WO2004104582A1 - Method of measuring dna methylation ratio - Google Patents

Method of measuring dna methylation ratio Download PDF

Info

Publication number
WO2004104582A1
WO2004104582A1 PCT/JP2003/014873 JP0314873W WO2004104582A1 WO 2004104582 A1 WO2004104582 A1 WO 2004104582A1 JP 0314873 W JP0314873 W JP 0314873W WO 2004104582 A1 WO2004104582 A1 WO 2004104582A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
dna
methylcytosine
stranded
stranded dna
Prior art date
Application number
PCT/JP2003/014873
Other languages
French (fr)
Japanese (ja)
Inventor
Naomi Yamakawa
Original Assignee
Naomi Yamakawa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naomi Yamakawa filed Critical Naomi Yamakawa
Publication of WO2004104582A1 publication Critical patent/WO2004104582A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6804Nucleic acid analysis using immunogens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Definitions

  • the invention of this application relates to a method for measuring a DNA methylation ratio. More specifically, the invention of this application relates to a method for measuring DNA methylation that is useful for evaluating the degree of malignancy of cancer cells, or for evaluating the state of differentiation of cells in vitro. Background art
  • Patent Literature 1 discloses a method for specifically PCR-amplifying a DNA strand containing a CG continuous sequence (CpG island) to be methylated.
  • Patent Literature 2 specifically describes a method for specifically amplifying a DNA strand containing methylcytosine. A method using a labeled DNA fragment that hybridizes is disclosed.
  • Patent Document 1 Japanese Patent Publication No. 11-511776
  • methylation of DNA strands is an important indicator of various diseases including cancer, and control of gene expression. Therefore, it can be used as an index for grasping the degree of cell division, for example, and various measurement methods have been studied so far.
  • the conventional methods are not always preferable methods.
  • fragment comparison procedures such as Southern plotting are indispensable, and the bisulfite method and the method of Patent Document 1 require cumbersome work such as PCR and DNA sequence analysis of the product.
  • the conventional method has a problem that it takes a great deal of time and effort to obtain a judgment result because necessary processing is required for a test sample: a DNA strand.
  • the invention of this application has been made in view of the circumstances described above, and has as its object to provide a method for simply and accurately measuring the degree of DNA methylation.
  • the present invention solves the above-mentioned problem by contacting an antibody that specifically binds to 5-methylcytosine with single-stranded DNA, and measuring the amount of the antibody bound to the DNA chain.
  • a method for measuring a methylation rate is provided.
  • the monovalently bound antibody is separated from the DNA chain.
  • One of the preferable embodiments is to specify the dense region of 5-methylcytosine by measuring the amount of the bound antibody.
  • a region other than an arbitrary region of the single-stranded DNA is double-stranded, and the DNA methylation rate is measured for the single-stranded region.
  • the “DNA chain” refers to a molecule in which a phosphoric acid ester of a nucleoside (dATP, dGTP, dCTP, dTTP) in which a purine or pyrimidine is bonded to a sugar with a - ⁇ -glycosidic bond is a phosphodiester bond.
  • dATP dGTP
  • dCTP dCTP
  • dTTP a phosphoric acid ester of a nucleoside
  • purine or pyrimidine is bonded to a sugar with a - ⁇ -glycosidic bond is a phosphodiester bond.
  • Means chain Other terms and concepts in the present invention are defined in detail in the description of the embodiments of the present invention and examples. (1) Various techniques used for carrying out the present invention can be easily and reliably implemented by those skilled in the art based on known documents and the like, except for the technique for which the source is clearly indicated.
  • an antibody that specifically binds to 5-methylcytosine is a polyclonal or monoclonal antibody that can bind to 5-methylcytosine Molecules, and Fab, F (ab ') 2 , Fv fragments, etc., and particularly preferably the whole molecule of the monoclonal antibody.
  • Monoclonal anti-5-methylcytosine antibody can be prepared by using known methods for producing monoclonal antibodies using 5-methylcytosine as an immunogen (for example, “Monoclonal antibody”, written by Kamei Nagamune and Hiroshi Terada, Hiro Kawashoten, 1990; "Monoclonal Antibody” James W.
  • the amount of the antibody bound to the DNA chain is measured, for example, by labeling an anti-5-methylcytosine antibody and measuring the amount of the labeled signal. be able to.
  • the secondary antibody that binds to the antibody e.g. anti-I g G antibodies
  • Labels can use enzymes, radioisotopes or fluorescent dyes. There are no particular restrictions on the enzyme as long as it meets the conditions such as a large turnover number, stability even when bound to the antibody, and specific coloring of the substrate.
  • Enzymes such as ⁇ ⁇ / oxidase, ⁇ -galatatosidase, anorecaliphosphatase, gnorecosoxidase, acetylcholinesterase, glucose 16-phosphorylation dehydrogenase, and malate dehydrogenase. it can.
  • enzyme inhibitors, coenzymes, and the like can also be used.
  • the binding between the enzyme and the antibody can be performed by a known method using a crosslinking agent such as a maleimide compound.
  • a crosslinking agent such as a maleimide compound.
  • As the substrate a known substance can be used depending on the type of the enzyme to be used.
  • peroxidase when peroxidase is used as an enzyme, 3,3 ', 5,5'-tetramethylbenzicin can be used.
  • alkaline phosphatase when alkaline phosphatase is used as an enzyme, paranitrophenol can be used.
  • radioisotope those used in normal RIA such as ⁇ 25 ⁇ and 3 ⁇ can be used.
  • Fluorescent dyes such as fluorescein isothiocyanate (FITC) and tetramethylrhodamine isothiocyanate (TRITC) are commonly used in fluorescent antibody methods. Can be used.
  • the enzyme activity is determined by adding a substrate that develops color by the action of the enzyme and optically measuring the amount of decomposition of the substrate. This is converted to the amount of bound antibody, and the amount of antibody is calculated by comparison with a standard value.
  • radioactive isotopes measure the radiation dose emitted by the radioisotope using a scintillation counter or the like.
  • the amount of fluorescence may be measured by a measuring device combined with a fluorescence microscope.
  • the method of the present invention can be performed in a liquid phase system or a solid phase system, but is preferably performed in a solid phase system in order to obtain stable measured values. That is, a DNA chain as a test sample is immobilized on a solid phase, and the immobilized DNA chain is reacted with an anti-5-methylcytosine antibody.
  • a DNA chain particularly genomic DNA
  • a double-stranded linker DNA is immobilized on the solid phase, and the double-stranded strand cut with a restriction enzyme so as to match the end of the linker.
  • a method of linking genomic DNA using ligase can be employed.
  • Immobilization of the linker DNA on the solid phase can be carried out by making one end of the linker DNA biotinylated by a known method and immobilizing it on an avidin-coated solid phase.
  • a method of synthesizing linker DNA into which a functional group has been introduced spotting the linker DNA on the surface-treated surface of the solid support, and covalently binding the linker DNA (eg, Lamture, JB et al. Nucl. Acids Res. 22 : 2121-2125, 1994; Guo, Z. et al. Nucl. Acids Res. 22: 5456-5465, 1994).
  • the double-stranded DNA immobilized by the above method can be converted into single-stranded DNA by denaturing with, for example, a hydrochloric acid solution or the like.
  • the method of the present invention also provides a method for separating a monovalently bound anti-5-methylcytosine antibody from a DNA chain and measuring the amount of the divalently bound antibody to specify a dense region of 5-methylcytosine.
  • an antibody (IgG) molecule is composed of one Fc part and two Fab parts, and the tip of the Fab part binds to the target peptide. Therefore, as shown in Figure 1, the 5-methyl In the case of one cytosine, one Fab portion of the anti-5-methylcytosine antibody binds (monovalent binding: FIG. 1B), while two 5-methylcytosines exist at an appropriate distance.
  • two Fabs bind to each 5-methylcytosine (bivalent binding: FIG. 1A).
  • the divalent binding of the antibody is known to have about 103 (Mi) times higher affinity than the monovalent binding, and the affinity of the divalent antibody is removed. By measuring, a region where 5-methylcytosine is concentrated can be detected with high accuracy.
  • the IgG molecular structure has a structure similar to the letter T in the alphabet, and it has been revealed that the distance between the two ends of the two Fabs, that is, the distance between the two antigen-binding sites is about 142 nm (Sarma VR et al., J. Bio. Chem., vol. 246, pp3753-3759, 1971).
  • the DNA is arranged at intervals of 0.34 nm for each base pair, and the pitch at which the helix of the DNA makes one rotation is 3.4 ⁇ .
  • an anti-5-methylcytosine antibody can bind divalently to DNA if the distance between two different 5-methylcytosines present on the same DNA is within about 40 bases.
  • the anti-5-methylcytosine antibody may contain a plurality of 5-methylcytosine antibodies. It becomes possible to bind divalently to single-stranded DNA containing lucitosin, which is presumed that the average distance between two different 5-methylcytosine molecules on the same single-stranded DNA is about 14 mn or less.
  • anti-5-methylcytosine antibodies can be used as a nano-scale-rod, ie, a “nano-scale” that measures approximately 14 nm.
  • a nano-scale-rod ie, a “nano-scale” that measures approximately 14 nm.
  • the antibody IgG
  • the distance between the 5-methylcytosine molecules is approximately It can be said that it is within 14nm if it can be more than 14nm and can form a divalent bond. This Using this, it is possible to determine the content of 5-methylcytosine in DNA.
  • the monovalent binding antibody for example, a method in which an alkaline or acidic buffer solution or a buffer solution with a high salt concentration is applied, or a method in which an excess amount of an antigen (5-methylcytosine) is used for antagonism Alternatively, a method of increasing the solution temperature can be adopted. Further, in the method of the present invention, after reacting an anti-5-methylcytosine antibody and binding each of the monovalent and divalent antibodies to the DNA chain, the monovalent binding antibody is obtained by the above method. May be removed (dissociated), or only the divalent antibody may be bound to the DNA chain using the above-mentioned buffer or the like.
  • another preferred embodiment is that a region other than an arbitrary region of the single-stranded DNA is double-stranded and the DNA methylation rate is measured for the single-stranded region (see FIG. 3).
  • This method is particularly preferable when measuring the abundance of 5-methylcytosine and its density only in a region (eg, a gene expression control region or the like) where DNA methylation is important.
  • a method of annealing a single-stranded oligonucleotide fragment complementary to the DNA sequence of the region to be double-stranded can be adopted.
  • the antigen [5-methylcytidine binds to BSA (bovine serum albumin) 5-methylcytidine-BSA conjugate] was dissolved in PBS at a concentration of lO g / ml, and this was coated on a 96-well ELISA plate, and then blocked with BSA according to a conventional method. The culture supernatant was allowed to react to obtain a hydrideoma exhibiting antibody reaction positivity.
  • the antibody reactivity against the cytidine-BSA conjugate in which cytidine was conjugated to BSA was measured in the same manner, and a hybridoma producing no or low cross-activity with cytidine-BSA was selected.
  • an anti-5-methylcytosine antibody was obtained from the hybridoma according to a conventional method.
  • Example 2 Examination of antibody specificity (1)
  • a 225-base DNA fragment (SEQ ID NO: 1) corresponding to nucleotides 1966 to 2190 in the cDNA base sequence of mouse focal adhesion kinase (GenBank M95408) was amplified by PCR. At this time, oligo DNA having a 5′-position biotinylated was used as a PCR sense strand primer.
  • Mouse brain cDNA was used as type I DNA, and PCR was performed under the following conditions.
  • the double-stranded DNA which is the PCR product, contains 50 cytosine bases in the sense strand of the double-stranded DNA, but 20 bases out of 46 bases excluding the PCR primer are randomly replaced with 5-methylcytosine.
  • 5-methyl-2'-deoxycytidine-5'-triphosphate 5m_dCTP was mixed into the PCR reaction solution.
  • a PGR reaction was performed using a solution obtained by mixing the following deoxynucleotide stock solution A and stock B solution at a ratio of 26:20.
  • Sense primer 5'-Biotin-CGTGAAGCCTTTTCAAGGAG-3 '(SEQ ID NO: 2)
  • Antisense primer 5, -TCCATCCTCATCCGTTCTTC-3' (SEQ ID NO: 3) Enzyme used:
  • the PCR reaction was performed using Thermal Cycler MP (Takara Shuzo).
  • DNA was purified from the PCR product according to a conventional method and immobilized on an avidin-coated 96-well microtiter plate.
  • the double-stranded DNA was treated with 50 mM hydrochloric acid for 2 minutes to be single-stranded. After this treatment, the well was washed several times with PBS / lmM EDTA, and only the single-stranded DNA captured by avidin was immobilized on the well.
  • the anti-5-methylcytosine antibody (primary antibody) prepared in Example 1 and horseradish peroxidase (HRP) -labeled anti-mouse IgG antibody (secondary antibody) ELISA was carried out according to a standard method using.
  • the microtiter plate is usually washed with a buffer containing 10 mM ris-HCl (pH 7.6) /0.15 M NaCl / 0.05% Teen20, and the substrate is paranitrophenyl phosphate (Sigma, N After the reaction with the substrate, the absorbance at 405 nm was measured after a certain period of time.
  • Fig. 4 shows the results of the ELISA measurement.
  • the antibody binding to the anti-5-methylcytosine antibody increased as the content of 5-methylcytosine in the DNA immobilized on the gel increased.
  • the total amount of the double-stranded DNA is about 43, which is a double-stranded DNA containing 5-methylcytosine.
  • Anti-5-methylcytosine antibody did not bind to the single-stranded DNA. That is, it was confirmed that the anti-5-methylcytosine antibody did not bind to double-stranded DNA containing 5-methylcytosine, but specifically bound only to single-stranded DNA containing 5-methylcytosine.
  • Example 3 The sensitivity to NaCl treatment when the content of 5-methylcytosine per single-stranded DNA immobilized on a 96-well microtiter plate was changed was measured.
  • Example 3 except that after binding the primary antibody, the wells were treated for 10 minutes with a well washing buffer containing 0.5N NaCl (10 mM Tris-HCl (pH7.6) /0.5M NaCl / 0.05% Tween20) for 10 minutes. was performed in the same manner as described above.
  • anti-5-methylcytosine antibody was used in a 96-well microtiter plate. If single-stranded DNA (225 bases) immobilized on a single well contains an average of four 5-methylcytosines, the antigen-antibody reaction is easily dissociated by treatment with 0.5 M NaCl, but The presence of an average of 10 5-methylcytosines in the single-stranded DNAC225 base immobilized on the DNA) stabilizes the binding of the antibody to the antigen and sharply increases the resistance to 0.5M NaCl washing. It was confirmed that.
  • the anti-5-methylcytosine antibody prepared in Example 1 was a mouse IgG2a, ⁇ chain antibody.A Fab fragment of this antibody was prepared, and the binding resistance of the Fab fragment and the whole IgG molecule to NaCl treatment was compared and examined. .
  • the ELISA protocol followed Example 4.
  • the results are as shown in FIG.
  • the I g G molecules with binding sites of the antigen 2 power plant, the Fab fragments binding sites 1 Chikarasho, Abuiniti one antigen and antibody opens approximately 1000-fold IgG molecules capable of bivalent binding to an antigen have stronger affinity.
  • IgG molecules of the anti-5-methylcytosine antibody are more resistant to treatment with a high salt concentration (NaCl) than Fab molecules derived from this IgG. That is, when compared at the same NaCl concentration, it was confirmed that the Fab fragment dissociated from the antigen faster than the IgG molecule.
  • Example 4 when the content of 5-methylcytosine in the single-stranded DNA was about 1.8%, the treatment with a high concentration of NaCl (here, 0.5 M NaCl) dissociated most of the antigen-antibody reaction. However, when the content of 5-methylcytosine in single-stranded DNA reaches approximately 44%, the proportion of IgG molecules that maintain antigen-antibody binding increases rapidly even with high-concentration NaCl treatment. Was.
  • the 5-methylcytosine content in the single-stranded DNA was about 1.8% to about 4.4% in the specific region of the DNA molecule.
  • the anti-5-methylcytosine antibody (IgG Molecule) changes from a monovalent bond to a divalent bond.
  • the presence of the antigen (5-methylcytosine) at a certain density or higher allows one molecule of anti-5-methylcytosine antibody (IgG) to bind to multiple 5-methylcytosine bases present on the same DNA molecule. It means that valence bonding can be performed.
  • Example 6 Example of measuring 5-methylcytosine content in specific region
  • a specific region in the double-stranded DNA is limited to a single strand, and this single strand is used as the measurement target area for 5-methylcytosine. The content was measured.
  • the sense strand of the double-stranded DNA whose nucleotide sequence is shown in FIG. 3 should contain 20 bases of 5-methylcytosine in the sense strand DNA. Synthesized.
  • the PCR primers were the same as in Example 2.
  • a denaturing buffer [10 mM Tris-HCK pH 8.l) / 50 mM KCl / 1.5 mM MgCl 2 ], and the synthetic oligo DNA of SOpmole (three types in FIG. 8; , 5 and 6) were added to make a total volume of 50 / l, which was placed in a PCR tube (200 jl volume) and set in a PCR thermal cycler.
  • This reaction solution was subjected to a denaturation treatment at 98 ° C for 2 minutes, and then immediately treated at 65 ° C for 30 minutes to induce DNA reassociation.
  • the synthetic oligo DNA insert is stabilized while being sandwiched by the double-stranded DNA.
  • the obtained PCR product was immobilized on a substrate of an avidin-coated 96-well microtiter plate while the oligo insert was sandwiched.
  • 51 out of 50 ⁇ l of the total reaction solution in the PCR tube was added to 1 well of a 96-well microtiter plate and immobilized. Subsequent operations were performed according to the same ELISA protocol as in Example 4 described above.
  • HRP-labeled anti-mouse IgG antibody was used as the secondary antibody, and tetramethylbenzidine (SIGMA ⁇ & ⁇ # ⁇ ) 440) was used as the substrate.
  • SIGMA ⁇ & ⁇ # ⁇ tetramethylbenzidine
  • the results are as shown in FIG.
  • the subject double-stranded DNA (225 bp) contains about 20 bases of 5-methylcytosine per sense strand.
  • the highest absorbance is obtained when using oligo insert # 1, which hybridizes to the region near the end of the double-stranded DNA, and decreases as the region where the oligosinate hybridizes enters the central region of the double-stranded DNA. Keep going. All oligo inserts used are 30raer. Therefore, at this time, when oligo inserts # 1, # 2, and # 3 bind to double-stranded DNA, cytosine of 3, 6, and 11 bases, respectively, is exposed as a single strand, About 50% of these cytosines are replaced by 5-methylcytosine.
  • oligoinsert # 1 with a small number of cytosines exposed from double-stranded DNA is higher, and the absorbance of oligoinserts # 2 and # 3 with a larger number of cytosines exposed is lower.
  • Oligo-DNA that forms a backbone with peptide bonds abbreviated as PNA
  • PNA peptide bonds
  • the present invention is not limited to these, and if it is a substance that is stronger than the bond between DNAs and hybridizes with DNA, the same results as in the case of the above-described oligosert can be obtained.
  • FIG. 4 shows the binding state of an anti-5-methylcytosine antibody to 5-methylcytosine of a partially single-stranded DNA chain.
  • Cytosine enclosed in a box is randomly substituted with 5-methylcytosine at an arbitrary ratio.
  • 5 is a graph showing the relationship between the number of 5-methylcytosine contained in a DNA chain and the degree of binding of an anti-5-methylcytosine antibody.
  • 5 is a graph showing the relationship between the NaCl concentration and the degree of binding of an anti-5: methylcytosine antibody when NaCl treatment is performed after a primary antibody (5-methylcytosine antibody) reaction.
  • FIG. 6 shows the base sequences of synthetic oligo DNA inserts # 1 to # 3 used to form a single-stranded DNA region in the examples, and the base sequences of DNA strands to which these inserts hybridize.
  • the hybridized region of Insert is indicated by a box.

Abstract

An immunochemical method of measuring 5-methylcytosine of DNA strand accurately through simple means. An antibody capable of specific binding with 5-methylcytosine is brought into contact with single-strand DNA, and while any antibody having undergone monovalent binding is separated from the DNA strand, the amount of antibody having undergone bivalent bonding is measured, thereby specifying close-packed region of 5-methylcytosine. Further, there is provided a method of measuring the density of 5-methylcytosine in DNA strand.

Description

明 細 書  Specification
DNAメチル化率の測定法 技術分野  Method for measuring DNA methylation rate
この出願の発明は、 DNAメチルイ匕率の測定方法に関するものである。 さらに詳し くは、 この出願の発明は、 癌細胞の悪性度の評価や、 あるいは in vitro細胞の分化 状態の評価等に有用な DNAメチル化の測定方法に関するものである。 背景技術  The invention of this application relates to a method for measuring a DNA methylation ratio. More specifically, the invention of this application relates to a method for measuring DNA methylation that is useful for evaluating the degree of malignancy of cancer cells, or for evaluating the state of differentiation of cells in vitro. Background art
多細胞生物における細胞の分化や機能発現には、 遺伝子情報が正しく発現される ことが不可欠であるが、 その発現制御には、 転写調節因子のネットワークだけでな く、DNAのメチル化ゃクロマチン動態の変化といったェピジヱネティック機構の関 与が重要視されている。 特に、 ゲノム DNA中のシトシンのメチル化は、 遺伝子発 現を負に制御していることが知られている。 また、 ゲノム上でのメチル化のパター ンの差異が、 ゲノムィンプリンティングゃ X染色体不活性化現象との関連を示すこ とや、 さらには癌や丄 GF (immunodeficiency, centromeric instability and facial anomalies) 症候群、 Rett症候群、 脆弱 X症候群などの疾患にも関係することが報 告されている (例えば非特許文献 1参照)。  The correct expression of genetic information is essential for cell differentiation and functional expression in multicellular organisms, but its expression is controlled not only by a network of transcriptional regulators, but also by DNA methylation and chromatin dynamics. Emphasis is placed on the involvement of the epidemi- netic mechanism, such as the change in In particular, it is known that cytosine methylation in genomic DNA negatively regulates gene expression. In addition, differences in methylation patterns on the genome indicate a relationship with genomic imprinting プ リ ン X chromosome inactivation phenomena, as well as cancer and GF GF (immunodeficiency, centromeric instability and facial anomalies). It has been reported that it is also involved in diseases such as syndrome, Rett syndrome, and fragile X syndrome (for example, see Non-Patent Document 1).
DNA鎖のメチルシトシンを測定する方法としては、メチル化感受性の制限酵素に よる切断片を比較する方法、 bisulfite法、 methylation-specificPCR法、 高速液体 クロマトグラフィー(HPLC)を用いる方法等が知られている(非特許文献 1参照)。 また、 特許文献 1にはメチル化の対象となる CG連続配列 (CpGアイランド) を含 む DNA鎖を特異的に PCR増幅する方法が、特許文献 2にはメチルシトシンを含む DNA鎖に特異的にハイプリダイズする標識 DNA断片を用いる方法が開示されてい る。  Methods for measuring methylcytosine in DNA chains include methods for comparing fragments cut by methylation-sensitive restriction enzymes, bisulfite method, methylation-specific PCR, and methods using high-performance liquid chromatography (HPLC). (See Non-Patent Document 1). Patent Literature 1 discloses a method for specifically PCR-amplifying a DNA strand containing a CG continuous sequence (CpG island) to be methylated. Patent Literature 2 specifically describes a method for specifically amplifying a DNA strand containing methylcytosine. A method using a labeled DNA fragment that hybridizes is disclosed.
【特許文献 1】 特表平 11-511776号公報 [Patent Document 1] Japanese Patent Publication No. 11-511776
【特許文献 2】  [Patent Document 2]
特表 2002-535998号公報  JP 2002-535998A
【非特許文献 1】  [Non-Patent Document 1]
波平昌ー 他 実験医学 20(7):1_19- 1024, 2002 発明の開示 前記のとおり、 DNA鎖のメチルイ匕は、癌をはじめとする様々な疾患の重要な指標 であり、 また遺伝子発現の制御に関係することから、 例えば細胞の分ィ匕の程度を把 握するための指標ともなり、 これまでにその測定方法が様々に検討されている。 Namihira Masaru et al. Experimental Medicine 20 (7): 1_19-1024, 2002 DISCLOSURE OF THE INVENTION As described above, methylation of DNA strands is an important indicator of various diseases including cancer, and control of gene expression. Therefore, it can be used as an index for grasping the degree of cell division, for example, and various measurement methods have been studied so far.
—方、 例えば医療の現場において DNAメチル化を測定する場合には、 迅速かつ 正確に判定結果が得られることが求められている。 しかしながら、 このような観点 からは従来の各方法は、 必ずしも好ましい方法ではなかった。 例えば、 制限酵素を 用いる方法の場合にはサザンプロッティング等による断片の比較手続が必須であり、 bisulfite法や特許文献 1の方法では PCR法とその産物の DNA配列分析等の面倒な 作業を必要とする。 特に、 従来の方法では、 被験サンプルとしての: DNA鎖に対し て必要な処理を不可欠とするため、 判定結果を得るまでに多大な時間と労力を要す るという問題点を有していた。 —On the other hand, when measuring DNA methylation in the medical field, for example, it is required to be able to obtain judgment results quickly and accurately. However, from this point of view, the conventional methods are not always preferable methods. For example, in the case of a method using a restriction enzyme, fragment comparison procedures such as Southern plotting are indispensable, and the bisulfite method and the method of Patent Document 1 require cumbersome work such as PCR and DNA sequence analysis of the product. And In particular, the conventional method has a problem that it takes a great deal of time and effort to obtain a judgment result because necessary processing is required for a test sample: a DNA strand.
この出願の発明は以上のとおりの事情に鑑みてなされたものであって、 簡便かつ 正確に DNAメチルイ匕の程度を測定する方法を提供することを課題としている。 この出願は、 前記の課題を解決する発明として、 5-メチルシトシンと特異的に結 合する抗体を 1本鎖 DNAと接触させ、 DNA鎖に結合した抗体量を測定することを 特徴とする DNAメチル化率の測定方法を提供する。  The invention of this application has been made in view of the circumstances described above, and has as its object to provide a method for simply and accurately measuring the degree of DNA methylation. The present invention solves the above-mentioned problem by contacting an antibody that specifically binds to 5-methylcytosine with single-stranded DNA, and measuring the amount of the antibody bound to the DNA chain. Provided is a method for measuring a methylation rate.
またこの発明の方法においては、 1価結合した抗体を DNA鎖から分離し、 2価 結合した抗体量を測定することによって、 5-メチルシトシンの密集領域を特定する ことを好ましい態様の一つとしている。 In the method of the present invention, the monovalently bound antibody is separated from the DNA chain, One of the preferable embodiments is to specify the dense region of 5-methylcytosine by measuring the amount of the bound antibody.
さらにこの発明の方法においては、 1本鎖 DNAの任意領域以外を 2本鎖とし、 1本鎖の領域について DNAメチル化率を測定することを別の好ましい態様として いる。  In another preferred embodiment of the method of the present invention, a region other than an arbitrary region of the single-stranded DNA is double-stranded, and the DNA methylation rate is measured for the single-stranded region.
なお、 この発明において 「DNA鎖」 とは、 プリンまたはピリミジンが糖に -Ν- グリコシド結合したヌクレオシドのリン酸エステル(dATP、 dGTP、 dCTP、 dTTP) がホスホジエステル結合した分子を言い、 特にゲノム DNA鎖を意味する。 また、 この発明におけるその他の用語や概念は、 発明の実施形態の説明や実施例において 詳しく規定する。 1またこの発明を実施するために使用する様々な技術は、 特にその 出典を明示した技術を除いては、 公知の文献等に基づいて当業者であれば容易かつ 確実に実施可能である。 例えば、 遺伝子工学および分子生物学的技術は Sambrook and Maniatis, m Molecular Cloning- A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, F. M. et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N.Y, 1995等に記載されている。 以下、 各発明について、 実施形態を詳しく説明する。 この出願の発明は、 前記のとおり、 5-メチルシトシンと特異的に結合する抗体を 1本鎖 DNAと接触させ、 DNA鎖に結合した抗体量を測定し、 この抗体量によって DNAメチルイヒ率を決定することを特徴としている。 In the present invention, the “DNA chain” refers to a molecule in which a phosphoric acid ester of a nucleoside (dATP, dGTP, dCTP, dTTP) in which a purine or pyrimidine is bonded to a sugar with a -Ν-glycosidic bond is a phosphodiester bond. Means chain. Other terms and concepts in the present invention are defined in detail in the description of the embodiments of the present invention and examples. (1) Various techniques used for carrying out the present invention can be easily and reliably implemented by those skilled in the art based on known documents and the like, except for the technique for which the source is clearly indicated. For example, genetic engineering and molecular biology techniques are described in Sambrook and Maniatis, Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989; Ausubel, FM et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, 1995 and the like. Hereinafter, embodiments of each invention will be described in detail. As described above, in the invention of this application, an antibody that specifically binds to 5-methylcytosine is brought into contact with single-stranded DNA, the amount of the antibody bound to the DNA chain is measured, and the DNA methyl efficiency is determined based on the amount of the antibody. It is characterized by doing.
5-メチルシトシンと特異的に結合する抗体(以下、 「抗 5-メチルシトシン抗体」 と 記載することがある) は、 ポリクローナル抗体またはモノクローナル抗体であり、 5-メチルシトシンに結合することができる全体分子、 および Fab、 F(ab')2、 Fv断片 等であるが、 特に、 モノクローナル抗体の全体分子であることが好ましい。 モノク ローナル抗 5-メチルシトシン抗体は、 5-メチルシトシンを免疫原として、 公知のモ ノクローナル抗体作製法 (例えば、 「単クローン抗体」、 長宗香明、 寺田弘共著、 廣 川書店、 1990年; "Monoclonal Antibody" James W. Goding, third edition, Academic Press, 1996) に従い作製することができる。 また、 5·メチルシトシンを 特異的に認識するモノクローナル抗体は、文献(例えば、 Reynaud C. et al., Cancer Lett, 1992 Jan 31;61(3):255-62; Mizugaki M. et al, Biol Pharm Bull. 1996 Dec; 19(12):1537-40; Podesta A. et al., Int J Biochem, 1993 Jun;25(6):929-33) 等 が知られており、 これらを使用することもできる。 An antibody that specifically binds to 5-methylcytosine (hereinafter sometimes referred to as “anti-5-methylcytosine antibody”) is a polyclonal or monoclonal antibody that can bind to 5-methylcytosine Molecules, and Fab, F (ab ') 2 , Fv fragments, etc., and particularly preferably the whole molecule of the monoclonal antibody. Monoclonal anti-5-methylcytosine antibody can be prepared by using known methods for producing monoclonal antibodies using 5-methylcytosine as an immunogen (for example, “Monoclonal antibody”, written by Kamei Nagamune and Hiroshi Terada, Hiro Kawashoten, 1990; "Monoclonal Antibody" James W. Goding, third edition, Academic Press, 1996). Monoclonal antibodies that specifically recognize 5-methylcytosine are described in the literature (eg, Reynaud C. et al., Cancer Lett, 1992 Jan 31; 61 (3): 255-62; Mizugaki M. et al, Biol. Pharm Bull. 1996 Dec; 19 (12): 1537-40; Podesta A. et al., Int J Biochem, 1993 Jun; 25 (6): 929-33) and the like, and these should be used. You can also.
DNA鎖に結合した (すなわち、 DNA鎖中の 5-メチルシトシンに結合した) 抗体 量の測定は、 例えば、 抗 5-メチルシトシン抗体を標識ィ匕し、 この標識シグナル量を 測定することによって行うことができる。 また、 抗体に結合する 2次抗体 (例えば 抗 IgG抗体) を標識化し、 DNA鎖に結合した抗 5-メチルシトシン抗体 ( 1次抗体) に 2次抗体を結合させ、 その標識シグナルを測定する方法 (いわゆる 「サンドイツ チ法」) によって行うこともできる。標識は、酵素、放射性同位体または蛍光色素を 使用することができる。 酵素は、 turnover numberが大であること、 抗体と結合さ せても安定であること、 基質を特異的に着色させる等の条件を満たすものであれば 特段の制限はなく、 通常の EIAに用いられる酵素、 例えば、 ぺ^/ォキシダーゼ、 β —ガラタトシダーゼ、 ァノレカリフォスファターゼ、 グノレコースォキシダーゼ、 ァセ チルコリンエステラーゼ、 グルコース一 6—リン酸化脱水素酵素、 リンゴ酸脱水素 酵素等を用いることもできる。 また、 酵素阻害物質や補酵素等を用いることもでき る。 これら酵素と抗体との結合は、 マレイミド化合物等の架橋剤を用いる公知の方 法によって行うことができる。 基質としては、 使用する酵素の種類に応じて公知の 物質を使用することができる。 例えば酵素としてペルォキシダーゼを使用する場合 には、 3,3',5,5 '—テトラメチルベンジシンを、また酵素としてアルカリフォスファタ ーゼを用いる場合には、 パラニトロフエノール等を用いることができる。 放射性同 位体としては、 ΐ25 Ιや3 Η等の通常の RIAで用いられているものを使用することが できる。 蛍光色素としては、 フルォレツセンスイソチオシァネート (FITC) ゃテト ラメチルローダミンイソチオシァネート (TRITC) 等の通常の蛍光抗体法に用いら れるものを使用することができる。 また、 このような標識シグナルの測定は、 標識 として酵素を用いる場合には、 酵素作用によって^^して発色する基質を加え、 基 質の分解量を光学的に測定することによって酵素活性を求め、 これを結合抗体量に 換算し、標準値との比較から抗体量が算出される。放射生同位体を用いる場合には、 放射性同位体の発する放射線量をシンチレーシヨンカウンタ一等により測定する。 また、 蛍光色素を用いる場合には、 蛍光顕微鏡を組み合わせた測定装置によって蛍 光量を測定すればよい。 The amount of the antibody bound to the DNA chain (that is, bound to 5-methylcytosine in the DNA chain) is measured, for example, by labeling an anti-5-methylcytosine antibody and measuring the amount of the labeled signal. be able to. The secondary antibody that binds to the antibody (e.g. anti-I g G antibodies) labeled, to bind the second antibody to the anti-5-methylcytosine antibody bound to the DNA strand (first antibody), measuring the labeled signal (The so-called “San German law”). Labels can use enzymes, radioisotopes or fluorescent dyes. There are no particular restrictions on the enzyme as long as it meets the conditions such as a large turnover number, stability even when bound to the antibody, and specific coloring of the substrate. Enzymes, such as ぺ ^ / oxidase, β-galatatosidase, anorecaliphosphatase, gnorecosoxidase, acetylcholinesterase, glucose 16-phosphorylation dehydrogenase, and malate dehydrogenase. it can. In addition, enzyme inhibitors, coenzymes, and the like can also be used. The binding between the enzyme and the antibody can be performed by a known method using a crosslinking agent such as a maleimide compound. As the substrate, a known substance can be used depending on the type of the enzyme to be used. For example, when peroxidase is used as an enzyme, 3,3 ', 5,5'-tetramethylbenzicin can be used.When alkaline phosphatase is used as an enzyme, paranitrophenol can be used. . As the radioisotope, those used in normal RIA such as { 25 } and 3 } can be used. Fluorescent dyes such as fluorescein isothiocyanate (FITC) and tetramethylrhodamine isothiocyanate (TRITC) are commonly used in fluorescent antibody methods. Can be used. In the measurement of such a label signal, when an enzyme is used as the label, the enzyme activity is determined by adding a substrate that develops color by the action of the enzyme and optically measuring the amount of decomposition of the substrate. This is converted to the amount of bound antibody, and the amount of antibody is calculated by comparison with a standard value. When using radioactive isotopes, measure the radiation dose emitted by the radioisotope using a scintillation counter or the like. When a fluorescent dye is used, the amount of fluorescence may be measured by a measuring device combined with a fluorescence microscope.
この発明の方法は、 液相系で行うこともでき、 固相系で行うこともできるが、 安 定した測定値を得るためには、 固相系で行うことが好ましい。 すなわち、 被験試料 である DNA鎖を固相に固定化し、 この固定ィ匕 DNA鎖に抗 5-メチルシトシン抗体 を反応させる。 DNA鎖 (特にゲノム DNA) を固相に固定化するには、 例えば、 固 相に 2本鎖リンカー DNAを固定ィ匕し、 このリンカ一の端部と一致させて制限酵素 切断した 2本鎖ゲノム DNAをリガーゼを用いて連結させる方法等を採用すること ができる。 リンカ一 DNAを固相に固定化するには、 リンカ一 DNAの一端を公知の 方法によりピオチン化し、 これをアビジンコートした固相に固定化することによつ て行うことができる。 あるいは、官能基を導入したリンカ一 DNAを合成し、表面処 理した固相担体表面にリンカ一 DNA を点着し、 共有結合させる方法 (例えば、 Lamture, J.B. et al. Nucl. Acids Res. 22:2121-2125, 1994; Guo, Z. et al. Nucl. Acids Res. 22:5456-5465, 1994) を採用することもできる。 さらに、 以上の方法に より固定ィ匕した 2本鎖 DNAは、 例えば塩酸溶液等によつて変性処理することによ つて 1本鎖 DNAとすることができる。  The method of the present invention can be performed in a liquid phase system or a solid phase system, but is preferably performed in a solid phase system in order to obtain stable measured values. That is, a DNA chain as a test sample is immobilized on a solid phase, and the immobilized DNA chain is reacted with an anti-5-methylcytosine antibody. In order to immobilize a DNA chain (particularly genomic DNA) on a solid phase, for example, a double-stranded linker DNA is immobilized on the solid phase, and the double-stranded strand cut with a restriction enzyme so as to match the end of the linker. A method of linking genomic DNA using ligase can be employed. Immobilization of the linker DNA on the solid phase can be carried out by making one end of the linker DNA biotinylated by a known method and immobilizing it on an avidin-coated solid phase. Alternatively, a method of synthesizing linker DNA into which a functional group has been introduced, spotting the linker DNA on the surface-treated surface of the solid support, and covalently binding the linker DNA (eg, Lamture, JB et al. Nucl. Acids Res. 22 : 2121-2125, 1994; Guo, Z. et al. Nucl. Acids Res. 22: 5456-5465, 1994). Furthermore, the double-stranded DNA immobilized by the above method can be converted into single-stranded DNA by denaturing with, for example, a hydrochloric acid solution or the like.
この発明の方法は、 また、 1価結合した抗 5-メチルシトシン抗体を DNA鎖から 分離し、 2価結合した抗体量を測定することによって、 5-メチルシトシンの密集領 域を特定することを好ましい態様の一つとしている。 すなわち、 抗体 (IgG) 分子 は、 1本の Fc部分と 2本の Fab部分とからなっており、 対象のェピト一ブに対し て Fab部分の先端が結合する。 従って、 図 1に示したように、 DNA鎖の 5·メチル シトシンが 1個の場合には、抗 5-メチルシトシン抗体の 1本の Fab部分が結合し( 1 価結合:図 1B)、一方、適当な距離に 2個の 5-メチルシトシンが存在する場合には、 2本の Fabがそれぞれの 5-メチルシトシンに結合する ( 2価結合:図 1A)。抗体の 2価結合は、 1価結合に比べて約 103 (M-i) 倍も強レ、親和性を持つことが知られて いるため、 1価結合した抗体を除去し、 2価結合した抗体を測定することによって、 5-メチルシトシンが密集する領域を高精度で検出することができる。 The method of the present invention also provides a method for separating a monovalently bound anti-5-methylcytosine antibody from a DNA chain and measuring the amount of the divalently bound antibody to specify a dense region of 5-methylcytosine. This is one of the preferred embodiments. That is, an antibody (IgG) molecule is composed of one Fc part and two Fab parts, and the tip of the Fab part binds to the target peptide. Therefore, as shown in Figure 1, the 5-methyl In the case of one cytosine, one Fab portion of the anti-5-methylcytosine antibody binds (monovalent binding: FIG. 1B), while two 5-methylcytosines exist at an appropriate distance. In, two Fabs bind to each 5-methylcytosine (bivalent binding: FIG. 1A). The divalent binding of the antibody is known to have about 103 (Mi) times higher affinity than the monovalent binding, and the affinity of the divalent antibody is removed. By measuring, a region where 5-methylcytosine is concentrated can be detected with high accuracy.
ここで抗体分子と DNA分子の分子サイズについて論ずる。 IgG分子構造はおよ そアルファベットの Tに似た構造を呈しており、 2つの Fabの两端間、すなわち 2 つの抗原結合部位の距離はおよそ 142nm であることが明らかとなっている (Sarma V.R. et al., J.Bio.Chem., vol.246,pp3753-3759, 1971)。 また、 Watsonと Crickが提唱した DNAの 2重らせん構造の B型 DNAでは、 1塩基対ごとに 0.34nm の間隔で並び、 DNAのらせんが 1回転する間隔であるピッチは 3.4ηηιである。 こ れから換算すると、 IgG分子に存在する 2力所の抗原結合部位の約 14nmは、 塩基 数に換算すると約 42塩基の距離に相当する。従って、抗 5-メチルシトシン抗体は、 同一 DNA上に存在する異なる 2つの 5-メチルシトシン間の距離がおよそ 40塩基以 内に存在すれば、 DNAに対して 2価結合することができる。  Here we discuss the molecular size of antibody and DNA molecules. The IgG molecular structure has a structure similar to the letter T in the alphabet, and it has been revealed that the distance between the two ends of the two Fabs, that is, the distance between the two antigen-binding sites is about 142 nm (Sarma VR et al., J. Bio. Chem., vol. 246, pp3753-3759, 1971). In the case of B-type DNA with a double helix structure proposed by Watson and Crick, the DNA is arranged at intervals of 0.34 nm for each base pair, and the pitch at which the helix of the DNA makes one rotation is 3.4ηηι. When converted from this, about 14 nm of the two-point antigen-binding site present in the IgG molecule corresponds to a distance of about 42 bases in terms of the number of bases. Therefore, an anti-5-methylcytosine antibody can bind divalently to DNA if the distance between two different 5-methylcytosines present on the same DNA is within about 40 bases.
後記実施例 4、 5に示したように、 1本鎖 DNA中の 5-メチルシトシン含有率が 例えばおよそ 4.4%に上った場合には、 抗 5-メチルシトシン抗体は複数個の 5-メチ ルシトシンを含む 1本鎖 DNAに 2価結合できるようになり、 それは、 同一 1本鎖 DNA上の異なる 2つの 5-メチルシトシン分子間の平均距離が約 14mn以下になる と推察される。  As shown in Examples 4 and 5 described below, when the content of 5-methylcytosine in single-stranded DNA is, for example, about 4.4%, the anti-5-methylcytosine antibody may contain a plurality of 5-methylcytosine antibodies. It becomes possible to bind divalently to single-stranded DNA containing lucitosin, which is presumed that the average distance between two different 5-methylcytosine molecules on the same single-stranded DNA is about 14 mn or less.
この原理を利用して、 抗 5-メチルシトシン抗体を nano-scale-rod、 すなわちおよ そ 14nm を測定する 「ナノものさし」 として利用することができる。 具体的には、 同一 1本鎖 DNA分子上の異なる 2つの 5-メチルシトシン分子間の距離を測る場合、 抗体 (IgG) が 1価結合しかできない場合には 5-メチルシトシン分子間の距離はお よそ 14nm以上で、 2価結合できる場合には 14nm以内の距離にあると言える。 こ れを利用して、 DNA中の 5-メチルシトシン含有率を求めることが可能である。 なお、 1価結合抗体を除去するには、 例えば、 アルカリ性または酸性の緩衝液、 高塩濃度の緩衝液を作用させる方法、 抗原 (5-メチルシトシン) の過剰量を共存さ せて拮抗させる方法、 あるいは溶液温度を上昇させる方法等を採用することができ る。 またこの発明の方法においては、 抗 5-メチルシトシン抗体を反応させ、 1価結 合および 2価結合のそれぞれの抗体を DNA鎖に結合させた後、 上記の方法によつ て 1価結合抗体を除去(解離) させてもよく、あるいは、上記の緩衝液等を用いて、 2価結合の抗体だけを DNA鎖に結合させるようにしてもよい。 Using this principle, anti-5-methylcytosine antibodies can be used as a nano-scale-rod, ie, a “nano-scale” that measures approximately 14 nm. Specifically, when measuring the distance between two different 5-methylcytosine molecules on the same single-stranded DNA molecule, if the antibody (IgG) can only make a monovalent bond, the distance between the 5-methylcytosine molecules is approximately It can be said that it is within 14nm if it can be more than 14nm and can form a divalent bond. This Using this, it is possible to determine the content of 5-methylcytosine in DNA. In order to remove the monovalent binding antibody, for example, a method in which an alkaline or acidic buffer solution or a buffer solution with a high salt concentration is applied, or a method in which an excess amount of an antigen (5-methylcytosine) is used for antagonism Alternatively, a method of increasing the solution temperature can be adopted. Further, in the method of the present invention, after reacting an anti-5-methylcytosine antibody and binding each of the monovalent and divalent antibodies to the DNA chain, the monovalent binding antibody is obtained by the above method. May be removed (dissociated), or only the divalent antibody may be bound to the DNA chain using the above-mentioned buffer or the like.
さらにこの発明の方法においては、 1本鎖 DNAの任意領域以外を 2本鎖とし、 1本鎖の領域について DNAメチル化率を測定することを別の好ましい態様として いる (図 3参照)。 この方法は、 特に DNAのメチルイ匕が重要な意味をもつ領域 (例 えば遺伝子の発現制御領域等) のみを対象として 5-メチルシトシンの存在量やその 密度を測定する場合に特に好ましい。 測定対象領域以外を 2本鎖とするには、 2本 鎖とする領域の DNA配列に対して相補的な 1本鎖オリゴヌクレオチド断片をァニ ールさせる方法等を採用することができる。  Further, in the method of the present invention, another preferred embodiment is that a region other than an arbitrary region of the single-stranded DNA is double-stranded and the DNA methylation rate is measured for the single-stranded region (see FIG. 3). This method is particularly preferable when measuring the abundance of 5-methylcytosine and its density only in a region (eg, a gene expression control region or the like) where DNA methylation is important. In order to make the region other than the region to be measured double-stranded, a method of annealing a single-stranded oligonucleotide fragment complementary to the DNA sequence of the region to be double-stranded can be adopted.
以下、 実施例を示してこの出願の発明をさらに詳細かつ具体的に説明するが、 こ の発明は以下の例によって限定されるものではない。 実施例 1 :抗体の作成  Hereinafter, the invention of this application will be described in more detail and specifically with reference to examples, but the invention is not limited to the following examples. Example 1: Preparation of antibody
5-methylcytidine-KLH (KLH=キーホールリンペットへモシァニン) コンジュ ゲート (100μ§) を FCA (フロイント 'コンプリート 'アジュパント) と共にマウ ス足掌に投与し、 9日目にリンパ節を取り、 マウスミエローマ細胞 (SP2/0) と融合 させた。得られた融合細胞を 96穴培養プレート 3枚に撒き、常法に従って HAT培 地を用いたハイプリドーマの選択的育成を行った。 培養開始から約 10 日から 2週 間後に、 育成してきたハイプリドーマの培養上精について抗体活性をスクリーニン グした。 具体的には、 抗原 [5-methylcytidineを BSA (牛血清アルブミン) に結合 させた 5-methylcytidine-BSAコンジユゲート ]を lO g/mlの濃度で PBSに溶解し、 これを 96穴 ELISA用プレートにコーティングし、その後、 BSAで常法に従ってプ ロッキングした後、 これに前記ハイプリ ドーマの培養上清を反応させ、 抗体反応陽 性を呈したハイプ'リ ドーマを取得した。 さらに、 cytidine を BSA に結合させた cytidine-BSA コンジユゲートに対する抗体反応性も同様に測定し、 cytidine-BSA に対して交差性の見られない、 あるいは低い抗体を産生するハイプリドーマを選択 し、最終的にこのハイブリドーマから常法に従レ、、抗 5-メチルシトシン抗体を得た。 実施例 2 :抗体の特異性の検討 (1) 5-methylcytidine-KLH (KLH = keyhole limpet hemosinin) conjugate (100μ § ) was administered to mouse paws together with FCA (Freund 'Complete' adjuvant), lymph nodes were removed on day 9 and mouse myeloma was removed. It was fused with cells (SP2 / 0). The obtained fused cells were seeded on three 96-well culture plates, and hybridomas were selectively grown using HAT medium according to a conventional method. About 10 days to 2 weeks after the start of the culture, antibody activity was screened for the cultured sperm of the hybridoma that had been grown. Specifically, the antigen [5-methylcytidine binds to BSA (bovine serum albumin) 5-methylcytidine-BSA conjugate] was dissolved in PBS at a concentration of lO g / ml, and this was coated on a 96-well ELISA plate, and then blocked with BSA according to a conventional method. The culture supernatant was allowed to react to obtain a hydrideoma exhibiting antibody reaction positivity. In addition, the antibody reactivity against the cytidine-BSA conjugate in which cytidine was conjugated to BSA was measured in the same manner, and a hybridoma producing no or low cross-activity with cytidine-BSA was selected. First, an anti-5-methylcytosine antibody was obtained from the hybridoma according to a conventional method. Example 2: Examination of antibody specificity (1)
実施例 1で作製した抗 5-メチルシトシン抗体の反応特異性を調べるため、 以下の 実験を行った。  The following experiment was performed to examine the reaction specificity of the anti-5-methylcytosine antibody prepared in Example 1.
マウス focal adhesion kinase (GenBank M95408) の cDNA塩基配列のうち、 1966番目から 2190番目の塩基にあたる 225塩基の DNA断片(図 3、配列番号 1 ) を PCR法により増幅した。 この時、 PCR用センス鎖プライマーは、 5' 位をビォチ ン化したオリゴ DNAを使用した。 铸型 DNAにはマゥス脳 cDNAを用レ、、 以下の 条件で PCRを行った。  A 225-base DNA fragment (SEQ ID NO: 1) corresponding to nucleotides 1966 to 2190 in the cDNA base sequence of mouse focal adhesion kinase (GenBank M95408) was amplified by PCR. At this time, oligo DNA having a 5′-position biotinylated was used as a PCR sense strand primer. Mouse brain cDNA was used as type I DNA, and PCR was performed under the following conditions.
なお、 PCR産物である 2本鎖 DNAのセンス鎖には 50塩基のシトシン塩基が存 在するが、 PCRプライマー部分を除く 46塩基のうちの 20塩基のシトシンがランダ ムに 5-メチルシトシンに置換されるように (図 3 参照)、 PCR反応溶液中に 5-methyl-2' -deoxycytidine-5' -triphosphate (5m_dCTP)を混入させた。 具体的に は、 下記のデォキシヌクレオチド ·ストック A液とストック B液を 26対 20の比 率で混合した溶液を用いて PGR反応を行った。  The double-stranded DNA, which is the PCR product, contains 50 cytosine bases in the sense strand of the double-stranded DNA, but 20 bases out of 46 bases excluding the PCR primer are randomly replaced with 5-methylcytosine. As shown in Figure 3, 5-methyl-2'-deoxycytidine-5'-triphosphate (5m_dCTP) was mixed into the PCR reaction solution. Specifically, a PGR reaction was performed using a solution obtained by mixing the following deoxynucleotide stock solution A and stock B solution at a ratio of 26:20.
PCR用プライマー: PCR primers:
センスプライマー:5' -Biotin-CGTGAAGCCTTTTCAAGGAG-3' (配列番号 2 ) 了ンチセンスプライマー: 5, -TCCATCCTCATCCGTTCTTC-3' (配列番号 3 ) 使用酵素:  Sense primer: 5'-Biotin-CGTGAAGCCTTTTCAAGGAG-3 '(SEQ ID NO: 2) Antisense primer: 5, -TCCATCCTCATCCGTTCTTC-3' (SEQ ID NO: 3) Enzyme used:
Expand High-FideHty PCR System (ロッシュ 'ダイァグノステイクス社製) デォキシヌクレオチド: Expand High-FideHty PCR System (Roche's Diagnostics) Deoxynucleotides:
ストック A液 (0.5mM clATP, 0.5mM dTTP, 0.5mM dGTP, 0.5mM dCTP) ストック B液 (0.5mM dATP, 0.5mM dTTP, 0.5mM dGTP, 0.5mM 5m-dCTP) 上記デォキシヌクレオチド 'ストック溶液は、 PGR反応液 50 μ ΐ'中に、 Α液と Β 液の合計が 5 / になるように添加した。 それぞれの割合は作製する PCR産物にど れだけの割合で 5-メチルシトシンを取り込ませるかによつて任意に設定できる。 反応条件:  Stock A solution (0.5 mM clATP, 0.5 mM dTTP, 0.5 mM dGTP, 0.5 mM dCTP) Stock B solution (0.5 mM dATP, 0.5 mM dTTP, 0.5 mM dGTP, 0.5 mM 5m-dCTP) Deoxynucleotide stock solution above Was added to 50 μL of the PGR reaction solution so that the total of the solution and the solution was 5 /. Each ratio can be arbitrarily set depending on the ratio of 5-methylcytosine incorporated into the PCR product to be produced. Reaction conditions:
(1) 94.5, 2min x lサイクル  (1) 94.5, 2min x l cycle
(2) [94.5, 30sec/58°C, 30sec/72°C, 40sec ] x 28サイクル  (2) [94.5, 30sec / 58 ° C, 30sec / 72 ° C, 40sec] x 28 cycles
(3)72°C, 8min x 1サイクル  (3) 72 ° C, 8min x 1 cycle
PCR反応はサーマルサイクラ一 MP (宝酒造社) を用いて行った。  The PCR reaction was performed using Thermal Cycler MP (Takara Shuzo).
PCR反応後、 PCR産物から常法に従って DNAを精製し、 アビジンコートした 96穴マイクロタイタ一プレートに固定ィ匕した。次いで、この 2本鎖 DNAを、 50mM 塩酸で 2分間処理して 1本鎖化した。 この処理後にゥエルを PBS/lmM EDTAで数 回洗浄して、 アビジンに捕獲された 1本鎖 DNAのみをゥエルに固定ィ匕した。  After the PCR reaction, DNA was purified from the PCR product according to a conventional method and immobilized on an avidin-coated 96-well microtiter plate. Next, the double-stranded DNA was treated with 50 mM hydrochloric acid for 2 minutes to be single-stranded. After this treatment, the well was washed several times with PBS / lmM EDTA, and only the single-stranded DNA captured by avidin was immobilized on the well.
この固定化した 1本鎖 DNAに対して、 実施例 1で作製した抗 5-メチルシトシン 抗体 (1次抗体) と、 西洋ヮサビペルォキシダーゼ (HRP) 標識抗マウス IgG抗体 ( 2次抗体) を用いて、 常法に従い ELISAを行った。 ただし、 マイクロタイター プレートの通常の洗浄は、 10mM ris-HCl (pH7.6) /0.15M NaCl/0.05% T een20 を含む緩衝液で行い、 基質にはパラニトロフエニルリン酸 (シグマ社, N- 1891)を用 レ、、 基質と反応させてから一定時間後に 405nmの吸光度を測定した。  To this immobilized single-stranded DNA, the anti-5-methylcytosine antibody (primary antibody) prepared in Example 1 and horseradish peroxidase (HRP) -labeled anti-mouse IgG antibody (secondary antibody) ELISA was carried out according to a standard method using. However, the microtiter plate is usually washed with a buffer containing 10 mM ris-HCl (pH 7.6) /0.15 M NaCl / 0.05% Teen20, and the substrate is paranitrophenyl phosphate (Sigma, N After the reaction with the substrate, the absorbance at 405 nm was measured after a certain period of time.
ゥエル上に固定ィ匕した 1本鎖 DNA中に含まれる 5 -メチルシトシン含量を任意に 変え、 その時の抗 5-メチルシトシン抗体の反応性を検討した。 その ELISA測定結 果を図 4に示す。  The content of 5-methylcytosine contained in the single-stranded DNA immobilized on the well was changed arbitrarily, and the reactivity of the anti-5-methylcytosine antibody at that time was examined. Fig. 4 shows the results of the ELISA measurement.
図 4に示したとおり、抗 5 -メチルシトシン抗体はゥエル上に固定ィ匕した DNA中 の 5 -メチルシトシン含量が増加するに従レ、、抗体結合性が増加した。塩酸処理によ り 1本鎖化せずに 2本鎖のままゥエル上に固定化した場合、 その 2本鎖 DNAは合 計で約 43個の 5 -メチルシトシンを含む 2本鎖 DNAとなるが、 この 2本鎖 DNA に抗 5 -メチルシトシン抗体は結合しなかった。すなわち、抗 5-メチルシトシン抗体 は、 5 -メチルシトシンを含む 2本鎖 DNAには結合せず、 5 -メチルシトシンを含む 1本鎖 DNAにのみ特異的に結合することが確認された。 As shown in FIG. 4, the antibody binding to the anti-5-methylcytosine antibody increased as the content of 5-methylcytosine in the DNA immobilized on the gel increased. By hydrochloric acid treatment If the double-stranded DNA is immobilized on a well without being single-stranded, the total amount of the double-stranded DNA is about 43, which is a double-stranded DNA containing 5-methylcytosine. Anti-5-methylcytosine antibody did not bind to the single-stranded DNA. That is, it was confirmed that the anti-5-methylcytosine antibody did not bind to double-stranded DNA containing 5-methylcytosine, but specifically bound only to single-stranded DNA containing 5-methylcytosine.
実施例 3 :抗体の特異性の検討 (2) Example 3: Examination of antibody specificity (2)
20個の 5-メチルシトシンをランダムに有する DNA鎖を対象とし、抗 5-メチルシ トシン抗体 (1次抗体) の反応後、 異なる濃度の NaClを含むゥ工ル洗浄緩衝液で 10分間処理することを除き、 実施例 2と同様の方法により ELISAを実施した。 ま た、 1次抗体反応後に 0.15M NaCl を含む通常のゥ ル洗浄に使用する緩衝液 [lOmM Tris-HCl (pH7.6) /0.15M NaCl/O.05% Tween20]で 10分間処理したもの を比較対照 (100%) とした。  After reacting the anti-5-methylcytosine antibody (primary antibody) on the DNA strand having 20 5-methylcytosine randomly, treat it with a washing buffer containing different concentrations of NaCl for 10 minutes. ELISA was performed in the same manner as in Example 2 except for the above. In addition, after the primary antibody reaction, the plate was treated for 10 minutes with a buffer [10 mM Tris-HCl (pH7.6) /0.15M NaCl / 0.05% Tween20] used for normal cell washing containing 0.15M NaCl. Was used as a comparison control (100%).
結果は図 5に示したとおりである。 NaClの濃度に依存して、 抗 5-メチルシトシ ン抗体のメチルシトシンへの結合が阻害されるが、 0.5から 1Mの NaCl処理 (10 分) でも抗原抗体結合がある程度保持される事が確認された。  The results are as shown in FIG. The binding of anti-5-methylcytosine antibody to methylcytosine is inhibited depending on the concentration of NaCl, but it was confirmed that antigen-antibody binding was maintained to some extent even with 0.5 to 1 M NaCl treatment (10 minutes). .
実施例 4 :抗体の特異性の検討 (3) Example 4: Examination of antibody specificity (3)
96穴マイクロタイタープレートに固定化する 1本鎖 DNAあたりに含まれる 5- メチルシトシン含量を変化させた場合の、 NaCl処理に対する感受性を測定した。 すなわち、 1次抗体結合後、 0.5N NaClを含むゥエル洗浄緩衝液 (lOmM Tris-HCl (pH7.6) /0.5M NaCl/0.05% Tween20) でゥエルを 10分間処理することを除き、 実施例 3と同様に実施した。  The sensitivity to NaCl treatment when the content of 5-methylcytosine per single-stranded DNA immobilized on a 96-well microtiter plate was changed was measured. Example 3 except that after binding the primary antibody, the wells were treated for 10 minutes with a well washing buffer containing 0.5N NaCl (10 mM Tris-HCl (pH7.6) /0.5M NaCl / 0.05% Tween20) for 10 minutes. Was performed in the same manner as described above.
結果は図 6に示したとおりである。 なお、 lOmM Tris-HCl (pH7.6) /0.5M NaCl/0.05% T een20を用いた処理の代わりに、 通常のゥエル洗浄緩衝液 (lOmM Tris-HCl (pH7.6) /0.15M NaCl/0.05% T een20) で同様に 10分間処理したもの を比較対照とした。  The results are as shown in FIG. Instead of the treatment using lOmM Tris-HCl (pH7.6) /0.5M NaCl / 0.05% Teen20, a normal well washing buffer (lOmM Tris-HCl (pH7.6) /0.15M NaCl / 0.05 % Teen20) for 10 minutes as a control.
図 6にも示したとおり、抗 5-メチルシトシン抗体は、 96穴マイクロタイタープレ 一トのゥエルに固定化してある 1本鎖 DNA(225塩基)中に平均 4個の 5-メチルシト シンが含まれる場合には、 0.5M NaCl処理で抗原抗体反応は解離しやすいが、 ゥェ ル上に固定ィ匕された 1本鎖 DNAC225塩基)中に平均 10個の 5-メチルシトシンが存 在すると、 抗原に対する抗体の結合性は安定化し、 0.5M NaCl洗浄に対する抵抗性 が急に増加することが確認された。 As shown in Fig. 6, anti-5-methylcytosine antibody was used in a 96-well microtiter plate. If single-stranded DNA (225 bases) immobilized on a single well contains an average of four 5-methylcytosines, the antigen-antibody reaction is easily dissociated by treatment with 0.5 M NaCl, but The presence of an average of 10 5-methylcytosines in the single-stranded DNAC225 base immobilized on the DNA) stabilizes the binding of the antibody to the antigen and sharply increases the resistance to 0.5M NaCl washing. It was confirmed that.
実施例 5 :抗体の特異性の検討 (4) Example 5: Examination of antibody specificity (4)
実施例 1で作成した抗 5-メチルシトシン抗体はマゥス IgG2a、 κ鎖の抗体である が、 この抗体の Fabフラグメントを作製し、 Fabフラグメントと IgG全体分子の NaCl処理に対する結合抵抗性を比較検討した。 ELISAプロトコールは実施例 4に 従った。  The anti-5-methylcytosine antibody prepared in Example 1 was a mouse IgG2a, κ chain antibody.A Fab fragment of this antibody was prepared, and the binding resistance of the Fab fragment and the whole IgG molecule to NaCl treatment was compared and examined. . The ELISA protocol followed Example 4.
結果は図 7に示したとおりである。一般的に、抗原との結合部位を 2力所持つ IgG 分子と、 結合部位が 1力所の Fabフラグメントとでは、抗原と抗体のアブィニティ 一(平衡定数: M-i) はおよそ 1000倍の開きがあり、抗原と 2価結合できる IgG分 子の方がより強い親和性を持つ。 図 7から明らかなように、 抗 5-メチルシトシン抗 体の IgG分子は、 この IgGから派生した Fab分子より高塩濃度 (NaCl) 処理に対 する抵抗性が強い。 すなわち、 同じ NaCl濃度で比較すると、 Fabフラグメントは IgG分子より抗原から早く解離することが確認された。 The results are as shown in FIG. Generally, the I g G molecules with binding sites of the antigen 2 power plant, the Fab fragments binding sites 1 Chikarasho, Abuiniti one antigen and antibody (equilibrium constant: Mi) opens approximately 1000-fold IgG molecules capable of bivalent binding to an antigen have stronger affinity. As is clear from FIG. 7, IgG molecules of the anti-5-methylcytosine antibody are more resistant to treatment with a high salt concentration (NaCl) than Fab molecules derived from this IgG. That is, when compared at the same NaCl concentration, it was confirmed that the Fab fragment dissociated from the antigen faster than the IgG molecule.
以上の結果は、 実施例 4の結果と併せて、 以下のとおり考察される。 実施例 4で は、 1本鎖 DNA中の 5-メチルシトシン含有率がおよそ 1.8%の場合には高濃度の NaCl (ここでは 0.5Mの NaCl) による処理で、 抗原抗体反応の大部分が解離する が、 1本鎖 DNA中の 5-メチルシトシン含有率がおよそ 44%に上った場合には高濃 度の NaCl処理によっても、 抗原抗体結合を維持する IgG分子の割合が急に増加し た。  The above results, together with the results of Example 4, are considered as follows. In Example 4, when the content of 5-methylcytosine in the single-stranded DNA was about 1.8%, the treatment with a high concentration of NaCl (here, 0.5 M NaCl) dissociated most of the antigen-antibody reaction. However, when the content of 5-methylcytosine in single-stranded DNA reaches approximately 44%, the proportion of IgG molecules that maintain antigen-antibody binding increases rapidly even with high-concentration NaCl treatment. Was.
これはすなわち、実施例 5の Fabフラグメントを用いた試験結果からも明らかな ように、 1本鎖 DNA中の 5-メチルシトシン含有率が DNA分子の特定領域内に置 いて約 1.8%から約 4.4%に移行することによって、 抗 5-メチルシトシン抗体 (IgG 分子) が 1価結合から 2価結合に移行することを意味している。 言い換えれば、 抗 原 (5-メチルシトシン) が一定密度以上存在することによって、 抗 5-メチルシトシ ン抗体 1分子 (IgG) が同一 DNA分子上に存在する複数個の 5-メチルシトシン塩 基に 2価結合できるようになることを意味している。 That is, as is clear from the test results using the Fab fragment of Example 5, the 5-methylcytosine content in the single-stranded DNA was about 1.8% to about 4.4% in the specific region of the DNA molecule. %, The anti-5-methylcytosine antibody (IgG Molecule) changes from a monovalent bond to a divalent bond. In other words, the presence of the antigen (5-methylcytosine) at a certain density or higher allows one molecule of anti-5-methylcytosine antibody (IgG) to bind to multiple 5-methylcytosine bases present on the same DNA molecule. It means that valence bonding can be performed.
実施例 6 :特定領域の 5-メチルシトシン含量の測定例 Example 6: Example of measuring 5-methylcytosine content in specific region
抗 5-メチルシトシン抗体は 2本鎖 DNAと反応しないことを利用し、 2本鎖 DNA 中の特定の領域を限定的に 1本鎖化し、 この 1本鎖を測定対象領域として 5-メチル シトシン含量を測定した。  Utilizing the fact that an anti-5-methylcytosine antibody does not react with double-stranded DNA, a specific region in the double-stranded DNA is limited to a single strand, and this single strand is used as the measurement target area for 5-methylcytosine. The content was measured.
実施例 2の方法に従い、 図 3 (配列番号 1 ) に塩基配列を示した 2本鎖 DNAの センス鎖 DNA中に 20塩基の 5-メチルシトシンを含むように: PCR法で 2本鎖 DNA を合成した。 なお、 PCRプライマーは、 実施例 2と同一とした。  According to the method of Example 2, the sense strand of the double-stranded DNA whose nucleotide sequence is shown in FIG. 3 (SEQ ID NO: 1) should contain 20 bases of 5-methylcytosine in the sense strand DNA. Synthesized. The PCR primers were the same as in Example 2.
次に、 変性用緩衝液 [10mM Tris-HCKpH 8.l)/50mM KCl/1.5mM MgCl2]に 2本 鎖 DNA約 500ngと、 SOpmoleの合成ォリゴ DNA (図 8の 3種類:それぞれ配列 番号 4、 5、 6 ) を加えて全量 50 / lとし、 これを PCR用チューブ (200 j« l容量) に入れ、 PCR用サーマルサイクラーにセットした。 この反応液を 98°C、 2分間の変 性処理後、 直ちに 65°C、 30分の処理を行い、 DNAの再会合を誘導した。 これによ り、 2本鎖 DNAの一部の領域が、加えた合成ォリゴ DNAィンサートの妨害より、 限定した領域において 1本鎖化した状態で安定する。 すなわち合成オリゴ DNAィ ンサートが 2本鎖 DNAにサンドィツチされた状態で安定化する。得られた PCR産 物を、 アビジンコートした 96穴マイクロタイタープレートの基質上に、 オリゴィ ンサートがサンドイッチされた状態のまま固定化した。 ここでは前記の PCRチュ ーブ内の全反応溶液 50μ 1のうち、 5 1を 96穴マイクロタイタープレートの 1ゥ エルに加えて固定ィ匕した。 これより以降の操作は、前記の実施例 4と同様の ELISA プロトコールに従って行った。 ただし、 2次抗体として HRP標識抗マウス IgG抗 体を用い、基質としてはテトラメチルベンチジン (SIGMA社 ο&ΐ# ΊΗ)440)を用い、 室温において 30分間の発色反応後、 基質 100 j lに対して 0.3M硫酸を 20μ1加え て反応を停止し、 450mnにおける吸光度を測定した。 Next, about 500 ng of the double-stranded DNA was added to a denaturing buffer [10 mM Tris-HCK pH 8.l) / 50 mM KCl / 1.5 mM MgCl 2 ], and the synthetic oligo DNA of SOpmole (three types in FIG. 8; , 5 and 6) were added to make a total volume of 50 / l, which was placed in a PCR tube (200 jl volume) and set in a PCR thermal cycler. This reaction solution was subjected to a denaturation treatment at 98 ° C for 2 minutes, and then immediately treated at 65 ° C for 30 minutes to induce DNA reassociation. As a result, a portion of the double-stranded DNA is stabilized in a single-stranded state in a limited region due to the interference of the added synthetic oligo DNA insert. That is, the synthetic oligo DNA insert is stabilized while being sandwiched by the double-stranded DNA. The obtained PCR product was immobilized on a substrate of an avidin-coated 96-well microtiter plate while the oligo insert was sandwiched. Here, 51 out of 50 μl of the total reaction solution in the PCR tube was added to 1 well of a 96-well microtiter plate and immobilized. Subsequent operations were performed according to the same ELISA protocol as in Example 4 described above. However, HRP-labeled anti-mouse IgG antibody was used as the secondary antibody, and tetramethylbenzidine (SIGMA ο & ΐ # ΊΗ) 440) was used as the substrate. Add 20μ1 of 0.3M sulfuric acid The reaction was stopped by measuring the absorbance at 450 mn.
結果は図 9に示したとおりである。 被験対象である 2本鎖 DNA (225bp) にはセ ンス鎖あたり約 20塩基の 5-メチルシトシンを含有している。 2本鎖 DNAの端部に 近い領域にハイプリダイズするオリゴインサート # 1を使用した場合に最も吸光度 が高く、 オリゴィンサートのハイブリダイズする領域が 2本鎖 DNAの中央領域に 入るにつれて吸光度が低くなつていく。 使用したオリゴインサートは全て 30raer である。 従ってこのとき、 オリゴインサート # 1、 # 2および # 3が 2本鎖 DNA に結合した場合には、それぞれ 3塩基、 6塩基および 11塩基のシトシンが 1本鎖と して露出することになり、 このうちのおよそ 50%の割合のシトシンが 5-メチルシト シンに置き換わっている。 2本鎖 DNAから露出するシトシン数が少ないオリゴィ ンサート # 1の吸光度の方が高く、 露出するシトシン数がより多いオリゴインサー ト # 2、 # 3では吸光度が低くなつている。 すなわちこれは、 2本鎖 DNA上のォ リゴィンサートがハイプリダイズする位置は 2本鎖 DNAの末端部分の方が安定し、 中央部分に行くに従って 2本鎖 DNAから排除され易いことを意味している。 これ を解消する方法としては、 DNA同士の結合より強固に結合する 1本鎖 RNA力、 あ るいは同じく DNA同士の結合より強固に結合するぺプチド核酸 (DNAや RNAと は異なりリン酸結合ではなくぺプチド結合で骨格を形成しているオリゴ DNA。 PNAと略す。) を用いることにより、 標的 2本鎖の中央部分であっても効率よく、 かつ限局的に 1本鎖ィ匕を行うことができる。 これらに限らず、 DNA同士の結合より 強く、 なおかつ DNAとハイブリダイズする物質であれば、 前記のォリゴィンサー トの場合と同様の結果が得られる。 図面の簡単な説明  The results are as shown in FIG. The subject double-stranded DNA (225 bp) contains about 20 bases of 5-methylcytosine per sense strand. The highest absorbance is obtained when using oligo insert # 1, which hybridizes to the region near the end of the double-stranded DNA, and decreases as the region where the oligosinate hybridizes enters the central region of the double-stranded DNA. Keep going. All oligo inserts used are 30raer. Therefore, at this time, when oligo inserts # 1, # 2, and # 3 bind to double-stranded DNA, cytosine of 3, 6, and 11 bases, respectively, is exposed as a single strand, About 50% of these cytosines are replaced by 5-methylcytosine. The absorbance of oligoinsert # 1 with a small number of cytosines exposed from double-stranded DNA is higher, and the absorbance of oligoinserts # 2 and # 3 with a larger number of cytosines exposed is lower. In other words, this means that the position where oligosinate hybridizes on the double-stranded DNA is more stable at the end of the double-stranded DNA, and is more likely to be eliminated from the double-stranded DNA toward the center. . As a method of solving this, there are single-stranded RNA forces that bind more tightly than DNA bonds, or peptide nucleic acids that also bind more tightly than DNA bonds (unlike phosphate bonds, unlike DNA and RNA). Oligo-DNA that forms a backbone with peptide bonds, abbreviated as PNA), to efficiently and locally perform single-strand ligating even at the center of the target double-strand. Can be. The present invention is not limited to these, and if it is a substance that is stronger than the bond between DNAs and hybridizes with DNA, the same results as in the case of the above-described oligosert can be obtained. BRIEF DESCRIPTION OF THE FIGURES
【図 1】  【Figure 1】
(A)は、 5-メチルシトシンを含む 1本鎖 DNAに対する抗 5-メチルシトシン抗体の 2価結合を示し、 (B)は 1価結合を示す。 【図 2】 (A) shows divalent binding of the anti-5-methylcytosine antibody to single-stranded DNA containing 5-methylcytosine, and (B) shows monovalent binding. 【Figure 2】
部分的に 1本鎖とした DNA鎖の 5-メチルシトシンに対する抗 5-メチルシトシン 抗体の結合状態を示す。  FIG. 4 shows the binding state of an anti-5-methylcytosine antibody to 5-methylcytosine of a partially single-stranded DNA chain.
【図 3】  [Figure 3]
実施例で使用した DNA鎖の塩基配列である。 四角で囲ったシトシンが任意の割 合でランダムに 5-メチルシトシンに置換する。  It is a base sequence of a DNA chain used in Examples. Cytosine enclosed in a box is randomly substituted with 5-methylcytosine at an arbitrary ratio.
【図 4】  [Fig. 4]
DNA鎖に含まれる 5-メチルシトシンの個数と、 抗 5-メチルシトシン抗体の結合 の程度の関係を示したグラフである。  5 is a graph showing the relationship between the number of 5-methylcytosine contained in a DNA chain and the degree of binding of an anti-5-methylcytosine antibody.
【図 5】  [Figure 5]
1次抗体(5-メチルシトシン抗体)反応後に NaCl処理した場合の、 NaCl濃度と 抗 5:メチルシトシン抗体の結合の程度の関係を示したグラフである。  5 is a graph showing the relationship between the NaCl concentration and the degree of binding of an anti-5: methylcytosine antibody when NaCl treatment is performed after a primary antibody (5-methylcytosine antibody) reaction.
【図 6】  [Fig. 6]
1次抗体 (5-メチルシトシン抗体) 反応後に 0.15Mまたは 0.5Mの NaClで処理 した場合の、 DNA鎖に含まれる 5-メチルシトシンの個数と、 抗 5-メチルシトシン 抗体の結合の程度の関係を示したグラフである。  Primary antibody (5-methylcytosine antibody) Relationship between the number of 5-methylcytosine in the DNA chain and the degree of binding of the anti-5-methylcytosine antibody when treated with 0.15M or 0.5M NaCl after the reaction FIG.
【図 7】  [Fig. 7]
各濃度の NaClで処理した場合の、 5-メチルシトシン抗体 (IgG分子) とその Fab 分子の 5-メチルシトシン結合状態を示したグラフである。  It is the graph which showed the 5-methyl cytosine binding state of the 5-methyl cytosine antibody (IgG molecule) and the Fab molecule | numerator at the time of processing by NaCl of each density | concentration.
【図 8】  [Fig. 8]
実施例で 1本鎖 DNA領域を形成するために使用した合成オリゴ DNAィンサー ト #1〜3の塩基配列と、 これらのィンサートがハイブリダイズする DNA鎖の塩基 配列である。 ィンサートのハイブリダイズ領域を枠で示した。  FIG. 6 shows the base sequences of synthetic oligo DNA inserts # 1 to # 3 used to form a single-stranded DNA region in the examples, and the base sequences of DNA strands to which these inserts hybridize. The hybridized region of Insert is indicated by a box.
【図 9】  [Fig. 9]
合成ォリゴ DNAィンサート #1〜3をハイブリダイズした 2本鎖 DNAに対する 抗 5-メチルシトシン抗体の結合の程度を示したグラフである。 産業上の利用可能性 4 is a graph showing the degree of binding of an anti-5-methylcytosine antibody to double-stranded DNA hybridized with synthetic oligo DNA inserts # 1 to # 3. Industrial applicability
以上詳しく説明したとおり、 この出願の宪明によって、 DNA鎖の 5-メチルシト シンを簡便かつ正確に測定することが可能となり、 例えば癌の悪性度の診断等に新 たな手段が提供される。  As described in detail above, the description of this application makes it possible to easily and accurately measure 5-methylcytosine in a DNA chain, and provides a new means for diagnosing, for example, malignancy of cancer.

Claims

請 求 の 範 囲 The scope of the claims
1 . 5-メチルシトシンと特異的に結合する抗体を 1本鎖 DNAと接触させ、 DNA 鎖に結合した抗体量を測定することを特徴とする DNAメチル化率の測定方法。 1. A method for measuring the rate of DNA methylation, which comprises contacting an antibody that specifically binds to 5-methylcytosine with single-stranded DNA, and measuring the amount of the antibody bound to the DNA strand.
2. 1価結合した抗体を DNA鎖から分離し、 2価結合した抗体量を測定するこ とによって、 5-メチルシトシンの密集領域を特定する請求項 1の方法。 2. The method according to claim 1, wherein the monovalently bound antibody is separated from the DNA chain, and the amount of the divalently bound antibody is measured to identify the dense region of 5-methylcytosine.
3 . 1本鎖 DNAの任意領域以外を 2本鎖とし、 1本鎖の領域について DNAメ チル化率を測定する請求項 1または 2の方法。 3. The method according to claim 1, wherein a region other than an arbitrary region of the single-stranded DNA is double-stranded, and the DNA methylation ratio is measured for the single-stranded region.
PCT/JP2003/014873 2003-05-23 2003-11-21 Method of measuring dna methylation ratio WO2004104582A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-146069 2003-05-23
JP2003146069A JP3854943B2 (en) 2003-05-23 2003-05-23 Method for measuring DNA methylation rate

Publications (1)

Publication Number Publication Date
WO2004104582A1 true WO2004104582A1 (en) 2004-12-02

Family

ID=33475291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014873 WO2004104582A1 (en) 2003-05-23 2003-11-21 Method of measuring dna methylation ratio

Country Status (2)

Country Link
JP (1) JP3854943B2 (en)
WO (1) WO2004104582A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080565A1 (en) * 2004-02-20 2005-09-01 Japan Science And Technology Agency Dna array for analyzing dna methylation, method of constructing the same and mehtod of analyzing dna methylaion
EP3037531A4 (en) * 2013-08-21 2017-04-26 Fujirebio Inc. Method and kit for measuring modified nucleic-acid base using heterogeneous nucleic acid probe
CN107075505A (en) * 2014-09-29 2017-08-18 富士瑞必欧株式会社 The assay method and kit of target nucleic acid containing modification of nucleic acids base
US10961587B2 (en) 2014-08-28 2021-03-30 Cedars-Sinai Medical Center Early lung cancer detection by DNA methylation phenotyping of sputum-derived cells

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0413688D0 (en) * 2004-06-18 2004-07-21 Novartis Forschungsstiftung Analysis of methylated nucleic acid
JP2010017179A (en) * 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for determining or detecting dna
JP2010017178A (en) * 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for determining or detecting dna
JP6095058B2 (en) 2013-03-14 2017-03-15 国立研究開発法人産業技術総合研究所 Methylcytosine detection method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
W. SCHNEDL et al., "5-Methylcytsine in Heterochromatic Regions of Chromosomes: Chimpanzee and Gorilla Compared to the Human2, Chromosoma, Vol. 52(1975), pages 509 - 66 *
Yasaki SUNAGA 'Men'eki Senshokuho ni yoru DNA 5-Methylcytosine no Kenshutsu', Journal of Mammalian Ova Research, Vol. 20, (April 2003), pages 55 - 57 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080565A1 (en) * 2004-02-20 2005-09-01 Japan Science And Technology Agency Dna array for analyzing dna methylation, method of constructing the same and mehtod of analyzing dna methylaion
EP3037531A4 (en) * 2013-08-21 2017-04-26 Fujirebio Inc. Method and kit for measuring modified nucleic-acid base using heterogeneous nucleic acid probe
US10961587B2 (en) 2014-08-28 2021-03-30 Cedars-Sinai Medical Center Early lung cancer detection by DNA methylation phenotyping of sputum-derived cells
US11725250B2 (en) 2014-08-28 2023-08-15 Cedars-Sinai Medical Center Early lung cancer detection by DNA methylation phenotyping of sputum-derived cells
CN107075505A (en) * 2014-09-29 2017-08-18 富士瑞必欧株式会社 The assay method and kit of target nucleic acid containing modification of nucleic acids base
EP3202902A4 (en) * 2014-09-29 2018-03-07 Fujirebio Inc. Method and kit for measuring target nucleic acid containing modified nucleobase

Also Published As

Publication number Publication date
JP2004347508A (en) 2004-12-09
JP3854943B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
KR100557329B1 (en) Hybridization Portion Control Oligonucleotide and Its Uses
CN103370425B (en) For the method for nucleic acid amplification, composition, system, instrument and kit
US8143001B2 (en) Methods for analysis of nucleic acid methylation status and methods for fragmentation, labeling and immobilization of nucleic acids
US5834181A (en) High throughput screening method for sequences or genetic alterations in nucleic acids
JP7100680B2 (en) Systems and methods for clonal replication and amplification of nucleic acid molecules for genomic and therapeutic applications
US20040054162A1 (en) Molecular detection systems utilizing reiterative oligonucleotide synthesis
US20130059741A1 (en) Binding assays for markers
WO2019209946A1 (en) Sequential paired-end sequencing
JPH03272686A (en) Process for amplification
SG173221A1 (en) Methods for detection of genetic disorders
JP2004502431A (en) Signal amplification using lollipop probes
JP4532107B2 (en) Oligonucleotide probe selection based on ratio
JP3854943B2 (en) Method for measuring DNA methylation rate
JP2007521018A (en) Compositions, methods, and detection techniques for iterative oligonucleotide synthesis
JPH10505230A (en) Methods for Amplifying Nucleic Acids Using Modified Nucleosides and Detection of Amplification Products Using Antibodies
JP2001518787A (en) Nucleic acid hybridization detection system and its preparation and application
Lopez-Crapez et al. Detection of K-ras Mutations by a Microelectronic DNA Chip
JP2002209584A (en) Method for detecting nucleotide polymorphism
CN117897502A (en) Compositions and methods for detecting genetic features
JP3275969B2 (en) Method for amplifying nucleic acid sequence
KR20100089688A (en) Method for analyzing target nucleic acid
WO2002002814A1 (en) Highly sensitive method of detecting nucleic acid
Mendel-Hartvig Padlock Probes and Rolling Circle Amplification: New Possibilities for Sensitive Gene Detection
JPH05199900A (en) Amplification and detection of nucleic acid sequence and reagent kit therefor
CA2205234A1 (en) High throughput screening method for sequences or genetic alterations in nucleic acids

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US