WO2004107008A1 - Imaging lens and image pickup device using the same - Google Patents

Imaging lens and image pickup device using the same Download PDF

Info

Publication number
WO2004107008A1
WO2004107008A1 PCT/JP2004/006648 JP2004006648W WO2004107008A1 WO 2004107008 A1 WO2004107008 A1 WO 2004107008A1 JP 2004006648 W JP2004006648 W JP 2004006648W WO 2004107008 A1 WO2004107008 A1 WO 2004107008A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
image
object side
back focus
Prior art date
Application number
PCT/JP2004/006648
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Nio
Original Assignee
Seiko Precision Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Precision Inc. filed Critical Seiko Precision Inc.
Publication of WO2004107008A1 publication Critical patent/WO2004107008A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an extremely compact and high-performance photographing lens and an imaging device mainly applied to a mobile phone, a modular camera for a mobile phone, and the like provided with a CCD or CMOS type solid-state imaging device.
  • a space for disposing an optical member such as a low pass filter or a cover glass is secured between the imaging lens (or imaging lens) and the imaging device.
  • an optical member such as a low pass filter or a cover glass
  • a camera module incorporated in a mobile phone or the like needs to be designed compactly by extremely shortening the optical length of the photographing lens. Furthermore, with the increase in the number of pixels of solid-state imaging devices, there is also a demand for high resolution of photographing lenses.
  • Patent Document 1 discloses a photographing lens of this type.
  • Patent Document 1 Japanese Patent Laid-Open Publication No. 2003-75719
  • the imaging lens of Patent Document 1 is a lens in which a positive biconvex lens with an aspheric surface and a convex convex surface facing the image plane are disposed in order from the object side, with a positive meniscus lens having both aspheric surfaces.
  • the back focus the distance from the surface on the image side of the positive meniscus lens to the image forming surface
  • the lens optical length the distance from the surface of the aperture stop to the surface on the image side of the positive meniscus lens + back focus
  • the present invention is intended to solve the problems of the above-described conventional photographing lens, and to provide a high-performance photographing lens having a sufficient back focus and a short lens optical length, which is outside the scope of the present invention.
  • Another object of the present invention is to provide a compact image pickup apparatus provided with such a photographing lens.
  • the photographing lens according to the present invention has a biconvex positive power and a biconvex aspheric first lens, and a meniscus negative power having a concave surface facing the object side and both surfaces non-convex. It has a second lens which is a spherical surface, and the first and second lenses are arranged in order from the object side, and satisfy the conditional expressions (1) and (2) described below.
  • f is the focal length of the whole lens system
  • bf is the back focus (the distance from the image side surface of the second lens to the image forming surface)
  • r is the Radius of paraxial curvature of the surface on the object side of the two lenses
  • r is the second lens
  • Conditional expression (1) defines that the second lens is a concave lens (negative lens).
  • Condition (2) is to set the ratio of the back focus (bf) to the focal length (f) of the whole lens system within the range of 0.6 to 0.8, and thereby obtaining a sufficient back focus.
  • the lens optical length is shortened. That is, when the ratio is smaller than 0.6, the back focus becomes too small, and it becomes difficult to interpose an optical filter or the like between the second lens and the imaging surface.
  • the ratio is greater than 0.8, the lens optical length becomes too large, making it difficult to apply to a small camera such as a mobile phone or a thin camera.
  • the imaging lens of the present invention preferably has an aperture stop on the object side of the first lens, and satisfies the following conditional expressions (3) and (4).
  • is the combined refractive power of the entire lens system
  • is the refracting power of the surface on the image side of the first lens
  • is open
  • the distance from the object-side surface of the aperture stop to the image-side surface of the second lens is shown.
  • Condition (3) is obtained by combining the combined refractive power ⁇ of the entire lens system and the refractive power ⁇ ⁇ of the surface of the first lens on the image side.
  • the ratio to 2 shall be in the range of 1.9 to 2.5. If the ratio is less than 1.9, the refracting power of the surface on the image side of the first lens becomes too weak, as a result, the focal length becomes long, making it suitable for miniaturization. On the other hand, if the ratio is 2.5 or more, the curvature of the surface on the image side of the first lens becomes too tight, and it becomes difficult to mold the lens.
  • Conditional expression (4) sets the ratio of the lens optical length (T + bf) to the focal length (f) of the entire lens system in the range of 1.2 to 1.8. If the ratio is less than 1.2, the power of the first lens becomes too small, and it becomes difficult to correct the aberration. On the other hand, if the ratio is 1.8 or more, the overall length becomes long, which makes it unsuitable for miniaturization. As described above, by setting the lens optical length (T + bf) to the size of 1.2 to 1.8 of the focal distance (f) of the entire lens system, it is compact and the number of pixels of the imaging device is increased. It is possible to obtain a high-performance photographing lens corresponding to
  • An image pickup apparatus has a photographing lens having the above-described features, and an image pickup element for picking up an image formed by the photographing lens.
  • the imaging device for example, a solid-state imaging device such as a CCD is used. Since such an imaging device has a compact configuration, it can be used for a miniaturized camera or a thin camera.
  • an optical filter such as an IR (infrared) cut filter or a low pass filter is disposed between the photographing lens and the imaging device. By doing this, the imaging performance is improved.
  • the imaging lens and the imaging device of the present invention since the first biconvex lens and the second meniscus lens are configured to satisfy the conditional expressions (1) and (2), a sufficient back focus can be obtained. It is possible to provide an imaging lens and an imaging device with high cost performance, as well as extremely compact high-performance imaging performance with a short chip and optical length.
  • FIG. 1 is a view showing the configuration of a taking lens according to an example of the present invention and showing the configuration of the taking lens of Example 1.
  • FIG. 2 is a view showing a configuration of a photographing lens of Embodiment 2.
  • FIG. 3 is a view showing the configuration of a photographing lens of Example 3;
  • FIG. 4 is a view showing the configuration of a photographing lens of Example 4.
  • FIG. 5 is a view showing a configuration of a photographing lens of Example 5.
  • FIG. 6 is a diagram showing lens data of Example 1.
  • FIG. 7 is a view showing spherical aberration according to Example 1.
  • FIG. 8 is a diagram showing astigmatism according to Example 1.
  • FIG. 9 is a diagram showing distortion according to Example 1.
  • FIG. 10 shows lens data of the second embodiment.
  • FIG. 11 is a view showing spherical aberration according to Example 2.
  • FIG. 12 is a diagram showing astigmatism according to Example 2.
  • FIG. 13 is a diagram showing distortion according to Example 2.
  • FIG. 14 is a diagram showing lens data of Example 3.
  • FIG. 15 is a view showing spherical aberration according to Example 3.
  • FIG. 16 is a diagram showing astigmatism according to Example 3.
  • FIG. 17 is a diagram showing distortion according to Example 3.
