WO2004104584A1 - Method of testing bio-related substance, fluid transfer apparatus therefor and method of fluid transfer - Google Patents

Method of testing bio-related substance, fluid transfer apparatus therefor and method of fluid transfer Download PDF

Info

Publication number
WO2004104584A1
WO2004104584A1 PCT/JP2004/007450 JP2004007450W WO2004104584A1 WO 2004104584 A1 WO2004104584 A1 WO 2004104584A1 JP 2004007450 W JP2004007450 W JP 2004007450W WO 2004104584 A1 WO2004104584 A1 WO 2004104584A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
substrate
flow
pump
reaction
Prior art date
Application number
PCT/JP2004/007450
Other languages
French (fr)
Japanese (ja)
Inventor
Shuzo Mishima
Morinao Fukuoka
Kenji Takahashi
Takami Shibazaki
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to JP2005506439A priority Critical patent/JPWO2004104584A1/en
Publication of WO2004104584A1 publication Critical patent/WO2004104584A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0289Apparatus for withdrawing or distributing predetermined quantities of fluid
    • B01L3/0293Apparatus for withdrawing or distributing predetermined quantities of fluid for liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced

Definitions

  • the present invention relates to a method for testing a biological substance.
  • the invention also provides for controlling fluid transfer for that purpose.
  • Human genome analysis has shifted from systematic sequencing to t> or systematic functional analysis, and the horoscope has been shifted.
  • the method of analyzing genetic information is mainly used. One is to analyze “what the genes and the mRNAs and proteins expressed from the genes themselves are”. The other is to analyze under what conditions the mRNA or protein is synthesized.
  • the methods belonging to the former include the Southern blot method, the Northern blot method, and the Eastern blot method. These methods are mainly used for DNA, RNA, or protein of interest. It is for analyzing quality. Therefore, it is not suitable for comprehensive analysis of all DNA, RNA, or protein extracted from cells.
  • DNA thisop is obtained by dividing a silicon chip into a number of compartments by means of photolithography technology, and directly synthesizing single-stranded DNA with a specific base sequence on each compartment.
  • the DNA micro-lay is designed to reduce the size of the DNA micro-lay that was conventionally plotted on the membrane to about 300 m or more.
  • Is 3 ⁇ 4 and connected to the computing unit system, for example, fluorescently labeled D supplied on the chip or on the microphone array
  • Japanese Patent Application Laid-Open Publication No. 2000-501520 and U.S. Patent Application Publication No. 200 / 200,533 A1 describe specific examples of such a DNA chip.
  • a pull-up DNA is placed on a porous substrate made of aluminum oxide. Is immobilized.
  • the solution containing the fluorescently labeled DNA is transported inside and out of the porous substrate at a predetermined constant speed so that the solution is transported. y, high efficiency and fast speed 5 ⁇ .
  • Japanese Patent Application Laid-Open No. 2000-501-5251 discloses a porous substrate.
  • a method of detecting a biological substance by immobilizing a solid phase and flowing a sample liquid by a pressure difference is disclosed.
  • U.S. Patent Application Publication No. 200/002 / 530533A1 describes that the detection is performed after the substrate is washed.However, the flow of the solution at the time of washing and at the time of detection is described. Is not shown. This means that only one flow condition is always applied in one process.
  • the present invention is directed, in part, to a method for testing a biological substance using a test chip including a substrate capable of detecting a biological substance ft, which is not limited to a gene. That is, the above-mentioned D N
  • test chips composed of a functional substrate for testing genes and biological substances other than genes are used. Is directed to the test method used o
  • the inspection method of the present invention is a method for inspecting a biological substance using a functional substrate, comprising a plurality of steps of flowing a fluid and contacting the fluid with a general-purpose substance.
  • the fluid flows at the kinetic speed i.
  • Another inspection method of the present invention is a method for inspecting a biological substance using a functional substrate, comprising a step of causing a fluid to reciprocate and repeatedly contact the fluid with the functional substrate. The fluid is caused to flow at different flow speeds at and after the return.
  • Another inspection method of the present invention is a method of inspecting a biological substance using a functional substrate, comprising a step of flowing a fluid to contact the fluid with the functional substrate, and causing the fluid to flow at an irregular flow velocity.
  • Another inspection method includes a plurality of steps of causing a fluid to flow using a volume pump to contact the fluid with the functional substrate, and the volume of the volume pump changing the volume of the fluid is changed.
  • test method of the present invention is a test method for a bio-related substance in which a test for a bio-related substance is performed while a functional and flowable substrate is held in a fluid in a plurality of steps. In each step, the substrate is flowed at a flow rate suitable for the process.
  • the present invention is also directed, in part, to a transfer device used in the above-described method for inspecting a biological substance.
  • a transfer device includes: transfer means for transferring a fluid; holding means for holding a functional substrate capable of continuously contacting the transfer of the fluid; means for controlling the transfer means; And a control condition setting means for selectively setting at least one control condition. Further, the present invention is directed, in part, to a transfer method applied to the above-described method for testing a biological substance.
  • the transfer method of the present invention includes a step of continuously contacting a substrate that functions with a fluid with the fluid, a step of transferring the fluid under at least two control conditions, and a step of controlling the control conditions according to characteristics of the fluid. Setting step.
  • FIG. 1 shows the D N commonly used in the embodiment of the present invention.
  • FIG. 1 shows a schematic configuration of an A-thisop reading device.
  • FIG. 2 is a perspective view schematically showing the configuration of the reaction vessel shown in FIG.
  • Figure 3 shows a cross section of the reaction vessel shown in Figures 1 and 2.o
  • FIG. 4 shows a general drive pattern of a syringe pump in connection with the first embodiment of the present invention.
  • FIG. 5 shows a driving pattern of a syringe pump according to the second embodiment of the present invention.
  • FIG. 6 shows a driving pattern of a syringe pump according to the third embodiment of the present invention.
  • FIG. 7 shows a driving pattern in a comparative example of the driving pattern of FIG.
  • Fig. 8 shows a measurement example of the temporal change of the luminance of a certain probe obtained by driving according to the driving pattern shown in Fig. 6.o
  • Fig. 9 is obtained by driving according to the driving pattern of Fig. 7.
  • FIG. 6 shows a measurement example of the temporal change in the luminance of the fluorescence of the same pump.
  • FIG. 10 shows a driving pattern of the reaction process in the fourth embodiment with a lightness of 3%.
  • FIG. 11 shows a driving pattern of a cleaning step in the fourth embodiment of the present invention.
  • FIG. 12 is a view showing an apparatus for implementing the fifth embodiment of the present invention.
  • FIG. 13 is a diagram showing a garment implementing the 9th / 9th embodiments of the present invention.
  • the country 14 shows the drive of a syringe pump capable of using the invention in the invention o
  • FIG. 15 shows a more preferable drive pattern of a syringe pump that can be used in the present invention.
  • the DNA chip reading device has a stage 1 on which a reaction container 2 is placed.
  • the stage 1 has a fixed plate 1a, a Y movable plate 1b movable on the fixed plate 1a in the Y-axis direction, and an X movable plate movable on the Y movable plate 1b in the X-axis direction.
  • the reaction vessel 2 can be moved in the X-Y axis directions by the Y moving plate 1b and the X moving plate 1c.
  • Reaction vessel 2 has a rectangular parallelepiped upper plate as shown in Fig. 2. It is constructed by superimposing 210 and the lower plate 202.
  • the upper plate 201 includes, but is not limited to, four cylindrical holes 200, for example.
  • the lower plate 202 has a hole 201 a
  • Cylindrical holes 202 a, 202 b, 202 c, and 202 d at positions corresponding to 201 b, 201 c, and 201 d in a row along the longitudinal direction Is formed in.
  • the upper plate 201 and the lower plate 202 are superimposed to form four reaction chambers 3a, 3b, 3c and 3d.
  • the reaction chambers 3a, 3b, 3c, and 3d have the DNA chips containing the reaction sections 4a, 4b4c, and 4d of the DNA chip 4 as the functional base, respectively.
  • 4 is the reaction chamber 3a, 3b,
  • the A chip 4 has, for example, four reaction portions 4a, 4b, 4c, and 4d having a diameter of about 6 mm formed on a substrate of about 25 mm ⁇ 75 mm at a pitch of 9 mm.
  • the reaction sections 4a, 4b, 4c, and 4d become reaction chambers.
  • 3a, 3b, 3c, and 3d are accommodated at positions slightly above the respective bottom surfaces.
  • the reaction progress of the reaction sections 4a, 4b, and 4c4d is detected by the fluorescence detection unit.
  • the openings 301a, 301b, 301c, and 30Id are opened so that the sample solution and the reagent solution required for the reaction can be supplied sequentially, simultaneously, or in a mixed state. I have.
  • the openings 301a, 301b, 301c, and 30Id may contain liquids other than samples and reagents, such as diluents, washing solutions, and assay reagents (substrates). Enzymes etc.) are also supplied.
  • the openings 301a, 301b, 301c, and 301d may be covered with an appropriate lid member at a time when liquid is not supplied.
  • connection holes 3 leading out to the side surfaces of the reaction vessel 2 are provided on the side surfaces of the holes 202 of the lower plate 202, 202 a 200 b, 202 c and 202 d.
  • the reaction vessel 2 includes reaction chambers 3a and 3b.
  • stage 1 X-moving plate 1 c Placed on stage 1 X-moving plate 1 c so that 3 c and 3 d are arranged in a line along the X-axis direction
  • a switching valve 6 as a channel switching means is connected to 2 d via distribution lines 5 a, 5 b 5 c, and 5 d.
  • a pump 8 that functions as a flow source of the transfer means is connected to the switching valve 6 via a pipe 7.
  • the pump 8 is used to give a flow to the pump solution in each of the reaction chambers 3 a, 3 b 3 c, and 3 d.
  • a pump such as a silicon pump (for example, MIC510B, an eight-mil-ton company) It is composed of Switching par, lube 6 is, for example, a rotary 4-way selection valve (example For example, Hamilton HVDP 4_5).
  • the operating shaft a has a pinion 9 attached to it.
  • the pini 9 attached to the switching valve 6 is a rack
  • the pinion 9 is rotated via the rack 10 by the movement of the stay 1 in the X-axis direction.
  • the rotation of the pinion 9 rotates the operating shaft 6a, whereby one of the arrangements 5a, 5b, 5c, 5d can be selectively connected to the pump 8 via the pipe 7 .
  • the pinion 9 has a size corresponding to a pitch (9 mm) of the reaction portion 4 a 4 b, 4 c, and 4 d of the DNA chip 4 in a quarter rotation.
  • It functions as a flow condition setting means for setting a preferable speed condition from among a plurality of flow speeds, while keeping in mind the characteristics of the fluid bath fluid flowing through the DNA chip 4.
  • the necessary solutions are prepared for each step.
  • the required solution is a sample liquid containing the biological substance to be inspected that reacts with the probe, and the remaining solution on the test chip
  • the washing water is used.
  • the necessary solutions prepared in each step are summed up. Simply called a solution
  • biological substance J includes not only cells such as animals, plants, and microorganisms, but also substances derived from viruses, bacteria, and the like that cannot multiply on their own unless they infest them.
  • Bio-related substances include not only those in the natural form directly extracted and isolated from these cells and the like, but also those produced using genetic techniques and those chemically modified. More specifically, it includes hormones, enzymes, antibodies, antigens, Abzymes, and other nucleic acids (for example, DNA, RNA, PNA), and the like.
  • a substance that specifically binds to a biological substance refers to a substance that specifically binds to a biological substance.
  • a ligand such as a hormone and its receptor, an enzyme and its substrate, an antigen and its antibody, a nucleic acid having a specific sequence and a sequence complementary thereto.
  • nucleic acids having Re or are included.
  • ⁇ DNA chip J refers to the above-mentioned “functional substrate having a reactivity to perform a biological reaction using probe J as a reagent.” “Functional substrate J responds to the above-described biological substance.
  • the functional substrate of the present invention is a functional substrate having a functional property that causes a measurable change. Supports of any shape with various reagent components o
  • fluid refers to any fluid containing a substance that comes into contact with a functional substrate and causes the substrate to function. ⁇
  • the fluid is a solution, it contains a gas that is inert with respect to the above-mentioned biological substance. Even Good.
  • the fluid is innumerable fine particles, the fluid may be contained in a body that is inert to the biological substance.
  • Flow J is a movement in which the liquid changes the contact area with the substrate.
  • O Flow is actively moved by means for controlling the movement of the liquid. Controlling the movement of the liquid
  • the means includes a dynamic parameter of adding-damping 'maintaining and stopping the flow velocity in an appropriate combination, and has a function of distributing an appropriate time distribution to each selected dynamic parameter.
  • the solution is flowed by the syringe pump 8 and moved back and forth to one of the reaction sections 4 a 4 b 4 c and 4 d of the DNA chip 4. That is, the solution is reciprocally flowed and repeatedly passed through one of the reaction sections 4a4b4c4d.
  • a preferred embodiment of the substrate that can be applied to the present invention has a hole through which a fluid can pass through the substrate, and more preferably at least a part of the functional portion made of a porous material.
  • a substrate having another shape may be used as long as the substrate has a function and a fluid can contact the functional surface in a flowing state.
  • FIG. 4 shows a general driving pattern of the silicon pump 8.
  • the X-axis indicates the elapsed time
  • the Y-axis indicates the position of the piston of the syringe pump 8.
  • the downward-sloping section corresponds to the “bow 1” action
  • the upward-sloping section corresponds to the “push” action.o
  • the magnitude of the inclination indicates the piston's movement speed. 2004/007450
  • the piston of the syringe pump 8 is pushed at a constant speed, stopped for a fixed time, and then pulled at the same speed as the pushing operation. This series of operations is repeated at regular intervals.
  • the present embodiment is directed to flowing a solution at a flow rate suitable for each of a plurality of steps in a test of a biological substance. That is, in each process, the syringe pump 8 is driven according to a drive pattern in which the movement speed of the piston is different. In other words, the movement speed of the piston of the syringe pump 8 is changed in each step of the method for examining a biological substance.
  • the piston of the syringe pump 8 was drawn at a constant speed giving a flow velocity of 10 IZ seconds to the solution and stopped for a certain period of time according to the driving pattern in FIG. The solution is then pushed at a rate that gives the solution a flow rate of 10 tI / s. This series of operations is repeated at a certain interval and repeated as many times as necessary.
  • the piston of the syringe pump 8 is drawn at a constant speed that gives the solution a flow speed of 20 IZ seconds according to the driving pattern in FIG. After being stopped for a while, the solution is pressed at a speed that gives a flow rate of 20 nIZ seconds. This series of operations is repeated at a certain time interval and repeated as many times as necessary.
  • Optimal flow rate and washing of the solution (sample liquid) in the reaction process The optimal solution (washing water) in the four processes is different. Therefore, by allowing the solution to flow at a flow rate suitable for the process in each process, it is possible to complete each process in a short time. Each process can be performed efficiently.As a result, the time required for the inspection of biological substances can be reduced.
  • the present embodiment is directed to a process in which a solution is caused to flow forward and a test chip is repeatedly passed through the solution, and the solution is caused to flow at different flow speeds at the time of going and returning in the process. Has been.
  • the movement of the piston of the silicon pump 8 is changed between the “pull” operation and the ⁇ push J operation.
  • the flow rate of the solution is different between the time when the J pump of the syringe pump 8 is pulled and the time that it is pressed.
  • Fig. 5 shows a drive pattern in which the piston moves at different speeds during the "pull” operation and the “push” operation.o
  • the piston of the syringe pump 8 for example, is drawn at a constant rate that gives the solution a flow rate of 10 At 1 / s, and 5 ⁇ m is applied to the solution stopped for a certain period of time.
  • the reaction parts 4 a, 4 b, 4 c, and 4 d of the D ⁇ chip 4 have different withstand pressure characteristics with respect to positive pressure and withstand pressure with respect to negative pressure depending on the material and the shape of the peripheral holding part.
  • the positive pressure is the pressure received by the reaction part 4 d during the “push” operation of the piston of the syringe pump 8
  • the negative pressure is the pressure received during the “pull” operation of the piston of the syringe pump 8. It is.
  • the reaction parts 4 a, 4 b, 4 c, and 4 d have particularly low withstand pressure characteristics against positive pressure, so they tend to be broken in the worst case during the “push” operation of the piston of the syringe pump 8.
  • the movement speed of the piston during the "push” operation is kept low, so the reaction sections 4a, 4b, 4c, 4 during the "push” operation
  • the pressure on d is kept low.
  • the flow velocities of the solution at the time of going and returning are set in accordance with the pressure resistance characteristics at the time of going and returning of the reaction sections 4a, 4b, 4c and 4d.
  • the solution may be flowed at a speed suitable for the process. As a result, the process can be completed in a short time, and as a result, it is possible to reduce the time required for examining a biological substance.
  • the present embodiment is directed to flowing the solution at a non-constant flow rate in one step of flowing the solution and passing the test chip through the solution.
  • the solution is intermittently flowed at a constant one-step motion.
  • the biston of the syringe pump 8 is intermittently moved at a constant speed. Pressing ”indicates a drive pattern in which the piston moves intermittently during operation.
  • reaction sections 4a, 4b, 4c, and 4d of 4 Excessive rise in the pressure of the reaction sections 4a, 4b, 4c, and 4d of 4 is suppressed. As a result, the reaction sections 4a, 4b, 4c,
  • FIG. 7 shows a drive pattern in a comparative example.
  • FIG. 8 shows a measurement example of a temporal change in the luminance of the fluorescence of a certain probe obtained by driving according to the driving pattern of FIG.
  • FIG. 9 shows a measurement example of a temporal change in the luminance of the fluorescence of the same pump obtained by driving according to the driving pattern shown in FIG. 04 007450
  • the driving pattern that suppresses the generation of laminar flow is the same as when
  • the piston is moved intermittently--not limited to a drive pattern that moves at a constant is degree.
  • the drive unit moves the piston so that the solution flows in a pulsating manner during the operation.
  • the drive unit moves in a sinusoidal waveform based on a constant angle. It may be a drive pattern for moving the. Alternatively, the driving pattern may be such that the piston moves at an irregularly changing speed during the “pull” operation and the “push” operation.o
  • the solution may be caused to flow at the same flow rate. ⁇ This allows the process to be completed in a short time. 0 As a result, it is possible to reduce the time required for testing biomaterials. ⁇ Fourth embodiment
  • FIG. 11 shows the driving pattern of Reaction I in this embodiment
  • FIG. 11 shows the driving pattern of the cleaning step in this embodiment.
  • the horizontal axis indicates elapsed time
  • the vertical axis indicates the position of the piston of the syringe pump 8.
  • the downward sloping section corresponds to the "pull" action
  • the upward sloping section corresponds to
  • Substantially horizontal portion indicates the stop position of the piston in each drive pattern, and corresponds to the amount of liquid to be driven in each process.
  • the stop position of the piston of the syringe pump 8 is lower in the washing process than in the center of fe. ⁇ (There is «-nX At S. Accordingly, after the sample solution is reacted, By supplying a larger amount of the cleaning liquid than the reaction liquid, the cleaning step drives a larger amount of the cleaning liquid.
  • the present embodiment is directed to flowing a solution at a drive position suitable for each of a plurality of steps in the inspection of a biological substance. That is, in each process, the syringe pump 8 is driven according to a drive pattern in which the drive position of the piston is different. O In other words, the drive region of the piston of the syringe pump 8 is ⁇ IO for each of the related substances will change. The changed drive amount of the piston Supply the solution together ⁇ M t Changed 0
  • the piston of the syringe pump 8 is drawn for 5 seconds at a constant speed that gives the solution a flow rate of 10 t Iz seconds.
  • the solution connected to the pipes connected to the connection ports 302a to 302d is sucked according to the amount of the liquid to be flown.
  • the inside diameter of the solution is 1 mm
  • the length of the solution to be sucked is about 64 mm, and due to the repeated flow, a solution residue occurs near the solution tip of 64 mm.
  • the transfer control of the present invention focuses on the point that the characteristics of the fluid affect the reactivity depending on the contact conditions with the functional substrate, and changes the control conditions of the transfer of the fluid according to the characteristics of the fluid.
  • the control conditions are appropriately selected from one or a combination of one or more of a flow velocity, a moving time, a number of transfers, a transfer direction, and the like.
  • Fluids have physical and chemical properties.
  • the “physical properties” include, for example, viscosity, volume, steam / soil, light refractive index, magnetic property, and diffusion constant.
  • “Chemical properties J include, for example, Tm value, reactive force, and functional components (nucleic acid, in, body, enzyme, etc.).
  • the transfer pressure to the DNA tip is changed in accordance with the viscosity of the sample, the formula 3 ⁇ 4, or both.
  • Samples applied to a DNA chip as a functional substrate have different viscosities depending on the individual from which they are derived. Since this viscosity is related to the various components in the sample, it is usually difficult to adjust the viscosity to a constant value. The same component present in separate samples will come into contact with the substrate under different viscosity conditions. Different liquids move with the same surface with different frictional resistances. Therefore, in the present embodiment, the m of the substrate is changed by changing the flow state of the sample in accordance with the viscosity level. The syringe pump 8 is not driven so as to exert the same effect. For the sake of convenience, in the present embodiment, variations in the fluidity due to breakage of the base or failure due to clogging are not considered.
  • Fig. 12 shows the schematic configuration of a DNA chip reading and reading apparatus for implementing the Hondeido form.
  • the same reference numerals as those shown in Fig. ⁇ indicate "C”.
  • the members shown are the same members, and detailed descriptions are omitted. 7450
  • each reaction chamber 3a can be connected through the piping 5a, 5b, 5c, 5d corresponding to each switched connection flow path.
  • the flow resistance at 4 d is selectively detected by a common pressure sensor 17.
  • the value of the pressure sensor 17 is fed back to the pump control unit 14 of the thin pump 8 via the arithmetic unit 15.
  • the feedback control to the syringe pump 8 by the pressure sensor 17 is not suitable for abnormal pressure changes related to abnormal quality of the DNA chip 4 (for example, cracks, breakage, clogging).
  • the flow resistance value resulting from the standard quality abnormality of the substrate shows a similar pressure fluctuation pattern even with different fluid solutions, so that it can be clearly distinguished from the response increase / decrease pattern due to viscosity.
  • a porous material made of alumina having a pore size of m to 0.6 ⁇ m is formed into a thickness of 0 • 0.5 cm to 0.5 cm.
  • the speed of the standard viscosity sample is set to 35 At I / sec for a sample with a standard viscosity, 50 n I sec for a sample of a relatively high viscosity group It is preferable to use a flow rate of 20 t 1 Z seconds for a sample of a relatively low viscosity group, which makes it possible to maximize the function of the functional substrate.
  • the reagent information is sent to the operation unit 15 based on the input data of the test item, and the characteristics of the reagent included in the reagent information or the characteristics of the components in the sample on which the reagent acts or the characteristics thereof are described.
  • the sample applied to the DNA chip as a functional substrate or the reagent for reacting with this sample contains nucleic acid which is a temperature-dependent component.
  • the temperature dependence of nucleic acids is related to the temperature at which the DNA duplex dissociates into single strands and the temperature at which it returns to double strand.
  • the Tm value which is the temperature at which a single strand dissociates, differs depending on the nucleotide sequence of the nucleic acid. Since different temperature conditions affect the flow of samples and reagents, it is preferable to control the flow rate to correspond to the difference in Tm values. By adjusting the flow conditions so that the thermodynamic conditions of the sample and / or reagent are kept constant for each temperature corresponding to each Tm value, a large number of nucleic acid priming reactions can be performed under constant reaction conditions. Run on 3 ⁇ 4 ⁇
  • FIG. 13 shows a schematic configuration of a DNA chip ⁇ -pickup apparatus for carrying out the present embodiment.
  • the members indicated by the same reference numerals as those shown in FIG. 1 are the same members, and the detailed description thereof is omitted. 4 007450
  • the 24 sampling device is provided with an input device 18 for causing the arithmetic unit 15 to recognize the Tm value of the sample on the DNA chip 4.
  • the input device 18 allows the user to input information related to the Tm value using, for example, a keyboard, a touch panel, or a mouse.
  • the entered information is confirmed by the user on the display 19.
  • Another embodiment of the input device 18 is a code reader that decodes an information medium such as a bar code (consisting of a one-dimensional or two-dimensional pattern) by a decoding process.
  • Known code readers may be operated by a user or automatically accessed on a substrate mounted and held within an inspection system.
  • the operation unit 15 changes the intensity of stirring or the time according to the difference in the Tm value.
  • excess dissociation is reduced by controlling the flow rate to be slower. Stable dissociation conditions in the nucleic acid hybridization reaction contribute to the reliability of the reaction result.
  • the reagent is for PCR (polymerase chain reaction)
  • change the agitation intensity according to the reaction curve in the thermal cycle consists of different temperature conditions applied to the dissociation and reversion of the nucleic acid duplex. Even for the same sample, the fluid properties at high and low temperatures are different, so the contact conditions for the same DNA chip are different.
  • the comparison ⁇ ! Strong i dynamic condition is suitable. Conversely, relatively good flow conditions are appropriate for returning from a single strand.
  • the flow is degree is relatively high compared to the low temperature process. If the cycle of the nucleic acid hybridization reaction always proceeds under the same contact conditions, the R concentration as the reaction result will be the highest.
  • the reagent information is sent to the operation unit 15 based on the input data of the test items sent from the input unit 18, and the pump flow rate is calculated every thermal cycle related to the characteristics of the PCR reagent. Sends control signal to control unit
  • the strength of the flow of the washing liquid is changed in accordance with the reaction sensitivity of the ⁇ chemical, and an extra measure that causes a decrease in accuracy in the measurement of J5Z. Need to suppress the reaction
  • the reagent information is sent to the tray 15 based on the input data of the test item by the input device 18.
  • a control signal is sent to the pump control unit 14 that controls the flow rate of the pump for each reaction sensitivity related to the strength of the washing liquid as a chemical.
  • the pump control unit 14 controls the flow rate of the pump for each reaction sensitivity related to the strength of the washing liquid as a chemical.
  • the flow is changed to the fastest flow in which no bubbles are generated according to the water level on the tip when the pump is driven.
  • the liquid level changes during the movement of liquid l3 ⁇ 4j.
  • the lower the water level on the DNA tip the slower the speed.
  • This embodiment can be carried out by the same apparatus as that shown in FIG. 1; however, the arithmetic unit 15 is provided with a detector for detecting light absorption or light reflection of the excitation beam of the fluorescence detection unit 12. On the basis of the,
  • the water level is calculated by analyzing the water surface image on the DNA chip.
  • the fluorescence detection unit 2 is used to measure the reaction progress and results of the 3d anti-) L, part 4d of the ventricle. Is moved above the reaction part 4 d by moving the stain 1 to the illustrated 2 cm in the X-axis direction. ⁇ 0
  • the rack 10 is moved along with the movement of the X moving plate 1 c.
  • the operation unit 1 is moved while the pin 9 rotates and the operation shaft 6 a of the switching valve 6 rotates, and the reaction 3 c and the flow path of the pump 8 are connected via the switching valve 6.
  • the solution in the reaction chamber 3C can be made to flow.
  • the objective lens 13 of the fluorescence detection unit 12 can be moved up and down, and the water level on the DNA chip can be changed from the light source by changing the TU occupation by nj ′. Continuously detects light absorption or light reflection near the water surface due to the output beam of.
  • an optical system that changes the focal position without moving the objective lens Two technologies are also available.
  • the data detected by the light detection unit is used to monitor the flow state of the solution in the reaction chamber 3c. In this way, the light absorption (or light reflection) data obtained by the CCD of the fluorescence detection unit 12 is transmitted to the arithmetic unit 15 and fed back to the flow velocity control unit of the pump.
  • the flow velocity on the substrate is increased or decreased in accordance with the measurement timing of the D ⁇ chip.
  • the fluid state should be as static as possible, and at the time of non-measurement, the fluid state should be as dynamic as possible.
  • This embodiment can be implemented by the same device as in FIG. First, the reaction part 4 d of the reaction chamber 3 d is moved to the focal position of the objective lens 13 of the fluorescence detection unit 12. Next, Stage 1
  • the rack 10 moves with the movement of the X moving plate 1c, the pini pin 9 rotates, and the operation shaft 6a of the switching valve 6 also rotates, as described above.
  • the flow path of the pump 8 is connected to the flow path of the pump 8 via the switching valve 6 ⁇
  • the operation unit 5 controls the pump 8 via the pump control unit 14 via the pump control unit 14.
  • the solution in the reaction chamber 3c can be made to flow.
  • the reaction on the DNA chip by the fluorescence detection unit 12 is continuously measured while the driving by the pump 8 is performed intermittently.
  • a constant low-speed condition for example, 5 At 1 / s
  • the fluorescence data obtained at this low speed is used as the measured value.
  • the constant low speed condition means that the speed is reduced to a flow rate that suppresses the turbulence of the liquid surface, or that the speed is accelerated or decelerated according to the liquid surface so as to perform measurement in a uniform convection state.
  • the fluorescence detection unit 12 can also be used to monitor the dynamic and static state of a liquid using detection data on light absorption or light reflection of the excitation beam.
  • Table 1 shows the relationship between the suitable piston drive speed for each sample or reagent property.
  • the syringe pump can be driven as follows.
  • Figure 8 shows two types of driving conditions that are cfc in the general driving pattern.
  • the X-axis indicates the elapsed time
  • the Y-axis indicates the position of the piston of the syringe pump 8.
  • the section corresponds to a “push” action.
  • the magnitude of the inclination indicates the moving speed of the piston.
  • the solid line indicates a relatively high-speed drive pattern
  • the dotted line indicates a relatively low-speed ( ⁇ half the speed of the solid line) drive pattern.
  • the piston of the syringe pump 8 is continuously pushed at a constant speed, stopped for a fixed time, and then continuously pulled at the same speed as the pushing operation. .
  • This series of operations is repeated at regular intervals.
  • the drive pattern of the non-linear pump 8 is not limited to the above-described example, and various modifications and changes may be made without departing from the essentials of the present invention.
  • the piston of the inline pump 8 is pulled at a constant speed for 1 second during the pulling J operation, stopped for 1 second, and this series of operations is repeated four times. After that, during a “push” operation, it is pressed at a constant speed for 1 second and stopped for 1 second, and this series of operations is repeated four times.
  • the piston is intermittently moved during the subtraction J operation and the “push” operation, so that laminar flow is effectively suppressed. Is controlled.
  • the drive pattern that suppresses the generation of laminar flow is not limited to a drive pattern that moves the piston intermittently at a constant speed during the “pull” operation and the “push” operation.
  • a drive pattern that moves the piston to pulsate the solution // it i.e., a speed that changes sinusoidally with reference to a constant speed
  • a driving pattern for moving the piston with the button may be used.
  • the driving pattern may be such that the button is moved at an is degree that changes irregularly during the “pull” operation and the “push” operation.
  • two types of flow speed conditions are selectively set according to the characteristics of the fluid.
  • three or more types of flow speed conditions may be provided. For example, for characteristics where there is an unspecified large number of variations for each sample or reagent (viscosity, volume, etc.), standard conditions corresponding to intermediate flow rates are set, and for characteristics within the standard level, use standard conditions.
  • the fluid may be transferred.
  • the present invention comprises a functional substrate for testing a biologically-related substance other than a gene. Testing for other bio-related substances using other test chips
  • the present invention may be applied to examination of an immune reaction, a biochemical reaction, an electrochemical reaction, and the like.
  • various forms can be applied. For example, two-dimensional substrates such as silicon wafers and glass, various fine particles, various porous substrates, etc. Gel Various carrier-type arrays (Japanese Patent Laid-Open No. 11-7
  • a functional substrate and a functional substrate can be used. It may be a combination with a substrate that does not have it.
  • a necessary amount of a functional reagent may be immobilized on the inner wall of the microchannel, and the functional reagent may be used.
  • the beads or fine particles having the required number of solid phases immobilized thereon may be positioned in the flow channel.
  • a plurality of substrates can be arranged in the same area, or can be conveyed so as to be positioned in a perfume with respect to a common position.
  • the inspection by a body having a plurality of functionalities may be executed by a control system that sorts and processes each substrate for each set / operating condition.
  • the non-permeable one-dimensional body can be formed into a flat medium vessel that surrounds the entire substrate according to the opening used. In a flat hollow cell, branch passages having partially different widths are provided, and a mechanism for electrochemically or mechanically controlling the flow direction or flow is flow rate of the fluid or both is appropriately provided.
  • the present invention also includes a method and an apparatus for magnetically controlling the mi-motion condition of a fluid having a component containing a magnetic substance.
  • the control of magnetic force can be automated by changing the power of the electromagnet or increasing or decreasing the distance from the permanent magnet.
  • the capillary type array is installed on the inner surface of the capillary or inside the capillary.
  • fluorescence detection using a reagent that emits fluorescence has been described as an example. However, a measurable signal other than fluorescence is emitted.
  • Another detection unit using a generated reagent may be used. Further, detection of the detection unit is not limited to a wide field of view using a CCD for imaging, but may be a measurement relating to a narrow area such as a confocal laser microscope. Multiple scanning points can be measured efficiently by scanning a narrow area o
  • the preferred type of pump is a displacement pump.
  • a displacement pump for example, a reciprocating pump, a diaphragm pump, and a rotary pump can be used.
  • O for a reciprocating pump, for example, a piston pump.
  • Brancher pumps are available
  • Rotary pumps are, for example, m-table pumps, partition plate pumps, screw screw pumps, and ⁇ -port pumps. It is possible to easily control the pressure change because it sucks and discharges the liquid by changing it.
  • Preferred is a reciprocating pump when the liquid is brought into and out of contact with the solid-phased substrate in a reciprocating manner.
  • the amount and speed of driving of the solution can be controlled by the reciprocating distance and the mobility of the piston-blanker, so that the precise movement of the solution can be easily performed.
  • the syringe is dropped to the position B corresponding to the volume corresponding to the added amount of the solution, and the solution is aspirated. Further, the cylinder pump is lowered to the position C corresponding to the offset volume (suction), and if necessary, is held for a certain time T1, and then the syringe pump is initialized via the positions D and E. Position F corresponding to position
  • the present invention can be summarized as follows. ⁇
  • different kinds of fluids corresponding to different processes are produced under different flow conditions for each process. Contacts the functional substrate.
  • the same type of fluid may come in contact with a plurality of functional substrates at the same time or at different times.
  • the fluid that contacts the substrate in each step is different Since it has a purpose, it is possible to enhance the quality of inspection for bio-related substances by setting flow conditions suitable for achieving the purpose for each process.
  • the substrate When the substrate is a porous filter, it is caused to flow in a direction or in both directions so as to pass through the filter.
  • a DNA chip having a three-dimensional structure of a through-hole type in which a plurality of types of probes as reagents can be arranged on the same surface as in the embodiment is used as a base, a DNA chip as shown in the drawing is used.
  • the liquid level as a fluid is raised (pump is positive pressure) or lowered (pump is negative pressure) by leveling the surface.
  • the substrate is a groove or a tubular microchannel, the fluid flows in one or both directions along the channel.
  • the flow direction is arbitrary and may be, for example, unidirectional or bidirectional in a circular, helical or linear flow path. Different beads can be immobilized on multiple beads or microparticles.
  • a variety of flow conditions can be set by stopping or moving without depending on the flow of the fluid. Regardless of the shape of the substrate, the laminar flow due to the constant continuous pump pressure is used for M as described above, and the pulsating flow is applied by applying the intermittent or intermittent pump pressure. However, it has a remarkable effect that it is possible to bring more bio-related substances in the fluid into contact with the substrate. Testing with constant flow conditions will reduce the quality of testing for any combination of reaction, washing and measurement.
  • the present invention can be used for all functional substrates, but a liquid bio-related substance which is constantly and uniformly present in a biological fluid.
  • Non-stationary or heterogeneous insoluble biomaterials e.g., nucleic acids or cells
  • insoluble biomaterials e.g., nucleic acids or cells
  • functional substrates rather than (e.g., electrolyte components and enzyme components) And the tumor marker protein
  • the substrate immobilized with an insoluble bio-related substance as a specialty I- to ⁇ drug has an extremely fine protruding structure composed of a bio-related substance
  • Controlling the cC wit dynamic conditions so as to induce the protrusions dynamically contributes to good contact with the entire substrate surface.
  • it is a place where it is difficult to make contact with the fluid and a place where the ratio or probability of contact with the fluid is low.
  • the immobilization step of immobilizing a bio-related substance as a sample and / or a reagent to a predetermined region of the substrate is included as a pre-stage of the reaction step, It is preferable to provide a period of suspension of the flow sufficient to achieve immobilization.
  • the immobilization process is not limited to permanent immobilization, in which suspended biological substances are directly immobilized electrochemically or organically on a substrate, but beads or fine particles that have previously been immobilized with biological substances are immobilized. Includes a reversible immobilization process that immobilizes electrically or magnetically at an addressless location on the substrate.
  • the present invention provides a method and apparatus for maximizing the functionality of a functional substrate in contact with any different fluids at a high rate and with a high probability. Also, in a multi-item measurement in which a functional substrate has a plurality of different functionalized components (for example, reagents), it is effective to ensure that each function is performed at the required timing.
  • a functional substrate has a plurality of different functionalized components (for example, reagents)

Abstract

A method of testing a bio-related substance, comprising multiple steps of effecting flow of a fluid so as to bring the fluid into contact with a functional base substance. In each of the steps, flow of the fluid is effected at a flow rate suitable for the step.

Description

明 細 書  Specification
生体関連物質の検査方法と、 そのための流体移送装置と流体 移送方法 Inspection method for biological substances, fluid transfer device and fluid transfer method therefor
技術分野 Technical field
本発明は、 生体関連物質の検査方法に する 。 また本発明 は、 そのために流体の移送を制御する壮  The present invention relates to a method for testing a biological substance. The invention also provides for controlling fluid transfer for that purpose.
衣 mと方法に関する。 背景技術  Clothing m and method. Background art
ヒ 卜ゲノムの解析は、 システマティ ソクな塩基配列決定か t>、 システマティ ックな機能解析へと隹 "、、 占が移つてきている。 遺伝情報の解析方法は、 主と して二つに分類できる。 一つは、 遺伝子自体および遺伝子から発現する m R N Aやタンパク質 が 「どのようなものであるか」 を解析するものである。 もう 一つは、 その m R N Aやタンパク質が Γ如何なる条件下で合 成されるか」 を解析するものである。  Human genome analysis has shifted from systematic sequencing to t> or systematic functional analysis, and the horoscope has been shifted. The method of analyzing genetic information is mainly used. One is to analyze “what the genes and the mRNAs and proteins expressed from the genes themselves are”. The other is to analyze under what conditions the mRNA or protein is synthesized.
前者に属する方法と しては、 サザン • ブ □ ッ 卜法、 ノーザ ン · プロ ッ ト法、 ゥ エスタン · ブロ ッ 卜法等があり、 これら は主に、 注目する D N A 、 R N A、 またはタ ンパク質につい ての解析を行なうためのものである。 従つて、 細胞から抽出 された全ての D N A 、 R N A、 または夕ンパク質を包括的に 解析する方法と しては適さない。  The methods belonging to the former include the Southern blot method, the Northern blot method, and the Eastern blot method. These methods are mainly used for DNA, RNA, or protein of interest. It is for analyzing quality. Therefore, it is not suitable for comprehensive analysis of all DNA, RNA, or protein extracted from cells.
一方、 如何なる条件で合成されるかとい 占に関しては、 タンパク質の合成が転写レベルで制御されているため、 D N On the other hand, regarding the occupation under what conditions, the synthesis of protein is controlled at the transcriptional level.
Aにおける転写の制御配列と、 それに対応する制御メカニズ 厶との双方のデータが不足している現状においては、 十分に 解析することが非常に困難である。 ところが 近年、 D N Aチソプゃ D N Aマイク 口ァ レィとUnder the current situation in which data on both the transcriptional control sequence in A and the corresponding control mechanism are lacking, it is extremely difficult to sufficiently analyze the data. However, in recent years, DNA
R ばれる 、 1 センチ四方程度の基体表面上に、 a向 度に任思 の才リ ゴヌク レ才チ ドを固定する技術の進歩によつて 、 伝 子の発現情報の解析が飛躍的に進歩する とが期待されてい 0 With the development of technology for fixing the desired lignonucleotide in the a direction on the substrate surface of about 1 cm square, the analysis of the expression information of the gene will progress dramatically. Is expected 0
D N Aチソプは、 シリ コ ンチップをフ 才 卜 リ ソグラフィ ― 技術によつて多く の区画に分割し、 それぞれの区画上にそれ ぞれの特定の塩基配列を持つた一本鎖 D N Aを直接合成した ものである o D N Aマイク ロァ レイは 、 従来メ ンブレン上に プロ ッ 卜されたスポッ 卜サイズが約 3 0 0 mめるいはそれ 以上であ た D N Aマイク ロァ レイを 、 スポッ 卜サィズを約 DNA thisop is obtained by dividing a silicon chip into a number of compartments by means of photolithography technology, and directly synthesizing single-stranded DNA with a specific base sequence on each compartment. O The DNA micro-lay is designed to reduce the size of the DNA micro-lay that was conventionally plotted on the membrane to about 300 m or more.
2 0 0 M mあるいはそれ以下にしてスラィ グラス上にプ □ ッ 卜 したちの め 。 For slabs of 200 mm or less.
これら D N Aチップや D N Aマィク ロア レィは ib S7C取 These DNA chips and DNA microarrays are ib S7C
Is ¾と; 算ュニッ 卜システムとに がれ、 チップ上、 あるい はマイク Pァ レイ上に供給された 例えば蛍光標識された DIs ¾ and connected to the computing unit system, for example, fluorescently labeled D supplied on the chip or on the microphone array
N Aがどのプローブとハイブリ ダィズしたかを知ることがで さるよう になつている。 D N Aチ Vプゃ D Ν Aマイクロア レ ィ上に配 Λされるプローブの種類とその配置次第で、 遺伝子It is now possible to know which probe NA has hybridized to. Depending on the type of probe and its arrangement on the DNA microarray,
D N Aの変異解析、 多型解析 基配列解析 発現解析など 様々な用途に用いることが可能な ¾のである o It can be used for various purposes such as DNA mutation analysis, polymorphism analysis, base sequence analysis, expression analysis, etc. o
例えば 特表 2 0 0 0 — 5 1 5 2 5 Ί 号公報と米国特許出 願公開第 2 0 0 2 / 0 0 2 5 5 3 3 A 1 号明細 は、 このよ うな D N Aチップの具体例を開示している。 その D N Aチッ プでは、 酸化アルミニウム製の多孔質基体にプ □ープ D N A が固相化されている。 その D N Aチップを用いた検査では、 その多孔質基体の内部に、 蛍光標識された D N Aを含む溶液 を予め決められた一定速度で行き来させるよラ ,よ /ノ ίί動状態で 移送することによ y 、 高効率かつ高速な八ィ ブリ ダィズ 5Ζ. )心 が得られ 9 0 For example, Japanese Patent Application Laid-Open Publication No. 2000-501520 and U.S. Patent Application Publication No. 200 / 200,533 A1 describe specific examples of such a DNA chip. Has been disclosed. In the DNA chip, a pull-up DNA is placed on a porous substrate made of aluminum oxide. Is immobilized. In the test using the DNA chip, the solution containing the fluorescently labeled DNA is transported inside and out of the porous substrate at a predetermined constant speed so that the solution is transported. y, high efficiency and fast speed 5 ィ.)
特表 2 0 0 0 - 5 1 5 2 5 1 号公報には 多孔質基体にプ Japanese Patent Application Laid-Open No. 2000-501-5251 discloses a porous substrate.
□―ブを固相化し 、 圧力差によ り検体液を流動させて 生体 関連物質を検出する方法が開示されている o しかし 、 mi動 is 度に関する具体的な §己威( ない。 A method of detecting a biological substance by immobilizing a solid phase and flowing a sample liquid by a pressure difference is disclosed. However, there is no specific § self-establishment regarding the degree of mi motility.
米国特許出願公開第 2 0 0 2 / 0 0 2 5 5 3 3 A 1 明細 書には 、 基体を洗浄した後に検出することが記載されている が、 洗浄時と検出時の溶液の流動 ¾法については示されてい ない。 つま り、 一つの工程では常に唯一の流動条件だけが適 用される。  U.S. Patent Application Publication No. 200/002 / 530533A1 describes that the detection is performed after the substrate is washed.However, the flow of the solution at the time of washing and at the time of detection is described. Is not shown. This means that only one flow condition is always applied in one process.
発明の開示 Disclosure of the invention
本発明は、 ひとつには、 遺伝子に限定されない生体関連物 ftを検出する 能性基体か 成る検査チップを用いた生体関 連物質の検査方法に向けられている。 つま り 、 上述した D N The present invention is directed, in part, to a method for testing a biological substance using a test chip including a substrate capable of detecting a biological substance ft, which is not limited to a gene. That is, the above-mentioned D N
Aチップや他の検査チップを用いた生体関連物質の検查方法 に向けられている 0 言い換えれば 、 遺伝子および遺伝子以外 の生体関連物質の検査のための機能性基体から成る種々の検 査チップを用いた検査方法に向けられている o It is directed to a method for detecting a biological substance using an A chip or another test chip. 0 In other words, various test chips composed of a functional substrate for testing genes and biological substances other than genes are used. Is directed to the test method used o
本発明の検査方法は、 機能性基体を用いた生体関連物質の 検査方法において 、 流体を流動させて流体と慨能性 体を接 触させる複数のェ程を有し、 それぞれの工程においてそのェ 程に i .した 動速度で流体を流動させる。 The inspection method of the present invention is a method for inspecting a biological substance using a functional substrate, comprising a plurality of steps of flowing a fluid and contacting the fluid with a general-purpose substance. The fluid flows at the kinetic speed i.
本発明の別の検査方法は、 機能性基体を用いた生体関連物 質の検査方法において、 流体を往復流動させて流体と機能性 基体を繰 返し接触させる工程を有し、 その工程において、 往時と復時とで異なる流動速度で流体を流動させる。  Another inspection method of the present invention is a method for inspecting a biological substance using a functional substrate, comprising a step of causing a fluid to reciprocate and repeatedly contact the fluid with the functional substrate. The fluid is caused to flow at different flow speeds at and after the return.
本発明の別の検査方法は、 機能性基体を用いた生体関連物 質の検査方法において、 流体を流動させて流体と機能性基体 を接触させる工程を有し、 一定でない流動速度で流体を流動 させる o  Another inspection method of the present invention is a method of inspecting a biological substance using a functional substrate, comprising a step of flowing a fluid to contact the fluid with the functional substrate, and causing the fluid to flow at an irregular flow velocity. Let o
本発明の別の検査方法は、 体積型ポンプを用いて流体を流 動させて流体と機能性基体を接触させる複数の工程を有し、 体積型ポンプの体積を変化させる量が流動させる流体の体積 よ ち多い o  Another inspection method according to the present invention includes a plurality of steps of causing a fluid to flow using a volume pump to contact the fluid with the functional substrate, and the volume of the volume pump changing the volume of the fluid is changed. O More volume o
本発明の別の検査方法は、 機能性を有しかつ流動可能な基 体を複数のェ程で流体中に保持しながら、 生体関連物質に関 する検査を行なう生体関連物質の検査方法であ り 、 それぞれ のェ程においてその工程に適した流動速度で基体を流動させ o  Another test method of the present invention is a test method for a bio-related substance in which a test for a bio-related substance is performed while a functional and flowable substrate is held in a fluid in a plurality of steps. In each step, the substrate is flowed at a flow rate suitable for the process.
また本発明は、 ひとつには、 上述した生体関連物質の検査 方法に 用される移送装置に向けられている。  The present invention is also directed, in part, to a transfer device used in the above-described method for inspecting a biological substance.
本発明の移送装置は、 流体を移送する移送手段と、 流体の 移送に対して連続的に接触可能な機能性基体を保持する保持 手段と 、 移送手段を制御する手段と、 流体の特性に応じて少 な < とち一 の制御条件を選択的に設定する制御条件設定手 段とを備えている。 また本発明は、 ひとつには、 上述した生体関連物質の検査 方法に適用される移送方法に向けられている。 A transfer device according to the present invention includes: transfer means for transferring a fluid; holding means for holding a functional substrate capable of continuously contacting the transfer of the fluid; means for controlling the transfer means; And a control condition setting means for selectively setting at least one control condition. Further, the present invention is directed, in part, to a transfer method applied to the above-described method for testing a biological substance.
本発明の移送方法は 、 流体に対し機能する基体を流体と連 続的に接触させる工程と、 流体を少なく とも二つの制御条件 によつて移送する工程と、 制御条件を流体の特性に応じて設 定する工程とを有している。  The transfer method of the present invention includes a step of continuously contacting a substrate that functions with a fluid with the fluid, a step of transferring the fluid under at least two control conditions, and a step of controlling the control conditions according to characteristics of the fluid. Setting step.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の実施形態において共通に使用される D N FIG. 1 shows the D N commonly used in the embodiment of the present invention.
Aチソプ読み取リ装置の概略構成を示している。 1 shows a schematic configuration of an A-thisop reading device.
図 2 は、 図 1 に示された反応容器の構成を概略的に示す斜 視図でめ 0  FIG. 2 is a perspective view schematically showing the configuration of the reaction vessel shown in FIG.
図 3 は、 図 1 と図 2 に示された反応容器の横断面を示す図 である o  Figure 3 shows a cross section of the reaction vessel shown in Figures 1 and 2.o
図 4 は、 本発明の第一実施形態に関連した、 シリ ンジポン プの一般的な駆動パ夕ーンを示している。  FIG. 4 shows a general drive pattern of a syringe pump in connection with the first embodiment of the present invention.
図 5 は、 本発明の第二実施形態におけるシリ ンジボンプの 駆動パターンを示している。  FIG. 5 shows a driving pattern of a syringe pump according to the second embodiment of the present invention.
図 6 は、 本発明の第三実施形態におけるシリ ンジポンプの 駆動パターンを示している。  FIG. 6 shows a driving pattern of a syringe pump according to the third embodiment of the present invention.
図 7 は、 図 6 の駆動パターンの比較例における駆動パ夕一 ンを示している。  FIG. 7 shows a driving pattern in a comparative example of the driving pattern of FIG.
図 8 は、 図 6 の駆動パターンに従った駆動において得られ た、 あるプローブの蛍光の輝度の時間的変化の測定例を示し ている o  Fig. 8 shows a measurement example of the temporal change of the luminance of a certain probe obtained by driving according to the driving pattern shown in Fig. 6.o
図 9 は、 図 7 の駆動パターンに従つた駆動において得られ P T/JP2004/007450 Fig. 9 is obtained by driving according to the driving pattern of Fig. 7. PT / JP2004 / 007450
6 た、 同じプ □一プの蛍光の輝度の時間的変化の測定例を示し ている。 6 shows a measurement example of the temporal change in the luminance of the fluorescence of the same pump.
図 1 0 は 3%明の第四実施形態における反応工程の駆動 パターンを示している  FIG. 10 shows a driving pattern of the reaction process in the fourth embodiment with a lightness of 3%.
図 1 1 は 、 ¾明の第四実施形態における洗浄工程の駆動 パターンを示している ο  FIG. 11 shows a driving pattern of a cleaning step in the fourth embodiment of the present invention.
図 1 2 は 明の第五実施形態を実施する装置を不す図 FIG. 12 is a view showing an apparatus for implementing the fifth embodiment of the present invention.
C1ある。 C 1 a.
図 1 3 は 9¾明の第/、芙施形態ないし第九実施形態を実 施 9 る衣置を示す図でめ 。  FIG. 13 is a diagram showing a garment implementing the 9th / 9th embodiments of the present invention.
國 1 4 は 発明に迴用ロ I能なシリ ンジボンプの駆動パ夕 一ンを示している o  The country 14 shows the drive of a syringe pump capable of using the invention in the invention o
図 1 5 は 、 本発明に迴用可能なシリ ンジビス 卜ンポンプの よ り好適な駆動パ夕一ンを示している。  FIG. 15 shows a more preferable drive pattern of a syringe pump that can be used in the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[生体関連物質の検査 ¾ε Λの基本構造]  [Basic structure of bio-related substance inspection {ε}]
図 1 は 後述する本発明の実施形態において基本的に使用 される D N Aチッ ~f =*  FIG. 1 shows a DNA chip basically used in an embodiment of the present invention to be described later ~ f = *
ノ nTCみ取り装置の概略構成を示している o 図 1 に示されるよう に、 D N Aチップ読み取リ装置は 、 反 応容器 2 が載置されるステージ 1 を有している 。 ステ一ジ 1 は、 固定板 1 a と 、 固定板 1 a上に Y軸方向に移動可能な Y 移動板 1 b と 、 Y移動板 1 b上に X軸方向に移動可能な X移 動板 1 c とを有してお y 、 これら Y移動板 1 b と X移動板 1 c によ り 反応容器 2 を X— Y軸方向に移動可能にしている。 反応容器 2 は、 図 2 に示されるよう に、 直方体形状の上板 2 0 1 と下板 2 0 2 を重ねて構成されている。 上板 2 0 1 に は、 これに限定されないが 、 例えば 4個の円筒状の孔部 2 0(1) The schematic configuration of the nTC stripping device is shown. O As shown in FIG. 1, the DNA chip reading device has a stage 1 on which a reaction container 2 is placed. The stage 1 has a fixed plate 1a, a Y movable plate 1b movable on the fixed plate 1a in the Y-axis direction, and an X movable plate movable on the Y movable plate 1b in the X-axis direction. The reaction vessel 2 can be moved in the X-Y axis directions by the Y moving plate 1b and the X moving plate 1c. Reaction vessel 2 has a rectangular parallelepiped upper plate as shown in Fig. 2. It is constructed by superimposing 210 and the lower plate 202. The upper plate 201 includes, but is not limited to, four cylindrical holes 200, for example.
1 a , 2 0 1 b 、 2 0 1 c 、 2 0 1 d が長手方向に沿って一 列に形成されている た 、 下板 2 0 2 には、 孔部 2 0 1 a1 a, 201 b, 201 c, and 201 d are formed in a line along the longitudinal direction.The lower plate 202 has a hole 201 a
2 0 1 b、 2 0 1 c 、 2 0 1 d に対応する位置に円筒状の孔 部 2 0 2 a 、 2 0 2 b、 2 0 2 c 、 2 0 2 d が長手方向に沿 つて一列に形成されている 。 これら上板 2 0 1 と下板 2 0 2 は重ね合わせられ、 4個の反応室 3 a、 3 b、 3 c 、 3 d を 形成している Cylindrical holes 202 a, 202 b, 202 c, and 202 d at positions corresponding to 201 b, 201 c, and 201 d in a row along the longitudinal direction Is formed in. The upper plate 201 and the lower plate 202 are superimposed to form four reaction chambers 3a, 3b, 3c and 3d.
汉応室 3 a、 3 b 、 3 c 、 3 d には、 それぞれ 、 機能性基 体と しての D N Aチップ 4 の反応部 4 a、 4 b 4 c 、 4 d が収納されている D N Aチップ 4 は、 反応室 3 a、 3 b、 The reaction chambers 3a, 3b, 3c, and 3d have the DNA chips containing the reaction sections 4a, 4b4c, and 4d of the DNA chip 4 as the functional base, respectively. 4 is the reaction chamber 3a, 3b,
3 c 、 3 d 内に供給または収容される各種溶液を通過し得る 微細孔を多数有している 好適な実施の態様において、 D NIn a preferred embodiment, having a large number of micropores through which various solutions supplied or contained in 3 c and 3 d can pass,
Aチップ 4 は、 例えば、 2 5 m m X 7 5 m m程度の基体上に 直径 6 m m程度の 4個の反応部 4 a、 4 b、 4 c 、 4 dが 9 m m ピッチで形成されている。 このような D N Aチップ 4 を 図 3 に示されるよう に上板 2 0 1 と下板 2 0 2 の間に挟み込 むことで、 反応部 4 a、 4 b、 4 c 、 4 d が反応室 3 a、 3 b、 3 c 、 3 d の各底面から若干上方の位置にそれぞれ収容 される。 The A chip 4 has, for example, four reaction portions 4a, 4b, 4c, and 4d having a diameter of about 6 mm formed on a substrate of about 25 mm × 75 mm at a pitch of 9 mm. By sandwiching such a DNA chip 4 between the upper plate 201 and the lower plate 202 as shown in FIG. 3, the reaction sections 4a, 4b, 4c, and 4d become reaction chambers. 3a, 3b, 3c, and 3d are accommodated at positions slightly above the respective bottom surfaces.
反応 3 a、 3 b、 3 c 、 3 d の上板 2 0 Ί 側の孔部 2 0 Reaction plate 3 a, 3 b, 3 c, 3 d Upper plate 20 Ί Side hole 20
1 a、 2 0 1 b , 2 0 1 c 、 2 0 1 d の上部には、 蛍光検出 ュニッ 卜によ り反応部 4 a 、 4 b、 4 c 4 d の反応経過やAbove 1a, 201b, 201c, and 201d, the reaction progress of the reaction sections 4a, 4b, and 4c4d is detected by the fluorescence detection unit.
¾Π 7¾ ¾1測定するための開口部 3 0 1 a , 3 0 1 b、 3 0 1 c , P T/JP2004/007450 ¾Π 7¾ ¾1 Openings for measurement 3 0 1 a, 3 0 1 b, 3 0 1 c, PT / JP2004 / 007450
3 0 1 dがそれぞれ形成されている。 これらの開口部 3 0 1 a 、 3 0 1 b , 3 0 1 c , 3 0 I d は、 それぞれ反応に必要 なサンプル溶液と試薬溶液が順次または同時または混合状態 で供給できるよう に開放している。 開口部 3 0 1 a 、 3 0 1 b 、 3 0 1 c , 3 0 I d には、 場合によっては、 サンプルと 試薬以外の液体、 例えば希釈用溶液、 洗浄用溶液、 測定用試 薬 (基質酵素等) も供給される。 開口部 3 0 1 a 、 3 0 1 b 、 3 0 1 c 、 3 0 1 d には、 温湿環境を維持するため、 液体を 供給しない時期に適当な蓋部材が被せられ場合もある。 また、 下板 2 0 2 の孔部 2 0 2 a 2 0 2 b 、 2 0 2 c 、 2 0 2 d 内の側面には 反応容器 2 の目リ側面まで導出される接続口 33 0 1 d are respectively formed. The openings 301a, 301b, 301c, and 30Id are opened so that the sample solution and the reagent solution required for the reaction can be supplied sequentially, simultaneously, or in a mixed state. I have. The openings 301a, 301b, 301c, and 30Id may contain liquids other than samples and reagents, such as diluents, washing solutions, and assay reagents (substrates). Enzymes etc.) are also supplied. In order to maintain a hot and humid environment, the openings 301a, 301b, 301c, and 301d may be covered with an appropriate lid member at a time when liquid is not supplied. In addition, connection holes 3 leading out to the side surfaces of the reaction vessel 2 are provided on the side surfaces of the holes 202 of the lower plate 202, 202 a 200 b, 202 c and 202 d.
0 2 a , 3 0 2 b 、 3 0 2 c 、 3 0 2 d がそれぞれ形成され ている。 0 2 a, 30 2 b, 30 2 c, and 30 2 d are respectively formed.
反応容器 2 は 、 図 1 に示されるよう に 、 反応室 3 a 、 3 b As shown in FIG. 1, the reaction vessel 2 includes reaction chambers 3a and 3b.
3 c 、 3 dが X軸方向に沿つて一列に配置されるよう に、 ス テージ 1 の X移動板 1 c 上に載置される Placed on stage 1 X-moving plate 1 c so that 3 c and 3 d are arranged in a line along the X-axis direction
、容 #5 2 の接続口 3 0 2 a 、 3 0 2 b 、 3 0 2 c 、 3 0 , # 5 2 connection ports 30 2a, 30 2b, 30 2c, 30
2 d には、 配 5 a 、 5 b 5 c 、 5 d を介して流路切替手 段と しての切替バルプ 6 が接 feeされている。 また、 切替バル ブ 6 には、 配管 7 を介して移送手段の流動源と して機能する ポンプ 8が接続されている A switching valve 6 as a channel switching means is connected to 2 d via distribution lines 5 a, 5 b 5 c, and 5 d. In addition, a pump 8 that functions as a flow source of the transfer means is connected to the switching valve 6 via a pipe 7.
ポンプ 8 は 、 各反応室 3 a 、 3 b 3 c 、 3 d 中のプロ一 プ溶液に流動を与えるための のでめ y 、 例えばシリ ンジポ ンプ (例えば八ミル 卜ン社 ィク 口ラボ ML510B) で構成さ れる。 切替パ、ルブ 6 は 、 例えば 、 回転式 4方選択バルプ (例 えば、 ハミル 卜ン社 H V D P 4 _ 5 など) で構成される。 操 作軸 a には 、 ピニオン 9 が取り付けられている o The pump 8 is used to give a flow to the pump solution in each of the reaction chambers 3 a, 3 b 3 c, and 3 d. For example, a pump such as a silicon pump (for example, MIC510B, an eight-mil-ton company) It is composed of Switching par, lube 6 is, for example, a rotary 4-way selection valve (example For example, Hamilton HVDP 4_5). The operating shaft a has a pinion 9 attached to it.
ステージ 1 の X移動板 1 c の X軸方向に沿つた側面、 つま り、 反 )心谷 ¾ 2 の各反応室 3 a、 3 b、 3 c 、 3 d が並ぶ X 軸方向に沿つた側面には、 ラ ック 1 0が設けられている。 ま た、 Y移動板 1 bの側面には、 保持板 1 1 を介して切替バル ブ 6 が取リ付けられている。  Side surface along the X-axis direction of the X moving plate 1c of the stage 1, that is, the side surface along the X-axis direction where the reaction chambers 3a, 3b, 3c, and 3d of the center ¾2 are arranged. Is provided with a rack 10. In addition, a switching valve 6 is attached to the side surface of the Y moving plate 1 b via a holding plate 11.
切替バルプ 6 に取り付けられている ピニ才ン 9 は、 ラック The pini 9 attached to the switching valve 6 is a rack
1 0 に嚙み合つている。 従って、 ピニオン 9 は 、 ステーシ 1 の X軸方向の移動によ り、 ラック 1 0 を介して回転される。 ピニオン 9 の回転は操作軸 6 a を回転させる o これによ り 、 配 5 a、 5 b 、 5 c 、 5 d のうちの一つが m択的に配管 7 を介してボンプ 8 に接続され得る。 It merges with 10. Therefore, the pinion 9 is rotated via the rack 10 by the movement of the stay 1 in the X-axis direction. The rotation of the pinion 9 rotates the operating shaft 6a, whereby one of the arrangements 5a, 5b, 5c, 5d can be selectively connected to the pump 8 via the pipe 7 .
ピニオン 9 は 、 1 / 4 回転が、 D N Aチップ 4 の反応部 4 a 4 b、 4 c 、 4 d のピッチ ( 9 m m ) に相当するサイズ を有している。 ステージ 1 の移動によ り 、 反応容器 2 が反応 部 4 a、 4 b、 4 c 、 4 d の ピッチ分だけ移動されると、 こ れに応じて、 切替バルブ 6 の操作軸 6 aが 9 0 ° 回転され、 配管 5 a、 5 b、 5 c 、 5 d の切替が行なわれる。  The pinion 9 has a size corresponding to a pitch (9 mm) of the reaction portion 4 a 4 b, 4 c, and 4 d of the DNA chip 4 in a quarter rotation. When the reaction vessel 2 is moved by the pitch of the reaction sections 4a, 4b, 4c, and 4d by the movement of the stage 1, the operation shaft 6a of the switching valve 6 is accordingly moved to 9 by the pitch. The pipe is rotated by 0 ° and the pipes 5a, 5b, 5c and 5d are switched.
ステージ 1 の X軸方向の移動によ り、 反応室 3 a、 3 b、 3 c 、 3 d のう ちの所望のひとつが、 後述する蛍光検出ュニ ッ 卜 1 2 の測定位置まで移動されたとき、 測定位置に移動さ れた反応室 3 a、 3 b、 3 c 、 3 d のひとつに対応する配管 5 a、 5 b、 5 c 、 5 d のひとつがポンプ 8 と接続されるよ う に調整されている。 ポンプ 8 は ポンプ制御ュニッ 卜 1 4 を介して演算ュニッ 1 5 に接 feeされており 、 演算ュ一ッ 卜 1 5 によ り 、 溶液の 流動速度を変えることが可能である 。 演算ュニッ 卜 1 5 は、 By moving the stage 1 in the X-axis direction, a desired one of the reaction chambers 3a, 3b, 3c, and 3d was moved to a measurement position of the fluorescence detection unit 12 described later. At this time, one of the pipes 5a, 5b, 5c, 5d corresponding to one of the reaction chambers 3a, 3b, 3c, 3d moved to the measurement position is connected to the pump 8. Has been adjusted. The pump 8 is connected to the operation unit 15 via the pump control unit 14, and the flow rate of the solution can be changed by the operation unit 15. Arithmetic unit 15
 ,
D N Aチップ 4 に流通させる流体浴液の特性に }心して複数の 流動速度の中から好ましい速度条件を設定する流動条件設定 手段と してち機能する。  It functions as a flow condition setting means for setting a preferable speed condition from among a plurality of flow speeds, while keeping in mind the characteristics of the fluid bath fluid flowing through the DNA chip 4.
例えば、 反応室 3 d の反応部 4 d の反応経過や結果を測定 するには、 ステージ 1 を X軸方向の図示左端まで移動し、 反 応部 4 d を蛍光検出ュニッ 卜 1 2 の対物レンズ 1 3 の焦点位 置に移動させる 。 X移動板 1 c の移動に伴いラ ック 1 0 も移 動し、 ピニ才ン 9が回転し、 切替ノ ルプ 6 の操作軸 6 a も回 車 Eし、 JS }心室 3 c とポンプ 8 の流路が切替バルブ 6 を介して 接続される o < の状態で、 演算ュ一ッ 卜 1 5 によ りポンプ制 御ュニッ 卜 1 4 を介してポンプ 8 をコ ン 卜口 ールすることに よ り、 }心室 3 c 中の溶液を流動させることが可能となる。  For example, to measure the reaction progress and results of the reaction section 4d in the reaction chamber 3d, move the stage 1 to the left end in the X-axis direction and move the reaction section 4d to the objective lens of the fluorescence detection unit 12 Move to the focal position of 13. The rack 10 also moves with the movement of the X moving plate 1 c, the pin 9 rotates, the operating shaft 6 a of the switching knob 6 also turns, and the JS} ventricle 3 c and the pump 8 Is connected via the switching valve 6, and in the state of <, the pump 8 is controlled via the pump control unit 14 by the computing unit 15. This allows the solution in the ventricle 3 c to flow.
[生体関連物質の検査方法]  [Biological substance inspection method]
以下 、 生体関連物質の検査方法に関する実施形態について 説明する  Hereinafter, an embodiment of a method for testing a biological substance will be described.
生体関連物質の検査方法には色 なェ程があ リ、 それぞれ の工程 1 あいて必要な溶液が用意される。 例えば、 必要な溶 液は、 プロ一プと検査対象の生体関連物質を反応させる反応 工程においては、 プローブと反応する検査対象の生体関連物 質を含む検体液であり、 検査チップに残留する不所望な検体 液を取り 除く洗浄工程においては、 洗浄水である。 以下の説 明では、 それぞれの工程において用意される必要な溶液を総 称して単に溶液とい There are many different methods for testing bio-related substances, and the necessary solutions are prepared for each step. For example, in a reaction step of reacting a probe with a biological substance to be inspected, the required solution is a sample liquid containing the biological substance to be inspected that reacts with the probe, and the remaining solution on the test chip In a washing step for removing a desired sample solution, the washing water is used. In the following description, the necessary solutions prepared in each step are summed up. Simply called a solution
本明 書にお一いて、 J"生体関連物 J は 動物 、 植物 、 微 生物等の細胞のみならず 、 し れらに寄生しなければ自 ら増殖 できないウィルスや細菌等に由来する物質をも含む。 生体関 連物質は 、 これらの細胞等よ り直接抽出 · 単離された天然形 態のもののみならず、 遺伝子ェ学的手法を利用 して生産され たもの、 化学的に修飾されたものも む。 よ り具体的には ホルモン類、 酵素、 抗体 、 抗原 、 ァブザィ厶 、 その他の夕ン パク 核酸 (例えば D N A 、 R N A 、 P N A ) 等が含まれ また 「プロ一ブ J は、 上記の生体関 物質に対して特異的 に結合する物質を意味し、 例えば、 ホルモン等のリガン ドと その受容体、 酵素とその基質 、 抗原とその抗体、 特定配列を 有する核酸とこれに相補的な配列を有する核酸等の関係にあ る、 何れかが含まれる。  As used herein, J "biological substance J includes not only cells such as animals, plants, and microorganisms, but also substances derived from viruses, bacteria, and the like that cannot multiply on their own unless they infest them. Bio-related substances include not only those in the natural form directly extracted and isolated from these cells and the like, but also those produced using genetic techniques and those chemically modified. More specifically, it includes hormones, enzymes, antibodies, antigens, Abzymes, and other nucleic acids (for example, DNA, RNA, PNA), and the like. Refers to a substance that specifically binds to a biological substance.For example, a ligand such as a hormone and its receptor, an enzyme and its substrate, an antigen and its antibody, a nucleic acid having a specific sequence and a sequence complementary thereto. Related to nucleic acids having Re or are included.
また Γ D N Aチップ J は、 上記の 「プローブ J を試薬とす る生物学的反応を行なう反応性を有する機能性基体を章味す る。 「機能性基体 J は、 上記生体関連物質に応答して測定可 能な変化を生じるような機能性を有する支持体全般を 味す 勺 。 よって、 本発明の機能性基体は、 上記生体関連物 «と特 的な相互作用を C=lする任意の種類の試薬成分を備える任意の 形状の支持体である o  In addition, Γ DNA chip J refers to the above-mentioned “functional substrate having a reactivity to perform a biological reaction using probe J as a reagent.” “Functional substrate J responds to the above-described biological substance. Thus, the functional substrate of the present invention is a functional substrate having a functional property that causes a measurable change. Supports of any shape with various reagent components o
また 「流体」 は 、 機能性基体と接触して基体に機能させる ような物質を含む流体全般を意味する ο 流体が溶液である場 合に、 上記生体関連物質に対して不活性の気体を含有しても よい。 流体が無数の微小粒である場合に、 上記生体関連物質 に対して不活性の 体中に含有されていてもよい。 The term “fluid” refers to any fluid containing a substance that comes into contact with a functional substrate and causes the substrate to function.ο When the fluid is a solution, it contains a gas that is inert with respect to the above-mentioned biological substance. Even Good. When the fluid is innumerable fine particles, the fluid may be contained in a body that is inert to the biological substance.
また 「流動 J とは 、 液体が基体との接触部位を変化するよ うな動きである o 流動は、 液体の動きを制御する手段によつ て能動的に移動させられる。 液体の動きを制御する手段は、 流動速度の追加 - 減衰 ' 維持 · 停止という動的パラメータ一 を適切な組み合わせで含んでおり 、 選ばれた各動的パラメ一 ターに適切な時間配分を振り分ける機能を有する。  Also, "Flow J is a movement in which the liquid changes the contact area with the substrate. O Flow is actively moved by means for controlling the movement of the liquid. Controlling the movement of the liquid The means includes a dynamic parameter of adding-damping 'maintaining and stopping the flow velocity in an appropriate combination, and has a function of distributing an appropriate time distribution to each selected dynamic parameter.
前述の装置において、 溶液は、 シリ ンジポンプ 8 によって 流動され、 D N Aチップ 4 の反応部 4 a 4 b 4 c , 4 d のひとつに行き来させられる。 つま り 、 溶液は往復流動され、 反応部 4 a 4 b 4 c 4 d のひとつを繰り返し通過させ られる。  In the above-described apparatus, the solution is flowed by the syringe pump 8 and moved back and forth to one of the reaction sections 4 a 4 b 4 c and 4 d of the DNA chip 4. That is, the solution is reciprocally flowed and repeatedly passed through one of the reaction sections 4a4b4c4d.
従って、 本発明に適用され得る基体の好適な態様は、 基体 内を流体が通過でさるような孔を有し、 さ らに好適には多孔 質の材料からなる機能部分を少なく とも一部に有する。 しか し、 本発明の主曰 によれば、 機能性を有し、 かつ機能性表面 に流体が流動状態で接触し得る形状であれぱ、 別の形状を有 する基体であつてちよい。  Therefore, a preferred embodiment of the substrate that can be applied to the present invention has a hole through which a fluid can pass through the substrate, and more preferably at least a part of the functional portion made of a porous material. Have. However, according to the main statement of the present invention, a substrate having another shape may be used as long as the substrate has a function and a fluid can contact the functional surface in a flowing state.
第一実施形態  First embodiment
図 4 は、 シリ ンンポンプ 8 の一般的な駆動パターンを示し ている。 図 4 において、 X軸は経過時間を示し、 Y軸はシリ ンジポンプ 8 のピス 卜ンの位置を示している。 右下がりの区 間は 「弓 1く」 動作に対応し、 右上がり の区間は 「押す」 動作 に対応している o 傾きの大きさは、 ピス トンの移動速度を表 2004/007450 FIG. 4 shows a general driving pattern of the silicon pump 8. In FIG. 4, the X-axis indicates the elapsed time, and the Y-axis indicates the position of the piston of the syringe pump 8. The downward-sloping section corresponds to the “bow 1” action, and the upward-sloping section corresponds to the “push” action.o The magnitude of the inclination indicates the piston's movement speed. 2004/007450
1 3 しておリ、 従って検体液の流動速度に対応している。 Therefore, it corresponds to the flow velocity of the sample liquid.
図 4から分かるよう に、 一般に、 シリ ンジポンプ 8のビス 卜ンは、 一定の速度で押され、 一定時間のあいだ停止された 後、 押す動作時と同じ速度で引かれる。 この一連の動作が、 一定時間の間隔を置いて、 繰り返し行なわれる。  As can be seen from FIG. 4, in general, the piston of the syringe pump 8 is pushed at a constant speed, stopped for a fixed time, and then pulled at the same speed as the pushing operation. This series of operations is repeated at regular intervals.
本実施形態は、 生体関連物質の検査における複数のそれぞ れの工程において、 その工程に適した流動速度で溶液を流動 させることに向けられている。 つま り、 それぞれの工程にお いて、 シリ ンジポンプ 8 を、 そのピス トンの移動速度が異な る駆動パターンに従って駆動する。 言い換えれば、 シリ ンジ ポンプ 8 のピス トンの移動速度が、 生体関連物質の検査方法 のそれぞれの工程において変更される。  The present embodiment is directed to flowing a solution at a flow rate suitable for each of a plurality of steps in a test of a biological substance. That is, in each process, the syringe pump 8 is driven according to a drive pattern in which the movement speed of the piston is different. In other words, the movement speed of the piston of the syringe pump 8 is changed in each step of the method for examining a biological substance.
例えば、 反応工程においては、 図 4 の駆動パターンに準じ て、 シリ ンジポンプ 8 のピス トンは、 溶液に 1 0 I Z秒の 流動速度を与える一定の速度で引かれ、 一定時間のあいだ停 止された後、 溶液に 1 0 t I /秒の流動速度を与える速度で 押される。 この一連の動作が、 一定時間の間隔を置いて、 繰 リ返し、 必要な回数だけ行なわれる。 これに対して、 洗浄ェ 程においては、 図 4の駆動パターンに準じて、 シリ ンジボン プ 8のピス トンは、 溶液に 2 0 I Z秒の流動速度を与える 一定の速度で引かれ、 一定時間のあいだ停止された後、 溶液 に 2 0 n I Z秒の流動速度を与える速度で押される。 この一 連の動作が、 一定時間の間隔を置いて、 繰り返し、 必要な回 数だけ行なわれる。  For example, in the reaction process, the piston of the syringe pump 8 was drawn at a constant speed giving a flow velocity of 10 IZ seconds to the solution and stopped for a certain period of time according to the driving pattern in FIG. The solution is then pushed at a rate that gives the solution a flow rate of 10 tI / s. This series of operations is repeated at a certain interval and repeated as many times as necessary. On the other hand, in the cleaning process, the piston of the syringe pump 8 is drawn at a constant speed that gives the solution a flow speed of 20 IZ seconds according to the driving pattern in FIG. After being stopped for a while, the solution is pressed at a speed that gives a flow rate of 20 nIZ seconds. This series of operations is repeated at a certain time interval and repeated as many times as necessary.
反応工程における溶液 (検体液) の最適な流動速度と洗浄 4 工程における溶液 (洗浄水) の最 ieな ; ι£動速度は異なる 。 従 つて、 このよう に、 それぞれのェ にあいて その工程に適 した流動速度で溶液を流動させることによ U 、 それぞれのェ 程を短時間で終了させる とが可能となる o ま り 、 それぞ れの工程を効率良く行なラ とができる o 結果と して、 生体 関連物質の検査の 卜一夕ルの所要時間を短縮でさるよう にな る o Optimal flow rate and washing of the solution (sample liquid) in the reaction process The optimal solution (washing water) in the four processes is different. Therefore, by allowing the solution to flow at a flow rate suitable for the process in each process, it is possible to complete each process in a short time. Each process can be performed efficiently.As a result, the time required for the inspection of biological substances can be reduced.
第二実施形態  Second embodiment
本実施形態は 、 溶液を往 流動させて溶液に検査チ Vプを 繰り返し通過させる一つのェ程において 、 そのェ程において 往時と復時とで異なる流動速度で溶液を流動させる < とに向 けられている。  The present embodiment is directed to a process in which a solution is caused to flow forward and a test chip is repeatedly passed through the solution, and the solution is caused to flow at different flow speeds at the time of going and returning in the process. Has been.
つま り、 本実施形態においては、 生体関連物質の検査の一 つの工程において、 シリ ンンポンプ 8 のビス 卜ンの移動 が、 「引 く」 動作時と Γ押す J 動作時とで変えられる ο つま り 、 シリ ンジポンプ 8 の Γ引 く J 動作時と Γ押す J 動作時と で、 溶液の流動速度が異なる o  In other words, in the present embodiment, in one step of the examination of the biological substance, the movement of the piston of the silicon pump 8 is changed between the “pull” operation and the Γ push J operation. The flow rate of the solution is different between the time when the J pump of the syringe pump 8 is pulled and the time that it is pressed.
図 5 は、 「引 く」 動作時と 「押す」 動作時でピス 卜ンの移 動速度が異なる駆動バタ一ンを示している o 図 5 の駆動パ夕 ーンに従った駆動においては 、 シリ ンジポンプ 8 のピス 卜ン は、 例えば、 溶液に 1 0 At 1 /秒の流動 度を与える一定の 速度で引かれ、 一定時間のあいだ停止された 溶液に 5 μ. Fig. 5 shows a drive pattern in which the piston moves at different speeds during the "pull" operation and the "push" operation.o In the drive according to the drive pattern in Fig. 5, The piston of the syringe pump 8, for example, is drawn at a constant rate that gives the solution a flow rate of 10 At 1 / s, and 5 μm is applied to the solution stopped for a certain period of time.
1 Z秒の流動速度を与える速度で押される o この ―連の動作 が、 一定時間の間隔を置いて 、 繰り返し 、 必要な回数だけ行 なわれる。 D Ν Αチップ 4 の反応部 4 a 、 4 b 、 4 c 、 4 d は、 材質 や周辺保持部の形状によ り 、 正圧に対する耐圧特性と負圧に 対する耐圧特性とが異なる。 ここで 、 正圧は、 シリ ンジボン プ 8のピス トンの 「押す」 動作時に反応部 4 d が受ける圧力 であり、 負圧は、 シリ ンジポンプ 8 のビス 卜ンの 「引く」 動 作時に受ける圧力である。 反応部 4 a 、 4 b 、 4 c 、 4 d は 特に正圧に対する耐圧特性が低いため、 シリ ンジポンプ 8 の ピス 卜ンの 「押す」 動作時に、 最悪の場合、 破壊する傾向が 強い It is pushed at a speed that gives a flow speed of 1 Z seconds. O This-repetition operation is repeated a required number of times at regular intervals. The reaction parts 4 a, 4 b, 4 c, and 4 d of the DΝ chip 4 have different withstand pressure characteristics with respect to positive pressure and withstand pressure with respect to negative pressure depending on the material and the shape of the peripheral holding part. Here, the positive pressure is the pressure received by the reaction part 4 d during the “push” operation of the piston of the syringe pump 8, and the negative pressure is the pressure received during the “pull” operation of the piston of the syringe pump 8. It is. The reaction parts 4 a, 4 b, 4 c, and 4 d have particularly low withstand pressure characteristics against positive pressure, so they tend to be broken in the worst case during the “push” operation of the piston of the syringe pump 8.
図 5 の駆動パターンに従つた駆動においては、 「押す」 動 作時の ピス トンの移動速度が低く抑えられているため、 「押 す」 動作時に反応部 4 a 、 4 b 、 4 c 、 4 d が受ける圧力が 低く抑えられる。 言い換えれば、 往時と復時の溶液の流動速 度が 、 反応部 4 a 、 4 b 、 4 c 、 4 d の往時と復時の耐圧特 性に合わせて設定されている。 結果と して、 反応部 4 a 、 4 b 、 4 c 、 4 d の破損の発生を減らすことが可能となる。 勿論、 本実施形態においても、 溶液は、 その工程に適した 速度で流動させるとよい。 これにより 、 その工程を短時 間で終了させることが可能となる 結果と して、 生体関連物 質の検査の所要時間を短縮することが可能となる。  In the drive according to the drive pattern in Fig. 5, the movement speed of the piston during the "push" operation is kept low, so the reaction sections 4a, 4b, 4c, 4 during the "push" operation The pressure on d is kept low. In other words, the flow velocities of the solution at the time of going and returning are set in accordance with the pressure resistance characteristics at the time of going and returning of the reaction sections 4a, 4b, 4c and 4d. As a result, it is possible to reduce the occurrence of breakage of the reaction sections 4a, 4b, 4c, and 4d. Of course, also in the present embodiment, the solution may be flowed at a speed suitable for the process. As a result, the process can be completed in a short time, and as a result, it is possible to reduce the time required for examining a biological substance.
第三実施形態  Third embodiment
本実施形態は、 溶液を流動させて溶液に検査チップを通過 させる一つの工程において、 一定でない流動速度で溶液を流 動させることに向けられている。 ま り 、 本実施形態では、 The present embodiment is directed to flowing the solution at a non-constant flow rate in one step of flowing the solution and passing the test chip through the solution. In the present embodiment,
「引く 」 動作時の最中や 「押す j 動作時の最中、 ピス トンの 2004/007450 During the “pull” operation or “press j” operation, the piston 2004/007450
1 6 1 6
、、、 ,,,
移動速度が一定でない駆動パターンに従ってシ U ンンポンプ を駆動する o Drives a single pump according to a drive pattern with a non-constant moving speed o
本実施形態では、 例えば、 溶液を間欠的に一定の 1し動 is度 で流動させる o すなわち、 生体関連物質の検査方法の一つの 曰  In the present embodiment, for example, the solution is intermittently flowed at a constant one-step motion.
工程内の r引 < J 動作時の最中や 「押す」 動作時の 中、 シ リ ンジポンプ 8のビス トンが間欠的に一定速度で移動される 図 6 は、 Γ引 < J 動作時と 「押す」 動作時でピス 卜ンが間欠 的に移動される駆動パターンを示している。 During the process of r pull <J in the process or during the “push” operation, the biston of the syringe pump 8 is intermittently moved at a constant speed. Pressing ”indicates a drive pattern in which the piston moves intermittently during operation.
図 6 の駆動パターンに従った駆動においては 、 シ U ンジポ ンプ 8 のピス 卜ンは、 「引く 」 動作時に、 溶液に 1 0 f I / 秒の流動速度を与える一定の速度で 1 秒間引かれ 1 秒間停 止され、 この一連の動作が 4 回繰り返される 0 その後 、 「押 す」 動作時に 、 溶液に 〗 0 At I /秒の流動速度を与える一定 の速度で 1 秒間押され、 1 秒間停止され、 この一連の動作が In the drive according to the drive pattern of Fig. 6, the piston of the pump 8 is pulled for 1 second at a constant speed that gives the solution a flow rate of 10 fI / s during the "pull" operation. This operation is stopped for 1 second, and this series of operations is repeated 4 times. 0 After that, during the "push" operation, the solution is pressed for 1 second at a constant speed that gives a flow rate of の 0 At I / second to the solution, and stopped for 1 second. This series of actions
4 回繰 返される 。 この一連の動作が 〗 サイクルを成し、 そ のサィクルが、 繰り返し 、 必要な回数だけ行なわれる 図 6 の駆動バターンに従つた駆動においては、 「引 く J 動 作時と Γ押す」 動作時に それぞれ、 8秒間に 4 0 1 の溶 液が駆動される。 Repeated four times. This series of operations forms a〗 cycle, and the cycle is performed repeatedly and as many times as necessary.In the drive according to the drive pattern shown in Fig. 6, when the “pull J operation and Γ press” operations are performed, respectively. In 4 seconds, 40 1 solutions are driven.
流動速度が一定の流体においては、 流路の壁面近く の流体 が攪拌されないという、 層流と呼ばれる現象が起こる o 図 6 の駆動パ夕ーンに従つた駆動においては、 r引 く J 動 作時と Γ押す」 動作時において 、 ピス トンが間欠的に移動さ れるため 、 層流の発生が効果的に抑制される。 結果と して、 検体液が効率良く攪拌される。 これによ り、 プローブと生体 0 In a fluid with a constant flow velocity, a phenomenon called laminar flow occurs, in which the fluid near the wall of the flow path is not stirred.o In the drive according to the drive pattern in Fig. 6, r minus J During the operation, the piston is intermittently moved during the operation, so that the generation of laminar flow is effectively suppressed. As a result, the sample liquid is efficiently stirred. This allows the probe and the biological 0
関連物質の反応効率が向上し 、 検出時間を短縮する とか可 能となる。 It is possible to improve the reaction efficiency of related substances and shorten the detection time.
また、 ピス トンが間欠的に移動されるため、 D N Aチップ In addition, since the piston is moved intermittently, the DNA tip
4の反応部 4 a 、 4 b、 4 c 、 4 d の圧力が過度に上昇する ことが抑制される。 結果と して、 反応部 4 a、 4 b 、 4 c、Excessive rise in the pressure of the reaction sections 4a, 4b, 4c, and 4d of 4 is suppressed. As a result, the reaction sections 4a, 4b, 4c,
4 d の破損の発生を減らす < とが可能となる。 <And reduce the occurrence of 4d corruption.
図 6 の駆動パターンによる反応効率の向上について比較例 をあげて説明する。 図 7 は 、 比較例における駆動パ夕ーンを 示している。  The improvement of the reaction efficiency by the driving pattern in Fig. 6 will be described with reference to a comparative example. FIG. 7 shows a drive pattern in a comparative example.
図 7の駆動パターンに従 た駆動においては、 シ ンジポ ンプ 8 のビス 卜ンは、 溶液に 5 μ, 1 秒の流動速度を与える 一定の速度で 8 秒間引かれ その後、 溶液に 5 At 1 /秒の流 動速度を与える一定の速度で 8秒間押される。 の一連の動 作が、 繰り返し 、 必要な回数だけ行なわれる。  In the drive according to the drive pattern in Fig. 7, the piston of Syringe Pump 8 is drawn at a constant speed giving a flow velocity of 5μ, 1 second to the solution for 8 seconds, and then 5 At 1 / Pressed for 8 seconds at a constant speed giving a fluid speed of seconds. A series of operations are repeatedly performed as many times as necessary.
図 7 の駆動パターンに従つた駆動においては、 図 6 の駆動 パターンに従つた駆動と同様に、 「引 く J 動作時と Γ押す」 動作時に、 それぞれ、 8秒間に 4 0 ja 1 の溶液が駆動される。 つま り、 図 7 の駆動パターンに従つた駆動において 図 6 の 駆動パターンに従つた駆動においても、 駆動される浴液の量 は同じである。  In the drive according to the drive pattern shown in Fig. 7, in the same way as the drive according to the drive pattern shown in Fig. 6, during the "pull J operation" and the "push" operation, the solution of 40 ja1 is taken for 8 seconds each. Driven. That is, in the drive according to the drive pattern of FIG. 7, the amount of the driven bath liquid is the same in the drive according to the drive pattern of FIG.
図 8 は、 図 6 の駆動パタ ―ンに従つた駆動に対して得られ た、 あるプロ一ブの蛍光の輝度の時間的変化の測定例を示し ている。 また、 図 9 は、 図 7 の駆動パ夕 —ンに従つた駆動に 対して得られた 、 同 じプロ一プの蛍光の輝度の時間的変化の 測定例を示している。 04 007450 FIG. 8 shows a measurement example of a temporal change in the luminance of the fluorescence of a certain probe obtained by driving according to the driving pattern of FIG. FIG. 9 shows a measurement example of a temporal change in the luminance of the fluorescence of the same pump obtained by driving according to the driving pattern shown in FIG. 04 007450
Ί 8 図 8 と図 9 を比較して分かるよう に、 駆動される溶液の量 が同じであつてち、 図 7 の駆動パ夕ーンに従つた駆動よ り ち、 図 6 の駆動パタ一ンに従フた駆動の方が反応効率が向い 。 つ ま り、 ピス 卜ンを一定速度で移動させるよ り も 、 ピス 卜ンを 間欠的に一定速度で移動させる方が 、 ι¾い /X !、効率が得られ つま り 、 刖 Μしたよう に、 図 6 の駆動パ夕一ンに従った駆 動においては、 「引 く 」 動作時と Γ押す J 動作時にビス 卜ン が間欠的に移動されるため、 層流の発生が効果的に抑制され、 検体液が効率良く攪拌される。 これによ プロ一プと生体 関連物質の反応効率が向上し、 in果と して 、 検
Figure imgf000019_0001
時間を短縮 することが可能となる。
Ί 8 As can be seen by comparing FIGS. 8 and 9, the amount of solution to be driven is the same, and the drive pattern in FIG. The reaction efficiency is better with the drive that follows the control. In other words, it is better to move the piston intermittently at a constant speed than to move the piston at a constant speed. As shown in Fig. 6, in the driving according to the driving pattern shown in Fig. 6, the piston moves intermittently during the "pull" operation and the "J" pushing operation. Therefore, the generation of laminar flow is effectively suppressed, and the sample liquid is efficiently stirred. As a result, the reaction efficiency between the probe and the bio-related substance is improved, and as a result, the test is performed.
Figure imgf000019_0001
Time can be reduced.
層流の発生を抑制する駆動パタ一ンは 、 Γ引 く J 動作時と The driving pattern that suppresses the generation of laminar flow is the same as when
「押す」 動作時に、 ビス 卜ンを間欠的に ―定 is度で移動させ る駆動パターンに限定されない o 例えば Γ引 < J 動作時とDuring the “push” operation, the piston is moved intermittently--not limited to a drive pattern that moves at a constant is degree.
「押す」 動作時に、 溶液を脈動的に流動させるよラ にビス 卜 ンを移動させる駆動パ夕一ン、 フま U、 一定 ½度を基準にし て正弦波形的に変化する速度でピス 卜ンを移動させる駆動パ ターンであってもよい。 あるいは、 「引 く 」 動作時と 「押 す」 動作時に、 不規則に変化する速度でピス 卜ンを移動させ る駆動パターンであつてもよい o "Pushing" The drive unit moves the piston so that the solution flows in a pulsating manner during the operation. The drive unit moves in a sinusoidal waveform based on a constant angle. It may be a drive pattern for moving the. Alternatively, the driving pattern may be such that the piston moves at an irregularly changing speed during the “pull” operation and the “push” operation.o
勿麵、 本実施形態においても 、 溶液は そのェ程に した 流動速度で流動させるとよい。 < れによ y 、 その工程を短時 間で終了させることが可能となる 0 結果と して 生体 連物 質の検査の所要時間を短縮する < とが可能となる o 第四実施形態 Of course, also in the present embodiment, the solution may be caused to flow at the same flow rate. <This allows the process to be completed in a short time. 0 As a result, it is possible to reduce the time required for testing biomaterials. < Fourth embodiment
図 1 ひは本実施形-態における反応 I程の駆動パターンを示 し、 図 1 1 は本実施形態における洗浄工程の駆動パターンを 示している。 それぞれの図において、 横軸は経過時間を示し、 縦軸はシリ ンジポンプ 8のピス トンの位置を示している。 右 下がり の区間は 「引 く 」 動作に対応し、 右上がり の区間は FIG. 11 shows the driving pattern of Reaction I in this embodiment, and FIG. 11 shows the driving pattern of the cleaning step in this embodiment. In each figure, the horizontal axis indicates elapsed time, and the vertical axis indicates the position of the piston of the syringe pump 8. The downward sloping section corresponds to the "pull" action, and the upward sloping section corresponds to
「押す」 動作に対応している。 傾きの大きさは、 ピス トンの 移動速度を表しており 、 従って検体液の流動速度に対応して いる。 さ らに、 「弓 I く 」 動作から 「押す」 動作へと続く 区間It corresponds to the "push" action. The magnitude of the inclination indicates the moving speed of the piston, and thus corresponds to the flow speed of the sample liquid. In addition, the section following the “bow” operation to the “push” operation
(略水平部) は、 各駆動パターンにおける ピス トン停止位置 を示しており 、 各工程で駆 する液量に対応してい Ό o (Substantially horizontal portion) indicates the stop position of the piston in each drive pattern, and corresponds to the amount of liquid to be driven in each process.
シリ ンジポンプ 8 のビス 卜ン停止位置は、 fe. }心 2-程よ り洗 浄工程の方が下方 («- nX At Sれている。 これに伴って 、 検体液 を反応させた後に 、 反応液よ り ち多量の洗浄液を供給して 、 洗浄工程の方がよ り 多く の液厘を駆動する。 これによ り、 反 The stop position of the piston of the syringe pump 8 is lower in the washing process than in the center of fe.} (There is «-nX At S. Accordingly, after the sample solution is reacted, By supplying a larger amount of the cleaning liquid than the reaction liquid, the cleaning step drives a larger amount of the cleaning liquid.
『心工程において、 反応容器の管路に付着した検体液を、 続 < 洗浄工程で装置のバラツキ等の影響を受けることなく 、 よ 効果的に洗浄することが可能となる "In the heart process, the sample liquid adhering to the conduit of the reaction vessel can be more effectively washed without being affected by variations in the apparatus in the subsequent washing process.
本実施形態は、 生体関連物質の検査における複数のそれぞ れの工程において 、 そのェ程に適した駆動位置で溶液を流動 させることに向けられている 。 つま り 、 それぞれの工程にお いて、 シリ ンジポンプ 8 を 、 そのピス 卜ンの駆動位置が異な る駆動パターンに従って駆動する o 曰 い換えれば、 シリ ンン ポンプ 8のビス 卜ンの駆動里が、 生体関連物質のそれぞれの ェ に <IOいて変更される。 その変更したビス 卜ンの駆動量に 合わせて、 溶液を供給す Ό M t 変更される 0 The present embodiment is directed to flowing a solution at a drive position suitable for each of a plurality of steps in the inspection of a biological substance. That is, in each process, the syringe pump 8 is driven according to a drive pattern in which the drive position of the piston is different. O In other words, the drive region of the piston of the syringe pump 8 is <IO for each of the related substances will change. The changed drive amount of the piston Supply the solution together Ό M t Changed 0
例えば、 反応工程においては m 1 0 の駆動パ夕一ンに準じ て、 シリ ンジポンプ 8のビス 卜ンは、 溶液に 1 0 t I z秒の 流動速度を与える一定の速度で 5 秒間引かれる とによ り 、 For example, in the reaction process, according to the driving pattern of m 10, the piston of the syringe pump 8 is drawn for 5 seconds at a constant speed that gives the solution a flow rate of 10 t Iz seconds. According to
5 0 μ Ι の溶液を流動す o 一方、 図 1 1 の駆動パ夕一ンの 洗浄工程においては、 1 2 iL 1 秒の流動速度を与える一定 の速度で 5 秒間引かれることによ り、 6 0 I の溶液を流動 する。 50 μΙ of the solution flows o On the other hand, in the cleaning process of the drive unit shown in Fig. 11, by drawing for 5 seconds at a constant speed giving a flow speed of 12 iL 1 second, Flow the 60 I solution.
このとき、 接続口 3 0 2 a〜 3 0 2 d に接続された管路に は、 流動させる液量に応じて溶液が吸い込まれる O 例えば 、 反応工程で 5 の溶液を流動した場合 、 流 ¾·の内径が 1 m mであ り 、 吸い込まれる溶液長さは 6 4 m m程度となり 、 繰り返し流動を行なう ことによ り 、 溶液先端部である 6 4 m m近傍に溶液残りが生じ あてれがある o  At this time, the solution connected to the pipes connected to the connection ports 302a to 302d is sucked according to the amount of the liquid to be flown. O For example, when the solution 5 is flowed in the reaction step, The inside diameter of the solution is 1 mm, the length of the solution to be sucked is about 64 mm, and due to the repeated flow, a solution residue occurs near the solution tip of 64 mm.
これを避けるため、 続く洗浄工程では、 6 0 I の溶液を 供給して、 ポンプを駆動し流動する。 これによ y 吸い込ま れる溶液長さは 7 6 m m程度となリ、 反応ェ程時の溶液残 も十分洗い流すことができる。  In order to avoid this, in the subsequent washing step, a 60 I solution is supplied and the pump is driven to flow. As a result, the length of the solution to be sucked in is about 76 mm, and the solution residue during the reaction can be sufficiently washed away.
[流体の移送制御]  [Fluid transfer control]
以下、 生体関連物質の検査方法における流体の移送制御に ついて説明する。  Hereinafter, a description will be given of the fluid transfer control in the method for inspecting a biological substance.
本発明の移送制御は、 流体の特性が機能性基体との接触条 件によって反応性に影響を与える点に着目 し 、 流体の特性に 応じて流体の移送の制御条件を変更する 0 れによ 能 性基体の流体に対する機能を最大限に引き出す とを図つて いる。 制御条件は、 流速、 移動時間、 移送回数、 移送方向等 の一つまたは複数の組み合わせから適宜選ばれる。 流体の特 性と しては 、 物理的特性と化学的特性とがある 。 「物理的特 性」 と しては 、 例えば、 粘性、 容積、 蒸 /土、 光屈折率、 磁 性、 拡散定数があげられる。 「化学的特性 J は 、 例えば、 T m値、 反応力一ブ 、 機能性成分 (核酸 、 in,体、 酵素等) があ げられる。 The transfer control of the present invention focuses on the point that the characteristics of the fluid affect the reactivity depending on the contact conditions with the functional substrate, and changes the control conditions of the transfer of the fluid according to the characteristics of the fluid. For maximizing the function of functional substrates for fluids I have. The control conditions are appropriately selected from one or a combination of one or more of a flow velocity, a moving time, a number of transfers, a transfer direction, and the like. Fluids have physical and chemical properties. The “physical properties” include, for example, viscosity, volume, steam / soil, light refractive index, magnetic property, and diffusion constant. “Chemical properties J include, for example, Tm value, reactive force, and functional components (nucleic acid, in, body, enzyme, etc.).
第五実施形態  Fifth embodiment
本実施形態においては、 サンプルまたは 式 ¾または両者の 粘性に応じて D N Aチップへの移送圧力を変化させる。 機能 性基体と しての D N Aチップに適用されるサンプルは、 由来 する個体ごとに異なる粘性を有している 。 この粘性は、 サン プル中の多彩な成分が関係するので、 粘性を一定の値に調節 することは通常困難である 別々のサンプルに存在する同じ 成分は、 異なる粘性条件において基体と接触する 粘性が異 なる液体は同じ表面に対して異なる摩擦抵抗でもつて移動す 従つて 、 本実施形態では 、 粘性レベルに対応してサンプ ルの流動状態を変化させるしとによつて、 基体の m をなる ベく 同じよう に発揮させるよう にシ ンジポンプ 8 を駆動さ せる な 、 本実施形態において 便宜上、 基体の破損や詰 ま りのよラな故障に起因する流動性のばらつきは考慮しない。  In the present embodiment, the transfer pressure to the DNA tip is changed in accordance with the viscosity of the sample, the formula ¾, or both. Samples applied to a DNA chip as a functional substrate have different viscosities depending on the individual from which they are derived. Since this viscosity is related to the various components in the sample, it is usually difficult to adjust the viscosity to a constant value.The same component present in separate samples will come into contact with the substrate under different viscosity conditions. Different liquids move with the same surface with different frictional resistances. Therefore, in the present embodiment, the m of the substrate is changed by changing the flow state of the sample in accordance with the viscosity level. The syringe pump 8 is not driven so as to exert the same effect. For the sake of convenience, in the present embodiment, variations in the fluidity due to breakage of the base or failure due to clogging are not considered.
図 1 2 は > 本矣施形態を実施するための D N Aチップ読み 取リ装置の概略構成を示している 図 1 2 において 、 図 Ί に 示された部材と同一の参 "昭、、符 C指示された部材は同様の部 材であ り 、 その詳しい St明は省略する 。 この D N Aチップ読 7450 Fig. 12 shows the schematic configuration of a DNA chip reading and reading apparatus for implementing the Hondeido form. In Fig. 12, the same reference numerals as those shown in Fig. 指示 indicate "C". The members shown are the same members, and detailed descriptions are omitted. 7450
2 2 twenty two
o み取リ装 o置は 、 図 1 2 に示されるよう に 、 D N Aチップ 4上 のサンプルに Όいて粘性を調べるために 、 シリ ンジポンプ 8 と切替バルプ 6 の間の連結流路に相当する配管 7 に圧力セン サ 1 7 を備えている。 圧力センサ 1 7 を切替バルブ 6 ょリ ポ ンプ側に配置することにより 、 切り替えられた各連結流路に 相当する配管 5 a 、 5 b、 5 c 、 5 d を通じて各反応室 3 a  o As shown in Fig. 12, as shown in Fig. 12, the piping corresponding to the connection flow path between the syringe pump 8 and the switching valve 6 is used to check the viscosity of the sample on the DNA chip 4. 7 has a pressure sensor 17. By arranging the pressure sensor 17 on the switching valve 6 pump side, each reaction chamber 3a can be connected through the piping 5a, 5b, 5c, 5d corresponding to each switched connection flow path.
3 b、 3 c 3 d 内に対応する各反応部 4 a 、 4 b、 4 c 、3b, 3c 3d corresponding to each reaction section 4a, 4b, 4c,
4 d における流動抵抗を、 共通の圧力センサ 1 7 によって選 択的に検知でさる 。 圧力センサ 1 7 の値は演算ユニッ ト 1 5 を介してシ ンンポンプ 8のポンプ制御ユニッ ト 1 4 にフィ 一 ド J ック される 。 但し、 圧力センサ 1 7 によるシリ ンジポ ンプ 8 へのフィ 一 ドバック制御は、 D N Aチップ 4 の品質異 常に関係する異常な圧力変化 (例えば、 亀裂、 破損、 詰ま りThe flow resistance at 4 d is selectively detected by a common pressure sensor 17. The value of the pressure sensor 17 is fed back to the pump control unit 14 of the thin pump 8 via the arithmetic unit 15. However, the feedback control to the syringe pump 8 by the pressure sensor 17 is not suitable for abnormal pressure changes related to abnormal quality of the DNA chip 4 (for example, cracks, breakage, clogging).
) とは連動しないよつ にする。 基体の標準の品質異常に起因 する流動抵抗値は 異な 流体溶液によつても類似の圧力変 動パターンを示すので、 粘性による 、答性の増減パターンと は明らかに区別することが可能であろ う 。 具体例と して、 孔 mないし 0 . 6 μ mの範囲のアルミナ製の多孔 質材料を 0 • 0 5 c mないし 0 . 5 c mの厚さに成形した D ) And not linked. The flow resistance value resulting from the standard quality abnormality of the substrate shows a similar pressure fluctuation pattern even with different fluid solutions, so that it can be clearly distinguished from the response increase / decrease pattern due to viscosity. . As a specific example, a porous material made of alumina having a pore size of m to 0.6 μm is formed into a thickness of 0 • 0.5 cm to 0.5 cm.
N Aチップ 4 を用いた場合、 標準的な粘性を有するサンプル に ί ¾ ネ示 の /ノ ιΐ速を 3 5 At I /秒とすると、 比較的高い粘 性群のサンプルについては 5 0 n I 秒の流速と し、 比較的 低い粘性群のサンプルについては 2 0 t 1 Z秒の流速とする のが好ま しい o れによ り、 機能性基体に対する機能を最大 限に引き出すことが可能となる。 第六実施形態 When the NA chip 4 is used and the speed of the standard viscosity sample is set to 35 At I / sec for a sample with a standard viscosity, 50 n I sec for a sample of a relatively high viscosity group It is preferable to use a flow rate of 20 t 1 Z seconds for a sample of a relatively low viscosity group, which makes it possible to maximize the function of the functional substrate. Sixth embodiment
本実施形態においては、 検査項目の入力データに基づいて 試薬情報を演算ユニッ ト 1 5 に送出し、 試薬情報に含まれて いる試薬の特性または試薬が作用するサンプル中の成分の特 性またはその両方に応じて異なる流動条件に設定する。 例え ば、 試薬が核酸成分を含んでいるか核酸成分に反応する何ら かの成分を含んでいる場合、 サンプルまたは試薬の T m特性 毎に異なる流動条件となるような変更可能な制御信号をボン プの流速制御部へ送出する。 機能性基体と しての D N Aチッ プに適用されるサンプルまたはこのサンプルと反応するため の試薬は、 温度依存性の成分である核酸を含んでいる。 核酸 の温度依存性は、 D N Aの二本鎖が、 一本鎖同士に解離する 温度と二本鎖に復帰する温度とに関係する。 多く の場合、 一 本鎖へと解離する温度である T m値が核酸の塩基配列によつ て異なる。 異なる温度条件はサンプルおよび試薬の流動に影 響を与えるので、 T m値の違いに対応する流動速度に制御す るのが好ま しい。 各 T m値に対応する温度ごとにサンプルま たは試薬または両者の熱力学的条件を一定に維持するよう に 流動条件を調整することによって、 多数の核酸八ィプリダイ ズ反応が一定の反応条件下で実行され ¾■  In the present embodiment, the reagent information is sent to the operation unit 15 based on the input data of the test item, and the characteristics of the reagent included in the reagent information or the characteristics of the components in the sample on which the reagent acts or the characteristics thereof are described. Set different flow conditions for both. For example, if a reagent contains a nucleic acid component or contains any component that reacts to a nucleic acid component, a variable control signal can be pumped to provide different flow conditions for each Tm characteristic of the sample or reagent. To the flow rate control unit. The sample applied to the DNA chip as a functional substrate or the reagent for reacting with this sample contains nucleic acid which is a temperature-dependent component. The temperature dependence of nucleic acids is related to the temperature at which the DNA duplex dissociates into single strands and the temperature at which it returns to double strand. In many cases, the Tm value, which is the temperature at which a single strand dissociates, differs depending on the nucleotide sequence of the nucleic acid. Since different temperature conditions affect the flow of samples and reagents, it is preferable to control the flow rate to correspond to the difference in Tm values. By adjusting the flow conditions so that the thermodynamic conditions of the sample and / or reagent are kept constant for each temperature corresponding to each Tm value, a large number of nucleic acid priming reactions can be performed under constant reaction conditions. Run on ¾ ■
向 m度な丁一夕解析 が可能となる  It is possible to perform analysis overnight
図 1 3 は、 本実施形態を実施するための D N Aチ Vプ αΤΠみ 取り装置の概略構成を示している。 図 1 3 において 、 図 1 に 示された部材と同一の参照符号で指示された部材は同様の部 材であり 、 その詳しい説明は省略する この D N Aチク ノ e 4 007450 FIG. 13 shows a schematic configuration of a DNA chip α-pickup apparatus for carrying out the present embodiment. In FIG. 13, the members indicated by the same reference numerals as those shown in FIG. 1 are the same members, and the detailed description thereof is omitted. 4 007450
2 4 み取り装置は、 図 1 3 に示されるよう に、 D N Aチップ 4上 のサンプルについての T m値を演算ュニッ 卜 1 5 に認識させ るために、 入力装置 1 8 を備えている。 入力装置 1 8 は、 例 えば、 キーボー ド、 夕 ツチパネル、 マウスを用いて、 使用者 が T m値に関連する情報を入力することができる。 As shown in FIG. 13, the 24 sampling device is provided with an input device 18 for causing the arithmetic unit 15 to recognize the Tm value of the sample on the DNA chip 4. The input device 18 allows the user to input information related to the Tm value using, for example, a keyboard, a touch panel, or a mouse.
入力 した情報は表示用のディ スプレイ 1 9 によって使用者が 確認する。 入力装置 1 8 の別な態様は、 例えばバーコ ー ド (一次元または二次元模様から成る) のような情報媒体をデ 一夕処理によってコー ド解読するようなコー ド · リ ーダーで ある。 公知のコー ド · リ ーダ一は、 使用者が操作する場合と、 検査システム内に搭載して保持された基体上に自動的にァク セスする場合とが有り得る。 入力装置 1 8 を通じて演算ュニ ッ 卜 1 5 にサンプルごとの T m値が送信されると、 演算ュニ ッ 卜 1 5 は、 T m値の違いに応じて攪拌の強さ又は時間を変 化させる。 特に、 T mが小さ く解離し易いほど、 流速を緩慢 にするよう に制御することによって、 余分な解離を少なく す る。 核酸ハイブリダィズ反応における安定な解離条件は、 反 応結果の信頼性に寄与する。 The entered information is confirmed by the user on the display 19. Another embodiment of the input device 18 is a code reader that decodes an information medium such as a bar code (consisting of a one-dimensional or two-dimensional pattern) by a decoding process. Known code readers may be operated by a user or automatically accessed on a substrate mounted and held within an inspection system. When the Tm value for each sample is transmitted to the operation unit 15 via the input device 18, the operation unit 15 changes the intensity of stirring or the time according to the difference in the Tm value. To make In particular, as Tm is smaller and easier to dissociate, excess dissociation is reduced by controlling the flow rate to be slower. Stable dissociation conditions in the nucleic acid hybridization reaction contribute to the reliability of the reaction result.
第七実施形態  Seventh embodiment
試薬が P C R (ポリ メラーゼチェーンリ アクシ ョ ン) 用で ある場合にはサーマルサイクルにおける反応カーブに応じて 攪拌の強さを変化させる。 サ一マルサイクルは、 核酸の二本 鎖に関する解離と復帰に適用される異なる温度条件からなる。 同じサンプルでさえ、 高温時と低温時の流体特性は変化する ので、 同じ D N Aチップに対する接触条件が異なる。 サーマ JP2004/007450 If the reagent is for PCR (polymerase chain reaction), change the agitation intensity according to the reaction curve in the thermal cycle. The thermal cycle consists of different temperature conditions applied to the dissociation and reversion of the nucleic acid duplex. Even for the same sample, the fluid properties at high and low temperatures are different, so the contact conditions for the same DNA chip are different. Sarma JP2004 / 007450
2 5 ルサイクルにおいてなるベく 同じ接触条件に維持するのが好 ま しい。 二本鎖の解離には比較^!強い i動条件が適している。 反対に、 一本鎖からの復帰には比較的 い流動条件が適して いる。 本実施形態では 、 サ一マルサイクル中の! ¾温過 では 低温過程に比べて相対的に流動 is度 问速にする。 核酸八ィ ブリ ダイズ反応のサィクルが常に同等の接触条件で進行すれ ば、 反応結果と しての R応厘が最高に向か Ό It is preferable to maintain the same contact conditions as in the 25 cycle. For the dissociation of double strands, the comparison ^! Strong i dynamic condition is suitable. Conversely, relatively good flow conditions are appropriate for returning from a single strand. In the present embodiment, during the thermal cycle! ¾In the overheating, the flow is degree is relatively high compared to the low temperature process. If the cycle of the nucleic acid hybridization reaction always proceeds under the same contact conditions, the R concentration as the reaction result will be the highest.
本実施形態は、 図 1 3 と同様の装置で実施することができ る。 まず、 入力装 Λ 1 8 から送られた検査項目の入力デ一夕 に基づいて試薬情報を演算ュニッ 卜 1 5 に送出し、 P C R用 試薬の特性に関連するサ一マルサイクル毎にポンプの流速制 御部へ制御信号を送る  This embodiment can be implemented by the same device as that shown in FIG. First, the reagent information is sent to the operation unit 15 based on the input data of the test items sent from the input unit 18, and the pump flow rate is calculated every thermal cycle related to the characteristics of the PCR reagent. Sends control signal to control unit
第八実施形態  Eighth embodiment
本実施形態では、 πϊ 薬の反応感度に応じて洗浄液の流 の 強さを変化させ 问咸度の試薬による J5Z. K> R応糸百果の 測定において精度低下の原因となるような余分な反応の を抑制する必要が有る  In this embodiment, the strength of the flow of the washing liquid is changed in accordance with the reaction sensitivity of the πϊ chemical, and an extra measure that causes a decrease in accuracy in the measurement of J5Z. Need to suppress the reaction
本実施形態は 、 図 1 3 と同様の装置で実施することがでさ る ず、 入力装置 1 8 による検査項目の入力データに づ いて試薬情報を 寅 ュ一ッ 卜 1 5 に送出し \ B 薬と しての洗 浄液の強弱の要求に関連する反応感度毎にポンプの流速制御 を行なうようなポンプ制御ュニッ 卜 1 4 へ制御信号を送る。 反応感度が高い試薬を使用 した反応の洗浄については比較的 強力な洗浄を行なう必要があるので、 流動速度や時間、 回数 の数値を高く 設定する。 逆に、 反応感度が比較的低い試薬を 07450 This embodiment cannot be carried out by the same device as that shown in FIG. 13. Rather, the reagent information is sent to the tray 15 based on the input data of the test item by the input device 18. A control signal is sent to the pump control unit 14 that controls the flow rate of the pump for each reaction sensitivity related to the strength of the washing liquid as a chemical. For the reaction using a reagent with high reaction sensitivity, it is necessary to perform relatively intense washing, so set the flow rate, time, and number of times high. Conversely, reagents with relatively low reaction sensitivity 07450
2 6 使用 した反応の洗浄については、 相対的に低い設定値にする 第九実施形態 26 Set a relatively low set value for cleaning the used reaction. Ninth Embodiment
本実施形態では 、 ポンプ駆動時の D N Αチップ上の水位に 応じて気泡が生じない最速な流動に変化させる 。 特に 、 液体 の移動中に水位が変化する l¾j。■において D N Aチップ上の 水位が低いほど緩慢な速度に 9 る。  In the present embodiment, the flow is changed to the fastest flow in which no bubbles are generated according to the water level on the tip when the pump is driven. In particular, the liquid level changes during the movement of liquid l¾j. In (1), the lower the water level on the DNA tip, the slower the speed.
本実施形態は、 図 1 と同様の装置で実施することができる が、 演算ユニッ ト 1 5 が、 蛍光検出ュ二ッ 卜 1 2 の励起用 ビ 厶の光吸収または光反射に関する検 ιΔ丁 夕に基づいて、 This embodiment can be carried out by the same apparatus as that shown in FIG. 1; however, the arithmetic unit 15 is provided with a detector for detecting light absorption or light reflection of the excitation beam of the fluorescence detection unit 12. On the basis of the,
D N Aチップ上の水面画像を解析して、 水位を算出する点が 異な O まず }心室 3 d の反 )'L、部 4 d の反応経過や結果を 測定するための蛍光検出ュ二ッ 卜 2 をステーン 1 を X軸方 向の図示 2c mまで移動することによつて反応部 4 d の上方に 移動させ ■0 次に上述したよう に X移動板 1 c の移動に伴 いラック 1 0 ち移動し、 ピニ才ン 9 が回転し、 切替バルブ 6 の操作軸 6 a 回転し、 反応 3 c とポンプ 8 の流路が切替 バゾレブ 6 を介して接続される の状態で、 演算ュニッ 卜 1The difference is that the water level is calculated by analyzing the water surface image on the DNA chip. First, the fluorescence detection unit 2 is used to measure the reaction progress and results of the 3d anti-) L, part 4d of the ventricle. Is moved above the reaction part 4 d by moving the stain 1 to the illustrated 2 cm in the X-axis direction. ■ 0 Next, as described above, the rack 10 is moved along with the movement of the X moving plate 1 c. The operation unit 1 is moved while the pin 9 rotates and the operation shaft 6 a of the switching valve 6 rotates, and the reaction 3 c and the flow path of the pump 8 are connected via the switching valve 6.
5 によりポンプ制御ュニ y 卜 1 4 を介してボンプ 8 をコ ン 卜 ロールする とによ り 、 反応室 3 C 中の溶液を流動させるこ とが可能となる 。 本実施形態では 蛍光検出ュ ッ 卜 1 2 の 対物レンズ 1 3 を上下に移動可能とするのが好ま しく 、 隹占 位 を nj'変にすること によつて D N Aチップ上の水位を光 源からの出射ビームによる水面付近における光吸収または光 反射を継続的に検出する。 公知のフォーカシング機構によれ ば、 対物レンズを移動させずに焦点位置を可変にする光学的 2 技術も利用できる。 光検出ユニッ トによる検出データは、 反 ϋ5室 3 c 中の溶液の流動状態をモ二タ リ ングするのに用いら れる 。 このよう にして、 蛍光検出ュ一ッ 卜 1 2 の C C Dで取 得した光吸収 (または光反射) デー夕を演算ユニッ ト 1 5 に 送出して、 ポンプの流速制御部にフィ一 ドバックさせる。 By controlling the pump 8 via the pump control unit 14 by means of 5, the solution in the reaction chamber 3C can be made to flow. In the present embodiment, it is preferable that the objective lens 13 of the fluorescence detection unit 12 can be moved up and down, and the water level on the DNA chip can be changed from the light source by changing the TU occupation by nj ′. Continuously detects light absorption or light reflection near the water surface due to the output beam of. According to the known focusing mechanism, an optical system that changes the focal position without moving the objective lens Two technologies are also available. The data detected by the light detection unit is used to monitor the flow state of the solution in the reaction chamber 3c. In this way, the light absorption (or light reflection) data obtained by the CCD of the fluorescence detection unit 12 is transmitted to the arithmetic unit 15 and fed back to the flow velocity control unit of the pump.
第十実施形態  Tenth embodiment
本実施形態では、 D Ν Αチップにおける測定タイミ ングに 合わせて基体上の流動速度を増減させる。 測定時には流動状 態をなるべく 静的な条件にするととちに、 非測定時には流動 状態をなるベく 動的な条件にする。  In the present embodiment, the flow velocity on the substrate is increased or decreased in accordance with the measurement timing of the DΝ chip. At the time of measurement, the fluid state should be as static as possible, and at the time of non-measurement, the fluid state should be as dynamic as possible.
本実施形態は、 図 1 と同様の装置で実施することができる。 まず 、 反応室 3 d の反応部 4 d を蛍光検出ュニッ 卜 1 2 の対 物レンズ 1 3 の焦点位置に移動させる 。 次に、 ステージ 1 を This embodiment can be implemented by the same device as in FIG. First, the reaction part 4 d of the reaction chamber 3 d is moved to the focal position of the objective lens 13 of the fluorescence detection unit 12. Next, Stage 1
X軸方向の図示左端まで移動することによって反応部 4 d の 上方に移動させる。 次に上述したよ 0 に、 X移動板 1 c の移 動に伴いラック 1 0 も移動し、 ピニ才ン 9 が回転し、 切替バ ルブ 6 の操作軸 6 a も回転し、 反応室 3 c とポンプ 8 の流路 が切替バルブ 6 を介して接続される ο この状態で、 演算ュニ ッ 卜 Ί 5 によ りポンプ制御ュニッ 卜 1 4 を介してポンプ 8 を コ ン 卜ロールすることによ り 、 反応室 3 c 中の溶液を流動さ せることが可能となる。 ここで、 ポンプ 8 による駆動を断続 的に実施しながら蛍光検出ュニッ 卜 1 2 による D N Aチップ 上の反応を連続的に測定する。 この連続的な測定において、 ポンプ 8 による溶液駆動を実質的に静止させるか波を生じな いような一定の低速条件 (例えぱ 5 At 1 /秒) を間欠的に適 用 し この低速に いて得られる蛍光デー夕を実測値と して 採用する 。 このよう に ― 定タイ ミ ングに合わせて基体上の 流動 を増減させることによって、 D N Aチップ上の反応 を促進しながら リ ァル夕ィム測定できるので検査時間を短縮 することが可能となる なお、 この実施例において、 一定の 低速条件とは、 液面の乱れを抑制する流速に減速すること、 あるいは均等な対流状態で測定を行なうよう に液面に応じて 加減速することを意味する。 蛍光検出ュニッ 卜 1 2 は、 励起 用 ビームの光吸収または光反射に関する検出データを用いて、 液体の動的および静的状況をモニタ リ ングするために利用す ることも可能である。 By moving to the left end of the figure in the X-axis direction, it is moved above the reaction part 4d. Next, as described above, the rack 10 moves with the movement of the X moving plate 1c, the pini pin 9 rotates, and the operation shaft 6a of the switching valve 6 also rotates, as described above. The flow path of the pump 8 is connected to the flow path of the pump 8 via the switching valve 6 ο In this state, the operation unit 5 controls the pump 8 via the pump control unit 14 via the pump control unit 14. Thus, the solution in the reaction chamber 3c can be made to flow. Here, the reaction on the DNA chip by the fluorescence detection unit 12 is continuously measured while the driving by the pump 8 is performed intermittently. In this continuous measurement, a constant low-speed condition (for example, 5 At 1 / s) that makes the solution drive by the pump 8 substantially stationary or generates no waves is intermittently applied. The fluorescence data obtained at this low speed is used as the measured value. In this way, by increasing or decreasing the flow on the substrate according to the fixed timing, real-time measurement can be performed while accelerating the reaction on the DNA chip, thereby shortening the inspection time. In this embodiment, the constant low speed condition means that the speed is reduced to a flow rate that suppresses the turbulence of the liquid surface, or that the speed is accelerated or decelerated according to the liquid surface so as to perform measurement in a uniform convection state. The fluorescence detection unit 12 can also be used to monitor the dynamic and static state of a liquid using detection data on light absorption or light reflection of the excitation beam.
表 1 はサンプルまたは試薬の各特性に対する好適なピス ト ン駆動速度との関係である。 Table 1 shows the relationship between the suitable piston drive speed for each sample or reagent property.
液体の特性とピストン駆動速度の関係 Relationship between liquid characteristics and piston drive speed
ピストン駆動速度  Piston drive speed
第五実施形態  Fifth embodiment
问 ^ p性 加速(到達値 50 IZ秒)  问 ^ p acceleration (Achieved value 50 IZ seconds)
低粘性 減速(到達値 20 jW IZ秒)  Low viscosity deceleration (Achieved value 20 jW IZ seconds)
第六実施形態  Sixth embodiment
高 Tm値 加速(到達値 40 1/秒)  High Tm acceleration (Achieved value 40 1 / sec)
低 Tm値 減速(到達値 秒)  Low Tm value Deceleration (reached value seconds)
第七実施形態  Seventh embodiment
PCR試薬 (1 )高温時は加速(到達値 40 lZ秒)  PCR reagents (1) Acceleration at high temperature (Achieved value 40 lZ seconds)
(2)低温時は減速(到達値 10 IZ秒) 定温試薬 一定速度(平均値 20 i l/秒) 第八実施形態  (2) Deceleration at low temperature (Achieved value: 10 IZ seconds) Constant temperature reagent Constant speed (Average value: 20 l / sec) Eighth Embodiment
高感度試薬 加速(到達値 40 U I 秒)  High sensitivity reagent acceleration (Achieved value 40 U I second)
低感度試薬 減速(到達値 10 U IZ秒)  Low sensitivity reagent Deceleration (Achieved value 10 U IZ seconds)
第九実施形態  Ninth embodiment
高水位 加速(到達値 40 β I 秒)  High water level acceleration (Achieved value 40 β I seconds)
低水位 減速(到達値 10 μ Iノ秒)  Low water level deceleration (Achieved value 10 μI second)
第十実施形態  Tenth embodiment
測定実施中 減速(到達値 10 μ I 秒)  Deceleration during measurement (attained value: 10 μIs)
測定非実施中 加速(到達値 40 U Iノ秒)  Acceleration during non-measurement (Achieved value 40 U I second)
以上の流体移送の制御においては、 以下のよう にシリ ンン ポンプを駆動することがでさる 図 1 4 は 、 シリ ンジポンプIn the above-mentioned fluid transfer control, the syringe pump can be driven as follows.
8 の一般的な駆動パターンに cfcる 2種類の 動条件を示して いる。 図 1 4 において、 X軸は経過時間を示し 、 Y軸はシリ ンジポンプ 8 のビス 卜ンの位置を示している 右下がリの区 間は 「弓 1く j 動作に対応し 、 右上がりの区間は 「押す」 動作 に対応している 。 傾きの大ささは 、 ビス 卜ンの移動速度を表 T/JP2004/007450 Figure 8 shows two types of driving conditions that are cfc in the general driving pattern. In FIG. 14, the X-axis indicates the elapsed time, and the Y-axis indicates the position of the piston of the syringe pump 8. The section corresponds to a “push” action. The magnitude of the inclination indicates the moving speed of the piston. T / JP2004 / 007450
3 0 しており 、 従つて検体液の流動速度に対応している 。 図 1 4 において 実線は相対的に高速の駆動パ夕一ンを示し、 点線 は相対的に低速 (実線の 2分の 〗 の速度) の駆動パターンを 示している o 図から分かるよう に 1 回のポンプ往復に要する 時間は流動 件によって違うので、 高速駆動するほど所定回 数の駆動に する時間は短縮される。 30 and therefore corresponds to the flow rate of the sample liquid. In Fig. 14, the solid line indicates a relatively high-speed drive pattern, and the dotted line indicates a relatively low-speed (〗 half the speed of the solid line) drive pattern. The time required for the pump to reciprocate depends on the flow conditions, so the higher the speed of the drive, the shorter the time required for the predetermined number of drives.
1 4 から分かるよう に、 一般に、 シリ ンジボンプ 8 のピ ス 卜ンは、 一定の速度で連続的に押され、 一定時間のあいだ 停止された後、 押す動作時と同じ速度で連続的に引かれる。 この一連の動作が、 一定時間の間隔を置いて、 繰り返し行な われ Ό。  As can be seen from Fig. 14, in general, the piston of the syringe pump 8 is continuously pushed at a constant speed, stopped for a fixed time, and then continuously pulled at the same speed as the pushing operation. . This series of operations is repeated at regular intervals.
なお、 ンリ ノ ンホンプ 8の駆動パ夕一ンは、 上述した例に 限定される のではな < 、 本発明の要日を逸脱しない範囲に おいて様々な変形や変更が施されてもよい。 例えば、 他の駆 動パターンと しては 、 ン リ ンンポンプ 8 のビス 卜ンを、 「引 く J 動作時に 、 一定の速度で 1 秒間引かれ、 1 秒間停止され この一連の動作が 4 回繰リ返される。 その後、 「押す」 動作 時に 、 一定の速度で 1 秒間押され 1 秒間停止され、 この一連 の動作が 4 回繰り返される o この一連の間欠的な動作全体が It should be noted that the drive pattern of the non-linear pump 8 is not limited to the above-described example, and various modifications and changes may be made without departing from the essentials of the present invention. For example, as another driving pattern, the piston of the inline pump 8 is pulled at a constant speed for 1 second during the pulling J operation, stopped for 1 second, and this series of operations is repeated four times. After that, during a “push” operation, it is pressed at a constant speed for 1 second and stopped for 1 second, and this series of operations is repeated four times.
1 サィクルを成し、 そのサイクルが、 繰り返し、 必要な回数 だけ行なわれる o 流動速度が連続的な一定の流体においては 流路の壁面近 < の流体が攪拌されないという、 層流と呼ばれ る現象が起こる 0 上記の間欠的な駆動パターンに従つた駆動One cycle, the cycle is repeated and performed as many times as necessary.o A phenomenon called laminar flow, where the fluid near the wall of the flow path is not agitated in a fluid with a constant flow velocity. 0 occurs according to the above intermittent drive pattern
I おいては、 Γ引く J 動作時と 「押す」 動作時において、 ピ ス 卜ンが間欠的に移動されるため、 層流の発生が効果的に抑 制される。 層流の発生を抑制する駆動パ夕一ンは、 「引く」 動作時—と 「押す」 動作時に、 ピス トンを間欠的に一定速度で 移動させる駆動パターンに限定されない。 例えば、 「引く J 動作時と 「押す」 動作時に、 溶液を脈動的に //it動させるよう にビス 卜ンを移動させる駆動パターン 、 つま 、 一定速度を 基準にして正弦波形的に変化する速度でピス 卜ンを移動させ る駆動パターンであってもよい。 あるいは 、 Γ引 く」 動作時 と 「押す」 動作時に、 不規則に変化する is度でビス 卜ンを移 動させる駆動パターンであってもよい o In I, the piston is intermittently moved during the subtraction J operation and the “push” operation, so that laminar flow is effectively suppressed. Is controlled. The drive pattern that suppresses the generation of laminar flow is not limited to a drive pattern that moves the piston intermittently at a constant speed during the “pull” operation and the “push” operation. For example, during the "pull J" operation and the "push" operation, a drive pattern that moves the piston to pulsate the solution // it, i.e., a speed that changes sinusoidally with reference to a constant speed A driving pattern for moving the piston with the button may be used. Alternatively, the driving pattern may be such that the button is moved at an is degree that changes irregularly during the “pull” operation and the “push” operation.
また、 上記の実施形態では流体の特性に応じて 2種類の流 速条件を選択的に設定したが、 3 種類以上の条件を設けても よい。 例えば、 サンプルまたは試薬ごとに不特定多数のバラ ツキが有る特性 (粘性、 容積等) については 中間的な流速 に相当する標準条件を設定して、 標準レベル内の特性につい ては標準条件でもって流体移送するよう にしてもよい。  In the above embodiment, two types of flow speed conditions are selectively set according to the characteristics of the fluid. However, three or more types of flow speed conditions may be provided. For example, for characteristics where there is an unspecified large number of variations for each sample or reagent (viscosity, volume, etc.), standard conditions corresponding to intermediate flow rates are set, and for characteristics within the standard level, use standard conditions. The fluid may be transferred.
これまで、 図面を参照しながら本発明の実施の形態を述べ たが、 本発明は、 これらの実施の形態に限定されるものでは なく 、 その要旨を逸脱しない範囲において様 な変形や変更 が施されてもよい。 言い換えれば、 本発明は 発明の要旨と 請求の範囲が及ぼす技術範囲において種々の 更ゃ均等物を 含む。  Although the embodiments of the present invention have been described with reference to the drawings, the present invention is not limited to these embodiments, and various modifications and changes may be made without departing from the gist of the present invention. May be done. In other words, the present invention includes various modifications and equivalents in the technical scope of the invention and the scope of the claims.
上述した実施形態では、 機能性基体と して D N Aチップを 用いた遺伝子反応の検査を例にあげて説明したが、 本発明は、 遺伝子以外の生体関連物質の検査のための 能性基体から成 る他の検査チップを用いた他の生体関連物質の検査、 例えば 免疫反応や生化学反応や電気化学反応等の検査に適用されて もよい。 さ らに、 機能性 は、 種々の形態のものを適用す ることが可台 B匕 例 、 シリ コ ンウェハやガラスのよ うな二次元基体、 種々の ズゃ微粒子、 種々の多孔質基体 種々のゲル 種々のキャ リ ー型ア レイ (特開平 1 1 — 7In the above-described embodiment, an example of a test for a gene reaction using a DNA chip as a functional substrate has been described. However, the present invention comprises a functional substrate for testing a biologically-related substance other than a gene. Testing for other bio-related substances using other test chips The present invention may be applied to examination of an immune reaction, a biochemical reaction, an electrochemical reaction, and the like. Furthermore, as for the functionality, various forms can be applied. For example, two-dimensional substrates such as silicon wafers and glass, various fine particles, various porous substrates, etc. Gel Various carrier-type arrays (Japanese Patent Laid-Open No. 11-7
5 8 1 2 号公報や特開 2 1 一 1 5 3 8 6 0号公報参照) 種々のカラ厶を単独また 宜組み合わせて適用することが 可能であ り 、 機能性を有する基体と機能性を有さない基板と の組み合わせでもあ り得る。 特にキヤ ピラ リ ー型ア レイを基 体と して利用する場合には、 微細流路の内壁に機能性を有す る試薬を必要数量だけ固相化してちよいし、 機能性を有する 試薬を必要個数だけ固相化したビ一ズまたは微粒子を流路内 にポジシ ョニングするよう にしてちよい 。 微細流路における 流体の流動条件は、 上述した D N Aチップと同様のコ ンセプ 卜で適宜最適化を行なうのが好ま しい o また、 複数の検査結 果に対応する複数の基体を統合的に処理する場合には 、 複数 の基体を同じ領域に並べたり 、 共用のポジシ ヨ ンに対して順 香に位置付けた リするよう に搬送するしとができる。 また、 複数の機能性を有する ½体によ 検査を 、 設定すべき '/Μ動条 件ごとに各基体をソ一ティ ングして処理する制御システ厶で 実行させてもよい。 また、 非浸透性の一次元 ¾体 ¾用いる ½ 口に 1よ、 基体全体を囲む扁平な中ェ セルに成形する < とが できる。 扁平な中空型セルにおいては 、 部分的に異なる幅の 分岐通路を設けるとともに、 流体の流 方向または流動 is度 または両者を電気化学的または機械的 制御する機構を適宜 T JP2004/007450 Various types of columns can be applied singly or in appropriate combinations, and a functional substrate and a functional substrate can be used. It may be a combination with a substrate that does not have it. In particular, when a capillary array is used as a base, a necessary amount of a functional reagent may be immobilized on the inner wall of the microchannel, and the functional reagent may be used. The beads or fine particles having the required number of solid phases immobilized thereon may be positioned in the flow channel. It is preferable to appropriately optimize the flow conditions of the fluid in the microchannel with the same concept as the DNA chip described above.o In addition, integrated processing of multiple substrates corresponding to multiple inspection results In this case, a plurality of substrates can be arranged in the same area, or can be conveyed so as to be positioned in a perfume with respect to a common position. Further, the inspection by a body having a plurality of functionalities may be executed by a control system that sorts and processes each substrate for each set / operating condition. In addition, the non-permeable one-dimensional body can be formed into a flat medium vessel that surrounds the entire substrate according to the opening used. In a flat hollow cell, branch passages having partially different widths are provided, and a mechanism for electrochemically or mechanically controlling the flow direction or flow is flow rate of the fluid or both is appropriately provided. T JP2004 / 007450
3 3 付加する « とによって、 分岐通路ごとに 動条件を変更する ことが可能となる。 また、 種々のビーズ 、 種々の多孔質基体、 種々のゲルは、 多く の表面積を持つので 溶液を流動させな がら各種ェ程を行なう と効率が向上するが 本発明を適用す るとさ らに効率を向上することが可能となるので好ましい。 種々のビ一ズゃ微粒子を流体中に一緒に mi動させる場合には、 常に粒子沈降が生じない程度の流速に設定されているのが好 ましい o 機能性基体と して、 赤血球のよラな粒子状の細胞ま たはシ ―卜状の細胞膜を用いてもよい。 ビ ―ズや微粒子が磁 性体を含有していれば、 磁気発生手段による磁力でもって、 液体または気体の流動条件に依存せずに 、 磁気的に移動を加 速または減速させたり選択的に静止させた することが可能 となる 0 これによ り 、 本発明は、 磁性体含有の成分を有する 流体の mi動条件を磁気的に制御する方法および装置も包含す る。 磁力の制御は、 電磁石の電力を変化させるか、 永久磁石 との距離を増減することで自動化できる o また、 キヤ ビラ リ ー型ァレィは、 キヤ ピラ リー内壁表面またはキヤ ピラ リ ー内 に導入した複数個の微粒子表面に固相化した試薬に対して流 体と してのサンプルや試薬をポンプ等の圧力供給装置に接続 することによ り流体の往復移送を可能とする 自動化デバイス となり得るので好ま しい。 流体の往復移送中に複数回の測定 を行なうよう にすれば、 流体中の全部分から効率良く反応結 果を得ることができるという利点もある o 3 3 It is possible to change the operating condition for each branch passage by adding «and. In addition, various beads, various porous substrates, and various gels have a large surface area, so that the efficiency can be improved by performing various steps while flowing the solution, but the present invention is further applied. This is preferable because the efficiency can be improved. When various beads are moved together in a fluid, it is preferable that the flow velocity is set so as not to cause sedimentation of the particles at all times. A fine particle cell or a sheet cell membrane may be used. If the beads or fine particles contain a magnetic substance, the movement is magnetically accelerated or decelerated or selectively performed by the magnetic force of the magnetic generation means without depending on the flow conditions of the liquid or gas. Accordingly, the present invention also includes a method and an apparatus for magnetically controlling the mi-motion condition of a fluid having a component containing a magnetic substance. The control of magnetic force can be automated by changing the power of the electromagnet or increasing or decreasing the distance from the permanent magnet.o In addition, the capillary type array is installed on the inner surface of the capillary or inside the capillary. By connecting a sample or a reagent as a fluid to a pressure supply device such as a pump for a reagent immobilized on the surface of a plurality of microparticles, it can be an automated device that can reciprocate the fluid. I like it. Performing multiple measurements during the reciprocating transfer of the fluid also has the advantage that the reaction results can be obtained efficiently from all parts of the fluid o
また 上述した実施形態では、 蛍光を発する試薬を用いた 蛍光検出を例に説明したが、 蛍光以外の測定可能な信号を発 生する試薬を用いた他の検出ュニッ 卜であ てもよい。 また 検出ュニッ トの検出は、 撮像用の c C Dを用いた広視野領域 に限らず、 例えば共焦点レ一ザー顕微鏡のような狭小領域に 関する測定であってもよい。 狭小領域をスキャニングすれば 複数の測定ポイ ン 卜を効率良く 測定できる o In the above-described embodiment, fluorescence detection using a reagent that emits fluorescence has been described as an example. However, a measurable signal other than fluorescence is emitted. Another detection unit using a generated reagent may be used. Further, detection of the detection unit is not limited to a wide field of view using a CCD for imaging, but may be a measurement relating to a narrow area such as a confocal laser microscope. Multiple scanning points can be measured efficiently by scanning a narrow area o
また 、 上述した実施形態では、 シリ ンンピス 卜ンポンプを 中心に説明したが、 本発明はこれに限定されるものではなく 種々のポンプが適用可能である。 好ま しいポンプの形式は容 積型ポンプでめ "O 0 容積型ポンプと しては 例えば、 往復ポ ンプゃ隔膜ポンプゃ回転ボンプがぁげられる o 往復ポンプと しては 、 例えば、 ピス 卜ンポンプゃブランンャ一ポンプがあ る。 回転ボンプと しては、 例えば、 m卓ポンプゃ仕切リ板ポ ンプゃスク リ ユ ーポンプゃ口一ブポンプがある 。 これらのポ ンプは、 空間容積を周期的に変化させて液体の吸い込みと吐 出を行なうため 、 圧力変化を容易に制御可能であ y 種々の 工程に最迴な溶液の :ぉ  Further, in the above-described embodiment, a description has been given centering on a silicon piston pump, but the present invention is not limited to this, and various pumps can be applied. The preferred type of pump is a displacement pump. For an O 0 displacement pump, for example, a reciprocating pump, a diaphragm pump, and a rotary pump can be used. O For a reciprocating pump, for example, a piston pump.ゃ Brancher pumps are available Rotary pumps are, for example, m-table pumps, partition plate pumps, screw screw pumps, and ゃ -port pumps. It is possible to easily control the pressure change because it sucks and discharges the liquid by changing it.
/ ll動を行なう ことが可能であるので好ま しい o 液体を往復で固相化基体に接触させる場合には 、 特に 往復ポンプが好ま しい 。 例えぱ、 ビス 卜ンポンプやプランジ ャ一ポンプでは 、 ピス 卜ンゃブランジヤーの往復距離と移動 度によ り 、 溶液の駆動量および駆動速度を制御可能である ので 、 精密な溶液の i動を容易に行なう ことが可能でめ o 。  Preferred is a reciprocating pump when the liquid is brought into and out of contact with the solid-phased substrate in a reciprocating manner. For example, in a piston pump or a plunger pump, the amount and speed of driving of the solution can be controlled by the reciprocating distance and the mobility of the piston-blanker, so that the precise movement of the solution can be easily performed. O.
例えば、 往復型ポンプであるシリ ンジピス 卜ンポンプの場 シリ ンジピス 卜ンの移動が停止状態に近づいてい < と、 圧力差が小さ く なリ 溶液の移動速度が遅く なる o 溶液の粘 度が向かった り流路に抵抗があつた リ する場合など 溶液の 移動とシリ ンジビス 卜ンの移動に時間差が発生してしまう場For example, in the case of a syringe pump, which is a reciprocating pump, the movement of the syringe pump is approaching a halt state.If the pressure difference is small, the moving speed of the solution becomes slow.o The viscosity of the solution becomes better. When the flow path has resistance, If there is a time difference between the movement and the movement of the syringe
1=1は 、 この効果が顕著に現れ、 例えば 、 往復型ポンプの体積 の変化量を溶液の体積里 [<- 1¾ U 1<- 9 ると、 溶液の移動が不十 分になる。 そこで、 往復型ポンプの体積の変化量を溶液の体 積里よ り も多く すると 、 溶液の移動とポンプの動作状態に時 間差が発生しても、 溶液の移動が十分に起こ リ、 機能性基体 と溶液の接触が十分に起こる。 例えば 、 図 1 5 に示すよう に シリ ンジビス 卜ンポンプの初期化位置 P (例えば上死点) か ら下げた位置 Aで溶液を D N Aチップに添加する。 次に、 シ リ ンジピス トンを溶液の添加量に相当する体積分に相当する 位置 B まで降下させて溶液を吸引する 。 さ らに、 オフセッ 卜 体積 (吸引) 分に相当する位置 Cまで降下させ、 必要であれ ば一定時間 T 1 のあいだ保持した後、 位置 Dと位置 Eを経由 してシリ ンジビス 卜ンポンプの初期化位置に相当する位置 FWhen 1 = 1, this effect is remarkable. For example, if the change in the volume of the reciprocating pump is set to the volume of the solution [<-1¾U1 <-9, the movement of the solution becomes insufficient. Therefore, if the amount of change in the volume of the reciprocating pump is larger than the volume of the solution, even if there is a time difference between the movement of the solution and the operation state of the pump, the solution can sufficiently move and function. The contact between the aqueous substrate and the solution occurs sufficiently. For example, as shown in FIG. 15, the solution is added to the DNA chip at a position A lower than the initial position P (for example, the top dead center) of the syringe pump. Next, the syringe is dropped to the position B corresponding to the volume corresponding to the added amount of the solution, and the solution is aspirated. Further, the cylinder pump is lowered to the position C corresponding to the offset volume (suction), and if necessary, is held for a certain time T1, and then the syringe pump is initialized via the positions D and E. Position F corresponding to position
(または溶液を添加した位置よ り高い位置) までシリ ンジピ ス 卜ンを上昇させる。 位置 E と位置 Fの間の体積がオフセッ 卜体積 (排出) に相当する。 e t に、 必要ならば一定時間 τ(Or higher than the position where the solution was added). The volume between position E and position F corresponds to the offset volume (discharge). e t for a certain time τ if necessary
2 のあいだ保持した後 、 一連の動作を繰り返す。 図 1 5 で、 ピス トン位置の下向きの動きは溶液の吸引を示し、 上向きの 動さは溶液の排出を示している。 After holding for 2, repeat the series of operations. In Figure 15 the downward movement of the piston position indicates aspiration of the solution and the upward movement indicates the drainage of the solution.
本発明を統括すると 次のよう に発明を捉えることができ る ο 本発明は、 別々のェ程に対応する異種の流体が、 工程ご とに異なる流動条件で |。]じ機能性基体に接触する。 ここで同 じ種類の流体が同時期または別時期に複数の機能性基体と接 触してもよい。 各工程において基体と接触する流体は異なる 目的を有するので、 目的を達成するに適した流動条件を工程 ごとに設定 tることによって生体関連物質に関する検査の質 を取高のものにすることができる。 特に、 実施形 ¾Eで述べた よう に、 生体関連物質と機能性基体との反応工程と測定前の 洗浄工程とをそれぞれ最適な流動条件で組み合わせるのが有 効でめ ^ ) また 、 測定前の洗浄工程の代わリ に、 測定工程と 反応工程とを取適な流動条件で組み合わせるものち同様に有 効でめ o 流動条件を詳細に説明するには、 基体の形状ごと に異なる流体の方向や流量を考慮 しなければならない。 つまThe present invention can be summarized as follows. Ο In the present invention, different kinds of fluids corresponding to different processes are produced under different flow conditions for each process. Contacts the functional substrate. Here, the same type of fluid may come in contact with a plurality of functional substrates at the same time or at different times. The fluid that contacts the substrate in each step is different Since it has a purpose, it is possible to enhance the quality of inspection for bio-related substances by setting flow conditions suitable for achieving the purpose for each process. In particular, as described in Embodiment ¾E, it is effective to combine the reaction step between the biological substance and the functional substrate and the washing step before the measurement under optimal flow conditions, respectively ^) Instead of the washing step, combining the measurement step and the reaction step under suitable flow conditions is equally effective.o To explain the flow conditions in detail, the flow direction and The flow must be taken into account. Toes
U 、 基体が多孔質フィルターの場合には、 フィ ル夕 を通過 するよう に 方向または双方向に流動させる。 実施形態のよ に試薬と しての複数種類のプローブを同一面上に配置でき るフ口 一スル 型の三次元構造を有する D N Aチップを基体 とする場合には 、 図示されるよう に D N Aチップの面を水平 にして流体と しての液面を上昇 (ポンプは陽圧) させたり下 降 (ポンプは陰圧) させたり する。 基体が溝または管状の微 細流路である場合には 流路に沿って一方向または双方向に 流体を流動させる。 流路の異なる位置に同種または異種の複 数の試薬を不動状態で配置することによ り 多数の反応を同時 に実行でさる 。 基体がビ ズまたは微粒子である場合には、 流動方向は任意であり 例えば円形や螺旋形や線状の流路内 の一方向または双方向であつてよい。 複数のビーズまたは微 粒子にそれぞれ異なる 5式薬を固相化することができ、 必要にU, When the substrate is a porous filter, it is caused to flow in a direction or in both directions so as to pass through the filter. In the case where a DNA chip having a three-dimensional structure of a through-hole type in which a plurality of types of probes as reagents can be arranged on the same surface as in the embodiment is used as a base, a DNA chip as shown in the drawing is used. The liquid level as a fluid is raised (pump is positive pressure) or lowered (pump is negative pressure) by leveling the surface. When the substrate is a groove or a tubular microchannel, the fluid flows in one or both directions along the channel. By arranging a plurality of reagents of the same or different types at different positions in the flow path immovably, a large number of reactions can be performed simultaneously. When the substrate is a biz or fine particle, the flow direction is arbitrary and may be, for example, unidirectional or bidirectional in a circular, helical or linear flow path. Different beads can be immobilized on multiple beads or microparticles.
/心し c 敕列させたり 流体の流動に依存せずに停止または 移動させた y することによ り 多様な流動条件を設定できる。 いずれの形状の基体であつても、 上述したよ に一定の連続 的なポンプ圧による層流を M用するょ リ は、 間欠的または断 続的なポンプ圧の付与による脈流を適用する方が 、 流体中の 生体関連物質をよ り 多く基体と接触させることがでさるとい う顕著な作用を有する。 一定の流動条件を維持した検査は、 反応 · 洗浄 · 測定のどのよ うな組み合わせについても検査の 質が低下する。 A variety of flow conditions can be set by stopping or moving without depending on the flow of the fluid. Regardless of the shape of the substrate, the laminar flow due to the constant continuous pump pressure is used for M as described above, and the pulsating flow is applied by applying the intermittent or intermittent pump pressure. However, it has a remarkable effect that it is possible to bring more bio-related substances in the fluid into contact with the substrate. Testing with constant flow conditions will reduce the quality of testing for any combination of reaction, washing and measurement.
本発明は、 機能性を有する基体のすべてに m用可能である が、 生体液中 に定常的に均一に存在する液状生体関連物質 The present invention can be used for all functional substrates, but a liquid bio-related substance which is constantly and uniformly present in a biological fluid.
(例えば電解質成分や酵素成分 ) にとつてよ り はむしろ、 機 能性基体における高比率で安定的な接触を要求する 、 非定常 的または不均一に存在する不溶性生体関連物質 (例えば核酸 や細胞や腫瘍マーカー蛋白 ) にとって重要である o 特 I -〜 δ 薬と しての不溶性の生体関連物質を固相化した基体は 、 生体 関連物質からなる極微細な突状構造を具備するので 、 その突 起群を動的に誘導するよう cC wit動条件の制御は基体表面全域 との良好な接触に寄与する。 突起群を形成する基体の底面付 近は 、 流体と接触が困難な場所で 、 流体と接触の比率または 確率が低い場所である。 この意味において、 上述した流体の 駆動パターンのうち、 流体の駆動中に任意の夕イ ミ ングで流 動を停止させる条件を付与することは、 突起群と流体との浸 透を顕著に向上させる点で好ま しい 。 突起群と流体との不十 分な接触は、 反応または洗浄またはその m方に不満足な結果 をもたらすだけでなく 、 場合によつては気泡または前工程の 流体の液残り を許してしま う。 測定工程においても、 気泡ま たは液残り による測定ノイズを除去するために流動条件を制 御するのが好ま しい。 反応工程の前段階と して、 サンプルま たは試薬またはその両方と しての生体関連物質を基体の所定 領域に不動化 (i m mo bi l izatio n ) する不動化工程を含む場合 には、 不動化を達成するに十分な流動の停止期間を設けるこ とが好ましい。 不動化工程は、 浮遊した生体関連物質を電気 化学的または有機化学的に直接的に基体に固相化する永久的 不動化処理に限らず、 あらかじめ生体関連物質を固相化した ビーズまたは微粒子を電気的または磁気的に基体のァ ド レス 化された位置に動かなく する可逆的不動化処理を含んでいる。 本発明は、 任意の異なる流体と接触する機能性基体の機能性 を高比率かつ高確率で最大限に発揮させる方法および装置を 提供する。 また、 機能性基体が複数の異なる機能化成分 (例 えば試薬) を有する多項目測定においても、 個々の機能を必 要なタイ ミ ングで確実に発揮させるのに有効である。 Non-stationary or heterogeneous insoluble biomaterials (e.g., nucleic acids or cells) that require a high proportion of stable contact on functional substrates, rather than (e.g., electrolyte components and enzyme components) And the tumor marker protein) are important.o Since the substrate immobilized with an insoluble bio-related substance as a specialty I- to δ drug has an extremely fine protruding structure composed of a bio-related substance, Controlling the cC wit dynamic conditions so as to induce the protrusions dynamically contributes to good contact with the entire substrate surface. In the vicinity of the bottom surface of the base forming the projection group, it is a place where it is difficult to make contact with the fluid and a place where the ratio or probability of contact with the fluid is low. In this sense, of the above-described fluid driving patterns, providing a condition for stopping the fluid at an arbitrary timing during the driving of the fluid significantly improves the penetration between the projection group and the fluid. Preferred in terms of. Insufficient contact between the projections and the fluid will not only have an unsatisfactory effect on the reaction or cleaning or the process, but will also allow in some cases bubbles or a residual fluid of the preceding process. During the measurement process, It is preferable to control the flow conditions to eliminate measurement noise due to liquid residue. When the immobilization step of immobilizing a bio-related substance as a sample and / or a reagent to a predetermined region of the substrate is included as a pre-stage of the reaction step, It is preferable to provide a period of suspension of the flow sufficient to achieve immobilization. The immobilization process is not limited to permanent immobilization, in which suspended biological substances are directly immobilized electrochemically or organically on a substrate, but beads or fine particles that have previously been immobilized with biological substances are immobilized. Includes a reversible immobilization process that immobilizes electrically or magnetically at an addressless location on the substrate. The present invention provides a method and apparatus for maximizing the functionality of a functional substrate in contact with any different fluids at a high rate and with a high probability. Also, in a multi-item measurement in which a functional substrate has a plurality of different functionalized components (for example, reagents), it is effective to ensure that each function is performed at the required timing.

Claims

gi 求 の 範 囲 scope of gi request
1 . 機能性基体を用いた生体関連物質の検査方法であ y 流体を流動させて流体と機能性基体を接触させる複数のェ程 を有し、 それぞれの工程においてそのェ程に適した流動速度 で流体を流動させる、 生体関連物質の検査方法  1. This is a method for testing biological substances using a functional substrate. There are multiple processes for flowing a fluid and bringing the fluid into contact with the functional substrate, and a flow rate suitable for each process in each process Method for testing biological substances by flowing fluid
2 . 請求項 1 において、 複数の工程 1よ % v 台 性基体と検 査対象の生体関連物質を反応させ o反 、工程と 、 能性基体 に残留する不所望な検体液を取り 除く洗浄工程とを含んでお り 、 反応工程においては、 機能性基体と /5Z. J心する検査対象の 生体関 物質を含む検体液を反応に適し /<- //II.動速度で流動さ せ、 洗浄工程においては、 洗浄水を洗浄に週した流動速度で 流動させる、 生体関連物質の検査 法。  2. The method according to claim 1, wherein the reaction between the substrate and the biological substance to be inspected is performed in the same manner as in step 1, and the cleaning step for removing the undesired sample liquid remaining on the functional substrate. In the reaction step, the sample liquid containing the functional substrate and the biological substance to be inspected, which is to be tested, is suitable for the reaction./<- // II. In the washing process, a biological substance-related inspection method in which washing water flows at the same flow rate as that used for washing.
3 • 請求項 1 において、 複数の工程は、 能性基体と検 査対象の生体関連物質を反応させ o反 、工程と 、 機能性基体 を流体の存在下で測定する測定ェ程とを含んでおり、 反応ェ 程においては、 反応を促進するに した流動条件で流体を流 動させ 測定工程においては 、 測定をー定の精度で行なうの に適した流動条件で流体を流動させる、 生体関連物質の検査 方法 o  3 • In claim 1, the plurality of steps include a step of reacting the functional substrate with a biological substance to be inspected, and a step of measuring the functional substrate in the presence of a fluid. In the reaction step, the fluid is caused to flow under flow conditions that promote the reaction, and in the measurement step, the fluid is caused to flow under flow conditions suitable for performing the measurement with constant accuracy. Inspection method o
4 請求項 1 において、 体積型ポンプを用いて流体を流 動させており 、 それぞれのェ程において 、 体積型ポンプの体 積変化里が異なるポンプの駆動パターンに従つて体積型ポン プを駆動する、 生体関連物質の検査方法  (4) In claim 1, the fluid is circulated using a volume pump, and in each step, the volume pump of the volume pump is driven according to a different pump driving pattern. Inspection method for biological substances
5 請求項 1 において、 往復ポンプを用いて流体を流動 させておリ、 それぞれの工程 1 おいて、 往復ポンプを、 その ビス 卜ンの移動速度が異なる駆動パターンに従つて駆動する、 生体関連物質の検査方法。 5 In claim 1, the fluid is caused to flow using a reciprocating pump, and the reciprocating pump is An inspection method for biological substances, which is driven in accordance with a drive pattern in which the moving speed of the piston is different.
6 . 機能性基体を用いた生体関連物質の検査方法であ y、 流体を往復流動させて流体と機能性基体を繰り 返し接触させ る工程を有し、 その工程において、 往時と復時とで異なる i 動 is度で流体を流動させる、 生体関連物質の検査/ J法。  6. An inspection method for a biological substance using a functional substrate, which includes a step of reciprocating a fluid to repeatedly contact the fluid and the functional substrate. Inspection of biological substances / J method, in which fluid flows at different i-motion is degrees.
7 . 請求項 6 において、 往復ポンプを用いて流体を往復 流動させており 、 往復ポンプの 「押す」 動作時と 「引く J 動 作時でビス 卜ンの移動速度が異なる駆動パターンに従って往 復ポンプを駆動する、 生体関連物質の検査方法  7. The reciprocating pump according to claim 6, wherein the reciprocating pump uses the reciprocating pump to reciprocate the fluid, and the reciprocating pump follows a driving pattern in which the moving speed of the piston is different between the "push" operation and the "pull J" operation. Driving method of biological related substances
8 . 機能性基体を用いた生体関連物質の検査方法であ u 、 流体を流動させて流体と機能性基体を接触させる工程を有し、 そのェ程において、 一定でない流動速度で流体を流動させる、 生体関連物質の検査方法。  8. A method for testing a biological substance using a functional substrate, comprising the step of flowing a fluid to contact the fluid and the functional substrate, and in that process, causing the fluid to flow at an irregular flow rate. Inspection methods for biological substances.
9 . 請求項 8 において、 流体を間欠的に一定の流動速度 で流動させる、 生体関連物質の検査方法。  9. The method according to claim 8, wherein the fluid is intermittently flown at a constant flow speed.
1 0 . 請求項 8 において、 流体を脈動的に流動させる 、 生体関連物質の検査方法。  10. The method according to claim 8, wherein the fluid is pulsated.
1 1 . 1#求項 8 において、 往復ポンプを用いて流体を流 動させてお り 、 往復ポンプの 「押す」 動作時の最中や r引 く J 動作時の最中、 ピス トンの移動速度が一定でない駆動パ ターンに従って往復ポンプを駆動する、 生体関連物質の検査 お , 7k  1 1.1 # In claim 8, the fluid is circulated using the reciprocating pump, and the piston moves during the "push" operation of the reciprocating pump or during the r-J operation. Driving a reciprocating pump according to a drive pattern with a non-constant speed, inspection of biological substances and 7k
1 2 . 機能性基体を用いた生体関連物質の検査方法であ リ 、 体積型ポンプを用いて流体を流動させて流体と機能性基 体を接触させる複数の工程を有し、 体積型ポンプの体積を 化させる量が流動させる流体の体積量よ り も多い、 生体関 物質の検査方法。 1 2. This is a method for testing biological substances using a functional substrate. A method for testing biological substances, comprising a plurality of steps of contacting a body, wherein the volume of a volumetric pump is greater than the volume of a flowing fluid.
1 3 . 請求項 1 2 において、 体積型ポンプと して往復 ポンプを用い、 ビス 卜ンまたはプランジャーが、 上スし と下 死点の間に位置しているとさに、 流動させる流体を供給する、 生体関連物質の検査方  13. In claim 12, a reciprocating pump is used as the positive displacement pump, and when the piston or the plunger is located between the upper thread and the lower dead center, the fluid to be flowed is set. How to test for bio-related substances
1 4 . 機能性を有しかつ流動可能な基体を複数のェ程で 流体中に保持しながら 、 生体関連物質に関する検査を行なう 生体関連物質の検査方法であ り 、 それぞれの工程においてそ 14 4. A bio-related substance inspection method in which a bio-related substance is inspected while a functional and flowable substrate is held in a fluid in a plurality of steps.
、東 East
の工程に適した流動 度で基体を流動させる、 生体関連物 Bio-related substances that flow the substrate at a flow rate suitable for the process
質 の検査方法。  Quality inspection method.
1 5 . 請求項 1 4 において、 流動可能な基体が磁 5 応答 性であって、 流体の 動状に依存せずに磁気的に移動させる 工程を有する、 生体関連物質の検査方法。  15. The method for inspecting a biological substance according to claim 14, wherein the flowable substrate is magnetically responsive, and has a step of magnetically moving without depending on the fluid state.
1 6 . 流体を移送する移送手段と、 流体の移送に対して 連続的に接触可能な 能性基体を保持する保持手段と、 移送 手段を制御する手段と 、 流体の特性に応じて少なく とも一  16. Transfer means for transferring the fluid, holding means for holding the substrate capable of being continuously contacted with the transfer of the fluid, means for controlling the transfer means, at least one according to the characteristics of the fluid.
=π, 中  = π, medium
の制御条件を選択的に る制御条件設定手段とを備えて いる、 流体移送装置 o A fluid transfer device comprising control condition setting means for selecting the control conditions of
1 7 . 請求項 1 6 において、 制御条件設定手段は流体の 特性を認識する特性 心識手段を備えている、 流体移送装置。  17. The fluid transfer device according to claim 16, wherein the control condition setting means includes a characteristic knowledge means for recognizing a characteristic of the fluid.
1 8 . 請求項 1 7 において、 特性認識手段は基体に対す る流体の流動状態を判別する判別手段を備えている、 流体移 送装置。 18. The fluid transfer device according to claim 17, wherein the characteristic recognizing means includes a discriminating means for discriminating a flow state of the fluid with respect to the substrate.
1 9 . 請求項 1 7 または請求項 1 8 において、 特性認識 手段は、 流体と気体との動的関係を測定する測定手段をさ ら に有している、 流体移送装置 o 19. The fluid transfer device according to claim 17 or claim 18, wherein the characteristic recognizing means further comprises a measuring means for measuring a dynamic relationship between the fluid and the gas.
2 0 . 請求項 1 6 において 、 機能性基体が多孔質構造を 有する基板である、 流体移送装置 o  20. The fluid transfer device o according to claim 16, wherein the functional substrate is a substrate having a porous structure.
2 1 . 請求項 1 6 において 、 機能性基体が微細流路構造 を有する基板である、 流体移送装置。  21. The fluid transfer device according to claim 16, wherein the functional substrate is a substrate having a fine channel structure.
2 2 . 流体に対し機能する基体を流体と連続的に接触さ せる工程と 、 流体を少なく とち一つの制御条件によって移送 する工程と 、 流体の特性に応じて制御条件を設定する工程と を有している、 流体移送方法 o  22. A step of continuously contacting the substrate functioning with the fluid with the fluid, a step of transferring the fluid under at least one control condition, and a step of setting the control conditions according to the characteristics of the fluid. Has a fluid transfer method o
2 3 . 流体が生体関連物質を S主  2 3. Fluid is bio-related substance mainly
含む 5月求項 2 2 に記載の 流体移送方 /J o  Fluid transfer method described in May Request 22
2 4 . 流体の物理的特性に }心じて制御条件を設定する 、 請求項 2 2 または請求項 2 3 に記載の流体移送方法。  24. The fluid transfer method according to claim 22 or claim 23, wherein the control condition is set in consideration of the physical characteristics of the fluid.
2 5 . 流体の化学的特性に }心じて制御条件を設定する 請求項 2 2 または請求項 2 3 に記載の流体移送 Λ法。  25. The fluid transfer method according to claim 22 or claim 23, wherein the control condition is set in consideration of the chemical characteristics of the fluid.
PCT/JP2004/007450 2003-05-26 2004-05-25 Method of testing bio-related substance, fluid transfer apparatus therefor and method of fluid transfer WO2004104584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506439A JPWO2004104584A1 (en) 2003-05-26 2004-05-25 Biologically related substance inspection method, fluid transfer device and fluid transfer method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-147685 2003-05-26
JP2003147685 2003-05-26
JP2004-070813 2004-03-12
JP2004070813 2004-03-12

Publications (1)

Publication Number Publication Date
WO2004104584A1 true WO2004104584A1 (en) 2004-12-02

Family

ID=33478992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007450 WO2004104584A1 (en) 2003-05-26 2004-05-25 Method of testing bio-related substance, fluid transfer apparatus therefor and method of fluid transfer

Country Status (2)

Country Link
JP (1) JPWO2004104584A1 (en)
WO (1) WO2004104584A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132805A (en) * 2005-11-10 2007-05-31 Canon Inc Reaction device
JP2008253227A (en) * 2007-04-09 2008-10-23 Hitachi Software Eng Co Ltd Reaction apparatus and reaction chip
JP2009042104A (en) * 2007-08-09 2009-02-26 Canon Inc Substance fixing device, substance detector and substance fixing method
JP2009521924A (en) * 2005-12-29 2009-06-11 アイ−スタット コーポレイション Amplification system and method for molecular diagnostics
US8716008B2 (en) 2010-10-18 2014-05-06 Fujifilm Corporation Detection method and detection system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504864A (en) * 1993-10-28 1997-05-13 ヒューストン・アドバンスド・リサーチ・センター Microfabricated flow-through porosity device to detect binding reactions separately
JP2000023698A (en) * 1998-06-04 2000-01-25 Roche Diagnostics Gmbh Dna detection by a strand reassociation complex
JP2000515251A (en) * 1997-07-11 2000-11-14 アクゾ・ノベル・エヌ・ベー Device for performing an assay, method for manufacturing the device, and use of the membrane in manufacturing the device
JP2001255328A (en) * 2000-03-10 2001-09-21 Hitachi Software Eng Co Ltd Method and apparatus for detecting hybridization reaction
WO2002048716A2 (en) * 2000-12-14 2002-06-20 Paul Stroobant Differential phage capture proteomics
JP2002350350A (en) * 2001-03-21 2002-12-04 Olympus Optical Co Ltd Biochemical inspection method
JP2003509663A (en) * 1999-09-14 2003-03-11 パムジーン・ベー・ベー Analytical test apparatus and method having a substrate for orienting through channels and method and apparatus using the apparatus
JP2003185660A (en) * 2001-12-20 2003-07-03 Olympus Optical Co Ltd Dna chip reader
JP2003248008A (en) * 2001-12-18 2003-09-05 Inst Of Physical & Chemical Res Method of stirring reaction liquid
JP2004144521A (en) * 2002-10-22 2004-05-20 Hitachi Ltd Apparatus and method for stirring solution

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504864A (en) * 1993-10-28 1997-05-13 ヒューストン・アドバンスド・リサーチ・センター Microfabricated flow-through porosity device to detect binding reactions separately
JP2000515251A (en) * 1997-07-11 2000-11-14 アクゾ・ノベル・エヌ・ベー Device for performing an assay, method for manufacturing the device, and use of the membrane in manufacturing the device
JP2000023698A (en) * 1998-06-04 2000-01-25 Roche Diagnostics Gmbh Dna detection by a strand reassociation complex
JP2003509663A (en) * 1999-09-14 2003-03-11 パムジーン・ベー・ベー Analytical test apparatus and method having a substrate for orienting through channels and method and apparatus using the apparatus
JP2001255328A (en) * 2000-03-10 2001-09-21 Hitachi Software Eng Co Ltd Method and apparatus for detecting hybridization reaction
WO2002048716A2 (en) * 2000-12-14 2002-06-20 Paul Stroobant Differential phage capture proteomics
JP2002350350A (en) * 2001-03-21 2002-12-04 Olympus Optical Co Ltd Biochemical inspection method
JP2003248008A (en) * 2001-12-18 2003-09-05 Inst Of Physical & Chemical Res Method of stirring reaction liquid
JP2003185660A (en) * 2001-12-20 2003-07-03 Olympus Optical Co Ltd Dna chip reader
JP2004144521A (en) * 2002-10-22 2004-05-20 Hitachi Ltd Apparatus and method for stirring solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAKINO T. ET AL.: "DNA capillary array system no kaihatsu", BIO INDUSTRY CMC, vol. 18, no. 8,209, August 2001 (2001-08-01), pages 25 - 34, XP002983523 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132805A (en) * 2005-11-10 2007-05-31 Canon Inc Reaction device
JP2009521924A (en) * 2005-12-29 2009-06-11 アイ−スタット コーポレイション Amplification system and method for molecular diagnostics
JP2008253227A (en) * 2007-04-09 2008-10-23 Hitachi Software Eng Co Ltd Reaction apparatus and reaction chip
JP2009042104A (en) * 2007-08-09 2009-02-26 Canon Inc Substance fixing device, substance detector and substance fixing method
US8716008B2 (en) 2010-10-18 2014-05-06 Fujifilm Corporation Detection method and detection system

Also Published As

Publication number Publication date
JPWO2004104584A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP3947536B2 (en) Method and apparatus for measuring specimen in liquid
JP4754746B2 (en) Rod-shaped carrier and cylinder reaction vessel equipped with the same
US7258837B2 (en) Microfluidic device and surface decoration process for solid phase affinity binding assays
US20070122819A1 (en) Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
Lehr et al. Real-time detection of nucleic acid interactions by total internal reflection fluorescence
JP7248731B2 (en) Sample processing device with integrated heater, shaker and magnet
AU2024200383A1 (en) Flow cell device and use thereof
JP2009150756A (en) Biological substance detection cartridge, biological substance detecting apparatus, and biological substance detection method
JP4411661B2 (en) Biological substance detection method
JP2012168115A (en) Channel device and method for transporting liquid by using the same
GB2423266A (en) A structure and method for detecting an analyte in a microfluidic chip
JP2009178146A (en) Chip for biological sample reaction and method for carrying out biological sample reaction
JP2007534936A (en) A device to analyze the interaction between target and probe molecules
CN115093961A (en) Multi-volume liquid drop digital LAMP nucleic acid absolute quantitative detection device and method and application
Shen et al. Nucleic acid analysis on electrowetting-based digital microfluidics
Kulkarni et al. A review on recent advancements in chamber-based microfluidic PCR devices
WO2004104584A1 (en) Method of testing bio-related substance, fluid transfer apparatus therefor and method of fluid transfer
CN1683560A (en) Device and method for accelerating biological chip micro fluid reaction
JP6987133B2 (en) Methods and analytical systems for inspecting samples
CN107430142B (en) Chip for analysis
JP2009122022A (en) Biological material sensing chip, device, and method
WO2004068144A1 (en) Method of analyzing liquid sample and analytical apparatus
JP2003344401A (en) Inspection method of organism-related material
JPWO2008047533A1 (en) Microchip reaction detection system, reaction method in microchip flow path
JP6187259B2 (en) Method of stirring the solution

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506439

Country of ref document: JP

122 Ep: pct application non-entry in european phase