WO2004107005A1 - Optical fiber cable producing method, and optical fiber cable - Google Patents

Optical fiber cable producing method, and optical fiber cable Download PDF

Info

Publication number
WO2004107005A1
WO2004107005A1 PCT/JP2004/007652 JP2004007652W WO2004107005A1 WO 2004107005 A1 WO2004107005 A1 WO 2004107005A1 JP 2004007652 W JP2004007652 W JP 2004007652W WO 2004107005 A1 WO2004107005 A1 WO 2004107005A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber cable
manufacturing
pof
jacket tube
Prior art date
Application number
PCT/JP2004/007652
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitaka Matsuyama
Hitoshi Tsuchiya
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2005506548A priority Critical patent/JP4320660B2/en
Publication of WO2004107005A1 publication Critical patent/WO2004107005A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides

Definitions

  • the present invention relates to a method for manufacturing an optical fiber cable in which a plastic optical fiber is housed in a jacket tube, and an optical fiber cable obtained by the method.
  • the optical fiber used as a large-capacity communication medium is a silica glass optical fiber.
  • GI-POF graded-index plastic optical fiber
  • Babai a graded-index plastic optical fiber that has a distribution of the refractive index in the cross-sectional direction has a high-speed, large-capacity transmission capability, and is used in next-generation communications. It is expected as an optical fiber.
  • the bare optical fiber (bare fiber) is not practical, and it is not practical, and it is necessary to protect the optical fiber, increase the number of cores, attach connectors, and so on. It is used as an optical fiber cable by being compounded with a tensile strength material such as wire or a fiber tensile strength material such as aramid fiber.
  • the method of manufacturing this optical fiber cable basically consists of extruding the outer periphery of the outer tube with a thermoplastic resin, etc., together with a constituent material such as a tensile member (tension member) that resists the POF against pulling, and covering and forming the sheath tube. It is done by doing.
  • the POF is easily affected by the heat of a thermoplastic resin or the like melted at a high temperature, and the heat may reduce the physical properties of the POF.
  • GI_POF low molecular compound materials with different refractive indices are contained in the resin material
  • a method of forming a GI-POF by thermally diffusing a material to form a refractive index distribution is a method of forming a GI-POF by thermally diffusing a material to form a refractive index distribution.
  • low-molecular compound materials undergo thermal diffusion in the GI-PF under the influence of heat during coating molding into a cable, and the refractive index distribution changes, resulting in transmission loss. May increase. For this reason, when converting GI-POF into a cable, it is necessary to manufacture the cable so that it is not affected by heat.
  • WO01 / 95002 pamphlet includes a plurality of GI-POFs and a resin cable body including the GI-POF.
  • An optical fiber cable is disclosed, which is movable and dispersed one by one.
  • a typical coating resin is a soft vinyl chloride resin-polyethylene resin. If there is, you can usually use it.
  • optical fiber cables are required to have further flame retardancy.
  • flame retardancy is usually achieved by adding a flame retardant to the jacket tube.
  • the melting temperature of the resin generally increases in accordance with the content of the flame retardant. For example, even in the case of the above-mentioned soft pinyl chloride resin or polyethylene resin, the melting temperature may rise to 140 ° C. or more depending on the amount of the flame retardant added. Therefore, when a resin having higher flame retardancy is used as the jacket tube, it is necessary to mold the jacket tube at a molding temperature exceeding 140 ° C.
  • an object of the present invention is to form a jacket tube at a higher temperature without increasing transmission loss, and as a result, a resin having excellent flame retardancy can be used as the jacket tube.
  • Another object of the present invention is to provide a method for manufacturing a small-diameter optical fiber cable. Disclosure of the invention
  • a method of manufacturing an optical fiber cable according to the present invention is directed to a method of manufacturing an optical fiber cable in which an outer tube is extruded and formed around a plastic optical fiber through a gap or another material.
  • the plastic optical fiber is cooled and introduced into an extruder.
  • cooling is preferably performed immediately before introduction into the extrusion molding apparatus.
  • the influence of the heat to POF can be reduced significantly by cooling before introducing POF into an extrusion-molding apparatus. Therefore, it is possible to form the jacket tube at a higher temperature without increasing transmission loss, and it is possible to use a resin having excellent flame retardancy as the jacket tube.
  • the cooling temperature is 5 or less. By setting the cooling temperature of the POF at 5 ° C. or less, the influence of heat on the POF can be significantly reduced.
  • the optical fiber cable has no spacer. This is because the present invention is suitable for manufacturing an optical fiber cable having no spacer.
  • the outer diameter of the optical fiber cable is preferably 7 mm or less. This is because the present invention is suitable for manufacturing an optical fiber cable having such a small outer diameter.
  • the optical fiber cable formed by covering the jacket tube with the extrusion molding device is forcibly cooled immediately after being taken out of the extrusion molding device. According to this, since the cooling is performed immediately after the jacket tube is formed, the cooling effect of P ⁇ F is further enhanced, and an increase in transmission loss at the time of forming at a high temperature can be further prevented.
  • the other material is a fiber tensile strength member. According to this, since the fiber strength member itself has heat insulating properties, it is possible to further prevent an increase in transmission loss during molding at a high temperature.
  • the outer tube contains a flame retardant and is made of a thermoplastic resin having a melting temperature of 140 to 190 ° C. According to this, a resin having excellent flame retardancy can be used as the jacket tube, and the flame retardancy of the optical fiber cable can be improved.
  • the optical fiber cable of the present invention is an optical fiber cable obtained by the above manufacturing method, wherein the flame retardancy of the resin used for the sheath tube of the optical fiber cable is specified by JISK7201. It has a characteristic oxygen index of 29 or more. According to this, an optical fiber cable having excellent flame retardancy can be obtained, so that high flame retardancy is required, such as vertical trunk lines of buildings and condominiums, horizontal wiring on each floor, floor wiring, and the like. It can be suitably used for applications. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a cross-sectional view showing one embodiment of an optical fiber cable obtained by the manufacturing method of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating an embodiment of an apparatus for manufacturing an optical fiber cable used in the manufacturing method of the present invention.
  • FIG. 3 is a perspective view of the cooling device.
  • FIG. 4 is a sectional view taken along the line BB of FIG.
  • FIG. 5 is a partial perspective view showing the vicinity of a nozzle of the extrusion molding apparatus.
  • FIG. 6 is a sectional view showing another embodiment of the optical fiber cable obtained by the manufacturing method of the present invention.
  • FIG. 7 is a schematic configuration diagram showing another embodiment of the optical fiber cable manufacturing apparatus used in the manufacturing method of the present invention.
  • Cooling device 310: Box, 311: Lid, 312: Pipe,
  • FIG. 1 shows an embodiment of an optical fiber cable obtained by the manufacturing method of the present invention.
  • the optical fiber cable 10 has two POFs 20 arranged in the center, two strength members 30 respectively arranged outside the POF 20, and an outer periphery of the POF 20 surrounded by a gap 40. To cover the outer periphery of the tensile strength member 30 An outer tube 50 is provided.
  • the inner surface of the outer cover tube 50 and the outer periphery of the POF 20 are the length of the optical fiber cable.
  • the inner surface of the outer tube 50 and the outer periphery of the P ⁇ F 20 are at least partially non-contact (not entirely non-contact) "means one or more points on the outer periphery of the POF 20.
  • the POFs 20 are distributed and arranged one by one in a freely movable state inside the jacket tube 50.
  • the material of POF 20 is not particularly limited, and a fluororesin, a polymethylmethacrylate (PMMA) resin, or the like can be used. Above all, it is preferable to use a fluororesin, especially a transparent fluororesin, since transmission loss is low and a usable wavelength range of light is wide.
  • a fluororesin POF for example, those described in JP-A-8-55848 or the like are preferably used.
  • the outer diameter of POF20 is preferably from 400 to 100 x m.
  • a metal wire such as a zinc plated hard steel wire, a copper alloy, and stainless steel, or a fiber reinforced plastic obtained by solidifying aramide fiber, glass fiber, or the like with a resin is preferably used.
  • an extrudable thermoplastic resin such as a soft vinyl chloride resin and a polyethylene resin can be used.
  • a thermoplastic resin having a melting temperature of 140 to 190 is preferably used.
  • the optical fiber cable does not have the fiber tensile strength member of the outer periphery of the POF and the outer tube, that is, at least a gap is formed between the inner surface of the outer tube covering the POF and the outer periphery of the P 0 F.
  • the melting temperature of the thermoplastic resin is preferably 140 to 170 ° C. Also, as described later, When the fiber tension member is provided between the outer circumference of the POF and the inner surface of the outer tube, at least a part between the inner surface of the outer tube covering the POF and the outer circumference of the In the case of non-contact (separated) and a configuration in which the fiber tensile strength member is arranged between the inner surface of the outer tube and the outer periphery of the POF, the melting temperature of the above thermoplastic resin is 1 65 ⁇ 190 ° C is preferred. Examples of such a resin include a so-called flame-retardant grade resin obtained by adding a flame retardant to a thermoplastic resin such as the above-mentioned soft vinyl chloride resin or polyethylene resin.
  • This optical fiber cable 10 preferably does not have a spacer.
  • the spacer is a spacer such as a slotted spacer.
  • These spacers can also function as insulation. That is, when manufacturing an optical fiber cable having a spacer, there is little restriction on the material of the jacket tube. Conversely, in the case of an optical fiber cable having no spacer, it is preferable to apply the manufacturing method of the present invention in that the restriction on the material (molding temperature) of the jacket tube can be eliminated.
  • these small diameter cables have one to six cores.
  • FIG. 2 to 5 show an apparatus for manufacturing the optical fiber cable 10 described above.
  • 2 is a schematic configuration diagram showing the entire manufacturing apparatus
  • FIG. 3 is a perspective view of the cooling apparatus
  • FIG. 4 is a cross-sectional view taken along the line B-B of FIG. 3
  • FIG. 5 shows the vicinity of the nozzle of the extrusion apparatus. It is a partial perspective view.
  • reference numeral 21 denotes a POF take-up reel.
  • the two POFs 20 fed from the reel 21 are guided by guide rollers 14 0 and 15 2 through guide rollers 12 1, 12 2 and 12 3, respectively. Introduced in 300 ing.
  • Reference numeral 31 denotes a payout reel for the tensile strength member 30.
  • the two strength members 30 drawn out from the reel 31 are also guided by the guide rollers 140 and 150, respectively.
  • a cooling device 300 is provided in front of the guide roller 150 (in the traveling direction of the POF 200).
  • the cooling device 300 has a box 310, a lid 3111, and a pipe 312 penetrating the box 310.
  • the inside of the box 310 and the outer periphery of the pipe 312 are filled with dry ice 3200.
  • a heat insulating material 3 13 is attached to the inner wall of the box 3 12.
  • the two aligned POFs 20 and the two strength members 30 are passed through the inside of the pipe 312.
  • two POFs 20 and two strength members 30 are appropriately stretched so as not to contact the inner wall of the pipe 312.
  • the material of the box 310 metals such as stainless steel and aluminum, and resins such as polyethylene and polypropylene are preferably used.
  • metals such as stainless steel and aluminum, and resins such as polyethylene and polypropylene are preferably used.
  • resins such as polyethylene and polypropylene are preferably used.
  • copper, brass, stainless steel or the like is preferably used.
  • Urethane foam, styrene foam or the like is preferably used as the heat insulating material 3 13.
  • the cooling device 300 is adjusted so that the surface temperature (cooling temperature) of the POF 20 derived therefrom is preferably 5 ° C or lower, more preferably 110 ° C or lower. Although there is no particular lower limit for the cooling temperature, it is preferably ⁇ 80 ° C. or higher from the viewpoint of easy handling of P ⁇ F. This cooling can significantly reduce the effect of heat on the POF 20 and prevent an increase in transmission loss.
  • the surface temperature of the POF can be measured by bringing a thermocouple into contact with the surface of the POF. In this case, it is preferable that the thermometer and the POF are covered together with a heat insulating material.
  • the cooling means of the cooling device 300 is not limited to the dry ice described above, but surrounds the pipe 312.
  • a structure in which a cooling medium flows through a cooling pipe for cooling a structure in which a pair of cooling plates cooled by a Peltier element or the like are passed, and the like can be adopted.
  • a contact-type cooling means such as a cooling roller can be employed.
  • the tensile strength member 300 only needs to be disposed outside the POF 20 and does not necessarily need to pass through the cooling device 300.
  • An extruder 400 for extruding the jacket tube 50 is provided at the outlet of the cooling device 300. It is preferable that the cooling device 300 and the extrusion device 400 are arranged as close as possible. That is, the POF 200 is preferably cooled just before being introduced into the extrusion molding apparatus 400. This is to prevent the POF 20 cooled by passing through the cooling device 300 from warming up.
  • the cooling temperature of P ⁇ F 20 in the POF introduction portion of the nozzle 410 of the extrusion apparatus 400 is preferably 5 or less, more preferably 110 ° C. or less.
  • the passage time of POF 20 from the outlet of the cooling device 300 to the POF introduction portion of the nozzle 410 is preferably 2 seconds or less, and particularly preferably 1 second or less.
  • the nozzle 4100 of the extrusion molding apparatus 400 has two projections 4200 having a hole 22 through which the POF 20 passes.
  • a core 4400 comprising a flat portion 4340 having holes 32 through which the tensile strength members 30 are inserted and disposed on both sides, and a predetermined gap is further provided on the outer periphery of the core 4400.
  • an outer cylinder 450 arranged.
  • the POF 20 is passed through the hole 22, and the tensile strength member 30 is inserted through the hole 32, and the outside is inserted between the core 44 and the outer cylinder 450.
  • the thermoplastic resin forming the covered tube 50 is extruded into a spectacle shape in a molten state to form the covered tube 50.
  • the POF 20 Since the cooling is performed by the initial cooling device 300, the synergistic effect of the two can prevent the POF 20 from deteriorating due to heat and prevent an increase in transmission loss.
  • a cooling water tank 500 is provided further ahead of the extrusion molding apparatus 400.
  • the optical fiber cable 10 formed by covering the jacket tube 50 passes through the water in the cooling water tank 500.
  • the jacket tube 50 just formed is rapidly cooled, preventing heat from being transmitted to the POF 20 inside, and transmission. Prevent loss increase.
  • a take-off device 600 is arranged.
  • the take-up machine 600 is stretched over a pair of pulleys 6 11 and 6 12 and rotates, and the take-up machine 6 0 0 is stretched over a pair of pulleys 6 2 1 and 6 2 2 to rotate.
  • It has a lower belt 62 and has a structure in which the optical fiber cable 10 is sandwiched between the belts 6 10 and 6 20 and fed out.
  • the optical fiber cable 10 thus formed is wound and stored on a winding reel (not shown).
  • the optical fiber cable 10 obtained by the above-described manufacturing method can greatly reduce the influence of heat on POF20. Therefore, the jacket tube 50 can be molded at a higher temperature without increasing transmission loss, and a resin having excellent flame retardancy can be used as the jacket tube 50. As a result, the flame retardancy of the optical fiber cable 10 can be improved.
  • the flame retardancy of the resin used for this jacket tube is represented by the oxygen index (L ⁇ I%) specified by JISK7201. According to the production method of the present invention, it is possible to produce an optical fiber cable 10 having a jacket tube 50 using a resin having an oxygen index of 29 or more.
  • FIG. 6 shows another embodiment of the optical fiber cable obtained by the manufacturing method of the present invention.
  • FIG. 7 shows an apparatus for manufacturing the optical fiber cable.
  • the same parts as those of the above embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • the optical fiber cable 11 has a fiber
  • the fiber tensile strength member 60 is surrounded by a tensile strength member 60, and the outer periphery of the fiber tensile strength member 60 is further covered with a jacket tube 51.
  • the fiber strength member 60 between the POF 20 and the jacket tube 50, the heat insulating property of the fiber strength member itself is utilized, and the sheath tube 5 at a high temperature is used. It is possible to further prevent an increase in transmission loss during molding of 1.
  • the fiber tensile strength member 60 for example, fibers such as aramide fiber, polyethylene terephthalate (PET) fiber, carbon fiber, and glass fiber can be used. Above all, it is preferable to use aramide fiber from the viewpoint of rigidity, flexibility, and prevention of fiber breakage due to repeated bending.
  • PET polyethylene terephthalate
  • carbon fiber carbon fiber
  • glass fiber glass fiber
  • aramide fiber from the viewpoint of rigidity, flexibility, and prevention of fiber breakage due to repeated bending.
  • the apparatus for manufacturing the optical fiber cable 11 includes a reel 21 that feeds out one POF 20 and a reel 61 that feeds out four fiber strength members 60. This is different from the manufacturing apparatus in FIG.
  • the fiber bundle 62 of the fiber tensile strength material unwound from the reel 61 is guided by guide rollers 161, 162, and 163, and is drawn out onto the manufacturing line.
  • the fiber bundle 62 is inserted into the extruder 400 in a state of being arranged in four directions so as to surround the POF 20.
  • the outer periphery of the POF 20 is annularly surrounded to form a fiber tensile strength member 60 as shown in FIG. .
  • An optical fiber cable having the structure shown in FIG. 1 was manufactured using the apparatus shown in FIG. P ⁇ F 20 is a fluororesin POF (manufactured by Asahi Glass Co., Ltd., trade name: Lucina) manufactured by the method described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 8-55848, and has an outer diameter of 0.5. mm.
  • a fluororesin POF manufactured by Asahi Glass Co., Ltd., trade name: Lucina
  • the cooling device 300 is a copper pipe with an inner diameter of 8 mm and a length of 30 cm as the pipe 3 1 2
  • the cooling was performed under the conditions of a linear velocity of P ⁇ F 10 of 15 mZ and a residence time of 1.2 seconds, and the surface temperature of the POF 20 derived from the cooling device 300 was adjusted to 110.
  • the distance from the outlet of the cooling device 300 to the inlet of the nozzle 410 of the extrusion device 400 was 10 cm.
  • Flame-retardant polyethylene (trade name: SNE 9932N: manufactured by RIKEN TECHNOS) is used as the jacket tube 50, the melting temperature is 160 ° C, the outer diameter of the jacket tube 50 is 3.5X6.4mm, and the gap 40 is 1.2X. It was molded to be 1.2 mm.
  • the cooling condition in the cooling bath 500 was set to ⁇ 10 ° C. using an ethylene glycol aqueous solution.
  • the optical fiber cable was used under the same conditions as in the first embodiment except that the cooling in the cooling device 300 was not performed and the surface temperature of the P ⁇ F 20 derived from the cooling device 300 was set to 20. Was manufactured.
  • An optical fiber cable was manufactured under the same conditions as in Comparative Example 1 except that a flame-retardant soft vinyl chloride resin (trade name: SHV9861N: manufactured by Riken Technos) was used as the jacket tube 50 and the melting temperature was 135.
  • a flame-retardant soft vinyl chloride resin trade name: SHV9861N: manufactured by Riken Technos
  • the loss increase (dBZkm) and oxygen index (LOI%) of the optical fiber cables of Example 1 and Comparative Example 12 were measured.
  • the loss increase was measured by the cutback method specified in JIS C-6823, and the oxygen index was measured by the method specified in JIS K7201. The results are shown in Table 1.
  • Example 1 From the results in Table 1, in Example 1, the melting temperature at 160 Even when molded at a predetermined temperature, there was no increase in loss, and an optical fiber cable excellent in flame retardancy as compared with Comparative Example 2 was obtained. On the other hand, in Comparative Example 1 in which the cooling step was not performed, the loss increased.
  • the optical fiber cable having the structure shown in FIG. 6 was manufactured by the apparatus shown in FIG. 7 using the same POF 20 and cooling device 300 as those used in Example 1, and the cooling conditions of the cooling device 300 were also the same as in Example 1. I made it. Aramide fiber (1270 decitex, using four fibers) was used as the fiber tensile strength member 60.
  • the thickness of the jacket tube 50 should be 0.5 mm and the outer diameter should be 2.6 mm. Molded.
  • an optical fiber cable was used under the same conditions as in the second embodiment, except that the cooling in the cooling device 300 was not performed, and the surface temperature of the POF 20 derived from the cooling device 300 was 20 ° C. Was manufactured.
  • An optical fiber cable was manufactured under the same conditions as in Comparative Example 3, except that a flame-retardant soft vinyl chloride resin (trade name: SHV9861N: manufactured by Riken Technos Co., Ltd.) was used as the jacket tube 51 and the melting temperature was 160 ° C. ,
  • Example 2 Yes-10 180 0 45 Comparative example 3 20 180 + 20 45 Comparative example 4 5 £ 20 160 0 28 According to the results in Table 2, in Example 2, even when the outer tube 51 was molded at a melting temperature of 180 ° C, there was no increase in loss, and the flame retardancy was superior to that of Comparative Example 4. An optical fiber cable was obtained. On the other hand, in Comparative Example 3 in which the cooling step was not performed, the loss increased. Industrial potential
  • the influence of heat on the POF can be significantly reduced by cooling the POF immediately before introducing it into the extrusion molding apparatus. Therefore, it is possible to mold the jacket tube at a higher temperature without increasing transmission loss, and it is possible to select a flame-retardant resin as the jacket tube, which is superior in flame retardancy.
  • An optical fiber cable can be provided.