  • FIG. 18 is a diagram showing lens data of Example 4.
  • FIG. 19 shows spherical aberration according to Example 4.
  • FIG. 20 is a diagram showing astigmatism according to Example 4.
  • FIG. 21 is a diagram showing distortion according to Example 4.
  • FIG. 22 shows lens data of the fifth embodiment.
  • FIG. 23 shows spherical aberration according to Example 5.
  • FIG. 24 is a diagram showing astigmatism according to Example 5.
  • FIG. 25 is a diagram showing distortion according to Example 5.
  • FIG. 26 is a view comparing lens performances of the photographing lens of each example according to the present invention and the photographing lens of each example of Patent Document 1.
  • the taking lens 1 taking the left side of the drawing as the object side, the taking lens 1 has an aperture stop S and a biconvex positive power along the optical axis ⁇ in order from the object side. And a second lens L2 having a negative power in the form of a meniscus with its concave surface facing the object side.
  • the lens surfaces of the first and second lenses L1 and L2 are all aspheric.
  • the shooting lens 1 is a lens configured with two lenses and two lenses.
  • r is the radius of curvature near the optical axis of the object-side surface of the first lens, and r is the first lens.
  • a radius of curvature near the optical axis of the surface at the side of the 1 2 z image, r is near the optical axis of the surface at the object side of the second lens
  • the radius of curvature r represents the radius of curvature near the optical axis of the image-side surface of the second lens.
  • dO is the aperture stop
  • dl is the core thickness on the optical axis of the first lens
  • d2 is the distance on the optical axis between the first lens and the second lens
  • d3 is the core on the optical axis of the second lens
  • the thickness d4 indicates the distance between the second lens and the plane parallel glass (optical filter) 10
  • d5 indicates the thickness of the plane parallel glass
  • d6 indicates the distance between the plane parallel glass 10 and the cover glass 20.
  • f is the focal length of the whole lens system
  • bf is the back focus (the distance from the surface on the image side of the second lens to the imaging surface M)
  • T is the surface on the object side of the aperture stop S to the image side of the second lens Indicates the distance on the optical axis to the surface.
  • the parallel flat glass 10 disposed between the second lens L2 and the imaging surface M on the image side is preferably an optical filter such as a low pass filter or an IR cut filter required for a solid-state imaging device. Furthermore, a flat plate of the cover glass 20 is disposed between the plane-parallel glass 10 and the imaging surface M. The cover glass 20 is for protecting the surface of a solid-state imaging device such as a CCD. Used.
  • the aperture stop S is disposed on the object side of the first lens L1 in order to make the incident angle of incident light to the imaging device smaller and to facilitate the assembly. ing.
  • conditional expression (1) defines the composite refractive power of the second lens L2, and the paraxial composite refractive power has negative refractive power.
  • the correlation with the refractive index n3 satisfies the conditional expression (1), the balance of the positive refractive power of the first lens L1 can be properly maintained, and the total length can be shortened.
  • the conditional expression (2) defines the range of the lens back focus (bf) with respect to the entire system focal length f, and when the lower limit is exceeded, the back focus is too short, and interference with the plane parallel glass 10 or lens back The adjustment becomes difficult and the shading of the ambient light becomes worse. If the upper limit is exceeded, the overall length becomes long, and it becomes impossible to obtain the desired compact and thin shooting lens.
  • the photographing lens 1 further satisfy the conditional expressions (3) and (4).
  • is the combined refractive power of the entire lens system, and ⁇ is the refractive power of the surface on the image side of the first lens.
  • Condition (3) further defines the refracting power of the surface r on the image side of the first lens L 1.
  • Conditional expression (4) defines the relative ratio of the lens optical length (T + bf) to the focal length f of the entire system in the configuration satisfying the conditional expression (3). Below the lower limit, the refractive power of the first lens L1 becomes stronger than necessary, and the balance with the second lens L2 can not be achieved, so that it is not possible to obtain good image performance. If the upper limit is exceeded, it becomes close to a retrofocus type, and the overall length becomes too long to obtain a compact taking lens.
  • is a half angle of view
  • d is a lens surface distance
  • n is a refractive index of each lens to the d line (587. 6 nm) d
  • V d is the Abbe number of each lens. Also, each lens surface (r, r, r, r) is aspheric.
  • the shape of the aspheric surface is Z axis in the direction of the optical axis (O) and X axis in the direction perpendicular to the optical axis, and the traveling direction of light is positive, the conical constant is k, the aspheric coefficient is a, When b, c and d are given, they are expressed by equation (5)
  • the photographing lens 1 according to the first embodiment has a cross-sectional configuration shown in FIG.
  • the lens data of the imaging lens 1 is as shown in FIG. 6, and the surface numbers in Table 1 are assigned in order from the object side along the optical axis ⁇ .
  • the surface number 0 (ST ⁇ ) corresponds to the aperture stop S.
  • the surface number 1 and 2 correspond to the first lens: L1 r and r, and the surface number 3 and 4 to the second lens: L2 r and r. Face number
  • No. 5 is the object-side surface r of the plane-parallel glass 10
  • the surface number 6 is the surface of the plane-parallel glass 10 on the image side
  • the spacing d is the spacing on the optical axis between the faces described above (dl, d2, d3, d4, d5, d
  • FIG. 7 to 9 show various aberrations according to Example 1.
  • FIG. 7 shows spherical aberration
  • FIG. 8 shows astigmatism
  • FIG. 9 shows distortion.
  • the dashed-dotted line is the d-line
  • the solid line is the F-line
  • the broken line is the spherical aberration for the C-line.
  • the solid line is the aberration of the tangential image plane
  • the broken line is the aberration of the sagittal image plane.
  • the distortion shown in FIG. 9 is for the d-line.
  • the symbol of the aberration used in these figures is the same as in Example 2-5 below.
  • FIGS. 2 to 5 Cross-sectional configurations of the photographing lenses of Examples 2 to 5 are shown in FIGS. 2 to 5.
  • the lens data of Examples 2 to 5 are shown in FIGS. 10, 14, 18 and 22, and the spherical aberration according to Example 2-5 is shown in FIGS. 11, 15, 19 and 23, respectively.
  • the astigmatism according to Example 2-5 is shown in FIG. 12, FIG. 16, FIG. 20 and FIG. 24, respectively, and the distortion according to Example 2-5 is shown in FIG. 13, FIG. 17, FIG. 21 and FIG.
  • Table 1 in FIG. 26 shows the numerical values of the conditional expressions (1) to (4) described above calculated based on the lens data of the example 15 according to the present invention.
  • Table 2 shows the numerical values of conditional expressions (1) to (4) calculated based on lens data of the respective embodiments disclosed in Patent Document 1.
  • the taking lens of each Example 15 of the present invention has sufficient back focus (bf) compared to Patent Document 1, but the lens The optical length (T + bf) is made sufficiently short.
  • a plane-parallel glass (optical filter) 10 is interposed between the second lens L2 and the image plane M to enable high-resolution imaging, and a photographing lens and an imaging device including such a photographing lens. It can be miniaturized and can be applied to small cameras and thin cameras.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

