WO2004105158A2 - A fuel cell system with recycle of anode exhaust gas - Google Patents

A fuel cell system with recycle of anode exhaust gas Download PDF

Info

Publication number
WO2004105158A2
WO2004105158A2 PCT/US2004/005486 US2004005486W WO2004105158A2 WO 2004105158 A2 WO2004105158 A2 WO 2004105158A2 US 2004005486 W US2004005486 W US 2004005486W WO 2004105158 A2 WO2004105158 A2 WO 2004105158A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
carbon dioxide
water
exhaust gas
cell system
Prior art date
Application number
PCT/US2004/005486
Other languages
French (fr)
Other versions
WO2004105158A3 (en
Inventor
Fred C. Jahnke
Sanjay C. Parab
Original Assignee
Fuelcell Energy, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuelcell Energy, Inc. filed Critical Fuelcell Energy, Inc.
Priority to EP04714551A priority Critical patent/EP1639665A4/en
Priority to JP2006501191A priority patent/JP2006525626A/en
Publication of WO2004105158A2 publication Critical patent/WO2004105158A2/en
Publication of WO2004105158A3 publication Critical patent/WO2004105158A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates to fuel cell systems and, in particular, to fuel cell systems which employ anode gas recycling.
  • reactant fuel and oxidizing gas are delivered to each of the fuel cells of the system.
  • the fuel is passed through the anode compartment of each fuel cell, while oxidizing gas is passed through the cathode compartment.
  • the fuel exhaust gas which contains fuel (usually unreacted hydrogen and carbon monoxide), water vapor and carbon dioxide is processed to separate these constituents.
  • the separated unreacted fuel is then recycled to the anode compartment of the fuel cell, as is a portion of the water which results as a byproduct from fuel consumption.
  • the separated carbon dioxide may be likewise recycled, in this case to the cathode compartment of the fuel cell.
  • Carbon dioxide recycle is required for molten carbonate type fuel cells. With other fuel cell types, carbon dioxide may be transferred to the cathode exhaust gas, rather than the cathode air supply, and vented.
  • a fuel cell system using the above-described recycling is disclosed in commonly assigned U.S. Patent No. 4,532,192.
  • a hydrogen transfer device such as an electrochemical cell
  • a condenser then removes the water.
  • a portion of the removed water is passed through a heat exchanger whose output is recycled to the fuel cell anode compartment along with the separated unreacted hydrogen.
  • the exhaust gas stream remaining after removing the water is then passed to a burner for burning any hydrogen with the oxidant supply gas to produce a resultant oxidant gas stream rich in carbon dioxide. This stream is then passed into the cathode compartment of the fuel cell.
  • U.S. Patents Nos. 5,068,159, and 4,039,579 teach another system of this type.
  • a cooler and condenser are first used to separate water from the anode exhaust stream.
  • the resultant water is then passed through a boiler and a heater and fed to the inlet of the anode compartment.
  • the anode exhaust stream, absent the water, is then processed to remove the carbon dioxide.
  • the resultant stream is then recycled to the anode compartment of the fuel cell, while the removed carbon dioxide is recycled to the cathode compartment of the fuel cell.
  • the carbon dioxide separator used in the '159 and the '579 patents comprises , an absorber, where the carbon dioxide is absorbed by an aqueous amine solution in an absorption column.
  • the resultant solution is then fed to a regeneration column in which the carbon dioxide gas is stripped with air supplied from an air feed duct.
  • the air, now rich in carbon dioxide, is then fed to the cathode compartment of the fuel cell.
  • PSA pressure swing adsorption
  • the composite gas is typically fed to the PSA system at pressures of more than 100 psia.
  • the gases other than hydrogen e.g. carbon dioxide and water
  • a pure hydrogen stream exits the PSA system at a pressure close to the inlet pressure.
  • the adsorbent bed media in the PSA system reaches its maximum adsorbent capacity, it must be purged to remove the adsorbed gases. This occurs by de-sorption which is accomplished by lowering the pressure to near atmospheric pressure of about 20 psia.
  • NPSA vacuum pressure swing adsorption
  • de-sorption is carried out by lowering the pressure to create pressure vacuum conditions.
  • a standard PSA system typically consumesl5 to 35 % of the recycle fuel value as compression power in order to compress the gas to 100 to 300 psia. Because of the higher value of power energy relative to fuel, this is a substantial penalty.
  • a conventional NPSA system requires a similar amount of power in order to generate vacuum conditions to de-sorb the adsorbent beds.
  • a fuel cell system comprising a fuel cell including an anode compartment and a cathode compartment.
  • the fuel cell system further comprises a partial-pressure pressure swing adsorption assembly which operates at low pressure and uses supply gas for the cathode compartment of the fuel cell to separate carbon dioxide from the anode exhaust gas exiting from the anode compartment of the fuel cell.
  • the partial-pressure pressure swing adsorption assembly provides this separation based on the difference in partial pressures of the carbon dioxide in the anode exhaust gas and the oxidant gas in the supply gas.
  • the adsorption step is similar to a NPSA system adsorption, but the desorption step uses air being sent to the fuel cell to obtain a "carbon dioxide partial pressure" vacuum.
  • the fuel cell system is also provided with further systems which, after separation of the carbon dioxide, recycle the fuel rich exhaust gas to the anode compartment and which feed the supply gas with the carbon dioxide to the cathode compartment.
  • the system also includes a water transfer assembly which separates water from the anode exhaust gas.
  • the further unit in this case recycles the anode exhaust gas and the water to the anode compartment after separation of both the carbon dioxide and the water from the gas. While water could also be transferred by cooling and condensing the water, physically separating it from the vapor, and vaporizing the water in the fuel stream, this method requires more equipment and consumes heat.
  • the partial- pressure pressure swing adsorption carbon dioxide transfer assembly and the water transfer assembly are wheel transfer devices. Additionally, in the disclosed system, the water transfer assembly is upstream of the partial-pressure pressure swing adsorption carbon dioxide transfer assembly to avoid transferring the water with carbon dioxide to the air rather than the fuel going to the anode.
  • FIG. 1 shows a fuel cell system with an anode exhaust gas recycle assembly in accordance with the principles of the present invention
  • FIG. 2 shows an alternative embodiment of the water transfer assembly used in the fuel cell system of FIG.1
  • FIG. 1 shows a fuel cell system 1 in accordance with the principles of the present invention.
  • the system 1 comprises a fuel cell 2 having anode and cathode compartments 3 and 4.
  • a carbon and hydrogen containing fuel 5 is provided to a supply line 6 which carries the fuel to the anode compartment 3 of the fuel cell 2.
  • An oxidant supply gas 7, shown as air, is likewise conveyed by a supply line 8 to the cathode compartment 4 of the cell 2.
  • the system 1 is adapted to process the anode exhaust gas 9 from the anode compartment 3 of the fuel cell 2 so as to recycle various constituents of the gas. More particularly, the anode exhaust gas 9 comprises unreacted hydrogen and carbon monoxide, water vapor and carbon dioxide and trace amounts of other gases and the system 1 is adapted to recycle the hydrogen, carbon monoxide, water and carbon dioxide in such a way as to improve the efficiency and enhance the performance of the fuel cell 2.
