WO2004111066A1 - Metal coordination compound, polymer composition, and organic electroluminescence element using them - Google Patents

Metal coordination compound, polymer composition, and organic electroluminescence element using them Download PDF

Info

Publication number
WO2004111066A1
WO2004111066A1 PCT/JP2004/008392 JP2004008392W WO2004111066A1 WO 2004111066 A1 WO2004111066 A1 WO 2004111066A1 JP 2004008392 W JP2004008392 W JP 2004008392W WO 2004111066 A1 WO2004111066 A1 WO 2004111066A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
halogen
metal coordination
substituted
coordination compound
Prior art date
Application number
PCT/JP2004/008392
Other languages
French (fr)
Japanese (ja)
Inventor
Satoyuki Nomura
Yoshii Morishita
Yoshihiro Tsuda
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to US10/559,774 priority Critical patent/US7955716B2/en
Publication of WO2004111066A1 publication Critical patent/WO2004111066A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/002Osmium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel metal coordination compound, a polymer composition, and a fine composition using the same.
  • the present invention relates to an organic electroluminescence (EL) device.
  • electroluminescent devices have attracted attention for large area solid-state light source applications as alternatives to incandescent lamps and gas-filled lamps.
  • it is attracting attention as the leading self-luminous display that can replace the liquid crystal display in the flat panel display (FPD) field.
  • organic electroluminescent (EL) devices which are made of organic materials, are being commercialized as low-power-consumption full-color FPDs.
  • a 1 q 3 Aluminum quinolinol complex (tris (8-quinolinolato) aluminum) ⁇ — NPD: N, -Di-naphthalen-l-yl-N, N'-diphenyl-biphenyl-4, 4'- diamine
  • an object of the present invention is to provide a phosphorescent material which emits light in a wide visible light range from blue to red and has excellent color purity, reliability, and the like in view of the above-described conventional problems. .
  • an object of the present invention is to provide a metal coordination compound having blue phosphorescence with excellent color purity.
  • an object of the present invention is to provide a metal coordination compound which emits light of various colors from green to red and has a long driving life.
  • an object of the present invention is to provide a metal coordination compound having blue phosphorescence having excellent color purity, and to provide a metal coordination compound having phosphorescence having a long driving life from blue to red. It shall be.
  • Another object of the present invention is to provide a polymer composition containing the metal coordination compound.
  • Still another object of the present invention is to provide an organic electroluminescent device using the metal coordination compound or the polymer composition.
  • a metal coordination compound having a cyclic compound represented by formulas (1) to (6) as a ligand emits light in a wide wavelength range from blue to red.
  • the present invention by finding that it is a phosphorescent material with excellent properties I came to. That is, the present invention relates to a compound represented by any of formulas (1) and (6).
  • XJ XB and R are each independently R — ⁇ R 2 , SR 3 , — ⁇ C ⁇ R 4 , _C ⁇ R 5 , one Si R 6 R 7 R 8 , and one NR 9 R 10 (however, a length of 1 to!
  • ⁇ 13 is a hydrogen atom, a halogen atom, a cyano group , Nitro group, carbon number 1-2 Two straight-chain, cyclic or branched alkyl groups or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms, an aryl group having 6 to 21 carbon atoms, a carbon number of 2 to 2 A heteroaryl group of 20 or an aralkyl group having 7 to 21 carbon atoms or a halogen-substituted aryl group, a halogen-substituted heteroaryl group or a halogen-substituted aralkyl group in which part or all of the hydrogen atoms have been replaced by halogen atoms.
  • a substituent selected from the group of, also, X I through X 6 is independently selected from groups a same ring A the same groups defined X t to X 6 It may have a substituent.
  • 1 ⁇ to 11 may have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, and a carboxyl group. And a sulfonic acid group, a nitro group, etc. These substituents may be further substituted with a halogen atom, a methyl group, or the like.
  • a metal coordination compound having a carbazole derivative as a ligand is an excellent phosphorescent material having blue phosphorescence with excellent color purity. I found it. Therefore, as a preferred embodiment of the present invention, there is provided a metal coordination compound represented by any one of the following formulas I (1) to 1 (6).
  • Ring A is a cyclic compound containing a nitrogen atom bound to M.
  • a metal coordination compound in which various substituents have been introduced into a ligand as a ligand has a luminescent color ranging from green to red, and has a long drive life. It has been found that it is a long and excellent phosphorescent material.
  • a metal coordination compound represented by any of the following formulas II (1) to (6).
  • M is Ir, h, Ru, ⁇ s, Pd or Pt, and n is 2 or 3.
  • M is Ir, Rh, Ru or ⁇ s and n is 2 In this case, M is further bound to another bidentate ligand Ring A is a cyclization containing a nitrogen atom bonded to M It is a compound.
  • Xi ⁇ X 7 is independently - H, - ⁇ _H, -R 1, -OR 2, one
  • NR ⁇ R 11 (where 1 to! ⁇ 1 is a straight-chain, cyclic or branched alkyl group having 1 to 22 carbon atoms, an aryl group having 6 to 21 carbon atoms, and 2 to 20 carbon atoms) Represents an aralkyl group having 7 to 21 carbon atoms, and each of R 1 to shaku 11 may be the same or different.)
  • Ri R 11 may have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, a lipoxyl group, Examples thereof include a sulfonic acid group and a nitrile group. These substituents may be further substituted by a halogen atom, a methyl group, or the like.
  • a metal coordination compound having a cyclic compound represented by formulas III (1) to ⁇ (6) as a ligand can emit phosphorescent light from blue to red having excellent color purity. It has been found that this is an excellent phosphorescent material having a long driving life.
  • a metal coordination compound represented by any of the following formulas III (1) to (6).
  • Ring A is a cyclic compound containing a nitrogen atom bonded to M.
  • X 1 to X 6 and R are each independently — R 1 -OR 2 , — SR 3 , _ ⁇ COR 4 , one C ⁇ R 5 , one Si R 6 R 7 R 8 , and one NR 9 R 10 (where 1 to!
  • are a hydrogen atom, a halogen atom, a cyano group A nitro group, a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms, a carbon atom having 6 to 21 carbon atoms Aralkyl group having 2 to 20 carbon atoms or aralkyl group having 7 to 21 carbon atoms, or a halogen-substituted aryl group in which part or all of the hydrogen atoms have been replaced with halogen atoms, a halogen-substituted heteroaryl group And a halogen-substituted aralkyl group, and 1 ⁇ to 11 () may be the same or different.
  • a substituent selected from the group consisting of, also, Xi Xe may be different even in the same ring A have the same substituent groups as defined in Xi ⁇ X 6 It may be.
  • scale 1 ⁇ ! ⁇ 1. May have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, a lipoxyl group, a sulfonic acid group, and a nitro group. Can be mentioned. These substituents may be further substituted by a halogen atom, a methyl group or the like. '
  • the present invention also relates to a polymer composition obtained by mixing or copolymerizing the metal coordination compound with a conjugated or non-conjugated polymer.
  • the present invention also relates to an organic electroluminescent device manufactured using the metal coordination compound or the polymer composition.
  • the metal coordination compound of the present invention is represented by the following formulas (1) to (6).
  • M is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3.
  • M further binds another bidentate ligand Ring A is a cyclic compound containing a nitrogen atom bonded to M.
  • Xi Xe and R each independently represent one R 1 , — OR 2 , _SR 3 , — ⁇ COR 4 , one C ⁇ OR 5 , one Si R 6 R 7 R 8 , and one NR 9 R 10 (where 1 ⁇ to 1 ⁇ 1 () is a hydrogen atom, a halogen atom, a cyano group A nitro group, a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms, or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms, a carbon atom having 6 to 21 carbon atoms.
  • Aralkyl groups having 2 to 20 carbon atoms or aralkyl groups having 7 to 21 carbon atoms, or halogen-substituted araryl groups in which some or all of the hydrogen atoms thereof have been replaced by halogen atoms; heteroaryl group halogen substituted, a halogen-substituted Ararukiru group, scale 1 ⁇ ! ⁇ 1 15 may each be the same or different.
  • X i X e may be the same or different, and ring A is the same substituent as the group defined by X i to X 6 It may have a group.
  • 1 ⁇ to 11 may have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, Examples include a ropoxyl group, a sulfonic group, a nitro group, etc. These substituents may be further substituted by a halogen atom, a methyl group, or the like.
  • R 1 examples include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a halogen atom such as an iodine atom, a cyano group, a nitro group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, and a butyl group.
  • OR 2 represents a hydroxyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, tert- butoxy group, Okuchiruokishi group, tert- Okuchiru Okishi group, phenoxy group, 4-tert- Buchirufuenokishi group, 1 one-naphthyl Okishi Group, 2-naphthyloxy group and 9-anthryloxy group.
  • SR 3 examples include mercapto group, methylthio group, ethylthio group, tert-butylthio group, hexylthio group, octylthio group, phenylthio group, 2-methylphenylthio group, and 4_tert-butylphenylthio group. be able to.
  • Examples of OCOR 4 include a formyloxy group, an acetoxy group, and a benzoyloxy group.
  • COOR 5 examples include a carbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, a tert-butoxycarbonyl group, a phenoxycarbonyl group, and a naphthyloxycarbonyl group.
  • S i R 6 R 7 R 8 can be mentioned silyl group, a trimethylsilyl group, Toryechi Rushiriru group, a triphenyl silyl group.
  • NR 9 R 1 examples include amino, N-methylamino, N-ethylamino, N, N-dimethylamino, N, N-ethylamino, N, N-diisopropylamino, N , N-dibutylamino group, N-benzylamino group, N, N-dibenzylamino group, N-phenylamino group, N, N-diphenylamino group and the like.
  • the metal coordination compound of the present invention has phosphorescent emission, and the lowest excited state is considered to be a triplet MLCT (Metal-to-Ligand charge transfer) excited state or a ⁇ -excited state. . When transitioning from these states to the ground state Phosphorescence occurs.
  • MLCT Metal-to-Ligand charge transfer
  • the phosphorescent quantum yield of the light emitting material of the present invention was as high as 0.1 to 0.9, and the phosphorescence lifetime was 1 to 60 s.
  • the short phosphorescence lifetime is a condition for increasing the luminous efficiency of an organic EL device. In other words, if the phosphorescence lifetime is long, the proportion of molecules in the excited triplet state increases, and at high current densities, the luminous efficiency is reduced based on the 1 ⁇ annihilation.
  • the metal coordination compound of the present invention is a material suitable for a luminescent material of an organic EL device because it has a high phosphorescent efficiency and a short luminescent life.
  • the ring ⁇ ⁇ ⁇ is preferably any one of the cyclic compounds having a structure shown below, and more preferably X i X e (hereinafter, X i X e , May be collectively referred to as a substituent X n.), which may have the same substituent as the group defined in —pyridine, quinoline, benzoxazole, benzothiazol, benzimidazole, benzotriazole, It is imidazole, pyrazole, oxazole, thiazole, triazole, benzopyrazole, triazine or isoquinoline.
  • Zi Ze is the same substituent as the substituent represented as Xn in formulas (1) to (6), and Zi Ze may be the same or different.
  • M is preferably Ir.
  • the other ligand that binds to the metal M may be any of the compounds having the structures shown below. preferable.
  • the metal coordination compound of the present invention can be produced by various synthetic methods known to those skilled in the art. For example, the method described in S. Lamansky et al., J. Am. Chem. Soc. 2001.123. Can be used. An example (in the case where ring A is substituted pyridine) of a synthesis route of the metal coordination compound represented by the above formulas (1) to (6) used in the present invention will be described by taking an iridium coordination compound as an example. Note that the explanations here relate to (2) shown in Table I-11, (2) shown in Table II-1, and (2) shown in Table III-1. The exemplified compounds can be synthesized by almost the same method. (Synthesis of ligand L)
  • the lowest excited state A high level of energy is required. However, it is considered that the emission level of the metal coordination compound has changed from blue-green to red because the energy level of the lowest excited state was low for blue light emission.
  • the present inventors have conducted various studies and found that the metal coordination compounds represented by the following formulas I (1) to 1 (6) have blue phosphorescence.
  • Halogen-substituted alkyl groups partially or wholly substituted with halogen atoms, aryl groups having 6 to 21 carbon atoms, heteroaryl groups having 2 to 20 carbon atoms, or aralkyls having 7 to 21 carbon atoms A halogen-substituted aryl group, a halogen-substituted heteroaryl group, or a halogen-substituted aralkyl group, in which some or all of the hydrogen atoms of these groups are substituted with a halogen atom;
  • To X 7 may be the same or different, and ring A may have the same substituent as the group defined for X i to X 7 . )
  • ring A is preferably either a cyclic compound having the structure shown below, X I through X 7 (hereinafter, Pyridine, quinoline, benzoxazole, benzothiazole, benzimidazole, benzotriazole, imidazole, pyrazole which may have the same substituent as the group defined in).
  • Oxazole, thiazole, triazole, benzopyrazole or triazine more preferably pyridine or quinoline which may have the same substituent as the group defined by Xn.
  • Zi ⁇ Z 6 are the same substituents as the substituent represented as Xn of formula I (1) ⁇ I (6 ), Z Ze may or may not be the same.
  • the other ligand that binds to the metal M may be any of the compounds having the structures shown below. preferable.
  • Y to Y 4 are the same substituents represented as Xn of formula I (1) ⁇ 1 (6) , Yi ⁇ Y 4 may be different even in the same.
  • At least one of the substituents Xn, or at least one of the substituents defined in the same manner as Xn included in ring A, has a shorter emission wavelength.
  • it is preferably a halogen atom, a cyano group or a halogen-substituted alkyl group, more preferably a fluorine atom, a chlorine atom, a cyano group or a trifluoromethyl group, and It is more preferably an orthomethyl group, and most preferably a fluorine atom.
  • the other Xn is often a hydrogen atom, May be a substituent of
  • X 7 is preferably an alkyl group or a halogen-substituted alkyl group.
  • the metal coordination compounds represented by the formulas I (1) to 1 (6) are expected to have a high energy level in the lowest excited state, and are suitable as a blue phosphorescent material for organic EL.
  • the present inventors have conducted various studies and found that the metal coordination compounds represented by the following formulas II (1) to 11 (6) have phosphorescence emission from green to red and have a long driving life. It has been found to be a phosphorescent material.
  • M is Ir, Rh, Ru, ⁇ s, Pd or Pt, and n is 2 or 3.
  • M is Ir, Rh, Ru or ⁇ s and n is 2
  • another bidentate ligand is bonded to M.
  • Ring A is a cyclic compound containing a nitrogen atom bonded to M.
  • Xi to X 7 are each independently —H, -OH, — R 1 -OR 2 , one SR 3 , one OC ⁇ R 4 , one CO ⁇ R 5 , one Si R 6 R 7 R 8 , one NH 2 , one NHR 9 , and one NR ⁇ R 11 (where 1 ⁇ !
  • ⁇ 11 is a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms, an aryl group having 6 to 21 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, or 7 to Represents an aralkyl group of 21 and R 1 to 11 may be the same or different.
  • Xi X is the same or different Ring A is the same as the group defined by Xi X? May have the following substituents.
  • ⁇ To shaku 11 may have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, a lipoxyl group, and a sulfonic acid group. And nitro groups. These substituents may be further substituted by a halogen atom, a 'methyl group or the like.
  • ring A is preferably any one of the cyclic compounds having the structures shown below, and Xe to r (hereinafter, referred to as Xe to r ).
  • Xe to r Xe to r
  • Zi Ze is the same substituent as the substituent represented by Xn in formulas II (1) to (6), and Z 1 to Z 6 may be the same or different.
  • the other ligand that binds to the metal M may be any of the compounds having the structures shown below. preferable.
  • Yi ⁇ Y 4 are the same substituents as the substituent represented as Xn of the formula II (1) ⁇ 11 (6) , Y 1 ⁇ Y 4 may or may not be the same.
  • At least one of the substituents X ⁇ or at least one of the substituents defined similarly to Xn of the ring ⁇ ⁇ is green to red. From the viewpoint of easy control of the emission color of, it is preferable to be 1 R, 1 OR or 1 SR.
  • the other Xn is often a hydrogen atom, It may be another substituent.
  • X 7 is preferably an alkyl group, an aryl group or a heteroaryl group.
  • the metal coordination compound represented by the formulas II (1) to 11 (6) the metal coordination compound represented by the formula II (1) or II (4) from the viewpoint of easy synthesis Force S preferred.
  • the metal coordination compounds represented by the above formulas II (1) to 11 (6) have various substituents. 35
  • the energy level of the lowest excited state changes, making it suitable as an organic EL light emitting material that emits green to red light.
  • the present inventors have conducted various studies, and found that the metal coordination compounds represented by the following formulas III (1) to III (6) emit phosphorescence from blue to red and have a long driving life. It has been found that it becomes a light emitting material.
  • X Xe and R are each independently — R 1 , -OR 2 , One SR 3 , one C ⁇ R 4 , one C ⁇ R 5 , one Si R 6 R 7 R 8 , and one NR 9 R 10 (however,! ⁇ 1 ⁇ !
  • ⁇ 1 is a hydrogen atom, halogen Atom, cyano group, nitro group, straight-chain, cyclic or branched alkyl group having 1 to 22 carbon atoms or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms, carbon number 6-21 47
  • Aralkyl group having 2 to 20 carbon atoms or aralkyl group having 7 to 21 carbon atoms, or a halogen-substituted aryl group in which part or all of the hydrogen atoms thereof have been replaced with halogen atoms, a halogen-substituted heteroaryl group group, a halogen-substituted Ararukiru radical, R E ⁇ 1 Q may each be the same or different.
  • Xi Xe may be the same or different, and ring A has the same substituent as the group defined by Xi Xe May be. ) Where 1 ⁇ ! ⁇ 1 .
  • substituents May have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, a lipoxyl group, a sulfonic acid group, and a nitro group. Can be mentioned. These substituents may be further substituted by a halogen atom, a methyl group or the like. .
  • ring A is preferably either a cyclic compound having the structure shown below, X i to X 6 (hereinafter, The pyridine, quinoline, benzoxazole, benzothiazole, benzimidazole, benzotriazol, imidazole, and pyrazole which may have the same substituent as the group defined in) are collectively denoted as Xn. , Oxazole, thiazole, triazole, benzopyrazole, triazine or isoquinoline, and pyridine, quinoline or isoquinoline which may have a substituent similar to the group defined by Xn Is more preferred. 48
  • Zi Ze is the same substituent as the substituent represented as X ⁇ in Formulas III (1) to ⁇ (6), and Zi to Z ⁇ may be the same or different.
  • the other ligand bonded to the metal M is preferably any of the compounds having the structures shown below.
  • ⁇ ⁇ 4 are the same substituents as the substituent represented as Xn of the formula III (1) ⁇ III (6) , Yi ⁇ Y 4 may be different even in the same.
  • ⁇ or at least one of the substituents defined in the same manner as Xn of the ring ⁇ ⁇ ⁇ is preferably an octogen atom, a cyano group or a halogen-substituted alkyl group from the viewpoint of obtaining a blue emission color. It is more preferably a fluorine atom, a chlorine atom, a cyano group or a trifluoromethyl group, further preferably a fluorine atom or a trifluoromethyl group, and most preferably a fluorine atom.
  • —R, —OR, or —SR is preferable.
  • the other Xn is often a hydrogen atom, It may be a substituent.
  • the metal coordination compound is represented by the formula III (2) or III (5).
  • the metal coordination compounds represented by the above formulas III (1) to ⁇ (6) change the energy level of the lowest excited state by changing the substituent variously, and are used as a light emitting material of an organic EL having blue to red emission. Are suitable.
  • metal coordination compounds represented by the formulas III (1) to (6) are shown below, but are not limited thereto.
  • Table ⁇ in one 1 Xi ⁇ X 4 represents a substituent of the ring Alpha.
  • the metal coordination compound of the present invention can be used as a material for an active layer of an electroluminescence device.
  • Active layer means that the layer is capable of emitting light upon application of an electric field (light emitting layer) or that improves charge injection or charge transfer (charge injection layer or charge transfer layer).
  • charge refers to negative or positive charge.
  • the thickness of the active layer is preferably from 10 to 100 nm, more preferably from 20 to 60 nm, and still more preferably from 20 to 40 nm.
  • the metal coordination compound of the present invention may be used as a mixture with other materials.
  • the electroluminescent device using the metal coordination compound of the present invention may be made of a material other than the above metal coordination compound.
  • the material to be mixed may be a high-molecular material or a low-molecular material.
  • Materials that can be used for hole injection and / or hole transport materials include arylamine derivatives, triphenylmethane derivatives, stilbene compounds, hydrazone compounds, carbazole compounds, high molecular weight arylamine, polyaniline, polythiophene, etc. And materials obtained by polymerizing them.
  • Those that can be used for electron injection and Z or electron transfer materials include oxaziazole derivatives, benzoxazole derivatives, benzoquinone derivatives, quinoline derivatives, quinoxaline derivatives, thiadiazol derivatives, benzodiazole derivatives, triazole derivatives, and metal chelate complexes. Materials such as compounds and the like and materials obtained by polymerizing them are exemplified.
  • Materials that can be used for the light emitting material include arylamine derivatives, oxaziazole derivatives, perylene derivatives, quinacridone derivatives, pyrazoline derivatives, anthracene derivatives, rubrene derivatives, stilbene derivatives, coumarin derivatives, naphthylene derivatives, and metal chelates.
  • Materials such as complexes, metal complexes containing central metals such as Ir and Pt, and materials obtained by polymerizing them, polymer materials such as polyfluorene derivatives, polyphenylenevinylene derivatives, polyphenylene derivatives, and polythiophene derivatives Is exemplified.
  • Any binder can be used as long as it does not significantly reduce the properties.
  • the binder polymer include materials such as polystyrene, polycarbonate, polyarylether, polyacrylate, polymethacrylate, and polysiloxane.
  • An organic electroluminescent device can be manufactured using a low-molecular material outside.
  • the low molecular weight material examples include CBP (4, 4'-N, N'-dicarbazole-biphenyl), CDBP (2, 2'-dimethyl-4, 4'-N, '-dicarbazol e-biphenyl) , M CP (m-dicarbazole-benzene) and the like.
  • the mixing ratio of the low-molecular material and the metal coordination compound is preferably 1 to 15% by weight, more preferably 2 to 10% by weight, and still more preferably 3 to 5% by weight of the low-molecular material. It is 8% by weight. If the concentration of the metal coordination compound is too low, the luminous efficiency tends to decrease. If it is too high, the concentration quenching occurs due to the interaction between the metal coordination compounds, and the luminous efficiency tends to decrease.
  • an organic electroluminescence device can be manufactured using the above-mentioned metal coordination compound and a polymer composition containing a conjugated and / or non-conjugated polymer.
  • the polymer composition is a composition obtained by mixing the above-mentioned metal coordination compound with a conjugated or Z- or non-conjugated polymer, or a conjugated and / or non-conjugated with the above-mentioned metal coordination compound.
  • conjugated and Z or non-conjugated polymers include, as a main skeleton, a structure of polyfluorene, polyphenylene, poly (phenylenevinylene), polythiophene, polyquinoline, polyaniline, polyvinylcarbazole, or a derivative thereof.
  • ⁇ ⁇ ⁇ ⁇ -containing polymer as a unit (that is, not only the structure in the main skeleton, but also the side chain structure), benzene, naphthalene, anthracene, phenanthrene, chrysene, rubrene, pyrene, perylene, indene, Azulene, adamantane, fluorene, fluorenone, dibenzofuran, kytrazole, dibenzothiophene, furan, pyrrole, pyrroline, pyrrolidine, thiophene, dioxolan, pyrazole, pyrazoline, pyrazolidine, imi
  • the mixing or copolymerization ratio of the polymer and the metal coordination compound is preferably from 0.1 to 20 parts by weight of the polymer to 100 parts by weight.
  • Solvents used in the polymer composition include chloroform form, methylene chloride, dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, anisol, acetone, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl acetate solvent acetate, and the like. Can be used.
  • the metal coordination compound or the polymer composition of the present invention as an active layer material of an electroluminescence device, a method known to those skilled in the art, for example, vacuum evaporation, inkjet, casting, dipping, printing or This can be achieved by laminating a thin film on a substrate using spin coating or the like.
  • Printing methods include letterpress printing, intaglio printing, offset printing, lithographic printing, letterpress reversal offset printing, screen printing, and gravure printing.
  • Such a lamination method can usually be carried out in a temperature range of 120 to 130, preferably 10 to 100, particularly preferably 15 to 50 ° C.
  • drying of the laminated polymer solution can be usually performed by drying at room temperature or by heating and drying using a hot plate. 70
  • Electroluminescent devices typically include an electroluminescent layer (light-emitting layer) between a force source and an anode, where at least one of the electrodes is transparent.
  • one or more electron injection layers and Z or electron transfer layers can be inserted between the electroluminescent layer (light emitting layer) and the force sword, and one or more hole injection layers.
  • a layer and a hole or hole transport layer can be inserted between the electroluminescent layer (light emitting layer) and the anode.
  • the force sword material is preferably, for example, a metal or metal alloy such as Li, Ca, Mg, A1, In, Cs, Mg / Ag, and LiF.
  • a metal for example, Au
  • another material having metal conductivity for example, an oxide (for example, ITO: indium tin oxide)
  • a transparent substrate for example, glass or a transparent polymer.
  • the electron injection and Z or electron transfer layer include a layer containing a material such as an oxaziazole derivative, a benzoxazole derivative, a benzoquinone derivative, a quinoline derivative, a quinoxaline derivative, a thiadiazole derivative, a benzodiazole derivative, a triazole derivative, or a metal chelate complex compound.
  • a material such as an oxaziazole derivative, a benzoxazole derivative, a benzoquinone derivative, a quinoline derivative, a quinoxaline derivative, a thiadiazole derivative, a benzodiazole derivative, a triazole derivative, or a metal chelate complex compound.
  • copper phthalocyanine for hole injection and Z or hole transport layer, copper phthalocyanine, triphenylamine derivative, triphenylmethane derivative, stilbene compound, hydrazone compound, carbazole compound, high molecular weight arylamine, polyaniline, polythiophene, And the like.
  • the metal coordination compound of the present invention is suitable, for example, as a material for an organic EL device having various emission wavelengths and excellent in reliability, emission characteristics, and the like.
  • the metal coordination compounds represented by the formulas I (1) to 1 (6) are effective for shortening the emission wavelength
  • the metal coordination compounds represented by the formulas II (1) to 11 (6) The compounds are effective in extending the lifetime of the device
  • the metal coordination compounds represented by the formulas III (1) to III (6) are effective in shortening the emission color and extending the lifetime of the device.
  • a THF solution of 3-bromo-9-methylcarbazole (3 Ommo 1) was gradually added to a THF mixture of magnesium (1.9 g, 8 Ommo 1) under a stream of argon with good stirring, and the Grignard reagent was added.
  • the resulting Darynal reagent was gradually added dropwise to a THF solution of trimethyl borate ester (30 Ommo 1) at 178 ° C over 2 hours while being stirred well, and then stirred at room temperature for 2 days.
  • the reaction mixture was poured into 5% dilute sulfuric acid containing crushed ice and stirred.
  • the obtained aqueous solution was extracted with toluene, and the extract was concentrated to give a colorless solid.
  • the solid obtained was recrystallized from toluene / acetone (1 ⁇ 2) to give the borazole derivative boronic acid as colorless crystals (40%).
  • the obtained carpazole derivative boronic acid (12 mmo 1) and 1,2-ethanediol (3 Ommo 1) were refluxed in toluene for 10 hours, and then recrystallized from toluene / acetone (1Z4).
  • the rubazole derivative boron ester was obtained as colorless crystals.
  • the precipitate was purified by silica gel column chromatography (eluent: Black hole Holm / main evening Nord: 30Z1) to give bis [3- (2 'single-pyridyl) one 9-methyl carbazole Ichiru - lambda ⁇ ', C 2 1 (Acetylacetonato) A pale yellow powder of iridium (III) was obtained.
  • the reaction product was cooled to room temperature, poured into 350 ml of 1N hydrochloric acid, and the precipitate was collected by filtration, washed with water, and dried under reduced pressure at 100 ° C for 5 hours.
  • the precipitate was purified black port Holm in eluent and the silica force gel column chromatography, tris [3- (2 'single-pyridyl) Single 9 Mechirukarubazo Ichiru - lambda ⁇ ', C 2 1 iridium (III) A pale yellow powder was obtained.
  • Example I-12 the synthesis was performed in the same manner as in Example I-11 and Example I-12 except that the starting materials such as the sorbazole unit, ring A, and other ligands were changed. Various metal complex compounds were synthesized.
  • Example I-12 Using the compound obtained in Example I-12, an organic EL device having three organic layers was produced, and the device characteristics were evaluated.
  • Example I TO and (indium tin oxide) glass substrate was patterned into a 2mm width, an NPD shed as a hole transport layer by a vacuum evaporation method by resistance heating in a vacuum chamber within one 10_ 5 P a, thickness 40 nm was formed. Further, the metal coordination compound of Example I-2 was co-deposited with CBP at a weight ratio of 5% (film thickness: 30 nm). Further, 30 nm of A 1 Q 3 was deposited as an electron transport layer. On this, as a cathode electrode layer, LiF is 0.5 to 2 nm and A1 is 100 to 150 nm.
  • the characteristics of the organic EL device were measured at room temperature, the current-voltage characteristics were measured with a micro-ammeter 4140 B manufactured by Hewlett-Packard Company, and the emission luminance was measured with SR-3 manufactured by Topcon.
  • SR-3 manufactured by Topcon.
  • the luminance half-life when driven at a constant current (50 mAZcm 2 ) was 100 hours.
  • An organic EL device was fabricated in the same manner as in Examples 1 to 10, except that Ir (ppy) 3 was used instead of the metal coordination compound used in Example I-10.
  • Ir (ppy) 3 was used instead of the metal coordination compound used in Example I-10.
  • the reaction product was cooled to room temperature, poured into 35 Nm of 1N-hydrochloric acid, and the precipitate was collected by filtration, washed with water, and dried under reduced pressure at 100 ° C for 5 hours.
  • the precipitate was purified by silica gel column chromatography using chloroform as eluent, and the pale yellow color of tris [2-hydroxy-6- (2′-pyridyl) -19-methylcarbazo-l- ⁇ ⁇ ', OH iridium (III) A powder was obtained.
  • Examples II-11 and II-12 As shown in Table II-12 below, the synthesis method of Examples II-11 and II-12 was used except that the starting materials such as the sorbazole unit, ring A, and other ligands were changed. Various metal complex compounds were synthesized.
  • Example 11 Using the compound obtained in 1-2, an organic EL device having three organic layers was fabricated.
  • the luminance half-life measured at a constant current (50 mA / cm 2 ) was 200 hours.
  • a Grignard reagent was prepared by gradually adding a THF solution of 2-bromo-9-fluorenone (3 Ommo 1) to a THF mixture of magnesium (1.9 g, 8 Ommo 1) while stirring well under a stream of argon. .
  • the obtained Grignard reagent was gradually added dropwise to a THF solution of trimethyl borate ester (30 Ommo 1) over 2 hours while stirring well at ⁇ 78 ° C., followed by stirring at room temperature for 2 days.
  • the reaction mixture was poured into 5% dilute sulfuric acid containing crushed ice and stirred.
  • the obtained aqueous solution was extracted with toluene, and the extract was concentrated to give a colorless solid.
  • the precipitate was purified by silica gel column chromatography (eluent: formaldehyde methanol: 30/1), and bis [2- (2, -pyridyl) -19-fluorenone-N 1 ', C 3 ] (acetyl (Acetonato) A pale yellow powder of iridium (III) was obtained.
  • Example III-1 a method similar to that of the synthesis method of Example III-1 and Example III-2 was used, as shown in Table III-12 below.
  • Various metal complex compounds were synthesized. ' 87
  • Example III-12 Using the compound obtained in Example III-12, an organic EL device having three organic layers was produced, and the device characteristics were evaluated.
  • I TO and (indium tin oxide) glass substrate was patterned into a 2mm width, a a- NPD as a hole transport layer by a vacuum evaporation method by resistance heating in a vacuum chamber within one 10- 5 P a, film A thickness of 40 nm was formed. Further, the metal coordination compound of Example III-2 was co-deposited with CBP at a weight ratio of 5% (thickness: 30 nm). Further, 30 nm of Al Q 3 was deposited as an electron transport layer. On this, as a cathode electrode layer, LiF was 0.5 to 2 nm and Al was 100 to 150 nm.
  • the luminance half-life measured at a constant current (50 mA / cm 2 ) was 200 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A metal coordination compound, characterized in that it is represented by one of the following formulae (1) to (6): (1) to (6) [wherein, B represents >NR, >O, >S, >C=O, >SO2, or >CR2; M represents Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3; when M is Ir, Rh, Ru or Os and n is 2, M is further bonded with another bi-dentate ligand; and the ring A is a cyclic group containing a nitrogen atom bonded to M]. And also provided is a phosphorescence emitting material which emits a light in a wide visible region from blue to red and also is excellent in the purity of color, reliability and the like.

Description

金属配位化合物、 ポリマ一組成物、 およびこれらを用いた有機エレクト口ルミ ネセンス素子 Metal coordination compound, polymer composition, and organic electroluminescent device using the same
技術分野 Technical field
 Light
本発明は、 新規な金属配位化合物、 ポリマー組成物、 およびこれらを用いた 細  The present invention relates to a novel metal coordination compound, a polymer composition, and a fine composition using the same.
有機エレクトロルミネセンス (E L) 素子に関する。 The present invention relates to an organic electroluminescence (EL) device.
背景技術 Background art
近年、 エレクトロルミネセンス素子は、 例えば、 白熱ランプ、 ガス充填ラン プの代替えとして、 大面積ソリッドステート光源用途に注目されている。 もう 一方で、 フラットパネルディスプレイ (F P D) 分野における液晶ディスプレ ィを置き換えることのできる最有力の自発光ディスプレイとしても注目されて いる。 特に、 素子材料が有機材料によって構成されている有機エレクト口ルミ ネセンス (E L) 素子は、 低消費電力型のフルカラー F P Dとして製品化が進 んでいる。  In recent years, electroluminescent devices have attracted attention for large area solid-state light source applications as alternatives to incandescent lamps and gas-filled lamps. On the other hand, it is attracting attention as the leading self-luminous display that can replace the liquid crystal display in the flat panel display (FPD) field. In particular, organic electroluminescent (EL) devices, which are made of organic materials, are being commercialized as low-power-consumption full-color FPDs.
これまで、 一般的な有機 E L素子は、 励起一重項が基底状態に緩和する際の 蛍光を取り出していた。 しかし、 有機薄膜に電荷を注入してできる励起子の割 合は、 統計的に一重項:三重項 = 1 : 3といわれており、 有機 E L素子の内部 量子効率の理論的限界値は 2 5 %といわれている。 このことは、 有機 E L素子 を低消費電力化する上で一つの障害となっていた。  Until now, general organic EL devices have extracted fluorescence when the excited singlet relaxes to the ground state. However, the ratio of excitons formed by injecting charge into an organic thin film is statistically said to be singlet: triplet = 1: 3, and the theoretical limit value of the internal quantum efficiency of an organic EL device is 25 %It is said that. This has been an obstacle to reducing the power consumption of organic EL devices.
この問題を解決する一つの手段として、 励起三重項からのりん光を利用する 素子の検討がなされている。 励起三重項からのりん光を利用できれば、 励起一 重項からの蛍光を利用した場合より原理的に少なくとも 3倍の発光量子収率が 期待できる。 さらに、 エネルギ一的に高い一重項からの三重項への項間交差に よる励起子の利用も考え合わせると、 原理的には 4倍、 即ち 100%の発光量 子収率が期待できる。 As one means to solve this problem, an element using phosphorescence from the excited triplet has been studied. If phosphorescence from the excited triplet can be used, at least three times the emission quantum yield can be obtained, in principle, than if fluorescence from the excited singlet is used. Can be expected. Furthermore, considering the use of excitons by intersystem crossing from singlet to triplet from the singlet with high energy, a luminescence quantum yield of 4 times, that is, 100% can be expected in principle.
これまでの研究例としては、 例えば M.A.Baldoら., Appl.Phys.Lett.1999.75 .4などがある。 この文献では、 以下に示す材料が用いられている。 各材料の 略称は以下の通りである。  Examples of research to date include, for example, M.A. Baldo et al., Appl. Phys. Lett. 1999.75. In this document, the following materials are used. Abbreviations of each material are as follows.
A 1 q 3:アルミ一キノリノ一ル錯体 (tr is (8-quinolinolato) aluminum) α— N P D : N, -Di-naphthalen-l-yl-N, N' -diphenyl-biphenyl-4, 4' - diamine  A 1 q 3: Aluminum quinolinol complex (tris (8-quinolinolato) aluminum) α— NPD: N, -Di-naphthalen-l-yl-N, N'-diphenyl-biphenyl-4, 4'- diamine
CBP : 4, 4'-N,N'-dicarbazole-biphenyl  CBP: 4, 4'-N, N'-dicarbazole-biphenyl
B C P : 2, 9-dimethyl-4, 7-diphenyl-l, 10-phenanthrol ine  B C P: 2, 9-dimethyl-4, 7-diphenyl-l, 10-phenanthrol ine
I r (p p y) 3:イリジウム—フエニルピリジン錯体 (tris(2- phenylpyr idine) iridium) I r (ppy) 3 : iridium-phenylpyridine complex (tris (2-phenylpyridine) iridium)
他に、 励起三重項からの発光を利用した例には、 特開平 11一 329739 号公報、 特開平 11— 256148号公報、 特開平 8— 319482号公報な どがある。 発明の開示  Other examples using light emission from an excited triplet include JP-A-11-313297, JP-A-11-256148, and JP-A-8-319482. Disclosure of the invention
しかしながら、 上記、 励起三重項からの発光を利用する材料では、 青色から 赤色に至る種々の波長で発光し、 かつ、 信頼性に優れる有機 EL素子を提供す ることが困難である。 従って、 本発明は、 上記した従来の問題に鑑み、 青色か ら赤色に至る広い可視光領域で発光する、 色純度、 信頼性等に優れたりん光発 光材料を提供することを目的とする。  However, it is difficult to provide an organic EL device which emits light at various wavelengths from blue to red and has excellent reliability with the above-mentioned materials utilizing light emission from the excited triplet. Accordingly, an object of the present invention is to provide a phosphorescent material which emits light in a wide visible light range from blue to red and has excellent color purity, reliability, and the like in view of the above-described conventional problems. .
また、 特に、 上記、 りん光発光を用いたフルカラ一有機 EL素子を作製しよ うとした場合、 色純度の良い青色りん光発光を有する金属配位化合物が見出さ れていない。 従って、 本発明は、 色純度に優れる青色りん光発光を有する金属 配位化合物を提供することを目的とする。 In particular, when the above-mentioned full-color organic EL device using phosphorescence was to be produced, a metal coordination compound having blue phosphorescence having good color purity was found. Not. Accordingly, an object of the present invention is to provide a metal coordination compound having blue phosphorescence with excellent color purity.
また、 特に、 上記、 りん光発光を用いたフルカラ一有機 E L素子のみならず 、 照明用途などへの利用を考えた場合、 様々な発光色を有し、 駆動寿命の長い りん光発光性金属配位化合物の開発が望まれる。 しかしながら、 これまでりん 光発光素子の駆動寿命は、 蛍光発光素子と比較して短かった。 りん光発光素子 の駆動寿命が短い原因は明らかではないが、 一般に励起三重項状態の寿命が励 起一重項の寿命に比べて長く、 分子が高エネルギー状態に長く留まるため、 周 辺物質との反応、 分子自体の構造変化、 励起子同士の反応などが起こるためで はないかと考えられている。 従って、 本発明は、 緑色から赤色に至る様々な色 の発光を有し、 駆動寿命の長い金属配位化合物を提供することを目的とする。 また、 特に、 上記、 りん光発光を用いたフルカラーや照明用途などの有機 E L素子を作製しょうとした場合、 色純度の良い青色りん光発光を有する金属配 位化合物が見出されていない。 さらに、 青色から赤色まの材料で、 素子の駆動 寿命の長いものも見出されていない。 従って、 本発明は、 色純度に優れる青色 りん光発光を有する金属配位化合物を提供すること、 また、 青色から赤色まで 駆動寿命の長いりん光発光を有する金属配位化合物を提供することを目的とす る。  In particular, when considering not only the above-mentioned full-color organic EL device using phosphorescence but also lighting applications, the phosphorescent metal distribution having various luminescent colors and a long driving life is provided. Development of coordination compounds is desired. However, the driving life of phosphorescent devices has been shorter than that of fluorescent devices. It is not clear why the driving lifetime of the phosphorescent device is short, but generally the lifetime of the excited triplet state is longer than that of the excited singlet, and the molecule stays in the high energy state for a long time. It is thought that reactions, structural changes in the molecules themselves, and reactions between excitons may occur. Therefore, an object of the present invention is to provide a metal coordination compound which emits light of various colors from green to red and has a long driving life. In particular, when attempting to produce an organic EL device for full-color or lighting applications using phosphorescence, no metal coordination compound having blue phosphorescence with good color purity has been found. In addition, no blue to red material with a long drive life has been found. Accordingly, an object of the present invention is to provide a metal coordination compound having blue phosphorescence having excellent color purity, and to provide a metal coordination compound having phosphorescence having a long driving life from blue to red. It shall be.
また、 他の本発明は、 前記の金属配位化合物を含むポリマー組成物を提供す ることを目的とする。  Another object of the present invention is to provide a polymer composition containing the metal coordination compound.
さらに、 他の本発明は、 前記の金属配位化合物又は前記のポリマー組成物を 用いた有機エレクト口ルミネッセンス素子を提供することを目的とする。 本発明の発明者らは鋭意検討した結果、 配位子として式 (1 ) ~ ( 6 ) に示 す環状化合物を有する金属配位化合物が、 青色から赤色に至る広い波長領域で 発光する、 信頼性に優れたりん光発光材料であることを見出し、 本発明を完成 するに至った。 すなわち、 本発明は、 式 (1) (6) の何れかで表される とを特徴とする化合物に関する。 Still another object of the present invention is to provide an organic electroluminescent device using the metal coordination compound or the polymer composition. As a result of intensive studies, the inventors of the present invention have found that a metal coordination compound having a cyclic compound represented by formulas (1) to (6) as a ligand emits light in a wide wavelength range from blue to red. Completed the present invention by finding that it is a phosphorescent material with excellent properties I came to. That is, the present invention relates to a compound represented by any of formulas (1) and (6).
Figure imgf000006_0001
Figure imgf000006_0001
(1) (2) (3)  (one two Three)
Figure imgf000006_0002
Figure imgf000006_0002
B: >NR, >0, >S, >C = 0, >S〇2, >CR B:>NR,>0,>S,> C = 0,> S〇 2 ,> CR
(式中、 Mは I r、 Rh、 Ru、 〇s、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは Osであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 XJ XBおよび Rはそれぞれ独立に一 R —〇R2、 一 SR3、 —〇C〇R4、 _C〇〇R5、 一 S i R6R7R8、 および一NR9R10 (ただし 、 尺1〜!^13は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭素数 1〜2 2個の直鎖、 環状もしくは分岐アルキル基又はそれらの水素原子の一部もしく は全部がハロゲン原子で置換されたハロゲン置換アルキル基、 炭素数 6〜2 1 個のァリール基、 炭素数 2〜 2 0のへテロァリール基もしくは炭素数 7〜 2 1 のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置 換されたハロゲン置換ァリール基、 ハロゲン置換へテロアリール基、 ハロゲン 置換ァラルキル基を表し、 !^ 1〜!^ 1。はそれぞれ同一であっても異なっていて もよい。 ) からなる群から選択される置換基であって、 また、 X i〜X 6は同 一であっても異なっていてもよく、 環 Aは X t〜X 6で定義される基と同様の 置換基を有していてもよい。 ) ここで、 1^〜1 1 (は置換基を有していてもよ く、 置換基の例として、 ハロゲン原子、 シァノ基、 アルデヒド基、 アミノ基、 アルキル基、 アルコキシ基、 アルキルチオ基、 カルボキシル基、 スルホン酸基 、 ニトロ基等を挙げることができる。 これらの置換基は、 さらにハロゲン原子 、 メチル基等によって置換されていてもよい。 (Where M is Ir, Rh, Ru, 〇s, Pd or Pt, and n is 2 or 3. When M is Ir, Rh, Ru or Os and n is 2 , M is further bound to another bidentate ligand Ring A is a cyclic compound containing a nitrogen atom bonded to M. XJ XB and R are each independently R —〇R 2 , SR 3 , —〇C〇R 4 , _C〇〇R 5 , one Si R 6 R 7 R 8 , and one NR 9 R 10 (however, a length of 1 to! ^ 13 is a hydrogen atom, a halogen atom, a cyano group , Nitro group, carbon number 1-2 Two straight-chain, cyclic or branched alkyl groups or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms, an aryl group having 6 to 21 carbon atoms, a carbon number of 2 to 2 A heteroaryl group of 20 or an aralkyl group having 7 to 21 carbon atoms or a halogen-substituted aryl group, a halogen-substituted heteroaryl group or a halogen-substituted aralkyl group in which part or all of the hydrogen atoms have been replaced by halogen atoms. Express,! ^ 1 ~! ^ 1 . May be the same or different. ) Comprising a substituent selected from the group of, also, X I through X 6 is independently selected from groups a same ring A the same groups defined X t to X 6 It may have a substituent. Here, 1 ^ to 11 ( may have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, and a carboxyl group. And a sulfonic acid group, a nitro group, etc. These substituents may be further substituted with a halogen atom, a methyl group, or the like.
また、 本発明の発明者らは、 特に、 配位子として力ルバゾール誘導体を有す る金属配位化合物が、 色純度に優れる青色りん光発光を有する優れたりん光発 光材料であることを見出した。 従って、 本発明の好ましい実施態様として、 以 下の式 I ( 1 ) 〜1 ( 6 ) の何れかで表される金属配位化合物が提供される。 In addition, the inventors of the present invention have found that a metal coordination compound having a carbazole derivative as a ligand is an excellent phosphorescent material having blue phosphorescence with excellent color purity. I found it. Therefore, as a preferred embodiment of the present invention, there is provided a metal coordination compound represented by any one of the following formulas I (1) to 1 (6).
Figure imgf000008_0001
Figure imgf000008_0001
I- (1) I-(2) I- (3)  I- (1) I- (2) I- (3)
Figure imgf000008_0002
Figure imgf000008_0002
I -(4) I-(5) I - (6)  I-(4) I- (5) I-(6)
(式中、 Mは I r、 Rh、 Ru、 Os、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは Osであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 Xi X?は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭 素数 1〜22個の直鎖、 環状もしくは分岐アルキル基、 又はそれらの水素原子 の一部もしくは全部がハロゲン原子で置換されたハロゲン置換アルキル基、 炭 素数 6〜21個のァリール基、 炭素数 2〜 20のへテロァリール基もしくは炭 素数 7〜 21のァラルキル基又はそれらの水素原子の一部もしくは全部がハロ ゲン原子で置換されたハロゲン置換ァリール基、 ハロゲン置換へテロアリール 基、 ハロゲン置換ァラルキル基のいずれであってもよく、 また、 〜; 7は 同一であっても異なっていてもよく、 環 Aは Xi〜X 7で定義される基と同様 の置換基を有していてもよい。 ) (Where M is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3. When M is Ir, Rh, Ru or Os and n is 2, Another bidentate ligand is bound to M. Ring A is a cyclic compound containing a nitrogen atom bound to M. Xi X? Is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a charcoal A straight-chain, cyclic or branched alkyl group having 1 to 22 prime atoms, or a halogen-substituted alkyl group in which part or all of hydrogen atoms have been substituted with halogen atoms, an aryl group having 6 to 21 carbon atoms, and 2 carbon atoms Any of a halogen-substituted aryl group, a halogen-substituted heteroaryl group, a halogen-substituted heteroaryl group, and a halogen-substituted aralkyl group in which some or all of the hydrogen atoms thereof are substituted with a halogen atom. may be in, also, ~; 7 It may be the same or different and ring A may have the same substituent groups as defined in Xi~X 7. )
また、 本発明の発明者らは、 特に、 配位子として力ルバゾ一ル誘導体に様々 な置換基を導入した金属配位化合物が、 緑色から赤色に至る発光色を有し、 駆 動寿命の長い優れたりん光発光材料であることを見出した。  In addition, the inventors of the present invention have found that, in particular, a metal coordination compound in which various substituents have been introduced into a ligand as a ligand has a luminescent color ranging from green to red, and has a long drive life. It has been found that it is a long and excellent phosphorescent material.
従って、 本発明の好ましい実施態様として、 以下の式 II (1) 〜Π (6) の何れかで表される金属配位化合物が提供される。  Therefore, as a preferred embodiment of the present invention, there is provided a metal coordination compound represented by any of the following formulas II (1) to (6).
Figure imgf000009_0001
Figure imgf000009_0001
Π- (1) II- (2) 11-(3)  Π- (1) II- (2) 11- (3)
Figure imgf000009_0002
(式中、 Mは I r、 h, Ru、 〇s、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは〇sであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 Xi〜X7はそれぞれ独立に— H、 —〇H、 -R1, -OR2, 一
Figure imgf000009_0002
Wherein M is Ir, h, Ru, 〇s, Pd or Pt, and n is 2 or 3. M is Ir, Rh, Ru or 〇s and n is 2 In this case, M is further bound to another bidentate ligand Ring A is a cyclization containing a nitrogen atom bonded to M It is a compound. Xi~X 7 is independently - H, -〇_H, -R 1, -OR 2, one
SR3、 一 OCOR4、 —COOR5、 — S i R6R7R8、 — NH2、 一 NHR 9SR 3 , one OCOR 4 , —COOR 5 , — S i R 6 R 7 R 8 , — NH 2 , one NHR 9
、 および一 NR^R11 (ただし、 1〜!^1は炭素数 1〜22個の直鎖、 環 状もしくは分岐のアルキル基、 炭素数 6〜21個のァリール基、 炭素数 2〜2 0のへデロアリール基、 または、 炭素数 7〜21のァラルキル基を表し、 R1 〜尺11はそれぞれ同一であっても異なっていてもよい。 ) からなる群から選 択される置換基であって、 また、 ェ〜 ?は同一であっても異なっていても よく、 環 Aは Xi〜X7で定義される基と同様の置換基を有していてもよい。 ) ここで、 Ri R11は置換基を有していてもよく、 置換基の例として、 ハロ ゲン原子、 シァノ基、 アルデヒド基、 アミノ基、 アルキル基、 アルコキシ基、 アルキルチオ基、 力ルポキシル基、 スルホン酸基、 ニト ϋ基等を挙げることが できる。 これらの置換基は、 さらにハロゲン原子、 メチル基等によって置換さ れていてもよい。 , And one NR ^ R 11 (where 1 to! ^ 1 is a straight-chain, cyclic or branched alkyl group having 1 to 22 carbon atoms, an aryl group having 6 to 21 carbon atoms, and 2 to 20 carbon atoms) Represents an aralkyl group having 7 to 21 carbon atoms, and each of R 1 to shaku 11 may be the same or different.) A substituent selected from the group consisting of , Or eh ~? It may be the same or different and ring A may have the same substituent groups as defined in Xi~X 7. Here, Ri R 11 may have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, a lipoxyl group, Examples thereof include a sulfonic acid group and a nitrile group. These substituents may be further substituted by a halogen atom, a methyl group, or the like.
また、 本発明の発明者らは、 特に配位子として式 III (1) 〜ΙΙΙ (6) に 示す環状化合物を有する金属配位化合物が、 色純度に優れる青色から赤色に至 るりん光発光を有し、 駆動寿命の長い優れたりん光発光材料であることを見出 した。  In addition, the inventors of the present invention have proposed that a metal coordination compound having a cyclic compound represented by formulas III (1) to ΙΙΙ (6) as a ligand can emit phosphorescent light from blue to red having excellent color purity. It has been found that this is an excellent phosphorescent material having a long driving life.
従って、 本発明の好ましい実施態様として、 以下の式 III (1) 〜ΙΠ (6 ) の何れかで表される金属配位化合物が提供される。 Accordingly, as a preferred embodiment of the present invention, there is provided a metal coordination compound represented by any of the following formulas III (1) to (6).
Figure imgf000011_0001
Figure imgf000011_0001
III-(l) 111- (2) 111- (3)  III- (l) 111- (2) 111- (3)
Figure imgf000011_0002
Figure imgf000011_0002
111- (4) III- (5) ΙΠ -(6)  111- (4) III- (5) ΙΠ-(6)
B :>O, 〉S, >C = 0, >S02, >CR, B:>O,> S, > C = 0,> S0 2,> CR,
(式中、 Mは I r、 Rh、 Ru、 Os、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは Osであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 X1〜X6および Rはそれぞれ独立に— R1 -OR2, — SR3、 _〇COR4、 一 C〇〇R5、 一 S i R6R7R8、 および一 NR9R10 (ただし 、 1〜!^^は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭素数 1〜2 2個の直鎖、 環状もしくは分岐アルキル基又はそれらの水素原子の一部もしく は全部がハロゲン原子で置換されたハロゲン置換アルキル基、 炭素数 6〜 21 個のァリール基、 炭素数 2〜 20のへテロァリール基もしくは炭素数 7〜 21 のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置 換されたハロゲン置換ァリール基、 ハロゲン置換へテロアリール基、 ハロゲン 置換ァラルキル基を表し、 1^〜1 1()はそれぞれ同一であっても異なっていて もよい。 ) からなる群から選択される置換基であって、 また、 Xi Xeは同 一であっても異なっていてもよく、 環 Aは Xi〜X6で定義される基と同様の 置換基を有していてもよい。 ) ここで、 尺1〜!^1。は置換基を有していてもよ く、 置換基の例として、 ハロゲン原子、 シァノ基、 アルデヒド基、 アミノ基、 アルキル基、 アルコキシ基、 アルキルチオ基、 力ルポキシル基、 スルホン酸基 、 ニトロ基等を挙げることができる。 これらの置換基は、 さらにハロゲン原子 、 メチル基等によって置換されていてもよい。 ' (Where M is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3. When M is Ir, Rh, Ru or Os and n is 2, Another bidentate ligand is bonded to M. Ring A is a cyclic compound containing a nitrogen atom bonded to M. X 1 to X 6 and R are each independently — R 1 -OR 2 , — SR 3 , _〇COR 4 , one C〇〇R 5 , one Si R 6 R 7 R 8 , and one NR 9 R 10 (where 1 to! ^^ are a hydrogen atom, a halogen atom, a cyano group A nitro group, a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms, a carbon atom having 6 to 21 carbon atoms Aralkyl group having 2 to 20 carbon atoms or aralkyl group having 7 to 21 carbon atoms, or a halogen-substituted aryl group in which part or all of the hydrogen atoms have been replaced with halogen atoms, a halogen-substituted heteroaryl group And a halogen-substituted aralkyl group, and 1 ^ to 11 () may be the same or different. ) A substituent selected from the group consisting of, also, Xi Xe may be different even in the same ring A have the same substituent groups as defined in Xi~X 6 It may be. ) In this case, scale 1 ~! ^ 1. May have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, a lipoxyl group, a sulfonic acid group, and a nitro group. Can be mentioned. These substituents may be further substituted by a halogen atom, a methyl group or the like. '
また本発明は、 前記の金属配位化合物を、 共役あるいは非共役ポリマーに混 合あるいは共重合させたポリマー組成物に関する。  The present invention also relates to a polymer composition obtained by mixing or copolymerizing the metal coordination compound with a conjugated or non-conjugated polymer.
また本発明は、 前記の金属配位化合物、 または前記のポリマー組成物を用い て作製された有機エレクトロルミネセンス素子に関する。  The present invention also relates to an organic electroluminescent device manufactured using the metal coordination compound or the polymer composition.
本願の開示は、 2003年 6月 9日に出願された特願 2003- 16432 1、 特願 2003— 164328及び特願 2003— 164340に記載の主 題と関連しており、 それらの開示内容は引用によりここに援用される。 発明を実施するための最良の形態  The disclosure of the present application is related to the subjects described in Japanese Patent Application Nos. 2003-164321, 2003-164328, and 2003-164340 filed on June 9, 2003, and the disclosure contents thereof are cited. Hereby incorporated by reference. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の金属配位化合物は、 下記式 (1) 〜 (6) で表されることを特徴と する。 The metal coordination compound of the present invention is represented by the following formulas (1) to (6).
Figure imgf000013_0001
Figure imgf000013_0001
(1) (2) (3)  (one two Three)
Figure imgf000013_0002
Figure imgf000013_0002
B: >NR, >〇, >S, >C = 0, >S〇2, >CR B:>NR,>〇,>S,> C = 0,> S〇 2 ,> CR
(式中、 Mは I r、 Rh、 Ru、 Os、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは〇sであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 Xi Xeおよび Rはそれぞれ独立に一 R1, — OR2、 _SR3、 —〇COR4、 一 C〇OR5、 一 S i R6R7R8、 および一 NR9R10 (ただし 、 1^〜1^1()は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭素数 1〜2 2個の直鎖、 環状もしくは分岐アルキル基又はそれらの水素原子の一部もしく は全部がハロゲン原子で置換されたハロゲン置換アルキル基、 炭素数 6〜21 個のァリール基、 炭素数 2〜 2 0のへテロァリール基もしくは炭素数 7〜 2 1 のァラルキル基又はそれらの水素原子の一部もしくは全部がハ口ゲン原子で置 換されたハロゲン置換ァリール基、 ハロゲン置換へテロアリール基、 ハロゲン 置換ァラルキル基を表し、 尺1〜!^ 1 15はそれぞれ同一であっても異なっていて もよい。 ) からなる群から選択される置換基であって、 また、 X i X eは同 一であっても異なっていてもよく、 環 Aは X i ~X 6で定義される基と同様の 置換基を有していてもよい。 ) ここで、 1^〜1 1 (は置換基を有していてもよ く、 置換基の例として、 ハロゲン原子、 シァノ基、 アルデヒド基、 アミノ基、 アルキル基、 アルコキシ基、 アルキルチオ基、 力ルポキシル基、 スルホン酸基 、 ニトロ基等を挙げることができる。 これらの置換基は、 さらにハロゲン原子 、 メチル基等によって置換されていてもよい。 ' (Where M is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3. When M is Ir, Rh, Ru or 〇s and n is 2 , M further binds another bidentate ligand Ring A is a cyclic compound containing a nitrogen atom bonded to M. Xi Xe and R each independently represent one R 1 , — OR 2 , _SR 3 , —〇COR 4 , one C〇OR 5 , one Si R 6 R 7 R 8 , and one NR 9 R 10 (where 1 ^ to 1 ^ 1 () is a hydrogen atom, a halogen atom, a cyano group A nitro group, a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms, or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms, a carbon atom having 6 to 21 carbon atoms. Aralkyl groups having 2 to 20 carbon atoms or aralkyl groups having 7 to 21 carbon atoms, or halogen-substituted araryl groups in which some or all of the hydrogen atoms thereof have been replaced by halogen atoms; heteroaryl group halogen substituted, a halogen-substituted Ararukiru group, scale 1 ~! ^ 1 15 may each be the same or different. X i X e may be the same or different, and ring A is the same substituent as the group defined by X i to X 6 It may have a group. Here, 1 ^ to 11 ( may have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, Examples include a ropoxyl group, a sulfonic group, a nitro group, etc. These substituents may be further substituted by a halogen atom, a methyl group, or the like.
以下に X i X e及び Rで表される置換基の例を示すが、 本発明においては 、 以下に限定されるものではない。  Examples of the substituents represented by XiXe and R are shown below, but the present invention is not limited thereto.
—R 1の例としては、 水素原子、 フッ素原子、 塩素原子、 臭素原子、 ヨウ素 原子等のハロゲン原子、 シァノ基、 ニトロ基、 メチル基、 ェチル基、 プロピル 基、 イソプロピル基、 シクロプロピル基、 ブチル基、 イソブチル基、 t e r t 一ブチル基、 シクロブチル基、 ペンチル基、 イソペンチル基、 ネオペンチル基 、 シクロペンチル基、 へキシル基、 シクロへキシル基、 ヘプチル基、 シクロへ プチル基、 ォクチル基、 ノニル基、 デシル基、 フエニル基、 トリル基、 キシリ ル基、 メシチル基、 クメニル基、 ベンジル基、 フエネチル基、 メチルベンジル 基、 ジフエニルメチル基、 スチリル基、 シンナミル基、 ビフエニル残基、 ター フエニル残基、 ナフチル基、 アントリル基、 フルォレニル基、 フラン残基、 チ ォフェン残基、 ピロール残基、 ォキサゾール残基、 チアゾール残基、 イミダゾ ール残基、 ピリジン残基、 ピリミジン残基、 ピラジン残基、 トリアジン残基、 キノリン残基、 キノキサリン残基またはこれらがフッ素原子、 塩素原子、 臭素 原子、 ヨウ素原子等で置換されたハロゲン置換体を挙げることができる。Examples of —R 1 include a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a halogen atom such as an iodine atom, a cyano group, a nitro group, a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, and a butyl group. Group, isobutyl group, tert-butyl group, cyclobutyl group, pentyl group, isopentyl group, neopentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, nonyl group, decyl group , Phenyl, tolyl, xylyl, mesityl, cumenyl, benzyl, phenethyl, methylbenzyl, diphenylmethyl, styryl, cinnamyl, biphenyl, terphenyl, naphthyl, anthryl , Fluorenyl group, furan residue, thiophene residue Group, pyrrole residue, oxazole residue, thiazole residue, imidazole residue, pyridine residue, pyrimidine residue, pyrazine residue, triazine residue, quinoline residue, quinoxaline residue or a fluorine atom or chlorine atom Atom, bromine And halogen-substituted compounds substituted with an iodine atom or the like.
— OR2の例としては、 水酸基、 メトキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基、 t e r t—ブトキシ基、 ォクチルォキシ基、 t e r t—ォクチル ォキシ基、 フエノキシ基、 4ー t e r t—ブチルフエノキシ基、 1一ナフチル ォキシ基、 2—ナフチルォキシ基、 9—アンスリルォキシ基を挙げることがで ぎる。 - Examples of OR 2 represents a hydroxyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, tert- butoxy group, Okuchiruokishi group, tert- Okuchiru Okishi group, phenoxy group, 4-tert- Buchirufuenokishi group, 1 one-naphthyl Okishi Group, 2-naphthyloxy group and 9-anthryloxy group.
一 SR3の例としては、 メルカプト基、 メチルチオ基、 ェチルチオ基、 t e r t—プチルチオ基、 へキシルチオ基、 ォクチルチオ基、 フエ二ルチオ基、 2 —メチルフエ二ルチオ基、 4_ t e r t—ブチルフエ二ルチオ基を挙げること ができる。 Examples of SR 3 include mercapto group, methylthio group, ethylthio group, tert-butylthio group, hexylthio group, octylthio group, phenylthio group, 2-methylphenylthio group, and 4_tert-butylphenylthio group. be able to.
一 OCOR4の例としては、 ホルミルォキシ基、 ァセトキシ基、 ベンゾィル ォキシ基を挙げることができる。 Examples of OCOR 4 include a formyloxy group, an acetoxy group, and a benzoyloxy group.
一 COOR5の例としては、 力ルポキシル基、 メトキシカルボニル基、 エト キシカルボ二ル基、 t e r t—ブトキシカルポニル基、 フエノキシカルポニル 基、 ナフチルォキシカルポ二ル基等を挙げることができる。 Examples of COOR 5 include a carbonyl group, a methoxycarbonyl group, an ethoxycarbonyl group, a tert-butoxycarbonyl group, a phenoxycarbonyl group, and a naphthyloxycarbonyl group.
一 S i R6R7R8の例としては、 シリル基、 トリメチルシリル基、 トリェチ ルシリル基、 トリフエニルシリル基等を挙げることができる。 One Examples of S i R 6 R 7 R 8 , can be mentioned silyl group, a trimethylsilyl group, Toryechi Rushiriru group, a triphenyl silyl group.
一 NR9R1 ()の例としては、 アミノ基、 N—メチルァミノ基、 N—ェチルァ ミノ基、 N, N—ジメチルァミノ基、 N, N—ジェチルァミノ基、 N, N—ジ イソプロピルアミノ基、 N, N—ジブチルァミノ基、 N—ベンジルァミノ基、 N, N—ジベンジルァミノ基、 N—フエニルァミノ基、 N, N—ジフエニルァ ミノ基等を挙げることができる。 Examples of NR 9 R 1 () include amino, N-methylamino, N-ethylamino, N, N-dimethylamino, N, N-ethylamino, N, N-diisopropylamino, N , N-dibutylamino group, N-benzylamino group, N, N-dibenzylamino group, N-phenylamino group, N, N-diphenylamino group and the like.
本発明の金属配位化合物は、 りん光性発光を有するものであり、 最低励起状 態は三重項 ML CT (Metal-to-Ligand charge transfer) 励起状態か、 π— 励起状態であると考えられる。 これらの状態から基底状態に遷移するとき にりん光性発光が生じる。 The metal coordination compound of the present invention has phosphorescent emission, and the lowest excited state is considered to be a triplet MLCT (Metal-to-Ligand charge transfer) excited state or a π-excited state. . When transitioning from these states to the ground state Phosphorescence occurs.
本発明の発光材料のりん光量子収率は 0 . 1から 0 . 9と高い値が得られ、 りん光寿命は 1〜6 0 sであった。 りん光寿命が短いことは、 有機 E L素子 にしたときに発光効率の高効率化の条件となる。 つまり、 りん光寿命が長いと 、 励起三重項状態でいる分子の割合が多くなり、 高電流密度において、 て一 τ ァニヒレーシヨンに基づく発光効率の低下が生じる。 本発明の金属配位化合物 は、 りん光発光効率が高く発光寿命も短いので有機 E L素子の発光材料に適し た材料である。  The phosphorescent quantum yield of the light emitting material of the present invention was as high as 0.1 to 0.9, and the phosphorescence lifetime was 1 to 60 s. The short phosphorescence lifetime is a condition for increasing the luminous efficiency of an organic EL device. In other words, if the phosphorescence lifetime is long, the proportion of molecules in the excited triplet state increases, and at high current densities, the luminous efficiency is reduced based on the 1 τ annihilation. The metal coordination compound of the present invention is a material suitable for a luminescent material of an organic EL device because it has a high phosphorescent efficiency and a short luminescent life.
前記式 (1 ) 〜 (6 ) で示される金属配位化合物のうち、 環 Αが、 以下に示 す構造を有する環状化合物のいずれかであることが好ましく、 より好ましくは X i X e (以下、 まとめて置換基 X nと表記する。 ) で定義される基と同様 の置換基を有していてもよい—ピリジン、 キノリン、 ベンゾォキサゾール、 ベン ゾチアゾ一ル、 ベンゾイミダゾール、 ベンゾトリアゾール、 イミダゾール、 ピ ラゾール、 ォキサゾール、 チアゾール、 トリァゾール、 ベンゾピラゾール、 ト リアジンまたはイソキノリンである。 Among the metal coordination compounds represented by the formulas (1) to (6), the ring こ と が is preferably any one of the cyclic compounds having a structure shown below, and more preferably X i X e (hereinafter, X i X e , May be collectively referred to as a substituent X n.), Which may have the same substituent as the group defined in —pyridine, quinoline, benzoxazole, benzothiazol, benzimidazole, benzotriazole, It is imidazole, pyrazole, oxazole, thiazole, triazole, benzopyrazole, triazine or isoquinoline.
Figure imgf000017_0001
Figure imgf000017_0001
( ) ()
Z6C800/l700Zdf/X3d 990ΪΪΪ請 OAV ここで Zi Zeは、 式 (1) 〜 (6) の Xnとして表される置換基と同じ 置換基であり、 Zi Zeは同一であっても異なっていてもよい。 Z6C800 / l700Zdf / X3d 990 contract OAV Here, Zi Ze is the same substituent as the substituent represented as Xn in formulas (1) to (6), and Zi Ze may be the same or different.
また、 本発明において、 式 (1) 〜 (6) 中、 Mは I rであることが好まし い。  In the present invention, in the formulas (1) to (6), M is preferably Ir.
金属 Mが I r、 Rh、 Ru、 〇 sの場合で、 n = 2の場合、 金属 Mに結合す るもう一つの配位子は、 以下に示す構造を有する化合物のいずれかであること が好ましい。  When the metal M is Ir, Rh, Ru, 〇s, and n = 2, the other ligand that binds to the metal M may be any of the compounds having the structures shown below. preferable.
式 (8) Equation (8)
Figure imgf000018_0001
ここで
Figure imgf000018_0002
は、 式 (1) 〜 (6) の Xnとして表される置換基と同じ 置換基であり、 Yi〜Y4は同一であっても異なっていてもよい。
Figure imgf000018_0001
here
Figure imgf000018_0002
Are the same substituents as the substituent represented as Xn of the formula (1) ~ (6), Yi~Y 4 may be different even in the same.
(金属配位化合物の合成方法の詳細な説明)  (Detailed description of synthesis method of metal coordination compound)
以下、 本発明の金属配位化合物の合成方法を、 金属配位化合物の具体例を用 いながら詳細に説明する。  Hereinafter, the method for synthesizing the metal coordination compound of the present invention will be described in detail using specific examples of the metal coordination compound.
本発明の金属配位化合物は、 種々の当業者公知の合成法により製造できる。 例えば、 S. Lamanskyら., J. Am. Chem. Soc.2001.123.に記載されている方法を用 いることができる。 本発明で用いられる前記式 (1) 〜 (6) で示される金属 配位化合物の合成経路の一例 (環 Aが置換ピリジンの場合) をイリジウム配位 化合物を例として示す。 なお、 ここで説明するのは、 以下表 I一 1に示した ( 2) 、 表 Π— 1に示した (2) 及び表 III— 1に示した (2) に関するもの であるが、 他の例示化合物についてもほぼ同じ方法で合成することができる。 (配位子 Lの合成) The metal coordination compound of the present invention can be produced by various synthetic methods known to those skilled in the art. For example, the method described in S. Lamansky et al., J. Am. Chem. Soc. 2001.123. Can be used. An example (in the case where ring A is substituted pyridine) of a synthesis route of the metal coordination compound represented by the above formulas (1) to (6) used in the present invention will be described by taking an iridium coordination compound as an example. Note that the explanations here relate to (2) shown in Table I-11, (2) shown in Table II-1, and (2) shown in Table III-1. The exemplified compounds can be synthesized by almost the same method. (Synthesis of ligand L)
表 1—1 (2) 又は表 II一 1 (2) の配位子 L Ligand L in Table 1-1 (2) or Table II (1)
Figure imgf000019_0001
Figure imgf000019_0001
表 III— 1 (2) の配位子 L Table III—Ligands L in 1 (2)
Figure imgf000019_0002
Figure imgf000019_0002
(イリジウム錯体の合成)  (Synthesis of iridium complex)
3XL  3XL
lr(CH3COCHCOCH3)3 →^ lr(L)3 lr (CH 3 COCHCOCH 3 ) 3 → ^ lr (L) 3
Grycerin,microwave:30min または、  Grycerin, microwave: 30min or
Acetylacetonate 2CO3  Acetylacetonate 2CO3
IrCI3XH20 or Na3lrCI62H20- [lr(L)2Ci]2 lr(L)2(CH3COCHCOCH3) IrCI 3 XH 2 0 or Na 3 lrCI 6 2H 2 0- [lr (L) 2 Ci] 2 lr (L) 2 (CH 3 COCHCOCH 3 )
2-Ethoxyethanol-watertr.t:30min reflux:24h 2-Ethox ethanoltreflux:15h lr(L)2(GH3COCHCOCH3) lr(L)3 2-Ethoxyethanol-water t rt: 30min reflux: 24h 2-Ethox ethanol- t reflux: 15h lr (L) 2 (GH 3 COCHCOCH 3 ) lr (L) 3
Glycerol,180C:8  Glycerol, 180C: 8
以下に本発明の金属配位化合物の好ましい態様を示す。 Preferred embodiments of the metal coordination compound of the present invention are shown below.
(式 I (1) 〜1 (6) で表される金属配位化合物)  (Metal coordination compounds represented by formulas I (1) to 1 (6))
有機 ELにおいて、 青色のりん光発光を得るためには、 最低励起状態のエネ ルギーレベルが高いことが必要である。 しかしながら、 これまでの金属配位化 合物ではその最低励起状態のエネルギーレベルが青色発光するためには低かつ たため、 発光色が青緑色から赤色になっていたと考えられる。 In order to obtain blue phosphorescence in organic EL, the lowest excited state A high level of energy is required. However, it is considered that the emission level of the metal coordination compound has changed from blue-green to red because the energy level of the lowest excited state was low for blue light emission.
そこで、 本発明者らは種々の検討を行い、 下記式 I (1) 〜1 (6) で示さ れる金属配位化合物が、 青色のりん光発光を有することを見出した。  Therefore, the present inventors have conducted various studies and found that the metal coordination compounds represented by the following formulas I (1) to 1 (6) have blue phosphorescence.
Figure imgf000020_0001
Figure imgf000020_0001
I - (1) I - (2) I - (3)  I-(1) I-(2) I-(3)
Figure imgf000020_0002
Figure imgf000020_0002
1-(4) I - (5) 1-(6)  1- (4) I-(5) 1- (6)
(式中、 Μは I r、 Rh、 Ru、 Os、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは〇sであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 ェ〜 ?は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭 素数 1〜22個の直鎖、 環状もしくは分岐アルキル基又はそれらの水素原子の 一部もしくは全部がハ口ゲン原子で置換されたハ口ゲン置換アルキル基、 炭素 数 6〜2 1個のァリール基、 炭素数 2〜 2 0のへテロァリール基もしくは炭素 数 7〜 2 1のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲ ン原子で置換されたハロゲン置換ァリール基、 ハ口ゲン置換へテロァリ一ル基 、 ハロゲン置換ァラルキル基のいずれであってもよく、 また、 X i〜X 7は同 一であっても異なっていてもよく、 環 Aは X i〜X 7で定義される基と同様の 置換基を有していてもよい。 ) (Where Μ is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3. When M is Ir, Rh, Ru or 〇s and n is 2 , M further binds another bidentate ligand Ring A is a cyclic compound containing a nitrogen atom bonded to M. ェ ~? Are hydrogen atom, halogen atom, cyano group, nitro group, A straight-chain, cyclic or branched alkyl group having 1 to 22 carbon atoms or a hydrogen atom thereof Halogen-substituted alkyl groups partially or wholly substituted with halogen atoms, aryl groups having 6 to 21 carbon atoms, heteroaryl groups having 2 to 20 carbon atoms, or aralkyls having 7 to 21 carbon atoms A halogen-substituted aryl group, a halogen-substituted heteroaryl group, or a halogen-substituted aralkyl group, in which some or all of the hydrogen atoms of these groups are substituted with a halogen atom; To X 7 may be the same or different, and ring A may have the same substituent as the group defined for X i to X 7 . )
前記式 I ( 1 ) 〜 1 ( 6 ) で示される金属配位化合物のうち、 環 Aが、 以下 に示す構造を有する環状化合物のいずれかであることが好ましく、 X i〜X 7 (以下、 まとめて置換基 X nと表記する。 ) で定義される基と同様の置換基を 有していてもよいピリジン、 キノリン、 ベンゾォキサゾール、 ベンゾチアゾー ル、 ベンゾイミダゾール、 ベンゾトリァゾール、 イミダゾール、 ピラゾール、 ォキサゾール、 チアゾール、 トリァゾール、 ベンゾピラゾールまたはトリアジ ンであることが好ましく、 X nで定義される基と同様の置換基を有していても 良いピリジン、 キノリンであることがより好ましい。 Among the formula I (1) ~ metal coordination compound represented by 1 (6), ring A is preferably either a cyclic compound having the structure shown below, X I through X 7 (hereinafter, Pyridine, quinoline, benzoxazole, benzothiazole, benzimidazole, benzotriazole, imidazole, pyrazole which may have the same substituent as the group defined in). Oxazole, thiazole, triazole, benzopyrazole or triazine, more preferably pyridine or quinoline which may have the same substituent as the group defined by Xn.
Figure imgf000022_0001
Figure imgf000022_0001
( I ) (I)
Z6£800請 Zdf/IOd 990ΪΪΪ請 ΟΛ\ ここで Zi〜Z6は、 式 I (1) 〜 I (6) の Xnとして表される置換基と 同じ置換基であり、 Z Zeは同一であっても異なっていてもよい。 Z6 £ 800 contract Zdf / IOd 990 contract ΟΛ \ Here Zi~Z 6 are the same substituents as the substituent represented as Xn of formula I (1) ~ I (6 ), Z Ze may or may not be the same.
金属 Mが I r、 Rh、 Ru、 〇 sの場合で、 n = 2の場合、 金属 Mに結合す るもう一つの配位子は、 以下に示す構造を有する化合物のいずれかであること が好ましい。  When the metal M is Ir, Rh, Ru, 〇s, and n = 2, the other ligand that binds to the metal M may be any of the compounds having the structures shown below. preferable.
式 I (8) Equation I (8)
Figure imgf000023_0001
Figure imgf000023_0001
ここで Y 〜Y4は、 式 I (1) 〜1 (6) の Xnとして表される置換基と 同じ置換基であり、 Yi〜Y4は同一であっても異なっていてもよい。 Here Y to Y 4 are the same substituents represented as Xn of formula I (1) ~1 (6) , Yi~Y 4 may be different even in the same.
前記式 I (1) 〜1 (6) で示される金属配位化合物において、 置換基 Xn 、 あるいは、 環 Aが有する Xnと同様に定義される置換基の少なくとも 1つが 、 発光波長の短波長化に有効であるという観点から、 ハロゲン原子、 シァノ基 またはハロゲン置換アルキル基であることが好ましく、 フッ素原子、 塩素原子 、 シァノ基またはトリフルォロメチル基であることがより好ましく、 フッ素原 子またはトリフルォロメチル基であることがさらに好ましく、 フッ素原子であ ることが最も好ましい。 置換基 Xn、 あるいは、 環 Aが有する Xnと同様に定 義される置換基の少なくとも 1つが、 前記いずれかの置換基を有する場合、 他 の Xnは水素原子である場合が多いが、 さらに他の置換基であってもよい。 例 えば、 X7はアルキル基またはハロゲン置換アルキル基であることが好ましい 前記式 I (1) 〜1 (6) で示される金属配位化合物中、 合成が容易である という観点から、 式 I (1) または I (4) で示される金属配位化合物である ことが好ましい。 In the metal coordination compounds represented by the above formulas I (1) to 1 (6), at least one of the substituents Xn, or at least one of the substituents defined in the same manner as Xn included in ring A, has a shorter emission wavelength. From the viewpoint of being effective for the above, it is preferably a halogen atom, a cyano group or a halogen-substituted alkyl group, more preferably a fluorine atom, a chlorine atom, a cyano group or a trifluoromethyl group, and It is more preferably an orthomethyl group, and most preferably a fluorine atom. When at least one of the substituents Xn or the substituents defined in the same manner as the Xn of the ring A has any of the above substituents, the other Xn is often a hydrogen atom, May be a substituent of For example, X 7 is preferably an alkyl group or a halogen-substituted alkyl group. Among the metal coordination compounds represented by the formulas I (1) to 1 (6), synthesis is easy. From the viewpoint, it is preferable that the metal coordination compound is represented by the formula I (1) or I (4).
前記式 I (1) 〜1 (6) で示される金属配位化合物は最低励起状態のエネ ルギーレベルが高いことが期待され、 有機 E Lの青色りん光発光材料として適 している。  The metal coordination compounds represented by the formulas I (1) to 1 (6) are expected to have a high energy level in the lowest excited state, and are suitable as a blue phosphorescent material for organic EL.
前記式 I (1) 〜1 (6) で示される金属配位化合物の具体例として、 下記 に例示化合物を示すが、 これらに限定されるものではない。 なお、 表 1—1中 の X 〜 X 4は環 Aの置換基を表す。 Specific examples of the metal coordination compounds represented by the above formulas I (1) to 1 (6) are shown below, but are not limited thereto. In addition, X to X 4 in Table 1-1 represent a substituent of ring A.
表 I— 1 Table I—1
(式 I (1) 〜I (6) で示される金属配位化合物の合成具体例)
Figure imgf000025_0001
(Synthetic specific examples of metal coordination compounds represented by formulas I (1) to I (6))
Figure imgf000025_0001
23/1 23/1
Figure imgf000026_0001
差替え用紙 (規貝 23/2
Figure imgf000026_0001
Replacement paper (Kaikai 23/2
I ェ I
0、 ^\ノ〇 、、 /。 。、、 /。 1 工 ェ ェ  0, ^ \ ノ 〇 ,, /. . ,, /. 1 Process
o ェ o
 The
ェ ェ 丄 丄 丄
iV χ ゝ ェ  iV χ ゝ ゝ
CVJ COCVJ CO
CVJ CO 24 CVJ CO twenty four
Figure imgf000028_0001
Figure imgf000028_0001
2β》
Figure imgf000029_0001
2β >>
Figure imgf000029_0001
24/2 24/2
Figure imgf000030_0001
26)
Figure imgf000031_0001
Figure imgf000030_0001
26)
Figure imgf000031_0001
25/1 25/1
Figure imgf000032_0001
26) 25/2
Figure imgf000032_0001
26) 25/2
Figure imgf000033_0001
26) 26
Figure imgf000033_0001
26) 26
Figure imgf000034_0001
26 26/1
Figure imgf000034_0001
26 26/1
Figure imgf000035_0001
26 26/2
Figure imgf000035_0001
26 26/2
Figure imgf000036_0001
則 26》
Figure imgf000037_0001
Figure imgf000036_0001
Rule 26 >>
Figure imgf000037_0001
27/1 27/1
Figure imgf000038_0001
27/2
Figure imgf000038_0001
27/2
Figure imgf000039_0001
28
Figure imgf000039_0001
28
Figure imgf000040_0001
28/1
Figure imgf000040_0001
28/1
Figure imgf000041_0001
6 28/2
Figure imgf000041_0001
6 28/2
Figure imgf000042_0001
29
Figure imgf000042_0001
29
Figure imgf000043_0001
6 29/1
Figure imgf000043_0001
6 29/1
Figure imgf000044_0001
29/2
Figure imgf000044_0001
29/2
Figure imgf000045_0001
30
Figure imgf000045_0001
30
Figure imgf000046_0001
30/1
Figure imgf000046_0001
30/1
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000047_0001
Figure imgf000048_0001
Z6C800/1-00Zdf/X3d 990ΪΪ囊 OZ ΟΛ\ 31 Z6C800 / 1-00Zdf / X3d 990ΪΪ 囊 OZ ΟΛ \ 31
(式 11 (1) 〜II (6) で表される金属配位化合物) (Metal coordination compounds represented by formulas 11 (1) to II (6))
有機 ELにおいて、 緑色から赤色に至るりん光発光を得るためには、 最低励 起状態のエネルギーレベルを変えることが必要である。 また、 一般に励起三重 項状態の寿命が励起一重項の寿命に比べて長く、 分子が高エネルギー状態に長 く留まるため、 周辺物質との反応、 分子自体の構造変化、 励起子同士の反応な どが起こるため、 これまでの金属配位化合物ではりん光発光素子の駆動寿命が 短かったのではないかと考えられている。  To obtain phosphorescence from green to red in organic EL, it is necessary to change the energy level of the lowest excitation state. In addition, the lifetime of the excited triplet state is generally longer than that of the excited singlet, and the molecule stays in the high-energy state for a long time. Therefore, it is thought that the driving life of the phosphorescent device was short with the conventional metal coordination compounds.
そこで、 本発明者らは種々の検討を行い、 下記式 II (1) 〜11 (6) で示 される金属配位化合物が、 緑色から赤色に至るりん光発光を有し、 駆動寿命も 長いりん光発光材料となることを見出した。  Therefore, the present inventors have conducted various studies and found that the metal coordination compounds represented by the following formulas II (1) to 11 (6) have phosphorescence emission from green to red and have a long driving life. It has been found to be a phosphorescent material.
Figure imgf000049_0001
Figure imgf000049_0001
II-(l) Iト (2) 11- (3)  II- (l) I (2) 11- (3)
Figure imgf000049_0002
Figure imgf000049_0002
11- (4) II -(5) II-(6) 32 11- (4) II-(5) II- (6) 32
(式中、 Mは I r、 Rh、 Ru、 〇s、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは〇sであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 Xi〜X7はそれぞれ独立に— H、 -OH, — R1 -OR2, 一 SR3、 一 OC〇R4、 一 CO〇R5、 一 S i R6R7R8、 一 NH2、 一 NHR9 、 および一 NR^R11 (ただし、 1〜!^11は炭素数 1〜22個の直鎖、 環 状もしくは分岐のアルキル基、 炭素数 6〜 21個のァリール基、 炭素数 2〜2 0のへテロァリール基、 または、 炭素数 7〜 21のァラルキル基を表し、 R111はそれぞれ同一であっても異なっていてもよい。 ) からなる群から選 択される置換基であって、 また、 Xi X は同一であっても異なっていても よく、 環 Aは Xi X?で定義される基と同様の置換基を有していてもよい。 ) ここで、 !^〜尺11は置換基を有していてもよく、 置換基の例として、 ハロ ゲン原子、 シァノ基、 アルデヒド基、 アミノ基、 アルキル基、 アルコキシ基、 アルキルチオ基、 力ルポキシル基、 スルホン酸基、 ニトロ基等を挙げることが できる。 これらの置換基は、 さらにハロゲン原子、 'メチル基等によって置換さ れていてもよい。 Wherein M is Ir, Rh, Ru, 〇s, Pd or Pt, and n is 2 or 3. M is Ir, Rh, Ru or 〇s and n is 2 In this case, another bidentate ligand is bonded to M. Ring A is a cyclic compound containing a nitrogen atom bonded to M. Xi to X 7 are each independently —H, -OH, — R 1 -OR 2 , one SR 3 , one OC〇R 4 , one CO〇R 5 , one Si R 6 R 7 R 8 , one NH 2 , one NHR 9 , and one NR ^ R 11 (where 1 ~! ^ 11 is a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms, an aryl group having 6 to 21 carbon atoms, a heteroaryl group having 2 to 20 carbon atoms, or 7 to Represents an aralkyl group of 21 and R 1 to 11 may be the same or different.) And Xi X is the same or different Ring A is the same as the group defined by Xi X? May have the following substituents.) Here,! ^ To shaku 11 may have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, a lipoxyl group, and a sulfonic acid group. And nitro groups. These substituents may be further substituted by a halogen atom, a 'methyl group or the like.
前記式 II (1) 〜11 (6) で示される金属配位化合物のうち、 環 Aが、 以 下に示す構造を有する環状化合物のいずれかであることが好ましく、 Xェ〜 r (以下、 まとめて置換基 Xnと表記する。 ) で定義される基と同様の置換基 を有していてもよいピリジン、 キノリン、 ベンゾォキサゾール、 ベンゾチアゾ ール、 ベンゾイミダゾ一ル、 ベンゾトリアゾール、 イミダゾ一ル、 ピラゾール 、 ォキサゾ一ル、 チアゾール、 トリァゾール、 ベンゾピラゾール、 トリアジン またはイソキノリンであることが好ましく、 Xnで定義される基と同様の置換 基を有していても良いピリジン、 キノリンまたはイソキノリンであることがよ り好ましい。
Figure imgf000051_0001
Among the metal coordination compounds represented by the formulas II (1) to 11 (6), ring A is preferably any one of the cyclic compounds having the structures shown below, and Xe to r (hereinafter, referred to as Xe to r ). Pyridine, quinoline, benzoxazole, benzothiazole, benzimidazole, benzotriazole, imitriazolyl, pyridine, quinoline, benzoxazole, benzothiazole, which may have the same substituent as the group defined in). , Pyrazole, oxazole, thiazole, triazole, benzopyrazole, triazine or isoquinoline, and pyridine, quinoline or isoquinoline which may have the same substituent as the group defined by Xn Is more preferred.
Figure imgf000051_0001
34 34
ここで Zi Zeは、 式 II (1) 〜Π (6) の Xnとして表される置換基と 同じ置換基であり、 Z 1〜Z6は同一であっても異なっていてもよい。 Here, Zi Ze is the same substituent as the substituent represented by Xn in formulas II (1) to (6), and Z 1 to Z 6 may be the same or different.
金属 Mが I r、 Rh、 Ru、 〇 sの場合で、 n = 2の場合、 金属 Mに結合す るもう一つの配位子は、 以下に示す構造を有する化合物のいずれかであること が好ましい。  When the metal M is Ir, Rh, Ru, 〇s, and n = 2, the other ligand that binds to the metal M may be any of the compounds having the structures shown below. preferable.
式 II (8) Equation II (8)
Figure imgf000052_0001
ここで Yi〜Y4は、 式 II (1) 〜11 (6) の Xnとして表される置換基と 同じ置換基であり、 Y1〜Y4は同一であっても異なっていてもよい。
Figure imgf000052_0001
Here Yi~Y 4 are the same substituents as the substituent represented as Xn of the formula II (1) ~11 (6) , Y 1 ~Y 4 may or may not be the same.
前記式 II (1) 〜11 (6) で示される金属配位化合物において、 置換基 X η、 あるいは、 環 Αが有する Xnと同様に定義される置換基の少なくとも 1つ が、 緑色から赤色までの発光色の制御が容易であるという観点から、 一 R、 一 ORまたは一 SRであることが好ましい。 置換基 Xn、 あるいは、 環 Aが有す る Xnと同様に定義される置換基の少なくとも 1つが、 前記いずれかの置換基 を有する場合、 他の Xnは水素原子である場合が多いが、 さらに他の置換基で あってもよい。 例えば、 X7はアルキル基、 ァリール基またはへテロアリール 基であることが好ましい。 In the metal coordination compounds represented by the above formulas II (1) to 11 (6), at least one of the substituents X η or at least one of the substituents defined similarly to Xn of the ring ま で is green to red. From the viewpoint of easy control of the emission color of, it is preferable to be 1 R, 1 OR or 1 SR. When at least one of the substituents Xn or the substituents defined in the same manner as Xn in the ring A has any of the above substituents, the other Xn is often a hydrogen atom, It may be another substituent. For example, X 7 is preferably an alkyl group, an aryl group or a heteroaryl group.
前記式 II (1) 〜11 (6) で示される金属配位化合物中、 合成が容易であ るという観点から、 式 II (1) または II (4) で示される金属配位化合物で あること力 S好ましい。  Among the metal coordination compounds represented by the formulas II (1) to 11 (6), the metal coordination compound represented by the formula II (1) or II (4) from the viewpoint of easy synthesis Force S preferred.
前記式 II (1) 〜11 (6) で示される金属配位化合物は置換基を様々に変 35 The metal coordination compounds represented by the above formulas II (1) to 11 (6) have various substituents. 35
えることにより、 最低励起状態のエネルギーレベルが変化し、 緑色から赤色発 光を有する有機 E Lの発光材料として適している。 As a result, the energy level of the lowest excited state changes, making it suitable as an organic EL light emitting material that emits green to red light.
前記式 II (1) 〜Π (6) で示される金属配位化合物の具体例として、 下 記に例示化合物を示すが、 これらに限定されるものではない。 なお、 表 II一 1中の Xi〜X4は環 Αの置換基を表す。 Specific examples of the metal coordination compounds represented by the formulas II (1) to (6) are shown below, but are not limited thereto. Note that Table II Xi~X 4 in one 1 represents a substituent of the ring Alpha.
表 II一 1 Table II-1
:式 II (1) 〜Π (6) で示される金属配位化合物の合成具体例)
Figure imgf000054_0001
: Specific examples of the synthesis of metal coordination compounds represented by formulas II (1) to (6)
Figure imgf000054_0001
36/1 36/1
Figure imgf000055_0001
紙(規則 2β) 37
Figure imgf000055_0001
Paper (Rule 2β) 37
Figure imgf000056_0001
則 26) 37/1
Figure imgf000056_0001
(Rule 26) 37/1
Figure imgf000057_0001
紙(規則 2β) 38
Figure imgf000057_0001
Paper (Rule 2β) 38
Figure imgf000058_0001
(規則 2β) 38/1
Figure imgf000058_0001
(Rule 2β) 38/1
Figure imgf000059_0001
(規則 2β) 39
Figure imgf000059_0001
(Rule 2β) 39
Figure imgf000060_0001
則 26) 39/1
Figure imgf000060_0001
(Rule 26) 39/1
Figure imgf000061_0001
則 2β)
Figure imgf000061_0001
(Rule 2β)
Figure imgf000062_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000063_0001
41 41
Figure imgf000064_0001
紙 (規則 2β) 41/1
Figure imgf000064_0001
Paper (Rule 2β) 41/1
Figure imgf000065_0001
則 26) 42
Figure imgf000065_0001
(Rule 26) 42
Figure imgf000066_0001
規則 26)
Figure imgf000067_0001
Figure imgf000066_0001
(Rule 26)
Figure imgf000067_0001
l/Zf  l / Zf
Z6C800/l700Zdf/X3d 990ΪΪΪ請 OAV 43 Z6C800 / l700Zdf / X3d 990 contract OAV 43
Figure imgf000068_0001
紙 (規則 2β) 43/1
Figure imgf000068_0001
Paper (Rule 2β) 43/1
Figure imgf000069_0001
紙(規則 2β)
Figure imgf000070_0001
Figure imgf000069_0001
Paper (Rule 2β)
Figure imgf000070_0001
Z6C800/l700Zdf/X3d 990ΪΪΪ請 OAV
Figure imgf000071_0001
Z6C800 / l700Zdf / X3d 990 contract OAV
Figure imgf000071_0001
45 45
Figure imgf000072_0001
紙(規則 2β) 45/1
Figure imgf000072_0001
Paper (Rule 2β) 45/1
(式 III (1) 〜III (6) で表される金属配位化合物) (Metal coordination compounds represented by formulas III (1) to III (6))
有機 ELにおいて、 青色から赤色に至るりん光発光を得るためには、 最低励 起状態のエネルギーレベルを変えることが必要である。 また、 一般に励起三重 項状態の寿命が励起一重項の寿命に比べて長く、 分子が高エネルギー状態に長 く留まるため、 周辺物質との反応、 分子自体の構造変化、 励起子同士の反応な どが起こるため、 りん光発光素子の駆動寿命が短かったのではないかと考えら れている。 .  To obtain phosphorescence from blue to red in organic EL, it is necessary to change the energy level of the lowest excitation state. In addition, the lifetime of the excited triplet state is generally longer than that of the excited singlet, and the molecule stays in the high-energy state for a long time. It is thought that the driving life of the phosphorescent light-emitting element was short because of the occurrence of this phenomenon. .
そこで、 本発明者らは種々の検討を行い、 下記式 III (1) 〜III (6) で 示される金属配位化合物が、 青色から赤色に至るりん光発光を有し、 駆動寿命 も長いりん光発光材料になることを見出した。  Thus, the present inventors have conducted various studies, and found that the metal coordination compounds represented by the following formulas III (1) to III (6) emit phosphorescence from blue to red and have a long driving life. It has been found that it becomes a light emitting material.
差替え用紙 (¾ J ) 46 Replacement paper (¾ J) 46
Figure imgf000074_0001
Figure imgf000074_0001
III-(l) 111- (2) ΙΠ- (3)  III- (l) 111- (2) ΙΠ- (3)
Figure imgf000074_0002
Figure imgf000074_0002
111- (4) III -(5) ΙΠ- (6)  111- (4) III-(5) ΙΠ- (6)
B :>O, 〉S, >C = O, 〉SO2, >CR B:> O,〉 S,> C = O,〉 SO 2 ,> CR
(式中、 Mは I r、 Rh、 Ru、 Os、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは〇sであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 X Xeおよび Rはそれぞれ独立に— R1, -OR2, 一 SR3、 一〇C〇R4、 一C〇〇R5、 一 S i R6R7R8、 および一NR9R10 (ただし 、 !^1〜!^1。は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭素数 1〜2 2個の直鎖、 環状もしくは分岐アルキル基又はそれらの水素原子の一部もしく は全部がハロゲン原子で置換されたハロゲン置換アルキル基、 炭素数 6〜 21 47 (Where M is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3. When M is Ir, Rh, Ru or 〇s and n is 2 , M is further bound to another bidentate ligand Ring A is a cyclic compound containing a nitrogen atom bonded to M. X Xe and R are each independently — R 1 , -OR 2 , One SR 3 , one C〇R 4 , one C〇〇R 5 , one Si R 6 R 7 R 8 , and one NR 9 R 10 (however,! ^ 1 ~! ^ 1 is a hydrogen atom, halogen Atom, cyano group, nitro group, straight-chain, cyclic or branched alkyl group having 1 to 22 carbon atoms or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms, carbon number 6-21 47
個のァリール基、 炭素数 2〜 20のへテロァリール基もしくは炭素数 7〜 21 のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置 換されたハロゲン置換ァリール基、 ハロゲン置換へテロアリール基、 ハロゲン 置換ァラルキル基を表し、 Rェ〜 1 Qはそれぞれ同一であっても異なっていて もよい。 ) からなる群から選択される置換基であって、 また、 Xi Xeは同 一であっても異なっていてもよく、 環 Aは Xi Xeで定義される基と同様の 置換基を有していてもよい。 ) ここで、 1〜!^1。は置換基を有していてもよ く、 置換基の例として、 ハロゲン原子、 シァノ基、 アルデヒド基、 アミノ基、 アルキル基、 アルコキシ基、 アルキルチオ基、 力ルポキシル基、 スルホン酸基 、 ニトロ基等を挙げることができる。 これらの置換基は、 さらにハロゲン原子 、 メチル基等によって置換されていてもよい。 . Aralkyl group having 2 to 20 carbon atoms or aralkyl group having 7 to 21 carbon atoms, or a halogen-substituted aryl group in which part or all of the hydrogen atoms thereof have been replaced with halogen atoms, a halogen-substituted heteroaryl group group, a halogen-substituted Ararukiru radical, R E ~ 1 Q may each be the same or different. Xi Xe may be the same or different, and ring A has the same substituent as the group defined by Xi Xe May be. ) Where 1 ~! ^ 1 . May have a substituent, and examples of the substituent include a halogen atom, a cyano group, an aldehyde group, an amino group, an alkyl group, an alkoxy group, an alkylthio group, a lipoxyl group, a sulfonic acid group, and a nitro group. Can be mentioned. These substituents may be further substituted by a halogen atom, a methyl group or the like. .
前記式 III (1) 〜III (6) で示される金属配位化合物のうち、 環 Aが、 以下に示す構造を有する環状化合物のいずれかであることが好ましく、 X i〜 X6 (以下、 まとめて置換基 Xnと表記する。 ) で定義される基と同様の置換 基を有していてもよいピリジン、 キノリン、 ベンゾォキサゾ一ル、 ベンゾチア ゾール、 ベンゾイミダゾール、 ベンゾトリアゾ一ル、 イミダゾ一ル、 ピラゾー ル、 ォキサゾ一ル、 チアゾール、 トリァゾール、 ベンゾピラゾール、 トリアジ ンまたはイソキノリンであることが好ましく、 Xnで定義される基と同様の置 換基を有していても良いピリジン、 キノリンまたはイソキノリンであることが より好ましい。 48 Among the formula III (1) a metal coordination compound represented by to III (6), ring A is preferably either a cyclic compound having the structure shown below, X i to X 6 (hereinafter, The pyridine, quinoline, benzoxazole, benzothiazole, benzimidazole, benzotriazol, imidazole, and pyrazole which may have the same substituent as the group defined in) are collectively denoted as Xn. , Oxazole, thiazole, triazole, benzopyrazole, triazine or isoquinoline, and pyridine, quinoline or isoquinoline which may have a substituent similar to the group defined by Xn Is more preferred. 48
N
Figure imgf000076_0001
r.、N
N
Figure imgf000076_0001
r., N
Figure imgf000076_0002
49
Figure imgf000076_0002
49
ここで Zi Zeは、 式 III (1) 〜ΙΠ (6) の X ηとして表される置換基 と同じ置換基であり、 Zi〜Z δは同一であっても異なっていてもよい。 Here, Zi Ze is the same substituent as the substituent represented as X η in Formulas III (1) to ΙΠ (6), and Zi to Z δ may be the same or different.
金属が I r、 Rh、 Ru、 Osの場合で、 n=2の場合、 金属 Mに結合する もう一つの配位子は、 以下に示す構造を有する化合物のいずれかであることが 好ましい。  When the metal is Ir, Rh, Ru, or Os, and n = 2, the other ligand bonded to the metal M is preferably any of the compounds having the structures shown below.
式 III (8) Formula III (8)
Figure imgf000077_0001
Figure imgf000077_0001
ここで Υ 〜Υ4は、 式 III (1) 〜III (6) の Xnとして表される置換基 と同じ置換基であり、 Yi〜Y4は同一であっても異なっていてもよい。 Here Υ ~Υ 4 are the same substituents as the substituent represented as Xn of the formula III (1) ~III (6) , Yi~Y 4 may be different even in the same.
前記式 III (1) 〜ΙΠ (6) で示される金属配位化合物において、 置換基 In the metal coordination compounds represented by the above formulas III (1) to (6),
Χη、 あるいは、 環 Αが有する Xnと同様に定義される置換基の少なくとも 1 つが、 青色の発光色が得られるという観点から、 八ロゲン原子、 シァノ基また はハロゲン置換アルキル基であることが好ましく、 フッ素原子、 塩素原子、 シ ァノ基またはトリフルォロメチル基であることがより好ましく、 フッ素原子ま たはトリフルォロメチル基であることがさらに好ましく、 フッ素原子であるこ とが最も好ましい。 また、 青色から赤色までの発光色の制御が容易であるとい う観点から、 — R、 —ORまたは— SRであることが好ましい。 置換基 Xn、 あるいは、 環 Aが有する Xnと同様に定義される置換基の少なくとも 1つが、 前記いずれかの置換基を有する場合、 他の Xnは水素原子である場合が多いが 、 さらに他の置換基であってもよい。 Χη or at least one of the substituents defined in the same manner as Xn of the ring こ と が is preferably an octogen atom, a cyano group or a halogen-substituted alkyl group from the viewpoint of obtaining a blue emission color. It is more preferably a fluorine atom, a chlorine atom, a cyano group or a trifluoromethyl group, further preferably a fluorine atom or a trifluoromethyl group, and most preferably a fluorine atom. In addition, from the viewpoint of easy control of the emission color from blue to red, —R, —OR, or —SR is preferable. When at least one of the substituents Xn or the substituents defined in the same manner as Xn of the ring A has any of the above substituents, the other Xn is often a hydrogen atom, It may be a substituent.
前記式 III (1) 〜III (6) で示される金属配位化合物中、 合成が容易で 50 Among the metal coordination compounds represented by the above formulas III (1) to III (6), 50
あるという観点から、 式 III (2) または III (5) で示される金属配位化合 物であることが好ましい。 In view of this, it is preferable that the metal coordination compound is represented by the formula III (2) or III (5).
前記式 III (1) 〜III (6) で示される金属配位化合物中、 Bは、 青色の 発光色が得られるという観点から> C ==〇または > S O 2であることが好まし く、 また、 緑色から赤色までの発光波長が得られるという観点から >〇、 >S または >CR2であることが好ましい。 Metal coordination compound represented by the formula III (1) ~III (6) , B is, in view of the blue emission color can be obtained> C == 〇 or> it is rather preferable is SO 2, From the viewpoint that emission wavelengths from green to red can be obtained,> 好 ま し い,> S or> CR 2 is preferable.
前記式 III (1) 〜ΠΙ (6) で示される金属配位化合物は置換基を様々に 変えることにより、 最低励起状態のエネルギーレベルが変化し、 青色から赤色 発光を有する有機 E Lの発光材料として適している。  The metal coordination compounds represented by the above formulas III (1) to ΠΙ (6) change the energy level of the lowest excited state by changing the substituent variously, and are used as a light emitting material of an organic EL having blue to red emission. Are suitable.
前記式 III (1) 〜ΙΙΙ (6) で示される金属配位化合物の具体例として、 下記に例示化合物を示すが、 これらに限定されるものではない。 なお、 表 ΙΠ 一 1中の Xi〜X4は環 Αの置換基を表す。 Specific examples of the metal coordination compounds represented by the formulas III (1) to (6) are shown below, but are not limited thereto. Incidentally, Table ΙΠ in one 1 Xi~X 4 represents a substituent of the ring Alpha.
表 in - 1 Table in-1
:式 111 (1) 〜ΙΠ (6) で示される金属配位化合物の合
Figure imgf000079_0001
: The combination of metal coordination compounds represented by formulas 111 (1) to ΙΠ (6)
Figure imgf000079_0001
51/1 51/1
Figure imgf000080_0001
52
Figure imgf000080_0001
52
Figure imgf000081_0001
52/1
Figure imgf000081_0001
52/1
Figure imgf000082_0001
2β 53
Figure imgf000082_0001
2β 53
Figure imgf000083_0001
Figure imgf000083_0001
Figure imgf000084_0001
Figure imgf000084_0001
TA9 TA9
990lll/tO0£ OAV 54 990lll / tO0 £ OAV 54
Figure imgf000085_0001
Figure imgf000085_0001
2β 54/1 2β 54/1
Figure imgf000086_0001
Figure imgf000086_0001
2β 55 2β 55
Figure imgf000087_0001
2β 55/1
Figure imgf000087_0001
2β 55/1
Figure imgf000088_0001
56
Figure imgf000088_0001
56
Figure imgf000089_0001
2 56/1
Figure imgf000089_0001
Two 56/1
Figure imgf000090_0001
2β 57
Figure imgf000090_0001
2β 57
Figure imgf000091_0001
Figure imgf000091_0001
2β 57/1 2β 57/1
Figure imgf000092_0001
2β 58
Figure imgf000092_0001
2β 58
Figure imgf000093_0001
2β 58/1
Figure imgf000093_0001
2β 58/1
Figure imgf000094_0001
2β 59
Figure imgf000094_0001
2β 59
Figure imgf000095_0001
Figure imgf000095_0001
2β 59/1 2β 59/1
Figure imgf000096_0001
2β 60
Figure imgf000096_0001
2β 60
Figure imgf000097_0001
60/1
Figure imgf000097_0001
60/1
Figure imgf000098_0001
Figure imgf000098_0001
2β 61 2β 61
Figure imgf000099_0001
61/1
Figure imgf000099_0001
61/1
Figure imgf000100_0001
62
Figure imgf000100_0001
62
Figure imgf000101_0001
2β 62/1
Figure imgf000101_0001
2β 62/1
Figure imgf000102_0001
2β 63
Figure imgf000102_0001
2β 63
Figure imgf000103_0001
63/1
Figure imgf000103_0001
63/1
Figure imgf000104_0001
2β 64
Figure imgf000104_0001
2β 64
Figure imgf000105_0001
2β 64/1
Figure imgf000105_0001
2β 64/1
Figure imgf000106_0001
2β 65
Figure imgf000106_0001
2β 65
Figure imgf000107_0001
65/1
Figure imgf000107_0001
65/1
Figure imgf000108_0001
66
Figure imgf000108_0001
66
Figure imgf000109_0001
66/1
Figure imgf000109_0001
66/1
本発明の金属配位化合物は、 エレクトロルミネセンス素子の活性層材料とし て使用できる。 活性層とは、 層が電界の適用時に発光し得るもの (発光層) 、 または、 電荷の注入もしくは電荷の移動を改良するもの (電荷注入層または電 荷移動層) を意味する。 ここで、 電荷とは負または正の電荷をいう。 活性層の 膜厚は、 1 0〜1 0 0 nmであることが好ましく、 より好ましくは 2 0〜 6 0 nm、 さらに好ましくは 2 0〜4 0 nmである。 The metal coordination compound of the present invention can be used as a material for an active layer of an electroluminescence device. Active layer means that the layer is capable of emitting light upon application of an electric field (light emitting layer) or that improves charge injection or charge transfer (charge injection layer or charge transfer layer). Here, charge refers to negative or positive charge. The thickness of the active layer is preferably from 10 to 100 nm, more preferably from 20 to 60 nm, and still more preferably from 20 to 40 nm.
本発明の金属配位化合物は、 それ以外の材料と混合して使用してもよ レ また、 本発明の金属配位化合物用いたエレクトロルミネセンス素子 は、 上記の金属配位化合物以外の材料を含む層が本発明の金属配位化合 The metal coordination compound of the present invention may be used as a mixture with other materials.The electroluminescent device using the metal coordination compound of the present invention may be made of a material other than the above metal coordination compound. Layer containing the metal coordination compound of the present invention.
67 67
物を含む活性層と積層されていてもよい。 本発明の金属配位化合物と混 合して用いてもよい材料としては、 正孔注入および/または正孔移動材 料、 電子注入および または電子移動材料、 発光材料、 バインダーポリ マーなどの公知のものが使用できる。 混合する材料としては、 高分子材 料でも、 低分子材料でもかまわない。 It may be laminated with an active layer containing a substance. Materials that may be used in combination with the metal coordination compound of the present invention include known materials such as hole injection and / or hole transfer materials, electron injection and / or electron transfer materials, luminescent materials, and binder polymers. Things can be used. The material to be mixed may be a high-molecular material or a low-molecular material.
正孔注入および/または正孔移動材料に使用可能なものとしては、 ァリール ァミン誘導体、 トリフエニルメタン誘導体、 スチルベン系化合物、 ヒドラゾン 系化合物、 カルパゾール系化合物、 高分子量ァリールァミン、 ポリア二リン、 ポリチォフェン、 などの材料およびそれらを高分子化した材料が例示される。 電子注入および Zまたは電子移動材料に使用可能なものとしては、 ォキサジァ ゾール誘導体、 ベンゾォキサゾール誘導体、 ベンゾキノン誘導体、 キノリン誘 導体、 キノキサリン誘導体、 チアジアゾ一ル誘導体、 ベンゾジァゾール誘導体 、 トリァゾール誘導体、 金属キレート錯体化合物、 などの材料およびそれらを 高分子化した材料が例示される。 発光材料に使用可能なものとしては、 ァリ一 ルァミン誘導体、 ォキサジァゾ一ル誘導体、 ペリレン誘導体、 キナクリドン誘 導体、 ピラゾリン誘導体、 アントラセン誘導体、 ルブレン誘導体、 スチルベン 誘導体、 クマリン誘導体、 ナフ夕レン誘導体、 金属キレート錯体、 I rや P t などの中心金属を含む金属錯体、 などの材料およびそれらを高分子化した材料 、 ポリフルオレン誘導体、 ポリフエ二レンビニレン誘導体、 ポリフエ二レン誘 導体、 ポリチォフェン誘導体、 などのポリマー材料が例示される。 バインダー ポリマーに使用可能なものとしては、 特性を著しく低下させないものであれば 使用できる。 当該バインダーポリマーとしては、 ポリスチレン、 ポリ力一ポネ ート、 ポリアリールエーテル、 ポリアクリレート、 ポリメタクリレート、 ポリ シロキサン、 などの材料が例示される。  Materials that can be used for hole injection and / or hole transport materials include arylamine derivatives, triphenylmethane derivatives, stilbene compounds, hydrazone compounds, carbazole compounds, high molecular weight arylamine, polyaniline, polythiophene, etc. And materials obtained by polymerizing them. Those that can be used for electron injection and Z or electron transfer materials include oxaziazole derivatives, benzoxazole derivatives, benzoquinone derivatives, quinoline derivatives, quinoxaline derivatives, thiadiazol derivatives, benzodiazole derivatives, triazole derivatives, and metal chelate complexes. Materials such as compounds and the like and materials obtained by polymerizing them are exemplified. Materials that can be used for the light emitting material include arylamine derivatives, oxaziazole derivatives, perylene derivatives, quinacridone derivatives, pyrazoline derivatives, anthracene derivatives, rubrene derivatives, stilbene derivatives, coumarin derivatives, naphthylene derivatives, and metal chelates. Materials such as complexes, metal complexes containing central metals such as Ir and Pt, and materials obtained by polymerizing them, polymer materials such as polyfluorene derivatives, polyphenylenevinylene derivatives, polyphenylene derivatives, and polythiophene derivatives Is exemplified. Any binder can be used as long as it does not significantly reduce the properties. Examples of the binder polymer include materials such as polystyrene, polycarbonate, polyarylether, polyacrylate, polymethacrylate, and polysiloxane.
中でも、 本発明においては、 前記の金属配位化合物、 及び必要に応じこれ以 68 Among them, in the present invention, the above-mentioned metal coordination compound, and if necessary, 68
外の低分子材料を用い、 有機エレクトロルミネセンス素子を製造することがで さる。 An organic electroluminescent device can be manufactured using a low-molecular material outside.
前記低分子材料の具体例としては、 C B P ( 4, 4' -N, N' -dicarbazole- biphenyl ) 、 C D B P (2, 2' -dimethyl-4, 4' -N, ' -dicarbazol e-biphenyl ) 、 m C P (m - dicarbazole- benzene) などが挙げられる。 これらの低分子材料 と金属配位化合物の混合の比率は、 低分子材料の重量に対し、 金属配位化合物 1〜 1 5重量%、 より好ましくは 2〜1 0重量%、 さらに好ましくは 3〜8重 量%である。 金属配位化合物の濃度が低すぎると発光効率が低下する傾向があ り、 高すぎると金属配位化合物間の相互作用により濃度消光が生じ、 発光効率 が低下する傾向がある。  Specific examples of the low molecular weight material include CBP (4, 4'-N, N'-dicarbazole-biphenyl), CDBP (2, 2'-dimethyl-4, 4'-N, '-dicarbazol e-biphenyl) , M CP (m-dicarbazole-benzene) and the like. The mixing ratio of the low-molecular material and the metal coordination compound is preferably 1 to 15% by weight, more preferably 2 to 10% by weight, and still more preferably 3 to 5% by weight of the low-molecular material. It is 8% by weight. If the concentration of the metal coordination compound is too low, the luminous efficiency tends to decrease. If it is too high, the concentration quenching occurs due to the interaction between the metal coordination compounds, and the luminous efficiency tends to decrease.
また、 本発明においては、 前記の金属配位化合物、 並びに共役及び/又は非 共役ポリマーを含むポリマー組成物を用い、 有機エレクトロルミネセンス素子 を製造することができる。 本発明において、 ポリマー組成物とは、 前記の金属 配位化合物を、 共役及び Z又は非共役ポリマーに混合して得た組成物、 あるい は前記の金属配位化合物と共役及び/又は非共役ポリマーとを共重合させて得 た組成物をいう。  Further, in the present invention, an organic electroluminescence device can be manufactured using the above-mentioned metal coordination compound and a polymer composition containing a conjugated and / or non-conjugated polymer. In the present invention, the polymer composition is a composition obtained by mixing the above-mentioned metal coordination compound with a conjugated or Z- or non-conjugated polymer, or a conjugated and / or non-conjugated with the above-mentioned metal coordination compound. A composition obtained by copolymerizing with a polymer.
前記共役及び Z又は非共役ポリマーの具体例としては、 主骨格として、 ポリ フルオレン、 ポリフエ二レン、 ポリ (フエ二レンビニレン) 、 ポリチォフェン 、 ポリキノリン、 ポリア二リン、 ポリビニルカルバゾール等又はそれらの誘導 体の構迨を含むポリマー、 ユニットとして (即ち、 主骨格中の構造だけではな く、 側鎖の構造であってもよい) 、 ベンゼン、 ナフタレン、 アントラセン、 フ ェナントレン、 クリセン、 ルブレン、 ピレン、 ペリレン、 インデン、 ァズレン 、 ァダマンタン、 フルオレン、 フルォレノン、 ジベンゾフラン、 力ルバゾール 、 ジベンゾチォフェン、 フラン、 ピロール、 ピロリン、 ピロリジン、 チォフエ ン、 ジォキソラン、 ピラゾール、 ピラゾリン、 ピラゾリジン、 イミダゾ一ル、 69 Specific examples of the conjugated and Z or non-conjugated polymers include, as a main skeleton, a structure of polyfluorene, polyphenylene, poly (phenylenevinylene), polythiophene, polyquinoline, polyaniline, polyvinylcarbazole, or a derivative thereof.ポ リ マ ー -containing polymer, as a unit (that is, not only the structure in the main skeleton, but also the side chain structure), benzene, naphthalene, anthracene, phenanthrene, chrysene, rubrene, pyrene, perylene, indene, Azulene, adamantane, fluorene, fluorenone, dibenzofuran, kytrazole, dibenzothiophene, furan, pyrrole, pyrroline, pyrrolidine, thiophene, dioxolan, pyrazole, pyrazoline, pyrazolidine, imidazole, 69
ォキサゾール、 チアゾール、 ォキサジァゾール、 トリァゾール、 チアジアゾー ル、 ピラン、 ピリジン、 ピぺリジン、 ジォキサン、 モルホリン、 ピリダジン、 ピリミジン、 ピラジン、 ピぺラジン、 トリアジン、 トリチアン、 ノルポルネン 、 ベンゾフラン、 インドール、 ベンゾチォフェン、 ベンズイミダゾール、 ベン ゾォキサゾール、 ベンゾチアゾール、 ベンゾォキサジァゾール、 ベンゾトリア ゾール、 プリン、 キノリン、 イソキノリン、 クマリン、 シノリン、 キノキサリ ン、 ァクリジン、 フエナント口リン、 フエノチアジン、 フラボン、 トリフエ二 ルァミン、 .ァセチルアセトン、 ジベンゾィルメタン、 ピコリン酸、 シロ一ル、 ポルフィリン等又はそれらの誘導体の構造を含むポリマーなどがあげられる。 これらのポリマーと金属配位化合物の混合又は共重合の比率は、 ポリマー 1 0 0重量部に対して金属配位化合物 0 . 1〜2 0重量部とすることが好ましい。 ポリマー組成物に用いられる溶媒として、 クロ口ホルム、 塩化メチレン、 ジ クロロェタン、 テトラヒドロフラン、 トルエン、 キシレン、 メシチレン、 ァニ ソール、 アセトン、 メチルェチルケトン、 酢酸ェチル、 酢酸ブチル、 ェチルセ 口ソルブアセテート等を用いることができる。 Oxazole, thiazole, oxazine diazole, triazole, thiadiazol, pyran, pyridine, piperidine, dioxane, morpholine, pyridazine, pyrimidine, pyrazine, pyrazine, triazine, trithiane, norpolnen, benzofuran, indole, benzothiodazole, benzothiomizole, benzothiomizole, benzothiomizole, benzothiomizol , Benzothiazole, benzoxadiazole, benzotriazole, purine, quinoline, isoquinoline, coumarin, sinoline, quinoxaline, acridine, phenanthone, phenothiazine, flavone, triphenylamine, .acetylacetone, dibenzoylmethane , Picolinic acid, silyl, porphyrin and the like or a polymer containing the structure of a derivative thereof. The mixing or copolymerization ratio of the polymer and the metal coordination compound is preferably from 0.1 to 20 parts by weight of the polymer to 100 parts by weight. Solvents used in the polymer composition include chloroform form, methylene chloride, dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, anisol, acetone, methyl ethyl ketone, ethyl acetate, butyl acetate, ethyl acetate solvent acetate, and the like. Can be used.
本発明の金属配位化合物、 又は、 ポリマー組成物をエレクトロルミネセンス 素子の活性層材料として使用するためには、 当業者に公知の方法、 例えば、 真 空蒸着、 インクジェット、 キャスト、 浸漬、 印刷またはスピンコーティングな どを用いて基体に薄膜を積層することにより達成することができる。 印刷法に は、 凸版印刷、 凹版印刷、 オフセット印刷、 平板印刷、 凸版反転オフセット印 刷、 スクリーン印刷、 グラビア印刷等がある。 このような積層方法は、 通常、 一 2 0〜十 3 0 0 の温度範囲、 好ましくは 1 0〜1 0 0 、 特に好ましくは 1 5〜5 0 °Cで実施することができる。 また、 積層されたポリマー溶液の乾燥 は、 通常、 常温乾燥、 ホットプレートによる加熱乾燥などで実施することがで きる。 70 In order to use the metal coordination compound or the polymer composition of the present invention as an active layer material of an electroluminescence device, a method known to those skilled in the art, for example, vacuum evaporation, inkjet, casting, dipping, printing or This can be achieved by laminating a thin film on a substrate using spin coating or the like. Printing methods include letterpress printing, intaglio printing, offset printing, lithographic printing, letterpress reversal offset printing, screen printing, and gravure printing. Such a lamination method can usually be carried out in a temperature range of 120 to 130, preferably 10 to 100, particularly preferably 15 to 50 ° C. In addition, drying of the laminated polymer solution can be usually performed by drying at room temperature or by heating and drying using a hot plate. 70
エレクトロルミネセンス素子は、 通常、 電極の少なくとも 1つが透明である 力ソードとアノードとの間に、 エレクトロルミネセント層 (発光層) を含むも のである。 さらに、 1つ以上の電子注入層および Zまたは電子移動層が、 エレ クトロルミネセント層 (発光層) と力ソードとの間に挿入され得るもので、 さ らに、 1つ以上の正孔注入層およびノまたは正孔移動層が、 エレクトロルミネ セント層 (発光層) とアノードとの間に挿入され得るものである。 力ソード材 料としては、 例えば、 L i、 C a、 Mg、 A 1、 I n、 C s、 Mg/Ag, L i Fなどの金属または金属合金であるのが好ましい。 アノード材料としては、 透明基体 (例えば、 ガラスまたは透明ポリマー) 上に、 金属 (例えば、 Au) または金属導電率を有する他の材料、 例えば、 酸化物 (例えば、 I TO :酸化 インジウム 酸化錫) を使用することもできる。 Electroluminescent devices typically include an electroluminescent layer (light-emitting layer) between a force source and an anode, where at least one of the electrodes is transparent. In addition, one or more electron injection layers and Z or electron transfer layers can be inserted between the electroluminescent layer (light emitting layer) and the force sword, and one or more hole injection layers. A layer and a hole or hole transport layer can be inserted between the electroluminescent layer (light emitting layer) and the anode. The force sword material is preferably, for example, a metal or metal alloy such as Li, Ca, Mg, A1, In, Cs, Mg / Ag, and LiF. As the anode material, a metal (for example, Au) or another material having metal conductivity, for example, an oxide (for example, ITO: indium tin oxide) may be used on a transparent substrate (for example, glass or a transparent polymer). Can also be used.
電子注入および Zまたは電子移動層には、 ォキサジァゾール誘導体、 ベンゾ ォキサゾール誘導体、 ベンゾキノン誘導体、 キノリン誘導体、 キノキサリン誘 導体、 チアジアゾール誘導体、 ベンゾジァゾール誘導体、 トリァゾール誘導体 、 金属キレート錯体化合物、 などの材料を含む層が挙げられる。  The electron injection and Z or electron transfer layer include a layer containing a material such as an oxaziazole derivative, a benzoxazole derivative, a benzoquinone derivative, a quinoline derivative, a quinoxaline derivative, a thiadiazole derivative, a benzodiazole derivative, a triazole derivative, or a metal chelate complex compound. Can be
正孔注入および Zまたは正孔移動層には、 銅フタロシアニン、 トリフエニル ァミン誘導体、 トリフエニルメタン誘導体、 スチルベン系化合物、 ヒドラゾン 系化合物、 力ルバゾ一ル系化合物、 高分子量ァリールァミン、 ポリア二リン、 ポリチォフェン、 などの材料を含む層が挙げられる。  For hole injection and Z or hole transport layer, copper phthalocyanine, triphenylamine derivative, triphenylmethane derivative, stilbene compound, hydrazone compound, carbazole compound, high molecular weight arylamine, polyaniline, polythiophene, And the like.
本発明の金属配位化合物は、 例えば、 種々の発光波長を有する、 信頼性、 発 光特性等に優れた有機 EL*子用材料として好適である。 中でも、 式 I (1) 〜1 (6) で表される金属配位化合物は、 発光色の短波長化に有効であり、 式 II (1) 〜11 (6) で表される金属配位化合物は、 素子の長寿命化に有効で あり、 式 III (1) 〜III (6) で表される金属配位化合物は、 発光色の短波 長化及び素子の長寿命化に有効である。 71 The metal coordination compound of the present invention is suitable, for example, as a material for an organic EL device having various emission wavelengths and excellent in reliability, emission characteristics, and the like. Among them, the metal coordination compounds represented by the formulas I (1) to 1 (6) are effective for shortening the emission wavelength, and the metal coordination compounds represented by the formulas II (1) to 11 (6) The compounds are effective in extending the lifetime of the device, and the metal coordination compounds represented by the formulas III (1) to III (6) are effective in shortening the emission color and extending the lifetime of the device. 71
実施例 Example
本発明を以下の実施例により説明するが、 本発明はこれらの実施例に限定さ れるものではない。 また、 下記に示す実施例の他、 上述の本発明の種々の金属 配位化合物を用いた場合にも、 色純度に優れ、 信頼性、 発光特性等に優れたェ レクトロルミンセンス素子を得ることができる。  The present invention will be described with reference to the following examples, but the present invention is not limited to these examples. In addition, in addition to the examples described below, even when the above-described various metal coordination compounds of the present invention are used, an electroluminin sense element having excellent color purity, excellent reliability, excellent light emitting characteristics, and the like can be obtained. Can be.
実施例 I一 1 金属配位化合物 1 (1) の合成 Example I Synthesis of 1 1 metal coordination compound 1 (1)
マグネシウム (1. 9 g、 8 Ommo 1 ) の THF混合物中に、 3—ブロモ —9—メチルカルバゾ一ル (3 Ommo 1) の THF溶液を、 アルゴン気流下 、 よく攪拌しながら徐々に加え、 グリニャール試薬を調製した。 得られたダリ 二ヤール試薬を、 トリメチルホウ酸エステル (30 Ommo 1) の THF溶液 に一 78°Cでよく攪拌しながら、 2時間かけて徐々に滴下した後、 2日間室温 で攪拌した。 反応混合物を粉碎した氷を含有する 5 %希硫酸中に注ぎ攪拌した 。 得られた水溶液をトルエンで抽出し、 抽出物を濃縮したところ、 無色の固体 が得られた。 得られた固体をトルエン/アセトン (1ノ2) から再結晶するこ とにより、 無色結晶として力ルバゾール誘導体ボロン酸が得られた (40%) 。 得られたカルパゾール誘導体ボロン酸 (12mmo 1) と 1, 2—エタンジ ォ一ル (3 Ommo 1) をトルエン中で 10時間還流した後、 トルエン /ァセ トン (1Z4) から再結晶したところ、 力ルバゾール誘導体ボロンエステルが 無色結晶として得られた。  A THF solution of 3-bromo-9-methylcarbazole (3 Ommo 1) was gradually added to a THF mixture of magnesium (1.9 g, 8 Ommo 1) under a stream of argon with good stirring, and the Grignard reagent was added. Was prepared. The resulting Darynal reagent was gradually added dropwise to a THF solution of trimethyl borate ester (30 Ommo 1) at 178 ° C over 2 hours while being stirred well, and then stirred at room temperature for 2 days. The reaction mixture was poured into 5% dilute sulfuric acid containing crushed ice and stirred. The obtained aqueous solution was extracted with toluene, and the extract was concentrated to give a colorless solid. The solid obtained was recrystallized from toluene / acetone (1 ノ 2) to give the borazole derivative boronic acid as colorless crystals (40%). The obtained carpazole derivative boronic acid (12 mmo 1) and 1,2-ethanediol (3 Ommo 1) were refluxed in toluene for 10 hours, and then recrystallized from toluene / acetone (1Z4). The rubazole derivative boron ester was obtained as colorless crystals.
Figure imgf000115_0001
Figure imgf000115_0001
2—ブロモピリジン (1 Ommo 1) 、 力ルバゾ一ル誘導体ボロンエステル 72 2-bromopyridine (1 Ommo 1), boron ester derivative of boron 72
( 10 mm o 1 ) 、 P d (0) (PPh3) 4 (0. 2mmo 1 ) のトルエン 溶液に、 アルゴン気流下、 2Mの K2C03水溶液を加え、 激しく攪拌しなが ら 48時間還流した。 反応混合物を室温まで冷却した後、 大量のメタノール中 に注ぎ、 固体を沈殿させた。 析出した固体を吸引濾過し、 メタノールで洗浄す ることにより、 3— (2 ' —ピリジル) 一 9—メチルカルバゾールの固体を得 た。 (10 mm o 1), a toluene solution of P d (0) (PPh 3 ) 4 (0. 2mmo 1), under argon, the K 2 C0 3 aqueous 2M was added, stirred vigorously products et 48 hours Refluxed. After the reaction mixture was cooled to room temperature, it was poured into a large amount of methanol to precipitate a solid. The precipitated solid was filtered by suction and washed with methanol to obtain a solid of 3- (2′-pyridyl) -19-methylcarbazole.
Figure imgf000116_0001
Figure imgf000116_0001
20 Om 1の 3つ口フラスコに塩化イリジウム ( I I I ) (1. 7mmo 1 ) 、 3— (2' —ピリジル) 一 9—メチルカルバゾ一ル (7. 58 mm o 1 ) 、 エトキシエタノール 50m 1と水 20m 1を入れ、 窒素気流下室温で 30分 間攪拌し、 その後 24時間還流攪拌した。 反応物を室温まで冷却し、 沈殿物を 濾取水洗後、 エタノール及びアセトンで順次洗浄した。 室温で減圧乾燥し、 ジ クロローテトラキス [3— (2, —ピリジル) 一 9ーメチルカルバゾー ル一 N1', C2] ジイリジウム (III) の淡黄色粉末を得た。 Iridium chloride (III) (1.7 mmo 1), 3- (2'-pyridyl) -1 9-methylcarbazolyl (7.58 mmo 1), ethoxyethanol 50 m 1 and water in a 20 Om 1 three-necked flask 20 ml was added, and the mixture was stirred at room temperature under a nitrogen stream for 30 minutes, and then stirred under reflux for 24 hours. The reaction product was cooled to room temperature, and the precipitate was collected by filtration, washed with water, and then washed sequentially with ethanol and acetone. Dried under reduced pressure at room temperature, di-chloro over tetrakis [3- (2, - pyridyl) Single 9-1 methylcarbamate Eaux Le one N 1 ', C 2] to give a pale yellow powder diiridium (III).
73 73
Figure imgf000117_0001
Figure imgf000117_0001
200mlの 3つ口フラスコにエトキシエタノール 70m 1、 ジ一 —クロ ローテトラキス [3— (2 ' 一ピリジル) — 9—メチルカルバゾ一ル— , C2] ジイリジウム (III) (0. 7mmo 1 ) 、 ァセチルアセトン (2. l Ommo l) と炭酸ナトリウム (9. 43mmo 1) を入れ、 窒素気流下室 温で攪拌し、 その後 1 5時間還流攪拌した。 反応物を氷冷し、 沈殿物を濾取水 洗した。 この沈殿物をシリカゲルカラムクロマト (溶離液:クロ口ホルム/メ 夕ノール: 30Z1) で精製し、 ビス [3— (2' 一ピリジル) 一 9—メチル カルバゾ一ル— Λ^', C21 (ァセチルァセトナト) イリジウム (III) の淡 黄色粉末を得た。 In a 200 ml three-necked flask, 70 ml of ethoxyethanol, di-chlorotetrakis [3- (2'-pyridyl) -9-methylcarbazolyl, C 2 ] diiridium (III) (0.7 mmo 1), Acetyl acetone (2.1 lmmol) and sodium carbonate (9.43 mmol) were added, and the mixture was stirred at room temperature under a nitrogen stream, and then refluxed for 15 hours. The reaction was cooled on ice, and the precipitate was collected by filtration and washed with water. The precipitate was purified by silica gel column chromatography (eluent: Black hole Holm / main evening Nord: 30Z1) to give bis [3- (2 'single-pyridyl) one 9-methyl carbazole Ichiru - lambda ^', C 2 1 (Acetylacetonato) A pale yellow powder of iridium (III) was obtained.
なお、 得られた化合物については、 NMRスペクトル、 I Rスペクトル等に よりその確認を行った。 以下に示す化合物についても同様である。 The obtained compound was confirmed by NMR spectrum, IR spectrum and the like. The same applies to the compounds shown below.
74 74
Figure imgf000118_0001
実施例 I一 2 金属配位化合物 I ( 2 ) の合成
Figure imgf000118_0001
Example I Synthesis of 1-2 Metal Coordination Compound I (2)
200m 1の 3つ口フラスコに 3— (2 ' 一ピリジル) —9—メチルカルバ ゾ一ル (1. 7mmo l) 、 実施例 I一 1で合成したビス [3— (2 ' —ピリ ジル) 一 9ーメチルカルバゾール—iV , C2] (ァセチルァセトナト) イリ ジゥム (III) (0. 28mmo 1 ) とグリセロール 55m 1を入れ、 窒素気 流下約 180°Cで 8時間加熱攪拌した。 反応物を室温まで冷却して 1N—塩酸 350mlに注入し、 沈殿物を濾取水洗し、 100°Cで 5時間減圧乾燥した。 この沈殿物をクロ口ホルムを溶離液としたシリ力ゲルカラムクロマトで精製し 、 トリス [3— (2 ' 一ピリジル) 一 9—メチルカルバゾ一ル— Λ^', C21 イリジウム (III) の淡黄色粉末を得た。 3- (2′-Pyridyl) -9-methylcarbazole (1.7 mmol) in a 200-ml three-necked flask, bis [3- (2′-pyridyl) -1-synthesized in Example I-1 9-Methylcarbazole-iV, C 2 ] (acetylacetonato) iridium (III) (0.28 mmo 1) and 55 ml of glycerol were added, and the mixture was heated and stirred at about 180 ° C. for 8 hours under a nitrogen stream. The reaction product was cooled to room temperature, poured into 350 ml of 1N hydrochloric acid, and the precipitate was collected by filtration, washed with water, and dried under reduced pressure at 100 ° C for 5 hours. The precipitate was purified black port Holm in eluent and the silica force gel column chromatography, tris [3- (2 'single-pyridyl) Single 9 Mechirukarubazo Ichiru - lambda ^', C 2 1 iridium (III) A pale yellow powder was obtained.
75 75
Figure imgf000119_0001
実施例 I一 3〜実施例 I一 9 各種金属配位化合物の合成
Figure imgf000119_0001
Examples I-13 to I-19 Synthesis of Various Metal Coordination Compounds
力ルバゾール単位、 環 A、 その他配位子などの出発原料を変更した以外は実 施例 I一 1及び実施例 I一 2の合成方法と同様な方法によって、 下記表 I一 2 に示されるような各種金属錯体化合物を合成した。 As shown in Table I-12 below, the synthesis was performed in the same manner as in Example I-11 and Example I-12 except that the starting materials such as the sorbazole unit, ring A, and other ligands were changed. Various metal complex compounds were synthesized.
表 I — 2 Table I — 2
Figure imgf000120_0001
Figure imgf000120_0001
76/1 76/1
Figure imgf000121_0001
Figure imgf000121_0001
紙 (規則 2β) 76/2 Paper (Rule 2β) 76/2
実施例 I一 10 有機 EL素子の作製 Example I-10 Preparation of Organic EL Device
実施例 I一 2で得た化合物を用いて、 有機層が 3層の有機 EL素子を作製し 、 素子特性を評価した。  Using the compound obtained in Example I-12, an organic EL device having three organic layers was produced, and the device characteristics were evaluated.
I TO (酸化インジウム錫) を 2mm幅にパターンニングしたガラス基板上 に、 ホール輸送層として ひ一 NPDを、 10_5P aの真空チャンバ一内で抵 抗加熱による真空蒸着法にて、 膜厚 40 nm形成した。 その上に、 実施例 I— 2の金属配位化合物を C B Pと重量比が 5 %になるように共蒸着を行つた (膜 厚 30 nm) 。 さらに、 電子輸送層として A 1 Q3を 30 nm蒸着した。 この 上に、 陰極電極層として L i Fを 0. 5〜2nm、 A 1を 100〜150nm I TO and (indium tin oxide) glass substrate was patterned into a 2mm width, an NPD shed as a hole transport layer by a vacuum evaporation method by resistance heating in a vacuum chamber within one 10_ 5 P a, thickness 40 nm was formed. Further, the metal coordination compound of Example I-2 was co-deposited with CBP at a weight ratio of 5% (film thickness: 30 nm). Further, 30 nm of A 1 Q 3 was deposited as an electron transport layer. On this, as a cathode electrode layer, LiF is 0.5 to 2 nm and A1 is 100 to 150 nm.
替 紙(規則 2β) 77 Replacement paper (Rule 2β) 77
蒸着した。 Evaporated.
有機 EL素子の特性は室温にて、 電流電圧特性をヒユーレツトパッカード社 製の微小電流計 4140 Bで測定し、 発光輝度はトプコン社製 S R— 3で測定 した。 I TOを陽極、 L i F/A 1を陰極にして電圧を印加したところ、 約 6 Vで青色発光 (λ = 450 nm) が観測された。  The characteristics of the organic EL device were measured at room temperature, the current-voltage characteristics were measured with a micro-ammeter 4140 B manufactured by Hewlett-Packard Company, and the emission luminance was measured with SR-3 manufactured by Topcon. When voltage was applied using ITO as the anode and LiF / A1 as the cathode, blue light emission (λ = 450 nm) was observed at about 6 V.
一定電流 (50mAZcm2) で駆動したときの輝度半減時間を測定したと ころ、 100時間であった。 The luminance half-life when driven at a constant current (50 mAZcm 2 ) was 100 hours.
比較例 1 Comparative Example 1
実施例 I—10で用いた金属配位化合物の代わりに I r (ppy) 3を用い た以外は、 実施例 1 _ 10と同様にして有機 EL素子を作製した。 得られた素 子を電源に接続し、 I TOを陽極、 L i F/A 1を陰極にして電圧を印加した ところ、 約 6 Vで緑色発光 (λ==516 nm) が観測された。 An organic EL device was fabricated in the same manner as in Examples 1 to 10, except that Ir (ppy) 3 was used instead of the metal coordination compound used in Example I-10. When the obtained device was connected to a power supply and a voltage was applied using ITO as the anode and LiF / A1 as the cathode, green light emission (λ == 516 nm) was observed at about 6 V.
一定電流 (50mAZcm2) で駆動したときの輝度半減時間を測定したと ころ、 80時間であった。 When the luminance half-life when driven at a constant current (50 mAZcm 2 ) was measured, it was 80 hours.
実施例 II一 1 金属配位化合物 II (1) の合成 Example II Synthesis of one-metal coordination compound II (1)
マグネシウム (1. 9 g、 8 Ommo 1 ) の THF混合物中に、 2—ヒドロ キシー 6—ブロモー 9—メチルカルバゾ一ル (3 Ommo 1) の THF溶液を 、 アルゴン気流下、 よく攪拌しながら徐々に加え、 グリニャール試薬を調製し た。 得られたグリニャール試薬を、 トリメチルホウ酸エステル (30 Ommo 1) の THF溶液に— 78°Cでよく攪拌しながら、 2時間かけて徐々に滴下し た後、 2日間室温で攪拌した。 反応混合物を粉碎した氷を含有する 5%希硫酸 中に注ぎ攪拌した。 得られた水溶液をトルエンで抽出し、 抽出物を濃縮したと ころ、 無色の固体が得られた。 得られた固体をトルエン/アセトン (1Z2) から再結晶することにより、 無色結晶として力ルバゾール誘導体ボロン酸が得 られた (40%) 。 78 In a THF mixture of magnesium (1.9 g, 8 Ommo 1), a THF solution of 2-hydroxy 6-bromo-9-methylcarbazolyl (3 Ommo 1) was gradually added with good stirring under an argon stream. A Grignard reagent was prepared. The resulting Grignard reagent was gradually added dropwise to a THF solution of trimethyl borate ester (30 Ommo 1) at −78 ° C. over 2 hours while being stirred well, and then stirred at room temperature for 2 days. The reaction mixture was poured into 5% dilute sulfuric acid containing crushed ice and stirred. The resulting aqueous solution was extracted with toluene, and the extract was concentrated to give a colorless solid. The solid obtained was recrystallized from toluene / acetone (1Z2) to give the borazole derivative boronic acid as colorless crystals (40%). 78
得られたカルパゾール誘導体ボロン酸 (12mmo 1 ) と 1, 2—エタンジ オール (30mmo l) をトルエン中で 10時間還流した後、 トルエン/ァセ トン (1Z4) から再結晶したところ、 力ルバゾール誘導体ボロンエステルが 無色結晶として得られた。 The obtained carpazole derivative boronic acid (12 mmo 1) and 1,2-ethanediol (30 mmol) were refluxed in toluene for 10 hours, and then recrystallized from toluene / acetone (1Z4). The ester was obtained as colorless crystals.
Figure imgf000124_0001
Figure imgf000124_0001
2—ブロモピリジン (l Ommo 1) 、 カルパゾール誘導体ボロンエステル (1 Ommo l) 、 Pd (0) (PPh3) 4 (0. 2mmo 1 ) のトルエン 溶液に、 アルゴン気流下、 2Mの K2C〇3水溶液を加え、 激しく攪拌しなが ら 48時間還流した。 反応混合物を室温まで冷却した後、 大量のメタノール中 に注ぎ、 固体を沈殿させた。 析出した固体を吸引濾過し、 メタノールで洗浄す ることにより、 2—ヒドロキシ一 6— (2' —ピリジル) 一9—メチルカルバ ゾールの固体を得た。 2M K 2 C〇 in a toluene solution of 2-bromopyridine (1 Ommo 1), carbazole derivative boron ester (1 Ommo 1), Pd (0) (PPh 3 ) 4 (0.2 mmo 1) under an argon stream 3 Aqueous solution was added and refluxed for 48 hours with vigorous stirring. After the reaction mixture was cooled to room temperature, it was poured into a large amount of methanol to precipitate a solid. The precipitated solid was filtered by suction and washed with methanol to obtain 2-hydroxy-16- (2'-pyridyl) -19-methylcarbazole solid.
Figure imgf000124_0002
Figure imgf000124_0002
20 Om 1の 3つ口フラスコに塩化イリジウム ( I I I ) (1. 7mmo l ) , 2—ヒドロキシ— 6— (2 ' —ピリジル) 一 9ーメチルカルバゾール (7 . 58mmo 1 ) 、 エトキシエタノール 5 Om lと水 2 Om lを入れ、 窒素気 79 Iridium chloride (III) (1.7 mmol), 2-hydroxy-6- (2'-pyridyl) -19-methylcarbazole (7.58 mmo1), ethoxyethanol 5 Oml in a three-neck flask with 20 Om 1 And 2 Oml of water 79
流下室温で 30分間攪拌し、 その後 24時間還流攙拌した。 反応物を室温まで 冷却し、 沈殿物を濾取水洗後、 エタノール及びアセトンで順次洗浄した。 室温 で減圧乾燥し、 ジー —クロローテトラキス [2—ヒドロキシー 6— (2, ― ピリジル) 一 9ーメチルカルバゾール—Α^', C7] ジイリジウム (III) の 淡黄色粉末を得た。 The mixture was stirred at room temperature under flowing water for 30 minutes, and then stirred under reflux for 24 hours. The reaction product was cooled to room temperature, and the precipitate was collected by filtration, washed with water, and washed sequentially with ethanol and acetone. Dried under reduced pressure at room temperature, di - chloro over tetrakis [2- hydroxy-6- (2, - pyridyl) Single 9-1 methylcarbazole -Α ^ ', C 7] to give a pale yellow powder diiridium (III).
Figure imgf000125_0001
Figure imgf000125_0001
200mlの 3つ口フラスコにエトキシエタノール 7 Om 1、 ジ一 —クロ ローテトラキス [2—ヒドロキシ—6— (2 ' —ピリジル) —9一メチルカル バゾ一ルー VJ', C71 ジイリジウム (III) (0. 7mmo 1 ) 、 ァセチル アセトン (2. 1 Ommo 1 ) と炭酸ナトリウム (9. 43mmo 1 ) を入れ 、 窒素気流下室温で攪拌し、 その後 15時間還流攪拌した。 反応物を氷冷し、 沈殿物を濾取水洗した。 この沈殿物をシリカゲルカラムクロマト (溶離液:ク ロロホルム /メタノール: 30Z1) で精製し、 ビス [2—ヒドロキシ一 6— (2 ' —ピリジル) 一 9—メチルカルバゾール— Λ^', C7] (ァセチルァセ トナト) イリジウム (III) の淡黄色粉末を得た。 80 Ethoxyethanol 7 Om 1 three-neck flask 200 ml, di one - black Rotetorakisu [2-hydroxy-6- (2 '- pyridyl) -9 one Mechirukaru Vazo one Roux V J', C 7 1 diiridium ( III) (0.7 mmo 1), acetyl acetone (2.1 Ommo 1) and sodium carbonate (9.43 mmo 1) were added, and the mixture was stirred at room temperature under a nitrogen stream, and then stirred under reflux for 15 hours. The reaction was cooled on ice, and the precipitate was collected by filtration and washed with water. The precipitate was purified by silica gel column chromatography (eluent: chloroform / methanol: 30Z1) to give bis [2-hydroxy-one 6- (2 '- pyridyl) one 9-methyl carbazole - lambda ^', C 7] ( (Acetyl acetonato) A pale yellow powder of iridium (III) was obtained. 80
Figure imgf000126_0001
実施例 II一 2 金属配位化合物 II (2) の合成
Figure imgf000126_0001
Example II Synthesis of 1-2 Metal Coordination Compound II (2)
2 0 0m 1の 3つ口フラスコに 2—ヒドロキシ一 6— (2 ' —ピリジル) 一 9—メチルカルバゾ一ル (1. 7mmo 1 ) 、 実施例 II一 1で合成したビス [2—ヒドロキシー 6— (2 ' —ピリジル) 一 9—メチルカルバゾールー VJ ' , C7] (ァセチルァセトナト) イリジウム (III) (0. 2 8mmo 1 ) と グリセロール 5 5m lを入れ、 窒素気流下約 1 8 0 で 8時間加熱攪拌した。 反応物を室温まで冷却して 1 N—塩酸 3 5 Om lに注入し、 沈殿物を濾取水洗 し、 1 0 0°Cで 5時間減圧乾燥した。 この沈殿物をクロ口ホルムを溶離液とし たシリカゲルカラムクロマトで精製し、 トリス [2—ヒドロキシー 6— (2 ' 一ピリジル) 一 9—メチルカルバゾ一ルー Λ^' , OH イリジウム (III) の 淡黄色粉末を得た。 81 2-hydroxy-16- (2'-pyridyl) -19-methylcarbazole (1.7 mmo1) in a 200 ml three-necked flask, bis [2-hydroxy-6-) synthesized in Example II-11 (2 '- pyridyl) one 9-methyl carbazole over V J', C 7] put (§ cetyl § Setona g) iridium (III) and (0. 2 8Mmo 1) glycerol 5 5 m l, about a nitrogen stream 1 The mixture was heated with stirring at 80 for 8 hours. The reaction product was cooled to room temperature, poured into 35 Nm of 1N-hydrochloric acid, and the precipitate was collected by filtration, washed with water, and dried under reduced pressure at 100 ° C for 5 hours. The precipitate was purified by silica gel column chromatography using chloroform as eluent, and the pale yellow color of tris [2-hydroxy-6- (2′-pyridyl) -19-methylcarbazo-l-Λ ^ ', OH iridium (III) A powder was obtained. 81
Figure imgf000127_0001
実施例 11 - 3〜実施例 11一 1 3 各種金属配位化合物の合成
Figure imgf000127_0001
Examples 11-3 to 11-3 Synthesis of Various Metal Coordination Compounds
力ルバゾール単位、 環 A、 その他配位子などの出発原料を変更した以外は実 施例 I I一 1及び実施例 I I一 2の合成方法と同様な方法によって、 下記表 I I一 2に示されるような各種金属錯体化合物を合成した。 As shown in Table II-12 below, the synthesis method of Examples II-11 and II-12 was used except that the starting materials such as the sorbazole unit, ring A, and other ligands were changed. Various metal complex compounds were synthesized.
82 82
Figure imgf000128_0001
(規則 26)
Figure imgf000129_0001
Figure imgf000128_0001
(Rule 26)
Figure imgf000129_0001
1/Z2 1 / Z2
J6£800/ 00Zdf/X3d 990ΪΪ謂 OAV 82/2 J6 £ 800 / 00Zdf / X3d 990 so-called OAV 82/2
実施例 II— 14 有機 EL素子の作製 Example II-14 Fabrication of Organic EL Device
実施例 11一 2で得た化合物を用いて、 有機層が 3層の有機 E L素子を作製 Example 11 Using the compound obtained in 1-2, an organic EL device having three organic layers was fabricated.
替 紙(規則 2β) 83 Replacement paper (Rule 2β) 83
し、 素子特性を評価した。 Then, the device characteristics were evaluated.
I TO (酸化インジウム錫) を 2mm幅にパターンニングしたガラス基板上 に、 ホール輸送層として a— NPDを、 10— 5 P aの真空チャンバ一内で抵 抗加熱による真空蒸着法にて、 膜厚 40 nm形成した。 その上に、 実施例 II 一 2の金属配位化合物を C B Pと重量比が 5 %になるように共蒸着を行った ( 膜厚 30nm) 。 さらに、 電子輸送層として A 1 Q 3を 30 nm蒸着した。 こ の上に、 陰極電極層として L i Fを 0. 5〜2nm、 A1を 100〜150n m蒸着した。 I TO and (indium tin oxide) glass substrate was patterned into a 2mm width, a a- NPD as a hole transport layer by a vacuum evaporation method by resistance heating in a vacuum chamber within one 10- 5 P a, film A thickness of 40 nm was formed. Further, the metal coordination compound of Example II-12 was co-deposited with CBP so that the weight ratio was 5% (film thickness: 30 nm). Further, 30 nm of A 1 Q 3 was deposited as an electron transport layer. On this, 0.5 to 2 nm of LiF and 100 to 150 nm of A1 were deposited as a cathode electrode layer.
有機 EL素子の特性は室温にて、 電流電圧特性をヒユーレツトパッカード社 製の微小電琉計 4140Bで測定し、 発光輝度はトプコン社製 SR— 3で測定 した。 IT〇を陽極、 L i FZA 1を陰極にして電圧を印加したところ、 約 6 Vでオレンジ色発光 (λ = 59 Onm) が観測された。  The characteristics of the organic EL device were measured at room temperature, the current-voltage characteristics were measured with a micro-electrometer 4140B manufactured by Hewlett-Packard Company, and the emission luminance was measured with SR-3 manufactured by Topcon. When voltage was applied using IT〇 as the anode and Li FZA 1 as the cathode, orange emission (λ = 59 Onm) was observed at about 6 V.
一定電流 (50mA/cm2) で駆動したときの輝度半減時間を測定したと ころ、 200時間であった。 The luminance half-life measured at a constant current (50 mA / cm 2 ) was 200 hours.
実施例 III一 1 金属配位化合物 III (1) の合成 Example III Synthesis of 1 1 Metal Coordination Compound III (1)
マグネシウム (1. 9g、 8 Ommo 1 ) の THF混合物中に、 2—ブロモ —9一フルォレノン (3 Ommo 1) の THF溶 を、 アルゴン気流下、 よく 攪拌しながら徐々に加え、 グリニャール試薬を調製した。 得られたグリニヤー ル試薬を、 トリメチルホウ酸エステル (30 Ommo 1 ) の THF溶液に— 7 8°Cでよく攪拌しながら、 2時間かけて徐々に滴下した後、 2日間室温で攪拌 した。 反応混合物を粉砕した氷を含有する 5%希硫酸中に注ぎ攪拌した。 得ら れた水溶液をトルエンで抽出し、 抽出物を濃縮したところ、 無色の固体が得ら れた。 得られた固体をトルエンノアセトン (1/2) から再結晶することによ り、 無色結晶としてフルォレノン誘導体ボロン酸が得られた (40%) 。 得ら れたフルォレノン誘導体ボロン酸 (12mmo 1 ) と 1, 2_エタンジオール 84 A Grignard reagent was prepared by gradually adding a THF solution of 2-bromo-9-fluorenone (3 Ommo 1) to a THF mixture of magnesium (1.9 g, 8 Ommo 1) while stirring well under a stream of argon. . The obtained Grignard reagent was gradually added dropwise to a THF solution of trimethyl borate ester (30 Ommo 1) over 2 hours while stirring well at −78 ° C., followed by stirring at room temperature for 2 days. The reaction mixture was poured into 5% dilute sulfuric acid containing crushed ice and stirred. The obtained aqueous solution was extracted with toluene, and the extract was concentrated to give a colorless solid. By recrystallizing the obtained solid from toluenenoacetone (1/2), the fluorenone derivative boronic acid was obtained as colorless crystals (40%). The obtained fluorenone derivative boronic acid (12mmo 1) and 1,2-ethanediol 84
(3 Ommo 1) をトルエン中で 10時間還流した後、 トルエン/アセトン ( 1/4) から再結晶したところ、 フルォレノン誘導体ボロンエステルが無色結 晶として得られた。 (3 Ommo 1) was refluxed in toluene for 10 hours and then recrystallized from toluene / acetone (1/4) to obtain a fluorenone derivative boron ester as colorless crystals.
Figure imgf000132_0001
Figure imgf000132_0001
2—ブロモピリジン. (1 Ommo 1) 、 フルォレノン誘導体ボロンエステル (1 Ommo 1 ) 、 Pd (0) (PP 3) 4 (0. 2 mm o 1 ) のトルエン 溶液に、 アルゴン気流下、 2Mの K2C03水溶液を加え、 激しく攪拌しなが ら 48時間還流した。 反応混合物を室温まで冷却した後、 大量のメタノール中 に注ぎ、 固体を沈殿させた。 析出した固体を吸引濾過し、 メタノールで洗浄す ることにより、 2— (2 ' —ピリジル) 一 9—フルォレノンの固体を得た。 2-bromopyridine. (1 Ommo 1), fluorenone derivative boron ester (1 Ommo 1), Pd (0) (PP 3 ) 4 (0.2 mmo 1) in toluene solution under argon atmosphere, 2M K 2 C0 3 solution was added, vigorously while stirring was refluxed et 48 hours. After the reaction mixture was cooled to room temperature, it was poured into a large amount of methanol to precipitate a solid. The precipitated solid was filtered by suction and washed with methanol to obtain a solid of 2- (2′-pyridyl) -19-fluorenone.
Figure imgf000132_0002
Figure imgf000132_0002
20 Om 1の 3つ口フラスコに塩化イリジウム ( I I I ) (1. 7mmo l ) 、 2 - (2, 一ピリジル) _ 9一フルォレノン (7. 58mmo 1 ) 、 エト キシエタノール 5 Om 1と水 2 Om 1を入れ、 窒素気流下室温で 30分間攪拌 し、 その後 24時間還流攪拌した。 反応物を室温まで冷却し、 沈殿物を濾取水 洗後、 エタノール及びアセトンで順次洗浄した。 室温で減圧乾燥し、 ジ— 一 クロローテトラキス [2— (2 ' 一ピリジル) 一 9一フルォレノン一 A^', C5] ジイリジウム (III) の淡黄色粉末を得た。 85 Iridium chloride (III) (1.7 mmol), 2- (2,1-pyridyl) _9-fluorenone (7.58 mmo1), ethoxyethanol 5 Om1 and water 2 Om in a three-neck flask of 20 Om1 1 and stirred at room temperature under a nitrogen stream for 30 minutes, and then stirred under reflux for 24 hours. The reaction product was cooled to room temperature, and the precipitate was collected by filtration, washed with water, and washed sequentially with ethanol and acetone. Dried under reduced pressure at room temperature, di - A chloro over tetrakis [2- (2 'single-pyridyl) Single 9 one Furuorenon one A ^', C 5] to give a pale yellow powder diiridium (III). 85
Figure imgf000133_0001
Figure imgf000133_0001
200mlの 3つ口フラスコにエトキシエタノール 70m 1、 ジ一 —クロ ローテトラキス [2— (2, 一ピリジル) 一 9—フルォレノン一Λ^', C3] ジイリジウム (III) (0. 7 mm 0 1 ) 、 ァセチルアセトン (2. 1 Omm o 1) と炭酸ナトリウム (9. 43mmo 1) を入れ、 窒素気流下室温で攪拌 し、 その後 15時間還流攪拌した。 反応物を氷冷し、 沈殿物を濾取水洗した。 この沈殿物をシリカゲルカラムクロマト (溶離液:クロ口ホルムノメタノール : 30/1) で精製し、 ビス [2— (2, —ピリジル) 一9—フルォレノン— N1' , C3] (ァセチルァセトナト) イリジウム (III) の淡黄色粉末を得た Ethoxyethanol 70m 1 three-neck flask 200 ml, di one - black Rotetorakisu [2- (2, single-pyridyl) Single 9- Furuorenon one lambda ^ ', C 3] diiridium (III) (0. 7 mm 0 1), acetylacetone (2.1 Ommo 1) and sodium carbonate (9.43 mmo 1) were added, and the mixture was stirred at room temperature under a nitrogen stream, and then stirred under reflux for 15 hours. The reaction was cooled on ice, and the precipitate was collected by filtration and washed with water. The precipitate was purified by silica gel column chromatography (eluent: formaldehyde methanol: 30/1), and bis [2- (2, -pyridyl) -19-fluorenone-N 1 ', C 3 ] (acetyl (Acetonato) A pale yellow powder of iridium (III) was obtained.
Figure imgf000133_0002
Figure imgf000133_0002
実施例 ΠΙ— 2 金属配位化合物 III (2) の合成 86 Example ΠΙ—Synthesis of metal coordination compound III (2) 86
200m 1の 3つ口フラスコに 2— (2, 一ピリジル) 一9—フルォレノン (1. 7mmo 1) 、 実施例 III— 1で合成したビス [2— (2' 一ピリジル ) — 9—フルォレノン— Λ^', C3] (ァセチルァセトナト) イリジウム ( III) (0. 28mmo 1 ) とグリセロール 55m 1を入れ、 窒素気流下約 1 80°Cで 8時間加熱攪拌した。 反応物を室温まで冷却して 1N_塩酸 35 Om 1に注入し、 沈殿物を濾取水洗し、 100°Cで 5時間減圧乾燥した。 この沈殿 物をクロ口ホルムを溶離液としたシリカゲルカラムクロマトで精製し、 トリス 2- (2,1-pyridyl) -19-fluorenone (1.7 mmo 1) in a 200-ml three-necked flask, bis [2- (2'-pyridyl)-9-fluorenone synthesized in Example III-1 {^ ', C 3 ] (acetylacetonato) Iridium (III) (0.28 mmo 1) and 55 ml of glycerol were added, and the mixture was heated and stirred at about 180 ° C. for 8 hours under a nitrogen stream. The reaction was cooled to room temperature, poured into 1N hydrochloric acid (35 Om1), and the precipitate was collected by filtration, washed with water, and dried under reduced pressure at 100 ° C for 5 hours. The precipitate was purified by silica gel column chromatography using a chromatographic form as the eluent.
[2— (2 ' —ピリジル) 一 9—フルォレノン一 A ', C3] イリジウム ( III) の淡黄色粉末を得た。 [2— (2′-pyridyl) -1-9-fluorenone-1 A ′, C 3 ] A light yellow powder of iridium (III) was obtained.
Figure imgf000134_0001
Figure imgf000134_0001
実施例 III一 3〜実施例 III一 17 Example III-1 3 to Example III-1 17
縮合環単位、 環 A、 その他配位子などの出発原料を変更した以外は実施例 III— 1及び実施例 III— 2の合成方法と同様な方法によって、 下記表 III一 2に示されるような各種金属錯体化合物を合成した。 ' 87 Except that the starting materials such as the condensed ring unit, ring A, and other ligands were changed, a method similar to that of the synthesis method of Example III-1 and Example III-2 was used, as shown in Table III-12 below. Various metal complex compounds were synthesized. ' 87
Figure imgf000135_0001
(規則 26) 87/1
Figure imgf000135_0001
(Rule 26) 87/1
Figure imgf000136_0001
(規則 26) 88
Figure imgf000136_0001
(Rule 26) 88
Figure imgf000137_0001
え用紙(規則 2β) 88/1
Figure imgf000137_0001
Paper (Rule 2β) 88/1
実施例 III一 18 有機 EL素子の作製 Example III-18 Fabrication of organic EL device
実施例 III一 2で得た化合物を用いて、 有機層が 3層の有機 EL素子を作製 し、 素子特性を評価した。  Using the compound obtained in Example III-12, an organic EL device having three organic layers was produced, and the device characteristics were evaluated.
I TO (酸化インジウム錫) を 2mm幅にパターンニングしたガラス基板上 に、 ホール輸送層として a— NPDを、 10— 5 P aの真空チャンバ一内で抵 抗加熱による真空蒸着法にて、 膜厚 40 nm形成した。 その上に、 実施例 III ― 2の金属配位化合物を C B Pと重量比が 5 %になるように共蒸着を行つた ( 膜厚 30 nm) 。 さらに、 電子輸送層として A l Q3を 30 nm蒸着した。 こ の上に、 陰極電極層として L i Fを 0. 5〜2nm、 A lを 100〜150n m 者した。 I TO and (indium tin oxide) glass substrate was patterned into a 2mm width, a a- NPD as a hole transport layer by a vacuum evaporation method by resistance heating in a vacuum chamber within one 10- 5 P a, film A thickness of 40 nm was formed. Further, the metal coordination compound of Example III-2 was co-deposited with CBP at a weight ratio of 5% (thickness: 30 nm). Further, 30 nm of Al Q 3 was deposited as an electron transport layer. On this, as a cathode electrode layer, LiF was 0.5 to 2 nm and Al was 100 to 150 nm.
有機 EL素子の特性は室温にて、 電流電圧特性をヒユーレツ卜パッカード社 製の微小電流計 4140Bで測定し、 発光輝度はトプコン社製 SR— 3で測定 した。 I TOを陽極、 L i FZA 1を陰極にして電圧を印加したところ、 約 6 Vで青色発光 (λ = 450 nm) が観測された。  The characteristics of the organic EL device were measured at room temperature. When voltage was applied using ITO as the anode and Li FZA1 as the cathode, blue light emission (λ = 450 nm) was observed at about 6 V.
一定電流 (50mA/cm2) で駆動したときの輝度半減時間を測定したと ころ、 200時間であった。 The luminance half-life measured at a constant current (50 mA / cm 2 ) was 200 hours.
え用紙(規則 2β) Paper (Rule 2β)

Claims

89 請 求 の 範 囲 式 (1) 〜 (6) の何れかで表されることを特徴とする金属配位化合 物。 89 A claim A metal coordination compound represented by any one of formulas (1) to (6).
(1) (2) (3)
Figure imgf000139_0002
(one two Three)
Figure imgf000139_0002
B: >N , >0, >S, >C = 0, >S〇2, >CR B:>N,>0,>S,> C = 0,> S〇 2 ,> CR
(式中、 Mは I r、 Rh、 Ru、 〇s、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは〇sであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 Xi Xeおよび Rはそれぞれ独立に— R —〇R2、 — SR3、 90 Wherein M is Ir, Rh, Ru, 〇s, Pd or Pt, and n is 2 or 3. M is Ir, Rh, Ru or 〇s and n is 2 In this case, another bidentate ligand is bonded to M. Ring A is a cyclic compound containing a nitrogen atom bonded to M. Xi Xe and R are each independently — R —〇R 2 , — SR 3 , 90
— OCOR4、 一CO〇R5、 一 S i R6R7R8、 および—NR9R10 (ただし 、 1〜!^1。は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭素数 1〜2 2個の直鎖、 環状もしくは分岐アルキル基又はそれらの水素原子の一部もしく は全部がハロゲン原子で置換されたハロゲン置換アルキル基、 炭素数 6〜 21 個のァリ一ル基、 炭素数 2〜 20のへテロァリール基もしくは炭素数 7〜 21 のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲン原子で置 換されたハロゲン置換ァリ一ル基、 ハロゲン置換へテロアリール基、 ハロゲン 置換ァラルキル基を表し、 1〜!^115はそれぞれ同一であって 異なっていて もよい。 ) からなる群から選択される置換基であって、 また、 Xi〜X6は同 一であっても異なっていてもよく、 環 Aは Xi〜X6で定義される基と同様の 置換基を有していてもよい。 ) — OCOR 4 , one CO〇R 5 , one Si R 6 R 7 R 8 , and —NR 9 R 10 (where 1 to! ^ 1 is a hydrogen atom, a halogen atom, a cyano group, a nitro group, a carbon number 1 to 22 straight-chain, cyclic or branched alkyl groups or halogen-substituted alkyl groups in which part or all of the hydrogen atoms are substituted with halogen atoms, aryl groups having 6 to 21 carbon atoms A heteroaryl group having 2 to 20 carbon atoms or an aralkyl group having 7 to 21 carbon atoms, or a halogen-substituted aryl group or a halogen-substituted heteroaryl group in which some or all of the hydrogen atoms have been replaced with halogen atoms. , Represents a halogen-substituted aralkyl group, and 1 to! ^ 115 may be the same or different.) And Xi to X 6 are the same. and or different, ring A is defined by Xi~X 6 May have the same substituent as the above group. )
2. 式 1 (1) 〜1 (6) の何れかで表される請求項 1記載の金属配位化 合物。 2. The metal coordination compound according to claim 1, represented by any one of formulas (1) to (6).
91 91
Figure imgf000141_0001
Figure imgf000141_0001
I - (1) I- (2) I- (3)  I-(1) I- (2) I- (3)
Figure imgf000141_0002
Figure imgf000141_0002
I - (4) I - (5) I- (6)  I-(4) I-(5) I- (6)
(式中、 Mは I r、 Rh、 Ru、 Os、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは Osであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 ェ〜 ?は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭 素数 1〜22個の直鎖、 環状もしくは分岐アルキル基又はそれらの水素原子の 一部もしくは全部がハ口ゲン原子で置換されたハロゲン置換アルキル基、 炭素 数 6〜21個のァリール基、 炭素数 2〜 20のへテロァリール基もしくは炭素 数 7〜 21のァラルキル基又はそれらの水素原子の一部もしくは全部がハロゲ ン原子で置換されたハロゲン置換ァリール基、 ハロゲン置換へテロアリ一ル基 、 ハロゲン置換ァラルキル基のいずれであってもよく、 また、 Xi〜X7は同 92 (Where M is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3. When M is Ir, Rh, Ru or Os and n is 2, Another bidentate ligand is bonded to M. Ring A is a cyclic compound containing a nitrogen atom bonded to M. 〜 to? Are a hydrogen atom, a halogen atom, a cyano group, a nitro group, a charcoal. A straight-chain, cyclic or branched alkyl group having 1 to 22 primes or a halogen-substituted alkyl group in which part or all of the hydrogen atoms thereof have been substituted with a hapogen atom; an aryl group having 6 to 21 carbon atoms; A halogen-substituted aryl group, a halogen-substituted heteroaryl group, a halogen-substituted aralkyl group, a halogen-substituted aralkyl group having 2 to 20 heteroaryl groups or an aralkyl group having 7 to 21 carbon atoms or a hydrogen atom partially or wholly substituted with a halogen atom; may be any of groups, also, Xi~X 7 is 92
一であっても異なっていてもよく、 環 Aは X1〜X7で定義される基と同様の 置換基を有していてもよい。 ) It may be one or different, and ring A may have the same substituent as the group defined by X 1 to X 7 . )
3. 前記式 I (1) 〜1 (6) において、 環 Aが、 〜 ァで定義され る基と同様の置換基を有していてもよいピリジン、 キノリン、 ベンゾォキサゾ —ル、 ベンゾチアゾール、 ベンゾイミダゾ一ル、 ベンゾトリアゾール、 イミダ ゾール、 ピラゾール、 ォキサゾール、 チアゾ一ル、 トリァゾール、 ベンゾピラ ゾールまたはトリァジンである請求項 2に記載の金属配位化合物。 ' 3. In the above formulas I (1) to 1 (6), ring A may have the same substituent as the group defined by a, pyridine, quinoline, benzoxazole, benzothiazole, benzo 3. The metal coordination compound according to claim 2, which is imidazole, benzotriazole, imidazole, pyrazole, oxazole, thiazol, triazole, benzopyrazole or triazine. '
4. 前記式 I (1) 〜 1 (6) における X1〜X7、 あるいは、 環 Aが有 する Xi Xyと同様に定義される置換基の少なくとも 1つが、 フッ素原子あ るいはトリフルォロメチル基である請求項 2または 3に記載の金属配位化合物 4. X 1 to X 7 in the above formulas I (1) to 1 (6) or at least one of the substituents defined in the same manner as Xi Xy in the ring A is a fluorine atom or a trifluoro group. 4. The metal coordination compound according to claim 2, which is a methyl group.
5. 式 II (1) 〜Π (6) の何れかで表される請求項 1記載の金属配位 化合物。 5. The metal coordination compound according to claim 1, represented by any one of formulas II (1) to Π (6).
93 93
Figure imgf000143_0001
Figure imgf000143_0001
II-(l) 11- (2) 11- (3)  II- (l) 11- (2) 11- (3)
Figure imgf000143_0002
Figure imgf000143_0002
11- (4) 11- (5) II-(6)  11- (4) 11- (5) II- (6)
(式中、 Mは I r、 Rh、 Ru、 O s、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは〇sであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 Xi X?はそれぞれ独立に— H、 -OH, -RK -OR2, ―(Where M is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3. M is Ir, Rh, Ru or 〇s, and n is 2 In this case, another bidentate ligand is bonded to M. Ring A is a cyclic compound containing a nitrogen atom bonded to M. Xi X? Are each independently — H, -OH, -RK -OR 2 , ―
SR3、 一〇COR4、 一 CO〇R5、 一 S i R6R7R8、 一 NH2、 一 NHR 9SR 3 , one COR 4 , one CO〇R 5 , one Si R 6 R 7 R 8 , one NH 2 , one NHR 9
、 および—NR^R11 (ただし、 R1 !^11は炭素数 1〜22個の直鎖、 環 状もしくは分岐のアルキル基、 炭素数 6〜 21個のァリール基、 炭素数 2〜2 0のへテロァリール基、 または、 炭素数 7〜21のァラルキル基を表し、 R1 〜Rnはそれぞれ同一であっても異なっていてもよい。 ) からなる群から選 択される置換基であって、 また、 Xt〜X7は同一であっても異なっていても 94 , And —NR ^ R 11 (where R 1 ! ^ 11 is a straight-chain, cyclic or branched alkyl group having 1 to 22 carbon atoms, an aryl group having 6 to 21 carbon atoms, and 2 to 20 carbon atoms) A heteroaryl group or an aralkyl group having 7 to 21 carbon atoms, wherein R 1 to R n may be the same or different.) A substituent selected from the group consisting of X t to X 7 may be the same or different 94
よく、 環 Aは X 〜X7で定義される基と同様の置換基を有していてもよい。 ) Well, ring A may have the same substituent groups as defined in X to X 7. )
6. 前記式 II (1) 〜11 (6) において、 環 Aが、 〜 ァで定義され る基と同様の置換基を有していてもよいピリジン、 キノリン、 ベンゾォキサゾ ール、 ベンゾチアゾール、 ベンゾイミダゾ一ル、 ベンゾトリアゾール、 イミダ ゾール、 ピラゾール、 ォキサゾール、 チアゾ一ル、 トリァゾール、 ベンゾピラ ゾール、 トリァジンまたはィソキノリンである請求項 5に記載の金属配位化合 物。 6. In the above formulas II (1) to 11 (6), ring A may have the same substituent as the group defined by pyridine, quinoline, benzoxazole, benzothiazole, benzo 6. The metal coordination compound according to claim 5, which is imidazole, benzotriazole, imidazole, pyrazole, oxazole, thiazol, triazole, benzopyrazole, triazine or isoquinoline.
7. 式 III (1) 〜ΠΙ (6) の何れかで表される請求項 1記載の金属配 位化合物。 7. The metal coordination compound according to claim 1, which is represented by any one of formulas III (1) to ((6).
95 95
Figure imgf000145_0001
Figure imgf000145_0001
III -(1) ΙΠ- (2) 111- (3)  III-(1) ΙΠ- (2) 111- (3)
Figure imgf000145_0002
Figure imgf000145_0002
111- (4) III-(5) III-(6)  111- (4) III- (5) III- (6)
B: >0, >S, >C = O, >S02, >CR, B:>0,> S, > C = O,> S0 2,> CR,
(式中、 Mは I r、 Rh、 Ru、 Os、 Pdまたは P tであり、 nは 2または 3である。 Mが I r、 Rh、 Ruまたは〇sであって、 nが 2の場合、 Mには さらに他の二座配位子が結合する。 環 Aは Mに結合した窒素原子を含む環状化 合物である。 Xi Xeおよび Rはそれぞれ独立に— R -OR2, — SR3、 一〇COR4、 — CO〇R5、 一 S i R6R7R8、 および— NR9R10 (ただし 、 !^〜 1。は水素原子、 ハロゲン原子、 シァノ基、 ニトロ基、 炭素数 1~2 2個の直鎖、 環状もしくは分岐アルキル基又はそれらの水素原子の一部もしく は全部がハロゲン原子で置換されたハロゲン置換アルキル基、 炭素数 6〜21 96 (Where M is Ir, Rh, Ru, Os, Pd or Pt, and n is 2 or 3. When M is Ir, Rh, Ru or 〇s and n is 2 And another bidentate ligand is bound to M. Ring A is a cyclic compound containing a nitrogen atom bound to M. Xi Xe and R are each independently — R -OR 2 , — SR 3 , 100 COR 4 , —CO〇R 5 , 1 Si R 6 R 7 R 8 , and — NR 9 R 10 (However,! ^ ~ 1 is a hydrogen atom, a halogen atom, a cyano group, a nitro group, A straight-chain, cyclic or branched alkyl group having 1 to 22 carbon atoms or a halogen-substituted alkyl group in which part or all of the hydrogen atoms have been substituted with halogen atoms; 96
個のァリール基、 炭素数 2〜 20のへテロァリール基もしくは炭素数 7〜 21 のァラルキル基又はそれらの水素原子の一部もしくは全部がハ口ゲン原子で置 換されたハ口ゲン置換ァリール基、 ·ハロゲン置換へテロアリ一ル基、 ハロゲン 置換ァラルキル基を表し、 !^1〜!^1。はそれぞれ同一であっても異なっていて もよい。 ) からなる群から選択される置換基であって、 また、 Xi Xeは同 一であっても異なっていてもよく、 環 Aは Xi Xeで定義される基と同様の 置換基を有していてもよい。 ) An aryl group having 2 to 20 carbon atoms or an aralkyl group having 7 to 21 carbon atoms, or a halgen-substituted aryl group in which part or all of the hydrogen atoms thereof have been replaced with halgen atoms; · Halogen-substituted heteroaryl group and halogen-substituted aralkyl group. ^ 1 ~! ^ 1 . May be the same or different. Xi Xe may be the same or different, and ring A has the same substituent as the group defined by Xi Xe May be. )
8. 前記式 III (1) 〜III (6) において、 環 Aが、 Xi Xeで定義さ れる基と同様の置換基を有していてもよいピリジン、 キノリン、 ベンゾォキサ ゾール、 ベンゾチアゾール、 ベンゾイミダゾール、 ベンゾトリアゾ一ル、 イミ ダゾール、 ピラゾール、 ォキサゾール、 チアゾ一ル、 トリァゾール、 ベンゾピ ラゾール、 トリアジンまたはイソキノリンである請求項 7に記載の金属配位化 合物。 8. In the above formulas III (1) to III (6), ring A may have the same substituent as the group defined by Xi Xe, pyridine, quinoline, benzoxazole, benzothiazole, benzimidazole 8. The metal coordination compound according to claim 7, which is benzotriazole, imidazole, pyrazole, oxazole, thiazole, triazole, benzopyrazole, triazine or isoquinoline.
9. Mが I rである請求項 1〜 8いずれかに記載の金属配位化合物。 9. The metal coordination compound according to any one of claims 1 to 8, wherein M is Ir.
10. 請求項 1〜 9いずれかに記載の金属配位化合物、 並びに共役及び Z 又は非共役ポリマーを含むポリマー組成物。 10. A polymer composition comprising a metal coordination compound according to any of claims 1 to 9, and conjugated and Z or non-conjugated polymers.
11. 請求項 1〜 9のいずれかに記載の金属配位化合物、 または請求項 1 0記載のポリマ一組成物を用いて作製された有機エレクトロルミネセンス素子 11. An organic electroluminescent device produced using the metal coordination compound according to any one of claims 1 to 9, or the polymer composition according to claim 10.
PCT/JP2004/008392 2003-06-09 2004-06-09 Metal coordination compound, polymer composition, and organic electroluminescence element using them WO2004111066A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/559,774 US7955716B2 (en) 2003-06-09 2004-06-09 Metal coordination compound, polymer composition, and organic electroluminescent device employing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003164321 2003-06-09
JP2003164328 2003-06-09
JP2003-164321 2003-06-09
JP2003164340 2003-06-09
JP2003-164340 2003-06-09
JP2003-164328 2003-06-09

Publications (1)

Publication Number Publication Date
WO2004111066A1 true WO2004111066A1 (en) 2004-12-23

Family

ID=33556137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008392 WO2004111066A1 (en) 2003-06-09 2004-06-09 Metal coordination compound, polymer composition, and organic electroluminescence element using them

Country Status (3)

Country Link
KR (1) KR20060027323A (en)
TW (1) TW200504175A (en)
WO (1) WO2004111066A1 (en)

Cited By (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348594C (en) * 2005-01-12 2007-11-14 武汉大学 Bidentate ligand and its iridium complex and electroluminescent device therewith
WO2009061922A2 (en) * 2007-11-09 2009-05-14 The Regents Of The University Of Michigan Stable blue phosphorescent organic light emitting devices
US7985492B2 (en) * 2004-08-07 2011-07-26 Merck Patent Gmbh Electroluminescent materials and devices
GB2478452A (en) * 2006-02-22 2011-09-07 Sumitomo Chemical Co Fused ring metal complexes
US8114532B2 (en) * 2007-01-26 2012-02-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
US20120104373A1 (en) * 2010-10-29 2012-05-03 Semiconductor Energy Laboratory Co., Ltd. Organometallic Complex, and Light-Emitting Element and Display Device Using the Organometallic Complex
US8211551B2 (en) * 2007-05-18 2012-07-03 Fujifilm Corporation Organic electroluminescent device
JP2012522844A (en) * 2009-04-06 2012-09-27 ユニバーサル ディスプレイ コーポレイション Metal complexes containing novel ligand structures
EP2551933A1 (en) * 2011-07-28 2013-01-30 Universal Display Corporation Heteroleptic iridium complexes as dopants
US8557399B2 (en) 2007-11-09 2013-10-15 Universal Display Corporation Stable blue phosphorescent organic light emitting devices
KR20140060241A (en) * 2012-11-09 2014-05-19 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
JP2014516965A (en) * 2011-05-19 2014-07-17 ユニバーサル ディスプレイ コーポレイション Phosphorescent heteroleptic phenylbenzimidazole dopant and novel synthesis method
US8889864B2 (en) 2006-02-10 2014-11-18 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
US8962383B2 (en) 2012-08-27 2015-02-24 Universal Display Corporation Multi-nozzle organic vapor jet printing
US9054344B2 (en) 2010-01-20 2015-06-09 Universal Display Corporation Electroluminescent devices for lighting applications
US9130195B2 (en) 2013-11-22 2015-09-08 Universal Display Corporation Structure to enhance light extraction and lifetime of OLED devices
US9184419B2 (en) 2011-05-12 2015-11-10 Universal Display Corporation Flexible lighting devices
JP2015228489A (en) * 2014-05-02 2015-12-17 株式会社半導体エネルギー研究所 Organometallic complex, light-emitting element, light-emitting device, electronic apparatus, and illumination device
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
US9337441B2 (en) 2014-04-15 2016-05-10 Universal Display Corporation OLED lighting panel and methods for fabricating thereof
US9380675B2 (en) 2014-04-17 2016-06-28 Universal Display Corporation Energy saving OLED lighting system and method
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US9478758B1 (en) 2015-05-08 2016-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US9572232B2 (en) 2014-05-15 2017-02-14 Universal Display Corporation Biosensing electronic devices
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US9761842B2 (en) 2014-12-19 2017-09-12 The Regents Of The University Of Michigan Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces
US9825243B2 (en) 2014-08-18 2017-11-21 Udc Ireland Limited Methods for fabricating OLEDs on non-uniform substrates and devices made therefrom
US9847498B2 (en) 2014-04-14 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US9899631B2 (en) 2015-07-08 2018-02-20 Universal Display Corporation Flexible multilayer scattering substrate used in OLED
US9911928B2 (en) 2015-03-19 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US9947728B2 (en) 2015-08-25 2018-04-17 Universal Display Corporation Hybrid MEMS OLED display
US9947895B2 (en) 2015-06-17 2018-04-17 Universal Display Corporation Flexible AMOLED display
US9978965B2 (en) 2015-06-17 2018-05-22 Universal Display Corporation Rollable OLED display
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US10008679B2 (en) 2014-04-14 2018-06-26 Universal Display Corporation Organic electroluminescent materials and devices
US10038167B2 (en) 2015-01-08 2018-07-31 The Regents Of The University Of Michigan Thick-ETL OLEDs with sub-ITO grids with improved outcoupling
US10056566B2 (en) 2009-03-23 2018-08-21 Universal Display Corporation Organic electroluminescent materials and devices
US10147360B2 (en) 2015-03-31 2018-12-04 Universal Display Corporation Rugged display device architecture
US10153445B2 (en) 2016-11-21 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10153443B2 (en) 2016-07-19 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10177318B2 (en) 2015-10-29 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
US10177126B2 (en) 2014-12-16 2019-01-08 Universal Display Corporation Tunable OLED lighting source
US10205105B2 (en) 2016-08-15 2019-02-12 Universal Display Corporation Organic electroluminescent materials and devices
US10211413B2 (en) 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US10229960B2 (en) 2016-08-02 2019-03-12 Universal Display Corporation OLED displays with variable display regions
US10236458B2 (en) 2016-10-24 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10276809B2 (en) 2016-04-05 2019-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US10340464B2 (en) 2016-11-10 2019-07-02 Universal Display Corporation Organic electroluminescent materials and devices
US10355222B2 (en) 2015-02-06 2019-07-16 Universal Display Corporation Organic electroluminescent materials and devices
US10388893B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10388892B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10403826B2 (en) 2015-05-07 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10460663B2 (en) 2016-05-31 2019-10-29 Universal Display Corporation Architecture for very high resolution AMOLED display backplane
US10476010B2 (en) 2015-11-30 2019-11-12 Universal Display Corporation Organic electroluminescent materials and devices
US10490753B2 (en) 2016-12-15 2019-11-26 Universal Display Corporation Organic electroluminescent materials and devices
US10505127B2 (en) 2016-09-19 2019-12-10 Universal Display Corporation Organic electroluminescent materials and devices
US10510973B2 (en) 2014-12-17 2019-12-17 Universal Display Corporation Color-stable organic light emitting diode stack
US10522769B2 (en) 2015-08-18 2019-12-31 Universal Display Corporation Organic electroluminescent materials and devices
US10529931B2 (en) 2015-03-24 2020-01-07 Universal Display Corporation Organic Electroluminescent materials and devices
US10566547B2 (en) 2016-07-11 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US10593892B2 (en) 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10593900B2 (en) 2005-04-21 2020-03-17 Universal Display Corporation Non-blocked phosphorescent OLEDs
US10600967B2 (en) 2016-02-18 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US10600966B2 (en) 2015-02-27 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US10608185B2 (en) 2016-10-17 2020-03-31 Univeral Display Corporation Organic electroluminescent materials and devices
US10629820B2 (en) 2017-01-18 2020-04-21 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US10651403B2 (en) 2016-06-20 2020-05-12 Universal Display Corporation Organic electroluminescent materials and devices
US10662196B2 (en) 2016-11-17 2020-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10680183B2 (en) 2015-02-15 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10686140B2 (en) 2016-06-20 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10707427B2 (en) 2016-02-09 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US10720587B2 (en) 2016-07-19 2020-07-21 Universal Display Corporation Organic electroluminescent materials and devices
US10741780B2 (en) 2017-03-10 2020-08-11 Universal Display Corporation Organic electroluminescent materials and devices
US10770673B2 (en) 2017-11-28 2020-09-08 The Regents Of The University Of Michigan Highly reliable stacked white organic light emitting device
US10770664B2 (en) 2015-09-21 2020-09-08 Universal Display Corporation Organic electroluminescent materials and devices
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10777754B2 (en) 2017-04-11 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10790455B2 (en) 2017-05-18 2020-09-29 Universal Display Corporation Organic electroluminescent materials and devices
US10811618B2 (en) 2016-12-19 2020-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US10825997B2 (en) 2015-06-25 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10822362B2 (en) 2017-05-11 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10833276B2 (en) 2016-11-21 2020-11-10 Universal Display Corporation Organic electroluminescent materials and devices
US10847728B2 (en) 2015-10-01 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10862046B2 (en) 2017-03-30 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10868261B2 (en) 2014-11-10 2020-12-15 Universal Display Corporation Organic electroluminescent materials and devices
US10873037B2 (en) 2017-03-28 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10873036B2 (en) 2015-07-07 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10910577B2 (en) 2017-03-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10910570B2 (en) 2017-04-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10930862B2 (en) 2017-06-01 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10930864B2 (en) 2017-05-10 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10934293B2 (en) 2017-05-18 2021-03-02 Universal Display Corporation Organic electroluminescent materials and devices
US10944062B2 (en) 2017-05-18 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10941170B2 (en) 2017-05-03 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10950803B2 (en) 2014-10-13 2021-03-16 Universal Display Corporation Compounds and uses in devices
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US10964893B2 (en) 2016-11-17 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10964904B2 (en) 2017-01-20 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10968226B2 (en) 2017-06-23 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US10998507B2 (en) 2015-11-23 2021-05-04 Universal Display Corporation Organic electroluminescent materials and devices
US11018309B2 (en) 2015-08-03 2021-05-25 Universal Display Corporation Organic electroluminescent materials and devices
US11024808B2 (en) 2015-12-29 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US11038117B2 (en) 2017-04-11 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US11038137B2 (en) 2017-04-28 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US11081647B2 (en) 2016-04-22 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11101434B2 (en) 2017-04-21 2021-08-24 Universal Display Corporation Organic electroluminescent materials and devices
US11139443B2 (en) 2017-03-31 2021-10-05 Universal Display Corporation Organic electroluminescent materials and devices
US11145837B2 (en) 2014-12-17 2021-10-12 Universal Display Corporation Color stable organic light emitting diode stack
US11158820B2 (en) 2017-03-29 2021-10-26 Universal Display Corporation Organic electroluminescent materials and devices
US11168103B2 (en) 2017-11-17 2021-11-09 Universal Display Corporation Organic electroluminescent materials and devices
US11174259B2 (en) 2017-06-23 2021-11-16 Universal Display Corporation Organic electroluminescent materials and devices
US11183646B2 (en) 2017-11-07 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11201299B2 (en) 2017-05-04 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US11228004B2 (en) 2018-06-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11233205B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11233204B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11271177B2 (en) 2018-01-11 2022-03-08 Universal Display Corporation Organic electroluminescent materials and devices
US11292245B2 (en) 2020-01-03 2022-04-05 Trustees Of Boston University Microelectromechanical shutters for organic vapor jet printing
US11322691B2 (en) 2017-07-26 2022-05-03 Universal Display Corporation Organic electroluminescent materials and devices
US11325932B2 (en) 2019-02-08 2022-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US11342526B2 (en) 2019-01-29 2022-05-24 The Regents Of The University Of Michigan Hybrid organic light emitting device
US11339182B2 (en) 2018-06-07 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11349099B2 (en) 2019-01-25 2022-05-31 The Regents Of The University Of Michigan Method of fabricating a light emitting device having a polymer film with a specified surface rouggness
US11349083B2 (en) 2017-08-10 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
CN114591371A (en) * 2020-12-04 2022-06-07 广东阿格蕾雅光电材料有限公司 Metal complex and application thereof
US11367840B2 (en) 2018-01-26 2022-06-21 Universal Display Corporation Organic electroluminescent materials and devices
US11370809B2 (en) 2019-02-08 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11437591B2 (en) 2017-08-24 2022-09-06 Universal Display Corporation Organic electroluminescent materials and devices
US11444249B2 (en) 2017-09-07 2022-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11495757B2 (en) 2017-06-23 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11508913B2 (en) 2017-08-10 2022-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US11512093B2 (en) 2019-03-04 2022-11-29 Universal Display Corporation Compound used for organic light emitting device (OLED), consumer product and formulation
US11515489B2 (en) 2018-11-28 2022-11-29 Universal Display Corporation Host materials for electroluminescent devices
US11552247B2 (en) 2019-03-20 2023-01-10 The Regents Of The University Of Michigan Organic vapor jet nozzle with shutter
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11557733B2 (en) 2018-03-12 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11608321B2 (en) 2017-06-23 2023-03-21 Universal Display Corporation Organic electroluminescent materials and devices
US11616203B2 (en) 2018-04-17 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US11613550B2 (en) 2019-04-30 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes
US11678565B2 (en) 2017-06-23 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US11706972B2 (en) 2015-09-08 2023-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US11773320B2 (en) 2019-02-21 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US11812624B2 (en) 2019-01-30 2023-11-07 The University Of Southern California Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11825687B2 (en) 2019-07-17 2023-11-21 The Regents Of The University Of Michigan Organic light emitting device
US11832504B2 (en) 2019-11-25 2023-11-28 The Regents Of The University Of Michigan System and method for organic electronic device patterning
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11882759B2 (en) 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US11895853B2 (en) 2019-01-17 2024-02-06 The Regents Of The University Of Michigan Organic photovoltaic device having a lateral charge transport channel
US11910699B2 (en) 2017-08-10 2024-02-20 Universal Display Corporation Organic electroluminescent materials and devices
US11910700B2 (en) 2009-03-23 2024-02-20 Universal Display Corporation Heteroleptic iridium complexes as dopants
US11917843B2 (en) 2017-07-26 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11920070B2 (en) 2019-07-12 2024-03-05 The University Of Southern California Luminescent janus-type, two-coordinated metal complexes
US11957050B2 (en) 2018-02-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11963441B2 (en) 2018-11-26 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US11963438B2 (en) 2019-03-26 2024-04-16 The University Of Southern California Organic electroluminescent materials and devices
US11968883B2 (en) 2017-07-26 2024-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US11985888B2 (en) 2019-08-12 2024-05-14 The Regents Of The University Of Michigan Organic electroluminescent device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102265675B1 (en) * 2013-05-20 2021-06-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organometallic complex, light-emitting element, light-emitting device, electronic appliance, and lighting device
CN113278033B (en) * 2020-02-20 2023-04-28 北京夏禾科技有限公司 Organic electroluminescent material and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044189A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
JP2002332291A (en) * 2001-03-08 2002-11-22 Canon Inc Metal coordination compound, electroluminescent device, and display unit
JP2004067658A (en) * 2002-06-10 2004-03-04 Mitsubishi Chemicals Corp Organometallic complex and organic electroluminescent device by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044189A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
JP2002332291A (en) * 2001-03-08 2002-11-22 Canon Inc Metal coordination compound, electroluminescent device, and display unit
JP2004067658A (en) * 2002-06-10 2004-03-04 Mitsubishi Chemicals Corp Organometallic complex and organic electroluminescent device by using the same

Cited By (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985492B2 (en) * 2004-08-07 2011-07-26 Merck Patent Gmbh Electroluminescent materials and devices
CN100348594C (en) * 2005-01-12 2007-11-14 武汉大学 Bidentate ligand and its iridium complex and electroluminescent device therewith
US12004360B2 (en) 2005-04-21 2024-06-04 Universal Display Corporation Organic electroluminescent devices
US11594697B2 (en) 2005-04-21 2023-02-28 Universal Display Corporation Non-blocked phosphorescent OLEDs
US10916721B2 (en) 2005-04-21 2021-02-09 Universal Display Corporation Non-blocked phosphorescent OLEDs
US10593900B2 (en) 2005-04-21 2020-03-17 Universal Display Corporation Non-blocked phosphorescent OLEDs
US9065063B2 (en) 2006-02-10 2015-06-23 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
US8889864B2 (en) 2006-02-10 2014-11-18 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
GB2478452B (en) * 2006-02-22 2011-11-16 Sumitomo Chemical Co Fused ring metal complex, polymer compound and device containing it
GB2478452A (en) * 2006-02-22 2011-09-07 Sumitomo Chemical Co Fused ring metal complexes
US8114532B2 (en) * 2007-01-26 2012-02-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
US8211551B2 (en) * 2007-05-18 2012-07-03 Fujifilm Corporation Organic electroluminescent device
US20150090973A1 (en) * 2007-11-09 2015-04-02 The Regents Of The University Of Michigan Stable Blue Phosphorescent Organic Light Emitting Devices
US8557399B2 (en) 2007-11-09 2013-10-15 Universal Display Corporation Stable blue phosphorescent organic light emitting devices
WO2009061922A2 (en) * 2007-11-09 2009-05-14 The Regents Of The University Of Michigan Stable blue phosphorescent organic light emitting devices
US9349954B2 (en) 2007-11-09 2016-05-24 Universal Display Corporation Stable blue phosphorescent organic light emitting devices
US8815411B2 (en) 2007-11-09 2014-08-26 The Regents Of The University Of Michigan Stable blue phosphorescent organic light emitting devices
WO2009061922A3 (en) * 2007-11-09 2009-06-25 Univ Michigan Stable blue phosphorescent organic light emitting devices
US10056566B2 (en) 2009-03-23 2018-08-21 Universal Display Corporation Organic electroluminescent materials and devices
US11910700B2 (en) 2009-03-23 2024-02-20 Universal Display Corporation Heteroleptic iridium complexes as dopants
US11637251B2 (en) 2009-03-23 2023-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US9184397B2 (en) 2009-03-23 2015-11-10 Universal Display Corporation Heteroleptic iridium complexes as dopants
US11380854B2 (en) 2009-03-23 2022-07-05 Universal Display Corporation Heteroleptic iridium complexes as dopants
US10312458B2 (en) 2009-03-23 2019-06-04 Universal Display Corporation Organic electroluminescent materials and devices
US11910701B2 (en) 2009-03-23 2024-02-20 Universal Display Corporation Organic electroluminescent materials and devices
JP2012522844A (en) * 2009-04-06 2012-09-27 ユニバーサル ディスプレイ コーポレイション Metal complexes containing novel ligand structures
US9359549B2 (en) 2009-04-06 2016-06-07 Universal Display Corporation Organic electroluminescent materials and devices
US9054344B2 (en) 2010-01-20 2015-06-09 Universal Display Corporation Electroluminescent devices for lighting applications
US20120104373A1 (en) * 2010-10-29 2012-05-03 Semiconductor Energy Laboratory Co., Ltd. Organometallic Complex, and Light-Emitting Element and Display Device Using the Organometallic Complex
US9184419B2 (en) 2011-05-12 2015-11-10 Universal Display Corporation Flexible lighting devices
JP2014516965A (en) * 2011-05-19 2014-07-17 ユニバーサル ディスプレイ コーポレイション Phosphorescent heteroleptic phenylbenzimidazole dopant and novel synthesis method
KR20190126747A (en) * 2011-07-28 2019-11-12 유니버셜 디스플레이 코포레이션 Heteroleptic iridium complexes as dopants
KR101958481B1 (en) 2011-07-28 2019-03-14 유니버셜 디스플레이 코포레이션 Heteroleptic iridium complexes as dopants
KR102208370B1 (en) 2011-07-28 2021-01-27 유니버셜 디스플레이 코포레이션 Heteroleptic iridium complexes as dopants
KR20190026729A (en) * 2011-07-28 2019-03-13 유니버셜 디스플레이 코포레이션 Heteroleptic iridium complexes as dopants
EP2551933A1 (en) * 2011-07-28 2013-01-30 Universal Display Corporation Heteroleptic iridium complexes as dopants
KR20130018550A (en) * 2011-07-28 2013-02-25 유니버셜 디스플레이 코포레이션 Heteroleptic iridium complexes as dopants
JP2018135391A (en) * 2011-07-28 2018-08-30 ユニバーサル ディスプレイ コーポレイション Heteroleptic iridium complexes as dopants
KR102043585B1 (en) 2011-07-28 2019-11-11 유니버셜 디스플레이 코포레이션 Heteroleptic iridium complexes as dopants
US8709615B2 (en) 2011-07-28 2014-04-29 Universal Display Corporation Heteroleptic iridium complexes as dopants
US10211413B2 (en) 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US8962383B2 (en) 2012-08-27 2015-02-24 Universal Display Corporation Multi-nozzle organic vapor jet printing
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
KR102099987B1 (en) 2012-11-09 2020-04-13 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
KR20140060241A (en) * 2012-11-09 2014-05-19 유니버셜 디스플레이 코포레이션 Iridium complexes with aza-benzo fused ligands
US9130195B2 (en) 2013-11-22 2015-09-08 Universal Display Corporation Structure to enhance light extraction and lifetime of OLED devices
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US10008679B2 (en) 2014-04-14 2018-06-26 Universal Display Corporation Organic electroluminescent materials and devices
US11005052B2 (en) 2014-04-14 2021-05-11 Universal Display Corporation Organic electroluminescent materials and devices
US9905785B2 (en) 2014-04-14 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US9847498B2 (en) 2014-04-14 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US10825998B2 (en) 2014-04-14 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US11793066B2 (en) 2014-04-14 2023-10-17 Universal Display Corporation Organic electroluminescent materials and devices
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US9337441B2 (en) 2014-04-15 2016-05-10 Universal Display Corporation OLED lighting panel and methods for fabricating thereof
US9380675B2 (en) 2014-04-17 2016-06-28 Universal Display Corporation Energy saving OLED lighting system and method
JP2015228489A (en) * 2014-05-02 2015-12-17 株式会社半導体エネルギー研究所 Organometallic complex, light-emitting element, light-emitting device, electronic apparatus, and illumination device
US9572232B2 (en) 2014-05-15 2017-02-14 Universal Display Corporation Biosensing electronic devices
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US9825243B2 (en) 2014-08-18 2017-11-21 Udc Ireland Limited Methods for fabricating OLEDs on non-uniform substrates and devices made therefrom
US10950803B2 (en) 2014-10-13 2021-03-16 Universal Display Corporation Compounds and uses in devices
US10868261B2 (en) 2014-11-10 2020-12-15 Universal Display Corporation Organic electroluminescent materials and devices
US10177126B2 (en) 2014-12-16 2019-01-08 Universal Display Corporation Tunable OLED lighting source
US10510973B2 (en) 2014-12-17 2019-12-17 Universal Display Corporation Color-stable organic light emitting diode stack
US11145837B2 (en) 2014-12-17 2021-10-12 Universal Display Corporation Color stable organic light emitting diode stack
US9761842B2 (en) 2014-12-19 2017-09-12 The Regents Of The University Of Michigan Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces
US10211429B2 (en) 2014-12-19 2019-02-19 The Regents Of The University Of Michigan Enhancing light extraction of organic light emitting diodes via nanoscale texturing of electrode surfaces
US10038167B2 (en) 2015-01-08 2018-07-31 The Regents Of The University Of Michigan Thick-ETL OLEDs with sub-ITO grids with improved outcoupling
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US11245081B2 (en) 2015-02-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US10355222B2 (en) 2015-02-06 2019-07-16 Universal Display Corporation Organic electroluminescent materials and devices
US10680183B2 (en) 2015-02-15 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11678567B2 (en) 2015-02-27 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US10600966B2 (en) 2015-02-27 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US9911928B2 (en) 2015-03-19 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US10529931B2 (en) 2015-03-24 2020-01-07 Universal Display Corporation Organic Electroluminescent materials and devices
US10147360B2 (en) 2015-03-31 2018-12-04 Universal Display Corporation Rugged display device architecture
US11672175B2 (en) 2015-04-06 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US10693082B2 (en) 2015-04-06 2020-06-23 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11245080B2 (en) 2015-04-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11744151B2 (en) 2015-05-07 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US10403826B2 (en) 2015-05-07 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US9478758B1 (en) 2015-05-08 2016-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10490774B2 (en) 2015-06-17 2019-11-26 Universal Display Corporation Flexible AMOLED display
US9947895B2 (en) 2015-06-17 2018-04-17 Universal Display Corporation Flexible AMOLED display
US9978965B2 (en) 2015-06-17 2018-05-22 Universal Display Corporation Rollable OLED display
US10811633B2 (en) 2015-06-17 2020-10-20 Universal Display Corporation Method of increasing the flexibility of an AMOLDED display, a flexible display, and a product
US10825997B2 (en) 2015-06-25 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10873036B2 (en) 2015-07-07 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US9899631B2 (en) 2015-07-08 2018-02-20 Universal Display Corporation Flexible multilayer scattering substrate used in OLED
US10020466B2 (en) 2015-07-08 2018-07-10 Universal Display Corporation Flexible multilayer scattering substrate used in OLED
US11018309B2 (en) 2015-08-03 2021-05-25 Universal Display Corporation Organic electroluminescent materials and devices
US10522769B2 (en) 2015-08-18 2019-12-31 Universal Display Corporation Organic electroluminescent materials and devices
US9947728B2 (en) 2015-08-25 2018-04-17 Universal Display Corporation Hybrid MEMS OLED display
US11706972B2 (en) 2015-09-08 2023-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US10770664B2 (en) 2015-09-21 2020-09-08 Universal Display Corporation Organic electroluminescent materials and devices
US10847728B2 (en) 2015-10-01 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10593892B2 (en) 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US11889747B2 (en) 2015-10-01 2024-01-30 Universal Display Corporation Organic electroluminescent materials and devices
US10177318B2 (en) 2015-10-29 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
US11349087B2 (en) 2015-10-29 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
US10388893B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10388892B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10998507B2 (en) 2015-11-23 2021-05-04 Universal Display Corporation Organic electroluminescent materials and devices
US11832456B2 (en) 2015-11-23 2023-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US10476010B2 (en) 2015-11-30 2019-11-12 Universal Display Corporation Organic electroluminescent materials and devices
US11818948B2 (en) 2015-12-29 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US11024808B2 (en) 2015-12-29 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US10707427B2 (en) 2016-02-09 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US11716898B2 (en) 2016-02-09 2023-08-01 Universal Display Corporation Organic electroluminescent materials and devices
US10600967B2 (en) 2016-02-18 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US10276809B2 (en) 2016-04-05 2019-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US11081647B2 (en) 2016-04-22 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US10460663B2 (en) 2016-05-31 2019-10-29 Universal Display Corporation Architecture for very high resolution AMOLED display backplane
US11683981B2 (en) 2016-06-20 2023-06-20 Universal Display Corporation Organic electroluminescent materials and devices
US11114624B2 (en) 2016-06-20 2021-09-07 Universal Display Corporation Organic electroluminescent materials and devices
US10686140B2 (en) 2016-06-20 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10651403B2 (en) 2016-06-20 2020-05-12 Universal Display Corporation Organic electroluminescent materials and devices
US10680184B2 (en) 2016-07-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US10566547B2 (en) 2016-07-11 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US10720587B2 (en) 2016-07-19 2020-07-21 Universal Display Corporation Organic electroluminescent materials and devices
US10153443B2 (en) 2016-07-19 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10229960B2 (en) 2016-08-02 2019-03-12 Universal Display Corporation OLED displays with variable display regions
US10205105B2 (en) 2016-08-15 2019-02-12 Universal Display Corporation Organic electroluminescent materials and devices
US10505127B2 (en) 2016-09-19 2019-12-10 Universal Display Corporation Organic electroluminescent materials and devices
US10608185B2 (en) 2016-10-17 2020-03-31 Univeral Display Corporation Organic electroluminescent materials and devices
US10236458B2 (en) 2016-10-24 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10340464B2 (en) 2016-11-10 2019-07-02 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11069864B2 (en) 2016-11-11 2021-07-20 Universal Display Corporation Organic electroluminescent materials and devices
US10662196B2 (en) 2016-11-17 2020-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US10964893B2 (en) 2016-11-17 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10833276B2 (en) 2016-11-21 2020-11-10 Universal Display Corporation Organic electroluminescent materials and devices
US10153445B2 (en) 2016-11-21 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10490753B2 (en) 2016-12-15 2019-11-26 Universal Display Corporation Organic electroluminescent materials and devices
US10811618B2 (en) 2016-12-19 2020-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US10629820B2 (en) 2017-01-18 2020-04-21 Universal Display Corporation Organic electroluminescent materials and devices
US10964904B2 (en) 2017-01-20 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US10741780B2 (en) 2017-03-10 2020-08-11 Universal Display Corporation Organic electroluminescent materials and devices
US10910577B2 (en) 2017-03-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10873037B2 (en) 2017-03-28 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US11158820B2 (en) 2017-03-29 2021-10-26 Universal Display Corporation Organic electroluminescent materials and devices
US10862046B2 (en) 2017-03-30 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11139443B2 (en) 2017-03-31 2021-10-05 Universal Display Corporation Organic electroluminescent materials and devices
US10777754B2 (en) 2017-04-11 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US11038117B2 (en) 2017-04-11 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US11101434B2 (en) 2017-04-21 2021-08-24 Universal Display Corporation Organic electroluminescent materials and devices
US10910570B2 (en) 2017-04-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US11038137B2 (en) 2017-04-28 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US10941170B2 (en) 2017-05-03 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US11201299B2 (en) 2017-05-04 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US10930864B2 (en) 2017-05-10 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10822362B2 (en) 2017-05-11 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10934293B2 (en) 2017-05-18 2021-03-02 Universal Display Corporation Organic electroluminescent materials and devices
US10944062B2 (en) 2017-05-18 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10790455B2 (en) 2017-05-18 2020-09-29 Universal Display Corporation Organic electroluminescent materials and devices
US10930862B2 (en) 2017-06-01 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US11731975B2 (en) 2017-06-23 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11174259B2 (en) 2017-06-23 2021-11-16 Universal Display Corporation Organic electroluminescent materials and devices
US11608321B2 (en) 2017-06-23 2023-03-21 Universal Display Corporation Organic electroluminescent materials and devices
US10968226B2 (en) 2017-06-23 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11495757B2 (en) 2017-06-23 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11678565B2 (en) 2017-06-23 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US11958825B2 (en) 2017-06-23 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US11968883B2 (en) 2017-07-26 2024-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US11322691B2 (en) 2017-07-26 2022-05-03 Universal Display Corporation Organic electroluminescent materials and devices
US11917843B2 (en) 2017-07-26 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11508913B2 (en) 2017-08-10 2022-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US11349083B2 (en) 2017-08-10 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
US11910699B2 (en) 2017-08-10 2024-02-20 Universal Display Corporation Organic electroluminescent materials and devices
US11437591B2 (en) 2017-08-24 2022-09-06 Universal Display Corporation Organic electroluminescent materials and devices
US11444249B2 (en) 2017-09-07 2022-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US11183646B2 (en) 2017-11-07 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11168103B2 (en) 2017-11-17 2021-11-09 Universal Display Corporation Organic electroluminescent materials and devices
US10770673B2 (en) 2017-11-28 2020-09-08 The Regents Of The University Of Michigan Highly reliable stacked white organic light emitting device
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11233205B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11233204B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11271177B2 (en) 2018-01-11 2022-03-08 Universal Display Corporation Organic electroluminescent materials and devices
US11818946B2 (en) 2018-01-11 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11367840B2 (en) 2018-01-26 2022-06-21 Universal Display Corporation Organic electroluminescent materials and devices
US11957050B2 (en) 2018-02-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11557733B2 (en) 2018-03-12 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11882759B2 (en) 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US11616203B2 (en) 2018-04-17 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US11339182B2 (en) 2018-06-07 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11228004B2 (en) 2018-06-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11963441B2 (en) 2018-11-26 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US11515489B2 (en) 2018-11-28 2022-11-29 Universal Display Corporation Host materials for electroluminescent devices
US11706980B2 (en) 2018-11-28 2023-07-18 Universal Display Corporation Host materials for electroluminescent devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11895853B2 (en) 2019-01-17 2024-02-06 The Regents Of The University Of Michigan Organic photovoltaic device having a lateral charge transport channel
US11349099B2 (en) 2019-01-25 2022-05-31 The Regents Of The University Of Michigan Method of fabricating a light emitting device having a polymer film with a specified surface rouggness
US11832475B2 (en) 2019-01-25 2023-11-28 The Regents Of The University Of Michigan Flexible electronic display device
US11342526B2 (en) 2019-01-29 2022-05-24 The Regents Of The University Of Michigan Hybrid organic light emitting device
US11812624B2 (en) 2019-01-30 2023-11-07 The University Of Southern California Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US11370809B2 (en) 2019-02-08 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11325932B2 (en) 2019-02-08 2022-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US11773320B2 (en) 2019-02-21 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11758807B2 (en) 2019-02-22 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11512093B2 (en) 2019-03-04 2022-11-29 Universal Display Corporation Compound used for organic light emitting device (OLED), consumer product and formulation
US11552247B2 (en) 2019-03-20 2023-01-10 The Regents Of The University Of Michigan Organic vapor jet nozzle with shutter
US11963438B2 (en) 2019-03-26 2024-04-16 The University Of Southern California Organic electroluminescent materials and devices
US11613550B2 (en) 2019-04-30 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes
US12006333B2 (en) 2019-04-30 2024-06-11 Universal Display Corporation Organic electroluminescent materials and devices comprising imidazole-containing metal complexes
US11920070B2 (en) 2019-07-12 2024-03-05 The University Of Southern California Luminescent janus-type, two-coordinated metal complexes
US11825687B2 (en) 2019-07-17 2023-11-21 The Regents Of The University Of Michigan Organic light emitting device
US11985888B2 (en) 2019-08-12 2024-05-14 The Regents Of The University Of Michigan Organic electroluminescent device
US11832504B2 (en) 2019-11-25 2023-11-28 The Regents Of The University Of Michigan System and method for organic electronic device patterning
US11292245B2 (en) 2020-01-03 2022-04-05 Trustees Of Boston University Microelectromechanical shutters for organic vapor jet printing
CN114591371A (en) * 2020-12-04 2022-06-07 广东阿格蕾雅光电材料有限公司 Metal complex and application thereof

Also Published As

Publication number Publication date
KR20060027323A (en) 2006-03-27
TW200504175A (en) 2005-02-01

Similar Documents

Publication Publication Date Title
WO2004111066A1 (en) Metal coordination compound, polymer composition, and organic electroluminescence element using them
US7955716B2 (en) Metal coordination compound, polymer composition, and organic electroluminescent device employing same
JP6140146B2 (en) Organic electroluminescence device
KR102087480B1 (en) Light-emitting material, organic light-emitting element, and compound
TWI391396B (en) Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
EP4039774B1 (en) Organic light-emitting material and organic light-emitting element
JP6326251B2 (en) Luminescent material and organic EL device using the same
KR101759966B1 (en) Organic electroluminescent device
TWI429650B (en) Organic electroluminescent elements
KR101707799B1 (en) Organic electroluminescent element
JP5395161B2 (en) Organic electroluminescence device
JP6275679B2 (en) Heterocyclic compound and organic electroluminescent device using the compound
CN107501330A (en) Metal complex comprising azabenzimidazoles carbene ligands and its purposes in OLED
WO2007119816A1 (en) Organic electroluminescence element material, organic electroluminescence element, display device and lighting apparatus
JP2017059808A (en) Organic el material and organic el device arranged by use thereof
JP4525190B2 (en) Metal coordination compound, polymer composition, and organic electroluminescence device using the same
JP4525187B2 (en) Metal coordination compound, polymer composition, and organic electroluminescence device using the same
CN100488972C (en) Metal coordination compound, polymer composition, and organic electroluminescence element using them
JP2005023070A (en) Metal coordination compound, polymer composition and organoelectroluminescent element obtained using the same
Lan et al. 2-Phenylpyridine-based phosphorescent Ir (III) complexes for highly efficient greenish-blue organic light-emitting diodes with EQEs up to 33.5%
JP6197650B2 (en) Organic EL device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057023275

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048158471

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057023275

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007128466

Country of ref document: US

Ref document number: 10559774

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10559774

Country of ref document: US