Abstract

An optical fiber cable producing method capable of molding a jacket tube at higher temperatures without increasing transmission loss. In an optical fiber cable producing method for extrusion-molding a jacket tube on the outer periphery of a plastic optical fiber through a gap or another material by an extrusion molding device, immediately before the plastic optical fiber is introduced into the extrusion molding device, it is cooled by a cooling device.

Description

光フアイバケーブルの製造方法、 および光フアイバケーブル 技術分野 Manufacturing method of optical fiber cable, and optical fiber cable
本発明は、 プラスチック光フアイパを外被チュ一ブ内に収容した光ファイバケ 一ブルの製造方法および該方法によって得られる光ファイバケーブルに関する。 背景技術  The present invention relates to a method for manufacturing an optical fiber cable in which a plastic optical fiber is housed in a jacket tube, and an optical fiber cable obtained by the method. Background art
大容量の通信媒体として用いられている光ファイバは、 石英ガラス光ファイバ The optical fiber used as a large-capacity communication medium is a silica glass optical fiber.
(Si l ica Glass Fiber) と、 プラスチック光ファイバ (以下、 場合により 「P〇 F」 と略称する) に大別される。 このうち、 P O Fは、 石英ガラス光ファイバに 比較してコア径が大きく、 端末処理等の作業性に優れていることから各種用途が 拡大している。 特に、 断面方向における屈折率に分布を持たせたグレーテツドィ ンデックス型プラスチック光ファイバ (以下、 塲合により 「G I— P O F」 と略 称する) は、 高速大容量の伝送能力を備えるため、 次世代通信における光フアイ バとして期待されている。 (Silica glass fiber) and plastic optical fiber (hereinafter sometimes abbreviated as “P〇F”). Among them, POF has a larger core diameter than quartz glass optical fiber and is excellent in workability such as terminal processing, so its various applications are expanding. In particular, a graded-index plastic optical fiber (hereinafter abbreviated as “GI-POF” by Babai) that has a distribution of the refractive index in the cross-sectional direction has a high-speed, large-capacity transmission capability, and is used in next-generation communications. It is expected as an optical fiber.
光ファイバは裸のまま (光ファイバ素線 (Bare Fiber) ) では実用的ではなく 、 光ファイバの保護、 多芯化、 コネクタ付け等の必要性から、 光ファイバ素線に 被覆を施したり、 鋼線等の抗張力体やァラミド繊維等の繊維抗張力体等と複合化 され、 光ファイバケ一ブルとして使用される。  The bare optical fiber (bare fiber) is not practical, and it is not practical, and it is necessary to protect the optical fiber, increase the number of cores, attach connectors, and so on. It is used as an optical fiber cable by being compounded with a tensile strength material such as wire or a fiber tensile strength material such as aramid fiber.
この光ファイバケーブルの製造方法は、 基本的に、 P O Fを引っ張りに対して 抗する抗張力体 (テンションメンバ) 等の構成素材とともに、 その外周を熱可塑 性樹脂等で押し出して外被チューブを被覆成形することによって行われる。 この 被覆成形の際、 P O Fは高温に溶融した熱可塑性樹脂等の熱の影響を受けやすく 、 熱によって P O Fの物性が低下するおそれが生じる。  The method of manufacturing this optical fiber cable basically consists of extruding the outer periphery of the outer tube with a thermoplastic resin, etc., together with a constituent material such as a tensile member (tension member) that resists the POF against pulling, and covering and forming the sheath tube. It is done by doing. During the coating molding, the POF is easily affected by the heat of a thermoplastic resin or the like melted at a high temperature, and the heat may reduce the physical properties of the POF.
上記の G I _ P O Fにおいては、 樹脂材料中に屈折率の異なる低分子化合物材 料を熱拡散させて屈折率分布を形成することによって G I— P O Fとする方法が ある。 特に、 このような G I— P O Fは、 ケーブル化する被覆成形の際の熱の影 響により、 G I— P〇 F内で低分子化合物材料が熱拡散を起こし、 屈折率分布が 変化して伝送損失が増加するおそれがある。 このため、 G I— P O Fのケーブル 化に際しては、 熱の影響を受けないようにケーブルを製造する必要がある。 上記の問題点を解決する光ファイバケ一ブルとして、 例えば、 国際公開第 0 1 / 9 5 0 0 2号パンフレツトには複数本の G I— P O Fと、 この G I— P O Fを 包含する樹脂ケーブル本体とを有する光ファイバケーブルであって、 前記樹脂ケ 一ブル本体は、 前記 G I— P O Fの本数と同数の、 長手方向に貫通した空隙孔を 有し、 前記 G I—P O Fは、 前記空隙孔内を自在に可動する状態で 1本ずつ分散 配置された光ファイバケーブルが開示されている。 In the above GI_POF, low molecular compound materials with different refractive indices are contained in the resin material There is a method of forming a GI-POF by thermally diffusing a material to form a refractive index distribution. In particular, in such GI-POF, low-molecular compound materials undergo thermal diffusion in the GI-PF under the influence of heat during coating molding into a cable, and the refractive index distribution changes, resulting in transmission loss. May increase. For this reason, when converting GI-POF into a cable, it is necessary to manufacture the cable so that it is not affected by heat. As an optical fiber cable that solves the above problems, for example, WO01 / 95002 pamphlet includes a plurality of GI-POFs and a resin cable body including the GI-POF. An optical fiber cable having the resin cable main body, wherein the resin cable main body has the same number of the GI-POFs as the number of void holes penetrating in the longitudinal direction, and the GI-POF freely moves in the void holes. An optical fiber cable is disclosed, which is movable and dispersed one by one.
上記の国際公開第 0 1 9 5 0 0 2号パンフレツトの光ファイバケーブルにお いては、 外被チューブが長手方向に貫通した空隙孔を有することから、 この空隙 孔によって P O Fに伝わる熱を遮断して上記の熱の影響を受け難くするものであ る。  In the above-mentioned optical fiber cable of International Publication No. 0 950 002, since the jacket tube has a void penetrating in the longitudinal direction, heat transmitted to the POF is blocked by the void. This makes it less susceptible to the heat.
この光ファイバケーブルによれば、 外被チューブの溶融温度が 1 3 5 以下で あれば熱影響による伝送損失の増加を防止できるため、 代表的な被覆樹脂である 、 軟質塩化ビニル樹脂ゃポリェチレン樹脂であれば通常は使用できる。  According to this optical fiber cable, if the melting temperature of the jacket tube is 135 or less, it is possible to prevent an increase in transmission loss due to thermal effects, and therefore, a typical coating resin is a soft vinyl chloride resin-polyethylene resin. If there is, you can usually use it.
しかしながら、 光ファイバケーブルにおいては、 上記の伝送特性以外に、 更に 難燃性も要求される。 このような難燃性は、 通常、 外被チューブに難燃剤を添加 することにより行なわれる。 ただし、 難燃剤の含有量に応じて樹脂の溶融温度も 上昇するのが一般的である。 例えば、 上記の軟質塩化ピニル樹脂やポリエチレン 樹脂においても、 難燃剤の添加量に応じて溶融温度が上昇して 1 4 0 °C以上にな る場合がある。 したがって、 より難燃性の高い樹脂を外被チューブとして用いる 場合、 1 4 0 °Cを超える成形温度で外被チューブを成形する必要がある。  However, in addition to the transmission characteristics described above, optical fiber cables are required to have further flame retardancy. Such flame retardancy is usually achieved by adding a flame retardant to the jacket tube. However, the melting temperature of the resin generally increases in accordance with the content of the flame retardant. For example, even in the case of the above-mentioned soft pinyl chloride resin or polyethylene resin, the melting temperature may rise to 140 ° C. or more depending on the amount of the flame retardant added. Therefore, when a resin having higher flame retardancy is used as the jacket tube, it is necessary to mold the jacket tube at a molding temperature exceeding 140 ° C.
しかし、 上記の従来技術においては、 空隙孔のみによる熱の遮断であるため耐 熱性が不充分であり、 上記のような高温での外被チューブの成形では、 熱の影響 により P〇Fの伝送損失が増加してしまう。 このため、 外被チューブの成形温度 に制限があり、 この結果、 外被チューブとして使用できる樹脂の種類に制限があ り、 特に難燃性の高い外被チューブが使用できないという問題があった。 この場 合、 上記の空隙孔を大きくして熱の遮断効果を高めることも考えられるが、 結果 的にケーブル外径が大きくなつてしまうという問題がある。 However, in the above-mentioned conventional technology, heat resistance is insufficient because the heat is blocked only by the voids. As a result, the transmission loss of P〇F increases. For this reason, the molding temperature of the outer tube is limited, and as a result, the type of resin that can be used as the outer tube is limited, and there is a problem that a highly flame-resistant outer tube cannot be used. In this case, it is conceivable to increase the above-mentioned voids to enhance the heat blocking effect. However, as a result, there is a problem that the outer diameter of the cable becomes large.
したがって、 本発明の目的は、 伝送損失を増加させることなく、 より高温での 外被チューブの成形が可能であって、 その結果、 外被チューブとして難燃性に優 れる樹脂が使用可能となる、 細径の光ファイバケーブルの製造方法を提供するこ とにある。 発明の開示  Therefore, an object of the present invention is to form a jacket tube at a higher temperature without increasing transmission loss, and as a result, a resin having excellent flame retardancy can be used as the jacket tube. Another object of the present invention is to provide a method for manufacturing a small-diameter optical fiber cable. Disclosure of the invention
上記目的を達成するため、 本発明の光ファイバケーブルの製造方法は、 プラス チック光ファイバの外周に、 空隙または他の材料を介して、 外被チューブを押出 し成形する光ファイバケーブルの製造方法において、 前記プラスチック光フアイ バを冷却して、 押出し成形装置に導入することを特徴とする。 なお、 本発明にお いては、 押出し成形装置に導入する直前で冷却することが好ましい。  In order to achieve the above object, a method of manufacturing an optical fiber cable according to the present invention is directed to a method of manufacturing an optical fiber cable in which an outer tube is extruded and formed around a plastic optical fiber through a gap or another material. The plastic optical fiber is cooled and introduced into an extruder. In the present invention, cooling is preferably performed immediately before introduction into the extrusion molding apparatus.
本発明の光ファイバケーブルの製造方法によれば、 P O Fを押出し成形装置に 導入する前に冷却することによって、 P O Fへの熱の影響を大幅に低下できる。 したがって、 伝送損失を増加させることなく、 より高温での外被チューブの成形 が可能となり、 外被チューブとして難燃性に優れる樹脂を使用することができる また本発明においては、 前記プラスチック光ファイバの冷却温度が 5 以下で あることが好ましい。 P O Fの冷却温度を 5 °C以下とすることで、 P O Fへの熱 の影響を大幅に低下できる。  ADVANTAGE OF THE INVENTION According to the manufacturing method of the optical fiber cable of this invention, the influence of the heat to POF can be reduced significantly by cooling before introducing POF into an extrusion-molding apparatus. Therefore, it is possible to form the jacket tube at a higher temperature without increasing transmission loss, and it is possible to use a resin having excellent flame retardancy as the jacket tube. Preferably, the cooling temperature is 5 or less. By setting the cooling temperature of the POF at 5 ° C. or less, the influence of heat on the POF can be significantly reduced.
また本発明においては、 前記光ファイバケ一ブルがスぺーサを有していないこ とが好ましい。 本発明はスぺーサを有していない光ファイバケーブルの製造に好 適だからである。 また本発明においては、 前記光ファイバケーブルの外径が 7 mm以下であるこ とが好ましい。 本発明はこのような細い外径を有する光ファイバケーブルの製造 に好適だからである。 Further, in the present invention, it is preferable that the optical fiber cable has no spacer. This is because the present invention is suitable for manufacturing an optical fiber cable having no spacer. In the present invention, the outer diameter of the optical fiber cable is preferably 7 mm or less. This is because the present invention is suitable for manufacturing an optical fiber cable having such a small outer diameter.
本発明においては、 前記押出し成形装置にて前記外被チューブを被覆して形成 された光ファイバケーブルを、 前記押出し成形装置から導出された直後に強制冷 却することが好ましい。 これによれば、 更に外被チューブの成形直後にも冷却を 行なうので、 P〇Fの冷却効果が更に高まり、 高温での成形時における伝送損失 の増加を更に防止することができる。  In the present invention, it is preferable that the optical fiber cable formed by covering the jacket tube with the extrusion molding device is forcibly cooled immediately after being taken out of the extrusion molding device. According to this, since the cooling is performed immediately after the jacket tube is formed, the cooling effect of P〇F is further enhanced, and an increase in transmission loss at the time of forming at a high temperature can be further prevented.
また、 本発明においては、 前記他の材料が、 繊維抗張力体であることが好まし い。 これによれば、 繊維抗張力体自身が断熱性を有するので、 高温での成形時に おける伝送損失の増加を更に防止することができる。  In the present invention, it is preferable that the other material is a fiber tensile strength member. According to this, since the fiber strength member itself has heat insulating properties, it is possible to further prevent an increase in transmission loss during molding at a high temperature.
さらに、 本発明においては、 前記外被チューブは、 難燃剤を含有し、 溶融温度 が 1 4 0〜1 9 0 °Cの熱可塑性樹脂からなることが好ましい。 これによれば、 外 被チューブとして難燃性に優れる樹脂が使用可能となり、 光ファイバケーブルの 難燃性を向上することができる。  Further, in the present invention, it is preferable that the outer tube contains a flame retardant and is made of a thermoplastic resin having a melting temperature of 140 to 190 ° C. According to this, a resin having excellent flame retardancy can be used as the jacket tube, and the flame retardancy of the optical fiber cable can be improved.
一方、 本発明の光ファイバケーブルは、 上記の製造方法により得られた光ファ ィバケーブルであって、 該光ファイバケ一ブルの外被チューブに用いる樹脂の難 燃性が、 J I S K 7 2 0 1で規定される酸素指数で 2 9以上であることを特徴 とする。 これによれば、 優れた難燃性を有する光ファイバケーブルを得ることが できるので、 高い難燃性が要求される、 ビル、 マンション等の縦幹線、 および各 階での横配線、 フロアー配線等の用途に好適に用いることができる。 図面の簡単な説明  On the other hand, the optical fiber cable of the present invention is an optical fiber cable obtained by the above manufacturing method, wherein the flame retardancy of the resin used for the sheath tube of the optical fiber cable is specified by JISK7201. It has a characteristic oxygen index of 29 or more. According to this, an optical fiber cable having excellent flame retardancy can be obtained, so that high flame retardancy is required, such as vertical trunk lines of buildings and condominiums, horizontal wiring on each floor, floor wiring, and the like. It can be suitably used for applications. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の製造方法によって得られる光ファイバケーブルの一実施形態 を示す断面図である。  FIG. 1 is a cross-sectional view showing one embodiment of an optical fiber cable obtained by the manufacturing method of the present invention.
図 2は、 本発明の製造方法に用いられる光ファイバケーブルの製造装置の一実 施形態を示す概略構成図である。 図 3は、 冷却装置の斜視図である。 FIG. 2 is a schematic configuration diagram illustrating an embodiment of an apparatus for manufacturing an optical fiber cable used in the manufacturing method of the present invention. FIG. 3 is a perspective view of the cooling device.
図 4は、 図 3の B— B矢示線に沿つた断面図である。  FIG. 4 is a sectional view taken along the line BB of FIG.
図 5は、 押出し成形装置のノズル近傍を示す部分斜視図である。  FIG. 5 is a partial perspective view showing the vicinity of a nozzle of the extrusion molding apparatus.
図 6は、 本発明の製造方法によって得られる光ファイバケーブルの他の実施形 態を示す断面図である。  FIG. 6 is a sectional view showing another embodiment of the optical fiber cable obtained by the manufacturing method of the present invention.
図 7は、 本発明の製造方法に用いられる光ファイバケーブルの製造装置の他の 実施形態を示す概略構成図である。  FIG. 7 is a schematic configuration diagram showing another embodiment of the optical fiber cable manufacturing apparatus used in the manufacturing method of the present invention.
10, 11 :光ファイバケーブル、 10, 11: Optical fiber cable,
20 : POF (プラスチック光ファイバ) 、 21、 31、 61 : リール、 20: POF (plastic optical fiber), 21, 31, 61: reel,
22、 32 :孔、 30 :抗張力体、 40 :空隙、 22, 32: hole, 30: strength member, 40: void,
50、 51 :外被チューブ、 60 :繊維抗張力体、 62 :繊維束、  50, 51: Jacket tube, 60: Fiber tensile strength member, 62: Fiber bundle,
121、 122、 123、 140、 150、 161、 162、 163 :ガイド口 ーラ、  121, 122, 123, 140, 150, 161, 162, 163: Guide roller,
300 :冷却装置、 310 :箱体、 311 :蓋体、 312 :パイプ、 300: Cooling device, 310: Box, 311: Lid, 312: Pipe,
313 :断熱材、 320 : ドライアイス、 313: Insulation material, 320: Dry ice,
400 :押出し成形装置、 410 :ノズル、 420 :突出部、  400: extrusion molding equipment, 410: nozzle, 420: protrusion,
430 :平面部、 440 :中子、 450 :外筒、  430: flat part, 440: core, 450: outer cylinder,
500 :冷却水槽、 600 :引き取り機、 610、 620 :ベルト、 611、 612、 621、 622 :プーリ。 発明を実施するための最良の形態  500: cooling water tank, 600: take-up machine, 610, 620: belt, 611, 612, 621, 622: pulley. BEST MODE FOR CARRYING OUT THE INVENTION
図 1には、 本発明の製造方法によって得られる光ファイバケーブルの一実施形 態が示されている。  FIG. 1 shows an embodiment of an optical fiber cable obtained by the manufacturing method of the present invention.
この光ファイバケーブル 10は、 中央に配置される 2本の POF 20と、 PO F 20の外側にそれぞれ配置される 2本の抗張力体 30と、 この POF20の外 周を空隙 40を介して囲うように覆い、 更に抗張力体 30の外周を覆う樹脂製の 外被チューブ 5 0とで構成されている。 The optical fiber cable 10 has two POFs 20 arranged in the center, two strength members 30 respectively arranged outside the POF 20, and an outer periphery of the POF 20 surrounded by a gap 40. To cover the outer periphery of the tensile strength member 30 An outer tube 50 is provided.
ここで外被チューブ 5 0が P O F 2 0の外周を空隙 4 0を介して囲うように覆 うとは、 外被チューブ 5 0の内表面と P O F 2 0の外周とが、 光ファイバケープ ルの長手方向に垂直な断面 (図 1で示す断面) において少なくとも一部または全 部が非接触であることを意味する。 また、 外被チューブ 5 0の内表面と P〇F 2 0の外周とが 「 (全部が非接触ではなく) 少なくとも一部で非接触ある」 とは P O F 2 0の外周の 1点ないし複数点において外被チューブ 5 0の内表面に接触し ていることを意味する。 すなわち、 P O F 2 0と外被チューブ 5 0との間の少な くとも一部には、 空隙 4 0が介在している。 ここで P O F 2 0は外被チューブ 5 0の内部で自在に可動する状態で 1本ずつ分配配置されている。  Here, to cover the outer periphery of the POF 20 so as to surround the outer periphery of the POF 20 via the gap 40 means that the inner surface of the outer cover tube 50 and the outer periphery of the POF 20 are the length of the optical fiber cable. This means that at least part or all of the cross section perpendicular to the direction (the cross section shown in Fig. 1) is non-contact. In addition, "the inner surface of the outer tube 50 and the outer periphery of the P〇F 20 are" at least partially non-contact (not entirely non-contact) "means one or more points on the outer periphery of the POF 20. Means that it is in contact with the inner surface of the jacket tube 50. In other words, at least a part of the space 40 between the POF 20 and the jacket tube 50 is interposed. Here, the POFs 20 are distributed and arranged one by one in a freely movable state inside the jacket tube 50.
P O F 2 0の材質としては、 特に限定されず、 フッ素樹脂、 ポリメチルメ夕ク リレート (P MMA) 樹脂等が使用できる。 なかでもフッ素樹脂、 特に透明フッ 素樹脂を用いることが、 伝送損失が低く、 使用できる光の波長領域が広いことか ら好ましい。 フッ素樹脂製 P O Fとしては、 例えば特開平 8— 5 8 4 8号等に記 載されたものが好ましく使用される。 また、 P O F 2 0の外径は 4 0 0〜1 0 0 0 x mであることが好ましい。  The material of POF 20 is not particularly limited, and a fluororesin, a polymethylmethacrylate (PMMA) resin, or the like can be used. Above all, it is preferable to use a fluororesin, especially a transparent fluororesin, since transmission loss is low and a usable wavelength range of light is wide. As the fluororesin POF, for example, those described in JP-A-8-55848 or the like are preferably used. The outer diameter of POF20 is preferably from 400 to 100 x m.
抗張力体 3 0としては、 例えば、 亜鉛メツキ硬鋼線、 銅合金、 ステンレス等の 金属線や、 ァラミド繊維、 ガラス繊維等を樹脂で固化した繊維強化プラスチック 等が好ましく用いられる。  As the strength member 30, for example, a metal wire such as a zinc plated hard steel wire, a copper alloy, and stainless steel, or a fiber reinforced plastic obtained by solidifying aramide fiber, glass fiber, or the like with a resin is preferably used.
外被チューブ 5 0としては、 軟質塩化ビニル樹脂、 ポリエチレン樹脂等の押出 し可能な熱可塑性樹脂が使用可能である。 上記のように、 本発明においては、 よ り高温で外被チューブ 5 0の成形が可能であるので、 溶融温度が 1 4 0〜 1 9 0 での熱可塑性樹脂が好ましく用いられる。 特に光ファイバケーブルとして、 P O Fの外周と外被チューブの繊維抗張力体を有しない形態の場合、 すなわち、 P O Fを覆う外被チューブの内表面と P 0 Fの外周との間の少なくとも一部に空隙が 介在し、 かつ繊維抗張力体が介在しない形態の場合には、 上記熱可塑性樹脂の溶 融温度は 1 4 0〜1 7 0 °Cが好ましい。 また後述するように、 光ファイバケープ ルとして、 P O Fの外周と外被チューブの内表面との間に繊維抗張力体を有する 場合、 すなわち P O Fを覆う外被チューブの内表面と P〇 Fの外周との間の少な くとも一部が非接触 (離間しており) 、 かつ外被チューブの内表面と P O Fの外 周との間に繊維抗張力体が配置されている形態の場合には、 上記熱可塑性樹脂の 溶融温度は 1 6 5〜1 9 0 °Cが好ましい。 このような樹脂としては、 特に、 上記 の軟質塩化ビニル樹脂ゃポリェチレン樹脂等の熱可塑性樹脂に難燃剤を添加した 、 いわゆる難燃グレードの樹脂が挙げられる。 As the jacket tube 50, an extrudable thermoplastic resin such as a soft vinyl chloride resin and a polyethylene resin can be used. As described above, in the present invention, since the jacket tube 50 can be molded at a higher temperature, a thermoplastic resin having a melting temperature of 140 to 190 is preferably used. Particularly, in the case where the optical fiber cable does not have the fiber tensile strength member of the outer periphery of the POF and the outer tube, that is, at least a gap is formed between the inner surface of the outer tube covering the POF and the outer periphery of the P 0 F. In the case where the thermoplastic resin is interposed and the fiber tensile strength member is not interposed, the melting temperature of the thermoplastic resin is preferably 140 to 170 ° C. Also, as described later, When the fiber tension member is provided between the outer circumference of the POF and the inner surface of the outer tube, at least a part between the inner surface of the outer tube covering the POF and the outer circumference of the In the case of non-contact (separated) and a configuration in which the fiber tensile strength member is arranged between the inner surface of the outer tube and the outer periphery of the POF, the melting temperature of the above thermoplastic resin is 1 65 ~ 190 ° C is preferred. Examples of such a resin include a so-called flame-retardant grade resin obtained by adding a flame retardant to a thermoplastic resin such as the above-mentioned soft vinyl chloride resin or polyethylene resin.
この光ファイバケーブル 1 0はスぺ一サを有していないことが好ましい。 ただ しスぺ一サとは溝付きスぺ一サ (Slotted Spacer) 等のスぺーサである。 これら のスぺーサは断熱材としても機能しうる。 すなわちスぺーサを有する光ファイバ ケーブルを製造する場合には、 外被チューブの材料の制約は少ない。 逆にスぺー サを有していない光ファイバケーブルの場合には、 本発明の製造方法を適用する ことにより、 外被チューブの材料 (成形温度) の制約を排除できる点で好ましい また光ファイバケーブルの外径 (直径) は 7 mm以下が好ましく、 2〜5 mm が特に好ましい。 これらの細径のケーブルの製造においては、 P O Fに対する外 被チューブの成形時の熱の影響が大きいため、 本発明の製造方法を適用する効果 が大きいからである。 これらの細径のケーブルは、 1〜6心であることが好まし い。  This optical fiber cable 10 preferably does not have a spacer. However, the spacer is a spacer such as a slotted spacer. These spacers can also function as insulation. That is, when manufacturing an optical fiber cable having a spacer, there is little restriction on the material of the jacket tube. Conversely, in the case of an optical fiber cable having no spacer, it is preferable to apply the manufacturing method of the present invention in that the restriction on the material (molding temperature) of the jacket tube can be eliminated. Has an outer diameter (diameter) of preferably 7 mm or less, particularly preferably 2 to 5 mm. This is because, in the production of these small-diameter cables, the effect of heat at the time of molding the jacket tube on the POF is large, and thus the effect of applying the production method of the present invention is large. Preferably, these small diameter cables have one to six cores.
次に、 上記の光ファイバケーブル 1 0の製造方法について説明する。  Next, a method for manufacturing the optical fiber cable 10 will be described.
図 2〜5には、 上記の光ファイバケーブル 1 0の製造装置が示されている。 図 2は製造装置全体を示す概略構成図、 図 3は冷却装置の斜視図、 図 4は図 3の B 一 B矢示線に沿つた断面図、 図 5は押出し成形装置のノズル近傍を示す部分斜視 図である。  2 to 5 show an apparatus for manufacturing the optical fiber cable 10 described above. 2 is a schematic configuration diagram showing the entire manufacturing apparatus, FIG. 3 is a perspective view of the cooling apparatus, FIG. 4 is a cross-sectional view taken along the line B-B of FIG. 3, and FIG. 5 shows the vicinity of the nozzle of the extrusion apparatus. It is a partial perspective view.
図 2において、 2 1は P O Fの巻取りリールである。 このリール 2 1から繰り 出された 2本の P O F 2 0が、 それぞれガイドローラ 1 2 1、 1 2 2、 1 2 3を 介し、 ガイドローラ 1 4 0、 1 5 0にガイドされて、 冷却装置 3 0 0に導入され ている。 In FIG. 2, reference numeral 21 denotes a POF take-up reel. The two POFs 20 fed from the reel 21 are guided by guide rollers 14 0 and 15 2 through guide rollers 12 1, 12 2 and 12 3, respectively. Introduced in 300 ing.
また、 3 1は抗張力体 3 0の繰り出しリールである。 このリール 3 1から繰り 出された 2本の抗張力体の 3 0も、 それぞれガイドローラ 1 4 0、 1 5 0にガイ ドされる。 その結果、 図 3、 4に示すように、 中央の 2本の P O F 2 0と、 その 両側の抗張力体 3 0の合計 4本が引き揃えられて冷却装置 3 0 0に導入されてい る。 ' ガイドローラ 1 5 0の先方 (P O F 2 0等の進行方向) には、 冷却装置 3 0 0 が設置されている。 冷却装置 3 0 0は、 図 3、 4に示すように、 箱体 3 1 0と、 蓋体 3 1 1と、 この箱体 3 1 0を貫通するパイプ 3 1 2とを有している。 箱体 3 1 0の内部であって、 パイプ 3 1 2の外周には、 ドライアイス 3 2 0が充填され ている。 箱体 3 1 2の内壁には、 断熱材 3 1 3が貼り付けられている。  Reference numeral 31 denotes a payout reel for the tensile strength member 30. The two strength members 30 drawn out from the reel 31 are also guided by the guide rollers 140 and 150, respectively. As a result, as shown in FIGS. 3 and 4, a total of four of the two central POFs 20 and the tensile strength members 30 on both sides are brought into alignment and introduced into the cooling device 300. ′ A cooling device 300 is provided in front of the guide roller 150 (in the traveling direction of the POF 200). As shown in FIGS. 3 and 4, the cooling device 300 has a box 310, a lid 3111, and a pipe 312 penetrating the box 310. The inside of the box 310 and the outer periphery of the pipe 312 are filled with dry ice 3200. A heat insulating material 3 13 is attached to the inner wall of the box 3 12.
そして、 上記の引き揃えられた 2本の P O F 2 0および 2本の抗張力体 3 0は 、 上記パイプ 3 1 2内を揷通されている。 この場合、 2本の P O F 2 0および 2 本の抗張力体 3 0を適度に張設することにより、 パイプ 3 1 2の内壁に接触しな いようにされている。  The two aligned POFs 20 and the two strength members 30 are passed through the inside of the pipe 312. In this case, two POFs 20 and two strength members 30 are appropriately stretched so as not to contact the inner wall of the pipe 312.
なお、 箱体 3 1 0の材質としてはステンレス鋼、 アルミニウム等の金属、 ポリ エチレン、 ポリプロピレン等の樹脂が好ましく使用される。 パイプ 3 1 2の材質 としては銅、 真鍮、 ステンレス鋼等が好ましく使用される。 断熱材 3 1 3として はウレタンフォーム、 スチレンフォーム等が好ましく使用される。  In addition, as the material of the box 310, metals such as stainless steel and aluminum, and resins such as polyethylene and polypropylene are preferably used. As the material of the pipe 312, copper, brass, stainless steel or the like is preferably used. Urethane foam, styrene foam or the like is preferably used as the heat insulating material 3 13.
冷却装置 3 0 0は、 そこから導出される P O F 2 0の表面温度 (冷却温度) が 好ましくは 5 °C以下、 より好ましくは一 1 0で以下となるように調節される。 冷 却温度の下限は特にないが、 P〇 Fの取扱いが容易である点からー 8 0 °C以上が 好ましい。 この冷却によって、 P O F 2 0への熱の影響を大幅に低下でき、 伝送 損失の増加を防止できる。 ただし P O Fの表面温度は、 熱電対を P O Fの表面に 接触させて測定できる。 その際、 熱電対の測温部と P O Fとを、 断熱材で一緒に 被覆することが好ましい。  The cooling device 300 is adjusted so that the surface temperature (cooling temperature) of the POF 20 derived therefrom is preferably 5 ° C or lower, more preferably 110 ° C or lower. Although there is no particular lower limit for the cooling temperature, it is preferably −80 ° C. or higher from the viewpoint of easy handling of P〇F. This cooling can significantly reduce the effect of heat on the POF 20 and prevent an increase in transmission loss. However, the surface temperature of the POF can be measured by bringing a thermocouple into contact with the surface of the POF. In this case, it is preferable that the thermometer and the POF are covered together with a heat insulating material.
冷却装置 3 0 0の冷却手段は、 上記ドライアイスに限らず、 パイプ 3 1 2を囲 む冷却管に冷媒を流して冷却する構造や、 ペルチヱ素子等で冷却された一対の冷 却板の間を通過させる構造などを採用することもできる。 また冷却ローラ等の接 触式の冷却手段も採用できる。 The cooling means of the cooling device 300 is not limited to the dry ice described above, but surrounds the pipe 312. In addition, a structure in which a cooling medium flows through a cooling pipe for cooling, a structure in which a pair of cooling plates cooled by a Peltier element or the like are passed, and the like can be adopted. In addition, a contact-type cooling means such as a cooling roller can be employed.
なお、 抗張力体 3 0は、 外被チューブ 5 0を被覆する次の工程において、 P O F 2 0の外側に配置できればよく、 必ずしもこの冷却装置 3 0 0を通す必要はな い。  In addition, in the next step of covering the jacket tube 50, the tensile strength member 300 only needs to be disposed outside the POF 20 and does not necessarily need to pass through the cooling device 300.
冷却装置 3 0 0の導出部には、 外被チューブ 5 0を押出し成形する押出し成形 装置 4 0 0が設置されている。 冷却装置 3 0 0と押出し成形装置 4 0 0とは、 可 能な限り接近して配置されることが好ましい。 すなわち、 P O F 2 0は押出し成 形装置 4 0 0に導入される直前で冷却されることが好ましい。 これは冷却装置 3 0 0を通過させることにより冷却された P O F 2 0が、 温まることを抑制するた めである。 具体的には、 押出し成形装置 4 0 0のノズル 4 1 0の P O F導入部に おける P〇F 2 0の冷却温度が、 好ましくは 5で以下、 より好ましくは一 1 0 °C 以下となるように調節される。 このために冷却装置 3 0 0の導出部からノズル 4 1 0の P O F導入部までの、 P O F 2 0の通過時間 (冷却装置 3 0 0の導出部か らノズル 4 1 0の P O F導入部までの距離を P O F 2 0の送り速度で除した値) は 2秒以下が好ましく、 1秒以下が特に好ましい。  An extruder 400 for extruding the jacket tube 50 is provided at the outlet of the cooling device 300. It is preferable that the cooling device 300 and the extrusion device 400 are arranged as close as possible. That is, the POF 200 is preferably cooled just before being introduced into the extrusion molding apparatus 400. This is to prevent the POF 20 cooled by passing through the cooling device 300 from warming up. Specifically, the cooling temperature of P〇F 20 in the POF introduction portion of the nozzle 410 of the extrusion apparatus 400 is preferably 5 or less, more preferably 110 ° C. or less. Is adjusted to Therefore, the passage time of POF 20 from the outlet of the cooling device 300 to the POF introduction portion of the nozzle 410 (from the outlet of the cooling device 300 to the POF introduction portion of the nozzle 410). The value obtained by dividing the distance by the feeding speed of POF 20) is preferably 2 seconds or less, and particularly preferably 1 second or less.
この押出し成形装置 4 0 0のノズル 4 1 0は、 図 5に示すように、 P O F 2 0 を揷通させる孔 2 2を有する、 2つの突出部 4 2 0と、 この突出部 4 2 0の両側 に設けて配置され、 抗張力体 3 0を挿通させる孔 3 2を有する平面部 4 3 0とか らなる中子 4 4 0と、 この中子 4 4 0のさらに外周に所定の間隙を設けて配置さ れた外筒 4 5 0とを有している。  As shown in FIG. 5, the nozzle 4100 of the extrusion molding apparatus 400 has two projections 4200 having a hole 22 through which the POF 20 passes. A core 4400 comprising a flat portion 4340 having holes 32 through which the tensile strength members 30 are inserted and disposed on both sides, and a predetermined gap is further provided on the outer periphery of the core 4400. And an outer cylinder 450 arranged.
そして、 孔 2 2には P O F 2 0が揷通され、 孔 3 2には抗張力体 3 0が挿通さ れた状態で、 中子 4 4 0と外筒 4 5 0との間からは、 外被チューブ 5 0を形成す る熱可塑性樹脂が溶融状態で眼鏡状に押し出されて外被チューブ 5 0となる。 このとき、 溶融した熱可塑性樹脂の熱は、 突出部 4 2 0によって生じる空隙 4 0によって P O F 2 0には直接伝達されないので、 また、 P O F 2 0は、 あらか じめ冷却装置 3 0 0で冷却されているので、 両者の相乗効果によって、 熱による P O F 2 0の劣化を防止し、 伝送損失の増大を防ぐことができる。 The POF 20 is passed through the hole 22, and the tensile strength member 30 is inserted through the hole 32, and the outside is inserted between the core 44 and the outer cylinder 450. The thermoplastic resin forming the covered tube 50 is extruded into a spectacle shape in a molten state to form the covered tube 50. At this time, since the heat of the molten thermoplastic resin is not directly transmitted to the POF 20 by the voids 40 generated by the projections 420, the POF 20 Since the cooling is performed by the initial cooling device 300, the synergistic effect of the two can prevent the POF 20 from deteriorating due to heat and prevent an increase in transmission loss.
押出し成形装置 4 0 0のさらに先方には、 冷却水槽 5 0 0が配置されている。 外被チューブ 5 0を被覆されて形成された光ファイバケーブル 1 0は、 この冷却 水槽 5 0 0の水中を通る。 光ファイバケ一ブル 1 0を冷却水槽 5 0 0の水中に通 すことにより、 成形されたばかりの外被チューブ 5 0を急冷して、 内部の P O F 2 0に熱が伝達されるのを防ぎ、 伝送損失の増大を防止する。  A cooling water tank 500 is provided further ahead of the extrusion molding apparatus 400. The optical fiber cable 10 formed by covering the jacket tube 50 passes through the water in the cooling water tank 500. By passing the optical fiber cable 10 through the water in the cooling water tank 500, the jacket tube 50 just formed is rapidly cooled, preventing heat from being transmitted to the POF 20 inside, and transmission. Prevent loss increase.
冷却水槽 5 0 0の更に先方には、 引き取り機 6 0 0が配置されている。 引き取 り機 6 0 0は、 一対のプーリ 6 1 1、 6 1 2に張設されて回転する上方ベルト 6 1 0と、 同じく一対のプーリ 6 2 1、 6 2 2に張設されて回転する下方ベルト 6 2 0とを有し、 上記ベルト 6 1 0、 6 2 0の間に、 光ファイバケーブル 1 0を挟 んで送り出す構造をなしている。 こうして形成された光ファイバケーブル 1 0は 、 図示しない巻取りリールに巻き取られて保存される。  Further behind the cooling water tank 500, a take-off device 600 is arranged. The take-up machine 600 is stretched over a pair of pulleys 6 11 and 6 12 and rotates, and the take-up machine 6 0 0 is stretched over a pair of pulleys 6 2 1 and 6 2 2 to rotate. It has a lower belt 62 and has a structure in which the optical fiber cable 10 is sandwiched between the belts 6 10 and 6 20 and fed out. The optical fiber cable 10 thus formed is wound and stored on a winding reel (not shown).
上記の製造方法によって得られた光ファイバケーブル 1 0は、 P O F 2 0への 熱の影響を大幅に低下できる。 したがって、 伝送損失を増加させることなく、 よ り高温での外被チューブ 5 0の成形が可能となり、 外被チューブ 5 0として難燃 性に優れる樹脂を使用することができる。 この結果、 光ファイバケーブル 1 0の 難燃性を向上できる。  The optical fiber cable 10 obtained by the above-described manufacturing method can greatly reduce the influence of heat on POF20. Therefore, the jacket tube 50 can be molded at a higher temperature without increasing transmission loss, and a resin having excellent flame retardancy can be used as the jacket tube 50. As a result, the flame retardancy of the optical fiber cable 10 can be improved.
この外被チューブに用いる樹脂の難燃性は、 J I S K 7 2 0 1で規定される 酸素指数 (L〇 I %) で表される。 本発明の製造方法によれば、 酸素指数が 2 9 以上である樹脂を用いた外被チューブ 5 0を有する光ファイバケーブル 1 0を製 造することが可能となる。  The flame retardancy of the resin used for this jacket tube is represented by the oxygen index (L〇I%) specified by JISK7201. According to the production method of the present invention, it is possible to produce an optical fiber cable 10 having a jacket tube 50 using a resin having an oxygen index of 29 or more.
図 6には、 本発明の製造方法によって得られる光ファイバケーブルの他の実施 形態が示されている。 また、 図 7には、 この光ファイバケーブルの製造装置が示 されている。 なお、 以下の実施形態の説明においては、 前記実施形態と同一部分 には同符合を付して、 その説明を省略することにする。  FIG. 6 shows another embodiment of the optical fiber cable obtained by the manufacturing method of the present invention. FIG. 7 shows an apparatus for manufacturing the optical fiber cable. In the following description of the embodiment, the same parts as those of the above embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
図 6に示すように、 この光ファイバケーブル 1 1は、 P O F 2 0の外周を繊維 抗張力体 6 0で囲み、 この繊維抗張力体 6 0のさらに外周を外被チューブ 5 1で 被覆した構造をなしている。 このように、 P O F 2 0と外被チューブ 5 0との間 に繊維抗張力体 6 0を介する (介在させる) ことにより、 繊維抗張力体自身の断 熱性を利用して、 高温での外被チューブ 5 1の成形時における伝送損失の増加を 更に防止することができる。 As shown in FIG. 6, the optical fiber cable 11 has a fiber The fiber tensile strength member 60 is surrounded by a tensile strength member 60, and the outer periphery of the fiber tensile strength member 60 is further covered with a jacket tube 51. As described above, by interposing (intervening) the fiber strength member 60 between the POF 20 and the jacket tube 50, the heat insulating property of the fiber strength member itself is utilized, and the sheath tube 5 at a high temperature is used. It is possible to further prevent an increase in transmission loss during molding of 1.
繊維抗張力体 6 0としては、 例えばァラミド繊維、 ポリエチレンテレフタレー ト (P E T) 繊維、 炭素繊維、 ガラス繊維等の繊維が使用できる。 なかでも、 ァ ラミド繊維を用いることが、 剛性、 柔軟性、 繰り返し曲げによる繊維の破断を防 止する点から好ましい。  As the fiber tensile strength member 60, for example, fibers such as aramide fiber, polyethylene terephthalate (PET) fiber, carbon fiber, and glass fiber can be used. Above all, it is preferable to use aramide fiber from the viewpoint of rigidity, flexibility, and prevention of fiber breakage due to repeated bending.
そして、 この光ファイバケーブル 1 1の製造装置は、 図 7に示すように、 1本 の P O F 2 0を繰り出すリール 2 1と、 4本の繊維抗張力体 6 0を繰り出すリー ル 6 1とからなっている点が図 2の製造装置と異なっている。  As shown in FIG. 7, the apparatus for manufacturing the optical fiber cable 11 includes a reel 21 that feeds out one POF 20 and a reel 61 that feeds out four fiber strength members 60. This is different from the manufacturing apparatus in FIG.
この製造装置によって、 リール 6 1から繰り出された繊維抗張力体の繊維束 6 2が、 ガイドローラ 1 6 1、 1 6 2、 1 6 3にガイドされて製造ライン上に引き 出され、 4本の繊維束 6 2は、 P O F 2 0を取り囲むように 4方向に配置された 状態で押出し成形装置 4 0 0内に挿通される。 そして、 ノズル 4 1 0内で各繊維 束のフィラメントがほぐれて、 ノズル 4 1 0から出るときには、 P O F 2 0の外 周を環状に取り囲んで、 図 6に示すような繊維抗張力体 6 0となる。  With this manufacturing apparatus, the fiber bundle 62 of the fiber tensile strength material unwound from the reel 61 is guided by guide rollers 161, 162, and 163, and is drawn out onto the manufacturing line. The fiber bundle 62 is inserted into the extruder 400 in a state of being arranged in four directions so as to surround the POF 20. When the filament of each fiber bundle is unraveled in the nozzle 410 and exits from the nozzle 410, the outer periphery of the POF 20 is annularly surrounded to form a fiber tensile strength member 60 as shown in FIG. .
(実施例) (Example)
以下、 本発明を実施例および比較例により具体的に説明する。  Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
'実施例 1  'Example 1
図 1に示す構造の光ファイバケーブルを、 図 2に示した装置によって製造した 。 P〇 F 2 0としては、 前記特開平 8— 5 8 4 8号公報に記載された方法で製造 されたフッ素樹脂製 P O F (旭硝子社製、 商品名:ルキナ) であって外径 0 . 5 mmのものを用いた。  An optical fiber cable having the structure shown in FIG. 1 was manufactured using the apparatus shown in FIG. P〇F 20 is a fluororesin POF (manufactured by Asahi Glass Co., Ltd., trade name: Lucina) manufactured by the method described in the above-mentioned Japanese Patent Application Laid-Open No. Hei 8-55848, and has an outer diameter of 0.5. mm.
冷却装置 3 0 0は、 パイプ 3 1 2として内径 8 mm、 長さ 3 0 c mの銅パイプ を用い、 P〇 F 10の線速は 15 mZ分、 滞留時間 1. 2秒の条件で冷却し、 冷 却装置 300から導出される POF 20の表面温度が一 10 となるように調節 した。 冷却装置 300の導出部から押出し成形装置 400のノズル 410の導入 部までの距離は 10 cmとした。 The cooling device 300 is a copper pipe with an inner diameter of 8 mm and a length of 30 cm as the pipe 3 1 2 The cooling was performed under the conditions of a linear velocity of P〇F 10 of 15 mZ and a residence time of 1.2 seconds, and the surface temperature of the POF 20 derived from the cooling device 300 was adjusted to 110. The distance from the outlet of the cooling device 300 to the inlet of the nozzle 410 of the extrusion device 400 was 10 cm.
外被チューブ 50として難燃性ポリエチレン (商品名 SNE 9932N:リケ ンテクノス社製) を用い、 溶融温度 160°Cで、 外被チューブ 50の外径が 3. 5X6. 4mm、 空隙 40が 1. 2X 1. 2 mmとなるように成形した。  Flame-retardant polyethylene (trade name: SNE 9932N: manufactured by RIKEN TECHNOS) is used as the jacket tube 50, the melting temperature is 160 ° C, the outer diameter of the jacket tube 50 is 3.5X6.4mm, and the gap 40 is 1.2X. It was molded to be 1.2 mm.
冷却槽 500での冷却条件は、 エチレングリコール水溶液を用いて— 10°Cと した。  The cooling condition in the cooling bath 500 was set to −10 ° C. using an ethylene glycol aqueous solution.
比較例 1  Comparative Example 1
実施例 1において、 冷却装置 300での冷却を行なわず、 冷却装置 300から 導出される P〇F 20の表面温度が 20 となるようにした以外は、 実施例 1と 同様の条件で光ファイバケーブルを製造した。  In the first embodiment, the optical fiber cable was used under the same conditions as in the first embodiment except that the cooling in the cooling device 300 was not performed and the surface temperature of the P〇F 20 derived from the cooling device 300 was set to 20. Was manufactured.
比較例 2  Comparative Example 2
外被チューブ 50として難燃性軟質塩化ビニル樹脂 (商品名 SHV9861N : リケンテクノス社製) を用い、 溶融温度 135 とした以外は、 比較例 1と同 様の条件で光ファイバケーブルを製造した。  An optical fiber cable was manufactured under the same conditions as in Comparative Example 1 except that a flame-retardant soft vinyl chloride resin (trade name: SHV9861N: manufactured by Riken Technos) was used as the jacket tube 50 and the melting temperature was 135.
試験例 1  Test example 1
実施例 1、 比較例 1 2の光ファイバケ一ブルについて、 損失増加 (dBZk m) および酸素指数 (LO I %) を測定した。 損失増加は J I S C- 6823 に規定されるカツトバック法により、 酸素指数は J I S K7201に規定され る方法により測定した。 その結果を表 1に示す。  The loss increase (dBZkm) and oxygen index (LOI%) of the optical fiber cables of Example 1 and Comparative Example 12 were measured. The loss increase was measured by the cutback method specified in JIS C-6823, and the oxygen index was measured by the method specified in JIS K7201. The results are shown in Table 1.
(表 1)  (table 1)
Figure imgf000013_0001
Figure imgf000013_0001
表 1の結果より、 実施例 1においては、 外被チューブ 50を 160での溶融温 度で成形した場合にも、 損失増加がなく、 比較例 2に比べて難燃性に優れる光フ アイバケ一ブルが得られた。 一方、 冷却工程を行わない比較例 1においては損失 増加が生じていた。 From the results in Table 1, in Example 1, the melting temperature at 160 Even when molded at a predetermined temperature, there was no increase in loss, and an optical fiber cable excellent in flame retardancy as compared with Comparative Example 2 was obtained. On the other hand, in Comparative Example 1 in which the cooling step was not performed, the loss increased.
実施例 2  Example 2
図 6に示す構造の光ファイバケーブルを、 図 7に示した装置によって製造した POF20、 冷却装置 300は、 実施例 1と同様のものを用い、 冷却装置 30 0の冷却条件も実施例 1と同様にした。 繊維抗張力体 60としては、 ァラミド繊 維 (1270デシテックス、 4本使用) を用いた。  The optical fiber cable having the structure shown in FIG. 6 was manufactured by the apparatus shown in FIG. 7 using the same POF 20 and cooling device 300 as those used in Example 1, and the cooling conditions of the cooling device 300 were also the same as in Example 1. I made it. Aramide fiber (1270 decitex, using four fibers) was used as the fiber tensile strength member 60.
外被チューブ 51として難燃性ポリオレフイン (商品名 ANA9952N: リ ゲンテクノス社製) を用い、 溶融温度 180でで、 外被チューブ 50の厚さ 0. 5mm, 外径 2. 6 mmとなるように成形した。  Using a flame-retardant polyolefin (trade name: ANA9952N: manufactured by Ligen Technos Co.) as the jacket tube 51, at a melting temperature of 180, the thickness of the jacket tube 50 should be 0.5 mm and the outer diameter should be 2.6 mm. Molded.
比較例 3  Comparative Example 3
実施例 2において、 冷却装置 300での冷却を行なわず、 冷却装置 300から 導出される POF 20の表面温度が 20°Cとなるようにした以外は、 実施例 2と 同様の条件で光ファイバケーブルを製造した。  In the second embodiment, an optical fiber cable was used under the same conditions as in the second embodiment, except that the cooling in the cooling device 300 was not performed, and the surface temperature of the POF 20 derived from the cooling device 300 was 20 ° C. Was manufactured.
比較例 4  Comparative Example 4
外被チューブ 51として難燃性軟質塩化ビニル樹脂 (商品名 SHV9861N : リケンテクノス社製) を用い、 溶融温度 160°Cとした以外は、 比較例 3と同 様の条件で光ファイバケーブルを製造した。 ,  An optical fiber cable was manufactured under the same conditions as in Comparative Example 3, except that a flame-retardant soft vinyl chloride resin (trade name: SHV9861N: manufactured by Riken Technos Co., Ltd.) was used as the jacket tube 51 and the melting temperature was 160 ° C. ,
試験例 2  Test example 2
実施例 2、 比較例 3 4の光ファイバケーブルについて、 試験例 1と同様に損 失増加 (dBZkm) および酸素指数 (L〇 I %) を測定した。 その結果を表 2 に示す。  For the optical fiber cables of Example 2 and Comparative Example 34, the loss increase (dBZkm) and oxygen index (L〇I%) were measured in the same manner as in Test Example 1. The results are shown in Table 2.
(表 2)  (Table 2)
光ファイバ 樹脂溶融 損失増加 外被チューブ用 冷却工程  Optical fiber Resin melting loss increase Cooling process for jacket tube
冷却温度 nc) 温度 C ) (dB/km) 樹脂の酸素指数 ) 実施例 2 有 - 10 180 0 45 比較例 3 20 180 + 20 45 比較例 4 5£ 20 160 0 28 表 2の結果より、 実施例 2においては、 外被チューブ 5 1を 1 8 0 °Cの溶融温 度で成形した場合にも、 損失増加がなく、 比較例 4に比べて難燃性に優れる光フ アイバケーブルが得られた。 一方、 冷却工程を行わない比較例 3においては損失 増加が生じていた。 産業上の利用の可能性 Cooling temperature nc) Temperature C) (dB / km) Resin oxygen index) Example 2 Yes-10 180 0 45 Comparative example 3 20 180 + 20 45 Comparative example 4 5 £ 20 160 0 28 According to the results in Table 2, in Example 2, even when the outer tube 51 was molded at a melting temperature of 180 ° C, there was no increase in loss, and the flame retardancy was superior to that of Comparative Example 4. An optical fiber cable was obtained. On the other hand, in Comparative Example 3 in which the cooling step was not performed, the loss increased. Industrial potential
以上説明したように、 本発明によれば、 P O Fを押出し成形装置に導入する直 前で冷却することによって、 P O Fへの熱の影響を大幅に低下できる。 したがつ て、 伝送損失を増加させることなく、 より高温での外被チューブの成形が可能と なり、 外被チューブとして難燃性樹脂の選択が可能となることから、 難燃性に優 れる光ファイバケーブルを提供できる。  As described above, according to the present invention, the influence of heat on the POF can be significantly reduced by cooling the POF immediately before introducing it into the extrusion molding apparatus. Therefore, it is possible to mold the jacket tube at a higher temperature without increasing transmission loss, and it is possible to select a flame-retardant resin as the jacket tube, which is superior in flame retardancy. An optical fiber cable can be provided.

Claims

請求の範囲 The scope of the claims
1 . プラスチック光ファイバの外周に、 空隙または他の材料を介して、 外被チュ —ブを押出し成形する光ファイバケーブルの製造方法において、 前記プラスチッ ク光ファイバを冷却して、 押出し成形装置に導入することを特徴とする光フアイ バケーブルの製造方法。 1. A method of manufacturing an optical fiber cable in which a jacket tube is extruded through an air gap or another material around a plastic optical fiber, wherein the plastic optical fiber is cooled and introduced into an extruder. A method of manufacturing an optical fiber cable.
2 . 前記プラスチック光ファイバの冷却温度が 5 °C以下である請求項 1に記載の 光ファイバケーブルの製造方法。  2. The method of manufacturing an optical fiber cable according to claim 1, wherein a cooling temperature of the plastic optical fiber is 5 ° C or less.
3 . 前記押出し成形装置にて前記外被チューブを被覆して形成された光ファイバ ケーブルを、 前記押出し成形装置から導出された直後に強制冷却する請求項 1ま たは 2に記載の光ファイバケーブルの製造方法。  3. The optical fiber cable according to claim 1 or 2, wherein the optical fiber cable formed by covering the outer tube with the extrusion molding device is forcibly cooled immediately after being taken out of the extrusion molding device. Manufacturing method.
4. 前記他の材料が、 繊維抗張力体である請求項 1、 2または 3に記載の光ファ ィバケーブルの製造方法。  4. The method of manufacturing an optical fiber cable according to claim 1, wherein the other material is a fiber tensile strength member.
5 . 前記光ファイバケーブルがスぺーサを有していない請求項 1〜4のいずれか 1つに記載の光ファィバケーブルの製造方法。  5. The method of manufacturing an optical fiber cable according to any one of claims 1 to 4, wherein the optical fiber cable has no spacer.
6 . 前記光ファイバケ一プルの外径が 7 mm以下である請求項 1〜 5のいずれか 1つに記載の光ファィバケーブルの製造方法。  6. The method of manufacturing an optical fiber cable according to claim 1, wherein an outer diameter of the optical fiber cable is 7 mm or less.
7 . 前記外被チューブは、 難燃剤を含有し、 溶融温度が 1 4 0〜1 9 0 °Cの熱可 塑性樹脂からなる請求項 1〜 6のいずれか 1つに記載の光ファイバケ一ブルの製 造方法。  7. The optical fiber cable according to any one of claims 1 to 6, wherein the outer tube contains a flame retardant and is made of a thermoplastic resin having a melting temperature of 140 to 190 ° C. Manufacturing method.
8 . 請求項 7記載の製造方法により得られた光ファイバケーブルであって、 該光 ファイバケーブルの外被チューブに用いる樹脂の難燃性が、 J I S K 7 2 0 1 で規定される酸素指数で 2 9以上であることを特徴とする光ファイバケーブル。  8. An optical fiber cable obtained by the manufacturing method according to claim 7, wherein the flame retardancy of the resin used for the sheath tube of the optical fiber cable is 2 in terms of an oxygen index defined by JISK7201. An optical fiber cable characterized by being 9 or more.
PCT/JP2004/007652 2003-05-27 2004-05-27 Optical fiber cable producing method, and optical fiber cable WO2004107005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506548A JP4320660B2 (en) 2003-05-27 2004-05-27 Optical fiber cable manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-148618 2003-05-27
JP2003148618 2003-05-27

Publications (1)

Publication Number Publication Date
WO2004107005A1 true WO2004107005A1 (en) 2004-12-09

Family

ID=33487125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007652 WO2004107005A1 (en) 2003-05-27 2004-05-27 Optical fiber cable producing method, and optical fiber cable

Country Status (3)

Country Link
JP (1) JP4320660B2 (en)
TW (1) TW200500676A (en)
WO (1) WO2004107005A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146259A (en) * 1994-11-15 1996-06-07 Sumitomo Electric Ind Ltd Production of plastic optical fiber cord
JPH1096840A (en) * 1996-09-25 1998-04-14 Sumitomo Electric Ind Ltd Plastic optical fiber code and its production
JPH11337780A (en) * 1998-05-29 1999-12-10 Asahi Glass Co Ltd Production of coated plastic optical fiber
JP2001124966A (en) * 1999-10-27 2001-05-11 Mitsubishi Rayon Co Ltd Manufacturing method of plastic optical fiber cable, device thereof and metod for removing curling tendency of plastic optical fiber
WO2001051977A2 (en) * 1999-12-24 2001-07-19 Mitsubishi Rayon Co., Ltd. Optical fiber cable and optical fiber cable with plug
WO2001095002A1 (en) * 2000-06-06 2001-12-13 Asahi Glass Company, Limited Optical fiber cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146259A (en) * 1994-11-15 1996-06-07 Sumitomo Electric Ind Ltd Production of plastic optical fiber cord
JPH1096840A (en) * 1996-09-25 1998-04-14 Sumitomo Electric Ind Ltd Plastic optical fiber code and its production
JPH11337780A (en) * 1998-05-29 1999-12-10 Asahi Glass Co Ltd Production of coated plastic optical fiber
JP2001124966A (en) * 1999-10-27 2001-05-11 Mitsubishi Rayon Co Ltd Manufacturing method of plastic optical fiber cable, device thereof and metod for removing curling tendency of plastic optical fiber
WO2001051977A2 (en) * 1999-12-24 2001-07-19 Mitsubishi Rayon Co., Ltd. Optical fiber cable and optical fiber cable with plug
WO2001095002A1 (en) * 2000-06-06 2001-12-13 Asahi Glass Company, Limited Optical fiber cable

Also Published As

Publication number Publication date
JP4320660B2 (en) 2009-08-26
TW200500676A (en) 2005-01-01
JPWO2004107005A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
CA2464933C (en) Compact, hybrid fiber reinforced rods for optical cable reinforcements and method for making same
US6738547B2 (en) Composite cable units
US5627932A (en) Reduced diameter indoor fiber optic cable
US7869678B2 (en) Telecommunications cable jacket adapted for post-extrusion insertion of optical fiber and methods for manufacturing the same
CN105427948B (en) Skeleton optoelectronic composite cable and its manufacture method
EP1895340B1 (en) A loose tube optical waveguide fiber cable
US20030128941A1 (en) Fiber optic cable having a low-shrink cable jacket and methods of manufacturing the same
WO2008026912A1 (en) A loose tube optical waveguide fiber assembly
CA2339009C (en) Spacer for optical fiber cable, method for producing said spacer, and optical fiber cable using said spacer
EP1306708B1 (en) Optical fiber cable
US20160313529A1 (en) Filler tubes for optical communication cable construction
WO2012036031A1 (en) Plastic optical fiber unit and plastic optical fiber cable using same
JP2005521895A (en) Fiber optic ribbon with buffer
JP4320660B2 (en) Optical fiber cable manufacturing method
JP4284549B2 (en) Optical fiber cable and manufacturing method thereof
CN106772849B (en) Micro optical cable, preparation method thereof and outer sheath material of micro optical cable
CN111983762B (en) Optical cable and preparation method thereof
US11391900B2 (en) Talcum-free flame retardant fiber optical cable with micro-modules
US20230223169A1 (en) Cable with separable electrical conductors
CN116825433A (en) Indoor and outdoor photoelectric hybrid cable and production method thereof
JP2005037641A (en) Optical fiber cable
JP2006010773A (en) Manufacturing method and machine for fiber-optic cable
JP2002328279A (en) Optical fiber cable

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506548

Country of ref document: JP

122 Ep: pct application non-entry in european phase