  • the fuel cell system 1 is provided with a water transfer assembly 11 and a carbon dioxide transfer assembly 12 which separate the water vapor and the carbon dioxide in the anode exhaust gas 9.
  • the assembly 11 is adapted to separate and transfer the water vapor in the anode exhaust as water to the fuel 5 in line 6, while the assembly 12 is adapted to transfer the carbon dioxide in the anode exhaust gas to the oxidant supply gas 7 in the line 8, both using low pressures, adsorption and partial pressures of the gases.
  • the water transfer assembly 11 is in the form of a partial- pressure pressure swing water transfer wheel.
  • the wheel is adapted to include a water absorbing medium which operates at or above the dew point of the anode exhaust gas.
  • the fuel supply acts as a regenerator for the absorbing medium in the assembly 11. More particularly, the water absorbed by the absorbing medium in the assembly 11 is transferred to the fuel as the fuel passes through the wheel due to the lower partial pressure of the water in the fuel.
  • the carbon dioxide transfer assembly 12 is in the form of a partial-pressure pressure swing carbon dioxide adsorption transfer wheel.
  • the wheel includes a carbon dioxide adsorbing medium and, as illustrated, the oxidant supply gas 7 in the line 8 acts as regenerator of the adsorbing medium.
  • carbon dioxide present in the fuel and entering the partial- pressure pressure swing adsorption transfer wheel 12 is adsorbed at near atmospheric pressure of about 20 psia by the carbon dioxide adsorbing medium. Carbon dioxide is then removed from the adsorbent medium by generating a carbon dioxide partial pressure vacuum, which is accomplished by passing the oxidant supply gas, or air, over the adsorbent, causing carbon dioxide to be transferred out of the adsorbent medium into the oxidant supply gas 7.
  • a partial-pressure pressure swing adsorption transfer wheel 12 requires only 1 to 3% of the recycle fuel value of parasitic power consumption for its operation and is thus more efficient and less costly than conventional systems.
  • the gas first passes tlirough an indirect heat exchanger 14 where it is cooled by the oxidant supply gas in the line 8.
  • the exhaust gas then passes through the partial-pressure pressure swing water transfer assembly 11.
  • water vapor as above- described, the water required for the operation of the fuel cell is removed from the exhaust, and the exhaust stream is then carried by the line 13 through the partial- pressure pressure swing carbon dioxide adsorption assembly 12.
  • carbon dioxide is removed from the exhaust, and the exhaust, which now contains primarily unreacted hydrogen gas, is moved or recycled from the assembly 12 by the blower 15 in the line 13 to the line 6 carrying the fuel 5.
  • the fuel 5 receives the unreacted hydrogen after having passed through the bed 16, where any impurities in the feed, especially sulfur compound, are removed, and through the water transfer assembly 11, where, as above-described, it receives water transferred from the anode exhaust.
  • the fuel After receiving the hydrogen from blower 15, the fuel is passed through the heat exchanger unit 17, where the water, fuel, and hydrogen are heated by the cathode exhaust gas 18 in the line 19.
  • the fuel then passes through the de-oxidizer / reformer bed 21, where any impurities missed by purification bed 16, especially oxygen and heavy hydrocarbons are converted to carbon dioxide, water, and/or methane. From the de-oxidizer / reformer bed 21, the fuel passes through the super heater 22, where it is again heated by the cathode exhaust gas, and then passes into the anode compartment 3 of the fuel cell 2.
  • the oxidant supply gas 7 it is pulled by the blower 23 through the line 8, passes through the control valve 24 to and through the partial-pressure pressure swing carbon dioxide adsorption assembly 12. In passing through the latter, as above-described, carbon dioxide gas is transferred from the anode exhaust gas to the oxidant supply gas.
  • the oxidant supply gas is then conveyed by the line 8 through the heat exchanger 14 where it is heated by the anode exhaust gas and then carried to the mixing unit 25.
  • the unit 25 receives a slip stream containing a small portion of the anode exhaust gas via the line 20 coupled to the transfer assembly 12. This slip stream is mixed with the oxidant supply gas and the resultant stream fed to an oxidizer 26.
  • This slip stream can be the result of leaks between the streams 13 and 8 in transfer assembly 12 or may be controlled to prevent any significant build-up of inerts, especially nitrogen, in the fuel system. It can also be used to help control the temperature of the air to the fuel cell.
  • the oxidizer 26 converts any fuel from the slip stream 20 mixed with the oxidant in mixer 25 to water and carbon dioxide. The oxidizer 26 output, after receiving recycled cathode exhaust gas via the blower 27 and line 28, is applied to the input of the cathode compartment.
  • the separation of carbon dioxide from the anode exhaust gas is accomplished at low pressures using partial pressures and without the need of a liquid transfer medium. Additionally, with the use of a water transfer operation upstream of the carbon dioxide operation, the carbon dioxide separation and transfer can take place without the concern of transferring water to the oxidant supply gas.
  • the water transfer operation, in conjunction with the partial-pressure pressure swing carbon dioxide transfer operation, thus results in an increased efficiency of the fuel cell 2 with less complexity.
  • FIG. 2 the anode exhaust in line 13 is fed to one or more heat exchangers 31 A, 3 IB, 3 IC, where it is cooled by the oxidant supply gas, water recycle vaporization and/or cooling water or an air fan. After being cooled, the stream is fed to a scrubbing and blow-down assembly 32 where electrolyte contaminated water is removed. The resultant stream is then further cooled in a heat exchanger 33 by an air fan or cooling water and the stream then fed to a condensing unit 34.
  • the water is removed and fed to the fuel supply line 6 and the remaining stream is then coupled to the line 13 leading to the transfer assembly 12.
  • the carbon dioxide transfer assembly 12 and water transfer assembly 11 of the invention can be configured as a customized form of the gas purification system manufactured by QuestAir Technologies, Inc.
  • a modified pressure swing adsorption system where the partial pressures are used as described above, rather than total pressures typically used may be used for the carbon dioxide transfer assembly 12 and water transfer assembly 11 of the invention.
  • Such systems are manufactured by UOP and Air Products.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system having a fuel cell with an anode compartment and a cathode compartment. The fuel cell system is also provided with a partial-pressure pressure swing adsorption assembly operating at low pressure which uses supply gas for the cathode compartment of the fuel cell to separate carbon dioxide from the anode exhaust gas exiting from the anode compartment of the fuel cell. The partial­pressure pressure swing adsorption assembly is adapted to carry out this separation based on the difference in partial pressures of the carbon dioxide in the anode exhaust gas and the oxidant gas in the supply gas. The fuel cell system utilizes a further unit to recycle the exhaust gas, after separation of the carbon dioxide, to the anode compartment and to feed the supply gas with the carbon dioxide to the cathode compartment.

Description

FUEL CELL SYSTEM WITH RECYCLE OF ANODE EXHAUST GAS Background of the Invention
This invention relates to fuel cell systems and, in particular, to fuel cell systems which employ anode gas recycling.
In conventional fuel cell systems and, in particular, molten carbonate fuel cell systems, reactant fuel and oxidizing gas are delivered to each of the fuel cells of the system. The fuel is passed through the anode compartment of each fuel cell, while oxidizing gas is passed through the cathode compartment.
As is known, not all of the fuel delivered to the anode compartment of a fuel cell is converted into electrical power. Typically, in a molten carbonate fuel cell, approximately 10 to 50% of the fuel exits the cell as anode exhaust gas. As a result, in order to increase the fuel cell efficiency, it is a conventional practice to recycle a portion or all of the anode exhaust gas back to the input of the anode compartment. Various procedures for recycling the anode exhaust gas have been developed.
In one type of arrangement, the fuel exhaust gas, which contains fuel (usually unreacted hydrogen and carbon monoxide), water vapor and carbon dioxide is processed to separate these constituents. The separated unreacted fuel is then recycled to the anode compartment of the fuel cell, as is a portion of the water which results as a byproduct from fuel consumption. The separated carbon dioxide, on the other hand, may be likewise recycled, in this case to the cathode compartment of the fuel cell. Carbon dioxide recycle is required for molten carbonate type fuel cells. With other fuel cell types, carbon dioxide may be transferred to the cathode exhaust gas, rather than the cathode air supply, and vented. These recycling operations improve efficiency, as above-stated, and enhance fuel cell operation.
A fuel cell system using the above-described recycling is disclosed in commonly assigned U.S. Patent No. 4,532,192. In the system of the '192 patent, a hydrogen transfer device, such as an electrochemical cell, is used to separate the unreacted hydrogen from the anode exhaust gas. A condenser then removes the water. A portion of the removed water is passed through a heat exchanger whose output is recycled to the fuel cell anode compartment along with the separated unreacted hydrogen. The exhaust gas stream remaining after removing the water is then passed to a burner for burning any hydrogen with the oxidant supply gas to produce a resultant oxidant gas stream rich in carbon dioxide. This stream is then passed into the cathode compartment of the fuel cell.
U.S. Patents Nos. 5,068,159, and 4,039,579 teach another system of this type. In this system, a cooler and condenser are first used to separate water from the anode exhaust stream. The resultant water is then passed through a boiler and a heater and fed to the inlet of the anode compartment. The anode exhaust stream, absent the water, is then processed to remove the carbon dioxide. The resultant stream is then recycled to the anode compartment of the fuel cell, while the removed carbon dioxide is recycled to the cathode compartment of the fuel cell.
The carbon dioxide separator used in the '159 and the '579 patents comprises , an absorber, where the carbon dioxide is absorbed by an aqueous amine solution in an absorption column. The resultant solution is then fed to a regeneration column in which the carbon dioxide gas is stripped with air supplied from an air feed duct. The air, now rich in carbon dioxide, is then fed to the cathode compartment of the fuel cell.
As can be appreciated, the systems of the above patents require the use of complex and costly equipment for realizing their recycling and separation operations. In the '192 patent, a fuel cell type hydrogen transfer device is used, as well as heat exchangers and a burner to provide the desired recycling operations.
In the '159 and '579 patents, on the other hand, condensers, a boiler, a heater and a liquid gas separator are used to recycle hydrogen, water and carbon dioxide. The gas separator, moreover, is subject to foaming or carryover of liquid resulting from the pumping of the liquid absorbent within the system. Moreover, such a system would require compression of the gas and/or heating of the absorbing liquid to be practical. Compressing and/or heating consume significant energy, making this option relatively unattractive. The separator also requires the use of two columns and air in order to absorb and then regenerate the carbon dioxide.
In addition to the above types of systems, other types of so-called "pressure swing adsorption systems" have been used to process a composite hydrogen gas from a natural gas reformer to separate the hydrogen from other gases. In a standard pressure swing adsorption ("PSA") system the composite gas is typically fed to the PSA system at pressures of more than 100 psia. The gases other than hydrogen (e.g. carbon dioxide and water) are adsorbed by the adsorbent bed media at high pressures and a pure hydrogen stream exits the PSA system at a pressure close to the inlet pressure. After the adsorbent bed media in the PSA system reaches its maximum adsorbent capacity, it must be purged to remove the adsorbed gases. This occurs by de-sorption which is accomplished by lowering the pressure to near atmospheric pressure of about 20 psia.
Another conventional pressure swing adsorption apparatus is a vacuum pressure swing adsorption ("NPSA") system, which operates at atmospheric pressures. In NPSA systems, de-sorption is carried out by lowering the pressure to create pressure vacuum conditions.
The conventional PSA systems require a significant amount of power to operate. A standard PSA system typically consumesl5 to 35 % of the recycle fuel value as compression power in order to compress the gas to 100 to 300 psia. Because of the higher value of power energy relative to fuel, this is a substantial penalty. A conventional NPSA system requires a similar amount of power in order to generate vacuum conditions to de-sorb the adsorbent beds.
It is therefore an object of the present invention to provide a fuel cell system having an improved anode exhaust gas recycle assembly.
It is a further object of the present invention to provide a fuel cell system having an anode exhaust gas recycle assembly which is less complex and costly and is more energy efficient.
Summary of the Invention In accordance with the principles of the invention, the above and other objectives are realized in a fuel cell system comprising a fuel cell including an anode compartment and a cathode compartment. The fuel cell system further comprises a partial-pressure pressure swing adsorption assembly which operates at low pressure and uses supply gas for the cathode compartment of the fuel cell to separate carbon dioxide from the anode exhaust gas exiting from the anode compartment of the fuel cell. The partial-pressure pressure swing adsorption assembly provides this separation based on the difference in partial pressures of the carbon dioxide in the anode exhaust gas and the oxidant gas in the supply gas. The adsorption step is similar to a NPSA system adsorption, but the desorption step uses air being sent to the fuel cell to obtain a "carbon dioxide partial pressure" vacuum. The fuel cell system is also provided with further systems which, after separation of the carbon dioxide, recycle the fuel rich exhaust gas to the anode compartment and which feed the supply gas with the carbon dioxide to the cathode compartment.
In a further aspect of the invention, the system also includes a water transfer assembly which separates water from the anode exhaust gas. The further unit in this case recycles the anode exhaust gas and the water to the anode compartment after separation of both the carbon dioxide and the water from the gas. While water could also be transferred by cooling and condensing the water, physically separating it from the vapor, and vaporizing the water in the fuel stream, this method requires more equipment and consumes heat.
In one embodiment of the invention to be disclosed hereinafter, the partial- pressure pressure swing adsorption carbon dioxide transfer assembly and the water transfer assembly are wheel transfer devices. Additionally, in the disclosed system, the water transfer assembly is upstream of the partial-pressure pressure swing adsorption carbon dioxide transfer assembly to avoid transferring the water with carbon dioxide to the air rather than the fuel going to the anode. Brief Description of the Drawings
The above and other features and aspects of the present invention will become more apparent upon reading the following detailed description in conjunction with the accompanying drawings, in which:
FIG. 1 shows a fuel cell system with an anode exhaust gas recycle assembly in accordance with the principles of the present invention; and
FIG. 2 shows an alternative embodiment of the water transfer assembly used in the fuel cell system of FIG.1
Detailed Description
FIG. 1 shows a fuel cell system 1 in accordance with the principles of the present invention. As shown, the system 1 comprises a fuel cell 2 having anode and cathode compartments 3 and 4. A carbon and hydrogen containing fuel 5 is provided to a supply line 6 which carries the fuel to the anode compartment 3 of the fuel cell 2. An oxidant supply gas 7, shown as air, is likewise conveyed by a supply line 8 to the cathode compartment 4 of the cell 2.
In accordance with the principles of the present invention, the system 1 is adapted to process the anode exhaust gas 9 from the anode compartment 3 of the fuel cell 2 so as to recycle various constituents of the gas. More particularly, the anode exhaust gas 9 comprises unreacted hydrogen and carbon monoxide, water vapor and carbon dioxide and trace amounts of other gases and the system 1 is adapted to recycle the hydrogen, carbon monoxide, water and carbon dioxide in such a way as to improve the efficiency and enhance the performance of the fuel cell 2.
Specifically, the fuel cell system 1 is provided with a water transfer assembly 11 and a carbon dioxide transfer assembly 12 which separate the water vapor and the carbon dioxide in the anode exhaust gas 9. The assembly 11 is adapted to separate and transfer the water vapor in the anode exhaust as water to the fuel 5 in line 6, while the assembly 12 is adapted to transfer the carbon dioxide in the anode exhaust gas to the oxidant supply gas 7 in the line 8, both using low pressures, adsorption and partial pressures of the gases.
In the case shown, the water transfer assembly 11 is in the form of a partial- pressure pressure swing water transfer wheel. The wheel is adapted to include a water absorbing medium which operates at or above the dew point of the anode exhaust gas. In this situation, as shown in FIG. 1, the fuel supply acts as a regenerator for the absorbing medium in the assembly 11. More particularly, the water absorbed by the absorbing medium in the assembly 11 is transferred to the fuel as the fuel passes through the wheel due to the lower partial pressure of the water in the fuel.
Also, in the case shown, the carbon dioxide transfer assembly 12 is in the form of a partial-pressure pressure swing carbon dioxide adsorption transfer wheel. The wheel includes a carbon dioxide adsorbing medium and, as illustrated, the oxidant supply gas 7 in the line 8 acts as regenerator of the adsorbing medium.
More particularly, carbon dioxide present in the fuel and entering the partial- pressure pressure swing adsorption transfer wheel 12, is adsorbed at near atmospheric pressure of about 20 psia by the carbon dioxide adsorbing medium. Carbon dioxide is then removed from the adsorbent medium by generating a carbon dioxide partial pressure vacuum, which is accomplished by passing the oxidant supply gas, or air, over the adsorbent, causing carbon dioxide to be transferred out of the adsorbent medium into the oxidant supply gas 7. Unlike the conventional pressure swing adsorption units, a partial-pressure pressure swing adsorption transfer wheel 12 requires only 1 to 3% of the recycle fuel value of parasitic power consumption for its operation and is thus more efficient and less costly than conventional systems.
Looking now at the path of the anode exhaust gas 9 in the line 13, the gas first passes tlirough an indirect heat exchanger 14 where it is cooled by the oxidant supply gas in the line 8. The exhaust gas then passes through the partial-pressure pressure swing water transfer assembly 11. In the assembly 11, water vapor, as above- described, the water required for the operation of the fuel cell is removed from the exhaust, and the exhaust stream is then carried by the line 13 through the partial- pressure pressure swing carbon dioxide adsorption assembly 12. At this assembly, carbon dioxide is removed from the exhaust, and the exhaust, which now contains primarily unreacted hydrogen gas, is moved or recycled from the assembly 12 by the blower 15 in the line 13 to the line 6 carrying the fuel 5.
The fuel 5 receives the unreacted hydrogen after having passed through the bed 16, where any impurities in the feed, especially sulfur compound, are removed, and through the water transfer assembly 11, where, as above-described, it receives water transferred from the anode exhaust. After receiving the hydrogen from blower 15, the fuel is passed through the heat exchanger unit 17, where the water, fuel, and hydrogen are heated by the cathode exhaust gas 18 in the line 19. The fuel then passes through the de-oxidizer / reformer bed 21, where any impurities missed by purification bed 16, especially oxygen and heavy hydrocarbons are converted to carbon dioxide, water, and/or methane. From the de-oxidizer / reformer bed 21, the fuel passes through the super heater 22, where it is again heated by the cathode exhaust gas, and then passes into the anode compartment 3 of the fuel cell 2.
Looking now at the oxidant supply gas 7, it is pulled by the blower 23 through the line 8, passes through the control valve 24 to and through the partial-pressure pressure swing carbon dioxide adsorption assembly 12. In passing through the latter, as above-described, carbon dioxide gas is transferred from the anode exhaust gas to the oxidant supply gas. The oxidant supply gas is then conveyed by the line 8 through the heat exchanger 14 where it is heated by the anode exhaust gas and then carried to the mixing unit 25. The unit 25 receives a slip stream containing a small portion of the anode exhaust gas via the line 20 coupled to the transfer assembly 12. This slip stream is mixed with the oxidant supply gas and the resultant stream fed to an oxidizer 26. This slip stream can be the result of leaks between the streams 13 and 8 in transfer assembly 12 or may be controlled to prevent any significant build-up of inerts, especially nitrogen, in the fuel system. It can also be used to help control the temperature of the air to the fuel cell. The oxidizer 26 converts any fuel from the slip stream 20 mixed with the oxidant in mixer 25 to water and carbon dioxide. The oxidizer 26 output, after receiving recycled cathode exhaust gas via the blower 27 and line 28, is applied to the input of the cathode compartment.
With the system 1 of the invention configured as above-described, the separation of carbon dioxide from the anode exhaust gas is accomplished at low pressures using partial pressures and without the need of a liquid transfer medium. Additionally, with the use of a water transfer operation upstream of the carbon dioxide operation, the carbon dioxide separation and transfer can take place without the concern of transferring water to the oxidant supply gas. The water transfer operation, in conjunction with the partial-pressure pressure swing carbon dioxide transfer operation, thus results in an increased efficiency of the fuel cell 2 with less complexity.
Because the water transfer operation occurs at a higher temperature where the water is transferred in vapor phase, the need for a significant amount of heat exchange equipment required to condense and revaporize the water is reduced. Moreover, the transfer of water in vapor phase avoids the potential corrosion and fouling problems associated with the transfer of water in liquid phase.
While the water transfer assembly 11 has been above-described as a wheel transfer assembly, alternative transfer assemblies can also be employed. One such alternative is shown in FIG. 2. In the assembly of FIG. 2, the anode exhaust in line 13 is fed to one or more heat exchangers 31 A, 3 IB, 3 IC, where it is cooled by the oxidant supply gas, water recycle vaporization and/or cooling water or an air fan. After being cooled, the stream is fed to a scrubbing and blow-down assembly 32 where electrolyte contaminated water is removed. The resultant stream is then further cooled in a heat exchanger 33 by an air fan or cooling water and the stream then fed to a condensing unit 34. At the unit 34, the water is removed and fed to the fuel supply line 6 and the remaining stream is then coupled to the line 13 leading to the transfer assembly 12. It should be noted that the carbon dioxide transfer assembly 12 and water transfer assembly 11 of the invention can be configured as a customized form of the gas purification system manufactured by QuestAir Technologies, Inc. Also, a modified pressure swing adsorption system where the partial pressures are used as described above, rather than total pressures typically used may be used for the carbon dioxide transfer assembly 12 and water transfer assembly 11 of the invention. Such systems are manufactured by UOP and Air Products.
In all cases it is understood that the above-described arrangements are merely illustrative of the many possible specific embodiments which represent applications of the present invention. Numerous and varied other arrangements can be readily devised in accordance with the principles of the present invention without departing from the spirit and scope of the invention.

Claims

What is claimed is:
1. A fuel cell system comprising: a fuel cell including an anode compartment and a cathode compartment; a partial-pressure pressure swing adsorption assembly using oxidant supply gas for said cathode compartment to separate carbon dioxide from said anode exhaust gas, said partial-pressure pressure swing adsorption assembly providing said separation based on the difference in partial pressures of the carbon dioxide in said anode exhaust gas and the oxidant gas in said oxidant supply gas; a unit recycling said anode exhaust gas, after separation of said carbon dioxide, to said anode compartment of said fuel cell and feeding said oxidant supply gas with said carbon dioxide to said cathode compartment of said fuel cell.
2. A fuel cell system according to claim 1, further comprising: a water transfer assembly separating water from anode exhaust gas exiting from said anode compartment.
3. A fuel cell system according to claim 2, wherein: said water transfer assembly is upstream of said partial-pressure pressure swing adsorption assembly.
4. A fuel cell system according to claim 3, wherein: said water transfer assembly comprises a partial-pressure pressure swing water transfer wheel; and said partial-pressure pressure swing adsorption assembly comprises a carbon dioxide transfer wheel.
5. A fuel cell system according to claim 2, wherein said water transfer assembly comprises a water absorbing media.
6. A fuel cell system according to claim 5, wherein said water absorbing media operates at or above the dew point of the anode exhaust gas.
7. A fuel cell system according to claim 2, wherein said water transfer assembly comprises a condenser.
8. A fuel cell system according to claim 7, wherein said water transfer assembly further comprises a scrubbing unit and a blowdown unit for removal of water contaminated with electrolyte.
PCT/US2004/005486 2003-05-15 2004-02-25 A fuel cell system with recycle of anode exhaust gas WO2004105158A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04714551A EP1639665A4 (en) 2003-05-15 2004-02-25 A fuel cell system with recycle of anode exhaust gas
JP2006501191A JP2006525626A (en) 2003-05-15 2004-02-25 Fuel cell system utilizing recirculation of anode exhaust gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/439,132 US7060382B2 (en) 2003-05-15 2003-05-15 Fuel cell system with recycle of anode exhaust gas
US10/439,132 2003-05-15

Publications (2)

Publication Number Publication Date
WO2004105158A2 true WO2004105158A2 (en) 2004-12-02
WO2004105158A3 WO2004105158A3 (en) 2005-03-03

Family

ID=33417730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/005486 WO2004105158A2 (en) 2003-05-15 2004-02-25 A fuel cell system with recycle of anode exhaust gas

Country Status (5)

Country Link
US (1) US7060382B2 (en)
EP (1) EP1639665A4 (en)
JP (1) JP2006525626A (en)
KR (1) KR100768973B1 (en)
WO (1) WO2004105158A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318909A (en) * 2005-05-09 2006-11-24 Modine Mfg Co High temperature fuel cell system having integral heat exchange network
WO2007021871A2 (en) * 2005-08-11 2007-02-22 Fuelcell Energy, Inc. Control assembly for controlling a fuel cell system during shutdown and restart
JP2008525964A (en) * 2004-12-27 2008-07-17 フュエルセル エナジー, インコーポレイテッド In situ removal of electrolyte from gas oxidizer

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422810B2 (en) * 2004-01-22 2008-09-09 Bloom Energy Corporation High temperature fuel cell system and method of operating same
US20060251934A1 (en) * 2005-05-09 2006-11-09 Ion America Corporation High temperature fuel cell system with integrated heat exchanger network
US7858256B2 (en) * 2005-05-09 2010-12-28 Bloom Energy Corporation High temperature fuel cell system with integrated heat exchanger network
US7520916B2 (en) * 2005-07-25 2009-04-21 Bloom Energy Corporation Partial pressure swing adsorption system for providing hydrogen to a vehicle fuel cell
JP5113749B2 (en) * 2005-07-25 2013-01-09 ブルーム エナジー コーポレーション Gas separation method and apparatus using partial pressure swing adsorption
US7591880B2 (en) 2005-07-25 2009-09-22 Bloom Energy Corporation Fuel cell anode exhaust fuel recovery by adsorption
EP1760816A3 (en) * 2005-08-31 2010-05-05 Samsung SDI Co., Ltd. Method and apparatus for water management in direct methanol fuel cell system using heat exchanger
KR100802283B1 (en) * 2006-09-01 2008-02-11 두산중공업 주식회사 Fuel cell power system with recycle process of anode exhaust gas
US7695545B2 (en) 2007-03-14 2010-04-13 Air Products And Chemicals, Inc. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration
FI122455B (en) * 2007-10-03 2012-01-31 Waertsilae Finland Oy The fuel cell device
US8367256B2 (en) * 2008-01-09 2013-02-05 Fuelcell Energy, Inc. Water recovery assembly for use in high temperature fuel cell systems
US8652694B2 (en) * 2008-03-04 2014-02-18 Fuelcell Energy, Inc. Water recovery assembly for transferring water from fuel cell cathode exhaust
WO2010008836A2 (en) * 2008-06-23 2010-01-21 Arizona Board Of Regents For And On Behalf Of Arizona State University Bicarbonate and carbonate as hydroxide carriers in a biological fuel cell
US8062799B2 (en) 2008-08-19 2011-11-22 Fuelcell Energy, Inc. High-efficiency dual-stack molten carbonate fuel cell system
US8445147B2 (en) * 2009-02-26 2013-05-21 Fuelcell Energy, Inc. Fuel humidifier assembly for use in high temperature fuel cell systems
US9819038B2 (en) * 2011-03-31 2017-11-14 General Electric Company Fuel cell reforming system with carbon dioxide removal
JP5860636B2 (en) * 2011-08-25 2016-02-16 シャープ株式会社 Anion exchange membrane fuel cell system
US10256496B2 (en) * 2014-07-01 2019-04-09 General Electric Company Power generation systems and methods utilizing cascaded fuel cells
US10763523B2 (en) * 2014-11-21 2020-09-01 Fuelcell Energy, Inc. Fuel cell system with waste heat recovery for production of high pressure steam
US20160380275A1 (en) * 2014-12-11 2016-12-29 Hamilton Sundstrand Space Systems International, Inc. Multi-voltage fuel cell
CA2956439C (en) * 2015-10-08 2017-11-14 1304338 Alberta Ltd. Method of producing heavy oil using a fuel cell
KR102212137B1 (en) 2016-04-21 2021-02-03 퓨얼 셀 에너지, 인크 Method for post-processing molten carbonate fuel cell anode exhaust to capture carbon dioxide
US11094952B2 (en) 2016-04-21 2021-08-17 Fuelcell Energy, Inc. Carbon dioxide removal from anode exhaust of a fuel cell by cooling/condensation
WO2017184818A1 (en) * 2016-04-21 2017-10-26 Fuelcell Energy, Inc. High efficiency fuel cell system with intermediate co2 recovery system
CN109314259B (en) * 2016-04-22 2021-12-10 燃料电池能有限公司 In-situ monitoring of flue gas contaminants for fuel cell systems
US10516180B2 (en) 2016-04-27 2019-12-24 Fuelcell Energy, Inc. Carbon dioxide removal system for anode exhaust of a fuel cell
JP6799078B2 (en) 2016-04-29 2020-12-09 フュエルセル エナジー, インコーポレイテッドFuelcell Energy, Inc. Methaneization of anode exhaust gas to enhance carbon dioxide capture
JP6043886B1 (en) * 2016-06-13 2016-12-14 東京瓦斯株式会社 Gas separation system and fuel cell system
CN106229528B (en) * 2016-09-30 2019-01-08 江苏科技大学 A kind of fuel cell tail gas recycle device
US10854899B2 (en) * 2016-11-04 2020-12-01 Cummins Enterprise Llc Power generation system using cascaded fuel cells and associated methods thereof
JP6997032B2 (en) * 2018-04-23 2022-02-03 東京瓦斯株式会社 Fuel cell system
KR102610181B1 (en) 2018-11-30 2023-12-04 퓨얼셀 에너지, 인크 Modification of catalyst patterns for fuel cells operating with improved CO2 utilization
KR102541753B1 (en) 2018-12-18 2023-06-14 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 How to Integrate a Fuel Cell and a Steam Methane Reformer
EP4118029A1 (en) 2020-03-11 2023-01-18 Fuelcell Energy, Inc. Steam methane reforming unit for carbon capture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532192A (en) * 1984-11-06 1985-07-30 Energy Research Corporation Fuel cell system
JPS63166157A (en) * 1986-12-26 1988-07-09 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell power generating system
US5079103A (en) * 1989-04-25 1992-01-07 Linde Aktiengesellschaft Fuel cells with hydrogen recycle
US6331366B1 (en) * 1999-06-23 2001-12-18 International Fuel Cells Llc Operating system for a fuel cell power plant
US6458478B1 (en) * 2000-09-08 2002-10-01 Chi S. Wang Thermoelectric reformer fuel cell process and system
US6627338B2 (en) * 1999-12-22 2003-09-30 Ballard Power Systems Inc. Integrated fuel cell and pressure swing adsorption system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527618A (en) 1968-05-13 1970-09-08 United Aircraft Corp Fuel cell with carbon dioxide gas stripper and method of operation
US3847672A (en) 1971-08-18 1974-11-12 United Aircraft Corp Fuel cell with gas separator
JPS62274561A (en) * 1986-05-22 1987-11-28 Mitsubishi Heavy Ind Ltd Molten carbonate fuel cell
JPH02172159A (en) 1988-12-24 1990-07-03 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel cell power generating method and system
US5232793A (en) 1989-09-19 1993-08-03 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of and apparatus for utilizing and recovering co2 in combustion exhaust gas
US5413878A (en) 1993-10-28 1995-05-09 The United States Of America As Represented By The Department Of Energy System and method for networking electrochemical devices
JP3053362B2 (en) 1995-08-01 2000-06-19 株式会社東芝 Separation method of carbon dioxide gas Foam carbon dioxide gas absorbent and carbon dioxide gas separation device
AU3076299A (en) 1998-03-12 1999-09-27 Hydrogen Burner Technology, Inc. Process gas purification and fuel cell system
US6103143A (en) 1999-01-05 2000-08-15 Air Products And Chemicals, Inc. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon
US6387845B1 (en) 1999-03-23 2002-05-14 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent containing lithium silicate
US6245127B1 (en) 1999-05-27 2001-06-12 Praxair Technology, Inc. Pressure swing adsorption process and apparatus
CA2325072A1 (en) 2000-10-30 2002-04-30 Questair Technologies Inc. Gas separation for molten carbonate fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532192A (en) * 1984-11-06 1985-07-30 Energy Research Corporation Fuel cell system
JPS63166157A (en) * 1986-12-26 1988-07-09 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell power generating system
US5079103A (en) * 1989-04-25 1992-01-07 Linde Aktiengesellschaft Fuel cells with hydrogen recycle
US6331366B1 (en) * 1999-06-23 2001-12-18 International Fuel Cells Llc Operating system for a fuel cell power plant
US6627338B2 (en) * 1999-12-22 2003-09-30 Ballard Power Systems Inc. Integrated fuel cell and pressure swing adsorption system
US6458478B1 (en) * 2000-09-08 2002-10-01 Chi S. Wang Thermoelectric reformer fuel cell process and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1639665A2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525964A (en) * 2004-12-27 2008-07-17 フュエルセル エナジー, インコーポレイテッド In situ removal of electrolyte from gas oxidizer
JP2006318909A (en) * 2005-05-09 2006-11-24 Modine Mfg Co High temperature fuel cell system having integral heat exchange network
WO2007021871A2 (en) * 2005-08-11 2007-02-22 Fuelcell Energy, Inc. Control assembly for controlling a fuel cell system during shutdown and restart
WO2007021871A3 (en) * 2005-08-11 2008-08-14 Fuelcell Energy Inc Control assembly for controlling a fuel cell system during shutdown and restart
KR101374021B1 (en) * 2005-08-11 2014-03-12 퓨얼 셀 에너지, 인크 Control assembly for controlling a fuel cell system during shutdown and restart

Also Published As

Publication number Publication date
US20040229102A1 (en) 2004-11-18
KR20050121754A (en) 2005-12-27
EP1639665A2 (en) 2006-03-29
KR100768973B1 (en) 2007-10-22
JP2006525626A (en) 2006-11-09
EP1639665A4 (en) 2010-03-03
US7060382B2 (en) 2006-06-13
WO2004105158A3 (en) 2005-03-03

Similar Documents

Publication Publication Date Title
US7060382B2 (en) Fuel cell system with recycle of anode exhaust gas
US9911989B2 (en) Fuel cell system with partial recycling of anode exhaust
US7520916B2 (en) Partial pressure swing adsorption system for providing hydrogen to a vehicle fuel cell
US7591880B2 (en) Fuel cell anode exhaust fuel recovery by adsorption
JP5801141B2 (en) Carbon dioxide recovery fuel cell system
US20070017368A1 (en) Gas separation method and apparatus using partial pressure swing adsorption
JP2006509345A (en) Exhaust gas treatment method for solid oxide fuel cell power plant
KR101678799B1 (en) Water recovery assembly for use in high temperature fuel cell systems
JPH0316751B2 (en)
CN1298319A (en) Process gas purification and fuel cell system
US7276095B2 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
KR101339672B1 (en) Heating and cooling system using heat from fuel cell
US10797332B2 (en) Low pressure carbon dioxide removal from the anode exhaust of a fuel cell
US8227120B2 (en) Volatile organic compound abatement with fuel cell power plant
US10941359B2 (en) Fuel processing system and method for sulfur bearing fuels
EP1909945A1 (en) Gas separation method and apparatus using partial pressure swing adsorption
WO2024013968A1 (en) Methane synthesis system
JP7129332B2 (en) Hydrogen production equipment
JP6847900B2 (en) Carbon dioxide capture fuel cell power generation system
KR101844282B1 (en) Apparatus for treating gas combined with fuel cell unit
JP2024012206A (en) Methane synthesis system
JP2020105056A (en) Hydrogen production apparatus
JP2011103282A (en) Fuel cell system equipped with high-speed circulation-type hydrogen manufacturing apparatus
Healy et al. Recovery of carbon dioxide from fuel cell exhaust
JPS6097557A (en) Fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006501191

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057021209

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004714551

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057021209

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004714551

Country of ref document: EP