WO2004109895A2 - Methods and apparatus for fault-tolerant control of electric machines - Google Patents

Methods and apparatus for fault-tolerant control of electric machines Download PDF

Info

Publication number
WO2004109895A2
WO2004109895A2 PCT/US2004/017328 US2004017328W WO2004109895A2 WO 2004109895 A2 WO2004109895 A2 WO 2004109895A2 US 2004017328 W US2004017328 W US 2004017328W WO 2004109895 A2 WO2004109895 A2 WO 2004109895A2
Authority
WO
WIPO (PCT)
Prior art keywords
current
electric machine
test
current sensors
processor
Prior art date
Application number
PCT/US2004/017328
Other languages
French (fr)
Other versions
WO2004109895A3 (en
Inventor
Steven E. Schulz
Nitinkumar R. Patel
James M. Nagashima
Yu-Seok Jeong
Seung Ki Sul
Original Assignee
General Motors Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Motors Corporation filed Critical General Motors Corporation
Publication of WO2004109895A2 publication Critical patent/WO2004109895A2/en
Publication of WO2004109895A3 publication Critical patent/WO2004109895A3/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4062Monitoring servoloop, e.g. overload of servomotor, loss of feedback or reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42329Defective measurement, sensor failure

Definitions

  • the present invention relates to AC motor drive systems, and more particularly to methods and apparatus for fault tolerant control of AC motor drive systems in the presence of current sensor faults.
  • phase current information is used for controlling the machine stator currents, which in turn indirectly control machine torque. Failure of a current sensor usually results in loss of control and shutdown of the AC motor drive system.
  • Field oriented control relies on synchronous frame current regulators to correctly control machine torque. Current information is most often obtained by sensing two of the three stator phase currents. Only two sensors are needed for a machine because the machine is presumed to have balanced three-phase currents. The third current is simply calculated from the two measured currents.
  • Some configurations of the present invention therefore provide a method for controlling an electric machine having current sensors for less than every phase of the electric machine.
  • the method includes operating a processor to perform a test to determine whether a fault exists in one or more of the current sensors.
  • the method further includes operating the processor to utilize a state observer of the electric machine to estimate states of the electric machine, wherein the state observer is provided input measurements from non-faulty current sensors, if there are any such current sensors. Measurements from the current sensor or sensors determined to be faulty are disregarded.
  • the processor controls the electric machine utilizing results from the state observer.
  • a first test is performed to preliminarily determine that a fault exists in one or more of the current sensors and another test is performed to finally determine that the fault exists in the one or more preliminarily determined current sensors.
  • the first test may include a balancing test, a gain error test, and an offset error test.
  • Various configurations of the present invention provide an apparatus for controlling an electric machine having current sensors for less than every one of its phases.
  • the apparatus includes an inverter configured to provide current to the electric machine and a processor configured to control the current provided to the electric machine by the inverter in accordance with a desired torque, power, or speed.
  • the processor is further configured to utilize the inverter to test the current sensors to determine whether a fault exists in one or more of the current sensors. If a fault is determined to exist, the processor is also configured to utilize a state observer of the electric machine to estimate states of the electric machine, utilizing state input measurements from each non- faulty current sensor, if any.
  • the processor is further configured to disregard the current sensor or sensors determined to be faulty; and to control the electric machine utilizing the inverter and results from the state observer.
  • configurations of the present invention allow AC motor drive systems to advantageously restart following detection of one or more current sensor faults. Thus, operation of the drive system can continue, albeit sometimes with reduced performance.
  • configurations of the present invention offer a type of fault control that is applicable to PM-type drive systems.
  • configurations of the present invention allow an AC motor drive system to resume operation in a graceful manner, possibly with some degradation in performance. This capability may be important in certain applications.
  • configurations of the present invention utilized in an electric vehicle (EV) or hybrid-electric vehicle (HEV) allow a driver to "limp home" following a current sensor failure.
  • EV electric vehicle
  • HEV hybrid-electric vehicle
  • Figure 1 is a schematic diagram representative of AC motor drive systems of the present invention.
  • Figure 2 is a schematic diagram of the AC motor drive system of Figure 1 , with some additional details added for explanatory purposes. Not all of the components shown or implied by Figure 1 are shown in Figure 2.
  • Figure 3 is an equivalent circuit of Figure 2 used for computational and illustrative purposes.
  • Figure 4 is a graphical illustration of certain voltages and currents applied to and measured from the circuit of Figure 3.
  • Figures 5, 6, and 7 represent equivalent circuits to Figure 2 illustrative of three different modes of voltage application to the windings of the electric machine of Figure 2 during a test to finally determine that one or more of the current sensors of Figure 2 are faulty.
  • Figure 8 is a representation of a state observer that can be utilized by the processor of the circuit of Figure 2 to provide control of the electric machine of Figure 2 when one of the current sensors is faulty.
  • Figure 9 is a representation of another state observer that can be utilized by the processor of the circuit of Figure 2 to provide control of the electric machine of Figure 2 when one of the current sensors is faulty.
  • the drive system comprises a DC source 12 (which, in electrical vehicle configurations, may be a battery pack), a DC bus capacitor C D C, a DC bus voltage sensor 14, a 3-phase inverter 16, two current sensors 18 and 20, an AC motor 22, and a position sensor 24. More generally, an electric machine 22 is provided with one less current sensor (18 and 20) than the number of windings of electric machine 22, and inverter 16 is provided with the same number of phases as electric machine 22.
  • processor 26 which may comprise or consist of a stored program microprocessor or microcontroller with memory and digital to analog (D/A) and ] analog to digital (A/D) converters.
  • Processor 26 has at least one input T e that is a control signal indicative of a desired torque, speed, or power to be produced by electric machine 22.
  • Processor 26 also utilizes signals i a and i_ from current sensors 18 and 20, respectively, as well as ⁇ r from position sensor 24 and V do from bus voltage sensor 14. Using these signals, Processor 26 generates a set of gate drive signals 28 for inverter 16.
  • electric machine 22 may be an interior permanent magnet (IPM) motor, and processor 26 may comprise an IPM control.
  • IPM interior permanent magnet
  • IPM controls are well-known to those of ordinary skill in the art and do not require further explanation here.
  • Inverter 16 provides current to electric machine 22. More precisely in many configurations, inverter 16 provides current to electric machine 22 by gating or pulse width modulating current provided by voltage source 12.
  • Processor 26 is configured, such as by using a stored program, to control the current provided by inverter 16 to electric machine 22 in accordance with a desired torque, power, or speed. For example, a signal T ⁇ is provided for this purpose.
  • control is accomplished utilizing a diagnostic component and a post-fault control component.
  • electric machine 22 is, in fact, an AC motor of the interior permanent magnet type, but the present invention is applicable to other types of motors, as well.
  • a sudden severe fault of a current sensor 18 or 20 will result in an over current malfunction of motor drive control apparatus 10. If there is no protection provided in the gate drive circuit for inverter 16, the severe fault will lead to unrecoverable faults of power semiconductors of inverter 16. Minor faults, such as gain and offset drifts of current sensors 18 and/or 20 would result in torque pulsations that are synchronized with inverter 16 output frequency. Large offset and/or scaling errors will degrade torque regulation. Offset and gain drift above a certain level will result in over current fault at high speeds of electric machine 22 and in heavy load conditions.
  • processor 26 is configured, such as by a stored program, to utilize inverter 16 to test current sensors 18 and 20 to determine whether a fault exists in one or more of the current sensors. If a fault is determined to exist, processor 26 utilizes a state observer of electric machine 22 to estimate states of the electric machine, utilizing state input measurements from non-faulty current sensors 18 and/or 20, if any are non-faulty. Current sensors determined to be faulty are disregarded so that their measurements are not used. Processor 26 is further configured to control electric machine 22 utilizing inverter 16 and results from the state observer. [0024] Thus, in some configurations and referring to Figure 2, gating
  • V ab V m sin( ⁇ t + ⁇ ) t j s
  • PWM pulse width modulation
  • circuit 10 in Figure 2 can be analyzed using an equivalent circuit 30 shown in Figure 3.
  • L ab represent the inductance between an a-phase terminal and a b-phase terminal of electric machine 22.
  • L a& is a function of rotor position.
  • f? s represent the sum of stator resistance of a phase winding of an IPM motor used as electric machine 22 and the conduction resistance of the power semiconductors. The current in the circuit resulting from application of the
  • Processor 26 samples the sensed values of a-phase and fa-
  • phase currents * ⁇ and 4 * uses samples measurements from
  • the predetermined limit may include a percentage error instead of, or in addition to, a constant error.
  • a gain error test comprises determining whether the RMS values of the sampled currents are within a (perhaps empirically determined) second predetermined limit that defines a predetermined nominal range. Furthermore, the sum of the measured values of each phase current should be around zero due to the zero DC transient and integer number of excitation cycles. A test of whether this sum is less than a (perhaps empirically determined) predetermined value or values comprises an offset error test. If the sum is not zero or near zero, there might be significant offset error in one or more current sensors 18, 20 or faults at inverter power circuit 16 or IPM motor 22 windings L a , L b , or L c .
  • a combination of the balancing test, gain error test, and offset error test can determine whether one or more faults exists and preliminarily identify which of the two current sensors may be at fault. For example, if the balancing test or offset error test fails, one or both current sensors may be at fault. If the gain error test fails, the sampled current or currents that failed the test indicates which sensor may be at fault. These tests do not, however, rule out the possibility that something other than a sensor (e.g., a motor winding) may be at fault instead of a sensor. Thus, another test is performed if a fault is indicated to determine that the identified current sensor or sensors is or are at fault.
  • V h V m sm( ⁇ t + a) - [S applied between the a-phase and b-
  • This second test voltage is synthesized by the pulse width modulation inverter 16 under control of processor 26. Also under control of processor 26, the c-phase terminal is shorted with the b-phase terminal by sending appropriate gate drive signals to c-phase. The a-phase and/or b- phase current are measured and stored in a memory of the processor 26. Next, the second test voltage is applied between b-phase and c-phase as shown in Fig 6 and lastly as between b-phase as c-phase, as shown in Figure 7.
  • the sum of stored values at each corresponding time point of the measured phase currents in Figures 5, 6, and 7 should be zero if inverter 16 and the a-, b-, and c-phase motor 22 windings L a , L b , and L c are well balanced. More particularly, if the sum of values is less than a (possibly empirically determined) magnitude, it is finally determined that the current sensors preliminarily determined to be at fault by the other tests are, in fact, faulty.
  • a state observer 32 of electric machine 22 is used by processor 26 to regulate current to electric machine 22 provided by PWM inverter 16.
  • an observer is utilized in some configurations of the present invention to provide estimated current information for processor 26.
  • Current in the rotating d-q axis is regulated based upon estimated d-q current.
  • Estimated d-q current is observed by an open-loop observer in the case of faults of both current sensors 16 and 18, or by a closed- loop observer in the case of a single current sensor (16 or 18) fault.
  • the structure of the observer is shown in Figure 8, where if a non-faulted current sensor is available, the measured value is used as a correction term and is fed back to state estimator to reduce the estimation error.
  • the output of the observer is the estimated state vector it , which contains the estimated synchronous frame currents ⁇ an .
  • Matrix A is a state matrix.
  • Matrix C feeds back estimated states to be compared with measured stator currents (if available).
  • Matrix scales the measurement error to feedback into the observer as a correction term which reduces observer errors.
  • _ electric machine 22 is an interior permanent magnet motor, and a synchronous frame current estimator 34 is used as state observer 32.
  • the state observer provided is modeled after the type of electric machine utilized as electric machine 22.
  • various configurations of the present invention allow AC motor drive systems to advantageously restart following detection of one or more current sensor faults.
  • operation of the drive system can continue, albeit sometimes with reduced performance.
  • configurations of the present invention offer a type of fault control that is applicable to PM-type drive systems.
  • configurations of the present invention allow an AC motor drive system to resume operation in a graceful manner, possibly with some degradation in performance.
  • Such capability is of great utility in electric vehicles (EV) and hybrid-electric vehicles (HEV), where such capability allows a driver to "limp home” or provide sufficient traction to pull the vehicle to a safe location following such a current sensor failure.
  • EV electric vehicles
  • HEV hybrid-electric vehicles

Abstract

A method for controlling an electric machine having current sensors for less than every phase of the electric machine includes operating a processor to perform a test to preliminarily determine whether a fault exists in one or more of the current sensors and a test to finally determine that the fault exists in the one or more current sensors. The method further includes operating the processor to utilize a state observer of the electric machine to estimate states of the electric machine, wherein the state observer is provided state input measurements from each non-faulty current sensor, if any. Measurements from the current sensor or sensors determined to be faulty are disregarded. The processor controls the electric machine utilizing results from the state observer.

Description

METHODS AND APPARATUS FOR FAULT-TOLERANT CONTROL OF
ELECTRIC MACHINES
FIELD OF THE INVENTION [0001] The present invention relates to AC motor drive systems, and more particularly to methods and apparatus for fault tolerant control of AC motor drive systems in the presence of current sensor faults.
BACKGROUND OF THE INVENTION
[0002] Most high performance AC motor drive systems today utilize phase current sensors. Phase current information is used for controlling the machine stator currents, which in turn indirectly control machine torque. Failure of a current sensor usually results in loss of control and shutdown of the AC motor drive system.
[0003] Recently, fault tolerant control of AC motor drives has been receiving attention in the literature due to increasing application of AC drives in the automotive industry. For example, Raymond Sepe, Jr. ("Fault Tolerant Operation of Induction Motor Drives with Automatic Controller Reconfiguration", IEMDC 2001, which is hereby incorporated by reference in its entirety) addressed current sensor faults of the induction machine type drive. In the case of current sensor failure, the drive is reconfigured from indirect field-oriented control (IFOC) to volts/Hz scalar control. Although this approach may be suitable for asynchronous induction machine drives, it is not applicable to permanent magnet (PM) type synchronous machine drives. [0004] Field oriented control schemes are the industry standard in high performance AC drives today. Field oriented control relies on synchronous frame current regulators to correctly control machine torque. Current information is most often obtained by sensing two of the three stator phase currents. Only two sensors are needed for a machine because the machine is presumed to have balanced three-phase currents. The third current is simply calculated from the two measured currents.
[0005] In the case of a current sensor failure, the machine currents become unregulated. Usually, current will become excessive and cause an inverter to enter a fault mode that shuts down the drive. Without current sensor information, a conventional drive system is unable to resume operation.
SUMMARY OF THE INVENTION [0006] Some configurations of the present invention therefore provide a method for controlling an electric machine having current sensors for less than every phase of the electric machine. The method includes operating a processor to perform a test to determine whether a fault exists in one or more of the current sensors. The method further includes operating the processor to utilize a state observer of the electric machine to estimate states of the electric machine, wherein the state observer is provided input measurements from non-faulty current sensors, if there are any such current sensors. Measurements from the current sensor or sensors determined to be faulty are disregarded. The processor controls the electric machine utilizing results from the state observer. In some configurations, a first test is performed to preliminarily determine that a fault exists in one or more of the current sensors and another test is performed to finally determine that the fault exists in the one or more preliminarily determined current sensors. The first test may include a balancing test, a gain error test, and an offset error test.
[0007] Various configurations of the present invention provide an apparatus for controlling an electric machine having current sensors for less than every one of its phases. The apparatus includes an inverter configured to provide current to the electric machine and a processor configured to control the current provided to the electric machine by the inverter in accordance with a desired torque, power, or speed. The processor is further configured to utilize the inverter to test the current sensors to determine whether a fault exists in one or more of the current sensors. If a fault is determined to exist, the processor is also configured to utilize a state observer of the electric machine to estimate states of the electric machine, utilizing state input measurements from each non- faulty current sensor, if any. The processor is further configured to disregard the current sensor or sensors determined to be faulty; and to control the electric machine utilizing the inverter and results from the state observer.
[0008] Various configurations of the present invention allow AC motor drive systems to advantageously restart following detection of one or more current sensor faults. Thus, operation of the drive system can continue, albeit sometimes with reduced performance. Moreover, configurations of the present invention offer a type of fault control that is applicable to PM-type drive systems. [0009] More particularly, configurations of the present invention allow an AC motor drive system to resume operation in a graceful manner, possibly with some degradation in performance. This capability may be important in certain applications. For example, configurations of the present invention utilized in an electric vehicle (EV) or hybrid-electric vehicle (HEV) allow a driver to "limp home" following a current sensor failure.
[0010] Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[001 ϊ ] The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
[0012] Figure 1 is a schematic diagram representative of AC motor drive systems of the present invention.
[0013] Figure 2 is a schematic diagram of the AC motor drive system of Figure 1 , with some additional details added for explanatory purposes. Not all of the components shown or implied by Figure 1 are shown in Figure 2.
[0014] Figure 3 is an equivalent circuit of Figure 2 used for computational and illustrative purposes. [0015] Figure 4 is a graphical illustration of certain voltages and currents applied to and measured from the circuit of Figure 3.
[0016] Figures 5, 6, and 7 represent equivalent circuits to Figure 2 illustrative of three different modes of voltage application to the windings of the electric machine of Figure 2 during a test to finally determine that one or more of the current sensors of Figure 2 are faulty.
[0017] Figure 8 is a representation of a state observer that can be utilized by the processor of the circuit of Figure 2 to provide control of the electric machine of Figure 2 when one of the current sensors is faulty.
[0018] Figure 9 is a representation of another state observer that can be utilized by the processor of the circuit of Figure 2 to provide control of the electric machine of Figure 2 when one of the current sensors is faulty.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0019] The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
[0020] More particularly, and referring to Figure 1 , two phase current sensors are utilized with a three phase machine in some configurations of motor drive control apparatus 10 of the present invention. The drive system comprises a DC source 12 (which, in electrical vehicle configurations, may be a battery pack), a DC bus capacitor CDC, a DC bus voltage sensor 14, a 3-phase inverter 16, two current sensors 18 and 20, an AC motor 22, and a position sensor 24. More generally, an electric machine 22 is provided with one less current sensor (18 and 20) than the number of windings of electric machine 22, and inverter 16 is provided with the same number of phases as electric machine 22. Also provided is a processor 26, which may comprise or consist of a stored program microprocessor or microcontroller with memory and digital to analog (D/A) and ] analog to digital (A/D) converters. Processor 26 has at least one input Te that is a control signal indicative of a desired torque, speed, or power to be produced by electric machine 22. Processor 26 also utilizes signals ia and i_ from current sensors 18 and 20, respectively, as well as θr from position sensor 24 and Vdo from bus voltage sensor 14. Using these signals, Processor 26 generates a set of gate drive signals 28 for inverter 16. For example, electric machine 22 may be an interior permanent magnet (IPM) motor, and processor 26 may comprise an IPM control. IPM controls are well-known to those of ordinary skill in the art and do not require further explanation here. Inverter 16 provides current to electric machine 22. More precisely in many configurations, inverter 16 provides current to electric machine 22 by gating or pulse width modulating current provided by voltage source 12. Processor 26 is configured, such as by using a stored program, to control the current provided by inverter 16 to electric machine 22 in accordance with a desired torque, power, or speed. For example, a signal Tθ is provided for this purpose.
[0021] In some configuration, control is accomplished utilizing a diagnostic component and a post-fault control component. To simplify the present explanation, it will be assumed that electric machine 22 is, in fact, an AC motor of the interior permanent magnet type, but the present invention is applicable to other types of motors, as well.
[0022] A sudden severe fault of a current sensor 18 or 20 will result in an over current malfunction of motor drive control apparatus 10. If there is no protection provided in the gate drive circuit for inverter 16, the severe fault will lead to unrecoverable faults of power semiconductors of inverter 16. Minor faults, such as gain and offset drifts of current sensors 18 and/or 20 would result in torque pulsations that are synchronized with inverter 16 output frequency. Large offset and/or scaling errors will degrade torque regulation. Offset and gain drift above a certain level will result in over current fault at high speeds of electric machine 22 and in heavy load conditions.
[0023] According to various configurations of the present invention, faults including the offset and gain drift are detected when electric machine 22 is not rotating. More particularly, processor 26 is configured, such as by a stored program, to utilize inverter 16 to test current sensors 18 and 20 to determine whether a fault exists in one or more of the current sensors. If a fault is determined to exist, processor 26 utilizes a state observer of electric machine 22 to estimate states of the electric machine, utilizing state input measurements from non-faulty current sensors 18 and/or 20, if any are non-faulty. Current sensors determined to be faulty are disregarded so that their measurements are not used. Processor 26 is further configured to control electric machine 22 utilizing inverter 16 and results from the state observer. [0024] Thus, in some configurations and referring to Figure 2, gating
signals to c-phase semiconductor switches Sc and S are blocked initially by
processor 26. A line to line test voltage waveform, Vab =Vm sin(ωt + ά) t js
synthesized by the pulse width modulation (PWM) inverter 16 under control of
processor 26. (v>» is the magnitude of a test voltage, co is the angular frequency of the voltage, and a is the initial phase of the voltage.) A portion of circuit 10 in Figure 2 can be analyzed using an equivalent circuit 30 shown in Figure 3. Let Lab represent the inductance between an a-phase terminal and a b-phase terminal of electric machine 22. La& is a function of rotor position. Let f?s represent the sum of stator resistance of a phase winding of an IPM motor used as electric machine 22 and the conduction resistance of the power semiconductors. The current in the circuit resulting from application of the
voltage vαb is:
Figure imgf000010_0001
where
[0025] It ca
Figure imgf000010_0002
n be seen that the transient term can
be suppressed by adjusting the phase of the applied voltage & according to power factor of circuit 30. [0026] Processor 26 samples the sensed values of a-phase and fa-
phase currents *∞ and 4* , or more precisely, uses samples measurements from
current sensors 18 and 20 as a function of time to infer time-varying currents *«
and * . In Figure 4, traces of sensed a-phase and b-phase currents 4* and 4* ,
respectively, are shown along with the applied reference voltage v<& for a properly operating electric machine 22 with properly operating current sensors 18
and 20. Also shown is the function ~Q~ +4*), which is essentially zero over the entire interval during which the input test voltage waveform is applied. The results in Figure 4 represent a test performed utilizing an electric machine 22 having an inductance of several hundred μ and a resistance of approximately 10 mΩ including the resistance of power semiconductors. The time constant of the circuit was several tens of msec. With a proper setting of initial phase angle of the reference voltage there is no DC transient in the current trace. The frequency of the test voltage waveform was 200 Hz and the duration was five cycles. Hence, this test required only 50 msec to perform.
[0027] If the windings of electric machine 22, inverter 16, and current
sensors 18 and 20 have no problem, sampled a-phase and b-phase currents *
and 4S , respectively, should be the same in magnitude and opposite in sign as shown in Fig. 4. This comparison comprises a balancing test on the two of the three windings of electric machine 22 that have current sensors. Circuit tolerances will make a perfect match unlikely, but an engineer skilled in the art will be able to determine, perhaps empirically, a predetermined limit ± ει such
that s -~ s -ει is indicative of acceptable control of electric machine 22. The predetermined limit may include a percentage error instead of, or in addition to, a constant error. Also, the root mean square (RMS) value of the sampled current
should be approximately Z 2 for each phase current, individually. Thus, a gain error test comprises determining whether the RMS values of the sampled currents are within a (perhaps empirically determined) second predetermined limit that defines a predetermined nominal range. Furthermore, the sum of the measured values of each phase current should be around zero due to the zero DC transient and integer number of excitation cycles. A test of whether this sum is less than a (perhaps empirically determined) predetermined value or values comprises an offset error test. If the sum is not zero or near zero, there might be significant offset error in one or more current sensors 18, 20 or faults at inverter power circuit 16 or IPM motor 22 windings La, Lb, or Lc.
[0028] A combination of the balancing test, gain error test, and offset error test can determine whether one or more faults exists and preliminarily identify which of the two current sensors may be at fault. For example, if the balancing test or offset error test fails, one or both current sensors may be at fault. If the gain error test fails, the sampled current or currents that failed the test indicates which sensor may be at fault. These tests do not, however, rule out the possibility that something other than a sensor (e.g., a motor winding) may be at fault instead of a sensor. Thus, another test is performed if a fault is indicated to determine that the identified current sensor or sensors is or are at fault.
[0029] For this additional test, and referring to Figure 5, a second test
voltage waveform Vh =Vm sm(ωt + a) -[S applied between the a-phase and b-
phase terminals of the motor. This second test voltage is synthesized by the pulse width modulation inverter 16 under control of processor 26. Also under control of processor 26, the c-phase terminal is shorted with the b-phase terminal by sending appropriate gate drive signals to c-phase. The a-phase and/or b- phase current are measured and stored in a memory of the processor 26. Next, the second test voltage is applied between b-phase and c-phase as shown in Fig 6 and lastly as between b-phase as c-phase, as shown in Figure 7. The sum of stored values at each corresponding time point of the measured phase currents in Figures 5, 6, and 7 should be zero if inverter 16 and the a-, b-, and c-phase motor 22 windings La, Lb, and Lc are well balanced. More particularly, if the sum of values is less than a (possibly empirically determined) magnitude, it is finally determined that the current sensors preliminarily determined to be at fault by the other tests are, in fact, faulty.
[0030] If one or more current sensors are finally determined to be faulty, the measured value from the sensor is subsequently disregarded by processor 26. Instead, and referring to Figure 8, a state observer 32 of electric machine 22 is used by processor 26 to regulate current to electric machine 22 provided by PWM inverter 16. Referring to Figure 8, an observer is utilized in some configurations of the present invention to provide estimated current information for processor 26. Current in the rotating d-q axis is regulated based upon estimated d-q current. Estimated d-q current is observed by an open-loop observer in the case of faults of both current sensors 16 and 18, or by a closed- loop observer in the case of a single current sensor (16 or 18) fault. The structure of the observer is shown in Figure 8, where if a non-faulted current sensor is available, the measured value is used as a correction term and is fed back to state estimator to reduce the estimation error.
[0031] The output of the observer is the estimated state vector it ,
Figure imgf000014_0001
which contains the estimated synchronous frame currents ώ an . Matrix A is a state matrix. Matrix C feeds back estimated states to be compared with measured stator currents (if available). Matrix scales the measurement error to feedback into the observer as a correction term which reduces observer errors.
[QQ32]_ . ln_ .some _CQnfiguratjons_ and referring, to_ Figure, 9, _ electric machine 22 is an interior permanent magnet motor, and a synchronous frame current estimator 34 is used as state observer 32.
[0033] More generally, the state observer provided is modeled after the type of electric machine utilized as electric machine 22.
[0034] These experiments illustrate how moderate performance can be achieved in the presence of current sensor faults, thus allowing operation with degraded performance for the desired "limp home" capability.
[0035] More particularly, various configurations of the present invention allow AC motor drive systems to advantageously restart following detection of one or more current sensor faults. Thus, operation of the drive system can continue, albeit sometimes with reduced performance. Moreover, configurations of the present invention offer a type of fault control that is applicable to PM-type drive systems.
[0036] In addition, configurations of the present invention allow an AC motor drive system to resume operation in a graceful manner, possibly with some degradation in performance. Such capability is of great utility in electric vehicles (EV) and hybrid-electric vehicles (HEV), where such capability allows a driver to "limp home" or provide sufficient traction to pull the vehicle to a safe location following such a current sensor failure.
[0037] The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.

Claims

CLAIMS What is claimed is:
1. A method for controlling an electric machine having current sensors for less than every phase of the electric machine, when a fault occurs in one or more of the current sensors, said method comprising operating a processor to: perform a test to determine whether a fault exists in one or more of the current sensors; utilize a state observer of the electric machine to estimate states of the electric machine, wherein said state observer is provided input measurements from non-faulty current sensors, if any, disregarding measurements from the current sensor or sensors determined to be faulty; and control the electric machine utilizing results from the state observer.
2. A method in accordance with Claim 1 wherein said performing a test to determine that a fault exists in one or more of the current sensors comprises operating a processor to: perform a test to preliminarily determine that a fault exists in one or more current sensors; and perform a test to finally determine that the fault exists in the one or more current sensors.
3. A method in accordance with Claim 2 wherein the electric machine is a three-phase motor having three windings with current sensors on two of the three windings, and wherein performing a test to preliminarily determine that a fault exists in one or more current sensors comprises operating a processor to: apply a first test voltage waveform to the two of the three windings having a current sensor; sample measurements from the two current sensors as a function of time; perform a balancing test on the two windings with current sensors utilizing the sampled measurements; perform a gain error test on the current sensors utilizing the sampled measurements; perform an offset error test on the two current sensors utilizing the sampled measurements, and determine, utilizing said tests, that a fault exists and preliminarily identify which of the two current sensors may be at fault.
4. A method in accordance with Claim 3 wherein said performing a balancing test comprises operating the processor to determine whether the sampled currents in each of the two of the three windings represented by the sampled measurements are of equal magnitude and opposite phase, within a predetermined limit.
5. A method in accordance with Claim 3 wherein said performing a gain error test comprises operating the processor to determine whether the root mean square values of the sampled currents in each of the two of the three windings represented by the sampled measurements are within a predetermined nominal range.
6. A method in accordance with Claim 3 wherein said performing an offset error test comprises operating the processor to determine whether the sum of the sampled currents in the two windings represented by the sampled measurements are less than a predetermined value or values.
7. A method in accordance with Claim 3 further comprising, when a fault exists, operating a processor to: successively apply a second test voltage waveform between each pair of the three windings with the remaining non-paired winding shorted to one winding of the pair; sample measurements from the two current sensors as a function of time; determine, utilizing said sampled measurements resulting from the application of the second test voltage, that the identified current sensor is at fault.
8. A method in accordance with Claim 1 wherein said operating the processor to utilize a state observer of the electric machine to estimate states of the electric machine comprises regulating current in a rotating d-q axis in accordance with an estimated d-q current observed by a closed loop observer.
9. A method in accordance with Claim 1 wherein said operating the processor to utilize a state observer of the electric machine to estimate states of the electric machine comprises regulating current in a rotating d-q axis in accordance with an estimated d-q current observed by an open loop observer.
10. A method in accordance with Claim 1 wherein said state observer is a synchronous frame current estimator.
11. An apparatus for controlling an electric machine having current sensors for less than every one of its phases, said apparatus comprising: an inverter configured to provide current to the electric machine; a processor configured to control the current provided to the electric machine by the inverter in accordance with a desired torque, power, or speed; said processor further configured to utilize the inverter to test the current sensors to determine whether a fault exists in one or more of the current sensors, and if a fault is determined to exist, to utilize a state observer of the electric machine to estimate states of the electric machine, utilizing state input measurements from each non-faulty current sensor, if any, disregarding the current sensor or sensors determined to be faulty; and to control the electric machine utilizing the inverter and results from the state observer.
12. An apparatus in accordance with Claim 11 wherein said processor is further configured to: perform a test to preliminarily determine that a fault exists in one or more of the current sensors; and perform a test to finally determine that the fault exists in the one or more current sensors.
13. An apparatus in accordance with Claim 12 wherein the electric machine is a three-phase motor having three windings with current sensors on two of the three windings, and wherein to perform a test to preliminarily determine that a fault exists in one or more of the current sensors, said processor is configured to: operate the inverter to apply a first test voltage waveform to the two of the three windings having a current sensor; sample measurements from the two current sensors as a function of time; perform a balancing test on the two windings with current sensors utilizing the sampled measurements; perform a gain error test on the current sensors utilizing the sampled measurements; perform an offset error test on the two current sensors utilizing the sampled measurements; and determine, utilizing said tests, that a fault exists and preliminarily identify which of the two current sensors may be at fault.
14. An apparatus in accordance with Claim 13 wherein to perform a balancing test, said processor is further configured to determine whether the sampled currents in each of the two of the three windings represented by the sampled measurements are of equal magnitude and opposite phase, within a predetermined limit.
15. An apparatus in accordance with Claim 13 wherein to perform a gain error test, said processor is further configured to determine whether the root mean square values of the sampled currents in each of the two of the three windings represented by the sampled measurements are within a predetermined nominal range.
16. An apparatus in accordance with Claim 13 wherein to perform an offset error test, said processor is configured to determine whether the sums of the sampled currents in the two windings represented by the sampled measurements are less than a predetermined value or values.
17. An apparatus in accordance with Claim 13 wherein said processor is configured to: control the inverter to successively apply a second test voltage waveform between each pair of the three windings with the remaining non-paired winding shorted to one winding of the pair; sample measurements from the two current sensors as a function of time; and determine, utilizing the sampled measurements resulting from the application of the second test voltage, that the identified current sensor is at fault.
18. An apparatus in accordance with Claim 11 wherein to control the electric machine utilizing the inverter and the state observer, said processor is configured to operate the inverter to regulate current in a rotating d-q axis in accordance with an estimated d-q current observed by a closed loop observer.
19. An apparatus in accordance with Claim 11 wherein to control the electric machine utilizing the inverter and the state observer, said processor is configured to regulate current in a rotating d-q axis in accordance with an estimated d-q current observed by an open loop observer.
20. An apparatus in accordance with Claim 11 wherein the state observer is a synchronous frame current estimator and the electric machine is an interior permanent magnet motor.
PCT/US2004/017328 2003-06-02 2004-06-01 Methods and apparatus for fault-tolerant control of electric machines WO2004109895A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/452,817 US6989641B2 (en) 2003-06-02 2003-06-02 Methods and apparatus for fault-tolerant control of electric machines
US10/452,817 2003-06-02

Publications (2)

Publication Number Publication Date
WO2004109895A2 true WO2004109895A2 (en) 2004-12-16
WO2004109895A3 WO2004109895A3 (en) 2005-06-09

Family

ID=33452072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/017328 WO2004109895A2 (en) 2003-06-02 2004-06-01 Methods and apparatus for fault-tolerant control of electric machines

Country Status (3)

Country Link
US (1) US6989641B2 (en)
CN (1) CN100438318C (en)
WO (1) WO2004109895A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204193A (en) * 2021-05-06 2021-08-03 北京航空航天大学 Fault-tolerant control method and device for aircraft and electronic equipment
US11784596B2 (en) 2019-08-22 2023-10-10 Cummins Inc. Flexible control for a six-phase machine

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198376A (en) * 2004-01-05 2005-07-21 Matsushita Electric Ind Co Ltd Method of driving brushless dc motor, and its device
MXPA06009995A (en) * 2006-04-04 2007-10-03 Smith Corp A O Electrical machine having a series chopper circuit.
US7589482B2 (en) * 2006-06-02 2009-09-15 Sepe Jr Raymond B Hot spot sensoring control of linear motors
US7479756B2 (en) * 2006-06-19 2009-01-20 Rockwell Automation Technologies, Inc. System and method for protecting a motor drive unit from motor back EMF under fault conditions
US7605503B2 (en) * 2007-03-28 2009-10-20 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable stator core slot opening and back iron flux paths
US7605504B2 (en) * 2007-03-28 2009-10-20 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable stator core slot flux paths
US7541705B2 (en) * 2007-03-28 2009-06-02 General Electric Company Fault-tolerant permanent magnet machine with reconfigurable flux paths in stator back iron
US7646160B2 (en) * 2007-04-26 2010-01-12 Ford Global Technologies, Llc Sensor calibration and parameter identification in a multi-phase motor drive
JP2009131043A (en) * 2007-11-22 2009-06-11 Hitachi Ltd Motor control device
US7994798B2 (en) * 2007-11-30 2011-08-09 Caterpillar Inc. Power converter current sensor testing method
JP4288333B1 (en) * 2007-12-18 2009-07-01 トヨタ自動車株式会社 Vehicle power supply
DE102007061729A1 (en) * 2007-12-20 2009-06-25 Robert Bosch Gmbh Method for detecting an electrical fault in an electrical network of a motor vehicle
WO2009142006A1 (en) * 2008-05-21 2009-11-26 パナソニック株式会社 Robot error judgment method
US8004226B2 (en) * 2008-08-06 2011-08-23 Caterpillar Inc. Method and system for detecting a failed current sensor in a three-phase machine
DE102009034595B4 (en) * 2009-07-24 2014-09-04 Conti Temic Microelectronic Gmbh Method for diagnosing current sensors of a rotating field machine during its operation
US20110089883A1 (en) * 2009-10-21 2011-04-21 Gm Global Technology Operations, Inc. Motor phase winding fault detection method and apparatus
US8362732B2 (en) * 2010-02-02 2013-01-29 GM Global Technology Operations LLC Motor phase winding fault detection method and apparatus
CN102315817B (en) * 2010-06-30 2013-10-30 比亚迪股份有限公司 Motor control system for detecting fault of current sensor and control method
US20120078570A1 (en) * 2010-09-29 2012-03-29 Apple Inc. Multiple accelerometer system
CN102005729B (en) * 2010-12-10 2013-05-22 丹东华通测控有限公司 Method for self-adaptation to alternating-current input signals of intelligent motor protection controller
CN102684577B (en) * 2012-05-24 2014-06-11 东南大学 Fault-tolerant control method of permanent-magnet synchronous motor driving system
CN104541445A (en) * 2012-08-08 2015-04-22 松下知识产权经营株式会社 Motor control apparatus
US9018881B2 (en) * 2013-01-10 2015-04-28 GM Global Technology Operations LLC Stator winding diagnostic systems and methods
US9041327B2 (en) 2013-06-12 2015-05-26 Rockwell Automation Technologies, Inc. Method and apparatus for overvoltage protection and reverse motor speed control for motor drive power loss events
CN104898071B (en) * 2015-06-12 2018-02-02 东南大学 Modular multilevel inverter method for diagnosing faults based on state observation
DE102015220222A1 (en) * 2015-10-16 2017-04-20 Zf Friedrichshafen Ag Method, computer program and device for controlling a multiphase induction machine with interruption of a current of at least one phase of the induction machine
DE102015226382A1 (en) * 2015-12-21 2017-06-22 Zf Friedrichshafen Ag Method and arrangement for monitoring a PSM machine
DE102016219573A1 (en) * 2016-10-10 2018-04-12 Zf Friedrichshafen Ag Control of a rotating field machine
US9948224B1 (en) 2016-10-17 2018-04-17 General Electric Company System and method for sensorless control of electric machines using magnetic alignment signatures
JP6984390B2 (en) * 2017-12-20 2021-12-17 株式会社デンソー Power control unit
CN109375103A (en) * 2018-09-20 2019-02-22 北京科技大学 Three-phase brushless dc motor inverter power pipe single tube open-circuit fault diagnostic method
CN110247600B (en) * 2019-06-26 2021-01-29 珠海格力电器股份有限公司 Motor control method and device, storage medium and motor
US11456677B2 (en) 2020-12-10 2022-09-27 Rolls-Royce Corporation Power converter protection circuit
CN112532138A (en) * 2020-12-26 2021-03-19 陕西航空电气有限责任公司 Current redundancy method for aviation general motor controller of two-level three-phase inversion topology
CN113341733B (en) * 2021-06-29 2022-02-22 哈尔滨工业大学 Linear motor system fault and unknown disturbance compensation method
CN116633088B (en) * 2023-05-24 2024-03-08 南京航空航天大学 Zero-bias fault diagnosis and fault-tolerant control method for current sensor of doubly salient motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357181A (en) * 1992-10-13 1994-10-18 Hitachi, Ltd. Failure detection method for electric vehicles and fail-safe control method using this method
US5469032A (en) * 1992-09-14 1995-11-21 Aisin Aw Co., Ltd. Electric motor control with malfunction detection
US5514978A (en) * 1995-03-20 1996-05-07 General Electric Company Stator turn fault detector for AC motor
US5661380A (en) * 1994-11-07 1997-08-26 Hitachi, Ltd. Method and apparatus for operating an electric vehicle drive system during periods of sensor malfunction
US5677611A (en) * 1995-07-03 1997-10-14 Hitachi, Ltd. Control apparatus for an electric vehicle
US5689170A (en) * 1994-12-27 1997-11-18 Nissan Motor Co., Ltd. Fail-safe control apparatus for electric vehicle driving motor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509110A (en) * 1982-06-07 1985-04-02 United Technologies Corporation Method and apparatus for detecting failures in a control system
US4695941A (en) * 1985-07-29 1987-09-22 General Electric Company Loss of electrical feedback detector
US4761703A (en) * 1987-08-31 1988-08-02 Electric Power Research Institute, Inc. Rotor fault detector for induction motors
JP2532105B2 (en) * 1987-09-17 1996-09-11 本田技研工業株式会社 Steering control device for front and rear wheel steering vehicles
JPH02184281A (en) * 1989-01-10 1990-07-18 Fanuc Ltd Generation of excessive error alarm
JPH0974794A (en) * 1995-09-05 1997-03-18 Toyota Motor Corp Abnormality detection device for control circuit of ac motor
JP3063893B2 (en) * 1997-01-07 2000-07-12 本田技研工業株式会社 Electric power steering device
JP3461841B2 (en) * 1997-01-23 2003-10-27 三菱電機株式会社 Electric power steering control device
US6064172A (en) * 1997-02-11 2000-05-16 Power Superconductor Applications Corporation Method and apparatus for detection, classification and reduction of internal electrical faults in alternating current propulsion machinery using synchronous detection scheme
JP3527071B2 (en) * 1997-07-04 2004-05-17 株式会社日立製作所 Electric vehicle control device
JP2000324602A (en) * 1999-05-07 2000-11-24 Honda Motor Co Ltd Trouble detecting method of power system
US6683435B1 (en) * 2002-06-21 2004-01-27 Ford Motor Company Electrical machine drive method and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469032A (en) * 1992-09-14 1995-11-21 Aisin Aw Co., Ltd. Electric motor control with malfunction detection
US5357181A (en) * 1992-10-13 1994-10-18 Hitachi, Ltd. Failure detection method for electric vehicles and fail-safe control method using this method
US5661380A (en) * 1994-11-07 1997-08-26 Hitachi, Ltd. Method and apparatus for operating an electric vehicle drive system during periods of sensor malfunction
US5689170A (en) * 1994-12-27 1997-11-18 Nissan Motor Co., Ltd. Fail-safe control apparatus for electric vehicle driving motor
US5514978A (en) * 1995-03-20 1996-05-07 General Electric Company Stator turn fault detector for AC motor
US5677611A (en) * 1995-07-03 1997-10-14 Hitachi, Ltd. Control apparatus for an electric vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11784596B2 (en) 2019-08-22 2023-10-10 Cummins Inc. Flexible control for a six-phase machine
CN113204193A (en) * 2021-05-06 2021-08-03 北京航空航天大学 Fault-tolerant control method and device for aircraft and electronic equipment

Also Published As

Publication number Publication date
US20040239272A1 (en) 2004-12-02
WO2004109895A3 (en) 2005-06-09
CN1833354A (en) 2006-09-13
CN100438318C (en) 2008-11-26
US6989641B2 (en) 2006-01-24

Similar Documents

Publication Publication Date Title
US6989641B2 (en) Methods and apparatus for fault-tolerant control of electric machines
US8283881B2 (en) Methods, systems and apparatus for synchronous current regulation of a five-phase machine
US7002318B1 (en) Position sensor fault tolerant control for automotive propulsion system
US8362732B2 (en) Motor phase winding fault detection method and apparatus
US8575879B2 (en) Methods, systems and apparatus for controlling a multi-phase inverter
US8040096B2 (en) Rotary electric system with star-connected multiphase stator windings
US8198846B2 (en) Motor control device
JP4022630B2 (en) Power conversion control device, power conversion control method, and program for power conversion control
US8054030B2 (en) Permanent magnet AC motor systems and control algorithm restart methods
US8664901B2 (en) Method and system for estimating electrical angular speed of a permanent magnet machine
JP3218954B2 (en) Abnormality detection device for AC motor control circuit
US20120278007A1 (en) Method for checking the plausibility of the torque of an electric machine and machine controller for controlling an electric machine and for carrying out the method
US11646640B2 (en) Controller for AC rotating electric machine
US20110089883A1 (en) Motor phase winding fault detection method and apparatus
US11290036B2 (en) Control device
US9350277B2 (en) Method of estimating voltage of input terminal of inverter and motor control method using the same
KR20150078460A (en) Voltage sensor default detecting method
US20230412102A1 (en) Flexible control for a six-phase machine
US20190028052A1 (en) Evaluation apparatus for evaluating inverter circuit for electric motor and evaluation method therefor
US11251727B2 (en) Electric motor control device
EP3503378B1 (en) Method and apparatus for determining a measuring offset of a rotor position sensor
KR101782419B1 (en) Motor controlling device for vehicle and control method thereof
Bisheimer et al. Sensorless PMSM drive with tolerance to current sensor faults
KR101393574B1 (en) Detection method of disconnection of power cable of motor and motor control method
US20220258591A1 (en) Control device of permanent magnet type rotating electrical machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022479.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase