WO2005001495A1 - Magnetization observing method and magnetization observing instrument - Google Patents

Magnetization observing method and magnetization observing instrument Download PDF

Info

Publication number
WO2005001495A1
WO2005001495A1 PCT/JP2003/008096 JP0308096W WO2005001495A1 WO 2005001495 A1 WO2005001495 A1 WO 2005001495A1 JP 0308096 W JP0308096 W JP 0308096W WO 2005001495 A1 WO2005001495 A1 WO 2005001495A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
magnetization
field strength
magnetic
value
Prior art date
Application number
PCT/JP2003/008096
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Nagai
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2005503214A priority Critical patent/JP4247230B2/en
Priority to PCT/JP2003/008096 priority patent/WO2005001495A1/en
Publication of WO2005001495A1 publication Critical patent/WO2005001495A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1215Measuring magnetisation; Particular magnetometers therefor

Definitions

  • the present invention relates to a magnetization observation method and a magnetization observation device capable of observing a magnetic domain structure of a magnetic material, and more particularly to an optical system for guiding light to a magnetic material, and detection of a magneto-optical effect based on ⁇ returned from the magnetic material.
  • the present invention relates to a magnetization observation device including a light receiving element that outputs a detection signal for specifying a value.
  • a positive value and a negative value are specified for the magnetic field strength in accordance with a prescribed direction.
  • the field strength shall include a “0 (zero)” value.
  • Kerr microscope The so-called Kerr microscope is widely known.
  • light is irradiated to a magnetic substance in a predetermined polarization state.
  • the light reflected from the magnetic material causes a change in the polarization state, such as rotation of the polarization plane and an increase or decrease in the reflectance, based on the magnetic Kerr effect.
  • the magnetization is detected based on this change in the polarization state.
  • the surface state of the magnetic material affects the polarization state and the reflectance. If the surface condition of the magnetic material is poor, rotation of the polarization plane and an increase or decrease in the reflectivity are caused irrespective of the magnetic Kerr effect. These changes in polarization often exceed the changes in polarization produced by the magnetic Kerr effect. In these cases, the domain structure established in the magnetic material cannot be clearly observed. There is a need to find a way to clearly detect the magnetic domain structure of the magnetic material regardless of the surface condition.
  • Patent Document 1
  • Patent Document 2
  • Patent Document 3 Japanese Unexamined Patent Publication No. Hei 2-0 4 0 5 7 9
  • Patent Document 5
  • the present invention has been made in view of the above situation, and has as its object to provide a magnetization observation method and a magnetization observation apparatus that can greatly contribute to observation of a clear magnetic domain structure regardless of the surface state of a magnetic body. I do.
  • An object of the present invention is to provide a magnetization observation method and a magnetization observation apparatus which are greatly useful for specifying not only the position of a domain wall but also the direction of magnetization in an adjacent magnetic domain.
  • a magnetic field strength H specified for a magnetic body along a predetermined direction Applying a magnetic field in the step, detecting the magnetization of the magnetic material based on the magneto-optical effect, and specifying the first detected value of the magnetic field, and a specified magnetic field strength H. 1st magnetic field strength H! The magnetization of the magnetic material is detected in the magnetic field of And the specified magnetic field strength H.
  • the domain wall moves in the magnetic material as the magnetic field decreases.
  • a magnetic field in the second magnetic field strength H 2 is applied to the magnetic domain wall with decreasing magnetic field in the magnetic body moves.
  • Such movement of the domain wall generates a rotation of magnetization at each measurement point (observation point).
  • the first, second, and third detection values are added by the weighting described above, the magnetization vector remains in the domain wall movement range. Since it is assumed that the first, second, and third detection values include noise equally, the noise is canceled based on the weight. Pure magnetization vectors are specified. On the other hand, in a region outside the domain wall movement range, the magnetization is canceled by the detected value. In this way, only the domain wall is highlighted. Therefore, a clear magnetic domain structure can be visualized regardless of the surface state of the magnetic material.
  • the direction of magnetization is distinguished between the magnetic domains across the domain wall. If the magnetization direction force S is visualized, the magnetization direction in the magnetic domain can be specified relatively easily. For visualization, the pixels may be color-coded based on the result of the aforementioned addition. In realizing the weighting, between the output value t (H Q ), the first detection value s (H 0 ), the second detection value s (H i), and the third detection value s (H 2 ),
  • the first magnetic field strength may be set to a value sufficiently larger than the magnetic field strength that induces the saturation of the magnetization.
  • Second magnetic field strength H Should be set to a value sufficiently smaller than the magnetic field strength that induces magnetization saturation. Yes.
  • first magnetic field strength and the second magnetic field strength H 2 is connected relation of a domain wall between which is established a magnetic body is expected to be reliably maintained.
  • the first magnetic field strength H is set to a value that produces a difference between the first detection value and the second detection value.
  • the second magnetic field strength H 2 is set to a size that produces phase differences between the first detection value and the third detection value. If the movement of the domain wall is generated in this way, the domain wall can be reliably detected.
  • a magnetization observation apparatus such as a force microscope, for example, uses a specified magnetic field strength, a first magnetic field strength smaller than the specified magnetic field strength, and a larger magnetic field strength than the specified field strength.
  • a magnetic field generating mechanism for generating a magnetic field at the second magnetic field strength; an optical system for guiding light to a magnetic material exposed to the magnetic field generated by the magnetic field generating mechanism; and a specified magnetic field strength and first and second magnetic field strengths.
  • a light-receiving element When a magnetic field is applied, a light-receiving element that outputs a detection signal that specifies the corresponding first, second, and third detection values based on the magneto-optical effect of the magnetic body, and a light-receiving element that is connected to the light-receiving element; And a processor that adds the first, second, and third detection values based on the weighting of one.
  • the above-described magnetization observation method may be realized by a software program, for example.
  • Such software programs for example, have a specified magnetic field strength H Obtaining a first detection signal generated based on a magnetic field of a magnetic substance disposed in the magnetic field of the specified magnetic field strength; Obtaining a second detection signal generated based on the magnetization of a magnetic body disposed in a magnetic field having a first magnetic field strength smaller than the specified magnetic field strength H; A step of acquiring a third detection signal generated based on the magnetization of the magnetic body disposed in the larger second magnetic field strength of H 2 in a magnetic field than, 2: - 1: - on the basis of the first weighting, first, The step of adding the detected values of the magnetization specified by the second and third detection signals may be executed by the processor.
  • the software program may be stored in a specific storage device, or may be stored on a portable recording medium such as a compact disc (CD) or a digital video disc (DVD).
  • a step of applying a magnetic field that changes in the first magnetic field strength range smaller than the specified magnetic field strength to the magnetic body, and the magneto-optical effect of the magnetic body during the change of the magnetic field within the first magnetic field strength range Detecting the presence or absence of a change in the magnetic field based on the magnetic field; and applying a magnetic field that changes in a second magnetic field strength range larger than a specified magnetic field strength to the magnetic body. Detecting the presence or absence of a change in magnetization based on the magneto-optical effect of the magnetic substance during a change in the magnetic field within the magnetic field strength range.
  • the magnetic material expands or contracts in the magnetic domain.
  • the domain wall moves.
  • the direction of magnetization rotates at that measurement point. Therefore, if a change in magnetization is detected along with a change in the magnetic field, the position of the domain wall can be specified.
  • the magnetic field strength may be increased in the first and second magnetic field strength ranges.
  • an increase in magnetization corresponding to a change in magnetization may be detected.
  • a differential value may be specified based on a change in magnetization when detecting an increase in the magnetic field.
  • the magnetization observation method includes, for example, a step of discretely increasing the magnetic field strength in the first and second magnetic field strength ranges, and a magnetization of the magnetic material based on the magneto-optical effect for each magnetic field strength. And a step of calculating the magnetization change value by subtracting the previous detection value from the current detection value and detecting the magnetization detection value for each magnetic field strength.
  • the magnetic field strength when detecting the presence or absence of the change, the magnetic field strength may be reduced in the first and second magnetic field strength ranges. In this case, it is sufficient that the decrease in the magnetic field corresponding to the change in the magnetization is detected.
  • the differential value may be specified based on the change in the magnetization.
  • this type of magnetization observation method includes a step of discretely reducing the magnetic field strength in the first and second magnetic field strength ranges, and a method of magnetizing the magnetic material based on the magneto-optical effect for each magnetic field strength. It is sufficient to include a step of detecting magnetization and specifying a detection value of magnetization for each magnetic field intensity, and a step of calculating a change value of magnetization by subtracting a previous detection value from a current detection value.
  • a magnetization observation device such as a force microscope was used.
  • the position is generated by a magnetic field generating mechanism that generates a magnetic field that changes in a first magnetic field strength range smaller than a specified magnetic field strength and a second magnetic field strength range larger than the specified magnetic field strength, and a magnetic field generating mechanism.
  • An optical system that guides light to a magnetic body exposed to a magnetic field, a light receiving element that receives light returning from the magnetic body, and a light receiving element that is connected to the light receiving element to change the first magnetic field intensity range and to change the second magnetic field intensity.
  • a processor may be provided for detecting the presence or absence of a change in magnetization based on the magneto-optical effect of the magnetic substance during the change of the range.
  • the above-described magnetization observation method may be realized by, for example, a software program.
  • a software program includes, for example, a step of obtaining a first detection signal generated based on the magnetization of a magnetic substance arranged in a magnetic field that changes in a first magnetic field strength range smaller than a specified magnetic field strength. Detecting the presence or absence of a change in magnetization based on the first detection signal; and generating the magnetic field based on a magnetic field of a magnetic substance arranged in a magnetic field that changes in a second magnetic field strength range larger than a specified magnetic field strength.
  • the step of obtaining the second detection signal and the step of detecting the presence or absence of a change in magnetization based on the second detection signal may be performed by the processor.
  • the software program may be stored in a specific storage device, or may be stored on a portable recording medium such as a compact disc (CD) or a digital video disc (DVD).
  • a step of causing the magnetic body to apply a magnetic field that changes at a specific cycle based on the waveform signal and a step of detecting the magnetization of the magnetic body based on the magneto-optical effect and specifying a detected value of the magnetization Multiplying the specified detection value by a numerical value that periodically changes at twice the frequency of the waveform signal while synchronizing with the waveform signal in a specific phase relationship.
  • the magnetic material expands or contracts in the magnetic domain.
  • the domain wall moves.
  • the direction of the magnetization rapidly turns at that measurement point. Therefore, if the sudden change of the magnetic field is detected along with the change of the magnetic field, the position of the domain wall can be specified. At this time, the change in the magnetization can be emphasized by the product of the detected value of the magnetization and the above-mentioned numerical value.
  • the position of the domain wall can be specified. Moreover, the direction of magnetization in the magnetic domain can be estimated relatively easily.
  • Such a magnetization observation method may further include a step of performing an integration process on a multiplication result of the detected value and the numerical value. According to such an integration process, a change in magnetization can be reliably detected.
  • the phase indicating the maximum value and the minimum value of the waveform signal may coincide with the phase indicating either the maximum value or the minimum value of the numerical value. According to such a phase difference, a change in the magnetization can be reliably specified.
  • the detection value may be subjected to a differentiation process prior to the multiplication with the above numerical value. According to such a differentiation process, a change in magnetization can be detected more reliably. However, in this case, it is desired that the phase indicating the maximum value and the minimum value of the waveform signal coincide with the phase indicating the intermediate value between the maximum value and the minimum value in a numerical value.
  • a magnetization observation device such as a Kerr microscope uses, for example, a magnetic field generation mechanism that generates a magnetic field that changes at a specific cycle based on a waveform signal, and a magnetic field generated by the magnetic field generation mechanism.
  • An optical system that guides light to the exposed magnetic material, a light-receiving element that outputs a detection signal that specifies a detection value based on the light that returns from the magnetic material, and a specific phase relationship with the waveform signal that is connected to the light-receiving element
  • a multiplier for multiplying the detection signal by a periodic signal that periodically changes at twice the frequency of the waveform signal while synchronizing.
  • a one-pass filter may be connected to the multiplier.
  • an eight-pass filter may be arranged between the multiplier and the light receiving element.
  • FIG. 1 is a block diagram schematically showing a structure of a Kerr microscope according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged plan view schematically showing the structure of the polarization distribution control mechanism.
  • FIG. 3 is a conceptual diagram schematically showing the structure of a magnetic domain of a magnetic body.
  • FIG. 4 is a flowchart showing the processing operation of the processor (CPU) in observing Gyidani.
  • FIG. 5A to 5F schematically show the principle of the processing operation when observing clockwise return magnetic domains.
  • 6A to 6F are conceptual diagrams schematically showing the principle of the processing operation in observing the counterclockwise return magnetic domain.
  • FIGS. 7A to 7F are conceptual diagrams schematically showing processing operations according to a comparative example in observing clockwise return magnetic domains.
  • 8A to 8F are conceptual diagrams schematically showing a processing operation according to a comparative example when observing a counterclockwise reflux zone. .
  • FIG. 9 is a flowchart showing a processing operation according to another specific example in observing the magnetization.
  • 10A to 10C are conceptual diagrams schematically showing the principle of the processing operation.
  • FIGS. 11A and 11B are graphs showing the change in magnetization observed at a particular measurement point during an increase in magnetic field strength. '
  • FIGS. 12A and 12B are graphs showing the relationship between the increase in the magnetic field strength and the difference between the detected values.
  • Figures 13A and 13B are graphs showing the change in magnetization observed at a particular measurement point during a decrease in magnetic field strength.
  • FIGS. 144 and 148 are graphs showing the relationship between the decrease in the magnetic field strength and the difference between the detected values.
  • FIGS. 15A and 15B are graphs showing changes in detection values detected at specific measurement points while the magnetic field strength is increasing or decreasing.
  • FIG. 16 is a block diagram schematically showing a structure of a Kerr microscope according to the second embodiment of the present invention.
  • FIGS. 17A and 17B are graphs showing the relationship between the magnetic field that changes based on the first frequency and the magnetization.
  • FIGS. 18A and 18B are graphs showing the relationship between the magnetization that changes based on the first frequency and the waveform signal of the second frequency.
  • FIG. 19 is a block diagram schematically showing a structure of a force microscope according to the third embodiment of the present invention.
  • Fig. 2 OA and Fig. 20B show the detected value of magnetization after differential processing and the phase difference of 90 °. 6 is a graph showing a relationship with a signal waveform of a first frequency that changes in FIG.
  • FIGS. 21A and 21B are graphs showing the relationship between the detected value of the magnetization after the differential processing and the signal waveform of the second frequency that changes with a phase difference of 90 °.
  • FIG. 1 schematically shows the structure of a force microscope according to a first embodiment of the present invention.
  • the microscope 1 1 has a movable stage 1 2.
  • a support surface 13 extending along one horizontal plane is defined on the movable stage 12.
  • the object to be measured, ie, the magnetic body 14 is received on the support surface 13.
  • the movable stage 12 can move within at least one horizontal plane. The movement of the movable stage 12 is controlled based on an electric signal supplied from the stage driver 15.
  • a magnetic field generating mechanism 16 is associated with the movable stage 12.
  • the magnetic field generating mechanism 16 may be composed of, for example, a pair of electromagnets 17.
  • the electromagnets 17 and 17 generate the magnetic field 19 with a desired magnetic field strength according to the magnitude and direction of the current supplied from the electromagnet driver 18.
  • a magnetic flux flows through the magnetic body 14 on the worship surface 13 along a prescribed direction.
  • the Kerr microscope 11 further includes a light source 21.
  • a laser diode that outputs a laser beam having a wavelength of 400 nm may be used as the light source 21.
  • the laser beam is output toward the support surface 13 of the movable stage 12.
  • the laser beam establishes, for example, linearly polarized light.
  • An optical system 22 is arranged between the light source 21 and the movable stage 12.
  • the optical system 22 includes, for example, an objective lens 23 facing the movable stage 12.
  • a beam splitter 24 is disposed between the light source 21 and the objective lens 23, for example.
  • the laser beam output from the light source 21 passes through the beam splitter 24.
  • the laser beam is applied to the magnetic body 14 from the objective lens 23.
  • the objective lens 23 forms a minute beam spot on the surface of the magnetic body 14. In this way, the laser beam is guided to the magnetic body 14 with the designated plane of polarization.
  • the laser beam reflects off the surface of the magnetic body 14.
  • the laser beam is again split from the objective lens 23 by the beam splitter 2. Guided to 4.
  • the above-described magnetic field generation mechanism 16 may be associated with the objective lens 23.
  • a polarizing beam splitter 25 is opposed to the beam splitter 24.
  • the laser beam returning from the magnetic body 14 is reflected at the beam splitter 24.
  • the laser beam is directed from beam splitter 24 to polarizing beam splitter 25.
  • the polarization beam splitter 25 splits the laser beam with polarization planes orthogonal to each other.
  • polarizing beam splitter 25 Behind the polarizing beam splitter 25, light receiving elements, that is, photodetectors 26 and 26 are arranged.
  • the laser beam decomposed by the polarization beam splitter 25 is collected, and then detected by the photodetector 26 for each polarization plane.
  • the laser beam is converted into an electric signal for each polarization plane.
  • a differential amplifier 27 is connected to the photodetectors 26 and 26.
  • the differential amplifier 27 derives the difference between the two electrical signals.
  • the rotation of the polarization plane is detected based on the difference.
  • An analog / digital converter (AZD converter) 28 is connected to the differential amplifier 27.
  • the AZD converter 28 generates a digital signal from the analog electric signal output from the differential amplifier 27.
  • a computer device 29 is connected to the AZD converter 28.
  • the computer device 29 includes a processor (CPU) 31 that acquires a digital signal, that is, a detection signal, supplied from the AZD converter 28.
  • the operation of the CPU 31 is realized based on, for example, a software program stored in the storage device 32. When a predetermined software program is executed, the CPU 3.1 supplies a predetermined command signal to the stage driver 15 and the electromagnet driver 18.
  • an FDD flexible disk drive
  • an HDD hard disk drive
  • a CD compact disk drive
  • DVD digital video disk drive
  • the display device 33 is connected to the computer device 29. Images and texts can be displayed on the screen of the display device 33.
  • the CPU 31 can draw an image of the magnetic domain on the screen of the display device 33 based on the detection signal described above.
  • a split half-wave plate 35 composed of, for example, four half-wave plates 35a to 35d may be used.
  • the split half-wave plate 35 is composed of first and second half-wave plates 35a and 35b joined to each other on a horizontal plane, and third and fourth half-wave plates 35 and 35b joined to each other on a vertical plane.
  • Half-wave plates 35 c and 35 d are provided.
  • the neutral axis azimuth is set to ⁇ 22.5 °.
  • the neutral axis azimuth is set to + 22.5 °.
  • the first and third half-wave plates 35a and 35c pass (1-45- ⁇ °) is established.
  • the second and fourth half-wave plates 35 b and 35 d establish a polarization of (45— (5 °).
  • the first and third half-wave plates 35 a and 3 A 90 ° shift can be created between 5c and the second and fourth half-wave plates 35b, 35d.
  • the CPU 31 sets a plurality of measurement points on the surface of the magnetic body 14.
  • the measurement points are arranged, for example, in a matrix LXM.
  • the measurement point may be specified in accordance with, for example, plane coordinates (X, Y) preset on the support surface 13.
  • the center of the beam spot is aligned with the position (X, Y) of the measurement point.
  • the intervals between adjacent measurement points may be set to be uniform.
  • the beam spots may be overlapped or separated from each other at adjacent measurement points.
  • the CPU 31 implements a processing operation according to a predetermined software program. As shown in FIG. 4, when the observation is started, the CPU 31 performs initialization in step S1.
  • step S2 the magnetic field strength H specified for the magnetic body 14 based on the processing operation of the CPU 31.
  • a magnetic field 19 is applied.
  • the CPU 31 When applying a magnetic field, the CPU 31 generates a predetermined command signal.
  • the generated command signal specifies the current value and direction of the current.
  • the electromagnet driver 18 supplies current to the electromagnets 17 and 17 based on such a command signal.
  • Magnetic field strength H by the action of electromagnets 17 and 17.
  • a magnetic field 19 is generated.
  • the generated magnetic field 19 acts on the magnetic body 14 on the stage 12.
  • the magnetic field strength H. can be defined as positive and negative values along a specified direction. In other words, when the magnetic field strength H 0 is set to a negative value (H. ⁇ 0), the direction of the magnetic field 19 is reversed. As the negative value decreases, the magnetic field after reversal increases. Moreover, the magnetic field strength H 0 includes a “0 (zero)” value. Magnetic field strength H. In
  • any of them is expressed as a “magnetic field” of the magnetic field strength H Q.
  • the magnetic field strength H 0 may be set to an appropriate value.
  • step S3 the CPU 31 obtains a first detection value sk (H.). Bicycloalkyl one beam spot when the acquisition of the first detection value s k (H 0) is positioned at a position (X i, Y j).
  • the laser beam is reflected from the surface of the magnetic body 14.
  • the rotation of the polarization plane is caused by the action of the magnetic Kerr effect of the magnetic body 14.
  • the rotation of the plane of polarization is quantified by the differential amplifier 27.
  • the AZD converter 28 outputs the first detection value sk (H.) with a size corresponding to the rotation amount of the polarization plane.
  • the CPU 31 records the first detection value sk (H.) in the storage device 32, for example.
  • step S4 the magnetic field strength H is set based on the processing operation of the CPU 31.
  • a magnetic field 19 is applied to the magnetic body 14 with a smaller magnetic field strength ⁇ ⁇ ⁇ «H 0 ).
  • the CPU 31 upon application of the magnetic field, the CPU 31 generates a predetermined command signal.
  • the electromagnet dryno 18 supplies current to the electromagnets 17 and 17 based on such a command signal.
  • the electromagnets 17 and 17 generate a magnetic field 19 having a magnetic field strength.
  • the generated magnetic field 19 acts on the magnetic body 14 on the stage 12.
  • the magnetic field strength Hi may be set to a negative value (1 ⁇ ⁇ 0) or a “0 (zero)” value.
  • the CPU 31 acquires the second detection value sk ( ⁇ ).
  • AZD converter 28 outputs the second detection value s k ( ⁇ ⁇ ) in the magnitude corresponding to the amount of rotation of the polarization plane.
  • the CPU 31 records the second detection value s k (H j) in the storage device 32, for example. If the direction of magnetization does not change in the laser spot, the second detected value s k (H is equal to the first detected value s k (H 0 ).
  • step S6 the magnetic field strength H is set based on the processing operation of the CPU 31.
  • a magnetic field 19 is applied to the magnetic body 14 with a magnetic field strength H 2 (> H 0 ) higher than that.
  • the CPU 31 upon application of the magnetic field, the CPU 31 generates a predetermined command signal.
  • the electromagnet driver 18 supplies current to the electromagnets 17 and 17 based on the command signal.
  • the electromagnets 17 generate a magnetic field 19 of magnetic field strength.
  • the generated magnetic field 19 acts on the magnetic body 14 on the stage 12.
  • the magnetic field strength Eta 2 is a negative value (Eta 2 ° 0) or "0" (zero) value may be set.
  • Step S 7 followed to obtain a third detection value s k (H 2).
  • Third beam spot when the acquisition of test detection value s k (H 2) is held in position (X i, Y j).
  • the AZD converter 28 outputs the third detection value sk (H 2 ) with a magnitude corresponding to the amount of rotation of the polarization plane.
  • the CPU 31 records the third detection value s k (H 2 ) in the storage device 32, for example. If the direction of magnetization does not change in the laser spot, the third detection value sk (H 2 ) matches the first detection value sk (H.) and the second detection value sk (H x ) .
  • First detection value s k (H.), measurement of the second detection value s k (H x) and the third detection value s k (H 2) is repeated at specified times N. Until the completion of the specified number N is confirmed in step S8, the storage device 32 stores N first detection values s k (H 0 ) and N second detection values s k (H x ) N Is recorded as the third detection value s k (H 2 ).
  • the processing operation CPU 3 1 is step S 9 Move to
  • step S 9 CPU 31 is first detected value s k (H 0) of the N acquired, the N of the second detection value s k (kappa,) and ⁇ pieces of the third detection value s k (H 2 ) Based on the output value t
  • ⁇ ⁇ ⁇ ⁇ ⁇ 2 ⁇ s k (H 0 )-[ 3 ⁇ 4 ( ⁇ ) + s k H 2 )] ⁇
  • any numerical value may be inserted in the coefficient.
  • the principle of calculation will be described later.
  • CPU 31 at step S 10, to implement the display processing based on the output value t (H 0).
  • the CPU 31 determines the type of the pixel based on the output value t (H 0 ).
  • the pixels may be color-coded based on the magnitude of the output value t (H 0 ), for example.
  • the magnetization measured at position (X i, Yj) is visualized.
  • step S11 it is determined whether or not pixels have been determined at all positions (Xi, Yj) in the y column. If undetermined pixels remain, the processing operation of the CPU 31 returns to step S2. Each time the processing operation of steps S2 to S10 is repeated, the X coordinate value is added. Thus, pixels are determined at all positions (X i, Yj) in the y column. When all pixels are determined in the y-th column, the processing operation shifts to Step S12.
  • step S12 it is determined whether the processing operations in steps S2 to S11 have been performed for all y columns. If the unprocessed y columns remain, the processing operation of the CPU 31 returns to step S2. Each time the processing operations of steps S2 to S11 are repeated, the y coordinate value is added. Thus, the pixel is determined at every position (X i, Y j) of the matrix LXM.
  • the domain wall 42a is displayed on the screen of the display device 33,
  • the domain wall 42 a parallel to the specified direction is almost parallel While maintaining the position, move parallel to the y-axis perpendicular to the specified direction.
  • the decrease in the magnetic field 19 includes an increase in the magnetic field in the opposite direction to the prescribed direction.
  • magnetic field strength H When a magnetic field 19 is applied to the magnetic substance 1 4 a large magnetic field strength H 2 than, as shown in Figure 5C, entailment domain 41 a to an increase in the magnetic body 14 in the magnetic field 19 will expand. Domain 41b shrinks. Thus, the movement of the domain walls 42a and 42 is caused.
  • the domain wall 42a moves in parallel to the y-axis orthogonal to the prescribed direction while maintaining the substantially parallel posture.
  • the increase in the magnetic field 19 includes a decrease in the magnetic field in the opposite direction to the prescribed direction.
  • the magnetization vectors of different directions are added.
  • the magnetization vectors of the same direction are added for each position (Xi, Yi).
  • the second detection value s k and (Hi) and the third detection value s k (H 2) is equal when the direction of no ⁇ I ⁇ M g involved in the intensity of the magnetic field intensity H There H 2 does not change.
  • the average value of the second and third detection values s k (H x ) and s k (H 2 ) does not change.
  • the same magnetism is maintained.
  • the magnetized Mg in different directions is added at each position (X i, Yj). Magnetized Mg rotates.
  • Second and third test detection value s k (H ⁇ , the average value of s k (H 2) is increased or decreased according to the angle measured from a defined direction.
  • the second and the second values are calculated from twice the first detection value s k (H 0 ) (3)
  • the sum of the detected values s k (1 ⁇ ) and s k (H 2 ) is subtracted, as shown in FIG. 5E, around the domain wall 42 42a, each position (X i Y j)
  • the porcelain vector remains.
  • Magnetic field strength H When the magnetic field 19 acts on the magnetic body 14 with a smaller magnetic field strength, as shown in FIG. 6B, in the magnetic body 14, the magnetic domain 41a expands as the magnetic field 19 decreases. Domain 41b shrinks. The movement of the domain wall 42 a 42 is caused. At this time, the domain walls 41a and 42 move in the direction opposite to the clockwise return magnetic domain described above (see FIG. 5B). Conversely, magnetic field strength H. When a magnetic field 19 is applied to the magnetic body 14 in a large magnetic field strength H 2 than, as shown in FIG.
  • the second detection value s k ( ⁇ ⁇ ), and the third detection value s k (H 2) is of the addition.
  • the magnetic direction vectors different from each other at the respective positions (X i, Yj) are added.
  • the magnetization vectors of the same direction are added for each position (Xi, Yj).
  • the magnetization vector remains at each position (Xi, Yj) around the domain walls 42 and 42a.
  • the magnetization can be specified in the opposite direction to the clockwise return magnetic domain. For example, as shown in FIG.
  • the first magnetic field strength may be set to a value sufficiently larger than the magnetic field strength that induces the saturation of the magnetization.
  • the second magnetic field strength H 2 may be set to a value sufficiently smaller than the magnetic field strength that induces the saturation of the magnetic field.
  • the first magnetic field strength 1 ⁇ must be set to a magnitude that produces a difference between the first detected value s k (H 0 ) and the second detected value s k (Hi).
  • the second magnetic field strength H 2 must be set to a magnitude that produces a difference between the first detected value s k (H.) and the third detected value s k (H 2 ).
  • the magnetic material 14 has the first and second magnetic field strengths based on the inherent properties.
  • the magnitude of H 2 and the amount of movement of the ⁇ ⁇ walls 42 a and 42 are correlated. Therefore, in the force-microscope 11, the first magnetic field strength 1 ⁇ and the The size of the 2 magnetic field intensity H 2 is desirable to be able to change.
  • the user may be adjusted first magnetic field strength H ⁇ and size of the second magnetic field strength H 2 based on the image of the magnetic domain to be displayed on the screen of the display device 33.
  • the inventor has verified a comparative example.
  • this comparative example as shown for example in FIG. 7 A to FIG 7 C, the magnetic field strength specified in the same manner as described above H Q, the magnetic field in the first magnetic field strength H t and the second magnetic field intensity H 2 is the magnetic body 14 Is applied.
  • the second detection value s k (H x ) is subtracted from the third detection value sk k 2 ) when detecting the domain walls 42 a and 42.
  • the detected value of the magnetized Mg is canceled in the magnetic domains 41a, 41b, and 42.
  • the domain walls 42a and 42 can be clearly drawn.
  • the direction of magnetization cannot be distinguished at all based on the in-plane magnetization y component.
  • the domain walls 42a and 42 are specified, but the direction of the magnetic domain in the magnetic domains 41a, 41b and 41 cannot be specified at all.
  • step T2 a magnetic field is applied to the magnetic body 14 at an initial magnetic field strength 1 ⁇ based on the processing operation of the CPU 31.
  • step T2 a magnetic field is applied to the magnetic body 14 at an initial magnetic field strength 1 ⁇ based on the processing operation of the CPU 31.
  • step T2 a magnetic field is applied to the magnetic body 14 at an initial magnetic field strength 1 ⁇ based on the processing operation of the CPU 31.
  • step T2 a magnetic field is applied to the magnetic body 14 at an initial magnetic field strength 1 ⁇ based on the processing operation of the CPU 31.
  • the CPU 31 When applying a magnetic field, the CPU 31 generates a predetermined command signal.
  • the electromagnet driver 18 supplies current to the electromagnets 17 and 17 based on such command signals.
  • the initial magnetic field strength H is the designated magnetic field strength H.
  • the magnetic field strength is set to be smaller than that.
  • any magnetic field strength H k is set to a negative value (H k ⁇ 0)
  • the direction of 19 is reversed. As the negative value decreases, the field after reversal increases.
  • the magnetic field strength H k can include a “0 (zero)” value.
  • the specified magnetic field strength H If is set to “0”, the initial magnetic field strength is set to a negative value.
  • step .tau.3 CPU 31 is you get position (X i, Y j) of the detected value s (H k).
  • the detection value s (H k ) is specified from the detection signal output from the AZD converter 28 as described above.
  • the CPU 31 records the detected value s (H k ) in the storage device 32, for example.
  • step T4 the CPU 31 resets the magnetic field strength H k .
  • Magnetic field strength Hi nc increment the previous field strength H k are summed.
  • step T5 the CPU 31 updates the algebra k.
  • step T6 a magnetic field 19 is applied to the magnetic body 14 at a magnetic field strength Hk based on the processing operation of the CPU 31. That is, the magnetic field strength H k of the magnetic field 19 increases.
  • step T 7 acquires position (X i, Y j) of the detected value s (H k).
  • Step T 8 CPU 31 calculates the output value t of the magnetic field strength H k (H k).
  • the CPU 31 calculates an output value t (H k ) based on, for example, the odd function f (H) and the even function g (s) according to the following equation.
  • step T 10 The calculated output values t (H k ) are accumulated in step T9.
  • the magnetic field strength H k is whether the host vehicle has reached the maximum magnetic field strength Eta New is determined. If not, the processing operation of the CPU 31 returns to step # 4 again.
  • the output value t (H k ) is obtained at each magnetic field strength H k .
  • the maximum magnetic field strength H N is the specified magnetic field strength H. It is set to a larger magnetic field strength. In this case, the initial magnetic field strength 1 ⁇ Degree H. The range up to the magnetic field strength H. This corresponds to a smaller first magnetic field strength range.
  • the specified magnetic field strength H The range from to the maximum magnetic field strength H N is the magnetic field strength H. This corresponds to a larger second magnetic field strength range.
  • the output values t (H.) are specified.
  • the output value t (H.) specifies whether the magnetization caused by the increase in the magnetic field 19 is increased or not.
  • the prescribed magnetic field strength H depends on the presence or absence of such an increase.
  • the position of the domain wall can be specified.
  • the direction of magnetization in the magnetic domain can be estimated relatively easily. For example, if an increase in magnetization is detected during a change in the first magnetic field strength range, the output value t (H 0 ) will be greater than the “0 (zero)” value.
  • the magnetization component in the magnetization vector at the position (X i, Y j), for example, can be specified in the specified direction (X axis) in the positive direction.
  • the output value t (H.) indicates a value smaller than the “0 (zero)” value.
  • the magnetization component in the magnetization vector, can be specified in the opposite direction, that is, in the negative direction of the X axis.
  • step T10 When the completion of the calculation of the output value t (H.) is confirmed in step T10, the CPU 31 performs a display process based on the output value t (H.) in step T11. The magnetization measured at the position (Xi, Yj) is thus visualized. Thereafter, pixels are determined at all positions (Xi, Yj) of the matrix LXM. Thus, the domain walls 42 a and 42 are drawn on the screen of the display device 33.
  • Domain 4 1 b shrinks.
  • the movement of the domain walls 42a, 42 is caused. Therefore, as the magnetic field strength H k increases from the initial magnetic field strength to the maximum magnetic field strength H N , the domain wall 42 a crosses the predetermined measurement points 43 a and 43 b. Thus, when the domain wall 42 a crosses, the magnetization Mg changes at the individual measurement points 43 a and 43 b. That is, the magnetization M g rotates.
  • the magnetic field strength is H from the initial magnetic field strength.
  • the magnetization rotates before reaching. That is, the specified magnetic field strength H.
  • the magnetization rotates in the first magnetic field strength range smaller than that.
  • the magnetic field Mg increases rapidly.
  • the difference s in the detected value shows a predetermined value during the rotation of the magnetization, but “0 ( Zero) "value is maintained.
  • the difference s in the detected values corresponds to a change in the magnetization, that is, a differential value of the increase.
  • the magnetic field strength H On the other hand, at the measurement point 4 3 b, the magnetic field strength H.
  • the magnetization rotates from to the maximum magnetic field strength H N. That is, the specified magnetic field strength H.
  • the magnetization rotates in the second magnetic field strength range larger than.
  • the magnetization Mg increases rapidly at the measurement point 43 b as shown in FIG. 11B.
  • the difference s in the detected value shows a predetermined value at the time of the rotation of the magnetization, but before the rotation of the magnetization or after the rotation of the magnetization. The “0 (zero)” value is maintained.
  • the following function may be used for the even function g (s). According to these even functions, the sensitivity to the change in magnetization can be increased.
  • a step function such as the following equation may be used for the even function g (s).
  • the threshold s TH may be appropriately set based on the magnitude of noise or the like.
  • the initial magnetic field intensity may be set to a value sufficiently larger than the magnetic field intensity that induces the saturation of the magnetization.
  • the maximum magnetic field strength H N may be set to a value sufficiently smaller than the magnetic field strength that induces magnetization saturation. If the initial magnetic field strength and the maximum magnetic field strength H N are set in this way, it is expected that the connection relationship between the domain walls established in the magnetic body 14 will be maintained. However, the initial magnetic field strength and the maximum magnetic field strength H N are large enough to determine the increase in magnetization based on the output value t (H 0 ). Must be set.
  • the direction of the magnetic field cannot be detected in the magnetic domains 41a, 41b, 41 unless the movement of the domain walls 42a, 42 is generated.
  • the force one microscope 1 1 the size of the easy initial magnetic field strength on the basis of the ratio comparatively to the operation of the user and the maximum magnetic field intensity H N is desirable to be able to change.
  • the user may adjust the magnitude of the initial magnetic field strength and the maximum magnetic field strength H N based on the image of the magnetic domain displayed on the screen of the display device 33.
  • the presence or absence of the decrease in magnetization caused by the decrease in the magnetic field strength may be specified by the output value t (H 0 ).
  • it may be set large maximum magnetic field strength than the magnetic field strength H G specified in the initial magnetic field strength.
  • the magnetic field strength H k is the specified magnetic field strength H from this initial magnetic field strength. It is only necessary to reduce the minimum magnetic field strength H N to a smaller value.
  • the range H from the initial magnetic field strength to the magnetic field strength H 0 corresponds to the second magnetic field strength range.
  • the range from to the minimum magnetic field strength H N corresponds to the first magnetic field strength range.
  • the magnetic field strength H at the measurement point 43a As shown in Fig. 13A, the magnetic field strength H at the measurement point 43a.
  • the magnetization rotates from to the minimum magnetic field strength H N.
  • the magnetization Mg sharply decreases at the measurement point 43 b.
  • the difference s in the detected values shows a predetermined value when the magnetization is rotated, but before the rotation of the magnetization or after the rotation of the magnetization, “0 ( Zero) "value is maintained.
  • the initial magnetic field strength changes to the magnetic field strength H.
  • the magnetization rotates before reaching.
  • the magnetization Mg decreases rapidly with the rotation of the magnetization.
  • the difference s in the detected value shows a predetermined value during rotation of the magnetization, but “0 ( Zero) "value is maintained.
  • the measuring point 43a and the measuring point 43b can be reliably distinguished.
  • the difference s in the detected values corresponds to the differential value of the change, that is, the decrease of the magnetization.
  • the initial magnetic field strength may be set to a value sufficiently smaller than the magnetic field strength that induces the saturation of the magnetization.
  • the minimum magnetic field strength H N may be set to a value sufficiently larger than the magnetic field strength that induces the saturation of the magnetic field. This is the first time If the initial magnetic field strength and the minimum magnetic field strength H N are set, it is expected that the connection relationship between the domain walls established in the magnetic body 14 will be maintained. However, the initial magnetic field strength and the minimum magnetic field strength H N must be set to such a value that the increase in magnetization can be determined based on the output value t (H 0 ). As before, the size of the relatively simple initial magnetic field strength and the minimum magnetic field intensity H N based on the user's operation is desired that as possible out to be changed.
  • ⁇ o - ⁇ [RH) ⁇ h ⁇ s) ⁇ sgn O] ⁇ '. (12)
  • s gn (T) indicates the sign of ⁇ as in the following equation.
  • s gn (T) may be either a “0” value, a “1” value, or a “ ⁇ 1” value.
  • a step function such as the following equation may be used for the odd function h (s).
  • the threshold value s TH may be set appropriately.
  • FIG. 16 schematically shows the structure of a force microscope according to the second embodiment of the present invention.
  • a waveform generator 45 is incorporated in the Kerr microscope 11a.
  • the waveform generator 45 generates, for example, a first waveform signal such as a cosine wave of a first frequency and a second waveform signal likewise a cosine wave of a second frequency.
  • the second frequency is set to, for example, twice the frequency of the first frequency.
  • the phase difference between the first waveform signal and the second waveform signal is set to “0 (zero)” value. That is, the phases of the two coincide.
  • the first waveform signal is supplied to the electromagnetic stone driver 18.
  • the electromagnet driver 18 can generate a magnetic field that changes based on the first waveform signal.
  • the magnetic body 14 is exposed to a magnetic field that changes at a specific cycle based on the first waveform signal.
  • a multiplier 46 is connected to the differential amplifier 27.
  • the multiplier 46 multiplies the electric signal output from the differential amplifier 27, that is, the detection signal, by the second waveform signal supplied from the waveform generator 45.
  • the multiplier 46 calculates the product of the detection value specified by the detection signal and the numerical value specified by the second waveform signal.
  • the low-pass filter 47 is connected to the multiplier 46.
  • the output of the multiplier 46 is subjected to integration processing.
  • the output of the low-pass filter 47 is converted to a digital signal by the AZD converter 28. These digital signals are taken into the CPU 31 of the computer 29.
  • configurations and structures equivalent to those of the above-described first embodiment are denoted by the same reference numerals.
  • the rotation of the magnetization can be specified by the detection signal in accordance with the change of the magnetic field 19 acting on the magnetic body 14. In the product of the detected value and the numerical value, the rotation of the magnetization can be emphasized.
  • the principle of the force microscope 11a according to the second embodiment will be briefly described.
  • measurement points 43a and 43b are set on the magnetic body 14 of the counterclockwise return magnetic domain as shown in FIGS. 6A and 8A.
  • the magnetic field 19 repeats increasing and decreasing at a specific cycle.
  • the magnetization changes as the magnetic field 19 increases or decreases.
  • the magnetization repeats reversal according to the increase and decrease of the magnetic field 19.
  • the magnetization M (t) can be expressed by the following step function.
  • u and V values of the measuring points 4 3 b can be expressed by the following equation t
  • V 2 ⁇ + (° 2 + d l) '' (21)
  • M (t) can be Fourier series expanded based on the following equation.
  • ⁇ (1) ⁇ ⁇ ⁇ -2Mg '
  • ⁇ ⁇ ⁇ (2) — (-c + me) + C0S [c-me]... () [w ⁇ c + d)]- ⁇ cd ⁇ 2Mg );
  • a 2 (1) and b 2 (1) shows the coefficients obtained at the measurement point 43 b.
  • (2), b, (2), a 2 (2) and b 2 (2) indicate the coefficients obtained at the measurement point 43a. Therefore, as is apparent from the following equation, when the frequency of the first waveform signal and the frequency of the second waveform signal are equal, the measurement point 43b and the measurement point 43a cannot be distinguished by the detection signal. The polarity (sign) of measurement point 43b and measurement point 43a match.
  • the frequency of the second waveform signal is set to be twice the frequency of the first waveform signal
  • the measurement point 43b and the measurement point 43a can be completely distinguished.
  • the signal polarity is different between the measurement point 43b and the measurement point 43a.
  • the direction of the magnetization in the magnetic domains 41a, 41b, 41 as well as the position of the domain wall 42a can be specified.
  • the magnetic domains 41a and 41b can be favorably obtained even if the movement delay of the domain wall 42a is small.
  • the orientation of the magnetization within 41 can be specified.
  • the phase difference between the first and second waveform signals may be set to, for example, 180 ° or 180 °.
  • a triangular wave may be used instead of a cosine wave or another trigonometric wave.
  • the combination of the multiplier 46 and the low-pass filter 47 may be replaced by a so-called suck-in amplifier.
  • the functions of the multiplier 46 and the low-pass filter 47 that is, the function of the integrator, may be realized by, for example, a software program. Such a processing operation of the software program may be performed on the output of the differential amplifier 27, for example. At this time, the output of the differential amplifier 27 may be converted to a digital signal by, for example, an analog digital (AZD) converter and then transferred to the software program.
  • a digital wave may be used instead of a cosine wave or another trigonometric wave.
  • the combination of the multiplier 46 and the low-pass filter 47 may be replaced by a so-called suck-in amplifier.
  • FIG. 19 schematically shows the structure of a Kerr microscope according to the third embodiment of the present invention.
  • a high-pass filter is provided between the differential amplifier 27 and the multiplier 46. Evening 48 is arranged.
  • this high-pass filter 48 a differential process is performed on the detection value output from the differential amplifier 27. Therefore, the detected value after the differentiation processing is input to the multiplier 46.
  • configurations and structures equivalent to those of the above-described second embodiment are denoted by the same reference numerals.
  • the waveform generator 45 sets the phase difference between the first waveform signal and the second waveform signal to + 90 ° or ⁇ 90 °. That is, when, for example, a cosine wave of the first frequency is used for the first waveform signal, a sine wave of the second frequency may be used for the second waveform signal. As before, the second frequency is set to twice the frequency of the first frequency.
  • the rotation of the magnetization can be specified by the detection signal according to the change in the magnetic field 19 acting on the magnetic body 14.
  • the rotation of the magnetic field can be emphasized.
  • different polarities (signs) can be specified in the detection signal according to the direction of the magnetization in this emphasis.
  • the force microscope 11 a can project the positions of the domain walls 42 a and 42 on the screen of the display device 33.
  • the direction of magnetization in the magnetic domains 41a, 41b, 41 can be specified relatively easily.
  • measurement points 43a and 43b are set on the magnetic body 14 of the counterclockwise return magnetic domain as shown in FIGS. 6A and 8A.
  • the magnetic field 19 repeats increasing and decreasing at a specific cycle.
  • the magnetic field changes as the magnetic field 19 increases or decreases.
  • the magnet repeats its rotation as the magnetic field 19 increases or decreases.
  • the magnetic field repeats the rotation in accordance with the increase and decrease of the magnetic field 19.
  • the measured signal points 4 3b and 4 3a It cannot be distinguished.
  • the polarity (sign) of measurement point 4 3b and measurement point 4 3a match.
  • the frequency of the second waveform signal is set to be twice as high as that of the first waveform signal, as shown in FIGS. 21A and 21B, the measurement points 4 3b and 4 The signal polarity differs between 3a and 3a. Measurement point 4 3b and measurement point 4 3a can be completely distinguished. As a result, the domain 4 1 a, 4 1 Information on the direction of the magnetic sill in b, 41 can be obtained.
  • a detection signal may be generated based on a so-called CCD.
  • the light source 21 a pulsed light source that emits light intermittently may be used.
  • the above-described magnetic field generating mechanism 16 may include a plurality of sets of electromagnets 17 that generate magnetic fields 19, 19 along a plurality of directions. According to such a magnetic field generation mechanism 16, the in-plane magnetization X component and the in-plane magnetization Y component can be detected from various directions.
  • the movable stage 12 may rotate around a rotation axis orthogonal to a horizontal plane.

Abstract

A magnetization observing instrument wherein a magnetic field of a specified magnetic field strength, a first magnetic field strength less than the specified magnetic field strength, and a second magnetic field strength greater than the specified magnetic field acts on a magnetic body, the measurement values of the first to third values of the respective magnetic field strengths are measured, the magnetic walls (42, 42a) move depending on the variation of the magnetic field, the first to third measurement values are added with weights of a ratio 2:-1:-1, a magnetization vector is left in the range where the magnetic walls move, the noise is cancelled on the basis of weighting under the assumption that the first to third measurement values evenly include noise, the magnetization outside the range where the magnetic walls move is cancelled by the measurement values, only the magnetic walls are conspicuous, thus a magnetic domain can be clearly visualized irrespective of the surface state of the magnetic body, and the directions of magnetization of the adjacent magnetic domains on both sides of a magnetic wall can be discriminated from each other. When the direction of magnetization is thus visualized, the direction of magnetization in a magnetic domain can be relatively easily determined.

Description

磁化観察方法および磁化観察装置 技術分野  Magnetization observation method and magnetization observation device
本発明は、 磁性体の磁区構造を観察することができる磁化観察方法および磁化 観察装置に関し、 特に、 磁性体まで光を誘導する光学系と、 磁性体から帰還する ^に基づき磁気光学効果の検出値を特定する検出信号を出力する受光素子とを備 える磁化観察装置に関する。 ,  The present invention relates to a magnetization observation method and a magnetization observation device capable of observing a magnetic domain structure of a magnetic material, and more particularly to an optical system for guiding light to a magnetic material, and detection of a magneto-optical effect based on ^ returned from the magnetic material. The present invention relates to a magnetization observation device including a light receiving element that outputs a detection signal for specifying a value. ,
なお、 この明細書および請求の範囲では、 磁界強度には規定の方向に従って正 の値と負の値とが特定されるものとする。 同様に、 磁界強度には 「0 (ゼロ)」 値が含まれるものとする。 背景技術  In the specification and the claims, a positive value and a negative value are specified for the magnetic field strength in accordance with a prescribed direction. Similarly, the field strength shall include a “0 (zero)” value. Background art
いわゆるカー顕微鏡は広く知られる。 このカー顕微鏡では磁性体に所定の偏光 状態で光が照射される。 磁性体から反射する光では磁気カー効果に基づき偏光面 の回転や反射率の増減といつた偏光状態の変化が引き起こされる。 この偏光状態 の変化に基づき磁化は検出される。  The so-called Kerr microscope is widely known. In this Kerr microscope, light is irradiated to a magnetic substance in a predetermined polarization state. The light reflected from the magnetic material causes a change in the polarization state, such as rotation of the polarization plane and an increase or decrease in the reflectance, based on the magnetic Kerr effect. The magnetization is detected based on this change in the polarization state.
磁性体の表面状態は偏光状態や反射率に影響する。 磁性体の表面状態が悪けれ ば、 磁気カー効果とは関連なしに偏光面の回転や反射率の増減は引き起こされて しまう。 こういった偏光状態の変化量は、 しばしば、 磁気カー効果で生成される 偏光状態の変化量を上回る。 こういった場合には、 磁性体で確立される磁区構造 は明瞭に観察されることはできない。 表面状態の良し悪しに拘わらず明瞭に磁性 体の磁区構造を検出する術が模索される。  The surface state of the magnetic material affects the polarization state and the reflectance. If the surface condition of the magnetic material is poor, rotation of the polarization plane and an increase or decrease in the reflectivity are caused irrespective of the magnetic Kerr effect. These changes in polarization often exceed the changes in polarization produced by the magnetic Kerr effect. In these cases, the domain structure established in the magnetic material cannot be clearly observed. There is a need to find a way to clearly detect the magnetic domain structure of the magnetic material regardless of the surface condition.
特許文献 1 Patent Document 1
日本国特開平 5— 2 9 6 8 4 1号公報  Japanese Unexamined Patent Publication No. Hei 5—2 9 6 8 4 1
特許文献 2 Patent Document 2
日本国特開平 5— 2 1 5 8 2 8号公報  Japanese Unexamined Patent Publication No. Hei 5—2 1 5 8 2 8
特許文献 3 日本国特開平 2— 0 4 0 5 7 9号公報 Patent Document 3 Japanese Unexamined Patent Publication No. Hei 2-0 4 0 5 7 9
特許文献 4 Patent Document 4
日本国特開平 2 - 0 4 0 5 8 0号公報  Japanese Unexamined Patent Publication No. Hei 2-0 4 580
特許文献 5 Patent Document 5
日本国特開平 6— 0 2 7 2 1 0号公報  Japanese Unexamined Patent Publication No. Hei 6—0 2 7 210
非特許文献 1 Non-patent document 1
K. Shirae, K. Sugiyama, 'Ά CCD image sensor and a microcomputer make magnetic domain observation clear and convenient" Journal of Applied Physics, 1982, 53(11), pp8380-8382  K. Shirae, K. Sugiyama, 'Ά CCD image sensor and a microcomputer make magnetic domain observation clear and convenient "Journal of Applied Physics, 1982, 53 (11), pp8380-8382
非特許文献 2 Non-patent document 2
DA Herman, Jr., et al. "Bloch lines, cross ties, and taffy in permalloy (invited)" Journal of Applied Physics, 1987, 61 (8), pp4200-4206  DA Herman, Jr., et al. "Bloch lines, cross ties, and taffy in permalloy (invited)" Journal of Applied Physics, 1987, 61 (8), pp4200-4206
非特許文献 3 Non-patent document 3
Mark E. Re, et al. "Magneto-optic investigation of thin-film recording heads" Journal of Applied Physics, 984, 55(6) , pp2245-2247  Mark E. Re, et al. "Magneto-optic investigation of thin-film recording heads" Journal of Applied Physics, 984, 55 (6), pp2245-2247
非特許文献 4 Non-patent document 4
永井利明ほか, 「広帯域カー顕微鏡による垂直,面内磁化成分測定法」, 第 2 6 回日本応用磁気学会学術講演概要集, 2 0 0 2年, p . 3 9 8 発明の開示  Toshiaki Nagai et al., "Method for Measuring Perpendicular and In-Plane Magnetization Components Using Broadband Kerr Microscope," Proceedings of the 26th Annual Meeting of the Japan Society of Applied Magnetics, 2002, p. 398
本発明は、 上記実状に鑑みてなされたもので、 磁性体の表面状態に拘わらず明 瞭な磁区構造の観察に大いに貢献することができる磁化観察方法および磁化観察 装置を提供することを目的とする。 本発明は、 磁壁の位置だけでなく、 隣接する 磁区内で磁化の方向の特定に大いに役立つ磁化観察方法および磁化観察装置を提 供することを目的とする。  The present invention has been made in view of the above situation, and has as its object to provide a magnetization observation method and a magnetization observation apparatus that can greatly contribute to observation of a clear magnetic domain structure regardless of the surface state of a magnetic body. I do. An object of the present invention is to provide a magnetization observation method and a magnetization observation apparatus which are greatly useful for specifying not only the position of a domain wall but also the direction of magnetization in an adjacent magnetic domain.
上記目的を達成するために、 第 1発明によれば、 所定の方向に沿って磁性体に 指定の磁界強度 H。で磁界を印加する工程と、 磁気光学効果に基づき磁性体の磁 化を検出し、 磁ィヒの第 1検出値を特定する工程と、 指定の磁界強度 H。よりも小 さな第 1磁界強度 H!の磁界内で磁性体の磁化を検出し、 磁化の第 2検出値を特 定する工程と、 指定の磁界強度 H。よりも大きな第 2磁界強度 H 2の磁界内で磁 性体の磁化を検出し、 磁化の第 3検出値を特定する工程と、 2:— 1:— 1の重 み付けに基づき第 1、 第 2および第 3検出値を加算する工程とを備えることを特 徴とする磁化観察方法が提供される。 In order to achieve the above object, according to the first invention, a magnetic field strength H specified for a magnetic body along a predetermined direction. Applying a magnetic field in the step, detecting the magnetization of the magnetic material based on the magneto-optical effect, and specifying the first detected value of the magnetic field, and a specified magnetic field strength H. 1st magnetic field strength H! The magnetization of the magnetic material is detected in the magnetic field of And the specified magnetic field strength H. A step of detecting the magnetization of magnetic material element, identifying a third detection value of the magnetization in a magnetic field of a larger second magnetic field strength H 2 than 2: - 1: - first based on the weighting scheme for 1, Adding a second and a third detection value.
第 1磁界強度 H ,で磁界が磁性体に作用すると、 磁性体では磁界の減少に伴い 磁壁は移動する。 第 2磁界強度 H 2で磁界が磁性体に作用すると、 磁性体では磁 界の減少に伴い磁壁は移動する。 こういった磁壁の移動は個々の測定点 (観察 点) で磁化の回転を生み出す。 前述の重み付けで第 1、 第 2および第 3検出値が 加算されると、 磁壁の移動範囲では磁化ベクトルは残存する。 第 1、 第 2および 第 3検出値には均等にノィズが含まれることが想定されることから、 重み付けに 基づきノイズは相殺される。 純粋な磁化ベクトルは特定される。 その一方で、 磁 壁の移動範囲から外れた領域では検出値で磁化は打ち消される。 こうして磁壁の みが際立たせられる。 したがって、 磁性体の表面状態に拘わらず明瞭な磁区構造 は視覚化されることができる。 When the magnetic field acts on the magnetic material at the first magnetic field strength H, the domain wall moves in the magnetic material as the magnetic field decreases. When a magnetic field in the second magnetic field strength H 2 is applied to the magnetic domain wall with decreasing magnetic field in the magnetic body moves. Such movement of the domain wall generates a rotation of magnetization at each measurement point (observation point). When the first, second, and third detection values are added by the weighting described above, the magnetization vector remains in the domain wall movement range. Since it is assumed that the first, second, and third detection values include noise equally, the noise is canceled based on the weight. Pure magnetization vectors are specified. On the other hand, in a region outside the domain wall movement range, the magnetization is canceled by the detected value. In this way, only the domain wall is highlighted. Therefore, a clear magnetic domain structure can be visualized regardless of the surface state of the magnetic material.
しかも、 磁壁を挟んで磁区同士の間では磁化の向きは区別される。 こうした磁 化の向き力 S視覚化されれば、 磁区内で磁化の向きは比較的に簡単に特定されるこ とができる。 視覚化にあたって、 前述の加算の結果に基づき画素は色分けされれ ばよい。 重み付けの実現にあたって、 出力値 t (H Q)、 第 1検出値 s (H 0)、 第 2検出値 s (H i) および第 3検出値 s (H 2) の間には、 Moreover, the direction of magnetization is distinguished between the magnetic domains across the domain wall. If the magnetization direction force S is visualized, the magnetization direction in the magnetic domain can be specified relatively easily. For visualization, the pixels may be color-coded based on the result of the aforementioned addition. In realizing the weighting, between the output value t (H Q ), the first detection value s (H 0 ), the second detection value s (H i), and the third detection value s (H 2 ),
[数式 1 ]  [Formula 1]
^0) = 2-^0) -[^) + ^2)] ^ 0 ) = 2- ^ 0 )-[^) + ^ 2)]
= [^0) -^)] + [^θ) -^2)] …ひ) が成立すればよい。 = [^ 0 )-^)] + [^ θ)-^ 2)] ... hi).
磁性体の観察にあたって磁性体内で磁化の飽和は回避されることが望まれる。 磁性体内で磁ィ匕が飽和してしまうと、 磁区の構造は破壊されてしまう。 磁壁同士 の接続関係が変化してしまうことが予想される。 第 1磁界強度 は、 磁化の飽 和を誘引する磁界強度よりも十分に大きな値に設定されればよい。 第 2磁界強度 H。は、 磁化の飽和を誘引する磁界強度よりも十分に小さな値に設定されればよ い。 こうして第 1磁界強度 や第 2磁界強度 H 2が設定されれば、 磁性体内に 確立される磁壁同士の接続関係は確実に維持されることが予想される。 ただし、 第 1磁界強度 H 第 1検出値と第 2検出値との間に相違を生み出す大きさに 設定される。 同様に、 第 2磁界強度 H 2は、 第 1検出値と第 3検出値との間に相 違を生み出す大きさに設定される。 こうして磁壁の移動が生み出されれば、 磁壁 は確実に検出されることができる。 When observing a magnetic material, it is desired that saturation of magnetization in the magnetic material be avoided. If the magnetic material is saturated in the magnetic material, the structure of the magnetic domain will be destroyed. It is expected that the connection relationship between domain walls will change. The first magnetic field strength may be set to a value sufficiently larger than the magnetic field strength that induces the saturation of the magnetization. Second magnetic field strength H. Should be set to a value sufficiently smaller than the magnetic field strength that induces magnetization saturation. Yes. Thus it is set first magnetic field strength and the second magnetic field strength H 2 is connected relation of a domain wall between which is established a magnetic body is expected to be reliably maintained. However, the first magnetic field strength H is set to a value that produces a difference between the first detection value and the second detection value. Similarly, the second magnetic field strength H 2 is set to a size that produces phase differences between the first detection value and the third detection value. If the movement of the domain wall is generated in this way, the domain wall can be reliably detected.
以上のような磁化観察方法の実現にあたって、 力一顕微鏡といった磁化観察装 置は、 例えば、 指定の磁界強度、 指定の磁界強度よりも小さな第 1磁界強度、 並 びに、 指定の 界強度よりも大きな第 2磁界強度で磁界を発生する磁界生成機構 と、 磁界生成機構で生成される磁界に曝される磁性体まで光を誘導する光学系と、 指定の磁界強度並びに第 1および第 2磁界強度の磁界の印加時に磁性体の磁気光 学効果に基づき対応の第 1、 第 2および第 3検出値を特定する検出信号を出力す る受光素子と、 受光素子に接続されて、 2 :— 1 : 一 1の重み付けに基づき第 1、 第 2および第 3検出値を加算するプロセッサとを備えればよい。  In realizing the above-described magnetization observation method, a magnetization observation apparatus such as a force microscope, for example, uses a specified magnetic field strength, a first magnetic field strength smaller than the specified magnetic field strength, and a larger magnetic field strength than the specified field strength. A magnetic field generating mechanism for generating a magnetic field at the second magnetic field strength; an optical system for guiding light to a magnetic material exposed to the magnetic field generated by the magnetic field generating mechanism; and a specified magnetic field strength and first and second magnetic field strengths. When a magnetic field is applied, a light-receiving element that outputs a detection signal that specifies the corresponding first, second, and third detection values based on the magneto-optical effect of the magnetic body, and a light-receiving element that is connected to the light-receiving element; And a processor that adds the first, second, and third detection values based on the weighting of one.
その他、 前述の磁化観察方法は例えばソフトウェアプログラムで実現されても よい。 こういったソフトウェアプログラムは、 例えば、 指定の磁界強度 H。の磁 界内に配置される磁性体の磁ィヒに基づき生成される第 1検出信号を取得する工程 と、 指定の磁界強度 H。よりも小さな第 1磁界強度 の磁界内に配置される磁 性体の磁化に基づき生成される第 2検出信号を取得する工程と、 指定の磁界強度 H。よりも大きな第 2磁界強度 H 2の磁界内に配置される磁性体の磁化に基づき 生成される第 3検出信号を取得する工程と、 2 :— 1 :— 1の重み付けに基づき、 第 1、 第 2および第 3検出信号でそれぞれ特定される磁化の検出値を加算するェ 程とをプロセッサに実行させればよい。 ソフトウェアプログラムは、 特定の記憶 装置内に格納されてもよく、 コンパクトディスク (C D) やデジタルビデオディ スク (D V D) といった可搬性の記録媒体に格納されてもよい。 In addition, the above-described magnetization observation method may be realized by a software program, for example. Such software programs, for example, have a specified magnetic field strength H Obtaining a first detection signal generated based on a magnetic field of a magnetic substance disposed in the magnetic field of the specified magnetic field strength; Obtaining a second detection signal generated based on the magnetization of a magnetic body disposed in a magnetic field having a first magnetic field strength smaller than the specified magnetic field strength H; A step of acquiring a third detection signal generated based on the magnetization of the magnetic body disposed in the larger second magnetic field strength of H 2 in a magnetic field than, 2: - 1: - on the basis of the first weighting, first, The step of adding the detected values of the magnetization specified by the second and third detection signals may be executed by the processor. The software program may be stored in a specific storage device, or may be stored on a portable recording medium such as a compact disc (CD) or a digital video disc (DVD).
第 2発明によれば、 指定の磁界強度よりも小さな第 1磁界強度範囲で変化する 磁界を磁性体に作用させる工程と、 第 1磁界強度範囲内の磁界の変化中に磁性体 の磁気光学効果に基づき磁ィヒの変化の有無を検出する工程と、 指定の磁界強度よ りも大きな第 2磁界強度範囲で変化する磁界を磁性体に作用させる工程と、 第 2 磁界強度範囲内の磁界の変化中に磁性体の磁気光学効果に基づき磁化の変化の有 無を検出する工程とを備えることを特徴とする磁化観察方法が提供される。 According to the second invention, a step of applying a magnetic field that changes in the first magnetic field strength range smaller than the specified magnetic field strength to the magnetic body, and the magneto-optical effect of the magnetic body during the change of the magnetic field within the first magnetic field strength range Detecting the presence or absence of a change in the magnetic field based on the magnetic field; and applying a magnetic field that changes in a second magnetic field strength range larger than a specified magnetic field strength to the magnetic body. Detecting the presence or absence of a change in magnetization based on the magneto-optical effect of the magnetic substance during a change in the magnetic field within the magnetic field strength range.
一般に、 磁界の磁界強度が変化すると、 磁性体では磁区の拡大や縮小が引き起 こされる。 その結果、 磁壁は移動する。 磁界の変化中に特定の測定点が磁壁に横 切られると、 その測定点で磁化の向きは回転する。 したがって、 磁界の変化に伴 つて磁化の変化が検出されれば、 磁壁の位置は特定されることができる。  In general, when the magnetic field strength of the magnetic field changes, the magnetic material expands or contracts in the magnetic domain. As a result, the domain wall moves. When a particular measurement point is crossed by a domain wall during a change in the magnetic field, the direction of magnetization rotates at that measurement point. Therefore, if a change in magnetization is detected along with a change in the magnetic field, the position of the domain wall can be specified.
いま、 特定の磁区の内側で測定点を想定する。 磁区が縮小すると、 その測定点 は磁壁に横切られる。 磁化の回転は検出される。 その一方で、 磁区が拡大しても、 測定点では磁化の回転は検出されない。 言い換えれば、 第 1磁界強度範囲で磁化 の変化が検出される場合と、 第 2磁界強度範囲で磁化の変化が検出される場合と では磁壁の移動と磁界の増減との関係は区別されることができる。 こうして個々 の磁区内で磁化の向きに関する情報は得られることができる。  Now, assume a measurement point inside a specific magnetic domain. As the domain shrinks, its measurement point crosses the domain wall. The rotation of the magnetization is detected. On the other hand, even if the magnetic domain expands, the rotation of magnetization is not detected at the measurement point. In other words, when the change in magnetization is detected in the first magnetic field strength range and when the change in magnetization is detected in the second magnetic field strength range, the relationship between the movement of the domain wall and the increase and decrease of the magnetic field must be distinguished. Can be. In this way, information about the direction of magnetization in each magnetic domain can be obtained.
変化の有無の検出にあたって、 第 1および第 2磁界強度範囲で磁界強度は増大 すればよい。 この場合には、 磁化の変化に相当する磁化の増大が検出されればよ い。 磁ィ匕の増大の検出にあたって磁化の変化に基づき微分値は特定されればよい。 微分値の特定にあたって、 磁化観察方法は、 例えば、 第 1および第 2磁界強度範 囲で離散的に磁界強度を増大させる工程と、 偭々の磁界強度ごとに磁気光学効果 に基づき磁性体の磁化を検出し、 個々の磁界強度ごとに磁化の検出値を特定する 工程と、 今回の検出値から前回の検出値を差し引き、 磁化の変化値を算出するェ 程とを備えればよい。  In detecting the presence or absence of a change, the magnetic field strength may be increased in the first and second magnetic field strength ranges. In this case, an increase in magnetization corresponding to a change in magnetization may be detected. A differential value may be specified based on a change in magnetization when detecting an increase in the magnetic field. In identifying the differential value, the magnetization observation method includes, for example, a step of discretely increasing the magnetic field strength in the first and second magnetic field strength ranges, and a magnetization of the magnetic material based on the magneto-optical effect for each magnetic field strength. And a step of calculating the magnetization change value by subtracting the previous detection value from the current detection value and detecting the magnetization detection value for each magnetic field strength.
その他、 変化の有無の検出にあたって、 第 1および第 2磁界強度範囲で磁界強 度は減少してもよい。 この場合には、 磁化の変化に相当する磁ィ匕の減少は検出さ れればよい。 磁化の減少の検出にあたって磁化の変化に基づき微分値は特定され ればよい。 微分値の特定にあたって、 この種の磁化観察方法は、 第 1および第 2 磁界強度範囲で離散的に磁界強度を減少させる工程と、 個々の磁界強度ごとに磁 気光学効果に基づき磁性体の磁ィヒを検出し、 個々の磁界強度ごとに磁化の検出値 を特定する工程と、 今回の検出値から前回の検出値を差し引き、 磁化の変化値を 算出する工程とを備えればよい。  In addition, when detecting the presence or absence of the change, the magnetic field strength may be reduced in the first and second magnetic field strength ranges. In this case, it is sufficient that the decrease in the magnetic field corresponding to the change in the magnetization is detected. In detecting the decrease in the magnetization, the differential value may be specified based on the change in the magnetization. In identifying the differential value, this type of magnetization observation method includes a step of discretely reducing the magnetic field strength in the first and second magnetic field strength ranges, and a method of magnetizing the magnetic material based on the magneto-optical effect for each magnetic field strength. It is sufficient to include a step of detecting magnetization and specifying a detection value of magnetization for each magnetic field intensity, and a step of calculating a change value of magnetization by subtracting a previous detection value from a current detection value.
以上のような磁化観察方法の実現にあたって、 力一顕微鏡といつた磁化観察装 置は、 例えば、 指定の磁界強度よりも小さな第 1磁界強度範囲、 並びに、 指定の 磁界強度よりも大きな第 2磁界強度範囲で変化する磁界を発生する磁界生成機構 と、 磁界生成機構で生成される磁界に曝される磁性体まで光を誘導する光学系と、 磁性体から帰還する光を受光する受光素子と、 受光素子に接続されて、 第 1磁界 強度範囲の変化中および第 2磁界強度範囲の変化中に磁性体の磁気光学効果に基 づき磁化の変化の有無を検出するプロセッサとを備えればよい。 To realize the magnetization observation method described above, a magnetization observation device such as a force microscope was used. For example, the position is generated by a magnetic field generating mechanism that generates a magnetic field that changes in a first magnetic field strength range smaller than a specified magnetic field strength and a second magnetic field strength range larger than the specified magnetic field strength, and a magnetic field generating mechanism. An optical system that guides light to a magnetic body exposed to a magnetic field, a light receiving element that receives light returning from the magnetic body, and a light receiving element that is connected to the light receiving element to change the first magnetic field intensity range and to change the second magnetic field intensity. A processor may be provided for detecting the presence or absence of a change in magnetization based on the magneto-optical effect of the magnetic substance during the change of the range.
その他、 前述の磁化観察方法は例えばソフトウエアプログラムで実現されても よい。 こういったソフトウェアプログラムは、 例えば、 指定の磁界強度よりも小 さな第 1磁界強度範囲で変化する磁界内に配置される磁性体の磁化に基づき生成 される第 1検出信号を取得する工程と、 第 1検出信号に基づき磁化の変化の有無 を検出する工程と、 指定の磁界強度よりも大きな第 2磁界強度範囲で変化する磁 界内に配置される磁性体の磁ィヒに基づき生成される第 2検出信号を取得する工程 と、 第 2検出信号に基づき磁化の変ィヒの有無を検出する工程とをプロセッザに実 行させればよい。 ソフトウェアプログラムは、 特定の記憶装置内に格納されても よく、 コンパクトディスク (C D) やデジタルビデオディスク (D VD) といつ た可搬性の記録媒体に格納されてもよい。  In addition, the above-described magnetization observation method may be realized by, for example, a software program. Such a software program includes, for example, a step of obtaining a first detection signal generated based on the magnetization of a magnetic substance arranged in a magnetic field that changes in a first magnetic field strength range smaller than a specified magnetic field strength. Detecting the presence or absence of a change in magnetization based on the first detection signal; and generating the magnetic field based on a magnetic field of a magnetic substance arranged in a magnetic field that changes in a second magnetic field strength range larger than a specified magnetic field strength. The step of obtaining the second detection signal and the step of detecting the presence or absence of a change in magnetization based on the second detection signal may be performed by the processor. The software program may be stored in a specific storage device, or may be stored on a portable recording medium such as a compact disc (CD) or a digital video disc (DVD).
第 3発明によれば、 波形信号に基づき特定の周期で変化する磁界を磁性体に作 用させる工程と、 磁気光学効果に基づき磁性体の磁化を検出し、 磁化の検出値を 特定する工程と、 特定された検出値に、 波形信号に特定の位相関係で同期しつつ 波形信号の 2倍の周波数で周期的に変ィ匕する数値を掛け合わせる工程とを備える ことを特徴とする磁化観察方法が提供される。  According to the third aspect, a step of causing the magnetic body to apply a magnetic field that changes at a specific cycle based on the waveform signal, and a step of detecting the magnetization of the magnetic body based on the magneto-optical effect and specifying a detected value of the magnetization Multiplying the specified detection value by a numerical value that periodically changes at twice the frequency of the waveform signal while synchronizing with the waveform signal in a specific phase relationship. Is provided.
一般に、 磁界の磁界強度が変化すると、 磁性体では磁区の拡大や縮小が引き起 こされる。 その結果、 磁壁は移動する。 磁界の変化中に特定の測定点が磁壁に横 切られると、 その測定点で磁化の向きは急に回転する。 したがって、 磁界の変化 に伴って磁ィ匕の急変が検出されれば、 磁壁の位置は特定されることができる。 このとき、 磁化の検出値と前述の数値との積では磁化の変化は強調されること ができる。 しかも、 波形信号の 2倍の周波数で周期的に数値が変化する場合には、 磁壁の移動方向と磁界の増減との関係に応じて積では異なる符号 (十、 -) が特 定されることができる。 こうして算出結果に基づき磁化の検出値が視覚化されれ 200 In general, when the magnetic field strength of the magnetic field changes, the magnetic material expands or contracts in the magnetic domain. As a result, the domain wall moves. When a specific measurement point is traversed by a domain wall during a change in the magnetic field, the direction of the magnetization rapidly turns at that measurement point. Therefore, if the sudden change of the magnetic field is detected along with the change of the magnetic field, the position of the domain wall can be specified. At this time, the change in the magnetization can be emphasized by the product of the detected value of the magnetization and the above-mentioned numerical value. In addition, when the numerical value periodically changes at twice the frequency of the waveform signal, a different sign (10,-) is specified in the product according to the relationship between the moving direction of the domain wall and the increase / decrease of the magnetic field. Can be. In this way, the detected value of magnetization is visualized based on the calculation result. 200
ば、 磁壁の位置は特定されることができる。 しかも、 磁区内で磁化の向きは比較 的に簡単に推測されることができる。 If so, the position of the domain wall can be specified. Moreover, the direction of magnetization in the magnetic domain can be estimated relatively easily.
こうした磁化観察方法は、 検出値と数値との乗算結果に積分処理を施す工程を さらに備えてもよい。 こういった積分処理によれば、 磁化の変化は確実に検出さ れることができる。 波形信号の極大値および極小値を示す位相は、 数値の極大値 および極小値のいずれかを示す位相に一致すればよい。 こういった位相差によれ ば、 磁化の変化は確実に特定されることができる。  Such a magnetization observation method may further include a step of performing an integration process on a multiplication result of the detected value and the numerical value. According to such an integration process, a change in magnetization can be reliably detected. The phase indicating the maximum value and the minimum value of the waveform signal may coincide with the phase indicating either the maximum value or the minimum value of the numerical value. According to such a phase difference, a change in the magnetization can be reliably specified.
検出値には、 前述の数値との掛け合わせに先立って微分処理が施されてもよい。 こういった微分処理によれば、 磁化の変化は一層確実に検出されることができる。 ただし、 この場合には、 波形信号の極大値および極小値を示す位相は、 数値で極 大値および極小値の中間値を示す位相と一致することが望まれる。  The detection value may be subjected to a differentiation process prior to the multiplication with the above numerical value. According to such a differentiation process, a change in magnetization can be detected more reliably. However, in this case, it is desired that the phase indicating the maximum value and the minimum value of the waveform signal coincide with the phase indicating the intermediate value between the maximum value and the minimum value in a numerical value.
以上のような磁化観察方法の実現にあたって、 カー顕微鏡といった磁化観察装 置は、 例えば、 波形信号に基づき特定の周期で変化する磁界を生成する磁界生成 機構と、 磁界生成機構で生成される磁界に曝される磁性体まで光を誘導する光学 系と、 磁性体から帰還する光に基づき検出値を特定する検出信号を出力する受光 素子と、 受光素子に接続されて、 波形信号に特定の位相関係で同期しつつ波形信 号の 2倍の周波数で周期的に変化する周期信号を検出信号に掛け合わせる掛け算 器とを備えればよい。 積分処理の実現にあたって、 掛け算器には口一パスフィル 夕が接続されればよい。 微分処理の実現にあたって、 掛け算器および受光素子の 間には八ィパスフィル夕が配置されればよい。 図面の簡単な説明  In realizing the above-described magnetization observation method, a magnetization observation device such as a Kerr microscope uses, for example, a magnetic field generation mechanism that generates a magnetic field that changes at a specific cycle based on a waveform signal, and a magnetic field generated by the magnetic field generation mechanism. An optical system that guides light to the exposed magnetic material, a light-receiving element that outputs a detection signal that specifies a detection value based on the light that returns from the magnetic material, and a specific phase relationship with the waveform signal that is connected to the light-receiving element And a multiplier for multiplying the detection signal by a periodic signal that periodically changes at twice the frequency of the waveform signal while synchronizing. In order to implement the integration process, a one-pass filter may be connected to the multiplier. In realizing the differential processing, an eight-pass filter may be arranged between the multiplier and the light receiving element. Brief Description of Drawings
図 1は、 本発明の第 1実施形態に係るカー顕微鏡の構造を概略的に示すプロッ ク図である。  FIG. 1 is a block diagram schematically showing a structure of a Kerr microscope according to the first embodiment of the present invention.
図 2は、 偏光分布制御機構の構造を概略的に示す拡大平面図である。  FIG. 2 is an enlarged plan view schematically showing the structure of the polarization distribution control mechanism.
図 3は、 磁性体の磁区の構造を概略的に示す概念図である。  FIG. 3 is a conceptual diagram schematically showing the structure of a magnetic domain of a magnetic body.
図 4は、 磁ィ匕の観察にあたってプロセッサ (C P U) の処理動作を示すフロ一 チヤ一卜である。  FIG. 4 is a flowchart showing the processing operation of the processor (CPU) in observing Gyidani.
図 5 A〜図 5 Fは、 右回り還流磁区の観察にあたって処理動作の原理を概略的 に示す概念図である。 5A to 5F schematically show the principle of the processing operation when observing clockwise return magnetic domains. FIG.
図 6 A〜図 6 Fは、 左回り還流磁区の観察にあたって処理動作の原理を概略的 に示す概念図である。  6A to 6F are conceptual diagrams schematically showing the principle of the processing operation in observing the counterclockwise return magnetic domain.
図 7 A〜図 7 Fは、 右回り還流磁区の観察にあたって比較例に係る処理動作を 概略的に示す概念図である。  7A to 7F are conceptual diagrams schematically showing processing operations according to a comparative example in observing clockwise return magnetic domains.
図 8 A〜図 8 Fは、 左回り還流 区の観察にあたって比較例に係る処理動作を 概略的に示す概念図である。 .  8A to 8F are conceptual diagrams schematically showing a processing operation according to a comparative example when observing a counterclockwise reflux zone. .
図 9は、 磁化の観察にあたって他の具体例に係る処理動作を示すフローチヤ一 トである。  FIG. 9 is a flowchart showing a processing operation according to another specific example in observing the magnetization.
図 1 0 A〜図 1 0 Cは、 処理動作の原理を概略的に示す概念図である。  10A to 10C are conceptual diagrams schematically showing the principle of the processing operation.
図 1 1 Aおよび図 1 1 Bは、 磁界強度の増大中に特定の測定点で観察される磁 化の変化を示すグラフである。 '  FIGS. 11A and 11B are graphs showing the change in magnetization observed at a particular measurement point during an increase in magnetic field strength. '
図 1 2 Aおよび図 1 2 Bは、 磁界強度の増大と検出値の差分との関係を示すグ ラフである。  FIGS. 12A and 12B are graphs showing the relationship between the increase in the magnetic field strength and the difference between the detected values.
図 1 3 Aおよび図 1 3 Bは、 磁界強度の減少中に特定の測定点で観察される磁 化の変化を示すグラフである。  Figures 13A and 13B are graphs showing the change in magnetization observed at a particular measurement point during a decrease in magnetic field strength.
図1 4八ぉょび図1 4 8は、 磁界強度の減少と検出値の差分との関係を示すグ ラフである。  FIGS. 144 and 148 are graphs showing the relationship between the decrease in the magnetic field strength and the difference between the detected values.
図 1 5 Aおよび図 1 5 Bは、 磁界強度の増減中に特定の測定点で検出される検 出値の変化を示すグラフである。  FIGS. 15A and 15B are graphs showing changes in detection values detected at specific measurement points while the magnetic field strength is increasing or decreasing.
図 1 6は、 本発明の第 2実施形態に係るカー顕微鏡の構造を概略的に示すプロ ック図である。  FIG. 16 is a block diagram schematically showing a structure of a Kerr microscope according to the second embodiment of the present invention.
図 1 7 Aおよび図 1 7 Bは、 第 1周波数に基づき変化する磁界と磁化との関係 を示すグラフである。  FIGS. 17A and 17B are graphs showing the relationship between the magnetic field that changes based on the first frequency and the magnetization.
図 1 8 Aおよび図 1 8 Bは、 第 1周波数に基づき変化する磁化と第 2周波数の 波形信号との関係を示すグラフである。  FIGS. 18A and 18B are graphs showing the relationship between the magnetization that changes based on the first frequency and the waveform signal of the second frequency.
図 1 9は、 本発明の第 3実施形態に係る力一^微鏡の構造を概略的に示すプロ ック図である。  FIG. 19 is a block diagram schematically showing a structure of a force microscope according to the third embodiment of the present invention.
図 2 O Aおよび図 2 0 Bは、 微分処理後の磁化の検出値と、 9 0 ° の位相差 で変化する第 1周波数の信号波形との関係を示すグラフである。 Fig. 2 OA and Fig. 20B show the detected value of magnetization after differential processing and the phase difference of 90 °. 6 is a graph showing a relationship with a signal waveform of a first frequency that changes in FIG.
図 2 1 Aおよび図 2 1 Bは、 微分処理後の磁化の検出値と、 9 0 ° の位相差 で変化する第 2周波数の信号波形との関係を示すグラフである。 発明を実施するための最良の形態  FIGS. 21A and 21B are graphs showing the relationship between the detected value of the magnetization after the differential processing and the signal waveform of the second frequency that changes with a phase difference of 90 °. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照しつつ本発明の実施形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図 1は本発明の第 1実施形態に係る力一顕微鏡の構造を概略的に示す。 この力 —顕微鏡 1 1は可動ステージ 1 2を備える。 可動ステージ 1 2には例えば 1水平 面に沿って広がる支持面 1 3が規定される。 支持面 1 3に測定対象物すなわち磁 性体 1 4は受け止められる。 可動ステージ 1 2は少なくとも 1水平面内で移動す ることができる。 可動ステージ 1 2の移動はステージドライバ 1 5から供給され る電気信号に基づき制御される。  FIG. 1 schematically shows the structure of a force microscope according to a first embodiment of the present invention. This force—the microscope 1 1 has a movable stage 1 2. For example, a support surface 13 extending along one horizontal plane is defined on the movable stage 12. The object to be measured, ie, the magnetic body 14 is received on the support surface 13. The movable stage 12 can move within at least one horizontal plane. The movement of the movable stage 12 is controlled based on an electric signal supplied from the stage driver 15.
可動ステージ 1 2には磁界生成機構 1 6が関連付けられる。 この磁界生成機構 1 6は例えば 1対の電磁石 1 7、 1 7で構成されればよい。 電磁石 1 7、 1 7は、 電磁石ドライバ 1 8から供給される電流の大きさや向きに応じて所望の磁界強度 で磁界 1 9を生成する。 こうした磁界 1 9の働きで支祷面 1 3上の磁性体 1 4に は規定の方向に沿つて磁束が流通する。  A magnetic field generating mechanism 16 is associated with the movable stage 12. The magnetic field generating mechanism 16 may be composed of, for example, a pair of electromagnets 17. The electromagnets 17 and 17 generate the magnetic field 19 with a desired magnetic field strength according to the magnitude and direction of the current supplied from the electromagnet driver 18. By the action of such a magnetic field 19, a magnetic flux flows through the magnetic body 14 on the worship surface 13 along a prescribed direction.
カー顕微鏡 1 1は光源 2 1をさらに備える。 光源 2 1には例えば波長 4 0 0 n mのレーザビームを出力するレーザダイォードが用いられればよい。 レーザビー ムは可動ステージ 1 2の支持面 1 3に向かって出力される。 レ一ザビームでは例 えば直線偏光が確立される。  The Kerr microscope 11 further includes a light source 21. For example, a laser diode that outputs a laser beam having a wavelength of 400 nm may be used as the light source 21. The laser beam is output toward the support surface 13 of the movable stage 12. The laser beam establishes, for example, linearly polarized light.
光源 2 1および可動ステージ 1 2の間には光学系 2 2が配置される。 この光学 系 2 2は、 例えば可動ステージ 1 2に向き合わせられる対物レンズ 2 3を備える。 光源 2 1および対物レンズ 2 3の間には例えばビームスプリッタ 2 4が配置され る。 光源 2 1から出力されるレーザビームはビ一ムスプリッ夕 2 4を通過する。 その後、 レーザビームは対物レンズ 2 3から磁性体 1 4に照射される。 対物レン ズ 2 3は磁性体 1 4の表面に微小なビームスポットを形成する。 こうしてレーザ ビ一ムは指定の偏光面で磁性体 1 4まで誘導される。 レーザビ一ムは磁性体 1 4 の表面で反射する。 レーザビームは再び対物レンズ 2 3からビームスプリッ夕 2 4に導かれる。 このとき、 前述の磁界生成機構 1 6は対物レンズ 2 3に関連付け られてもよい。 An optical system 22 is arranged between the light source 21 and the movable stage 12. The optical system 22 includes, for example, an objective lens 23 facing the movable stage 12. A beam splitter 24 is disposed between the light source 21 and the objective lens 23, for example. The laser beam output from the light source 21 passes through the beam splitter 24. After that, the laser beam is applied to the magnetic body 14 from the objective lens 23. The objective lens 23 forms a minute beam spot on the surface of the magnetic body 14. In this way, the laser beam is guided to the magnetic body 14 with the designated plane of polarization. The laser beam reflects off the surface of the magnetic body 14. The laser beam is again split from the objective lens 23 by the beam splitter 2. Guided to 4. At this time, the above-described magnetic field generation mechanism 16 may be associated with the objective lens 23.
ビームスプリッタ 2 4には偏光ビームスプリッタ 2 5が向き合わせられる。 磁 性体 1 4から帰還するレーザビームはビ一ムスプリッ夕 2 4で反射する。 レーザ ビームはビ一ムスプリッタ 2 4から偏光ビ一ムスプリッタ 2 5に導かれる。 偏光 ビームスプリッ夕 2 5は相互に直交する偏光面でレーザビームを分解する。  A polarizing beam splitter 25 is opposed to the beam splitter 24. The laser beam returning from the magnetic body 14 is reflected at the beam splitter 24. The laser beam is directed from beam splitter 24 to polarizing beam splitter 25. The polarization beam splitter 25 splits the laser beam with polarization planes orthogonal to each other.
偏光ビ一ムスプリッタ 2 5の背後には受光素子すなわちフォトディテクタ 2 6、 2 6が配置される。 偏光ビ一ムスプリッタ 2 5で分解されたレ一ザビームは、 集 光された後に、 偏光面ごとにフォトディテクタ 2 6で検出される。 こうして偏光 面ごとにレ一ザビームは電気信号に変換される。  Behind the polarizing beam splitter 25, light receiving elements, that is, photodetectors 26 and 26 are arranged. The laser beam decomposed by the polarization beam splitter 25 is collected, and then detected by the photodetector 26 for each polarization plane. Thus, the laser beam is converted into an electric signal for each polarization plane.
フォトディテクタ 2 6、 2 6には差動アンプ 2 7力接続される。 差動アンプ 2 7は 2つの電気信号の差分を導き出す。 こうした差分に基づき偏光面の回転は検 出される。  A differential amplifier 27 is connected to the photodetectors 26 and 26. The differential amplifier 27 derives the difference between the two electrical signals. The rotation of the polarization plane is detected based on the difference.
差動アンプ 2 7にはアナログデジタルコンバータ (AZDコンバータ) 2 8が 接続される。 AZDコンバータ 2 8は差動アンプ 2 7から出力されるアナログの 電気信号からデジタル信号を生成する。 AZDコンバータ 2 8にはコンピュータ 装置 2 9が接続される。 コンピュータ装置 2 9は、 AZDコンバータ 2 8から供 給されるデジタル信号すなわち検出信号を取得するプロセッサ (C P U) 3 1を 備える。 C P U 3 1の動作は例えば記憶装置 3 2に格納されるソフトウェアプロ グラムに基づき実現される。 所定のソフトウェアプログラムが実行されると、 C P U 3 .1はステージドライバ 1 5や電磁石ドライバ 1 8に所定の指令信号を供給 する。 記憶装置 3 2には、 F D D (フレキシブルディスク駆動装置) や HD D (ハードディスク駆動装置)、 C D (コンパクトディスク) 駆動装置、 D V D (デジタルビデオディスク) 駆動装置、 メモリといったものが用いられればよい。 コンピュータ装置 2 9にはディスプレイ装置 3 3が接続される。 ディスプレイ 装置 3 3の画面上にはイメージやテキストが表示されることができる。 C P U 3 1は前述の検出信号に基づきディスプレイ装置 3 3の画面上に磁区のイメージを 描画することができる。  An analog / digital converter (AZD converter) 28 is connected to the differential amplifier 27. The AZD converter 28 generates a digital signal from the analog electric signal output from the differential amplifier 27. A computer device 29 is connected to the AZD converter 28. The computer device 29 includes a processor (CPU) 31 that acquires a digital signal, that is, a detection signal, supplied from the AZD converter 28. The operation of the CPU 31 is realized based on, for example, a software program stored in the storage device 32. When a predetermined software program is executed, the CPU 3.1 supplies a predetermined command signal to the stage driver 15 and the electromagnet driver 18. As the storage device 32, an FDD (flexible disk drive), an HDD (hard disk drive), a CD (compact disk) drive, a DVD (digital video disk) drive, a memory, or the like may be used. The display device 33 is connected to the computer device 29. Images and texts can be displayed on the screen of the display device 33. The CPU 31 can draw an image of the magnetic domain on the screen of the display device 33 based on the detection signal described above.
この力一顕微鏡 1 1では、 ビームスプリッ夕 2 4および偏光ビ一ムスプリッタ 2 5の間に偏光分布制御機構 3 4が組み込まれる。 この偏光分布制御機構 3 4に は、 図 2に示されるように、 例えば 4枚の半波長板 3 5 a〜3 5 dで構成される 分割半波長板 3 5が用いられれぱよい。 この分割半波長板 3 5は、 1水平面で相 互に接合される第 1および第 2半波長板 3 5 a、 3 5 bと、 1垂直面で相互に接 合される第 3および第 4半波長板 3 5 c、 3 5 dとを備える。 第 1および第 3半 波長板 3 5 a、 3 5 cでは中性軸方位角は— 2 2 . 5 ° に設定される。 その一 方で、 第 2および第 4半波長板 3 5 b、 3 5 dでは中性軸方位角は + 2 2 . 5 ° に設定される。 In this force microscope 11, the beam splitter 24 and the polarizing beam splitter are used. Between 25, a polarization distribution control mechanism 34 is incorporated. As the polarization distribution control mechanism 34, as shown in FIG. 2, a split half-wave plate 35 composed of, for example, four half-wave plates 35a to 35d may be used. The split half-wave plate 35 is composed of first and second half-wave plates 35a and 35b joined to each other on a horizontal plane, and third and fourth half-wave plates 35 and 35b joined to each other on a vertical plane. Half-wave plates 35 c and 35 d are provided. In the first and third half-wave plates 35a and 35c, the neutral axis azimuth is set to −22.5 °. On the other hand, in the second and fourth half-wave plates 35b and 35d, the neutral axis azimuth is set to + 22.5 °.
こういった分割半波長板 3 5では、 磁気カー効果の働きで + <5 ° に回転した 偏光が通過すると、 第 1および第 3半波長板 3 5 a、 3 5 cで (一 4 5— δ ° ) の偏光が確立される。 同様に、 第 2および第 4半波長板 3 5 b、 3 5 d では (4 5— (5 ° ) の偏光が確立される。 その結果、 第 1および第 3半波長板 3 5 a , 3 5 cと第 2および第 4半波長板 3 5 b、 3 5 dとの間には 9 0 ° の ずれが生み出されることができる。 したがって、 この力一顕微鏡 1 1によれば、 例えば第 1および第 2半波長板 3 5 a、 3 5 bの境界に沿ってレーザビーム 3 6 力透過すると、 極力一効果は相互に打ち消される。 こうして面内磁化 X成分は検 出される。 第 3および第 4半波長板 3 5 c、 3 5 dの境界に沿ってレーザビーム 3 7が透過すると、 極力一効果は相互に打ち消される。 こうして面内磁化 y成分 は検出される。 レーザビーム 3 8が境界に触れずに第 2半波長板 3 5 bのみを透 過すれば、 垂直磁化成分は検出されることができる。  In such a split half-wave plate 35, the first and third half-wave plates 35a and 35c pass (1-45- δ °) is established. Similarly, the second and fourth half-wave plates 35 b and 35 d establish a polarization of (45— (5 °). As a result, the first and third half-wave plates 35 a and 3 A 90 ° shift can be created between 5c and the second and fourth half-wave plates 35b, 35d.Accordingly, according to the force microscope 11, for example, When the laser beam 36 is transmitted along the boundary between the second half-wave plate 35a and the second half-wave plate 35b, the first effect is canceled out as much as possible, and thus the in-plane magnetization X component is detected. (4) When the laser beam 37 passes along the boundary between the half-wave plates 35c and 35d, the effect is canceled out as much as possible, and the in-plane magnetization y component is thus detected. If the light passes through only the second half-wave plate 35b without touching, the perpendicular magnetization component can be detected.
いま、 薄膜の磁性体 1 4で面内磁化 X成分の検出に基づき磁区の構造を観察す る場面を想定する。 磁性体 1 4では、 例えば図 3に示されるように、 隣接する磁 区 4 1 a、 4 1 b , 4 1同士の間に磁壁 4 2 a、 4 2が確立される。  Now, assume a case where the structure of a magnetic domain is observed based on the detection of the in-plane magnetization X component of the thin magnetic material 14. In the magnetic body 14, for example, as shown in FIG. 3, domain walls 42a and 42 are established between the adjacent magnetic domains 41a, 41b and 41.
観察にあたって、 まず、 C P U 3 1は磁性体 1 4の表面に複数の測定点を設定 する。 図 3から明らかなように、 測定点は例えば行列 L X Mの格子状に配置さ れる。 測定点は、 例えば、 支持面 1 3に予め設定される平面座標 (X, Y) に従 つて特定されればよい。 測定点の位置 (X, Y) にビ一ムスポットの中心は位置 合わせされる。 隣接する測定点同士の間隔は均一に設定されればよい。 隣接する 測定点同士でビ一ムスポットは重なり合ってもよく相互に離隔してもよい。 CPU31は所定のソフトウェアプログラムに従って処理動作を実現する。 図 4に示されるように、 観察が開始されると、 CPU31はステップ S 1で初期化 を実施する。 ステップ S 2では、 C P U 31の処理動作に基づき磁性体 14に指 定の磁界強度 H。で磁界 19は印加される。 磁界の印加にあたって CPU 31は 所定の指令信号を生成する。 生成される指令信号では電流の電流値や向きが特定 される。 こうした指令信号に基づき電磁石ドライバ 18は電磁石 17、 17に電 流を供給する。 電磁石 17、 17の働きで磁界強度 H。の磁界 19は生成される。 生成された磁界 19はステージ 12上の磁性体 14に作用する。 In observation, first, the CPU 31 sets a plurality of measurement points on the surface of the magnetic body 14. As is clear from FIG. 3, the measurement points are arranged, for example, in a matrix LXM. The measurement point may be specified in accordance with, for example, plane coordinates (X, Y) preset on the support surface 13. The center of the beam spot is aligned with the position (X, Y) of the measurement point. The intervals between adjacent measurement points may be set to be uniform. The beam spots may be overlapped or separated from each other at adjacent measurement points. The CPU 31 implements a processing operation according to a predetermined software program. As shown in FIG. 4, when the observation is started, the CPU 31 performs initialization in step S1. In step S2, the magnetic field strength H specified for the magnetic body 14 based on the processing operation of the CPU 31. A magnetic field 19 is applied. When applying a magnetic field, the CPU 31 generates a predetermined command signal. The generated command signal specifies the current value and direction of the current. The electromagnet driver 18 supplies current to the electromagnets 17 and 17 based on such a command signal. Magnetic field strength H by the action of electromagnets 17 and 17. A magnetic field 19 is generated. The generated magnetic field 19 acts on the magnetic body 14 on the stage 12.
ここで、 磁界強度 H。には、 規定の方向に沿って正の値および負の値が規定さ れることができる。 言い換えれば、 磁界強度 H0が負の値 (H。<0) に設定さ れると、 磁界 19の向きは反転する。 負の値が減少すると、 反転後の磁界は増大 する。 しかも、 磁界強度 H0には 「0 (ゼロ)」 値が含まれる。 磁界強度 H。にHere, the magnetic field strength H. Can be defined as positive and negative values along a specified direction. In other words, when the magnetic field strength H 0 is set to a negative value (H. <0), the direction of the magnetic field 19 is reversed. As the negative value decreases, the magnetic field after reversal increases. Moreover, the magnetic field strength H 0 includes a “0 (zero)” value. Magnetic field strength H. In
「0」 値が設定されると、 電磁石 17、 17から磁界は発生されない。 ただし、 本明細書中ではいずれも磁界強度 HQの 「磁界」 と表現される。 磁界強度 H0は 適宜の値に設定されればよい。 When the “0” value is set, no magnetic field is generated from the electromagnets 17 and 17. However, in this specification, any of them is expressed as a “magnetic field” of the magnetic field strength H Q. The magnetic field strength H 0 may be set to an appropriate value.
ステップ S 3で CPU31は第 1検出値 s k (H。) を取得する。 第 1検出値 s k (H0) の取得にあたってビ一ムスポットは位置 (X i , Y j ) に位置決め される。 レーザビームは磁性体 14の表面から反射する。 レーザビームでは磁性 体 14の磁気カー効果の働きで偏光面の回転が引き起こされる。 偏光面の回転は 差動アンプ 27で定量化される。 こうして AZDコンバータ 28は偏光面の回転 量に応じた大きさで第 1検出値 s k (H。) を出力する。 CPU31は例えば記 憶装置 32に第 1検出値 sk (H。) を記録する。 In step S3, the CPU 31 obtains a first detection value sk (H.). Bicycloalkyl one beam spot when the acquisition of the first detection value s k (H 0) is positioned at a position (X i, Y j). The laser beam is reflected from the surface of the magnetic body 14. In the laser beam, the rotation of the polarization plane is caused by the action of the magnetic Kerr effect of the magnetic body 14. The rotation of the plane of polarization is quantified by the differential amplifier 27. Thus, the AZD converter 28 outputs the first detection value sk (H.) with a size corresponding to the rotation amount of the polarization plane. The CPU 31 records the first detection value sk (H.) in the storage device 32, for example.
ステップ S 4では、 CPU 31の処理動作に基づき磁界強度 H。よりも小さな 磁界強度 Ηλ «H0) で磁性体 14に磁界 19は印加される。 前述と同様に、 磁界の印加にあたって CPU 31は所定の指令信号を生成する。 こうした指令信 号に基づき電磁石ドライノ 18は電磁石 17、 17に電流を供給する。 電磁石 1 7、 17の働きで磁界強度 の磁界 19は生成される。 生成された磁界 19は ステージ 12上の磁性体 14に作用する。 前述と同様に、 磁界強度 Hiには、 負 の値 (1^<0) や 「0 (ゼロ)」 値が設定されてもよい。 5で CPU3 1は第 2検出値 s k ( ^) を取得する。 第 2検 出値 s k (Hi) の取得にあたってビームスポットは位置 (X Y j ) に保持 される。 AZDコンバータ 28は偏光面の回転量に応じた大きさで第 2検出値 s kα) を出力する。 CPU3 1は例えば記憶装置 32に第 2検出値 s k (H j) を記録する。 レーザスポット内で磁化の向きが変化しなければ、 第 2検出値 s k (H は第 1検出値 s k (H0) に一致する。 In step S4, the magnetic field strength H is set based on the processing operation of the CPU 31. A magnetic field 19 is applied to the magnetic body 14 with a smaller magnetic field strength よ りλ «H 0 ). As described above, upon application of the magnetic field, the CPU 31 generates a predetermined command signal. The electromagnet dryno 18 supplies current to the electromagnets 17 and 17 based on such a command signal. The electromagnets 17 and 17 generate a magnetic field 19 having a magnetic field strength. The generated magnetic field 19 acts on the magnetic body 14 on the stage 12. As described above, the magnetic field strength Hi may be set to a negative value (1 ^ <0) or a “0 (zero)” value. At 5, the CPU 31 acquires the second detection value sk (^). Beam spot when the acquisition of the second test detection value s k (Hi) is held in position (XY j). AZD converter 28 outputs the second detection value s kα) in the magnitude corresponding to the amount of rotation of the polarization plane. The CPU 31 records the second detection value s k (H j) in the storage device 32, for example. If the direction of magnetization does not change in the laser spot, the second detected value s k (H is equal to the first detected value s k (H 0 ).
ステップ S 6では、 CPU 31の処理動作に基づき磁界強度 H。よりも大きな 磁界強度 H2 (>H0) で磁性体 14に磁界 1 9は印加される。 前述と同様に、 磁界の印加にあたって CPU3 1は所定の指令信号を生成する。 こうした指令信 号に基づき電磁石ドライバ 18は電磁石 17、 1 7に電流を供給する。 電磁石 1 7、 1 7の働きで磁界強度 の磁界 1 9は生成される。 生成された磁界 19は ステージ 1 2上の磁性体 14に作用する。 前述と同様に、 磁界強度 Η2には、 負 の値 (Η2く 0) や 「0 (ゼロ)」 値が設定されてもよい。 In step S6, the magnetic field strength H is set based on the processing operation of the CPU 31. A magnetic field 19 is applied to the magnetic body 14 with a magnetic field strength H 2 (> H 0 ) higher than that. As described above, upon application of the magnetic field, the CPU 31 generates a predetermined command signal. The electromagnet driver 18 supplies current to the electromagnets 17 and 17 based on the command signal. The electromagnets 17 generate a magnetic field 19 of magnetic field strength. The generated magnetic field 19 acts on the magnetic body 14 on the stage 12. As before, the magnetic field strength Eta 2 is a negative value (Eta 2 ° 0) or "0" (zero) value may be set.
続くステップ S 7で CPU3 1は第 3検出値 s k (H2) を取得する。 第 3検 出値 s k (H2) の取得にあたってビームスポットは位置 (X i, Y j ) に保持 される。 AZDコンバータ 28は偏光面の回転量に応じた大きさで第 3検出値 s k (H2) を出力する。 CPU3 1は例えば記憶装置 32に第 3検出値 s k (H 2) を記録する。 レ一ザスポット内で磁化の向きが変化しなければ、 第 3検出値 s k (H2) は第 1検出値 s k (H。) や第 2検出値 s k (Hx) に一致する。 In CPU 3 1 Step S 7 followed to obtain a third detection value s k (H 2). Third beam spot when the acquisition of test detection value s k (H 2) is held in position (X i, Y j). The AZD converter 28 outputs the third detection value sk (H 2 ) with a magnitude corresponding to the amount of rotation of the polarization plane. The CPU 31 records the third detection value s k (H 2 ) in the storage device 32, for example. If the direction of magnetization does not change in the laser spot, the third detection value sk (H 2 ) matches the first detection value sk (H.) and the second detection value sk (H x ) .
第 1検出値 s k (H。)、 第 2検出値 s k (Hx) および第 3検出値 s k (H2) の 測定は規定の回数 Nで繰り返される。 規定の回数 Nの完了がステップ S 8で確認 されるまで、 記憶装置 32には N個の第 1検出値 s k (H0) や N個の第 2検出 値 s k (Hx) N個の第 3検出値 s k (H2) が記録される。 こうして第 1検出値 s k (H。)、 第 2検出値 s k (Hi) および第 3検出値 s k (H2) の測定が完了す ると、 C P U 3 1の処理動作はステツプ S 9に移行する。 First detection value s k (H.), measurement of the second detection value s k (H x) and the third detection value s k (H 2) is repeated at specified times N. Until the completion of the specified number N is confirmed in step S8, the storage device 32 stores N first detection values s k (H 0 ) and N second detection values s k (H x ) N Is recorded as the third detection value s k (H 2 ). Thus the first detection value s k (H.), the measurement of the second detection value s k (Hi) and the third detection value s k (H 2) is complete, the processing operation CPU 3 1 is step S 9 Move to
ステップ S 9で、 CPU31は、 取得した N個の第 1検出値 s k (H0)、 N個 の第 2検出値 s k (Κ,) および Ν個の第 3検出値 s k (H2) に基づき出力値 tIn step S 9, CPU 31 is first detected value s k (H 0) of the N acquired, the N of the second detection value s k (kappa,) and Ν pieces of the third detection value s k (H 2 ) Based on the output value t
(H0) を算出する。 2 :— 1 :一 1の重み付けに基づき第 1検出値 s k (H0)、 第 2検出値 s k (H および第 3検出値 s k (H2) は加算される。 算出にあた つて例えば次式が用いられればよい。 (H 0 ) is calculated. 2: The first detection value s k (H 0 ), the second detection value s k (H and the third detection value s k (H 2 ) are added based on the weighting of 1: 1. For example, the following equation may be used.
[数式 2]  [Formula 2]
^ο) = ^·∑{2· sk(H0) - [¾(^) + sk H2)] } ^ ο) = ^ · ∑ {2 · s k (H 0 )-[ ¾ (^) + s k H 2 )]}
■N =ι
Figure imgf000015_0001
■ N = ι
Figure imgf000015_0001
ただし、 次式が用いられても同様な結果は得られる。 However, similar results can be obtained even if the following equation is used.
[数式 3] + sk(H2)] } .. 3)
Figure imgf000015_0002
[Equation 3] + s k (H 2 )]} .. 3)
Figure imgf000015_0002
ここで、 係数ひにはいかなる数値がはめ込まれてもよい。 算出の原理は後述され る。 Here, any numerical value may be inserted in the coefficient. The principle of calculation will be described later.
その後、 CPU31は、 ステップ S 10で、 出力値 t (H0) に基づき表示処 理を実施する。 CPU31は出力値 t (H0) に基づき画素の種類を決定する。 画素は出力値 t (H0) の大きさに基づき例えば色分けされればよい。 こうして 位置 (X i, Yj ) で測定される磁化は視覚化される。 Then, CPU 31 at step S 10, to implement the display processing based on the output value t (H 0). The CPU 31 determines the type of the pixel based on the output value t (H 0 ). The pixels may be color-coded based on the magnitude of the output value t (H 0 ), for example. Thus the magnetization measured at position (X i, Yj) is visualized.
続くステップ S 11では、 y列の全ての位置 (X i, Yj ) で画素が決定され たか否かが判断される。 未決定の画素が残存する場合には、 CPU 31の処理動 作はステップ S 2に戻る。 ステップ S 2〜S 10の処理動作が繰り返されるたび に X座標値は加算されていく。 こうして y列中の全ての位置 (X i, Yj ) で画 素は決定されていく。 y列で全ての画素が決定されると、 処理動作はステップ S 12に移行する。  In the following step S11, it is determined whether or not pixels have been determined at all positions (Xi, Yj) in the y column. If undetermined pixels remain, the processing operation of the CPU 31 returns to step S2. Each time the processing operation of steps S2 to S10 is repeated, the X coordinate value is added. Thus, pixels are determined at all positions (X i, Yj) in the y column. When all pixels are determined in the y-th column, the processing operation shifts to Step S12.
ステップ S 12では、 ステップ S 2〜S 11の処理動作が全ての y列に対して 実施されたか否かが判断される。 未処理の y列が残存する場合には、 CPU31 の処理動作はステップ S 2に戻る。 ステップ S 2〜S 11の処理動作が繰り返さ れるたびに y座標値は加算されていく。 こうして行列 LXMの全ての位置 (X i , Y j) で画素は決定される。 ディスプレイ装置 33の画面上には磁壁 42 a、 In step S12, it is determined whether the processing operations in steps S2 to S11 have been performed for all y columns. If the unprocessed y columns remain, the processing operation of the CPU 31 returns to step S2. Each time the processing operations of steps S2 to S11 are repeated, the y coordinate value is added. Thus, the pixel is determined at every position (X i, Y j) of the matrix LXM. The domain wall 42a is displayed on the screen of the display device 33,
42が描き出される。 ここで、 [数 2] の原理を簡単に説明する。 図 5 Aに示されるように、 指定の 磁界強度 H。で磁界 19が磁性体 14に作用すると、 磁性体 14では磁区 41 a, 41 b、 41が確立される。 次に、 磁界強度 H。よりも小さい磁界強度 Hiで磁 界 19が磁性体 14に作用すると、 図 5Bに示されるように、 磁性体 14では磁 界 19の減少に伴い磁区 41 bは拡大する。 磁区 41 aは縮小する。 磁壁 42 a、 42の移動は引き起こされる。 特に、 磁区 41 a、 4 l bで規定の方向 (x軸) に平行な磁化や反平行な磁化が確立される場合には、 規定の方向に平行な磁壁 4 2 aは、 ほぼその平行な姿勢を維持しつつ、 規定の方向に直交する y軸に平行に 移動する。 ここで、 磁界 19の減少には規定の方向に反対向きの磁界の増大が含 まれる。 反対に、 磁界強度 H。よりも大きい磁界強度 H2で磁界 19が磁性体 1 4に作用すると、 図 5Cに示されるように、 磁性体 14では磁界 19の増加に伴 い磁区 41 aは拡大する。 磁区 41 bは縮小する。 こうして磁壁 42 a、 42の 移動は引き起こされる。 磁壁 42 aは、 ほぼその平行な姿勢を維持しつつ、 規定 の方向に直交する y軸に平行に移動する。 ここで、 磁界 19の増加には規定の方 向に反対向きの磁界の減少が含まれる。 42 is drawn. Here, the principle of [Equation 2] will be briefly described. The specified field strength H, as shown in Figure 5A. When the magnetic field 19 acts on the magnetic body 14 in the magnetic field 14, magnetic domains 41a, 41b, and 41 are established in the magnetic body 14. Next, the magnetic field strength H. When the magnetic field 19 acts on the magnetic body 14 at a smaller magnetic field strength Hi, as shown in FIG. 5B, in the magnetic body 14, the magnetic domain 41b expands as the magnetic field 19 decreases. Domain 41a shrinks. The movement of the domain walls 42a, 42 is caused. In particular, if the magnetic domain 41 a, 4 lb establishes magnetization parallel to the specified direction (x-axis) or antiparallel magnetization, the domain wall 42 a parallel to the specified direction is almost parallel While maintaining the position, move parallel to the y-axis perpendicular to the specified direction. Here, the decrease in the magnetic field 19 includes an increase in the magnetic field in the opposite direction to the prescribed direction. Conversely, magnetic field strength H. When a magnetic field 19 is applied to the magnetic substance 1 4 a large magnetic field strength H 2 than, as shown in Figure 5C, entailment domain 41 a to an increase in the magnetic body 14 in the magnetic field 19 will expand. Domain 41b shrinks. Thus, the movement of the domain walls 42a and 42 is caused. The domain wall 42a moves in parallel to the y-axis orthogonal to the prescribed direction while maintaining the substantially parallel posture. Here, the increase in the magnetic field 19 includes a decrease in the magnetic field in the opposite direction to the prescribed direction.
第 2検出値 s k (H^ および第 3検出値 s k (H2) が加算されると、 例えば 図 5 Dに示されるように、 磁壁 42、 42 aの移動範囲では個々の位置 (X i , Yj ) ごとに異なる向きの磁化ベクトルは加算される。 特に、 磁壁 42 aの移動 範囲では個々の位置 (X i, Yj ) ごとに反平行の磁ィヒ同士が仮想的に打ち消さ れる (Mg = 0)。 磁壁 42、 42 aの移動範囲から外れた領域では個々の位置 (X i, Y i) ごとに同じ向きの磁化ベクトルは加算される。 When the second detection value s k (H ^ and the third detection value s k (H 2 ) are added, for example, as shown in FIG. 5D, individual positions (X i, Yj), the magnetization vectors of different directions are added.Especially, in the movement range of the domain wall 42a, the antiparallel magnetic waves are virtually canceled at each position (Xi, Yj) ( (Mg = 0) In the region outside the moving range of the domain walls 42 and 42a, the magnetization vectors of the same direction are added for each position (Xi, Yi).
磁界強度 Hい H 2の強弱に関わりなく磁ィ匕 M gの向きが変化しない場合には、 第 2検出値 s k (Hi) と第 3検出値 s k (H2) とは等しい。 第 2および第 3検 出値 s k (Hx), sk (H2) の平均値に変化は生じない。 同一の磁ィ匕が保持され る。 その一方で、 磁壁 42の周辺では個々の位置 (X i, Yj ) ごとに異なる向 きの磁化 Mg同士が足し合わせられる。 磁化 Mgは回転する。 第 2および第 3検 出値 sk (H^, sk (H2) の平均値は規定の方向から測定される角度に応じて 増減する。 The second detection value s k and (Hi) and the third detection value s k (H 2) is equal when the direction of no磁I匕M g involved in the intensity of the magnetic field intensity H There H 2 does not change. The average value of the second and third detection values s k (H x ) and s k (H 2 ) does not change. The same magnetism is maintained. On the other hand, in the vicinity of the domain wall 42, the magnetized Mg in different directions is added at each position (X i, Yj). Magnetized Mg rotates. Second and third test detection value s k (H ^, the average value of s k (H 2) is increased or decreased according to the angle measured from a defined direction.
例えば [数 2] のように、 第 1検出値 s k (H0) の 2倍値から第 2および第 3検出値 s k (1^)、 s k (H2) の加算値が差し引かれると、 図 5Eに示される ように、 磁壁 42 42 aの周辺では個々の位置 (X i Y j ) ごとに磁ィ匕べク トルは残存する。 第 1、 第 2および第 3検出値 sk (H。)、 sk (H ), sk (H 2) には均等にノイズが含まれると想定されることから、 差し引きに基づきノィ ズは相殺される。 純粋な磁化ベクトルは特定される。 その一方で、 磁壁 42 4 2 aの移動範囲から外れた領域では仮想的に磁化 Mgは打ち消される (Mg 0)。 こうして磁壁 42 a 42のみが際立たせられる。 したがって、 磁性体 1 4の表面状態に拘わらず明瞭な磁区構造は視覚化されることができる。 For example, as shown in [Equation 2], the second and the second values are calculated from twice the first detection value s k (H 0 ) (3) When the sum of the detected values s k (1 ^) and s k (H 2 ) is subtracted, as shown in FIG. 5E, around the domain wall 42 42a, each position (X i Y j) The porcelain vector remains. First, second and third detection values s k (H.), s k (H), since it is assumed to include uniformly noise to s k (H 2), Noi's based on the subtraction is Offset. Pure magnetization vectors are specified. On the other hand, in the region outside the movement range of the domain wall 42 42 a, the magnetized Mg is virtually canceled (Mg 0). In this way, only the domain walls 42a42 are highlighted. Therefore, a clear magnetic domain structure can be visualized regardless of the surface state of the magnetic body 14.
しかも、 図 5 Eから明らかなように、 磁壁 42 42 aを挟んで磁区 41 a 41 b 41同士の間では磁化 Mgの向きは区別される。 こうした磁化 Mgの向 きが視覚ィ匕されれば、 磁区 41 a 41 b 41内で磁化 Mgの向きは比較的に 簡単に特定されることができる。 例えば図 5 Fに示されるように、 面内磁化 X成 分のみが検出される場合でも、 [数式 2] のような計算処理によれば、 磁区 41 a 41 b 41内で磁化 Mgの向きは十分に推測されることができる。 なお、 [数式 2] のように、 出力値 t (H0) の算出にあたって N回の測定結果から平 均値が求められる必要は必ずしもない。 言い換えれば、 出力値 t (H。) の算出 にあたって N=lが設定されてもよい。 その他、 以上の原理に基づく限り、 いか なる計算処理が実行されてもよい。 Moreover, as is clear from FIG. 5E, the direction of the magnetization Mg is distinguished between the magnetic domains 41 a 41 b 41 across the domain wall 42 42 a. If the direction of the magnetized Mg is visually recognized, the direction of the magnetized Mg in the magnetic domains 41 a 41 b 41 can be relatively easily specified. For example, as shown in FIG. 5F, even when only the in-plane magnetization X component is detected, according to a calculation process such as [Equation 2], the direction of the magnetization Mg in the magnetic domains 41 a 41 b 41 is Can be fully inferred. As in [Equation 2], it is not always necessary to calculate the average value from the N measurement results in calculating the output value t (H 0 ). In other words, N = l may be set in calculating the output value t (H.). In addition, any calculation process may be executed as long as it is based on the above principle.
ここで、 図 6Aに示されるように、 前述のようなお回り還流磁区に代えて磁性 体 14で左回り還流磁区が確立される場面を想定する。 磁界強度 H。よりも小さ い磁界強度 で磁界 19が磁性体 14に作用すると、 図 6Bに示されるように、 磁性体 14では磁界 19の減少に伴い磁区 41 aは拡大する。 磁区 41 bは縮小 する。 磁壁 42 a 42の移動は引き起こされる。 このとき、 前述の右回り還流 磁区とは反対向きに磁壁 41 a 42は移動する (図 5B参照)。 反対に、 磁界 強度 H。よりも大きい磁界強度 H2で磁界 19が磁性体 14に作用すると、 図 6 Cに示されるように、 磁性体 14では磁界 19の増加に伴い磁区 41 bは拡大す る。 磁区 41 aは縮小する。 磁壁 42 a 42の移動は引き起こされる。 磁壁 4 2 a 42は前述の右回り還流磁区とは反対向きに移動する。 Here, as shown in FIG. 6A, it is assumed that a counterclockwise return magnetic domain is established by the magnetic body 14 in place of the above-described turnaround magnetic domain. Magnetic field strength H. When the magnetic field 19 acts on the magnetic body 14 with a smaller magnetic field strength, as shown in FIG. 6B, in the magnetic body 14, the magnetic domain 41a expands as the magnetic field 19 decreases. Domain 41b shrinks. The movement of the domain wall 42 a 42 is caused. At this time, the domain walls 41a and 42 move in the direction opposite to the clockwise return magnetic domain described above (see FIG. 5B). Conversely, magnetic field strength H. When a magnetic field 19 is applied to the magnetic body 14 in a large magnetic field strength H 2 than, as shown in FIG. 6 C, the magnetic domain 41 b with the increase of the magnetic body 14 in the magnetic field 19 that to expand. Domain 41a shrinks. The movement of the domain wall 42 a 42 is caused. The domain wall 42a42 moves in the opposite direction to the clockwise return magnetic domain described above.
前述と同様に、 第 2検出値 s kχ) および第 3検出値 s k (H2) が加算さ れると、 例えば図 6Dに示されるように、 磁壁 42 aの移動範囲では個々の位置 (X i , Yj ) ごとに異なる向きの磁ィ匕ベクトルは加算される。 特に、 磁壁 42 42 aの移動範囲では個々の位置 (X i, Yj ) ごとに反平行の磁化同士が仮想 的に打ち消される (Mg = 0)。 磁壁 42、 42 aの移動範囲から外れた領域で は個々の位置 (X i, Yj ) ごとに同じ向きの磁化ベクトルは加算される。 例え ば [数 2] のように、 第 1検出値 s k (H0) の 2倍値から第 2および第 3検出 値 sk (Hx), s k (H2) の加算値が差し引かれると、 図 6 Eに示されるように、 磁壁 42、 42 aの周辺では個々の位置 (X i, Y j ) ごとに磁化べクトルは残 存する。 図 5Eとの比較から明らかなように、 出力値 t (H0) では右回り還流 磁区とは反対向きに磁化は特定されることができる。 例えば図 6 Fに示されるよ うに、 [数式 2] のような計算処理によれば、 たとえ面内磁化 X成分のみが検出 される場合でも磁区 41 a、 41 b 41内で磁化 Mgの向きは十分に推測され ることができる。 右回り還流磁区と左回り還流磁区とは確実に区別されることが できる。 As before, the second detection value s kχ), and the third detection value s k (H 2) is of the addition Then, as shown in FIG. 6D, for example, in the moving range of the domain wall 42a, the magnetic direction vectors different from each other at the respective positions (X i, Yj) are added. In particular, in the moving range of the domain wall 42 42a, the antiparallel magnetizations are virtually canceled at each position (X i, Yj) (Mg = 0). In the region outside the moving range of the domain walls 42 and 42a, the magnetization vectors of the same direction are added for each position (Xi, Yj). For example, as shown in [Equation 2], the sum of the second and third detection values s k (H x ) and s k (H 2 ) is subtracted from the double value of the first detection value s k (H 0 ). Then, as shown in Fig. 6E, the magnetization vector remains at each position (Xi, Yj) around the domain walls 42 and 42a. As is clear from the comparison with FIG. 5E, in the output value t (H 0 ), the magnetization can be specified in the opposite direction to the clockwise return magnetic domain. For example, as shown in FIG. 6F, according to the calculation processing of [Equation 2], even when only the in-plane magnetization X component is detected, the direction of the magnetization Mg in the magnetic domains 41 a and 41 b 41 is as follows. It can be fully inferred. The clockwise return domain and the counterclockwise return domain can be reliably distinguished.
以上のようなカー顕微鏡 1 1では、 磁性体 14の観察にあたって磁化の飽和は 回避されることが望まれる。 磁性体 14内で磁化が飽和してしまうと、 それ以前 の磁区の構造は完全に破壊されてしまう。 磁壁 42 a、 42同士の接続関係が変 化してしまうことが予想される。 第 1磁界強度 は、 磁化の飽和を誘引する磁 界強度よりも十分に大きな値に設定されればよい。 第 2磁界強度 H2は、 磁ィ匕の 飽和を誘引する磁界強度よりも十分に小さな値に設定されればよい。 こうして第 1磁界強度 や第 2磁界強度 H2が設定されれば、 磁性体 14内に確立される 磁壁同士の接続関係は確実に維持されることが予想される。 ただし、 第 1磁界強 度 1^は、 第 1検出値 s k (H0) と第 2検出値 s k (Hi) との間に相違を生み出 す大きさに設定されなければならない。 同様に、 第 2磁界強度 H2は、 第 1検出 値 s k (H。) と第 3検出値 s k (H2) との間に相違を生み出す大きさに設定さ れなければならない。 In the Kerr microscope 11 as described above, it is desired that saturation of the magnetization be avoided when observing the magnetic body 14. When the magnetization is saturated in the magnetic body 14, the structure of the magnetic domain before that is completely destroyed. It is expected that the connection relationship between the domain walls 42a and 42 will change. The first magnetic field strength may be set to a value sufficiently larger than the magnetic field strength that induces the saturation of the magnetization. The second magnetic field strength H 2 may be set to a value sufficiently smaller than the magnetic field strength that induces the saturation of the magnetic field. Thus it is set first magnetic field strength and the second magnetic field strength H 2 is connected relation of a domain wall between which is established a magnetic body 14 is expected to be reliably maintained. However, the first magnetic field strength 1 ^ must be set to a magnitude that produces a difference between the first detected value s k (H 0 ) and the second detected value s k (Hi). Similarly, the second magnetic field strength H 2 must be set to a magnitude that produces a difference between the first detected value s k (H.) and the third detected value s k (H 2 ).
一般に、 磁性体 14では、 固有の性質に基づき第 1および第 2磁界強度  Generally, the magnetic material 14 has the first and second magnetic field strengths based on the inherent properties.
H2の大きさと ί兹壁 42 a、 42の移動量とは相関付けられる。 したがって、 力 —顕微鏡 1 1では、 使用者の操作に基づき比較的に簡単に第 1磁界強度 1^や第 2磁界強度 H2の大きさは変更されることができることが望まれる。 使用者は、 ディスプレイ装置 33の画面に映し出される磁区の画像に基づき第 1磁界強度 H 丄や第 2磁界強度 H2の大きさを調整すればよい。 The magnitude of H 2 and the amount of movement of the ί 兹 walls 42 a and 42 are correlated. Therefore, in the force-microscope 11, the first magnetic field strength 1 ^ and the The size of the 2 magnetic field intensity H 2 is desirable to be able to change. The user may be adjusted first magnetic field strength H丄and size of the second magnetic field strength H 2 based on the image of the magnetic domain to be displayed on the screen of the display device 33.
本発明者は比較例を検証した。 この比較例では、 例えば図 7 A〜図 7 Cに示さ れるように、 前述と同様に指定の磁界強度 HQ、 第 1磁界強度 Htおよび第 2磁 界強度 H2で磁界が磁性体 14に印加される。 ただし、 この比較例では、 磁壁 4 2 a、 42の検出にあたって第 3検出値 s k CH2) から第 2検出値 s k (Hx) は差し引かれる。 この場合には、 図 7Dに示されるように、 磁区 41 a、 41 b、 42内で磁化 Mgの検出値は打ち消される。 磁壁 42 a、 42は明瞭に描き出さ れることができる。 The inventor has verified a comparative example. In this comparative example, as shown for example in FIG. 7 A to FIG 7 C, the magnetic field strength specified in the same manner as described above H Q, the magnetic field in the first magnetic field strength H t and the second magnetic field intensity H 2 is the magnetic body 14 Is applied. However, in this comparative example, the second detection value s k (H x ) is subtracted from the third detection value sk k 2 ) when detecting the domain walls 42 a and 42. In this case, as shown in FIG. 7D, the detected value of the magnetized Mg is canceled in the magnetic domains 41a, 41b, and 42. The domain walls 42a and 42 can be clearly drawn.
その一方で、 図 8 A〜図 8 Cに示されるように、 この比較例で、 右回り還流磁 区に代えて磁性体 14で左回り還流磁区が確立される場面を検証する。 この比較 例では、 磁壁 42 a、 42の検出にあたって第 3検出値 s k (H2) から第 2検 出値 s k (Hx) は差し引かれると、 図 8 Dに示されるように、 磁壁 42 a、 4 2は明瞭に描き出されることができる。 しかしながら、 図 7 Eおよび図 8 Eの比 較から明らかなように、 面内磁化 X成分に基づき磁ィ匕の向きは全く区別されるこ とはできない。 図 7 Fおよび図 8 Fの比較から明らかなように、 面内磁化 y成分 に基づき磁化の向きは全く区別されることはできない。 以上のように、 比較例で は、 磁壁 42 a、 42は特定されるものの、 磁区 41 a、 41 b, 41内の磁ィ匕 の向きは全く特定されることはできない。 On the other hand, as shown in FIGS. 8A to 8C, in this comparative example, a situation where a counterclockwise return magnetic domain is established by the magnetic body 14 instead of the clockwise return magnetic domain will be verified. In this comparative example, when the second detection value s k (H x ) is subtracted from the third detection value s k (H 2 ) in detecting the domain walls 42 a and 42, as shown in FIG. 42a, 42 can be clearly depicted. However, as is apparent from the comparison between FIG. 7E and FIG. 8E, the direction of the magnetic field cannot be distinguished at all based on the in-plane magnetization X component. As is clear from the comparison between FIG. 7F and FIG. 8F, the direction of magnetization cannot be distinguished at all based on the in-plane magnetization y component. As described above, in the comparative example, the domain walls 42a and 42 are specified, but the direction of the magnetic domain in the magnetic domains 41a, 41b and 41 cannot be specified at all.
前述の第 1実施形態に係る力一顕微鏡 11では、 例えば図 9に示されるように、 磁区の観察にあたって他の処理動作が用いられてもよい。 CPU31は所定のソ フトウェアプログラムに従って処理動作を実現する。 観察が開始されると、 CP U31はステップ T 1で初期化を実施する。 ステップ T2では、 CPU31の処 理動作に基づき初期磁界強度 1^で磁性体 14に磁界は印加される。 磁界の印加 にあたって CPU 31は所定の指令信号を生成する。 こうした指令信号に基づき 電磁石ドライバ 18は電磁石 17、 17に電流を供給する。  In the force microscope 11 according to the first embodiment described above, for example, as shown in FIG. 9, another processing operation may be used in observing the magnetic domain. The CPU 31 implements a processing operation according to a predetermined software program. When the observation is started, the CPU 31 performs initialization in step T1. In step T2, a magnetic field is applied to the magnetic body 14 at an initial magnetic field strength 1 ^ based on the processing operation of the CPU 31. When applying a magnetic field, the CPU 31 generates a predetermined command signal. The electromagnet driver 18 supplies current to the electromagnets 17 and 17 based on such command signals.
初期磁界強度 H ,は指定の磁界強度 H。よりも小さい磁界強度に設定される。 前述と同様に、 任意の磁界強度 Hkが負の値 (Hk<0) に設定されると、 磁界 19の向きは反転する。 負の値が減少すると、 反転後の磁界は増大する。 磁界強 度 Hkには 「0 (ゼロ)」 値が含まれることができる。 例えば指定の磁界強度 H。 に 「0」 が設定される場合には、 初期磁界強度 には負の値が設定される。 ステップ Τ3で CPU31は位置 (X i, Y j ) の検出値 s (Hk) を取得す る。 検出値 s (Hk) は、 前述と同様に、 AZDコンバータ 28から出力される 検出信号から特定される。 CPU 31は例えば記憶装置 32に検出値 s (Hk) を記録する。 The initial magnetic field strength H is the designated magnetic field strength H. The magnetic field strength is set to be smaller than that. As before, if any magnetic field strength H k is set to a negative value (H k <0), The direction of 19 is reversed. As the negative value decreases, the field after reversal increases. The magnetic field strength H k can include a “0 (zero)” value. For example, the specified magnetic field strength H. If is set to “0”, the initial magnetic field strength is set to a negative value. In step .tau.3 CPU 31 is you get position (X i, Y j) of the detected value s (H k). The detection value s (H k ) is specified from the detection signal output from the AZD converter 28 as described above. The CPU 31 records the detected value s (H k ) in the storage device 32, for example.
ステップ T4では、 CPU 31は磁界強度 Hkを設定し直す。 従前の磁界強度 Hkに増加分の磁界強度 Hi ncは加算される。 ステップ T5で CPU31は代数 kを更新する。 続くステップ T 6では C P U 31の処理動作に基づき磁界強度 H kで磁性体 14に磁界 19は印加される。 すなわち、 磁界 19の磁界強度 Hkは 増大する。 ステップ T 7で CPU 31は位置 (X i, Y j ) の検出値 s (Hk) を取得する。 In step T4, the CPU 31 resets the magnetic field strength H k . Magnetic field strength Hi nc increment the previous field strength H k are summed. At step T5, the CPU 31 updates the algebra k. In the subsequent step T6 , a magnetic field 19 is applied to the magnetic body 14 at a magnetic field strength Hk based on the processing operation of the CPU 31. That is, the magnetic field strength H k of the magnetic field 19 increases. CPU 31 in step T 7 acquires position (X i, Y j) of the detected value s (H k).
ステップ T 8で、 CPU 31は磁界強度 Hkの出力値 t (Hk) を算出する。 Step T 8, CPU 31 calculates the output value t of the magnetic field strength H k (H k).
CPU 31は、 例えば奇関数 f (H) および偶関数 g (s) に基づき次式に従つ て出力値 t (Hk) を算出する。 The CPU 31 calculates an output value t (H k ) based on, for example, the odd function f (H) and the even function g (s) according to the following equation.
[数式 4] [Formula 4]
Figure imgf000020_0001
…(
Figure imgf000020_0001
… (
ただし、 However,
[数式 5]  [Formula 5]
H = Hk-H0 ...(5) H = H k -H 0 ... (5)
… ) 算出の原理は後述される。 算出された出力値 t (Hk) はステップ T 9で累積さ れていく。 ステップ Τ 10では、 磁界強度 Hkが最大磁界強度 ΗΝに到達したか 否かが判断される。 到達していなければ、 C P U 31の処理動作は再びステツプ Τ4に戻る。 こうして磁界強度の増大に伴い個々の磁界強度 Hkで出力値 t (H k) は取得されていく。 ここで、 最大磁界強度 HNは指定の磁界強度 H。よりも大 きい磁界強度に設定される。 この場合には、 初期磁界強度 1^から指定の磁界強 度 H。までの範囲は磁界強度 H。よりも小さな第 1磁界強度範囲に相当する。 そ の一方で、 指定の磁界強度 H。から最大磁界強度 HNまでの範囲は磁界強度 H。よ りも大きな第 2磁界強度範囲に相当する。 ...) The principle of calculation will be described later. The calculated output values t (H k ) are accumulated in step T9. In step T 10, the magnetic field strength H k is whether the host vehicle has reached the maximum magnetic field strength Eta New is determined. If not, the processing operation of the CPU 31 returns to step # 4 again. As the magnetic field strength increases, the output value t (H k ) is obtained at each magnetic field strength H k . Here, the maximum magnetic field strength H N is the specified magnetic field strength H. It is set to a larger magnetic field strength. In this case, the initial magnetic field strength 1 ^ Degree H. The range up to the magnetic field strength H. This corresponds to a smaller first magnetic field strength range. On the other hand, the specified magnetic field strength H. The range from to the maximum magnetic field strength H N is the magnetic field strength H. This corresponds to a larger second magnetic field strength range.
個々の磁界強度 Hkで取得される出力値 t (Hk) が累積される結果、 出力値 t (H。) は特定される。 この出力値 t (H。) では、 磁界 1 9の増大に伴い引 き起こされる磁化の増大の有無が特定される。 こうした増大の有無に応じて、 規 定の磁界強度 H。の磁界に曝される磁性体 14では磁壁の位置が特定されること ができる。 しかも、 磁区内では磁化の向きは比較的に簡単に推測されることがで きる。 例えば第 1磁界強度範囲内の変化中に磁化の増大が検出されると、 出力値 t (H0) は 「0 (ゼロ)」 値よりも大きな値を示す。 このとき、 位置 (X i , Y j ) の磁化ベクトルでは例えば規定の向き (X軸) に正向きに磁化成分は特定 されることができる。 その一方で、 第 2磁界強度範囲内の変化中に磁ィヒの増大が 検出されると、 出力値 t (H。) は 「0 (ゼロ)」 値よりも小さい値を示す。 こ のとき、 磁化ベクトルでは、 反対向きすなわち X軸の負向きに磁化成分は特定さ れることができる。 As a result of accumulating the output values t (H k ) obtained at the individual magnetic field strengths H k , the output values t (H.) are specified. The output value t (H.) specifies whether the magnetization caused by the increase in the magnetic field 19 is increased or not. The prescribed magnetic field strength H depends on the presence or absence of such an increase. In the magnetic body 14 exposed to the magnetic field, the position of the domain wall can be specified. Moreover, the direction of magnetization in the magnetic domain can be estimated relatively easily. For example, if an increase in magnetization is detected during a change in the first magnetic field strength range, the output value t (H 0 ) will be greater than the “0 (zero)” value. At this time, in the magnetization vector at the position (X i, Y j), for example, the magnetization component can be specified in the specified direction (X axis) in the positive direction. On the other hand, if an increase in the magnetic field is detected during a change in the second magnetic field strength range, the output value t (H.) indicates a value smaller than the “0 (zero)” value. At this time, in the magnetization vector, the magnetization component can be specified in the opposite direction, that is, in the negative direction of the X axis.
ステップ T10で出力値 t (H。) の算出の完了が確認されると、 CPU31 はステップ T 1 1で出力値 t (H。) に基づき表示処理を実施する。 こうして位 置 (X i, Y j ) で測定される磁化は視覚化される。 その後、 行列 LXMの全 ての位置 (X i, Y j ) で画素は決定されていく。 こうしてディスプレイ装置 3 3の画面上には磁壁 42 a、 42が描き出される。  When the completion of the calculation of the output value t (H.) is confirmed in step T10, the CPU 31 performs a display process based on the output value t (H.) in step T11. The magnetization measured at the position (Xi, Yj) is thus visualized. Thereafter, pixels are determined at all positions (Xi, Yj) of the matrix LXM. Thus, the domain walls 42 a and 42 are drawn on the screen of the display device 33.
前述のステツプ T 2〜T 10に基づけば次式の計算処理は実現される。  Based on the above-described steps T2 to T10, the following calculation processing is realized.
[数式 6] [Equation 6]
Q) = - [f(H)'g(s)] ...(7)  Q) =-[f (H) 'g (s)] ... (7)
ここで、 この [数式 6] の原理を簡単に説明する。 図 1 OAに示されるように、 指定の磁界強度 H。で磁界 19が磁性体 14に作用すると、 磁性体 14では磁区 41 a, 41 b, 41が確立される。 次に、 初期磁界強度 Hiで磁界 19が磁性 体 14に作用すると、 図 10Bに示されるように、 磁性体 14では磁界 19の減 少に伴い磁区 41 bは拡大する。 磁区 41 aは縮小する。 磁壁 42 a、 42の移 動は引き起こされる。 反対に、 磁界強度 H。よりも大きい最大磁界強度 HNで磁 界 1 9が磁性体 1 4に作用すると、 図 1 0 Cに示されるように、 磁性体 1 4では 磁界 1 9の増加に伴い磁区 4 1 aは拡大する。 磁区 4 1 bは縮小する。 磁壁 4 2 a、 4 2の移動は引き起こされる。 したがって、 初期磁界強度 から最大磁界 強度 HNまで磁界強度 H kが増大していくと、 磁壁 4 2 aは所定の測定点 4 3 a、 4 3 bを横切っていく。 こうして磁壁 4 2 aが横切る際に個々の測定点 4 3 a、 4 3 bでは磁化 M gは変化する。 すなわち、 磁化 M gは回転する。 Here, the principle of [Equation 6] will be briefly described. Designated magnetic field strength H, as shown in Figure 1 OA. When the magnetic field 19 acts on the magnetic body 14 in the magnetic field 14, magnetic domains 41a, 41b, and 41 are established in the magnetic body 14. Next, when the magnetic field 19 acts on the magnetic body 14 with the initial magnetic field strength Hi, as shown in FIG. 10B, in the magnetic body 14, the magnetic domains 41b are enlarged as the magnetic field 19 decreases. Domain 41a shrinks. The movement of the domain walls 42a and 42 is caused. Conversely, magnetic field strength H. Magnetic field strength greater than H N When the field 19 acts on the magnetic material 14, as shown in FIG. 10C, the magnetic domain 41 a of the magnetic material 14 expands as the magnetic field 19 increases. Domain 4 1 b shrinks. The movement of the domain walls 42a, 42 is caused. Therefore, as the magnetic field strength H k increases from the initial magnetic field strength to the maximum magnetic field strength H N , the domain wall 42 a crosses the predetermined measurement points 43 a and 43 b. Thus, when the domain wall 42 a crosses, the magnetization Mg changes at the individual measurement points 43 a and 43 b. That is, the magnetization M g rotates.
このとき、 測定点 4 3 aでは、 初期磁界強度 から磁界強度 H。に至るまで に磁化は回転する。 すなわち、 指定の磁界強度 H。よりも小さい第 1磁界強度範 囲で磁化は回転する。 磁化の回転に伴い、 図 1 1 Aに示されるように、 測定点 4 3 aでは磁ィ匕 M gは急激に増加する。 前述の [数式 6 ] によれば、 図 1 2 Aから 明らかなように、 検出値の差分 sは磁化の回転時に所定の値を示すものの、 磁化 の回転前や磁化の回転後には 「0 (ゼロ)」 値が維持される。 ここで、 検出値の 差分 sは磁化の変化すなわち増大の微分値に相当する。  At this time, at the measuring point 43a, the magnetic field strength is H from the initial magnetic field strength. The magnetization rotates before reaching. That is, the specified magnetic field strength H. The magnetization rotates in the first magnetic field strength range smaller than that. With the rotation of the magnetization, as shown in FIG. 11A, at the measurement point 43a, the magnetic field Mg increases rapidly. According to [Equation 6] described above, as is apparent from FIG. 12A, the difference s in the detected value shows a predetermined value during the rotation of the magnetization, but “0 ( Zero) "value is maintained. Here, the difference s in the detected values corresponds to a change in the magnetization, that is, a differential value of the increase.
その一方で、 測定点 4 3 bでは、 磁界強度 H。から最大磁界強度 HNに至るま でに磁化は回転する。 すなわち、 指定の磁界強度 H。よりも大きい第 2磁界強度 範囲で磁化は回転する。 磁化の回転に伴い、 図 1 1 Bに示されるように、 測定点 4 3 bでは磁化 M gは急激に増加する。 前述の [数式 6 ] によれば、 図 1 2 B力、 ら明らかなように、 検出値の差分 sは磁化の回転時に所定の値を示すものの、 磁 化の回転前や磁化の回転後には 「0 (ゼロ)」 値が維持される。 On the other hand, at the measurement point 4 3 b, the magnetic field strength H. The magnetization rotates from to the maximum magnetic field strength H N. That is, the specified magnetic field strength H. The magnetization rotates in the second magnetic field strength range larger than. With the rotation of the magnetization, the magnetization Mg increases rapidly at the measurement point 43 b as shown in FIG. 11B. According to [Equation 6] above, as apparent from Fig. 12B force, the difference s in the detected value shows a predetermined value at the time of the rotation of the magnetization, but before the rotation of the magnetization or after the rotation of the magnetization. The “0 (zero)” value is maintained.
偶関数 g ( s ) に奇関数: f (H) が掛け合わせられると、 図 1 2 Aから明らか なように、 測定点 4 3 aでは差分 sに負の値は掛け合わせられる。 その一方で、 図 1 2 Bに示されるように、 測定点 4 3 bでは差分 sに正の値は掛け合わせられ る。 したがって、 測定点 4 3 aと測定点 4 3 bとは確実に区別されることができ る。 すなわち、 指定の磁界強度 H。の磁界に曝される磁性体 1 4では磁区 4 1 a、 4 1 b内の磁ィ匕の向きは確実に区別される。 しかも、 同一の位置 (X i, Y j ) が維持される限り検出値 s (Hk) には均等にノイズが含まれることが想定され ることから、 検出にあたってノイズの影響は確実に排除されることができる。 When the even function g (s) is multiplied by the odd function f (H), the difference s is multiplied by a negative value at the measurement point 43a, as is clear from Fig. 12A. On the other hand, as shown in FIG. 12B, at the measurement point 43 b, the difference s is multiplied by a positive value. Therefore, measurement point 43a and measurement point 43b can be reliably distinguished. That is, the specified magnetic field strength H. In the magnetic body 14 exposed to the above magnetic field, the directions of the magnetic domains in the magnetic domains 41a and 41b are surely distinguished. Moreover, as long as the same position (X i, Y j) is maintained, it is assumed that the detected value s (H k ) contains noise evenly, so that the influence of noise on detection is reliably eliminated. Can be
(H) には例えば次式のようなステップ関数が用いられればよい。 [数式 7] ΛΗ) 〜(8)
Figure imgf000023_0001
For (H), for example, a step function such as the following equation may be used. [Formula 7] ΛΗ) ~ (8)
Figure imgf000023_0001
その他、 次式のような奇関数 f (H) が用いられてもよい In addition, an odd function f (H) such as
[数式 8]  [Equation 8]
f H H 〜(9) こういった奇関数 f (H) によれば、 出力値 t (H0) では、 磁化の回転が引き 起こされる磁界強度 H kと指定の磁界強度 H。との差分に比例した値は特定され ることができる。 磁区 41 a、 41 bの構造はさらに詳細に観察されることがで さる。 f HH ((9) According to such an odd function f (H), at the output value t (H 0 ), the magnetic field strength H k at which the rotation of the magnetization is caused and the specified magnetic field strength H. The value proportional to the difference from can be specified. It can be seen that the structure of the magnetic domains 41a, 41b can be observed in more detail.
その一方で、 偶関数 g (s) には次式のような関数が用いられてもよい。 こう いった偶関数によれば、 磁化の変化に対して感度は高められることができる。  On the other hand, the following function may be used for the even function g (s). According to these even functions, the sensitivity to the change in magnetization can be increased.
[数式 9] [Equation 9]
( = |" (η>1) ...(10)  (= | "(η> 1) ... (10)
その他、 偶関数 g (s) には次式のようなステップ関数が用いられてもよい。 こ こでは、 閾値 s THはノイズの大きさなどに基づき適宜に設定されればよい。 In addition, a step function such as the following equation may be used for the even function g (s). Here, the threshold s TH may be appropriately set based on the magnitude of noise or the like.
[数式 10]
Figure imgf000023_0002
なお、 前述と同様に、 初期磁界強度 は、 磁化の飽和を誘引する磁界強度よ りも十分に大きな値に設定されればよい。 最大磁界強度 HNは、 磁化の飽和を誘 引する磁界強度よりも十分に小さな値に設定されればよい。 こうして初期磁界強 度 や最大磁界強度 HNが設定されれば、 磁性体 14内に確立される磁壁同士 の接続関係は維持されることが予想される。 ただし、 初期磁界強度 や最大磁 界強度 HNは、 出力値 t (H0) で磁化の増大を判別することができる大きさに 設定されなければならない。 前述の原理では、 磁壁 4 2 a、 4 2の移動が生み出 されなければ、 磁区 4 1 a、 4 1 b、 4 1内で磁ィヒの向きは検出されることはで きない。 しかも、 前述と同様に、 力一顕微鏡 1 1では、 使用者の操作に基づき比 較的に簡単に初期磁界強度 や最大磁界強度 HNの大きさは変更されることが できることが望まれる。 使用者は、 ディスプレイ装置 3 3の画面に映し出される 磁区の画像に基づき初期磁界強度 や最大磁界強度 HNの大きさを調整すれば よい。
[Formula 10]
Figure imgf000023_0002
As described above, the initial magnetic field intensity may be set to a value sufficiently larger than the magnetic field intensity that induces the saturation of the magnetization. The maximum magnetic field strength H N may be set to a value sufficiently smaller than the magnetic field strength that induces magnetization saturation. If the initial magnetic field strength and the maximum magnetic field strength H N are set in this way, it is expected that the connection relationship between the domain walls established in the magnetic body 14 will be maintained. However, the initial magnetic field strength and the maximum magnetic field strength H N are large enough to determine the increase in magnetization based on the output value t (H 0 ). Must be set. According to the above principle, the direction of the magnetic field cannot be detected in the magnetic domains 41a, 41b, 41 unless the movement of the domain walls 42a, 42 is generated. Moreover, in the same manner as described above, the force one microscope 1 1, the size of the easy initial magnetic field strength on the basis of the ratio comparatively to the operation of the user and the maximum magnetic field intensity H N is desirable to be able to change. The user may adjust the magnitude of the initial magnetic field strength and the maximum magnetic field strength H N based on the image of the magnetic domain displayed on the screen of the display device 33.
図 9に示される処理動作では、 磁界強度の減少に伴い引き起こされる磁化の減 少の有無が出力値 t (H 0) で特定されてもよい。 この場合には、 初期磁界強度 に規定の磁界強度 H Gよりも大きな最大磁界強度が設定されればよい。 磁界 強度 Hkは、 この初期磁界強度 から、 指定の磁界強度 H。よりも小さな最小磁 界強度 HNまで減少していけばよい。 ここでは、 .初期磁界強度 から磁界強度 H 0までの範 Hは第 2磁界強度範囲に相当する。 磁界強度 H。から最小磁界強度 HNまでの範囲は第 1磁界強度範囲に相当する。 In the processing operation shown in FIG. 9, the presence or absence of the decrease in magnetization caused by the decrease in the magnetic field strength may be specified by the output value t (H 0 ). In this case, it may be set large maximum magnetic field strength than the magnetic field strength H G specified in the initial magnetic field strength. The magnetic field strength H k is the specified magnetic field strength H from this initial magnetic field strength. It is only necessary to reduce the minimum magnetic field strength H N to a smaller value. Here, the range H from the initial magnetic field strength to the magnetic field strength H 0 corresponds to the second magnetic field strength range. Magnetic field strength H. The range from to the minimum magnetic field strength H N corresponds to the first magnetic field strength range.
図 1 3 Aに示されるように、 測定点 4 3 aでは磁界強度 H。から最小磁界強度 HNに至るまでに磁化は回転する。 磁化の回転に伴い、 測定点 4 3 bでは磁化 M gは急激に減少する。 前述の [数式 6 ] によれば、 図 1 4 Aから明らかなように、 検出値の差分 sは磁化の回転時に所定の値を示すものの、 磁化の回転前や磁化の 回転後には 「0 (ゼロ)」 値が維持される。 その一方で、 測定点 4 3 bでは、 初 期磁界強度 から磁界強度 H。に至るまでに磁化は回転する。 図 1 3 Bに示さ れるように、 磁化の回転に伴い磁化 M gは急激に減少する。 前述の [数式 6 ] に よれば、 図 1 4 Bから明らかなように、 検出値の差分 sは磁化の回転時に所定の 値を示すものの、 磁化の回転前や磁化の回転後には 「0 (ゼロ)」 値が維持され る。 こうして前述と同様に、 測定点 4 3 aと測定点 4 3 bとは確実に区別される ことができる。 ここで、 検出値の差分 sは磁化の変化すなわち減少の微分値に相 当する。 As shown in Fig. 13A, the magnetic field strength H at the measurement point 43a. The magnetization rotates from to the minimum magnetic field strength H N. With the rotation of the magnetization, the magnetization Mg sharply decreases at the measurement point 43 b. According to [Equation 6] described above, as apparent from FIG. 14A, the difference s in the detected values shows a predetermined value when the magnetization is rotated, but before the rotation of the magnetization or after the rotation of the magnetization, “0 ( Zero) "value is maintained. On the other hand, at the measurement point 43 b, the initial magnetic field strength changes to the magnetic field strength H. The magnetization rotates before reaching. As shown in Fig. 13B, the magnetization Mg decreases rapidly with the rotation of the magnetization. According to [Equation 6] described above, as apparent from FIG. 14B, the difference s in the detected value shows a predetermined value during rotation of the magnetization, but “0 ( Zero) "value is maintained. Thus, similarly to the above, the measuring point 43a and the measuring point 43b can be reliably distinguished. Here, the difference s in the detected values corresponds to the differential value of the change, that is, the decrease of the magnetization.
この場合でも、 前述と同様に、 初期磁界強度 は、 磁化の飽和を誘引する磁 界強度よりも十分に小さな値に設定されればよい。 最小磁界強度 HNは、 磁ィ匕の 飽和を誘引する磁界強度よりも十分に大きな値に設定されればよい。 こうして初 期磁界強度 や最小磁界強度 HNが設定されれば、 磁性体 14内に確立される 磁壁同士の接続関係は維持されることが予想される。 ただし、 初期磁界強度 や最小磁界強度 HNは、 出力値 t (H0) で磁化の増大を判別することができる 大きさに設定されなければならない。 前述と同様に、 使用者の操作に基づき比較 的に簡単に初期磁界強度 や最小磁界強度 HNの大きさは変更されることがで きることが望まれる。 Also in this case, as described above, the initial magnetic field strength may be set to a value sufficiently smaller than the magnetic field strength that induces the saturation of the magnetization. The minimum magnetic field strength H N may be set to a value sufficiently larger than the magnetic field strength that induces the saturation of the magnetic field. This is the first time If the initial magnetic field strength and the minimum magnetic field strength H N are set, it is expected that the connection relationship between the domain walls established in the magnetic body 14 will be maintained. However, the initial magnetic field strength and the minimum magnetic field strength H N must be set to such a value that the increase in magnetization can be determined based on the output value t (H 0 ). As before, the size of the relatively simple initial magnetic field strength and the minimum magnetic field intensity H N based on the user's operation is desired that as possible out to be changed.
さらにまた、 前述の処理動作では出力値 t (H。) の算出にあたって [数式 6] に代えて次式が用いられてもよい。 次式では前述の偶関数 g (s) に代えて 任意の奇関数 h (s) が用いられる。  Furthermore, in the above-described processing operation, the following expression may be used instead of [Equation 6] in calculating the output value t (H.). In the following equation, an arbitrary odd function h (s) is used instead of the even function g (s) described above.
[数式 1 1]  [Formula 1 1]
^o) = -∑ [RH) · h{s) · sgn O] · ' .(12) ただし、  ^ o) = -∑ [RH) · h {s) · sgn O] · '. (12)
[数式 12]  [Formula 12]
H = Hk-H0 … ) H = H k -H 0 …)
〜(6)  ~ (6)
T = Hk-Hk_x -..(13) T = H k -H k _ x- .. (13)
ここで、 s gn (T) は次式のように Τの符号を示す。 Here, s gn (T) indicates the sign of Τ as in the following equation.
[数式 13 ]  [Equation 13]
「1 < >0)  "1 <> 0)
sgn(r) = l-i(r<o) ·'·(14) s gn (r) = li ( r <o )
Τ=0の場合には、 s gn (T) は 「0 (ゼロ)」 値や 「1」 値、 「ー 1」 値のい ずれでもよい。 If Τ = 0, s gn (T) may be either a “0” value, a “1” value, or a “−1” value.
こうした奇関数 h (s) の採用によれば、 図 1 5Aに示されるように、 磁界 1 9が増大する場合でも、 反対に磁界 19が減少する場合でも、 磁壁 42 aが横切 る際に個々の測定点 43 aで奇関数 h (s) および s gn (T) の積は正の値を 示す。 同様に、 図 15Bに示されるように、 磁界 1 9が増大する場合でも、 反対 に磁界 19が減少する場合でも、 磁壁 42 aが横切る際に個々の測定点 43 bで 奇関数 1Ί (s) および s gn (T) の積は正の値を示す。 その他の場合には、 差 分 sに含まれるノイズの符号 (十、 ―) に基づきノイズは相互に打ち消される とができる。 奇関数 h ( s ) には例えば次式のような関数が用いられればよい c [数式 1 4 ]
Figure imgf000026_0001
According to the adoption of such an odd function h (s), as shown in FIG. 15A, even when the magnetic field 19 increases or when the magnetic field 19 decreases, when the domain wall 42a crosses, The product of the odd functions h (s) and s gn (T) at each measurement point 43a shows a positive value. Similarly, as shown in FIG. 15B, even when the magnetic field 19 increases, and conversely, when the magnetic field 19 decreases, the odd function 1Ί (s) at each measurement point 43 b when the domain wall 42 a crosses. The product of and s gn (T) is positive. Otherwise, the difference The noise can be mutually canceled based on the sign (10,-) of the noise included in the minute s. For the odd function h (s), for example, a function such as the following equation may be used c [Equation 14]
Figure imgf000026_0001
その他、 奇関数 h ( s ) には次式のようなステップ関数が用いられてもよい。 閾 値 s THは適宜に設定されればよい。 In addition, a step function such as the following equation may be used for the odd function h (s). The threshold value s TH may be set appropriately.
[数式 1 5 ]  [Equation 15]
Figure imgf000026_0002
Figure imgf000026_0002
図 1 6は本発明の第 2実施形態に係る力一顕微鏡の構造を概略的に示す。 この カー顕微鏡 1 1 aには波形発生器 4 5が組み込まれる。 この波形発生器 4 5は、 例えば第 1周波数のコサイン波といった第 1波形信号と、 同様に第 2周波数のコ サイン波といった第 2波形信号とを生成する。 第 2周波数は例えば第 1周波数の 2倍の周波数に設定される。 第 1波形信号と第 2波形信号との位相差は 「0 (ゼ 口)」 値に設定される。 すなわち、 両者の位相は一致する。 第 1波形信号は電磁 石ドライバ 1 8に供給される。 電磁石ドライバ 1 8は、 第 1波形信号に基づき変 化する磁界を生成することができる。 磁性体 1 4は、 第 1波形信号に基づき特定 の周期で変化する磁界に曝される。  FIG. 16 schematically shows the structure of a force microscope according to the second embodiment of the present invention. A waveform generator 45 is incorporated in the Kerr microscope 11a. The waveform generator 45 generates, for example, a first waveform signal such as a cosine wave of a first frequency and a second waveform signal likewise a cosine wave of a second frequency. The second frequency is set to, for example, twice the frequency of the first frequency. The phase difference between the first waveform signal and the second waveform signal is set to “0 (zero)” value. That is, the phases of the two coincide. The first waveform signal is supplied to the electromagnetic stone driver 18. The electromagnet driver 18 can generate a magnetic field that changes based on the first waveform signal. The magnetic body 14 is exposed to a magnetic field that changes at a specific cycle based on the first waveform signal.
差動アンプ 2 7には掛け算器 4 6が接続される。 この掛け算器 4 6は、 差動ァ ンプ 2 7から出力される電気信号すなわち検出信号に、 波形発生器 4 5から供給 される第 2波形信号を掛け合わせる。 こうして掛け算器 4 6では、 検出信号で特 定される検出値と、 第 2波形信号で特定される数値との積が算出される。  A multiplier 46 is connected to the differential amplifier 27. The multiplier 46 multiplies the electric signal output from the differential amplifier 27, that is, the detection signal, by the second waveform signal supplied from the waveform generator 45. Thus, the multiplier 46 calculates the product of the detection value specified by the detection signal and the numerical value specified by the second waveform signal.
掛け算器 4 6にはローパスフィルタ 4 7が接続される。 このローパスフィルタ 4 7では掛け算器 4 6の出力に積分処理が施される。 ローパスフィルタ 4 7の出 力は AZDコンバータ 2 8でデジタル信号に変換される。 こうしたデジタル信号 がコンピュータ装置 2 9の C P U 3 1に取り込まれる。 図中、 前述の第 1実施形 態と均等な構成や構造には同一の参照符号が付される。 こういったカー顕微鏡 1 1 aによれば、 磁性体 1 4に作用する磁界 1 9の変ィ匕 に応じて検出信号で磁化の回転は特定されることができる。 検出値と数値との積 では磁化の回転は強調されることができる。 しかも、 この強調にあたって磁化の 向きに応じて検出信号では異なる極性 (符号) が特定されることができる。 こう してカー顕微鏡 1 1 aは、 ディスプレイ装置 3 3の画面上に磁壁 4 2 a、 4 2の 位置は映し出されることができる。 磁区 4 1 a、 4 1 b、 4 1内の磁化の向きは 比較的に簡単に特定されることができる。 The low-pass filter 47 is connected to the multiplier 46. In the low-pass filter 47, the output of the multiplier 46 is subjected to integration processing. The output of the low-pass filter 47 is converted to a digital signal by the AZD converter 28. These digital signals are taken into the CPU 31 of the computer 29. In the figure, configurations and structures equivalent to those of the above-described first embodiment are denoted by the same reference numerals. According to the Kerr microscope 11a, the rotation of the magnetization can be specified by the detection signal in accordance with the change of the magnetic field 19 acting on the magnetic body 14. In the product of the detected value and the numerical value, the rotation of the magnetization can be emphasized. Moreover, in this emphasis, different polarities (signs) can be specified in the detection signal according to the direction of the magnetization. In this way, the position of the domain walls 42 a and 42 can be projected on the screen of the display device 33 of the Kerr microscope 11 a. The directions of magnetization in the magnetic domains 41a, 41b, 41 can be specified relatively easily.
ここで、 第 2実施形態に係る力一顕微鏡 1 1 aの原理を簡単に説明する。 例え ば、 図 6 Aや図 8 Aに示されるような左回り還流磁区の磁性体 1 4上で測定点 4 3 a、 4 3 bが設定される場面を想定する。 第 1波形信号に基づき磁界 1 9が生 成されると、 磁界 1 9は特定の周期で増減を繰り返す。 このとき、 例えば図 1 Ί Aに示されるように、 測定点 4 3 bでは磁界 1 9の増減に伴い磁化が変化する。 磁化は磁界 1 9の増減に応じて反転を繰り返す。 図 1 7 Bに示されるように、 測 定点 4 3 aでは磁界 1 9の増減に応じて同様に磁化は反転を繰り返す。 このとき、 磁化 M ( t ) は次式のようなステップ関数で表現されることができる。  Here, the principle of the force microscope 11a according to the second embodiment will be briefly described. For example, assume that measurement points 43a and 43b are set on the magnetic body 14 of the counterclockwise return magnetic domain as shown in FIGS. 6A and 8A. When the magnetic field 19 is generated based on the first waveform signal, the magnetic field 19 repeats increasing and decreasing at a specific cycle. At this time, as shown in FIG. 1A, for example, at the measurement point 43 b, the magnetization changes as the magnetic field 19 increases or decreases. The magnetization repeats reversal according to the increase and decrease of the magnetic field 19. As shown in FIG. 17B, the magnetization repeats in the same manner at the measurement point 43 a according to the increase and decrease of the magnetic field 19. In this case, the magnetization M (t) can be expressed by the following step function.
[数式 1 6 ]
Figure imgf000027_0001
[Equation 16]
Figure imgf000027_0001
M Mg (u < t < v) 'ひ7) M Mg (u <t <v) 'hi7)
Figure imgf000027_0002
Figure imgf000027_0002
ここで、 測定点 4 3 bの u値および V値は次式で表現されることができる t Here, u and V values of the measuring points 4 3 b can be expressed by the following equation t
[数式 1 7 ] )
Figure imgf000027_0003
[Equation 17])
Figure imgf000027_0003
同様に、 測定点 4 3 aの u値および V値は次式で表現されることができる [数式 18 ] τ Similarly, the u value and V value of the measurement point 4 3a can be expressed by the following equations. [Equation 18] τ
Τ Τ
V2 =^ + (°2 + dl) ·'·(21) V 2 = ^ + (° 2 + d l) '' (21)
ただし、 cェゃ。 2は磁壁 42 aからの位置に関連するパラメ一夕とみなされる < (!ェゃ ま磁壁^ 2 aの移動の遅れに関連するパラメ一夕とみなされる。 特に. 測定点 43 bと測定点 43 aとが磁壁 42 aに対して線対称に配置され、 かつ、 相互に近接する場合には近似的に次式が成立する。 However, cee. 2 is regarded as a parameter related to the position from domain wall 42 a <(! ゃ ゃ ゃ It is considered a parameter related to the delay of movement of domain wall ^ 2 a. In particular. Measurement point 43 b and measurement point When 43a is arranged symmetrically with respect to the domain wall 42a and is close to each other, the following equation is approximately established.
[数式 19]  [Equation 19]
c― θ = cつ 22  c− θ = c 22
d = dl - d0 -"(23) d = d l -d 0 -"(23)
M (t) は次式に基づきフーリエ級数展開されることができる。  M (t) can be Fourier series expanded based on the following equation.
[数式 20] ) + •(24) [Equation 20]) + • (24)
Figure imgf000028_0001
Figure imgf000028_0001
その結果、 次式が得られる。 As a result, the following equation is obtained.
[数式 21] 1 cos[iy(c + d)] + cosmic - <i)]  [Equation 21] 1 cos [iy (c + d)] + cosmic-<i)]
^(1) = ^― ^ -2Mg '··(25)  ^ (1) = ^ ― ^ -2Mg '
π α{(2) =— (- c +め] + C0S[ c-め] …( ) [w{c + d)]-^ c-d }2Mg … ) π α { (2) = — (-c + me) + C0S [c-me]… () [w {c + d)]-^ cd} 2Mg …)
π sin[iw(-c + d)] - sin[w(-c - d)] π sin [iw (-c + d)]-sin [w (-c-d)]
(2) = 2Mg 〜(28) π (l) ^ sin[2 (c +め] + sin[2^(c一め] Mg (29) (2) = 2Mg to (28) π (l) ^ sin [ 2 ( c + me) + sin [2 ^ (c first) Mg ( 29 )
π a2(2) =— sin[2w(-c +め] + Sin[2 (-c-め] …(^ π a 2 (2) = — sin [2w (-c + me] + S in [2 (-c-me)… (^
π 2ひ) _一 cos[2w(c一め] + cos[2 +め] Λ ..,(3 π 2h) _ one cos [2w (c first) + cos [2 + me] Λ .., ( 3
π b2(2) = - c。s[2 - め] + C。s[2 -c +め] Mg … ) π π b 2 (2) =-c. s [2-me] + C. s [2 -c + me] Mg …) π
ここで、 &ェ (1)、 b, (1)、 a2 (1) および b2 (1) は測定点 43 bで得 られる係数を示す。 (2)、 b, (2)、 a2 (2) および b2 (2) は測定点 43 aで得られる係数を示す。 したがって、 次式から明らかなように、 第 1波形 信号の周波数と第 2波形信号の周波数とがー致すると、 検出信号で測定点 43 b と測定点 43 aとは区別されることはできない。 測定点 43 bと測定点 43 aと で極性 (符号) は一致してしまう。 Here, & E (1), b, (1 ), a 2 (1) and b 2 (1) shows the coefficients obtained at the measurement point 43 b. (2), b, (2), a 2 (2) and b 2 (2) indicate the coefficients obtained at the measurement point 43a. Therefore, as is apparent from the following equation, when the frequency of the first waveform signal and the frequency of the second waveform signal are equal, the measurement point 43b and the measurement point 43a cannot be distinguished by the detection signal. The polarity (sign) of measurement point 43b and measurement point 43a match.
[数式 22]  [Equation 22]
^(1)=¾(2) '·'(33)  ^ (1) = ¾ (2) '·' (33)
¾(1)=¾(2) -(34)  ¾ (1) = ¾ (2)-(34)
その一方で、 第 1波形信号に比べて第 2波形信号で 2倍の周波数が設定されると、 測定点 43 bと測定点 43 aとは完全に区別されることができる。 図 18 Aや図 18 Bを併せて参照すると明らかなように、 測定点 43 bと測定点 43 aとで信 号の極性は異なる。 磁壁 42 aの位置だけでなく磁区 41 a、 41 b, 41内の 磁化の向きは特定されることができる。 On the other hand, if the frequency of the second waveform signal is set to be twice the frequency of the first waveform signal, the measurement point 43b and the measurement point 43a can be completely distinguished. 18A and 18B, the signal polarity is different between the measurement point 43b and the measurement point 43a. The direction of the magnetization in the magnetic domains 41a, 41b, 41 as well as the position of the domain wall 42a can be specified.
[数式 23] [Equation 23]
2(1) = -¾(2) ·'·(35)  2 (1) = -¾ (2)
¾(1)=-¾(2) ー(36) ただし、 次式から明らかなように、 2倍周波数成分のパワーは測定点 4 3 bと測 定点 4 3 aとで一致してしまう。 したがって、 スペクトラムアナライザで 2倍周 波数成分力 s検出されても、 磁区 4 1 a、 4 1 b、 4 1内の磁化の向きが特定され ることはできない。 ¾ (1) =-¾ (2) ー (36) However, as is clear from the following equation, the power of the double frequency component coincides at the measurement point 43 b and the measurement point 43 a. Therefore, even if the double frequency component force s is detected by the spectrum analyzer, the direction of magnetization in the magnetic domains 41 a, 41 b, and 41 cannot be specified.
[数式 2 4 ]  [Equation 24]
"2(1)2 +¾(1)2 - "2(2)2 +¾(2)2 〜(37) " 2 (1) 2 + ¾ (1) 2- " 2 (2) 2 + ¾ (2) 2 〜 (37)
なお、 磁壁 4 2 aの移動の遅れが小さい場合には、 d == 0が設定されてもよい。 その結果、 例えばフーリエ級数展開によれば次式が得られる。  If the movement delay of the domain wall 42 a is small, d == 0 may be set. As a result, for example, according to Fourier series expansion, the following equation is obtained.
[数式 2 5 ]  [Equation 25]
, sm(2ct c _ Λ /Γ 。、 , sm (2ct c _ Λ / Γ .,
~2Mg 〜(38)  ~ 2Mg ~ (38)
π  π
, ヽ sm(2a)c) _ Λ /Γ ,っハヽ , ヽ sm (2a) c) _ Λ / Γ ,
α2(2) =— ^ J-2Mg · ' ·(39) α 2 (2) = — ^ J -2Mg
π  π
¾(1) = ¾(2) = 0 …( ) ¾ (1) = ¾ (2) = 0… ()
したがって、 検出値で、 第 2波形信号との間でピークの位相が一致する成分が検 出されれば、 磁壁 4 2 aの移動の遅れが小さくても良好に磁区 4 1 a、 4 1 b、 4 1内の磁化の向きは特定されることができる。 Therefore, if a component whose peak phase coincides with the second waveform signal is detected in the detected value, the magnetic domains 41a and 41b can be favorably obtained even if the movement delay of the domain wall 42a is small. The orientation of the magnetization within 41 can be specified.
その他、 第 1および第 2波形信号の位相差は例えば 1 8 0 ° や一 1 8 0 ° に 設定されてもよい。 コサイン波やその他の三角関数波に代えて三角波が用いられ てもよい。 掛け算器 4 6およびローパスフィルタ 4 7の組み合わせはいわゆる口 ックインアンプに置き換えられてもよい。 さらに、 掛け算器 4 6やローパスフィ ルタ 4 7すなわち積分器の働きは例えばソフトウェアプログラムで実現されても よい。 こういったソフトウェアプログラムの処理動作は例えば差動アンプ 2 7の 出力に対して実施されればよい。 このとき、 差動アンプ 2 7の出力は例えばアナ ログデジタル (AZD) コンバータでデジタル信号に変換された後にソフトゥェ ァプログラムに受け渡されればよい。  In addition, the phase difference between the first and second waveform signals may be set to, for example, 180 ° or 180 °. A triangular wave may be used instead of a cosine wave or another trigonometric wave. The combination of the multiplier 46 and the low-pass filter 47 may be replaced by a so-called suck-in amplifier. Further, the functions of the multiplier 46 and the low-pass filter 47, that is, the function of the integrator, may be realized by, for example, a software program. Such a processing operation of the software program may be performed on the output of the differential amplifier 27, for example. At this time, the output of the differential amplifier 27 may be converted to a digital signal by, for example, an analog digital (AZD) converter and then transferred to the software program.
図 1 9は本発明の第 3実施形態に係るカー顕微鏡の構造を概略的に示す。 この 力一顕微鏡 1 1 bでは、 差動アンプ 2 7と掛け算器 4 6との間にハイパスフィル 夕 4 8が配置される。 このハイパスフィル夕 4 8では、 差動アンプ 2 7から出力 される検出値に微分処理が施される。 したがって、 微分処理後の検出値が掛け算 器 4 6に入力される。 その他、 前述の第 2実施形態と均等な構成や構造には同一 の参照符号が付される。 FIG. 19 schematically shows the structure of a Kerr microscope according to the third embodiment of the present invention. In this force microscope 11b, a high-pass filter is provided between the differential amplifier 27 and the multiplier 46. Evening 48 is arranged. In this high-pass filter 48, a differential process is performed on the detection value output from the differential amplifier 27. Therefore, the detected value after the differentiation processing is input to the multiplier 46. In addition, configurations and structures equivalent to those of the above-described second embodiment are denoted by the same reference numerals.
この力一顕微鏡 1 l bでは、 波形発生器 4 5は、 第 1波形信号と第 2波形信号 との位相差は + 9 0 ° や— 9 0 ° に設定される。 すなわち、 第 1波形信号に例 えば第 1周波数のコサイン波が用いられる場合には、 第 2波形信号には第 2周波 数のサイン波が用いられればよい。 前述と同様に、 第 2周波数は第 1周波数の 2 倍の周波数に設定される。  In this force microscope 1 lb, the waveform generator 45 sets the phase difference between the first waveform signal and the second waveform signal to + 90 ° or −90 °. That is, when, for example, a cosine wave of the first frequency is used for the first waveform signal, a sine wave of the second frequency may be used for the second waveform signal. As before, the second frequency is set to twice the frequency of the first frequency.
こういったカー顕微鏡 1 1 bによれば、 磁性体 1 4に作用する磁界 1 9の変化 に応じて検出信号で磁化の回転は特定されることができる。 検出値と微分処理後 の検出値との積では磁ィ匕の回転は強調されることができる。 しかも、 この強調に あたって磁化の向きに応じて検出信号では異なる極性 (符号) が特定されること ができる。 こうして力一顕微鏡 1 1 aは、 ディスプレイ装置 3 3の画面上に磁壁 4 2 a、 4 2の位置を映し出すことができる。 磁区 4 1 a、 4 1 b、 4 1内の磁 化の向きは比較的に簡単に特定されることができる。  According to such a Kerr microscope 11b, the rotation of the magnetization can be specified by the detection signal according to the change in the magnetic field 19 acting on the magnetic body 14. In the product of the detected value and the detected value after the differentiation processing, the rotation of the magnetic field can be emphasized. In addition, different polarities (signs) can be specified in the detection signal according to the direction of the magnetization in this emphasis. Thus, the force microscope 11 a can project the positions of the domain walls 42 a and 42 on the screen of the display device 33. The direction of magnetization in the magnetic domains 41a, 41b, 41 can be specified relatively easily.
いま、 図 6 Aや図 8 Aに示されるような左回り還流磁区の磁性体 1 4上で測定 点 4 3 a、 4 3 bが設定される場面を想定する。 第 1波形信号に基づき磁界 1 9 が生成されると、 磁界 1 9は特定の周期で増減を繰り返す。 このとき、 例えば図 1 7 Aに示されるように、 測定点 4 3 bでは磁界 1 9の増減に伴い磁ィ匕が変化す る。 磁ィヒは磁界 1 9の増減に応じて回転を繰り返す。 図 1 7 Bに示されるように、 測定点 4 3 aでは磁界 1 9の増減に応じて同様に磁ィヒは回転を繰り返す。  Assume that measurement points 43a and 43b are set on the magnetic body 14 of the counterclockwise return magnetic domain as shown in FIGS. 6A and 8A. When the magnetic field 19 is generated based on the first waveform signal, the magnetic field 19 repeats increasing and decreasing at a specific cycle. At this time, as shown in FIG. 17A, for example, at the measurement point 43 b, the magnetic field changes as the magnetic field 19 increases or decreases. The magnet repeats its rotation as the magnetic field 19 increases or decreases. As shown in FIG. 17B, at the measurement point 43 a, the magnetic field repeats the rotation in accordance with the increase and decrease of the magnetic field 19.
図 2 O Aおよび図 2 0 Bから明らかなように、 第 1波形信号の周波数と第 2波 形信号の周波数とがー致すると、 検出信号で測定点 4 3 bと測定点 4 3 aとは区 別されることはできない。 測定点 4 3 bと測定点 4 3 aとで極性 (符号) は一致 してしまう。 その一方で、 第 1波形信号に比べて第 2波形信号で 2倍の周波数が 設定されると、 図 2 1 Aおよび図 2 1 Bに示されるように、 測定点 4 3 bと測定 点 4 3 aとで信号の極性は異なる。 測定点 4 3 bと測定点 4 3 aとは完全に区別 されることができる。 その結果、 磁壁 4 2 aの位置だけでなく磁区 4 1 a、 4 1 b、 41内の磁ィ匕の向きに関する情報は得られることができる。 As is clear from FIG. 2 OA and FIG. 20B, when the frequency of the first waveform signal and the frequency of the second waveform signal match, the measured signal points 4 3b and 4 3a It cannot be distinguished. The polarity (sign) of measurement point 4 3b and measurement point 4 3a match. On the other hand, when the frequency of the second waveform signal is set to be twice as high as that of the first waveform signal, as shown in FIGS. 21A and 21B, the measurement points 4 3b and 4 The signal polarity differs between 3a and 3a. Measurement point 4 3b and measurement point 4 3a can be completely distinguished. As a result, the domain 4 1 a, 4 1 Information on the direction of the magnetic sill in b, 41 can be obtained.
なお、 以上のようなカー顕微鏡 11、 l l a、 l i bでは、 いわゆる CCDに 基づき検出信号は生成されてもよい。 光源 21には、 間欠的に発光するパルス光 源が用いられてもよい。 その他、 前述の磁界生成機構 16は複数の方向に沿って 磁界 19、 19を発生する複数組の電磁石 17を備えてもよい。 こうした磁界生 成機構 16によれば、 様々な方向から面内磁化 X成分や面内磁ィヒ y成分は検出さ れることができる。'可動ステージ 12は、 水平面に直交する回転軸回りで回転し てもよい。  In the Kerr microscope 11, lla, and lib as described above, a detection signal may be generated based on a so-called CCD. As the light source 21, a pulsed light source that emits light intermittently may be used. In addition, the above-described magnetic field generating mechanism 16 may include a plurality of sets of electromagnets 17 that generate magnetic fields 19, 19 along a plurality of directions. According to such a magnetic field generation mechanism 16, the in-plane magnetization X component and the in-plane magnetization Y component can be detected from various directions. 'The movable stage 12 may rotate around a rotation axis orthogonal to a horizontal plane.

Claims

請求の範囲 The scope of the claims
1 . 所定の方向に沿って磁性体に指定の磁界強度 H。で磁界を印加する工程と、 磁気光学効果に基づき磁性体の磁化を検出し、 磁化の第 1検出値を特定する工程 と、 指定の磁界強度 H。よりも小さな第 1磁界強度 H!の磁界内で磁性体の磁化 を検出し、 磁化の第 2検出値を特定する工程と、 指定の磁界強度 H。よりも大き な第 2磁界強度 H 2の磁界内で磁性体の磁ィヒを検出し、 磁化の第 3検出値を特定 する工程と、 2: _ 1:— 1の重み付けに基づき第 1、 第 2および第 3検出値を 加算する工程とを備えることを特徴とする磁化観察方法。 1. The magnetic field strength H specified for the magnetic material along the predetermined direction. Applying a magnetic field in the step of: detecting the magnetization of the magnetic material based on the magneto-optical effect, and specifying a first detected value of the magnetization; First magnetic field strength H! A step of detecting the magnetization of the magnetic material in the magnetic field and specifying a second detection value of the magnetization; A step of detecting a magnetic I inhibit the magnetic substance, to identify a third detection value of the magnetization in a magnetic field Do of the second magnetic field strength H 2 larger than, 2: _ 1: - first based on 1 weighting, Adding the second and third detection values.
2 . 請求の範囲第 2項に記載の磁化観察方法において、 前記第 1、 第 2および第 3検出値の加算にあたって、 出力値 t、 第 1検出値 s (H Q )、 第 2検出値 s2. In the magnetization observation method according to claim 2, in addition of the first, second, and third detection values, an output value t, a first detection value s (H Q ), and a second detection value s
(Η , ) および第 3検出値 s (Η 2) の間には、 (Η,) and the third detection value s (Η 2 )
[数式 2 6 ] [Equation 26]
0) = 2 0) - + ^¾)] ...(1) が成立することを特徴とする磁化観察方法。 0) = 2 0) - + ^ ¾)] ... ( magnetization observed method characterized by 1) is satisfied.
3 . 請求の範囲第 1項または第 2項に記載の磁化観察方法において、 前記第 1磁 界強度は、 磁性体内に確立される磁壁同士の接続関係を維持する大きさに設定さ れることを特徴とする磁化観察方法。 3. The magnetization observation method according to claim 1 or 2, wherein the first magnetic field strength is set to a magnitude that maintains a connection relationship between domain walls established in a magnetic body. Characterized magnetization observation method.
4 . 請求の範囲第 1項〜第 3項のいずれかに記載の磁ィヒ観察方法において、 前記 第 2磁界強度は、 磁性体内に確立される磁壁同士の接続関係を維持する大きさに 設定されることを特徴とする磁化観察方法。 4. The magnetic field observation method according to any one of claims 1 to 3, wherein the second magnetic field strength is set to a magnitude that maintains a connection relationship between domain walls established in a magnetic body. A magnetization observation method characterized by being performed.
5 . 請求の範囲第 1項〜第 4項のいずれかに記載の磁ィヒ観察方法において、 前記 第 1磁界強度は、 第 1検出値と第 2検出値との間に相違を生み出す大きさに設定 されることを特徴とする磁化観察方法。 5. The magnetic field observation method according to any one of claims 1 to 4, wherein the first magnetic field strength is a magnitude that produces a difference between a first detection value and a second detection value. A magnetization observation method characterized by being set as follows.
6 . 請求の範囲第 1項〜第 5項のいずれかに記載の磁ィヒ観察方法において、 前記 第 2磁界強度は、 第 1検出値と第 3検出値との間に相違を生み出す大きさに設定 されることを特徴とする磁化観察方法。 6. The magnetic field observation method according to any one of claims 1 to 5, wherein the second magnetic field strength is a magnitude that produces a difference between the first detection value and the third detection value. A magnetization observation method characterized by being set as follows.
7 . 指定の磁界強度、 指定の磁界強度よりも小さな第 1磁界強度、 並びに、 指定 の磁界強度よりも大きな第 2磁界強度で磁界を発生する磁界生成機構と、 磁界生 成機構で生成される磁界に曝される磁性体まで光を誘導する光学系と、 指定の磁 界強度並びに第 1および第 2磁界強度の磁界の印加時に磁性体の磁気光学効果に 基づき対応の第 1、 第 2および第 3検出値を特定する検出信号を出力する受光素 子と、 受光素子に接続されて、 2 :— 1 : — 1の重み付けに基づき第 1、 第 2お よび第 3検出値を加算するプロセッサとを備えることを特徴とする磁化観察装置。 7. A magnetic field generating mechanism that generates a magnetic field with a specified magnetic field strength, a first magnetic field strength smaller than the specified magnetic field strength, and a second magnetic field strength larger than the specified magnetic field strength, and a magnetic field generating mechanism. An optical system that guides light to a magnetic body exposed to a magnetic field, and corresponding first, second, and third magnetic fields based on the magneto-optical effect of the magnetic body when a magnetic field having a specified magnetic field strength and first and second magnetic field strengths is applied. A photodetector that outputs a detection signal that specifies a third detection value, and a processor that is connected to the photodetector and that adds the first, second, and third detection values based on a weighting of 2: —1 :: 1. And a magnetization observation device.
8 · 指定の磁界強度 H。の磁界内に配置される磁性体の磁化に基づき生成される 第 1検出信号を取得する工程と、 指定の磁界強度 H。よりも小さな第 1磁界強度 の磁界内に配置される磁性体の磁化に基づき生成される第 2検出信号を取得 する工程と、 指定の磁界強度 H 0よりも大きな第 2磁界強度 H 2の磁界内に配置 される磁性体の磁化に基づき生成される第 3検出信号を取得する工程と、 2 : - 1 :一 1の重み付けに基づき、 第 1、 第 2および第 3検出信号でそれぞれ特定さ れる磁化の検出値を加算する工程とをプロセッサに実行させることを特徴とする 磁化観察ソフトウェアプログラム。 8 · Specified magnetic field strength H. Obtaining a first detection signal generated based on the magnetization of the magnetic substance disposed in the magnetic field of the specified magnetic field strength. Process and designation of the magnetic field strength H 0 field of the larger second magnetic field strength H 2 than to obtain a second detection signal generated based on the magnetization of the magnetic body arranged in the magnetic field of the small first magnetic field strength than Obtaining a third detection signal generated based on the magnetization of the magnetic substance disposed in the first and second detection signals based on the weighting of 2: 1-1: 11, respectively. And a step of adding a detected value of magnetization to be performed by a processor.
9 . 指定の磁界強度よりも小さな第 1磁界強度範囲で変化する磁界を磁性体に作 用させる工程と、 第 1磁界強度範囲内の磁界の変化中に磁性体の磁気光学効果に 基づき磁化の変化の有無を検出する工程と、 指定の磁界強度よりも大きな第 2磁 界強度範囲で変'化する磁界を磁性体に作用させる工程と、 第 2磁界強度範囲内の 磁界の変化中に磁性体の磁気光学効果に基づき磁化の変化の有無を検出する工程 とを備えることを特徴とする磁化観察方法。 9. A step of causing the magnetic body to apply a magnetic field that changes in a first magnetic field strength range smaller than a specified magnetic field strength, and a step of changing the magnetization based on the magneto-optical effect of the magnetic body during a change in the magnetic field within the first magnetic field strength range. Detecting the presence or absence of a change; applying a magnetic field that changes in a second magnetic field strength range greater than a specified magnetic field strength to the magnetic body; Detecting the presence or absence of a change in magnetization based on the magneto-optical effect of the body.
1 0 . 請求の範囲第 9項に記載の磁化観察方法において、 変化の有無の検出にあ たって、 第 1および第 2磁界強度範囲で磁界強度を増大させ、 磁化の変化に相当 する磁化の増大を検出することを特徴とする磁化観察方法。 10. The method for observing magnetization according to claim 9, wherein the detection of the presence or absence of a change is performed. Therefore, a magnetization observation method characterized by increasing the magnetic field strength in the first and second magnetic field strength ranges and detecting an increase in magnetization corresponding to a change in magnetization.
1 1 . 請求の範囲第 1 0項に記載の磁化観察方法において、 前記磁化の増大の検 出にあたって、 磁化の変化に基づき微分値が特定されることを特徴とする磁ィ匕観 察方法。 11. The magnetization observation method according to claim 10, wherein a differential value is specified based on a change in magnetization when detecting an increase in magnetization.
1 2 . 請求の範囲第 1 1項に記載の磁ィヒ観察方法において、 前記微分値の特定に あたって、 前記第 1および第 2磁界強度範囲で離散的に磁界強度を増大させるェ 程と、 個々の磁界強度ごとに磁気光学効果に基づき磁性体の磁化を検出し、 個々 の磁界強度ごとに磁化の検出値を特定する工程と、 今回の検出値から前回の検出 値を差し引き、 磁化の変化値を算出する工程とを備えることを特徴とする磁化観 察方法。 12. The magnetic field observation method according to claim 11, wherein the step of specifying the differential value includes increasing the magnetic field strength discretely in the first and second magnetic field strength ranges. The process of detecting the magnetization of the magnetic material based on the magneto-optical effect for each magnetic field strength and specifying the detected value of magnetization for each magnetic field strength, and subtracting the previous detected value from the current detected value to obtain the magnetization Calculating a change value.
1 3 . 請求の範囲第 9項〜第 1 2項のいずれかに記載の磁化観察方法において、 変化の有無の検出にあたって、 第 1および第 2磁界強度範囲で磁界強度を減少さ せ、 磁化の変化に相当する磁化の減少を検出することを特徴とする磁化観察方法。 13. In the magnetization observation method according to any one of claims 9 to 12, when detecting the presence or absence of a change, the magnetic field intensity is reduced in the first and second magnetic field intensity ranges, A magnetization observation method characterized by detecting a decrease in magnetization corresponding to a change.
1 4. 請求の範囲第 1 3項に記載の磁化観察方法において、 前記磁化の減少の検 出にあたって、 磁ィヒの変化に基づき微分値が特定されることを特徴とする磁化観 察方法。 14. The magnetization observation method according to claim 13, wherein a differential value is specified based on a change in magnetism in detecting the decrease in magnetization.
1 5 . 請求の範囲第 1 4項に記載の磁化観察方法において、 前記微分値の特定に あたって、 前記第 1および第 2磁界強度範囲で離散的に磁界強度を減少させるェ 程と、 個々の磁界強度ごとに磁気光学効果に基づき磁性体の磁化を検出し、 個々 の磁界強度ごとに磁ィ匕の検出値を特定する工程と、 今回の検出値から前回の検出 値を差し引き、 磁化の変化値を算出する工程とを備えることを特徴とする磁化観 察方法。 15. The magnetization observation method according to claim 14, wherein, in specifying the differential value, a step of discretely reducing the magnetic field strength in the first and second magnetic field strength ranges; Detecting the magnetization of the magnetic material based on the magneto-optical effect for each magnetic field strength, and identifying the detected value of magnetic field for each magnetic field strength, and subtracting the previous detected value from the current detected value to obtain the magnetization value. And a step of calculating a change value.
1 6 . 指定の磁界強度よりも小さな第 1磁界強度範囲、 並びに、 指定の磁界強度 よりも大きな第 2磁界強度範囲で変化する磁界を発生する磁界生成機構と、 磁界 生成機構で生成される磁界に曝される磁性体まで光を誘導する光学系と、 磁性体 から帰還する光を受光する受光素子と、 受光素子に接続されて、 第 1磁界強度範 囲の変化中および第 2磁界強度範囲の変化中に磁性体の磁気光学効果に基づき磁 化の変化の有無を検出するプロセッサとを備えることを特徴とする磁化観察装置。 16. A magnetic field generating mechanism that generates a magnetic field that changes in the first magnetic field strength range smaller than the specified magnetic field strength and the second magnetic field strength range larger than the specified magnetic field strength, and a magnetic field generated by the magnetic field generating mechanism An optical system that guides light to a magnetic body exposed to light, a light-receiving element that receives light returning from the magnetic body, and a light-receiving element that is connected to the light-receiving element to change the first magnetic field strength range and the second magnetic field strength range And a processor that detects the presence or absence of a change in magnetization based on the magneto-optical effect of the magnetic material during the change in magnetization.
1 7 . 指定の磁界強度よりも小さな第 1磁界強度範囲で変化する磁界内に配置さ れる磁性体の磁化に基づき生成される第 1検出信号を取得する工程と、 第 1検出 信号に基づき磁化の変化の有無を検出する工程と、 指定の磁界強度よりも大きな 第 2磁界強度範囲で変化する磁界内に配置される磁性体の磁化に基づき生成され る第 2検出信号を取得する工程と、 第 2検出信号に基づき磁化の変化の有無を検 出する工程とをプロセッサに実行させることを特徴とする磁化観察ソフトウェア プログラム。 17. A step of acquiring a first detection signal generated based on the magnetization of a magnetic substance arranged in a magnetic field that changes in a first magnetic field strength range smaller than a specified magnetic field strength, and magnetizing based on the first detection signal Detecting the presence or absence of a change in the magnetic field intensity; and obtaining a second detection signal generated based on the magnetization of the magnetic substance disposed in the magnetic field that changes in a second magnetic field strength range larger than the specified magnetic field strength; Detecting the presence or absence of a change in magnetization based on a second detection signal by a processor.
' 1 8 . 波形信号に基づき特定の周期で変化する磁界を磁性体に作用させる工程と、 磁気光学効果に基づき磁性体の磁化を検出し、 磁化の検出値を特定する工程と、 特定された検出値に、 波形信号に一定の位相関係で同期しつつ波形信号の 2倍の 周波数で周期的に変化する数値を掛け合わせる工程とを備えることを特徴とする 磁化観察方法。 . '18. A step of applying a magnetic field that changes at a specific cycle to the magnetic material based on the waveform signal, a step of detecting the magnetization of the magnetic material based on the magneto-optical effect, and specifying the detected value of the magnetization, Multiplying the detected value by a numerical value that periodically changes at twice the frequency of the waveform signal while synchronizing with the waveform signal in a fixed phase relationship. .
1 9 . 請求の範囲第 1 8項に記載の磁ィヒ観察方法において、 検出値と数値との乗 算結果に積分処理を施す工程をさらに備えることを特徴とする磁化観察方法。 2 0 . 請求の範囲第 1 8項または第 1 9項に記載の磁ィ匕観察方法において、 前記 波形信号の極大値および極小値を示す位相は、 前記数値の極大値および極小値の いずれかを示す位相に一致す.ることを特徴とする磁化観察方法。 19. The magnetization observation method according to claim 18, further comprising a step of performing an integration process on a result of multiplication of the detected value and the numerical value. 20. The magnetic observation method according to claim 18 or claim 19, wherein the phase indicating the maximum value and the minimum value of the waveform signal is any one of the maximum value and the minimum value of the numerical value. A magnetization observation method characterized by the following:
2 1 . 請求の範囲第 1 8項または第 1 9項に記載の磁化観察方法において、 前記 数値との掛け合わせに先立って、 前記検出値に微分処理を施す工程をさらに備え ることを特徴とする磁化観察方法。 21. The method for observing magnetization according to claim 18 or claim 19, wherein Prior to multiplication with a numerical value, a magnetization observation method further comprising a step of performing a differentiation process on the detected value.
2 2 . 請求の範囲第 2 1項に記載の磁化観察方法において、 前記波形信号の極大 値および極小値を示す位相は、 前記数値で極大値および極小値の中間値を示す位 相に一致することを特徴とする磁化観察方法。 22. The magnetization observation method according to claim 21, wherein the phase of the waveform signal indicating a local maximum value and a local minimum value matches the phase of the numerical value indicating an intermediate value between the local maximum value and the local minimum value. A method for observing magnetization, characterized in that:
2 3 . 波形信号に基づき特定の周期で変化する磁界を生成する磁界生成機構と、 磁界生成機構で生成される磁界に曝される磁性体まで光を誘導する光学系と、 磁 性体から帰還する光に基づき磁気光学効果の検出値を特定する検出信号を出力す る受光素子と、 受光素子に接続されて、 波形信号に一定の位相関係で同期しつつ 波形信号の 2倍の周波数で周期的に変化する周期信号を検出信号に掛け合わせる 掛け算器とを備えることを特徴とする磁化観察装置。 2 4. 請求の範囲第 2 3項に記載の磁化観察装置において、 前記掛け算器には口 —パスフィル夕が接続されることを特徴とする磁化観察装置。 2 3. A magnetic field generation mechanism that generates a magnetic field that changes at a specific cycle based on the waveform signal, an optical system that guides light to a magnetic body exposed to the magnetic field generated by the magnetic field generation mechanism, and feedback from the magnetic body A light-receiving element that outputs a detection signal that specifies the detection value of the magneto-optical effect based on the light that is emitted, and a period that is connected to the light-receiving element and synchronizes with the waveform signal with a fixed phase relationship at twice the frequency of the waveform signal A magnetization observation device, comprising: a multiplier for multiplying the detection signal by a periodically changing periodic signal. 24. The magnetization observation device according to claim 23, wherein a mouth-pass filter is connected to the multiplier.
2 5 . 請求の範囲第 2 3項または第 2 4項に記載の磁化観察装置において、 前記 掛け算器および受光素子の間にはハイパスフィル夕が配置されることを特徴とす る磁化観察装置。 25. The magnetization observation device according to claim 23, wherein a high-pass filter is disposed between the multiplier and the light receiving element.
PCT/JP2003/008096 2003-06-26 2003-06-26 Magnetization observing method and magnetization observing instrument WO2005001495A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005503214A JP4247230B2 (en) 2003-06-26 2003-06-26 Magnetization observation method and magnetization observation apparatus
PCT/JP2003/008096 WO2005001495A1 (en) 2003-06-26 2003-06-26 Magnetization observing method and magnetization observing instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008096 WO2005001495A1 (en) 2003-06-26 2003-06-26 Magnetization observing method and magnetization observing instrument

Publications (1)

Publication Number Publication Date
WO2005001495A1 true WO2005001495A1 (en) 2005-01-06

Family

ID=33549040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008096 WO2005001495A1 (en) 2003-06-26 2003-06-26 Magnetization observing method and magnetization observing instrument

Country Status (2)

Country Link
JP (1) JP4247230B2 (en)
WO (1) WO2005001495A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291618B2 (en) 2019-12-24 2023-06-15 株式会社日立製作所 Image acquisition system and image acquisition method
KR102554771B1 (en) * 2021-06-01 2023-07-12 한국표준과학연구원 Method and apparatus for measuring absolute value of magnetization in perpendicular thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215828A (en) * 1992-02-05 1993-08-27 Hitachi Ltd Magnetic domain structure analyzing device
JPH0665883U (en) * 1991-06-19 1994-09-16 有限会社アスカ電子 Micro domain structure observation device
JPH0921852A (en) * 1995-07-10 1997-01-21 Nippon Steel Corp Magnetic domain detection device for magnetic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665883U (en) * 1991-06-19 1994-09-16 有限会社アスカ電子 Micro domain structure observation device
JPH05215828A (en) * 1992-02-05 1993-08-27 Hitachi Ltd Magnetic domain structure analyzing device
JPH0921852A (en) * 1995-07-10 1997-01-21 Nippon Steel Corp Magnetic domain detection device for magnetic material

Also Published As

Publication number Publication date
JP4247230B2 (en) 2009-04-02
JPWO2005001495A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP6184109B2 (en) Optical pumping magnetometer and magnetic sensing method
Tamir et al. Introduction to weak measurements and weak values
Kasiraj et al. Magnetic domain imaging with a scanning Kerr effect microscope
JP2020521968A (en) Magnetic field sensor with error calculation function
Kuczmann Vector Preisach hysteresis modeling: Measurement, identification and application
CN110672083B (en) Single-axis modulation type magnetic compensation method of SERF (spin exchange fiber) atomic spin gyroscope
Zweck Imaging of magnetic and electric fields by electron microscopy
De Graef 2. Lorentz microscopy: theoretical basis and image simulations
JP7371932B2 (en) Measuring device and method
Kovács et al. Lorentz microscopy and off-axis electron holography of magnetic skyrmions in FeGe
Reiche et al. Bidirectional quantitative force gradient microscopy
WO2005001495A1 (en) Magnetization observing method and magnetization observing instrument
JPH06273432A (en) Displacement and displacement-velocity measuring apparatus
Morrison et al. The measurement of narrow domain‐wall widths in SmCo5 using differential phase contrast electron microscopy
Pluta et al. Angular spectrum approach for the computation of group and phase velocity surfaces of acoustic waves in anisotropic materials
US7450353B2 (en) Zig-zag shape biased anisotropic magnetoresistive sensor
Tuma et al. Impulsive control for nanopositioning: Stability and performance
McVitie et al. Imaging amperian currents by Lorentz microscopy
Kim et al. Artifact-free optical spin–orbit torque magnetometry
Temst et al. Magnetization reversal in patterned ferromagnetic and exchange-biased nanostructures studied by neutron reflectivity
Boucher Mitigating Signal Loss in Force-Gradient Detection of Electron Spin Resonance
WO2023241066A1 (en) Multi-axis magnetic field vector generation
Fazzini et al. Electron optical phase-shifts by Fourier methods: Analytical versus numerical calculations
Zheng et al. Magnetic particle-antiparticle creation and annihilation
Roy et al. Breakdown of Barkhausen Criticality in an Ultrathin Ferromagnetic Film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2005503214

Country of ref document: JP