An imaging lens consists of: a first lens (L1) of biconvex shape having positive power and having both convex surfaces which are aspheric surfaces; and a second lens (L2) of meniscus shape having a concave surface opposing to an object, having negative power, and having both surfaces which are aspheric surfaces. The first lens and the second lens are arranged in this order from the object side and the ratio of the lens back focus (bf) against the focal distance (f) of the entire lens system is regulated to a range from 0.6 to 0.8. Thus, it is possible to obtain sufficient back focus and reduce the lens optical length. Accordingly, it is possible to provide a compact imaging lens having a high performance.

Description

明 細 書  Specification
撮影レンズおよびそれを用いた撮像装置  Shooting lens and imaging apparatus using the same
技術分野  Technical field
[0001] 本発明は、主として CCDや CMOSタイプの固体撮像素子を備えた携帯電話ゃモ パイル用モジュールカメラ等に適用される極めてコンパクトで高性能な撮影レンズ及 び撮像装置に関する。  [0001] The present invention relates to an extremely compact and high-performance photographing lens and an imaging device mainly applied to a mobile phone, a modular camera for a mobile phone, and the like provided with a CCD or CMOS type solid-state imaging device.
背景技術  Background art
[0002] CCDなどの固体撮像素子を備えたモジュールカメラには、撮影レンズ (あるいは撮 像レンズ)と撮像素子との間には、ローパスフィルタやカバーガラスなどの光学部材を 配置するスペースを確保するために、一定のバックフォーカス(レンズ最終面と結像 面との間隔)が要求される。  In a module camera provided with a solid-state imaging device such as a CCD, a space for disposing an optical member such as a low pass filter or a cover glass is secured between the imaging lens (or imaging lens) and the imaging device. In order to achieve this, a constant back focus (the distance between the lens final surface and the imaging surface) is required.
[0003] また、携帯電話などに内蔵されるカメラモジュールは、撮影レンズの光学長を極め て短くし、コンパクトに設計する必要がある。さらに、固体撮像素子の高画素化に伴 レ、、撮影レンズの高解像度も要求されている。 In addition, a camera module incorporated in a mobile phone or the like needs to be designed compactly by extremely shortening the optical length of the photographing lens. Furthermore, with the increase in the number of pixels of solid-state imaging devices, there is also a demand for high resolution of photographing lenses.
[0004] このような要求を満足させるためには、複数枚のレンズにより撮影レンズを構成し、 コンパクトでありながら諸収差を補正した高解像度のレンズが開発されてレ、る。例え ば、特許文献 1にこの種の撮影レンズが開示されてレ、る。 [0004] In order to satisfy such a requirement, a high resolution lens which is compact and has various aberrations corrected while having a photographing lens made up of a plurality of lenses has been developed. For example, Patent Document 1 discloses a photographing lens of this type.
[0005] 特許文献 1 :日本国特許公開公報 特開 2003 - 75719号公報 Patent Document 1: Japanese Patent Laid-Open Publication No. 2003-75719
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0006] し力 ながら、上記特許文献 1に開示される撮影レンズには、以下の課題がある。特 許文献 1の撮影レンズは、非球面の両凸形状の正レンズと、像面側に凸面を向け両 面が非球面の正メニスカスレンズとを、物体側から順に配置させるものである力 この 構成ではバックフォーカス(正メニスカスレンズの像側の面から結像面までの距離)が 短すぎ、かつレンズ光学長(開口絞りの面から正メニスカスレンズの像側の面までの 距離 +バックフォーカス)が長すぎ、携帯電話等の薄型の製品に内蔵するには適し ていない。つまり、バックフォーカスが短いと、レンズ最終面と結像面との間に光学フ ィルタ等の光学部材を介在させることが難しぐレンズ光学長が長いと小型化すること が困難なためである。 However, the photographing lens disclosed in Patent Document 1 has the following problems. The imaging lens of Patent Document 1 is a lens in which a positive biconvex lens with an aspheric surface and a convex convex surface facing the image plane are disposed in order from the object side, with a positive meniscus lens having both aspheric surfaces. In the configuration, the back focus (the distance from the surface on the image side of the positive meniscus lens to the image forming surface) is too short, and the lens optical length (the distance from the surface of the aperture stop to the surface on the image side of the positive meniscus lens + back focus) Is too long to be suitable for incorporation in thin products such as mobile phones. That is, when the back focus is short, the optical This is because it is difficult to miniaturize if the lens optical length which makes it difficult to interpose an optical member such as a filter is long.
[0007] そこで本発明は、上記従来の撮影レンズの課題を解決し、十分なバックフォーカス と短いレンズ光学長を有し、コンパ外で高性能な撮影レンズを提供することを目的と する。  Therefore, the present invention is intended to solve the problems of the above-described conventional photographing lens, and to provide a high-performance photographing lens having a sufficient back focus and a short lens optical length, which is outside the scope of the present invention.
[0008] さらに本発明は、そのような撮影レンズを備えた小型化可能な撮像装置を提供する ことを目的とする。  Another object of the present invention is to provide a compact image pickup apparatus provided with such a photographing lens.
課題を解決するための手段  Means to solve the problem
[0009] 本発明に係る撮影レンズは、両凸形状の正のパワーをもち両凸面が非球面である 第 1レンズと、物体側に凹面を向けたメニスカス形状の負のパワーをもち両面が非球 面である第 2レンズとを有し、第 1、第 2レンズが物体側から順に配置され、以下に記 載の条件式(1)および(2)を満足するものである。 The photographing lens according to the present invention has a biconvex positive power and a biconvex aspheric first lens, and a meniscus negative power having a concave surface facing the object side and both surfaces non-convex. It has a second lens which is a spherical surface, and the first and second lenses are arranged in order from the object side, and satisfy the conditional expressions (1) and (2) described below.
[0010] [数 1] - く d 3 ■ ■ ■ [0010] [Number 1]-group d 3 ■ ■ ■
[0011] [数 2] [0011] [Number 2]
0. 6 < < 0. 8 ■ ■ ■ (2) 但し、 fはレンズ全系の焦点距離、 bfはバックフォーカス(第 2レンズの像側の面から 結像面までの距離)、 rは第 2レンズの物体側の面の近軸の曲率半径、 rは第 2レン 0. 6 <0. 8 ■ ■ ■ (2) where f is the focal length of the whole lens system, bf is the back focus (the distance from the image side surface of the second lens to the image forming surface), r is the Radius of paraxial curvature of the surface on the object side of the two lenses, r is the second lens
3 4 ズの像側の面の近軸の曲率半径、 dは光軸上の第 2レンズの芯厚、 nは第 2レンズ  The paraxial radius of curvature of the surface on the image side of 3 4 z, d is the core thickness of the second lens on the optical axis, n is the second lens
3 3  3 3
の d線の屈折率を示す。  Indicates the refractive index of d-line.
[0012] 条件式(1)は、第 2レンズが凹レンズ (負のレンズ)であることを規定する。また、条 件式(2)は、バックフォーカス(bf)とレンズ全系の焦点距離(f)との比を 0. 6から 0. 8 の範囲内とし、これにより十分なバックフォーカスを得ると同時に、レンズ光学長を短 くしている。つまり、その比が 0. 6よりも小さくなると、バックフォーカスが小さくなりすぎ 、第 2レンズと結像面との間に光学フィルタ等を介在させることが困難となる。他方、 比が 0· 8より大きくなると、レンズ光学長が大きくなりすぎ、携帯電話等の小型カメラ あるいは薄型カメラに適用することが困難となる。 Conditional expression (1) defines that the second lens is a concave lens (negative lens). Condition (2) is to set the ratio of the back focus (bf) to the focal length (f) of the whole lens system within the range of 0.6 to 0.8, and thereby obtaining a sufficient back focus. At the same time, the lens optical length is shortened. That is, when the ratio is smaller than 0.6, the back focus becomes too small, and it becomes difficult to interpose an optical filter or the like between the second lens and the imaging surface. On the other hand, If the ratio is greater than 0.8, the lens optical length becomes too large, making it difficult to apply to a small camera such as a mobile phone or a thin camera.
[0013] 本発明の撮影レンズは、好ましくは、第 1レンズの物体側に開口絞りを配し、以下の 条件式(3)および (4)を満足するものである。 The imaging lens of the present invention preferably has an aperture stop on the object side of the first lens, and satisfies the following conditional expressions (3) and (4).
[0014] [数 3] [0014] [Number 3]
1. 9 < < 2. 5 ■ ■ ■ (3) 1. 9 <<2.5 ■ ■ ■ (3)
Φ  Φ
[0015] [数 4] [0015] [Number 4]
1. 2 < < 1 . 8 ■ ■ ■ (4) 但し、 Φはレンズ全系の合成屈折力、 Φ Γは第 1レンズの像側の面の屈折力、 Τは開 However, Φ is the combined refractive power of the entire lens system, Φ is the refracting power of the surface on the image side of the first lens, and 開 is open
2  2
口絞りの物体側の面から第 2レンズの像側の面までの距離を示す。  The distance from the object-side surface of the aperture stop to the image-side surface of the second lens is shown.
[0016] 条件式(3)は、レンズ全系の合成屈折力 Φと、第 1レンズの像側の面の屈折力 Φ Γ Condition (3) is obtained by combining the combined refractive power Φ of the entire lens system and the refractive power 面 面 of the surface of the first lens on the image side.
2 との比を、 1. 9から 2. 5の範囲内とする。その比が、 1. 9以下となると、第 1レンズの 像側の面の屈折力が弱くなりすぎ、その結果、焦点距離が長くなり、小型化には適さ なレ、。他方、比が 2. 5以上となると、第 1レンズの像側の面の曲率がきつくなりすぎ、 レンズの成型をすることが難しくなつてしまう。  The ratio to 2 shall be in the range of 1.9 to 2.5. If the ratio is less than 1.9, the refracting power of the surface on the image side of the first lens becomes too weak, as a result, the focal length becomes long, making it suitable for miniaturization. On the other hand, if the ratio is 2.5 or more, the curvature of the surface on the image side of the first lens becomes too tight, and it becomes difficult to mold the lens.
[0017] 条件式 (4)は、レンズ光学長 (T+bf)とレンズ全系の焦点距離 (f)との比を、 1. 2か ら 1. 8の範囲とする。その比が、 1. 2以下となると、第 1レンズのパワーが小さくなりす ぎ、収差の補正が困難になる。他方、比が 1. 8以上となると、全長が長くなり、小型化 には不向きとなってしまう。このように、レンズ光学長(T+bf)を、レンズ全系の焦点距 離 (f)の 1. 2— 1. 8の大きさとすることで、コンパクトで、かつ、撮像素子の高画素化 に対応する高性能の撮影レンズを得ることができる。  Conditional expression (4) sets the ratio of the lens optical length (T + bf) to the focal length (f) of the entire lens system in the range of 1.2 to 1.8. If the ratio is less than 1.2, the power of the first lens becomes too small, and it becomes difficult to correct the aberration. On the other hand, if the ratio is 1.8 or more, the overall length becomes long, which makes it unsuitable for miniaturization. As described above, by setting the lens optical length (T + bf) to the size of 1.2 to 1.8 of the focal distance (f) of the entire lens system, it is compact and the number of pixels of the imaging device is increased. It is possible to obtain a high-performance photographing lens corresponding to
[0018] 本発明に係る撮像装置は、上記した特徴を備えた撮影レンズと、その撮影レンズに よって形成された像を撮像する撮像素子とを有する。撮像素子は、例えば、 CCD等 の固体撮像素子が用いられる。このような撮像装置は、コンパクトな構成であるため、 小型化カメラや薄型カメラに用いることができる。好ましくは、撮影レンズと撮像素子と の間に、 IR (赤外線)カット用のフィルタやローパスフィルタ等の光学フィルタを配置さ せることで撮像性能の向上を図るようにする。 An image pickup apparatus according to the present invention has a photographing lens having the above-described features, and an image pickup element for picking up an image formed by the photographing lens. As the imaging device, for example, a solid-state imaging device such as a CCD is used. Since such an imaging device has a compact configuration, it can be used for a miniaturized camera or a thin camera. Preferably, an optical filter such as an IR (infrared) cut filter or a low pass filter is disposed between the photographing lens and the imaging device. By doing this, the imaging performance is improved.
発明の効果  Effect of the invention
[0019] 本発明の撮影レンズ及び撮像装置によれば、第 1の両凸レンズと第 2のメニスカス レンズとが条件式(1)および(2)を満足するように構成したので、十分なバックフォー カスと光学長の短い極めてコンパクトな高性能な結像性能を有すると共に、コストパフ オーマンスの高い撮影レンズ及び撮像装置を提供することができる。  According to the imaging lens and the imaging device of the present invention, since the first biconvex lens and the second meniscus lens are configured to satisfy the conditional expressions (1) and (2), a sufficient back focus can be obtained. It is possible to provide an imaging lens and an imaging device with high cost performance, as well as extremely compact high-performance imaging performance with a short chip and optical length.
図面の簡単な説明  Brief description of the drawings
[0020] [図 1]本発明の実施例に係る撮影レンズの構成を示し、かつ実施例 1の撮影レンズの 構成を示す図である。  FIG. 1 is a view showing the configuration of a taking lens according to an example of the present invention and showing the configuration of the taking lens of Example 1.
[図 2]実施例 2の撮影レンズの構成を示す図である。  FIG. 2 is a view showing a configuration of a photographing lens of Embodiment 2.
[図 3]実施例 3の撮影レンズの構成を示す図である。  FIG. 3 is a view showing the configuration of a photographing lens of Example 3;
[図 4]実施例 4の撮影レンズの構成を示す図である。  FIG. 4 is a view showing the configuration of a photographing lens of Example 4;
[図 5]実施例 5の撮影レンズの構成を示す図である。  FIG. 5 is a view showing a configuration of a photographing lens of Example 5.
[図 6]実施例 1のレンズデータを示す図である。  FIG. 6 is a diagram showing lens data of Example 1.
[図 7]実施例 1による球面収差を示す図である。  FIG. 7 is a view showing spherical aberration according to Example 1.
[図 8]実施例 1による非点収差を示す図である。  FIG. 8 is a diagram showing astigmatism according to Example 1.
[図 9]実施例 1による歪曲収差を示す図である。  FIG. 9 is a diagram showing distortion according to Example 1.
[図 10]実施例 2のレンズデータを示す図である。  FIG. 10 shows lens data of the second embodiment.
[図 11]実施例 2による球面収差を示す図である。  FIG. 11 is a view showing spherical aberration according to Example 2.
[図 12]実施例 2による非点収差を示す図である。  FIG. 12 is a diagram showing astigmatism according to Example 2.
[図 13]実施例 2による歪曲収差を示す図である。  FIG. 13 is a diagram showing distortion according to Example 2.
[図 14]実施例 3のレンズデータを示す図である。  FIG. 14 is a diagram showing lens data of Example 3.
[図 15]実施例 3による球面収差を示す図である。  FIG. 15 is a view showing spherical aberration according to Example 3.
[図 16]実施例 3による非点収差を示す図である。  FIG. 16 is a diagram showing astigmatism according to Example 3.
[図 17]実施例 3による歪曲収差を示す図である。  FIG. 17 is a diagram showing distortion according to Example 3.
[図 18]実施例 4のレンズデータを示す図である。  FIG. 18 is a diagram showing lens data of Example 4.
[図 19]実施例 4による球面収差を示す図である。  FIG. 19 shows spherical aberration according to Example 4.
[図 20]実施例 4による非点収差を示す図である。 [図 21]実施例 4による歪曲収差を示す図である。 FIG. 20 is a diagram showing astigmatism according to Example 4. FIG. 21 is a diagram showing distortion according to Example 4.
[図 22]実施例 5のレンズデータを示す図である。  FIG. 22 shows lens data of the fifth embodiment.
[図 23]実施例 5による球面収差を示す図である。  FIG. 23 shows spherical aberration according to Example 5.
[図 24]実施例 5による非点収差を示す図である。  FIG. 24 is a diagram showing astigmatism according to Example 5.
[図 25]実施例 5による歪曲収差を示す図である。  FIG. 25 is a diagram showing distortion according to Example 5.
[図 26]本発明による各実施例の撮影レンズと特許文献 1の各実施例の撮影レンズと のレンズ性能を対比する図である。  FIG. 26 is a view comparing lens performances of the photographing lens of each example according to the present invention and the photographing lens of each example of Patent Document 1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 次に添付図面を参照しながら本発明の最良の実施例を説明する。 The preferred embodiments of the present invention will now be described with reference to the attached drawings.
[0022] 撮影レンズ 1は、図 1に示されるように、図の左側を物体側とするとき、物体側から順 に光軸〇に沿って、開口絞り Sと、両凸形状の正のパワーをもつ第 1レンズ L1と、物 体側に凹面を向けたメニスカス形状の負のパワーをもつ第 2レンズ L2とが配列される 。第 1および第 2レンズ Ll、 L2のレンズ面はすべて非球面である。このように撮影レ ンズ 1は、 2群 2枚力 構成されるレンズである。 As shown in FIG. 1, taking the left side of the drawing as the object side, the taking lens 1 has an aperture stop S and a biconvex positive power along the optical axis 順 in order from the object side. And a second lens L2 having a negative power in the form of a meniscus with its concave surface facing the object side. The lens surfaces of the first and second lenses L1 and L2 are all aspheric. As described above, the shooting lens 1 is a lens configured with two lenses and two lenses.
[0023] 図中において、 rは第 1レンズの物体側の面の光軸付近の曲率半径、 rは第 1レン In the figure, r is the radius of curvature near the optical axis of the object-side surface of the first lens, and r is the first lens.
1 2 ズの像側の面の光軸付近の曲率半径、 rは第 2レンズの物体側の面の光軸付近の  A radius of curvature near the optical axis of the surface at the side of the 1 2 z image, r is near the optical axis of the surface at the object side of the second lens
3  3
曲率半径、 rは第 2レンズの像側の面の光軸付近の曲率半径を示す。 dOは開口絞り The radius of curvature r represents the radius of curvature near the optical axis of the image-side surface of the second lens. dO is the aperture stop
4  Four
と第 1レンズ L1との間隔、 dlは第 1レンズの光軸上の芯厚、 d2は第 1レンズと第 2レン ズの光軸上の間隔、 d3は第 2レンズの光軸上の芯厚、 d4は第 2レンズと平行平面ガ ラス(光学フィルタ) 10との間隔、 d5は平行平面ガラスの厚さ、 d6は平行平面ガラス 1 0とカバーガラス 20との間隔を示す。なお、これらの距離は光軸 O上に沿った長さで ある。 fはレンズ全系の焦点距離、 bfはバックフォーカス(第 2レンズの像側の面から 結像面 Mまでの距離)、 Tは開口絞り Sの物体側の面から第 2レンズの像側の面まで の光軸上の距離を示す。  Distance between the lens and the first lens L1, dl is the core thickness on the optical axis of the first lens, d2 is the distance on the optical axis between the first lens and the second lens, d3 is the core on the optical axis of the second lens The thickness d4 indicates the distance between the second lens and the plane parallel glass (optical filter) 10, d5 indicates the thickness of the plane parallel glass, and d6 indicates the distance between the plane parallel glass 10 and the cover glass 20. These distances are lengths along the optical axis O. f is the focal length of the whole lens system, bf is the back focus (the distance from the surface on the image side of the second lens to the imaging surface M), T is the surface on the object side of the aperture stop S to the image side of the second lens Indicates the distance on the optical axis to the surface.
[0024] 第 2レンズ L2と像側の結像面 Mとの間に配置される平行平面ガラス 10は、好ましく は固体撮像素子に必要となるローパスフィルタや IRカットフィルタ等の光学フィルタで ある。さらに平行平面ガラス 10と結像面 Mとの間にカバーガラス 20の平面板が配置 されている。カバーガラス 20は、 CCD等の固体撮像素子の表面を保護するために 用いられる。 The parallel flat glass 10 disposed between the second lens L2 and the imaging surface M on the image side is preferably an optical filter such as a low pass filter or an IR cut filter required for a solid-state imaging device. Furthermore, a flat plate of the cover glass 20 is disposed between the plane-parallel glass 10 and the imaging surface M. The cover glass 20 is for protecting the surface of a solid-state imaging device such as a CCD. Used.
[0025] また、撮影レンズ 1は、撮像素子への入射光線の入射角をより小さくさせること、およ び組み立てを容易にするために、開口絞り Sを第 1レンズ L1の物体側に配置させて いる。このような構成で、以下の条件式(1)および(2)を満足させることで、極めてコ ンパクトであり、かつ十分なバックフォーカスをもつ、優れた結像性能の撮影レンズを 提供すること力 Sできる。  In addition, in the imaging lens 1, the aperture stop S is disposed on the object side of the first lens L1 in order to make the incident angle of incident light to the imaging device smaller and to facilitate the assembly. ing. With such a configuration, by satisfying the following conditional expressions (1) and (2), it is possible to provide a photographing lens with excellent imaging performance, which is extremely compact and has a sufficient back focus. S can.
[0026] [数 5] — く d 3 ■ ■ ■ [0026] [Number 5] — dd 3 ■ ■ ■
[0027] [数 6]  [0027] [Number 6]
0 6 く^! く 0. 8 ■ ■ ■ (2) 0 6 ^ ^! 0 0. 8 ■ ■ ■ (2)
[0028] 条件式(1)は、第 2レンズ L2の合成屈折力を規定するもので、近軸合成屈折力は 負の屈折力を有する。第 2レンズ L2の曲率半径 r、 rと、第 2レンズの芯厚 d2とその The conditional expression (1) defines the composite refractive power of the second lens L2, and the paraxial composite refractive power has negative refractive power. Second lens L2 radius of curvature r, r, second lens core thickness d2 and its
3 4  3 4
屈折率 n3との相関が条件式 (1)を満足することにより、第 1レンズ L1の正の屈折力の バランスを適正に保ち、全長を短くすることができる。  When the correlation with the refractive index n3 satisfies the conditional expression (1), the balance of the positive refractive power of the first lens L1 can be properly maintained, and the total length can be shortened.
[0029] 条件式(2)は、レンズバックフォーカス(bf)の全系焦点距離 fに対する範囲を規定 し、下限値を下回ると、バックフォーカスが短すぎ、平行平面ガラス 10との干渉やレン ズバック調整が困難になるとともに、周辺光のシェーディングが悪くなる。上限値を上 回ると、全長が長くなり、所望のコンパクトで薄型の撮影レンズを得ることができなくな る。 The conditional expression (2) defines the range of the lens back focus (bf) with respect to the entire system focal length f, and when the lower limit is exceeded, the back focus is too short, and interference with the plane parallel glass 10 or lens back The adjustment becomes difficult and the shading of the ambient light becomes worse. If the upper limit is exceeded, the overall length becomes long, and it becomes impossible to obtain the desired compact and thin shooting lens.
[0030] 撮影レンズ 1は、さらに条件式(3)および (4)を満足するものであることが好ましい。  It is preferable that the photographing lens 1 further satisfy the conditional expressions (3) and (4).
[0031] [数 7] [0031] [Number 7]
1. 9 く く 2. 5 ■ ■ ■ (3) 1. 9 Part 2.5 5 ■ ■ ■ (3)
Φ  Φ
[0032] [数 8] [0032] [Number 8]
1. 2 く < 1 . 8 ■ ■ ■ (4) 但し、 Φはレンズ全系の合成屈折力、 Φ Γは第 1レンズの像側の面の屈折力である。 1. 2 <1. 8 ■ ■ ■ (4) Where Φ is the combined refractive power of the entire lens system, and Γ is the refractive power of the surface on the image side of the first lens.
2  2
[0033] さらに条件式(3)は、第 1レンズ L1の像側の面 rの屈折力を規定するもので、その  Condition (3) further defines the refracting power of the surface r on the image side of the first lens L 1.
2  2
下限値を下回ると全長が長くなり、その上限値を上回ると第 2レンズ L2の曲率半径が 小さくなり、レンズ成形が困難になるとともに像面湾曲の補正が困難になる。  If the lower limit value is exceeded, the total length becomes long, and if the upper limit value is exceeded, the radius of curvature of the second lens L2 becomes small, lens formation becomes difficult, and correction of field curvature becomes difficult.
[0034] 条件式 (4)は、条件式(3)を満足する構成において、レンズ光学長 (T+bf)の全系 焦点距離 fとの相対比を規定するものである。下限値を下回ると、第 1レンズ L1の屈 折力が必要以上に強くなり、第 2レンズ L2とのバランスが取れなくなり、良好な画像性 能を得ることができなくなる。上限値を上回ると、レトロフォーカス型に近くなり、全長 が長くなつてコンパクトな撮影レンズを得ることができない。  Conditional expression (4) defines the relative ratio of the lens optical length (T + bf) to the focal length f of the entire system in the configuration satisfying the conditional expression (3). Below the lower limit, the refractive power of the first lens L1 becomes stronger than necessary, and the balance with the second lens L2 can not be achieved, so that it is not possible to obtain good image performance. If the upper limit is exceeded, it becomes close to a retrofocus type, and the overall length becomes too long to obtain a compact taking lens.
[0035] 次に本発明の実施例について説明する。各実施例において、 FNo.は Fナンバー 、 ωは半画角、 dはレンズ面間隔、 nは各レンズの d線(587. 6nm)に対する屈折率 d  Next, examples of the present invention will be described. In each embodiment, FNo. Is an F number, ω is a half angle of view, d is a lens surface distance, n is a refractive index of each lens to the d line (587. 6 nm) d
、 V dは各レンズのアッベ数である。また、レンズ各面(r、 r、 r、 r )は非球面で構成  , V d is the Abbe number of each lens. Also, each lens surface (r, r, r, r) is aspheric.
1 2 3 4  1 2 3 4
されており、非球面の形状は、光軸(O)方向に Z軸、光軸と垂直方向に X軸をとり、光 の進行方向を正とし、円錐定数を k、非球面係数を a、 b、 c、 dとした時、式(5)で表す  The shape of the aspheric surface is Z axis in the direction of the optical axis (O) and X axis in the direction perpendicular to the optical axis, and the traveling direction of light is positive, the conical constant is k, the aspheric coefficient is a, When b, c and d are given, they are expressed by equation (5)
[0036] [数 9] [Number 9]
Figure imgf000009_0001
Figure imgf000009_0001
(実施例 1) (Example 1)
実施例 1による撮影レンズ 1は、図 1に示す断面構成を有する。撮影レンズ 1のレン ズデータは図 6に示す通りであり、表 1の面番号は、光軸〇に沿って物体側からの面 に順に付されている。面番号 0 (ST〇)は、開口絞り Sに相当する。面番号 1、 2は、第 1レンズ: L1の r、 rに申目当し、面番号 3、 4ίま第 2レンズ: L2の r、 rに申目当する。面番  The photographing lens 1 according to the first embodiment has a cross-sectional configuration shown in FIG. The lens data of the imaging lens 1 is as shown in FIG. 6, and the surface numbers in Table 1 are assigned in order from the object side along the optical axis 〇. The surface number 0 (ST〇) corresponds to the aperture stop S. The surface number 1 and 2 correspond to the first lens: L1 r and r, and the surface number 3 and 4 to the second lens: L2 r and r. Face number
1 2 3 4  1 2 3 4
号 5は平行平面ガラス 10の物体側の面 r、面番号 6は平行平面ガラス 10の像側の面  No. 5 is the object-side surface r of the plane-parallel glass 10, and the surface number 6 is the surface of the plane-parallel glass 10 on the image side
5  Five
rに相当する。間隔 dは、上記した面と面との光軸上の間隔(dl、 d2、 d3、 d4、 d5、 d It corresponds to r. The spacing d is the spacing on the optical axis between the faces described above (dl, d2, d3, d4, d5, d
6 6
6)を示している。表 2の数値は、べき数を示し、例えば「1. 04989E— 01」は、「1. 04 289 X 10— である。カバーガラス 20の厚さは 0· 4mmである。 6) is shown. The numbers in Table 2 indicate powers, for example, “1. 04989E— 01” is “1. 04. It is 289 X 10-. The thickness of the cover glass 20 is 0 · 4 mm.
[0038] 図 7ないし図 9は、実施例 1による諸収差を示し、図 7は球面収差、図 8は非点収差 、図 9は歪曲収差を示す。図 7において、一点鎖線は d線、実線は F線、破線は C線 に対する球面収差である。図 8において、実線はタンジェンシャル像面の収差、破線 はサジタル像面の収差である。図 9の歪曲収差は d線に対するものである。なお、これ らの図で用いた収差の記号は以下の実施例 2— 5においても同様である。  7 to 9 show various aberrations according to Example 1. FIG. 7 shows spherical aberration, FIG. 8 shows astigmatism, and FIG. 9 shows distortion. In FIG. 7, the dashed-dotted line is the d-line, the solid line is the F-line, and the broken line is the spherical aberration for the C-line. In FIG. 8, the solid line is the aberration of the tangential image plane, and the broken line is the aberration of the sagittal image plane. The distortion shown in FIG. 9 is for the d-line. The symbol of the aberration used in these figures is the same as in Example 2-5 below.
[0039] (実施例 2— 5)  (Example 2-5)
実施例 2ないし 5の撮影レンズの断面構成を図 2ないし図 5に示す。また、実施例 2 _5のレンズデータをそれぞれ図 10、図 14、図 18および図 22に示し、実施例 2— 5に よる球面収差をそれぞれ図 11、図 15、図 19および図 23に示し、実施例 2—5による 非点収差をそれぞれ図 12、図 16、図 20および図 24に示し、実施例 2—5による歪曲 収差をそれぞれ図 13、図 17、図 21および図 25に示す。  Cross-sectional configurations of the photographing lenses of Examples 2 to 5 are shown in FIGS. 2 to 5. The lens data of Examples 2 to 5 are shown in FIGS. 10, 14, 18 and 22, and the spherical aberration according to Example 2-5 is shown in FIGS. 11, 15, 19 and 23, respectively. The astigmatism according to Example 2-5 is shown in FIG. 12, FIG. 16, FIG. 20 and FIG. 24, respectively, and the distortion according to Example 2-5 is shown in FIG. 13, FIG. 17, FIG. 21 and FIG.
[0040] 図 26の表 1は、本発明による実施例 1 5のレンズデータに基づき、上述した条件 式(1)ないし (4)の数値を算出したものである。表 2は、特許文献 1に開示される各実 施例のレンズデータに基づき、条件式(1)ないし (4)の数値を算出したものである。こ れらの表から明らかなように、本発明の各実施例 1 5の撮影レンズは、特許文献 1に 比べて、十分なバックフォーカス(bf)を有しているにもかかわらず、そのレンズ光学長 (T+bf)を十分に短くしている。このため、第 2レンズ L2と像面 Mとの間に平行平面ガ ラス(光学フィルタ) 10を介在させて高解像度の撮像を可能にするとともに撮影レンズ およびそのような撮影レンズを含む撮像装置を小型化することができ、小型カメラや 薄型カメラに適用することが可能となる。  Table 1 in FIG. 26 shows the numerical values of the conditional expressions (1) to (4) described above calculated based on the lens data of the example 15 according to the present invention. Table 2 shows the numerical values of conditional expressions (1) to (4) calculated based on lens data of the respective embodiments disclosed in Patent Document 1. As is apparent from these tables, the taking lens of each Example 15 of the present invention has sufficient back focus (bf) compared to Patent Document 1, but the lens The optical length (T + bf) is made sufficiently short. For this reason, a plane-parallel glass (optical filter) 10 is interposed between the second lens L2 and the image plane M to enable high-resolution imaging, and a photographing lens and an imaging device including such a photographing lens. It can be miniaturized and can be applied to small cameras and thin cameras.
[0041] 以上本発明の好ましい実施例について詳述したが、本発明は、特定の実施例に限 定されるものではなぐ特許請求の範囲に記載された本発明の要旨の範囲内におい て、種々の変形 '変更が可能である。  Although the preferred embodiments of the present invention have been described above in detail, the present invention is not limited to the specific embodiments, but is within the scope of the present invention as set forth in the claims. Various variants are possible.

Claims

請求の範囲  The scope of the claims
[1] 両凸形状の正のパワーをもち、両凸面が非球面である第 1レンズと、  [1] A first lens having a positive power of a biconvex shape, and the biconvex surface is aspheric,
物体側に凹面を向けたメニスカス形状の負のパワーをもち、両面が非球面である第 The second lens has negative meniscus power with its concave side facing the object side, and both sides are aspheric.
2レンズとを有し、 With two lenses,
前記第 1、第 2レンズが物体側から順に配置され、かつ以下の条件式(1)および(2 )を満足することを特徴とする撮影レンズ。  An imaging lens characterized in that the first and second lenses are disposed in order from an object side, and the following conditional expressions (1) and (2) are satisfied.
[数 10] - "3 ( ^ ) ■ ■ ■ (" [Equation 10]-" 3 (^) ■ ■ ■ ("
[数 11] [Number 11]
0. 6 <— < 0. 8 ■ ■ ■ (2) 但し、 fはレンズ全系の焦点距離、 bfはバックフォーカス(第 2レンズの像側の面から 結像面までの距離)、 rは第 2レンズの物体側の面の近軸の曲率半径、 rは第 2レン 0. 6 <-<0. 8 ■ ■ ■ (2) where f is the focal length of the whole lens system, bf is the back focus (the distance from the surface on the image side of the second lens to the image forming surface), r is Radius of paraxial curvature of the surface on the object side of the second lens, r is the second lens
3 4 ズの像側の面の近軸の曲率半径、 dは第 2レンズの光軸上の芯厚、 nは第 2レンズ  The paraxial radius of curvature of the surface on the image side of 3 4 z, d is the core thickness on the optical axis of the second lens, n is the second lens
3 3  3 3
の d線の屈折率を示す。  Indicates the refractive index of d-line.
[2] 前記第 1レンズの物体側に開口絞りを配し、かつ以下の条件式(3)および (4)を満足 することを特徴とする撮影レンズ。  [2] A photographic lens characterized by having an aperture stop on the object side of the first lens and satisfying the following conditional expressions (3) and (4).
[数 12]  [Number 12]
1. 9 < < 2. 5 ■ ■ ■ (3) 1. 9 <<2.5 ■ ■ ■ (3)
[数 13] [Number 13]
1. 2 く ϋ^ίλく 1 . 8 ■ ■ ■ (4) 但し、 Φはレンズ全系の合成屈折力、 Φ Γは第 1レンズの像側の面の屈折力、 Τは開 However, Φ is the combined refractive power of the entire lens system, 但 し is the refractive power of the surface on the image side of the first lens, and Τ is open
2  2
口絞りの物体側の面から第 2レンズの像側の面までの距離を示す。  The distance from the object-side surface of the aperture stop to the image-side surface of the second lens is shown.
請求項 1または 2に記載の撮影レンズと、前記撮像レンズにより形成された像を撮像 する撮像素子とを有する、撮像装置。 An image formed by the imaging lens according to claim 1 or 2 and the imaging lens is imaged. And an imaging device.
[4] 前記撮影レンズと前記撮像素子との間に光学フィルタが配される、請求項 3に記載の 撮像装置。  [4] The imaging device according to claim 3, wherein an optical filter is disposed between the imaging lens and the imaging element.
PCT/JP2004/006648 2003-05-30 2004-05-18 Imaging lens and image pickup device using the same WO2004107008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-156080 2003-05-30
JP2003156080A JP2004361440A (en) 2003-05-30 2003-05-30 Photographic lens and imaging apparatus using the same

Publications (1)

Publication Number Publication Date
WO2004107008A1 true WO2004107008A1 (en) 2004-12-09

Family

ID=33487379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006648 WO2004107008A1 (en) 2003-05-30 2004-05-18 Imaging lens and image pickup device using the same

Country Status (3)

Country Link
JP (1) JP2004361440A (en)
TW (1) TWI235845B (en)
WO (1) WO2004107008A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025261A (en) * 2005-07-15 2007-02-01 Matsushita Electric Works Ltd Imaging lens
TW201222057A (en) * 2010-11-16 2012-06-01 E Pin Optical Industry Co Ltd Imaging lens system with two lenses
TWI422857B (en) * 2010-12-15 2014-01-11 Largan Precision Co Ltd Photographing optical lens assembly
TWI506330B (en) * 2011-09-07 2015-11-01 Hon Hai Prec Ind Co Ltd Imaging lens
CN103135202B (en) * 2011-11-30 2017-02-08 鸿富锦精密工业(深圳)有限公司 Imaging lens
CN102944924B (en) * 2012-11-30 2015-04-08 无锡羿飞科技有限公司 Short-focus high-definition projection lens structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075719A (en) * 2001-09-07 2003-03-12 Fuji Photo Optical Co Ltd Photographic lens
JP2003227999A (en) * 2001-11-27 2003-08-15 Minolta Co Ltd Imaging lens
JP2003329921A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Image pickup lens
JP2004004742A (en) * 2002-04-16 2004-01-08 Konica Minolta Holdings Inc Small imaging lens, imaging unit and mobile terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075719A (en) * 2001-09-07 2003-03-12 Fuji Photo Optical Co Ltd Photographic lens
JP2003227999A (en) * 2001-11-27 2003-08-15 Minolta Co Ltd Imaging lens
JP2004004742A (en) * 2002-04-16 2004-01-08 Konica Minolta Holdings Inc Small imaging lens, imaging unit and mobile terminal
JP2003329921A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Image pickup lens

Also Published As

Publication number Publication date
JP2004361440A (en) 2004-12-24
TW200426390A (en) 2004-12-01
TWI235845B (en) 2005-07-11

Similar Documents

Publication Publication Date Title
CN112394477B (en) Camera lens
KR101853808B1 (en) Wide angle lens system and photographing device
EP2149808B1 (en) Retrofocus type of imaging lens
JP4416391B2 (en) Wide-angle lens, camera and projection display device
JP4518836B2 (en) Imaging lens system
US20120147485A1 (en) Imaging lens, imaging device and information device
KR101612444B1 (en) Macro lens system and pickup device having the same
KR101758621B1 (en) Fish-eye lens system and photographing apparatus
KR20130092846A (en) Imaging lens system
WO2013099214A1 (en) Imaging lens and imaging device
JP2005274662A (en) Zoom lens having cemented lens
JP2014126844A (en) Imaging optical system, camera device and portable information terminal device
JP2003140041A (en) Zoom lens system
JP4917922B2 (en) Zoom lens system, imaging device and camera
JP5607264B2 (en) Imaging lens and imaging apparatus
JP2004325713A (en) Objective lens
JP2003131126A (en) Wide angle lens
KR102094508B1 (en) Zoom lens and photographing lens having the same
JP2003241081A (en) Short focal length lens of short overall length
KR20040049794A (en) Image pickup lens
JP4109857B2 (en) Front shutter type single focus lens
JP2003149548A (en) Simply constituted single focal point lens
KR101880633B1 (en) Zoom lens and photographing device having the same
JPH09304695A (en) Image-formation lens
JP4191416B2 (en) Zoom lens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase