows a seventh embodiment of the present invention. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0079] 図 13は、本実施の形態に係る重粒子線がん治療装置の照射部分と患者を示す部 分拡大断面図である。図 13に示すように、重粒子線がん治療装置 81は、多葉コリメ ータ装置 8、飛程補償装置 82及びベッド 2を有している。また、飛程補償装置 82は、 X方向に沿って配置された複数のリーフ 83, 83,…からなる第 1のエネルギー吸収 層 84と、 Υ方向に沿って配置された複数のリーフ 85, 85,…からなる第 2のエネルギ 一吸収層 86と、 X方向に沿って配置された複数のリーフ 87, 87,…からなる第 3のェ ネルギー吸収層 88と、 Υ方向に沿って配置された複数のリーフ 89, 89,…からなる 第 4のエネルギー吸収層 90とが照射ビーム 1の経路に沿って順次積層されている。  FIG. 13 is a partially enlarged cross-sectional view showing the irradiated part and the patient of the heavy ion beam cancer treatment apparatus according to the present embodiment. As shown in FIG. 13, the heavy ion beam cancer treatment apparatus 81 includes a multilobal collimator apparatus 8, a range compensator 82, and a bed 2. The range compensator 82 includes a first energy absorbing layer 84 composed of a plurality of leaves 83, 83,... Arranged along the X direction, and a plurality of leaves 85, 85 arranged along the Υ direction. , A second energy absorbing layer 86 composed of a plurality of leaves 87, 87, arranged in the X direction, and a third energy absorbing layer 88 composed of a plurality of leaves 87, 87, arranged in the X direction. A fourth energy absorbing layer 90 composed of a plurality of leaves 89, 89,... Is sequentially stacked along the path of the irradiation beam 1.
[0080] また、リーフ 83, 85, 87, 89を、それぞれァクチユエータ 91, 92等を用いて別個独 立に移動させることにより、第 1,第 2,第 3,第 4のエネルギー吸収層 84, 86, 88, 9 0には、開口部 93, 94, 95, 96力形成される。また、これらエネノレギー吸収層 84, 8 6, 88, 90及びァクチユエータ 91, 92等力もなる飛程補償装置 82は、多葉コリメータ 装置 8よりも照射ビーム 1の上流側に配置されている。 [0080] Further, the leaves 83, 85, 87, and 89 are individually and independently moved by using actuators 91, 92, and the like, so that the first, second, third, and fourth energy absorbing layers 84, 89 can be moved. At 86, 88, 90, openings 93, 94, 95, 96 are formed. In addition, the range compensator 82, which has the same energy as the energy absorbing layers 84, 86, 88, 90 and the actuators 91, 92, is a multi-leaf collimator. It is located upstream of the irradiation beam 1 from the device 8.
[0081] このように構成される本実施の形態では、照射ビーム 1の照射中において、リーフ 8 3, 85, 87, 89の一部又は全部を予め用意したプログラム等に基づき照射ビーム 1 の経路に向けて進退させることにより、飛程補償装置 82を通過する特定範囲の照射 ビーム 1の照射量を照射ビーム 1の照射中に変化させることもできる。これにより、標 的 4に対して照射ビーム 1の飛程をより合致させることが可能となる。例えば照射ビー ム 1の飛程の底部形状が図 13において階段状となっているのを、なだらかな連続曲 線状とすることもできる。また、リーフ 83, 85, 87, 89の層数 (枚数)の不足を補って 照射ビーム 1の飛程の微調整を行うことができる。また、飛程補償装置 82を患者 3毎 に交換する必要がなくなるため、飛程補償装置 82を従来技術のように多葉コリメータ 装置 8よりも照射ビーム 1の下流側、つまり交換し易い箇所に配置する必要がなくなり 、飛程補償装置 82のレイアウト設計等を容易に行うことができる。  In the present embodiment configured as described above, during irradiation of the irradiation beam 1, some or all of the leaves 83, 85, 87, and 89 are routed through the irradiation beam 1 based on a previously prepared program or the like. The irradiation amount of the irradiation beam 1 in a specific range passing through the range compensator 82 can be changed during the irradiation of the irradiation beam 1 by moving back and forth. This makes it possible to make the range of the irradiation beam 1 more consistent with the target 4. For example, the shape of the bottom of the range of the irradiation beam 1 having a stepped shape in FIG. 13 may be changed to a gentle continuous curved shape. Further, the range of the irradiation beam 1 can be finely adjusted by compensating for the shortage of the number of layers (the number of layers) of the leaves 83, 85, 87, and 89. Further, since it is not necessary to replace the range compensating device 82 for each patient 3, the range compensating device 82 is located on the downstream side of the irradiation beam 1 from the multi-leaf collimator device 8 as in the prior art, that is, at a location where replacement is easy. This eliminates the necessity of arrangement, and facilitates layout design and the like of the range compensator 82.
[0082] (第 8の実施の形態)  (Eighth Embodiment)
次に、図 14は、本発明の第 8の実施の形態を示している。なお、本実施の形態で は、前記第 1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略 するものとする。  Next, FIG. 14 shows an eighth embodiment of the present invention. Note that, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
[0083] 図 14は、本実施の形態に係る重粒子線がん治療装置の照射部分と患者を示す部 分拡大断面図である。図 14に示すように、重粒子線がん治療装置 101は、第 2の実 施の形態とほぼ同様に、多葉コリメータ装置 8、飛程補償装置 102及びベッド 2を有し ている。そして、飛程補償装置 102は、複数のリーフ 103, 103,…からなる第 1のェ ネルギー吸収層 104と、複数のリーフ 105, 105,…(いずれも 2個のみ図示)からな る第 2のエネルギー吸収層 106とが照射ビーム 1の経路に沿って積層されている。ま た、リーフ 103, 105をそれぞれァクチユエータ 107, 108によって別個独立に移動さ せることにより、第 1,第 2のエネノレギー吸収層 104, 106には、開口咅 109, 110力 S 形成される。  FIG. 14 is a partially enlarged cross-sectional view showing the irradiated part and the patient of the heavy ion beam cancer treatment apparatus according to the present embodiment. As shown in FIG. 14, the heavy ion beam cancer treatment apparatus 101 has a multilobal collimator apparatus 8, a range compensator 102, and a bed 2, almost in the same manner as in the second embodiment. The range compensating device 102 includes a first energy absorbing layer 104 including a plurality of leaves 103, 103,... And a second energy absorbing layer 104 including a plurality of leaves 105, 105,. And the energy absorbing layer 106 are laminated along the path of the irradiation beam 1. In addition, by moving the leaves 103 and 105 separately and independently by the actuators 107 and 108, openings 咅 109 and 110 are formed in the first and second energy absorbing layers 104 and 106.
[0084] しかし、本実施の形態に用いる飛程補償装置 102は、開口部 109, 110側に位置 するリーフ 103, 105の先端側が斜めに傾斜したテーパ面 103A, 105Aとして形成 されて 、る点で、第 2の実施の形態のものとは異なって 、る。 [0085] このように構成される本実施の形態では、リーフ 103, 105の先端側をテーパ面 10 3A, 105Aとして形成したので、エネルギー吸収層 104, 106の配設数 (層数)を少 なくしても、テーパ面 103A, 105Aにより照射ビーム 1の飛程を、標的 4の形状に合 致したより滑らかな形状に設定することができ、飛程補償装置 102の性能をより一層 高めることができる。 However, the range compensating device 102 used in the present embodiment is configured such that the distal ends of the leaves 103, 105 located on the openings 109, 110 are formed as tapered surfaces 103A, 105A that are obliquely inclined. Therefore, the second embodiment is different from the second embodiment. [0085] In the present embodiment configured as above, the distal ends of leaves 103 and 105 are formed as tapered surfaces 103A and 105A, so that the number of energy absorbing layers 104 and 106 (the number of layers) is reduced. Even if the distance is eliminated, the range of the irradiation beam 1 can be set to a smoother shape matching the shape of the target 4 by the tapered surfaces 103A and 105A, and the performance of the range compensator 102 can be further enhanced. .
[0086] なお、第 1の実施の形態では、飛程補償装置 12を重粒子線がん治療装置 11に固 定して取り付ける構成とした場合を例に挙げて説明したが、本発明はこれに限ること なく。例えば飛程補償装置 12を図 1中に示す矢示 Aの如く回動させる機構を設けて もよぐこの場合は、標的 4に対する照射ビーム 1の飛程をより一層細力べ調整すること ができる。このことは第 2—第 8の実施の形態についても同様である。  [0086] In the first embodiment, the case where the range compensating device 12 is fixedly attached to the heavy ion beam cancer treatment device 11 has been described as an example, but the present invention is not limited to this. Without limitation. For example, a mechanism for rotating the range compensator 12 as shown by arrow A in FIG. 1 may be provided.In this case, the range of the irradiation beam 1 with respect to the target 4 can be further finely adjusted. it can. This is the same for the second to eighth embodiments.
[0087] また、第 1の実施の形態では、飛程補償装置 12を多葉コリメータ装置 8よりも照射ビ ーム 1の下流側に配設する構成とした場合を例に挙げて説明したが、本発明はこれ に限ることなぐ例えば第 7の実施の形態と同様に、飛程補償装置 12を多葉コリメ一 タ装置 8よりも照射ビームの上流側に配設してもよい。このことは、第 2—第 6,第 8の 実施の形態についても同様である。  In the first embodiment, an example has been described in which the range compensating device 12 is arranged on the downstream side of the irradiation beam 1 with respect to the multi-leaf collimator device 8. However, the present invention is not limited to this. For example, similarly to the seventh embodiment, the range compensator 12 may be provided on the upstream side of the irradiation beam with respect to the multi-leaf collimator 8. This is the same for the second to sixth and eighth embodiments.
[0088] また、第 7の実施の形態では、 4個のエネルギー吸収層 84, 86, 88, 90を積層して 飛程補償装置 82を構成する場合を例に挙げて説明したが、例えば 5個以上積層し て飛程補償装置 82を構成してもよ ヽ。  In the seventh embodiment, the case where the range compensating device 82 is configured by stacking the four energy absorbing layers 84, 86, 88, and 90 has been described as an example. The range compensator 82 may be configured by laminating more than one.
[0089] さらに、第 1の実施の形態では、ァクチユエータ 15としてラックとピ-オンとモータを 用いる場合を例に挙げて説明したが、本発明はこれに限ることなぐ例えば X方向又 は Y方向に伸縮可能なシリンダ、リニアモータ等によってァクチユエータを構成しても よい。また、ベルトとプーリとモータを組み合わせて用いてもよいし、スクリューとねじと モータを組み合わせて用いてもよい。また、各リーフの位置は、リーフに直接、または 前記シリンダーやモータにエンコーダを取り付け、エンコーダから発するパルスをカウ ントすることにより検出することができる。図示していない、リーフの移動を支持するガ イド機構として、ボールリ-アベァリングを用いてもよいし、リーフを摺動可能に支持 するガイド部材等を用いてもよいし、特に限定するものでない。このことは、第 2—第 8 の実施の形態についても同様である。 [0090] さらに、第 1の実施の形態では、図 4に示すように、第 1のエネルギー吸収層 24と第 2のエネルギー吸収層 26とを互いに衝合 (面接触)させる構成とした場合を例に挙げ て説明したが、本発明はこれに限ることなぐ例えば、第 1のエネルギ吸収層 24と第 2 のエネルギ吸収層 26を照射ビーム 1の照射方向に対し間隔をお 、て配設する構成 としてもよ 、。このことは第 2—第 8の実施の形態にっ ヽても同様である。 Further, in the first embodiment, the case where a rack, a pin and a motor are used as the actuator 15 has been described as an example, but the present invention is not limited to this, for example, in the X direction or the Y direction. The actuator may be configured by a cylinder, a linear motor, etc. which can be extended and retracted. Further, a belt, a pulley, and a motor may be used in combination, or a screw, a screw, and a motor may be used in combination. Further, the position of each leaf can be detected directly on the leaf or by attaching an encoder to the cylinder or motor and counting the pulses generated from the encoder. As a guide mechanism (not shown) for supporting the movement of the leaf, a ball re-avering may be used, a guide member for supporting the leaf slidably or the like may be used, and there is no particular limitation. This is the same for the second to eighth embodiments. Further, in the first embodiment, as shown in FIG. 4, a case in which the first energy absorbing layer 24 and the second energy absorbing layer 26 are brought into abutment (surface contact) with each other is described. Although described as an example, the present invention is not limited to this. For example, the first energy absorbing layer 24 and the second energy absorbing layer 26 are arranged at intervals in the irradiation direction of the irradiation beam 1. The configuration is also good. This is the same also in the second to eighth embodiments.
[0091] 第 1の実施の形態では、図 6に示すように、互いに隣接するリーフ 23, 23間、リーフ 25, 25間、リーフ 23, 25間に隙間力でさな!/、ように各リーフ 23, 25を互!ヽに密着し て配設する構成とした場合を例に挙げて説明したが、本発明はこれに限ることなぐ 例えば、隣接するリーフ 23, 23間、リーフ 25, 25間、リーフ 23, 25間のそれぞれの 一方の対向面 (接触面)〖こ X軸方向に沿って凹溝を設け、他方の対向面 (接触面)に 凸部を設け、この凸部を前記凹溝に摺動可能に嵌合する構成としてもよい。このこと は第 2—第 8の実施の形態についても同様である。  In the first embodiment, as shown in FIG. 6, each of the leaves 23, 23, the leaves 25, 25, and the leaves 23, 25, which are adjacent to each other, have a gap force between them. The case where the leaves 23 and 25 are arranged in close contact with each other has been described as an example, but the present invention is not limited to this. For example, between the adjacent leaves 23 and 23, the leaves 25 and 25 , One of the opposing surfaces (contact surfaces) between the leaves 23 and 25 is provided with a concave groove along the X-axis direction, and the other opposing surface (contact surface) is provided with a convex portion. It is good also as a structure slidably fitted in a concave groove. This is the same for the second to eighth embodiments.
[0092] また、第 3の実施の形態では、リーフ 33の進退方向とリーフ 35の進退方向とが互い に 90度直交するように第 1のエネルギー吸収層 34と第 2のエネルギー吸収層 36を 積層する構成とした場合を例に挙げたが、例えばリーフ 33の進退方向とリーフ 35の 進退方向とを 90度以外の角度 (例えば 60度、 30度)で交差させる構成としてもよい。  [0092] In the third embodiment, the first energy absorbing layer 34 and the second energy absorbing layer 36 are arranged such that the direction of movement of the leaf 33 and the direction of movement of the leaf 35 are orthogonal to each other by 90 degrees. Although the configuration in which the layers are stacked is described as an example, the configuration may be such that, for example, the reciprocating direction of the leaf 33 and the reciprocating direction of the leaf 35 intersect at an angle other than 90 degrees (eg, 60 degrees, 30 degrees).
[0093] さらに、第 1の実施の形態では、エネエルギー吸収体として複数枚のリーフ 13を用 いる場合を例に挙げて説明したが、本発明はこれに限ることなぐ例えば複数枚のリ ーフ 13を一体として構成し、 1枚のリーフとして用いることもできる。このことは、第 2— 第 8の実施の形態についても同様である。  [0093] Further, in the first embodiment, the case where a plurality of leaves 13 are used as an energy absorber has been described as an example. However, the present invention is not limited to this. For example, a plurality of leaves 13 may be used. 13 can be configured as one and used as one leaf. This is the same for the second to eighth embodiments.
[0094] 第 2の実施の形態では、全てのエネルギー吸収層 24, 26を用いて開口部 29, 30 を形成する場合を例に挙げて説明したが、本発明はこれに限ることなぐ例えば、照 射条件に応じて必要なエネルギー吸収層のみ移動させて開口部 29または開口部 3 0を形成してもよい。このことは第 3—第 8の実施の形態についても同様である。  In the second embodiment, the case where the openings 29 and 30 are formed using all the energy absorbing layers 24 and 26 has been described as an example. However, the present invention is not limited to this. The opening 29 or the opening 30 may be formed by moving only the necessary energy absorbing layer according to the irradiation conditions. This is the same for the third to eighth embodiments.
[0095] さらに、第 1の実施の形態では、エネルギー吸収層 14の各列毎に 2枚のリーフ 13, 13を並べて配置する構成とした場合を例に挙げて説明したが、本発明はこれに限る ことなぐ例えばエネルギー吸収層 14の各列毎に 1枚のリーフを設ける構成としもよ いし、 3枚以上のリーフを設ける構成としてもよい。このことは、第 2—第 8の実施の形 態についても同様である。 [0095] Further, in the first embodiment, the case where two leaves 13, 13 are arranged side by side for each row of the energy absorbing layer 14 has been described as an example. For example, a configuration in which one leaf is provided for each row of the energy absorbing layer 14 or a configuration in which three or more leaves are provided may be employed. This is the second to eighth form of implementation. The situation is the same.
[0096] また、第 1の実施の形態では、リーフ 13を 16列並べてエネルギー吸収層 14を構成 する場合を例に挙げて説明したが、本発明はこれに限ることなぐ例えばリーフを 17 列以上配置してもよいし、 15列以下でもよい。このことは、第 2—第 8の実施の形態に ついても同様である。  In the first embodiment, the case where the energy absorbing layer 14 is configured by arranging the leaves 13 in 16 rows has been described as an example. However, the present invention is not limited to this. They may be arranged or 15 rows or less. This is the same for the second to eighth embodiments.
図面の簡単な説明  Brief Description of Drawings
[0097] [図 1]本発明の第 1の実施の形態に係る重粒子線がん治療装置の照射部分と患者を 示す部分拡大断面図である。  FIG. 1 is a partially enlarged cross-sectional view showing an irradiation part and a patient of a heavy ion beam cancer treatment apparatus according to a first embodiment of the present invention.
[図 2]飛程補償装置を図 1中の矢示 Π-Π方向からみた正面図である。  FIG. 2 is a front view of the range compensator as viewed from the directions indicated by arrows in FIG. 1;
[図 3]図 2中のリーフを拡大して示す部分斜視図である。  FIG. 3 is a partial perspective view showing a leaf in FIG. 2 in an enlarged manner.
[図 4]本発明の第 2の実施の形態に係る重粒子線がん治療装置の照射部分と患者を 示す部分拡大断面図である。  FIG. 4 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus according to the second embodiment of the present invention.
[図 5]飛程補償装置を図 4中の矢示 V— V方向からみた正面図である。  FIG. 5 is a front view of the range compensator as viewed from the direction indicated by arrows VV in FIG. 4.
[図 6]図 5中のリーフを拡大して示す部分斜視図である。  FIG. 6 is a partial perspective view showing a leaf in FIG. 5 in an enlarged manner.
[図 7]本発明の第 3の実施の形態に係る重粒子線がん治療装置の照射部分と患者を 示す部分拡大断面図である。  FIG. 7 is a partially enlarged cross-sectional view showing an irradiated part and a patient of a heavy ion beam cancer treatment apparatus according to a third embodiment of the present invention.
[図 8]飛程補償装置を図 7中の矢示 VIII— VIII方向からみた背面図である。  FIG. 8 is a rear view of the range compensator as viewed in the direction indicated by arrows VIII-VIII in FIG. 7.
[図 9]本発明の第 4の実施の形態に係る重粒子線がん治療装置の照射部分と患者を 示す部分拡大断面図である。  FIG. 9 is a partially enlarged cross-sectional view showing an irradiation part and a patient of a heavy ion beam cancer treatment apparatus according to a fourth embodiment of the present invention.
[図 10]本発明の第 5の実施の形態に係る重粒子線がん治療装置の照射部分と患者 を示す部分拡大断面図である。  FIG. 10 is a partially enlarged cross-sectional view showing an irradiated part and a patient of a heavy ion beam cancer treatment apparatus according to a fifth embodiment of the present invention.
[図 11]本発明の第 6の実施の形態に係る重粒子線がん治療装置の照射部分と患者 を示す部分拡大断面図である。  FIG. 11 is a partially enlarged cross-sectional view showing an irradiated portion and a patient of a heavy ion beam cancer treatment apparatus according to a sixth embodiment of the present invention.
[図 12]図 11中のリーフを拡大して示す部分斜視図である。  FIG. 12 is a partial perspective view showing a leaf in FIG. 11 in an enlarged manner.
[図 13]本発明の第 7の実施の形態に係る重粒子線がん治療装置の照射部分と患者 を示す部分拡大断面図である  FIG. 13 is a partially enlarged cross-sectional view showing an irradiated part and a patient of a heavy ion beam cancer treatment apparatus according to a seventh embodiment of the present invention.
[図 14]本発明の第 8の実施の形態に係る重粒子線がん治療装置の照射部分と患者 を示す部分拡大断面図である。 [図 15]従来技術による重粒子線がん治療装置の全体構成を示す概略図である。 圆 16]図 15中の重粒子線がん治療装置の照射部分と患者を示す部分拡大断面図 である。 FIG. 14 is a partially enlarged cross-sectional view showing an irradiated part and a patient of a heavy ion beam cancer treatment apparatus according to an eighth embodiment of the present invention. FIG. 15 is a schematic diagram showing an entire configuration of a conventional heavy ion beam cancer treatment apparatus. [16] FIG. 16 is a partially enlarged cross-sectional view showing an irradiation part and a patient of the heavy ion beam cancer treatment apparatus in FIG.
符号の説明 Explanation of symbols
1 照射ビーム (放射線)  1 Irradiation beam (radiation)
3  Three
4, A' 標的  4, A 'target
11, 21, 31, 41, 51, 61, 81 101 重粒子線がん治療装置 (重荷電粒子線照射  11, 21, 31, 41, 51, 61, 81 101 Heavy ion beam cancer therapy system (Heavy charged particle beam irradiation
12, 22, 32, 42, 52, 62, 82 102 飛程補償装置 12, 22, 32, 42, 52, 62, 82 102 Range compensator
13, 23, 25, 33, 35, 43, 45 53, 55, 63, 65, 67, 83, 85, 87, 89, 103 13, 23, 25, 33, 35, 43, 45 53, 55, 63, 65, 67, 83, 85, 87, 89, 103
5 リーフ(エネルギー吸収体) 5 Leaf (energy absorber)
14 エネルギー吸収層  14 Energy absorption layer
15, 27, 28, 37, 38, 47, 48, 57, 58, 91, 92, 107, 108 ァクチユエータ 24, 34, 44, 54, 64, 84, 104 第 1のエネルギー吸収層  15, 27, 28, 37, 38, 47, 48, 57, 58, 91, 92, 107, 108 Actuator 24, 34, 44, 54, 64, 84, 104 First energy absorption layer
26, 36, 46, 56, 66, 86, 106 第 2のエネノレギー吸収層  26, 36, 46, 56, 66, 86, 106 Second energy absorbing layer
68, 88 第 3のエネルギー吸収層  68, 88 Third energy absorption layer
90 第 4のエネルギー吸収層  90 Fourth energy absorption layer

Claims

請求の範囲 The scope of the claims
[1] 放射線源から標的に向けて照射される放射線の経路の途中に設けられ、前記放射 線のェ  [1] The radiation source is provided in the middle of the path of radiation irradiated from the radiation source toward the target, and
ネルギーを吸収して前記標的に対する放射線の飛程を調整する飛程補償装置にお いて、  In a range compensator for absorbing energy and adjusting the range of radiation to the target,
前記放射線のエネルギーを吸収する複数のエネルギー吸収体と、前記各エネルギ 一吸収  A plurality of energy absorbers for absorbing the energy of the radiation;
体を前記放射線の経路に向けて別個独立に進退可能に移動させるァクチユエータと を備え  An actuator for moving the body separately and independently toward the path of the radiation.
ることを特徴とする飛程補償装置。  A range compensator characterized in that:
[2] 前記エネルギー吸収体は、細長い板状体力 なるリーフであり、このリーフを板状に 複  [2] The energy absorber is a leaf having an elongated plate-like physical strength.
数列並べて配置することによりエネルギー吸収層を構成することを特徴とする請求項 1に  The energy absorbing layer is constituted by arranging several rows in a row,
記載の飛程補償装置。  The range compensator as described.
[3] 前記エネルギー吸収層を、前記放射線の経路に沿って複数配置したことを特徴と 一 3る  [3] A plurality of the energy absorbing layers are arranged along the path of the radiation.
求項 2に記載の飛程補償装置。  The range compensator according to claim 2.
[4] 前記複数のエネルギー吸収層のうち少なくともいずれ力 1つのエネルギー吸収層 のリー [4] At least any one of the plurality of energy absorbing layers is a lead of one energy absorbing layer.
フを、他のエネルギー吸収層のリーフとは異なる方向に移動させることを特徴とする nf 求  Moving the blade in a direction different from the leaves of the other energy absorbing layers.
項 3に記載の飛程補償装置。  Item 3. The range compensator according to item 3.
[5] 前記複数のエネルギー吸収層のうち少なくともいずれ力 1つのエネルギー吸収層 のリー [5] At least any one of the plurality of energy absorbing layers is a lead of one energy absorbing layer.
フを、他のエネルギー吸収層のリーフとは異なる板厚をもって形成したことを特徴とす る  Is formed with a thickness different from that of the leaves of the other energy absorption layers.
請求項 3または請求項 4に記載の飛程補償装置。 A range compensator according to claim 3 or claim 4.
[6] 前記複数のエネルギー吸収層のうち少なくともいずれ力 1つのエネルギー吸収層 のリー [6] At least any one of the plurality of energy absorbing layers is a lead of one energy absorbing layer.
フを、他のエネルギー吸収層のリーフとは異なるエネルギー吸収率を有する材料をも つて  With a material that has a different energy absorption rate than the leaves of the other energy absorbing layers.
形成したことを特徴とする請求項 3な ヽし請求項 5の ヽずれか 1項に記載の飛程補償 装置  The range compensating device according to any one of claims 3 to 5, wherein the range compensating device is formed.
[7] 前記複数のエネルギー吸収層のうち少なくともいずれ力 1つのエネルギー吸収層 のリー [7] At least any one of the plurality of energy absorbing layers is a lead of one energy absorbing layer.
フを、他のエネルギー吸収層のリーフとは異なる板幅をもって形成したことを特徴とす る  Is formed with a plate width different from that of the leaves of the other energy absorption layers.
請求項 3な 、し請求項 6の 、ずれか 1項に記載の飛程補償装置。  The range compensating device according to claim 1 or 2, wherein the range compensating device according to claim 6.
[8] 前記エネルギー吸収層を、各列毎に一対のリーフが長さ方向で対向して互いに離 間、接 [8] In the energy absorbing layer, a pair of leaves are spaced apart from each other,
近するように構成したことを特徴とする請求項 2な ヽし請求項 7の ヽずれか 1項に記載 の  Claim 2 or Claim 7 characterized in that they are configured to be close to each other.
飛程補償装置。  Range compensator.
[9] 前記リーフには、斜めに傾斜したテーパ面を形成したことを特徴とする請求項 2な いし  [9] The leaf according to claim 2, wherein the leaf is formed with a tapered surface that is obliquely inclined.
請求項 8の ヽずれか 1項に記載の飛程補償装置。  9. The range compensator according to claim 1 or claim 1.
[10] 前記放射線の照射中に前記エネルギー吸収体を進退させる構成としたことを特徴 とする [10] The energy absorber is configured to advance and retreat during the irradiation of the radiation.
請求項 1な 、し請求項 9の 、ずれか 1項に記載の飛程補償装置。  The range compensator according to claim 1, wherein the range compensator is the shift compensator according to claim 1.
[11] 請求項 1ないし請求項 10のいずれか 1項に記載の飛程補償装置を備えたことを特 徴と [11] A feature is provided that the range compensating device according to any one of claims 1 to 10 is provided.
する重荷電粒子線照射装置。  Heavy particle beam irradiation equipment.
PCT/JP2004/009318 2003-07-01 2004-07-01 Range compensator and heavy charged particle beam irradiation system WO2005004168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-270039 2003-07-01
JP2003270039A JP2005024475A (en) 2003-07-01 2003-07-01 Range correction unit and heavy charged particle beam radiation apparatus

Publications (1)

Publication Number Publication Date
WO2005004168A1 true WO2005004168A1 (en) 2005-01-13

Family

ID=33562598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009318 WO2005004168A1 (en) 2003-07-01 2004-07-01 Range compensator and heavy charged particle beam irradiation system

Country Status (2)

Country Link
JP (1) JP2005024475A (en)
WO (1) WO2005004168A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106532A1 (en) * 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Heavy ion radiation therapy system with stair-step modulation
WO2008106492A1 (en) * 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Scanning aperture ion beam modulator
WO2008106500A1 (en) * 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Fan beam modulator for ion beams providing continuous intensity modulation
US7714309B2 (en) 2007-02-27 2010-05-11 Wisconsin Alumni Research Foundation Phantom for ion range detection
US7763873B2 (en) 2007-02-27 2010-07-27 Wisconsin Alumni Research Foundation Ion radiation therapy system with variable beam resolution
US7856082B2 (en) 2007-02-27 2010-12-21 Wisconsin Alumni Research Foundation System and method for optimization of a radiation therapy plan in the presence of motion
US7977657B2 (en) 2007-02-27 2011-07-12 Wisconsin Alumni Research Foundation Ion radiation therapy system with distal gradient tracking
US8076657B2 (en) 2007-02-27 2011-12-13 Wisconsin Alumni Research Foundation Ion radiation therapy system having magnetic fan beam former
US8093568B2 (en) 2007-02-27 2012-01-10 Wisconsin Alumni Research Foundation Ion radiation therapy system with rocking gantry motion
US8129701B2 (en) 2007-02-27 2012-03-06 Al-Sadah Jihad H Areal modulator for intensity modulated radiation therapy
EP2528064A1 (en) * 2011-05-23 2012-11-28 GSI Helmholtzzentrum für Schwerionenforschung GmbH Multiple range modulators
US20170182336A1 (en) * 2013-03-15 2017-06-29 Varian Medical Systems, Inc. Energy degrader for radiation therapy system
CN108152853A (en) * 2018-03-08 2018-06-12 北京聚合信机电有限公司 Counting tube energy compensation system
CN112834536A (en) * 2021-01-05 2021-05-25 中国原子能科学研究院 Device and method for adjusting particle range and measuring particle Bragg curve

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822239B (en) * 2005-02-17 2010-06-23 Ge医疗系统环球技术有限公司 Filter and X-ray imaging device
US7957507B2 (en) * 2005-02-28 2011-06-07 Cadman Patrick F Method and apparatus for modulating a radiation beam
JP4882456B2 (en) * 2006-03-31 2012-02-22 株式会社Ihi Ion implanter
JP5211328B2 (en) * 2011-02-02 2013-06-12 日新イオン機器株式会社 Ion implantation method and ion implantation apparatus
EP2962309B1 (en) 2013-02-26 2022-02-16 Accuray, Inc. Electromagnetically actuated multi-leaf collimator
US9776017B2 (en) * 2013-07-05 2017-10-03 University Of Iowa Research Foundation Method and system for dynamically-trimmed spot scanning for ion therapy
KR101739648B1 (en) 2015-09-07 2017-05-24 서울대학교병원 Multi-leaf collimator
JP7071715B2 (en) * 2019-02-08 2022-05-19 Jfeエンジニアリング株式会社 Electron beam sterilization method and electron beam sterilizer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143479U (en) * 1974-05-11 1975-11-27
JP2000214298A (en) * 1999-01-20 2000-08-04 Mitsubishi Electric Corp Charged particle beam irradiator, energy compensator used for such device, and method for irradiating object with charged particle beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50143479U (en) * 1974-05-11 1975-11-27
JP2000214298A (en) * 1999-01-20 2000-08-04 Mitsubishi Electric Corp Charged particle beam irradiator, energy compensator used for such device, and method for irradiating object with charged particle beam

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129701B2 (en) 2007-02-27 2012-03-06 Al-Sadah Jihad H Areal modulator for intensity modulated radiation therapy
WO2008106532A1 (en) * 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Heavy ion radiation therapy system with stair-step modulation
WO2008106500A1 (en) * 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Fan beam modulator for ion beams providing continuous intensity modulation
US7714309B2 (en) 2007-02-27 2010-05-11 Wisconsin Alumni Research Foundation Phantom for ion range detection
US7763873B2 (en) 2007-02-27 2010-07-27 Wisconsin Alumni Research Foundation Ion radiation therapy system with variable beam resolution
US7856082B2 (en) 2007-02-27 2010-12-21 Wisconsin Alumni Research Foundation System and method for optimization of a radiation therapy plan in the presence of motion
US7977657B2 (en) 2007-02-27 2011-07-12 Wisconsin Alumni Research Foundation Ion radiation therapy system with distal gradient tracking
US9006677B2 (en) 2007-02-27 2015-04-14 Wisconsin Alumni Research Foundation Fan beam modulator for ion beams providing continuous intensity modulation
US8076657B2 (en) 2007-02-27 2011-12-13 Wisconsin Alumni Research Foundation Ion radiation therapy system having magnetic fan beam former
US8093568B2 (en) 2007-02-27 2012-01-10 Wisconsin Alumni Research Foundation Ion radiation therapy system with rocking gantry motion
US7977648B2 (en) 2007-02-27 2011-07-12 Wisconsin Alumni Research Foundation Scanning aperture ion beam modulator
US8154001B2 (en) 2007-02-27 2012-04-10 Wisconsin Alumni Research Foundation Ion radiation therapy system with variable beam resolution
US8269196B2 (en) 2007-02-27 2012-09-18 Wisconsin Alumni Research Foundation Heavy ion radiation therapy system with stair-step modulation
WO2008106492A1 (en) * 2007-02-27 2008-09-04 Wisconsin Alumni Research Foundation Scanning aperture ion beam modulator
EP2528064A1 (en) * 2011-05-23 2012-11-28 GSI Helmholtzzentrum für Schwerionenforschung GmbH Multiple range modulators
CN102793978A (en) * 2011-05-23 2012-11-28 Gsi重离子研究亥姆霍茨中心有限公司 Multi-ply effective depth modulator
US20170182336A1 (en) * 2013-03-15 2017-06-29 Varian Medical Systems, Inc. Energy degrader for radiation therapy system
US10926103B2 (en) * 2013-03-15 2021-02-23 Varian Medical Systems, Inc. Energy degrader having layer structure parallel to the incident beam direction for radiation therapy system
CN108152853A (en) * 2018-03-08 2018-06-12 北京聚合信机电有限公司 Counting tube energy compensation system
CN112834536A (en) * 2021-01-05 2021-05-25 中国原子能科学研究院 Device and method for adjusting particle range and measuring particle Bragg curve

Also Published As

Publication number Publication date
JP2005024475A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
WO2005004168A1 (en) Range compensator and heavy charged particle beam irradiation system
EP2114529B1 (en) Heavy ion radiation therapy system with stair-step modulation
JP3532739B2 (en) Radiation field forming member fixing device
EP2305349B1 (en) A programmable particle scatterer for radiation therapy beam formation
WO2008106484A1 (en) Ion radiation therapy system with rocking gantry motion
US7558378B2 (en) Multileaf collimator
TWI418378B (en) Particle beam irradiation apparatus and particle beam therapy system
JP5107113B2 (en) Charged particle beam irradiation equipment
US8822965B2 (en) Charged particle beam irradiation apparatus
EP1241683A2 (en) Rotatable multi-element beam shaping device
WO2008076035A1 (en) Collimator
US20100264327A1 (en) Arrangement for expanding the particle energy distribution of a particle beam
WO2015173327A1 (en) Collimation apparatus for radiotherapy
US8076657B2 (en) Ion radiation therapy system having magnetic fan beam former
JP2000214298A (en) Charged particle beam irradiator, energy compensator used for such device, and method for irradiating object with charged particle beam
CN110755762A (en) Multi-blade collimator for therapeutic head of ray accelerator and tumor radiotherapy equipment
JP2002186676A (en) Collimator and radiotherapy device using the same
JP4203208B2 (en) Radiation energy distribution adjustment mechanism and radiation irradiation apparatus using the same
US10418141B2 (en) Charged particle beam treatment apparatus
KR20160059534A (en) Multi Dividing Multi-leaf Collimator of Radiotherpy System
CN111714791B (en) Radiotherapy device
Ekinci et al. Recoil analysis for heavy ion beams
KR20100074566A (en) Multi-leaf collimator and apparatus for radiation therapy
JP6636385B2 (en) Charged particle beam therapy system
JP6755208B2 (en) Charged particle beam therapy device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase