WO2004103272A2 - Improved cytotoxic agents comprising new maytansinoids - Google Patents

Improved cytotoxic agents comprising new maytansinoids Download PDF

Info

Publication number
WO2004103272A2
WO2004103272A2 PCT/US2004/013314 US2004013314W WO2004103272A2 WO 2004103272 A2 WO2004103272 A2 WO 2004103272A2 US 2004013314 W US2004013314 W US 2004013314W WO 2004103272 A2 WO2004103272 A2 WO 2004103272A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
maytansinoid
carbon atoms
alkenyl
methyl
Prior art date
Application number
PCT/US2004/013314
Other languages
French (fr)
Other versions
WO2004103272A3 (en
Inventor
Wayne C. Widdison
Ravi V. J. Chari
Original Assignee
Immunogen, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33476883&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004103272(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to AU2004240541A priority Critical patent/AU2004240541B2/en
Priority to PL19160750T priority patent/PL3524611T3/en
Priority to CR20170291A priority patent/CR20170291A/en
Priority to KR1020057022166A priority patent/KR101145506B1/en
Priority to JP2006532511A priority patent/JP5208420B2/en
Priority to EP04750945.0A priority patent/EP1651162B1/en
Priority to MX2016009879A priority patent/MX370281B/en
Priority to BRPI0410748A priority patent/BRPI0410748B8/en
Priority to EP15190436.4A priority patent/EP3031810B1/en
Priority to CA2525130A priority patent/CA2525130C/en
Priority to SI200432295T priority patent/SI1651162T1/en
Priority to NZ542695A priority patent/NZ542695A/en
Priority to EP19160750.6A priority patent/EP3524611B1/en
Priority to EP20216572.6A priority patent/EP3851126A1/en
Priority to DK04750945.0T priority patent/DK1651162T3/en
Application filed by Immunogen, Inc. filed Critical Immunogen, Inc.
Priority to ES04750945.0T priority patent/ES2559670T3/en
Priority to PL04750945T priority patent/PL1651162T3/en
Priority to EA200501836A priority patent/EA010909B1/en
Priority to MX2013008224A priority patent/MX340862B/en
Priority to BRPI0419348A priority patent/BRPI0419348B8/en
Priority to MXPA05011811A priority patent/MXPA05011811A/en
Publication of WO2004103272A2 publication Critical patent/WO2004103272A2/en
Priority to IL171170A priority patent/IL171170A/en
Priority to NO20056039A priority patent/NO339597B1/en
Publication of WO2004103272A3 publication Critical patent/WO2004103272A3/en
Priority to IL213876A priority patent/IL213876A/en
Priority to IL223297A priority patent/IL223297A/en
Priority to IL231810A priority patent/IL231810A/en
Priority to IL238894A priority patent/IL238894A/en
Priority to IL241211A priority patent/IL241211B/en
Priority to HRP20160046TT priority patent/HRP20160046T1/en
Priority to CY20211100265T priority patent/CY1124278T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • A61K47/6809Antibiotics, e.g. antitumor antibiotics anthracyclins, adriamycin, doxorubicin or daunomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • A61P33/04Amoebicides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6867Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from a cell of a blood cancer

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • AIDS & HIV (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Transplantation (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

New thiol and disulfide-containing maytansinoids bearing a mono or di-alkyl substitution on the α-carbon atom bearing the sulfur atom are disclosed. Also disclosed are methods for the synthesis of these new maytansinoids and methods for the linkage of these new maytansinoids to cell-binding agents. The maytansinoid-cell-binding agent conjugates are useful as therapeutic agents, which are delivered specifically to target cells and are cytotoxic. These conjugates display vastly improved therapeutic efficacy in animal tumor models compared to the previously described agents.

Description

IMPROVED CYTOTOXIC AGENTS COMPRISING NEW MAYTANSINOIDS
This application claims benefit of Provisional Application No. 60/471,739, filed May 20, 2003, the disclosure of which is incorporated herein by reference.
FIELD OF THE INVENTION
[01] The present invention relates to a method for preparing improved cytotoxic conjugates comprising maytansinoids and cell-binding agents. These conjugates have therapeutic use as they are delivered to a specific cell population in a targeted fashion. The present invention also relates to a method for preparing maytansinoids having a thiol moiety, which may be used in the preparation of cytotoxic conjugates. The present invention further relates to novel maytansinoids, and to novel intermediates in the synthesis of the novel maytansinoids.
BACKGROUND OF THE INVENTION
[02] Many reports have appeared on the attempted specific targeting of tumor cells with monoclonal antibody-drug conjugates (Sela et al. in Immunoconjugates 189-216 (C, Vogel, ed.
1987); Ghose et al, in Targeted Drugs 1-22 (E. Goldberg, ed. 1983); Diener et al, in Antibody
Mediated Delivery Systems 1-23 (J. Rodwell, ed. 1988); Pietersz et al, in Antibody Mediated
Delivery Systems 25-53 (J. Rodwell, ed. 1988); Bumol et al, in Antibody Mediated Delivery
Systems 55-79 (J. Rodwell, ed. 1988). Cytotoxic drugs such as methotrexate, daunorubicin, doxorubicin, vincristine, vinblastine, melphalan, mitomycin C, and chlorambucil have been conjugated to a variety of murine monoclonal antibodies. In some cases, the drug molecules were linked to the antibody molecules through an intermediary carrier molecule such as serum albumin (Garnett et al. Cancer Res. 46:2407-2412 (1986); Ohkawa et al. Cancer Immumol.
Immunother. 23:81-86 (1986); Endo et al. Cancer Res. 47:1076-1080 (1980)), dextran (Hurwitz et al. Appl. Biochem. 2:25-35 (1980); Manabi et al. Biochem. Pharmacol. 34:289-291 (1985); Dillman et al. Cancer Res. 46:4886-4891 (1986); Shoval et al. Proc. Natl. Acad. Sci. 85: 8276- 8280 (1988)), or polyglutamic acid (Tsukada et al. J. Natl. Cane. Inst. 73:721-729 (1984); Kato et al. J. Med. Chem. 27: 1602-1607 (1984); Tsukada et al. Br. J. Cancer 52: 111-116 (1985)). [03] A wide anay of linker technologies has been employed for the preparation of such immunoconjugates, and both cleavable and non-cleavable linkers have been investigated. In most cases, the full cytotoxic potential of the drugs could only be observed, however, if the drug molecules could be released from the conjugates in unmodified form at the target site. [04] One of the cleavable linkers that has been employed for the preparation of antibody-drug conjugates is an acid-labile linker based on cis-aconitic acid that takes advantage of the acidic environment of different intracellular compartments such as the endosomes encountered during receptor mediated endocytosis and the lysosomes. Shen and Ryser introduced this method for the preparation of conjugates of daunorubicin with macromolecular carriers (Biochem. Biophys. Res. Commun. 102:1048-1054 (1981)). Yang and Reisfeld used the same technique to conjugate daunorubicin to an anti-melanoma antibody (J. Natl. Cane. Inst. 80:1154-1159 (1988)). Recently, Dillman et al. also used an acid-labile linker in a similar fashion to prepare conjugates of daunorubicin with an anti-T cell antibody (Cancer Res. 48:6097-6102 (1988)). [05] An alternative approach, explored by Trouet et al. involved linking daunorubicin to an antibody via a peptide spacer arm (Proc. Natl. Acad. Sci. 19:626-629 (1982)). This was done under the premise that free drug could be released from such a conjugate by the action of lysosomal peptidases.
[06] In vitro cytotoxicity tests, however, have revealed that antibody-drug conjugates rarely achieved the same cytotoxic potency as the free unconjugated drugs. This suggested that mechanisms by which drug molecules are released from the antibodies are very inefficient. In the area of immunotoxins, conjugates formed via disulfide bridges between monoclonal antibodies and catalytically active protein toxins were shown to be more cytotoxic than conjugates containing other linkers. See, Lambert et al. J. Biol. Chem. 260:12035-12041 (1985); Lambert et al. in Immunotoxins 175-209 (A. Frankel, ed. 1988); Ghetie et al. Cancer Res. 48:2610-2617 (1988). This was attributed to the high intracellular concentration of glutathione contributing to the efficient cleavage of the disulfide bond between an antibody molecule and a toxin. Despite this, there are only a few reported examples of the use of disulfide bridges for the preparation of conjugates between drugs and macromolecules. Shen et al. described the conversion of methotrexate into a mercaptoethylamide derivative followed by conjugation with poly-D-lysine via a disulfide bond (J. Biol Chem. 260:10905-10908 (1985)). In addition, a few reports described the preparation of conjugates of the trisulfide-containing toxic drag calicheamicin with antibodies (Hiranan et al, 53 Cancer Res. 3336-3342 (1993), Hamann et al., Bioconjugate Chem., 13, 40-46 (2002), Hamann et al., Bioconjugate Chem., 13, 47-58 (2002)). [07] One reason for the lack of disulfide linked antibody-drug conjugates is the unavailability of cytotoxic drugs that bear a sulfur atom containing moiety that can be readily used to link the drug to an antibody via a disulfide bridge. Furthermore, chemical modification of existing drugs is difficult without diminishing their cytotoxic potential.
[08] Maytansinoids are highly cytotoxic drugs. Maytansine was first isolated by Kupchan et al. from the east African shrub Maytenus serrata and shown to be 100 to 1000 fold more cytotoxic than conventional cancer chemotherapeutic agents like methotrexate, daunorubicin, and vincristine (U.S. Pat. No. 3,896,111). Subsequently, it was discovered that some microbes also produce maytansinoids, such as maytansinol and C-3 esters of maytansinol (U.S. Pat. No. 4,151,042). Synthetic C-3 esters of maytansinol and analogues of maytansinol have also been reported (Kupchan et al. J. Med. Chem. 21:31-37 (1978); Higashide et al. Nature 270:721-722 (1977); Kawai et al. Chem. Pharm. Bull. 32:3441-3451 (1984)). Examples of analogues of maytansinol from which C-3 esters have been prepared include maytansinol with modifications on the aromatic ring (e.g. dechloro) or at the C-9, C-14 (e.g. hydroxylated methyl group), C-15, C-18, C-20 and C-4,5.
[09] The naturally occurring and synthetic C-3 esters of maytansinol can be classified into two groups:
(a) C-3 esters with simple carboxylic acids (U.S. Pat. Nos. 4,248,870; 4,265,814; 4,308,268; 4,308,269; 4,309,428; 4,317,821; 4,322,348; and 4,331,598), and
(b) C-3 esters with derivatives of N-methyl-L-alanine (U.S. Pat. Νos. 4,137,230; 4,260,608; 5,208,020; and Chem. Pharm. Bull. 12:3441 (1984)).
[10] Esters of group (b) were found to be much more cytotoxic than esters of group (a). [11] Maytansine is a mitotic inhibitor. Treatment of L1210 cells in vivo with maytansine has been reported to result in 67% of the cells accumulating in mitosis. Untreated control cells were reported to demonstrate a mitotic index ranging from between 3.2 to 5.8% (Sieber et al. 43 Comparative Leukemia Research 1975, Bibl. Haemat. 495-500 (1976)). Experiments with sea urchin eggs and clam eggs have suggested that maytansine inhibits mitosis by interfering with the formation of microtubules through the inhibition of the polymerization of the microtubule protein, tubulin (Remillard et al. Science 189:1002-1005 (1975)). [12] In vitro, P388, L1210, and LY5178 murine leukemic cell suspensions have been found to be inhibited by maytansine at doses of 10"3 to 10"1 μg/μl with the P388 line being the most sensitive. Maytansine has also been shown to be an active inhibitor of in vitro growth of human nasopharyngeal carcinoma cells, and the human acute lymphoblastic leukemia line CEM was reported inhibited by concentrations as low as 10"7 mg/ml (Wolpert-DeFillippes et al. Biochem. Pharmacol. 24:1735-1738 (1975)).
[13] In vivo, maytansine has also been shown to be active. Tumor growth in the P388 lymphocytic leukemia system was shown to be inhibited over a 50- to 100-fold dosage range, which suggested a high therapeutic index; also significant inhibitory activity could be demonstrated with the L1210 mouse leukemia system, the human Lewis lung carcinoma system and the human B-16 melanocarcinoma system (Kupchan, Ped. Proc. 33:2288-2295 (1974)). Maytansinoids used in conjugates with cell-binding agents are described in U.S. Patents 5,208,020 and 5,416,064 and in Chari et al., Cancer Res., 52: 127-131 (1992) and Liu et al., Proc. Natl. Acad. Sci., 93: 8618-8623 (1996). In these conjugates, the cell-binding agent is linked via disulfide bonds to the aytansinoid DM1 [N2'-deacetyl-N-2'(3-mercapto-l- oxoρroρyl)-maytansine, 1, CAS Number: 139504-50-0, FIG. 1]
[14] In the above patents, the maytansinoid drugs bearing acylated N-methyl-L-alanine side chains are of the formula 2a,b:
Figure imgf000008_0001
In formula 2a, 1 represents an integer from 1 to 10. Thus maytansinoids of the formula 2a have the sulfur atom connected to an unsubstituted methylene group (-CH2-S-). It is said that a sulfhydryl group in such a maytansinoid compound or a disulfide group in a disulfide-linked cell-binding agent-maytansinoid conjugate with such a maytansinoid is "non-hindered," since there are no bulky substituents on the α-carbon next to the sulfhydryl or disulfide group, which cause steric hindrance. In formula 2b, m represents 0,1,2 or 3. Therefore, maytansinoids of the formula 2b also have the sulfur atom connected to an unsubstituted methylene group, except in the case where m = 0, and R2 = CH3 or CH2CH3. If m = 0, then the maytansinoid bears one substituent on the carbon bearing the thiol functionality or a disulfide functionality after conjugation to a cell-binding agent via a disulfide bond. However, because in this case the sulfur atom is in the β position relative to a carbonyl group, these maytansinoids and conjugates of such maytansinoids with cell-binding agents via a disulfide bond were found to be unstable due to their propensity to undergo β-elimination.
SUMMARY OF THE INVENTION [15] The present invention is based on the unexpected finding that the linkage of maytansinoids, bearing a sterically hindered thiol group (possessing one or two substituents on the -carbon bearing the thiol functionality), to cell-binding agents gives conjugates that have vastly improved anti-tumor activity in vivo as compared to conjugates prepared with the previously described maytansinoids that did not possess a substituent on the α-carbon atom bearing the disulfide bond. Another unexpected finding was that improved biological activity is obtained when the steric hindrance is optimally on the maytansinoid side of the disulfide bond in the conjugates. In addition, the acyl group of the acylated amino acid side chain of the maytansinoid bearing the sulfhydryl group has to possess a linear chain length of at least three carbon atoms between the carbonyl group of the amide and the sulfur atom. [16] These findings show that disulfide-linked cell-binding agent-maytansinoid conjugates can be constructed such that substitutions on the two α-carbon atoms bearing the disulfide bond can lead to varying degrees of steric hindrance on either side of the disulfide bond. [17] Accordingly, the present invention describes the synthesis of new, sterically hindered thiol and disulfide-containing maytansinoids, which bear one or two alkyl substituents on the α- carbon atom bearing the sulfur atom. In addition, the acyl group of the acylated amino acid side chain possesses a linear chain length of at least three carbon atoms between the carbonyl group of the amide and the sulfur atom.
[18] The preparation and biological evaluation of cell-binding agent conjugates of these new maytansinoids is also described.
[19] In one embodiment of the invention, new thiol and disulfide-containing maytansinoids bearing a mono or di-alkyl substitution on the carbon atom bearing the sulfur atom are described. [20] In a second embodiment, the present invention discloses methods for the synthesis of these new maytansinoids.
[21] In a third embodiment, methods for the linkage of these new maytansinoids to cell- binding agents are described. These conjugates are useful as therapeutic agents, which are delivered specifically to target cells and are cytotoxic. These conjugates display vastly improved therapeutic efficacy in animal tumor models compared to the previously described agents. [22] More specifically, the present invention provides:
[23] A maytansinoid having, at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, an acylated amino acid side chain with an acyl group bearing a hindered sulfhydryl group, wherein the carbon atom of the acyl group bearing the thiol functionality has one or two substituents, said substituents being CH3, C2H5, linear or branched alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical, and in addition one of the substituents can be H, and wherein the acyl group has a linear chain length of at least three carbon atoms between the carbonyl functionality and the sulfur atom; [24] A compound represented by formula 4' :
Figure imgf000010_0001
wherein:
Y' represents (CR7CR8)ι(CR9=CR1o)pCCqAr(CR5CR6)mDu(CR11=CR12)r(CC)sBt(CR3CR4)nCR1R2SZ, wherein:
RΪ and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
A, B, D are cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;
R3, R4, R5, R6, R7, R8, R , Rπ, and R12 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time.
Z is H, SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical. [25] A compound represented by formula 4', wherein Ri is H, R2 is methyl and Z is H. [26] A compound represented by formula 4', wherein R! and R2 are methyl and Z is H.
[27] A compound represented by formula 4', wherein R\ is H, R is methyl, and Z is -SCH3.
[28] A compound represented by formula 4', wherein Ri and R2 are methyl, and Z is -SCH3.
[29] A compound represented by formula (I-L), (I-D), or (I-D,L):
Figure imgf000012_0001
wherein:
Y represents (CR7CR8)ι(CR5CR6)m(CR3CR4)nCR1R2SZ, wherein:
Rt and R2 are each independently CH3, C H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3> R , R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z is H, SR or -COR wherein R is linear or branched alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted
I aryl or heterocyclic aromatic or heterocycloalkyl radical; and May represents a maytansinoid which bears the side chain at C-3, C-14 hydroxymethyl, C-15 hydroxy or C-20 desmethyl;
[30] The above-described compound, wherein Ri is H, R2 is methyl, R5, R6, , and R8 are
/ each H, 1 and m are each 1, n is 0, and Z is H;
[31] The above-described compound, wherein R] and R2 are methyl, R5, R6, R7, R8 are each
H, 1 and m are 1, n is 0, and Z is H;
[32] The above-described compound, wherein Rt is H, R2 is methyl, R5, R6, R7, and R8 are each H, 1 and m are each 1, n is 0, and Z is -SCH3;
[33] The above-described compound, wherein Ri and R2 are methyl, R5, R6, R7, R8 are each
H, 1 and m are 1, n is 0, and Z is -SCH3;
[34] A compound represented by formula 4:
Figure imgf000013_0001
wherein:
Y represents (CR7CR8)ι(CR5CR6)π1(CR3CR4)nCR1R2SZ, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3> Ri, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
Z is H, SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;
[35] The compound of formula 4, wherein RI is H, R2 is methyl, R5, R6, R7, and R8 are each H; 1 and m are each 1 ; n is 0; and Z is H;
[36] The compound of formula 4, wherein Ri and R2 are methyl; R5, R6, R7, R8 are each H, 1 and m are 1; n is 0; and Z is H;
[37] The compound of formula 4, wherein Rt is H, R2 is methyl, R5, R6, R7 , and R8 are each H, 1 and m are each 1, n is 0, and Z is -SCH3;
[38] The compound of formula 4, wherein R\ and R2 are methyl, R5, R6, R7, R8 are each H, 1 and m are 1, n is 0, and Z is -SCH3;
[39] A maytansinoid-cell-binding agent conjugate comprising at least one maytansinoid linked to the cell-binding agent, wherein the maytansinoid is any of the above-described compounds; [40] Any of the above-described maytansinoid-cell-binding agent conjugates, wherein the cell-binding agent comprises at least one binding site of an antibody, preferably humanized or resurfaced MY9, humanized or resurfaced anti-B4, or humanized or resurfaced C242; [41] A pharmaceutical composition comprising an effective amount of any of the above- described maytansinoid-cell-binding agent conjugates, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient; [42] A method of esterification of a maytansinoid at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with an acylated amino acid side chain where the acyl group bears a protected sulfhydryl functionality, wherein the carbon atom of the acyl group bearing the protected thiol functionality has one or two substituents, said substituents being CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition one of the substituents can be H, and wherein the acyl group has a linear chain length of at least three carbon atoms between the carbonyl functionality and the sulfur atom, said method comprising reacting a maytansinoid at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with the acylated amino acid where the acyl group bears a protected sulfhydryl group;
[43] A method of esterification of a maytansinoid to produce a maytansinoid ester represented by formula (IV-L), (IN-D), or (IV-D,L):
Figure imgf000015_0001
(IV) wherein: Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR4)nCR1R2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, Ri, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear cyclic alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z2 is SR or COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms,
I branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical; and
May is a maytansinoid; said method comprising reacting said May at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with a compound of formula (IQ-L), (HJ-D), or (IJJ.-D,L):
Figure imgf000016_0001
(HI) wherein:
Y2 represents (CR7CR8)ι(CR5CR6)„1(CR3CR4)nCR1R2SZ2, wherein:
R! and R2 are each independently CH3, C2H5, linear alkyl or, alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, *, R5, R6, R7 and R8 are each independently H, CH3, C2Hs, linear or branched alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;
[44] The above-described method, wherein Ri is H, R2 is methyl, R5, R6, R7 and R8 are each H; 1 and m are each 1; and n is 0;
[45] The above-described method, wherein the compound of formula (IJJ) is represented by formula (ELL);
[46] The above-described method, wherein the compound of formula (JJI-L) is compound 15a(S,S), 15b(S,R) or a mixture of 15a(S,S) and 15b(S,R);
[47] The above-described method, wherein the compound of formula (LTJ-D) is compound 15(R, S), 15(R,R), or a mixture of 15(R,S) and 15(R,R); [48] The above-described method, wherein the compound of formula (JJI-D,L) is racemic N- methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure of 15;
[49] The above-described method, wherein the mixture of 15a(S,S) and 15b(S,R) is made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with N-methyl-L-alanine to give said mixture of compounds 15a(S,S) and 15b(S,R);
[50] The above-described method, wherein compound 15a(S,S) is made by a method comprising:
(1) converting (R)-l,3-butanediol into (S)-4-(methydithio)ρentanoic acid 19;
(2) converting compound 19 into its Ν-hydroxysuccinimide ester (20); and
(3) reacting compound 20 with N-methyl-L-alanine to give said compound 15a(S,S). [51] The above-described method, wherein compound 15b(S,R) is made by a method comprising:
(1) converting (S)-l,3-butanediol into (R)-4-(methydithio)pentanoic acid 24;
(2) converting compound 24 into its Ν-hydroxysuccinimide ester (25); and
(3) reacting compound 25 with N-methyl-L-alanine to give said compound 15b(S,R). [52] The above described method, wherein the mixture of compounds 15(R,S) and 15(R,R) is made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14,
(3) reacting compound 14 with N-methyi-D-alanine to give said mixture of compounds 15(R,S) and 15(R,R).
[53] The above-described method, wherein racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure of 15 is made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its Ν-hydroxysuccinimide ester 14;
(3) reacting compound 14 with racemic N-methylalanine to give the racemic N- methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure 15.
[54] The above-described method, wherein Ri and R2 are methyl; R5, R6, R7 and R8 are each H; 1 and m are each 1; and n is 0;
[55] The above-described method, wherein the compound of formula (III-L) is compound 10(S) containing N-methyl-L-alanine; [56] The above-described method, wherein the compound of formula (III-D) is compound 10(R) containing N-methyl-D-alanine;
[57] The above-described method, wherein the compound of formula (UI-D,L) is compound 10(S,R) containing racemic N-methylalanine;
[58] The above-described method, wherein the compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine or racemic N-methylalanine is made by a process comprising:
(1) reacting isobutylene sulfide (5) with the anion of acetonitrile to give compound 6;
(2) hydrolyzing compound 6 to give 4-mercapto-4-methylpentanoic acid (7);
(3) converting compound 7 into disulfide 8 by reaction with methyl methanethiolsulfonate;
(4) converting compound 8 into its N-hydroxysuccinimide ester 9; and
(5) reacting compound 9 with N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine to give said compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine;
[59] A method of making a maytansinoid by the method of any one of the above-described methods, separating diastereomers, if present, and purifying the maytansinoid by HPLC on cyano-bonded silica;
[60] A method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by any of the above-described methods, and reacting the purified maytansinoid with a cell-binding agent comprising a reactive dithio group or a sulfhydryl group. [61] The above-described method of making a maytansinoid-cell-binding agent conjugate, wherein the reactive dithio group is a dithiopyridyl group or a substituted dithiopyridyl group; [62] A method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by any of the above-described methods, and reacting the purified maytansinoid with a cell-binding agent comprising a maleimido group or a haloacetyl group;
[63] A method of esterification of maytansinol to give a maytansinoid of the formula 42' :
Figure imgf000021_0001
42' wherein:
Y2' represents (CR7CR8),(CR9=CR10)p(CC)qAr(CR5CR6)mDu(CR11=CR12)r(CC)sBt(CR3CR4)πCR1R2SZ2, wherein:
R] and R2 are each independently CH3, C2H5, linear branched or alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
A, B, andD each independently is cycloalkyl or cycloalkenyl having 3 to 10 carbon atoms, simple or substituted aryl, or heterocyclic aromatic or heterocycloalkyl radical; R3, R4, R5, R6, R7, R8, R9, Rπ, and R12 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time; and
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 - 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical, said method comprising reacting maytansinol of the structure 11 at the C-3:
Figure imgf000022_0001
11 with a compound of formula (IH'-L), (JJJ'-D), or (JJJ'-D, L):
Figure imgf000022_0002
(m') wherein: Y2- represents (CR7CR8)I(CR9=CR10)p(C=C)qAr(CR5CR6)mDu(CR11=CR12)r(C=C)sBt(CR3CR4)nCR1R2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
A, B, and D each, independently is cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl, or heterocyclic aromatic or heterocycloalkyl radical;
R3, Ri,, R5, R6, R7, R8, R9, Rπ, and R12 are each independently H, CH3, C H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time; and
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
[64] The method of esterification of maytansinol to give a maytansinoid of the formula 42', wherein the compound of formula (I) is represented by formula (I-L).
[65] The method of esterification of maytansinol to give a maytansinoid of the formula 42', wherein Ri is H and R2 is methyl,. [66] A method of esterification of maytansinol to give a maytansinoid of the formula 42:
Figure imgf000024_0001
wherein:
Y2 represents (CR7CR8)1(CR5CR6)m(CR3CR )nCR1R2SZ2, wherein:
Rt and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, R4, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z2 is SR or COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical, said method comprising reacting maytansinol of the structure 11:
Figure imgf000025_0001
11 at 'the C-3 position with a compound of formula (III-L), (III-D), or (JJI-D, L):
Figure imgf000025_0002
D D, L
(HI) wherein:
Y2 represents (CR7CR8)I(CR5CR6)m(CR3CR4)nCR1R2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3| R4, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical; 1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z2 is SR or COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;
[67] The above-described method of esterification of maytansinol to give the maytansinoid of formula 4a, wherein the compound of formula (HI) is represented by formula (HJ-L); [68] The above-described method of esterification of maytansinol to give maytansinoids of formula 4a, wherein said compound of formula (LTJ-L) is compound 15a(S,S), 15b(S,R) or a mixture of 15a(S,S) and 15b(S,R);
[69] The above-described method of esterification of maytansinol to give maytansinoids of formula 4a, wherein said compound of formula (HI-D) is compound 15(R,S), 15(R,R), or a mixture of 15(R,S) and 15(R,R);
[70] The above-described method of esterification of maytansinol to give maytansinoids of formula 4a, wherein said compound of formula (H[-D,L) is racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of R or S chirality to give compounds of the structure of 15;
[71] The above-described method of esterification of maytansinol to give maytansinoids of formula 4a, wherein the mixture of 15a(S,S) and 15b(S,R) is made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14; (3) reacting compound 14 with N-methyl-L-alanine to give said mixture of compounds 15a(S,S) and 15b(S,R);
[72] The above-described method of esterification of maytansinol, wherein said compound 15a(S,S) is made by a method comprising:
(1) converting (R)-l,3-butanediol into (S)-4-(methydithio)pentanoic acid 19;
(2) converting compound 19 into its Ν-hydroxysuccinimide ester (20); and
(3) reacting compound 20 with N-methyl-L-alanine to give the compound 15a(S,S). [73] The above-described method of esterification of maytansinol, wherein said compound 15b(S,R) is made by a method comprising:
(1) converting (S)-l,3-butanediol into (R)-4-(methydithio)pentanoic acid 24;
(2) converting compound 24 into its Ν-hydroxysuccinimide ester (25); and
(3) reacting compound 25 with N-methyl-L-alanine to give the compound 15b(S,R); [74] The above-described method of esterification of maytansinol to give maytansinoids of formula 4a, wherein the mixture of compounds 15(R,S) and 15(R,R) can be made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with N-methyl-D-alanine to give said mixture of compounds 15(R,S) and 15(R,R,).
[75] The above-described method of esterification of maytansinol to give maytansinoids of formula 4a, wherein racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure of 15 is made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;.
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with racemic N-methylalanine to give.the racemic N- methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure 15.
[76] The above-described method of esterification of maytansinol to give maytansinoids of formula 4b, wherein Ri and R2 are methyl; R5, R6, R7, R8 are each H; 1 and m are 1; and n is 0; [77] The above-described method of esterification of maytansinol to give maytansinoids of formula 4b, wherein said compound of formula (HI-L) is compound 10 containing N-methyl-L- alanine;
[78] The above-described method of esterification of maytansinol to give maytansinoids of formula 4b, wherein said compound of formula (III-D) is compound 10 containing N-methyl-D- alanine;
[79] The above-described method of esterification of maytansinol to give maytansinoids of formula 4b, wherein said compound of formula (flI-D,L) is compound 10 containing racemic N- methylalanine; [80] The above-described method of esterification of maytansinol to give maytansinoids of formula 4b, wherein the compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine or racemic N-methylalanine is made by a process comprising:
(1) reacting isobutylene sulfide (5) with the anion of acetonitrile to give compound 6;
(2) hydrolyzing compound 6 to give 4-mercapto-4-methylpentanoic acid (7);
(3) converting compound 7 into the disulfide 8 by reaction with methyl methanethiolsulfonate;
(4) converting compound 8 into its N-hydroxysuccinimide ester 9; and
(5) reacting compound 9 with N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine to give compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine or racemic N-methylalanine;
[81] The above-described method of esterification of maytansinol with 10, followed by separating diastereomers, if present, and purifying the maytansinoid by HPLC on cyano-bonded silica, further comprising reduction of the disulfide bond, to give maytansinoids of formula 4b; [82] A method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by any of the above-described methods of esterification of maytansinol to give maytansinoids of formula 4b, and reacting the maytansinoid with a cell-binding agent comprising a sulfhydryl group or a reactive dithio group, preferably, a dithiopyridyl group or a substituted dithiopyridyl group;
[83] A method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by any of the above-described methods of esterification of maytansinol to give maytansinoids of formula 4b, and reacting the maytansinoid with a cell-binding agent comprising a maleimido or an haloacetyl group.
[84] Methods of therapy using the above-described conjugates.
[85] Compounds of formula (HI) :
Figure imgf000030_0001
D D,L
(JJI) wherein:
Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR4)nCR1R2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, i, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical. [86] Compounds 10 (S), 10 (R) or racemic 10;
[87] A method of making compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine comprising:
(1) reacting isobutylene sulfide (5) with the anion of acetonitrile to give compound 6;
(2) hydrolyzing compound 6 to give 4-mercapto-4-methylρentanoic acid (7);
(3) converting compound 7 into disulfide 8 by reaction with methylmethanethiolsulfonate;
(4) converting compound 8 into its Ν-hydroxysuccinimide ester 9; and
(5) reacting compound 9 with N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine to give said compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine.
[88] A mixture of compounds 15a(S,S) and 15b(S,R);
[89] A method of making a mixture of compounds 15a(S,S) and 15b(S,R), comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methylmethanethiolsulfonate to give compound 13;
(2) converting compound 13 into its Ν-hydroxysuccinimide ester (14); and
(3) reacting compound 14 with N-methyl-L-alanine to give said mixture of compounds 15a(S,S) and 15b(S,R);
[90] A mixture of compounds 15(R,S) and 15(R,R). [91] A method of making a mixture of compounds 15(R,S) and 15(R,R) comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinirnide ester 14;
(3) reacting ^compound 14 with N-methyl-D-alanine to give said mixture of compounds 15(R,S) and 15(R,R).
[92] Racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure of 15.
[93] A method of making racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of R or S chirality to give compounds of the structure 15, comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with racemic N-methylalanine to give the racemic N- methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure 15.
[94] Compound 15a(S,S); [95] Compound 15b(S,R); [96] A method of making compound 15a(S,S) comprising: (1) converting (R)-l,3-butanediol into (S)-4-(methydithio)pentanoic acid 19;
(2) converting compound 19 into its N-hydroxysuccinimide ester (20); and
(3) reacting compound 20 with N-methyl-L-alanine to give said compound 15a(S,S); [97] A method of making compound 15b(S,R) comprising:
(1) converting (S)-l,3-butanediol into (R)-4-(methydithio)ρentanoic acid 24;
(2) converting compound 24 into its Ν-hydroxysuccinimide ester (25); and
(3) reacting compound 25 with N-methyl-L-alanine to give said compound 15b(S,R). [98] A pharmaceutical composition comprising an effective amount of any of the above-described maytansinoid compounds, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient;
[99] The above-described pharmaceutical composition comprising a maytansinoid compound, further comprising an antibody.
[100] A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of any of the above-described maytansinoid-cell-binding agents, salts or solvates thereof.
BRIEF DESCRIPTION OF THE FIGURES
[101] FIG. 1 shows the structures of previously described maytansinoids.
[102] FIG. 2 shows the structures of some of the maytansinoids of the present invention.
[103] FIGS. 3a-d show schemes for the synthesis of representative maytansinoids of the present invention.
[104] FIGS. 4a,b are graphs that show the in vitro potency of new maytansinoids of the present invention. [105] FIGS. 4c,d are graphs that compare the in vitro potency of new maytansinoids of the present invention with those previously described.
[106] FIGS. 5a-d show schemes for the preparation of conjugates of cell-binding agents with maytansinoids of the present invention.
[107] FIG. 6 is a graph that shows the in vitro potency of cell-binding agent-maytansinoid conjugates of the present invention.
[108] FIG. 7 is a graph that compares the in vivo anti-tumor efficacy of huC242-maytansinoids of the present invention with huC42 conjugates of previously described maytansinoids, against
HT-29 human colon tumor xenografts.
[109] FIG. 8 is a graph that compares the in vivo anti-tumor efficacy of huC242-maytansinoids of the present invention with huC242 conjugates of previously described maytansinoids, against
COLO 205 human colon tumor xenografts.
[110] FIG. 9 is a graph that compares the in vivo anti-tumor efficacy of MY9-6-maytansinoids of the present invention with MY9-6 conjugates of previously described maytansinoids, against
HL60 promyelocytic myeloid leukemia xenografts.
[Ill] FIG. 10 shows the result of the in vitro cytotoxicity evaluation of the conjugate huMy9-6-
DM4 with target HL-60 cells and non-target Namalwa cells.
[112] FIG 11 shows the in vivo efficacy evaluation of the conjugate huMy9-6-DM4 against human HL-60 xenograft tumors in SCJD mice and compares it with that of a huMy9-6 conjugate of a previously described maytansinoid (huMy9-6-DMl).
[113] FIG. 12 shows the result of the in vitro cytotoxicity evaluation of the conjugate huB4-
DM4 with target Ramos cells and non-target Colo 205 cells. [114] FIG. 13a shows the in vivo efficacy evaluation of the conjugate huB4-DM4 against human Ramos xenograft tumors in SCTD mice, and FIG 13b shows the changes in the body weights of the animals during the test period.
DETAILED DESCRIPTION OF THE INVENTION
[115] This invention discloses new, sterically hindered thiol and disulfide-containing maytansinoids in which the α-carbon atom bearing the sulfur atom bears one or two alkyl substituents. The invention also discloses a process for the synthesis of these novel maytansinoids. Novel compounds that are useful as intermediates in the synthesis of the new maytansinoids are further disclosed. In addition, this invention discloses the preparation of conjugates of these novel maytansinoids with cell-binding agents.
[116] The art reveals that it is extremely difficult to modify existing drugs without diminishing their cytotoxic potential. The disclosed invention overcomes this problem by teaching a method of synthesizing new maytansinoid molecules containing a sterically hindered thiol or disulfide moiety. The disclosed novel maytansinoids preserve, and in some cases even enhance, the cytotoxic potency of the previously described maytansinoids.
[117] The maytansinoid-cell-binding agent conjugates permit the full measure of the cytotoxic action of the maytansinoids to be applied in a targeted fashion against unwanted cells only, thereby avoiding side effects due to damage to non-targeted healthy cells. Thus, the invention provides useful agents, and novel methods for making the same, for the elimination of diseased or abnormal cells that are to be killed or lysed, such as tumor cells (particularly solid tumor cells), virus infected cells, microorganism infected cells, parasite infected cells, autoimmune cells (cells that produce autoantibodies), activated cells (those involved in graft rejection or graft vs. host disease), or any other type of diseased or abnormal cells, while exhibiting a minimum of side effects.
[118] Thus, this invention teaches a method for the production of improved cytotoxic conjugates comprising novel maytansinoids and cell-binding agents, with vastly improved biological activity as compared to previously described maytansinoids and cell-binding agents.
The invention further teaches a method for the synthesis of maytansinoid derivatives that possess a sterically hindered thiol or disulfide moiety that allows chemical linkage to a cell-binding agent while displaying high cytotoxicity either in bound form or in released form or in both states. The cytotoxic conjugate according to the present invention comprises one or more maytansinoids linked to a cell-binding agent. In order to link the maytansinoid to a cell-binding agent, the maytansinoid must first be modified.
[119] Maytansinoids that can be used in the present invention to produce the maytansinoids that are capable of being linked to a cell-binding agent are well known in the art and can be isolated from natural sources according to known methods or prepared synthetically according to known methods.
[120] Examples of suitable maytansinoids include maytansinol and maytansinol analogues.
Examples of suitable maytansinol analogues include those having a modified aromatic ring and those having modifications at other positions.
[121] Specific examples of suitable analogues of maytansinol having a modified aromatic ring include: (1) C-19-dechloro (U.S. Pat. No. 4,256,746) (prepared by LAH reduction of ansamitocin P2);
(2) C-20-hydroxy (or C-20-demethyl) +/-C-19-dechloro (U.S. Pat. Nos. 4,361,650 and 4,307,016) (prepared by demethylation using Streptomyces ox Actinomyces or dechlorination using LAH); and
(3) C-20-demethoxy, C-20-acyloxy (-OCOR), +/-dechloro (U.S . Pat. No. 4,294,757) (prepared by acylation using acyl chlorides).
[122] Specific examples of suitable analogues of maytansinol having modifications of other positions include:
(1) C-9-SH (U.S. Pat. No. 4,424,219) (prepared by the reaction of maytansinol with H2S or P2S5);
(2) C-14-alkoxymethyl (demethoxy/CH2OR) (U.S. Pat. No. 4,331,598);
(3) C-14-hydroxymethyl or acyloxymethyl (CH2OH or CH2OAc) (U.S. Pat, No.
4,450,254) (prepared from Nocardia);
(4) C-15-hydroxy/acyloxy (U.S. Pat. No. 4,364,866) (prepared by the conversion of maytansinol by Streptomyces);
(5) C-15-methoxy (U.S. Pat. Nos.4,313,946 and 4,315,929) (isolated from Trewia nudiflora);
(6) C-18-N-demethyl (U.S. Pat. Νos. 4,362,663 and 4,322,348) (prepared by the demethylation of maytansinol by Streptomyces); and
(7) 4,5-deoxy (U.S. Pat. No. 4,371,533) (prepared by the titanium trichloride/LAH reduction of maytansinol). [123] In order to link the maytansinoid to the cell-binding agent, the maytansinoid comprises a linking moiety. The linking moiety contains a chemical bond that allows for the release of fully active maytansinoids at a particular site. Suitable chemical bonds are well known in the art and include disulfide bonds, acid labile bonds, photolabile bonds, peptidase labile bonds and esterase labile bonds. Prefened are disulfide bonds.
[124] The disclosure of U.S. Patent No. 5,208,020, incorporated herein by reference, teaches the production of maytansinoids bearing such bonds.
[125] According to the present invention, the linking moiety comprises a sterically hindered thiol or disulfide moiety.
[126] Particularly prefened maytansinoids comprising a linking moiety that contains a reactive chemical group are C-3 esters of maytansinol and its analogs where the linking moiety contains a sterically hindered thiol or disulfide bond.
[127] Many positions on maytansinoids can serve as the position to chemically link the linking moiety. For example, the C-3 position having a hydroxyl group, the C-14 position modified with hydroxymethyl, the C-15 position modified with hydroxy and the C-20 position having a hydroxy group are all expected to be useful. However the C-3 position is prefened and the C-3 position of maytansinol is especially prefened.
[128] Further, while the synthesis of esters of maytansinol having a linking moiety is described below in terms of a disulfide bond containing linking moieties at the C-3 position, one of skill in the art will understand that linking moieties with other chemical bonds, as described above, can also be used with the present invention, as can other maytansinoids and other linking positions, as described above. [129] The structures of various maytansinoids of the present invention are represented in Fig.
2. The synthesis of maytansinoids having a sterically hindered thiol or disulfide moiety can be described by reference to Fig. 3. Many of the exemplified methods below utilize the thiol- containing maytansinoids N2 -deacetyl-N-2 (4-mercapto-l-oxopentyl)-maytansine (termed DM3) and N2'-deacetyl-N-2 (4-methyl-4-mercapto-l-oxopentyl)-maytansine (termed DM4). DM3 (4a) and DM4 (4b) are represented by the following structural formulae:
Figure imgf000039_0001
4a 4b
[130] The in vitro cytotoxicity of the new sterically hindered thiol and disulfide-containing maytansinoids of the invention can be evaluated for their ability to suppress proliferation of various unwanted cell lines in vitro (Fig. 4). For example, cell lines such as the human breast carcinoma line SK-Br-3, or the human epidermoid carcinoma cell line KB, can be used for the assessment of cytotoxicity of these new maytansinoids. Cells to be evaluated can be exposed to the compounds for 72 hours and the surviving fractions of cells measured in direct assays by known methods. IC50 values can then be calculated from the results of the assays. Production of Maytansinoids Having a Sterically Hindered Thiol or Disulfide Moiety
[131] The novel maytansinoids of the invention are those having, at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, an acylated amino acid side chain with an acyl group bearing a hindered sulfhydryl group, wherein the carbon atom of the acyl group bearing the thiol functionality has one or two substituents, said substituents being CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition one of the substituents can be H, and wherein the acyl group has a linear chain length of at least three carbon atoms between the carbonyl functionality and the sulfur atom. [132] Preferably, the maytansinoid compounds are represented by formula 4':
Figure imgf000040_0001
wherein:
Y' represents (CR7CR8)ι(CR9=CR10)p(CC)qAr(CR5CR6)ιnDu(CR11=CR12)r(CC)sBt(CR3CR4)nCR1R2SZ, wherein: Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H; A, B, D are cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;
R3, Rt, R5, R6, R7, R8, R , Rϋ, and R12 are each independently H, CH3, C2Hs, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl
1 radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time;
Z is H, SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
In a prefened embodiments of the compound represented by formula 4', Ri is H, R2 is methyl and Z is H; Ri and R2 are methyl and Z is H; Ri is H, R2 is methyl, and Z is -SCH3; or Ri and R2 are methyl, and Z is -SCH3.
[133] More preferably, the maytansinoids are compounds represented by formula (I-L), (I-D), or (I-D,L):
Figure imgf000042_0001
L D D,L
(I) wherein:
Y represents (CR7CR8)1(CR5CR6)m(CR3CR4)nCR1R2SZ, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, Rt, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z is H, SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;; and
May represents a maytansinoid which bears the side chain at C-3, C-14 hydroxymethyl, C-15 hydroxy or C-20 desmethyl. [134] More prefened is the C-3 ester, which is a compound represented by formula 4:
Figure imgf000043_0001
wherein the substituents are as defined above.
[135] Especially prefened are any of the above-described compounds, wherein Ri is H, R2 is methyl, R5, R6, R7 and R8 are each H, 1 and m are each 1, n is 0, and Z is H; those compounds wherein Ri and R2 are methyl, R5, R6, R7, R8 are each H, 1 and m are 1, n is 0, and Z is H; those compounds wherein Ri is H, R2 is methyl, R5, R6, R7, and R8 are each H, 1 and m are each 1, n is 0, and Z is -SCH3; and those compounds Ri and R2 are methyl, R5, R6, R7, R8 are each H, 1 and m are 1, n is 0, and Z is -SCH3. Further, the -alanyl stereoisomer is prefened as it is the most useful for the conjugates of the invention.
[136] Prefened embodiments of formula 4 include DM3 and DM4, i.e., the maytansinoid of formula 4 where Z is H, Ri is H, R2 is methyl, R5, R6, R7, and Rg are each H, and 1 and m are 1, and n is 0 (DM3, compound 4a); the maytansinoid of formula 4 where Z is H, Ri and R2 are both methyl, R5, R6, R7, and R8 are each H, 1 and m are 1, and n is 0 (DM4. compound 4b); the maytansinoid of formula 4 wherein Rj is H, R2 is methyl, R5, R6, R , and R8 are each H, 1 and m are each 1, n is 0, and Z is -SCH3; and the maytansinoid of formula 4 wherein Ri and R2 are methyl, R5, R6, R7, Rs are each H, 1 and m are 1, n is 0, and Z is -SCH3.
[137] Examples of linear alkyls or alkenyls having from 1 to 10 carbon atoms include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, propenyl, butenyl and hexenyl.
[138] Examples of branched alkyls or alkenyls having from 3 to 10 carbon atoms include, but are not limited to, isoprόpyl, isobutyl, sec-butyl, tert.-butyl, isopentyl, 1-ethyl-propyl, isobutenyl and isopentenyl. '
[139] Examples of cyclic alkyls or alkenyls having from 3 to 10 carbon atoms include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopentenyl, and cyclohexenyl.
[140] Simple aryls include aryls having 6 to 10 carbon atoms, and substituted aryls include aryls having 6 to 10 carbon atoms bearing at least one alkyl substituent containing from 1 to 4 carbon atoms, or alkoxy substituent such as methoxy, ethoxy, or a halogen substituent or a nitro substituent.
[141] Examples of simple aryl that contain 6 to 10 carbon atoms include phenyl and naphthyl.
[142] Examples of substituted aryl include nitrophenyl, dinitrophenyl.
[143] Heterocyclic aromatic radicals include groups that have a 3 to 10-membered ring containing one or two heteroatoms selected from N, O or S.
[144] Heterocycloalkyl radicals include cyclic compounds, comprising 3 to 10-membered ring systems, containing one or two heteroatoms, selected form N. O or S.
[145] Examples of heterocyclic aromatic radicals include pyridyl, nitro-pyridyl, pyrollyl, oxazolyl, thienyl, thiazolyl, and furyl. [146] Examples of heteroalkyl radicals include dihydrofuryl, tetrahydrofuryl, tetrahydropyroUyl, piperidinyl, piperazinyl,and morpholino.
[147] Novel maytansinoids having a sterically hindered thiol or disulfide moiety may be prepared by the following newly disclosed methods:
Synthesis of Maytansinoids.
[148] Fig. 3a shows the steps in the synthesis of maytansinoid DM4 (4b). Isobutylene sulfide (5) is reacted with the anion of acetonitrile to give the mercapto compound 6. Hydrolysis of 6 with base provided 4-mercapto-4-methylpentanoic acid (7). Conversion of 7 into disulfide 8 is achieved by reaction with methyl methanethiolsulfonate (MeSS02Me). Conversion of 8 into the N-hydroxysuccinimide ester 9 followed by reaction with N-methyl-L-alanine provided the carboxylic acid 10, which was purified by column chromatography over silica gel. Reaction of 10 with maytansinol (11) in the presence of NN'-dicyclohexylcarbodiimide (DCC) and zinc chloride gave a mixture of the N-acyl-N-methyl-L-alanyl maytansinoid L-DM4SMe, (4e) and the N-acyl-N-methyl-D-alanyl maytansinoid D-DM4SMe (4f). The mixture of diastereomers was separated by HPLC, using a cyano-bonded column. The desired L-amino acid-containing isomer 4e was collected and reduced with dithiothreitol to give the thiol-containing L-aminoacyl maytansinoid DM4 (4b), which was again purified by HPLC, using a cyano-bonded column. [149] Fig. 3b shows the steps in the synthesis of maytansinoid DM3 (4a). 4-Mercaptopentanoic acid (12) was converted into the methyldisulfide by reaction with methyl methanethiolsulfonate to give 13. Conversion of 13 into the N-hydroxysuccinimide ester 14 followed by reaction with N-methyl-L-alanine provided the carboxylic acid 15, which was purified by column chromatography over silica gel. Reaction of 15 with maytansinol (11) in the presence of NN'-dicyclohexylcarbodiimide (DCC) and zinc chloride gave a mixture of the N- acyl-N-methyl-L-alanyl maytansinoid -DM3SSMe, (4c) and the N-acyl-N-methyl-D-alanyl maytansinoid 2 DM3SSMe (4d). The mixture of diastereomers was separated by HPLC, using a cyano-bonded column. The desired L-amino acid-containing isomer was collected and reduced with dithiothreitol to give the mercapto-L-amino acid-containing maytansinoid DM3 (4a), which was again purified by HPLC, using a cyano-bonded column. [150] Fig. 3 c and d show the synthesis of DM3 bearing either the (S)-4-methyldithio-l-oxopentyl moiety or the (i?)-4-methyldithio-l-oxo-pentyl moiety. Conversion or (i?)-l,3-butanediol (16) into its ditosylate 17, followed by sequential reaction with sodium cyanide and potassium ethyl xanthate gave nitrile 18 (Fig. 3c). Base hydrolysis, followed by disulfide exchange gave (S)-4-methydithio-pentanoic acid 19. Conversion of 19 into the succinimidyl ester 20, followed by reaction with N-methyl-L-alanine gave N-methyl-N- [4-(S)-methyldithio-l-oxo-pentyl]-S-alanine (15a). Reaction with maytansinol, as described above for compound 15, gave the two diastereomers of L-DM3SMe 4g and 4h. Similarly, (S)- 1,3-butanediol (21) was converted into (Z?)-4-methydithio-pentanoic acid 24 and then into 15b. Reaction with maytansinol, as described above, gave the two diastereomers of DM3SMe, 4k and 41.
[151] Thus the present invention provides a method of esterification of a maytansinoid at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with an acylated amino acid side chain where the acyl group bears a protected sulfhydryl group, wherein the carbon atom of the acyl group bearing the protected thiol functionality has one or two substituents, said substituents being CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition one of the substituents can be H, and wherein the acyl group has a linear chain length of at least three carbon atoms between the carbonyl functionality and the sulfur atom, said method comprising reacting a maytansinoid at C-
3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, said method comprising reacting a maytansinoid at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with the acylated amino acid where the acyl group bears a protected sulfhydryl group.
[152] In a prefened embodiment, the present invention provides a method of esterification of maytansinol to give a maytansinoid of the formula 42':
Figure imgf000047_0001
wherein:
Y2' represents (CR7CR8)ι(CR9=CRι0)p(CC)qAr(CR5CR6)mDu(CRii=CR12)r(CC)sBt(CR3CR4)αCRiR2SZ2, wherein: Ri and R2 are each independently CH3, C2H5, linear branched or alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
A, B, and D each independently is cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl, or heterocyclic aromatic or heterocycloalkyl radical;
R3, t, R5, R6, R7, R8, R9, Rπ, and R12 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time; and
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 - 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical, said method comprising reacting maytansinol of the structure 11 at the C-3:
Figure imgf000048_0001
11 with a compound of formula (IJT-L), (IIT-D), or (JJJ'-D, L):
Figure imgf000049_0001
(IJT) wherein:
Y2- represents (CR7CR8)i(CR9=CRι0)p(CC)qAr(CR5CR6)mDu(CRii=CRi2)r(CC)sBt(CR3CR4)nCRiR2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
A, B, and D each, independently is cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl, or heterocyclic aromatic or heterocycloalkyl radical;
R3, R4, R5, R<5, R7, R8, R9, Rπ, and R]2 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time; and Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
[153] Preferably, the compound of formula (I) is represented by formula (I-L) and, also preferable, Ri is H and R2 is methyl,.
[154] In a more prefened embodiment, the present invention provides A method of esterification of maytansinol to give a maytansinoid of the formula 42:
Figure imgf000050_0001
42 wherein:
Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR4)nCRiR2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear branched or alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H; R3, Rt, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;, said method comprising reacting maytansinol of the structure 11 at the C-3:
Figure imgf000051_0001
11
with a compound represented by formula (IJJ-L), (LTJ-D), or (JTI-D,L):
Figure imgf000051_0002
D D, L
(HI) wherein:
Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR4)nCRιR2SZ , wherein: Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, R , RS, R6, and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical. [155] The diastereomers can be separated by HPLC on cyano-bonded silica. [156] In a more prefened embodiment, the present invention provides a method of esterification of a maytansinoid to produce a maytansinoid ester represented by formula (IN-L), (lN-D), or (IN-D,L):
Figure imgf000052_0001
L D D, L
(IV) wherein: Y2 represents (CR7CR8)ι(CR5CR6)πι(CR3CR )nCRiR2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, t, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; •
Z2 is SR or COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 - 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical; and
May is a maytansinoid; said method comprising reacting said may at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with a compound of formula (UI-L), (HI-D), or (m-D,L):
Figure imgf000053_0001
(ΠD wherein:
Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR )nCRιR2SZ2, wherein: Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, , R5, Re, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
I
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
[157] In an even more prefened embodiment the present invention provides a method of esterification of maytansinol to give a maytansinoid of the formula 42:
Figure imgf000054_0001
42 wherein:
Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR )nCR1R2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, Rt, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 - 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical, said method comprising reacting maytansinol at the C-3 with a compound of formula (III-L), (LTI-D), or (IH-D, L):
Figure imgf000055_0001
(BJ) wherein:
Y2 represents (CR7CRg)ι(CR5CR6)m(CR3CR4)nCR1R2SZ2, wherein: Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R ι i, R5, R , R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
[158] Preferably, the compound represented by the formula (I) is the L stereoisomer. [159] For the above methods, it is prefened that Ri is H, R2 is methyl, R5, R6, R , and R8 are
I each H, 1 and m are each 1, and n is 0; or that Ri and R2 are methyl, R5, R6, R7 and R8 are each H, 1 and m are 1, and n is 0.
[160] When making DM3, the compound of formula (fll-L) is 15a(S,S), 15b(S,R) or a mixture of 15a(S,S) and 15b(S,R); the compound of formula (III-D) is N-methyl-D-alanine acylated with the racemic acyl group or with the acyl group having either R or S chirality to give compounds 15; and the compound of formula (LTJ-D,L) is racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure of 15. [161] The mixture of 15a(S,S) and 15b(S,R) can be made by a process comprising: (1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with N-methyl-L-alanine to give said mixture of compounds 15a(S,S) and 15b(S,R).
[162] Similarly, the mixture of compounds 15(R,S) and 15(R,R) can be made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with N-methyl-D-alanine to give said mixture of compounds 15(R,S) and 15(R,R,).
[163] Racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of R or S chirality to give compounds of the structure 15 can be made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with racemic N-methylalanine to give said racemic N- methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure 15. [164] The compound 15a(S,S) can be made by a process comprising:
(1) converting (R)-l,3-butanediol into (S)-4-(methydithio)pentanoic acid 19;
(2) converting compound 19 into its N-hydroxysuccinimide ester (20); and
(3) reacting compound 20 with N-methyl-L-alanine to give said compound 15a(S,S). [165] The compound 15b(S,R) can be made by a process comprising:
(1) converting (S)-l,3-butanediol into (R)-4-(methydithio)ρentanoic acid 24;
(2) converting compound 24 into its Ν-hydroxysuccinimide ester (25); and
(3) reacting compound 25 with N-methyl-L-alanine to give said compound 15b(S,R). [166] When making DM4, the compound of formula (IJJ-L) is a compound 10 containing N- methyl-L-alanine; the compound of formula (JJI-D) is compound 10 containing N-methyl-D- alanine, and the compound of formula (IJJ-D,L) is compound 10 containing racemic N- methylalanine.
[167] The compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine, or racemic N- methylalanine is made by a process comprising:
(1) reacting isobutylene sulfide (5) with the anion of acetonitrile to give compound 6;
(2) hydrolyzing compound 6 to give 4-mercapto-4-methylpentanoic acid (7);
(3) converting compound 7 into disulfide 8 by reaction with methylmethanethiolsulfonate;
(4) converting compound 8 into its N-hydroxysuccinimide ester 9; and
(5) reacting compound 9 with N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine to give compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine. [168] According to the present invention, compounds of formula HI are also new:
Figure imgf000059_0001
n) wherein:
Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR4)nCRιR2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, R4, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
Z2 is SR or -COR, wherein R is linear alkyl, branched alkyl or cyclic alkyl having from 1 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
[169] The compounds of formula III can be made readily by one of ordinary skill in the art by methods analogous to those disclosed herein for making compounds 10 and 15. In vitro Cytotoxicity of Maytansinoids
[170] The in vitro cytotoxicity of maytansinoids of the present invention is shown in FIG. 4. The new maytansinoids (4c, 4e) bearing a hindered disulfide bond are highly potent towards the cell lines tested. Thus 4c kills A-375 cells and SK-Br-3 cells with IC50 values of 1.5 x 10 M and 7.0 x 10" M respectively. Similarly, maytansinoid 4e is also highly potent with IC50 values of 3.2 x 10 M and 9.0 x 10"12 M towards A-375 and SK-Br-3 cells respectively. Comparison of the in vitro potency of the hindered thiol-containing maytansinoid 4a of the present invention with that of previously described maytansinoid 1 (Fig.4c,d), indicates that the new maytansinoids are 20 to 50-fold more potent than the previous described ones.
Preparation of Cell-binding Agents
[171] The effectiveness of the compounds of the invention as therapeutic agents depends on the careful selection of an appropriate cell-binding agent. Cell-binding agents may be of any kind presently known, or that become known and include peptides and non-peptides. Generally, these can be antibodies (especially monoclonal antibodies), lymphokines, hormones, growth factors, vitamins, nutrient-transport molecules (such as transferrin), or any other cell-binding molecule or substance.
[172] More specific examples of cell-binding agents that can be used include: polyclonal antibodies; monoclonal antibodies; fragments of antibodies such as Fab, Fab', and F(ab')2, Fv (Parham, J. Immunol. 131:2895-2902 (1983); Spring et al. J. Immunol. 113:470-478 (1974); Nisonoff et al. Arch. Biochem. Biophys. 89:230-244 (I960)); , interferons (e.g. .alpha., .beta., .gamma.); lymphokines such as IL-2, IL-3, LL-4, JL-6; hormones such as insulin, TRH (thyrotropin releasing hormone), MSH (melanocyte- stimulating hormone), steroid hormones, such as androgens and estrogens; growth factors and colony-stimulating factors such as EGF, TGF-alpha, FGF, VEGF, G- CSF, M-CSF and GM-CSF (Burgess, Immunology Today 5:155-158 (1984)); transferrin (O'Keefe et al. /. Biol. Chem. 260:932-937 (1985)); and vitamins, such as folate. [173] Monoclonal antibody techniques allow for the production of extremely specific cell- binding agents in the form of specific monoclonal antibodies. Particularly well known in the art are techniques for creating monoclonal antibodies produced by immunizing mice, rats, hamsters or any other mammal with the antigen of interest such as the intact target cell, antigens isolated from the target cell, whole virus, attenuated whole virus, and viral proteins such as viral coat proteins. Sensitized human cells can also be used. Another method of creating monoclonal antibodies is the use of phage libraries of scFv (single chain variable region), specifically human scFv (see e.g., Griffiths et al., U.S. Patent Nos. 5,885,793 and 5,969,108; McCafferty et al., WO 92/01047; Liming et al., WO 99/06587). In addition, resurfaced antibodies disclosed in U.S. Patent No. 5,639,641 may also be used, as may humanized antibodies.
[174] Selection of the appropriate cell-binding agent is a matter of choice that depends upon the particular cell population that is to be targeted, but in general human monoclonal antibodies are prefened if an appropriate one is available. [175] For example, the monoclonal antibody MY9 is a murine IgGi antibody that binds specifically to the CD33 Antigen { J.D. Griffin et al 8 Leukemia Res., 521 (1984)} and can be used if the target cells express CD33 as in the disease of acute myelogenous leukemia (AML). Similarly, the monoclonal antibody anti-B4 is a murine IgGi, that binds to the CD19 antigen on B cells {Nadler et al, 131 J. Immunol. 244-250 (1983)} and can be used if the target cells are. B cells or diseased cells that express this antigen such as in non-Hodgkin's lymphoma or chronic lymphoblastic leukemia. Similarly, the monoclonal antibody, C242, that binds to the CanAg antigen, (U.S. patent No. 5,552,293) can be used to treat CanAg expressing tumors, such us colorectal, pancreatic and gastric cancers.
[176] Additionally, GM-CSF, which binds to myeloid cells can be used as a cell-binding agent to diseased cells from acute myelogenous leukemia. IL-2 which binds to activated T-cells can be used for prevention of transplant graft rejection, for therapy and prevention of graft-versus-host disease, and for treatment of acute T-cell leukemia. MSH, which binds to melanocytes, can be used for the treatment of melanoma. Folic acid can be used to target the folate receptor expressed on ovarian and other tumors. Epidermal growth factor can be used to target squamous cancers such as lung and head and neck. Somatostatin can be used to target neuroblastomas and other tumor types.
[177] Cancers of the breast and testes can be successfully targeted with estrogen (or estrogen analogues) or androgen (or androgen analogues) respectively as cell-binding agents.
Production of Cytotoxic Conjugates
[178] The present invention also provides a maytansinoid-cell-binding agent conjugate comprising at least one maytansinoid linked to the cell-binding agent, wherein the cell-binding agent is linked to the maytansinoid using the thiol or disulfide functionality that is present on the acyl group of an acylated amino acid side chain found at C-3, C-14 hydroxymethyl, C-15 hydroxy or C-20 desmethyl of the maytansinoid, and wherein the acyl group of the acylated amino acid side chain has its thiol or disulfide functionality located at a carbon atom that has one or two substituents, said substituents being CH3, C2H5, linear alkyl or alkenyl having from 1 to
10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition one of the substituents can be H, and wherein the acyl group has a linear chain length of at least three carbon atoms between the carbonyl functionality and the sulfur atom.
[179] A prefened cell-binding agent conjugate comprises at least one maytansinoid linked to a cell-binding agent, wherein the maytansinoid is represented by formula 4ι':
Figure imgf000063_0001
4ι' wherein:
Yi' represents
(CR7CR8)ι(CR9=CRio)p(C=C)qAr(CR5CR6)mDu(CR1i=CRi2)r(CC)sBt(CR3CR4)slCR1R2S-, wherein: A, B, and D, each independently is cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl, or heterocyclic aromatic or heterocycloalkyl radical;
R3, t, R5, R6) R7, R8, R , Rπ, and R12 are each independently H, CH3) C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical; and i
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are non-not zero at any one time. [180] Preferably, Ri is H and R2 is methyl, or Rj and R2 are methyl.
[181] An even more prefened cell-binding agent conjugate comprises at least one maytansinoid linked to the cell-binding agent, wherein the maytansinoid is represented by formula (JJ-L), (JJ- D), or (lT-D,L):
Figure imgf000064_0001
L D D,L
(H) wherein: Yi represents (CR7CR8)1(CR5CR6)m(CR3CR4)nCRiR2S-, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl, heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3> R4, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
May represents a maytansinol which bears the side chain at C-3, C-14 hydroxymethyl, C- 15 hydroxy or C-20 desmethyl.
[182] Even more prefened is a maytansinoid-cell-binding agent conjugate, wherein the maytansinoid is represented by formula 4χ:
Figure imgf000065_0001
wherein the substituents are as defined for formula (II) above.
[183] Especially prefened are any of the above-described compounds, wherein Ri is H, R2 is methyl, R5, R6, R7 and R8 are each H, 1 and m are each 1, and n is 0; and those wherein Rj and R2 are methyl, R5, R6, R7, R8 are each H, 1 and m are 1, and n is 0. [184] Further, the L-aminoacyl stereoisomer is prefened.
[185] Representational cytotoxic conjugates of the invention are antibody/maytansinoid, antibody fragment/maytansinoid, epidermal growth factor (EGF)/maytansinoid, melanocyte stimulating hormone (MSH)/maytansinoid, thyroid stimulating hormone (TSH)/maytansinoid, somatostatin/maytansinoid, folate/maytansinoid, estrogen/maytansinoid, estrogen analogue/maytansinoid, androgen maytansinoid, and androgen analogue/maytansinoid.
[186] The thiol-containing maytansinoid is reacted with an appropriately modified cell-binding agent to produce cytotoxic conjugates. These conjugates may be purified by gel-filtration, ion exchange chromatography, or by HPLC.
[187] Schemes for preparing conjugates from sulfhydryl group-containing maytansinoids are shown in Figure 5. More specifically (Fig. 5a, b), a solution of an antibody in aqueous buffer may be incubated with a molar excess of an antibody modifying agent such as N-succinimidyl-3 - (2-pyridyldithio)propionate (SPDP, 3a) to introduce dithiopyridyl groups (Fig 5a). or with N- succinimidyl-4-(2-pyridyldithio)butanoate (SPDB, 3b) to introduce dithiopyridyl groups (Fig 5b). The modified antibody is then reacted with the thiol-containing maytansinoids (such as 4a or 4b) to produce a disulfide-linked antibody-maytansinoid conjugate. The maytansinoid- antibody conjugate may then be purified by gel-filtration.
[188] Alternatively, tha antibody may be incubated with a molar excess of an antibody modifying agent such as 2-iminothiolane to introduce sulfhydryl groups. The modified antibody is then reacted with the appropriate disulfide-containing maytansinoids to produce a disulfide- linked antibody-maytansinoid conjugate. The maytansinoid-antibody conjugate may then be purified by gel-filtration. [189] The number of maytansinoid molecules (denoted with w in Figures 5a to 5d) bound per antibody molecule can be determined by measuring spectrophotometrically the ratio of the absorbance at 252 nm and 280 nm. An average of 1-10 maytansinoid molecules/antibody molecule can be linked by this method. The prefened average number of linked maytansinoid molecules per antibody molecule is 2-5, and the most prefened is 3-4.5.
[190] Alternatively, a solution of an antibody in aqueous buffer may be incubated with a molar excess of an antibody-modifying agent such as N-succinimidyl-4-(N-maleimidomethyl)- cyclohexane-1-carboxylate (SMCC, 26) to introduce maleimido groups (Fig. 5c), or withN- succinirιudyl-4-(iodoacetyl)-aminobenzoate (SIAB, 27) to introduce iodoacetyl groups (Fig. 5d).
The modified antibody is then reacted with the thiol-containing maytansinoids (such as 4a or 4b) to produce a thioether-linked antibody-maytansinoid conjugate. The maytansinoid-antibody conjugate may then be purified by gel-filtration.
[191] The number of maytansinoid molecules bound per antibody molecule can be determined by spectrophotometric analysis as described above.
[192] Thus, the present invention provides a method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by one of the methods described above, and reacting the purified maytansinoid with a cell-binding agent comprising a reactive dithio or a sulfhydryl group. Preferably, the reactive dithio group is a dithiopyridyl group or a substituted dithiopyridyl group. Especially preferably, the reactive dithio group comprises a nitropyridyldithio or dinitropyridyldithio group.
[193] In another method, the purified maytansinoid is reacted with a cell-binding agent comprising a maleimido group or a haloacetyl group. [194] Conjugates of cell-binding agents with maytansinoid drugs of the invention can be evaluated for their ability to suppress proliferation of various unwanted cell lines in vitro (Fig. 6). For example, cell lines such as the human colon carcinoma line COLO 205, the human melanoma cell line A-375, the human myeloid leukemia cell line HL60 can be used for the assessment of cytotoxicity of these conjugates. Cells to be evaluated can be exposed to the compounds for 24 hours and the surviving fractions of cells measured in direct assays by known methods. IC50 values can then be calculated from the results of the assays. [195] The in vitro potency and target specificity of antibody-maytansinoid conjugates of the present invention are shown in Fig. 6, 10 and 12. Thus, Fig 6 shows that both huC242-DM3 and huC242-DM4 are highly potent in killing antigen positive COLO 205 cells,1 with IC50 values of 1.3 x 10 M and 1.1 x 10" u M respectively. In contrast, antigen negative A-375 cells are about 500-fold less sensitive demonstrating that maytansinoid conjugates of the present invention are highly potent and specific. Similarly, Figs 10 and 12 demonstrate the high potency and target specificity of conjugates of the maytansinoids of the present invention, with the antibodies MY9-6 and anti-B4 respectively.
[196] The in vivo anti-tumor efficacy of conjugates of antibodies with the hindered thiol- containing maytansinoids of the present invention was compared with that of previously described maytansinoid conjugates in several different human tumor models in mice. In the first model (Fig. 7), SCID mice bearing established subcutaneous human colon tumor HT-29 xenografts were treated either with the antibody conjugate (huC242-DMl) of the previously described maytansinoid DM1, or with the two new maytansinoid conjugates (huC242-DM3, huC242-DM4). Treatment with huC242-DMl resulted in a tumor growth delay of 18 days. In contrast, the new agents were significantly more efficacious, with tumor growth delays of 28 days for huC242-DM3 and 36 days for huC242-DM4.
[197] In the second model (Fig. 8), mice bearing established subcutaneous human colon tumor COLO 205 xenografts were treated either with the antibody conjugate (huC242-DMl) of the previously described maytansinoid DM1, or with the two new maytansinoid conjugates (huC242-DM3, huC242-DM4). Treatment with huC242-DMl did not result in tumor regression and gave a tumor growth delay of 20 days. In contrast, the new agents were significantly more efficacious. Complete tumor regression lasting 45 days was achieved in the group treated with huC242-DM3. huC242-DM4 was even more efficacious resulting in cures of all the treated mice.
[198] In the third model (Fig. 9), mice bearing established subcutaneous human myeloid leukemia HL60 xenografts were treated either with the antibody conjugate (MY-9-6-DM1) of the previously described maytansinoid DM1, or with the two new maytansinoid conjugates (MY9-6- DM3, MY9-6-DM4). Treatment with MY9-6-DM1 did not result in tumor regression and gave a tumor growth delay of 5 days. In contrast, the new agents were significantly more efficacious. Resulting in tumor regression. Both MY9-6-DM3 and MY-9-6-DM4 gave tumor growth delays of greater than 20 days.
[199] In the fourth model (Fig. 11), a maytansinoid of the present invention (huMY9-6-DM4) was directly compared with that of a conjugate of the previously described maytansinoid (huMY9-6-DMl) in a subcutaneous xenograft model, established with HL-60 cells. At an equivalent dose, treatment with the conjugate of the cunent invention, MY9-6-DM4, results complete tumor regression lasting 85 days. In contrast, the conjugate of the previously described maytansinoid is much less active with a tumor growth delay of only about 48 days. [200] In the fifth model (Fig. 13a), a conjugate of a maytansinoid of the present invention with the huB4 antibody shows high anti-tumor activity in a dose-dependent manner in a subcutaneous Ramos tumor model. Complete tumor regressions and cures are achieved at doses that are nontoxic (Fig. 13a,b).
[201] Results from the above five efficacy experiments demonstrate that the sterically hindered thiol-containing maytansinoids of the present invention give cell-binding agent conjugates with vastly improved anti-tumor activity compared to the previously described maytansinoid-cell- binding agent conjugates.
Compositions and methods of use
[202] The present invention provides pharmaceutical compositions comprising an effective amount of any of the maytansinoid-cell-binding agents of the present invention, pharmaceutically acceptable a salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
[203] The present invention also provides methods of treatment comprising administering to a subject in need of treatment an effective amount of any of the conjugates described above.
[204] Similarly, the present invention provides a method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a cytotoxic agent comprising any of the maytansinoid-cell-binding agents of the present invention, a salt or solvate thereof. The target cells are cells to which the cell-binding agent can bind. [205] If desired, other active agents, such as other anti-tumor agents, may be administered along with the conjugate.
[206] Suitable pharmaceutically acceptable carriers, diluents, and excipients are well known and can be determined by those of ordinary skill in the art as the clinical situation wanants. [207] Examples of suitable carriers, diluents and/or excipients include: (1) Dulbecco's phosphate buffered saline, pH about 7.4, containing or not containing about 1 mg/ml to 25 mg ml human serum albumin, (2) 0.9% saline (0.9% w/v NaCI), and (3) 5% (w/v) dextrose; and may also contain an antioxidant such as tryptamine and a stabilizing agent such as Tween 20. [208] The method for inducing cell death in selected cell populations can be practiced in vitro, in vivo, or ex vivo.
[209] Examples of in vitro uses include treatments of autologous bone manow prior to their transplant into the same patient in order to kill diseased or malignant cells: treatments of bone manow prior to their transplantation in order to kill competent T cells and prevent graft-versus- host-disease (GVHD); treatments of cell cultures in order to kill all cells except for desired variants that do not express the target antigen; or to kill variants that express undesired antigen. [210] The conditions of non-clinical in vitro use are readily determined by one of ordinary skill in the art.
[211] Examples of clinical ex vivo use are to remove tumor cells or lymphoid cells from bone manow prior to autologous transplantation in cancer treatment or in treatment of autoimmune disease, or to remove T cells and other lymphoid cells from autologous or allogenic bone manow or tissue prior to transplant in order to prevent GVHD. Treatment can be carried out as follows. Bone manow is harvested from the patient or other individual and then incubated in medium containing serum to which is added the cytotoxic agent of the invention, concentrations range from about 10 μM to 1 pM, for about 30 minutes to about 48 hours at about 37°C. The exact conditions of concentration and time of incubation, i.e., the dose, are readily determined by one of ordinary skill in the art. After incubation the bone marrow cells are washed with medium containing serum and returned to the patient intravenously according to known methods. In circumstances where the patient receives other treatment such as a course of ablative chemotherapy or total-body inadiation between the time of harvest of the manow and reinfusion of the treated cells, the treated marrow cells are stored frozen in liquid nitrogen using standard medical equipment.
[212] For clinical in vivo use, the cytotoxic agent of the invention will be supplied as a solution or a lyophilized powder that are tested for sterility and for endotoxin levels. Examples of suitable protocols of conjugate administration are as follows. Conjugates are given weekly for 4 weeks as an intravenous bolus each week. Bolus doses are given in 50 to 1000 ml of normal saline to which 5 to 10 ml of human serum albumin can be added. Dosages will be 10 μg to 2000 mg per administration, intravenously (range of 100 ng to 20 mg/kg per day). After four weeks of treatment, the patient can continue to receive treatment on a weekly basis. Specific clinical protocols with regard to route of administration, excipients, diluents, dosages, times, etc., can be determined by one of ordinary skill in the art as the clinical situation wanants. [213] Examples of medical conditions that can be treated according to the in vivo or ex vivo methods of inducing cell death in selected cell populations include malignancy of any type including, for example, cancer of the lung, breast, colon, prostate, kidney, pancreas, ovary, and lymphatic organs; autoimmune diseases, such as systemic lupus, rheumatoid arthritis, and multiple sclerosis; graft rejections, such as renal transplant rejection, liver transplant rejection, lung transplant rejection, cardiac transplant rejection, and bone ma ow transplant rejection; graft versus host disease; viral infections, such as CMV infection, FflV infection, AIDS, etc.; and parasite infections, such as giardiasis, amoebiasis, schistosomiasis, and others as determined by one of ordinary skill in the art.
EXAMPLES
[214] The invention will now be illustrated by reference to non-limiting examples. Unless otherwise stated, all percents, ratios, parts, etc. are by weight. The examples described below are for compounds where Ri is H or CH3, R2 is CH , R5, Re, R , R8 are each H, 1 and m are each 1, and n is 0. Similar synthesis can be carried out for other compounds of the invention where Ri and R2 are each independently H, CH3, C2H5, or higher alkyl, alkenyl, having from 1 to 10 carbon atoms, or phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical; and where 1, m and n are each integers from 1 to 5, and in addition, n can also be 0.. [215] All reagents were purchased from the Aldrich Chemical Co., New Jersey, or other commercial sources. Maytansinol (11) was prepared as described previously (US Patent 6,333,410). Nuclear Magnetic Resonance (!H NMR) spectra were acquired on a Bruker 400 MHz instrument and mass spectra were acquired on a Bruker Daltonics Esquire 3000 instrument using electrospray ionization.
EXAMPLE 1
Synthesis of Maytansinoid 4b
[216] 4-Mercapto-4-methylpentanoic acid (7): A 500 mL flask was equipped with a stir bar and a 150 mL addition funnel. The system was placed under an argon atmosphere. 150 mL of anhydrous tetrahydrofurane (THF) and 75 mL of 2.5 M n-BuLi in hexanes (18.7 mmol) were added via a canula and the solution was cooled in a -78 °C dry ice/acetone bath. Acetonitrile (7.3 g, 9.4 mL, 18 mmol) was added drop-wise via a syringe over approximately 5 min. The reaction was stined for 30 min, while white lithium-acetonitrile precipitate was formed. Isobutylene sulfide (15 g, 17 mmol) was dissolved in 100 mL of anhydrous THF and added drop wise over approximately 30 min via the addition funnel. The cooling bath was removed and the reaction was allowed to stir for 3 hours. The flask was cooled in an ice/water bath as 38 mL of 0.5 M HCl was added drop-wise. The THF layer was retained and the aqueous layer was washed twice with 75 mL of ethyl acetate. The THF and ethyl acetate layers were combined, dried over approximately 20 g of anhydrous sodium sulfate and transfened to a 250 mL flask. Solvent was removed by rotary evaporation under vacuum to give crude 6. Ethanol (30 mL) and a stir bar were added. The contents were stined as a solution of 8.0 g NaOH in 30 mL deionized water was slowly added. The flask was equipped with a reflux condenser and placed under an argon atmosphere. The reaction was refluxed overnight then cooled to room temperature. Deionized water (60 mL) was added and the mixture was extracted twice with 25 mL portions of a 2: 1 mixture of ethyl acetate and hexane. The aqueous layer was acidified to pH 2 with concentrated HCl then extracted three times with 75 mL portions of ethyl acetate. The organic layers were dried over anhydrous Na2S04 and solvent was removed by rotary evaporation under vacuum to give 10 g of product 7 (39% yield). Material was used without further purification. !H NMR (CDCI3): δl.38 (6H, s), 1.87-1.93 (2H, m), 2.08 (1H, s), 2.51-2.57 (2H, m). [217] 4-Methyl-4-(methyldithio)pentanoic acid (8): A solution of mercaptopentanoic acid 7 (6.0 mL, 40 mmol) was dissolved in 50 mL of deionized water in a 250 mL flask. The solution was magnetically stined as sodium carbonate (6.4 g, 60 mmol) was added to the acid at a rate that would not cause excessive frothing. The flask was equipped with a 100 mL addition funnel, which was charged with a solution of methyl methanethiolsulfonate (7.5 g, 60 mmol) dissolved in 30 mL of glass-distilled 100 % ethanol. The flask was cooled in an ice/water bath and the system was maintained under an argon atmosphere. The methyl methanethiolsulfonate solution
( was added drop-wise to the flask as rapidly as possible but without causing excessive frothing.
The cooling bath was removed and the reaction mixture was allowed to stir for an additional 3 hours. Solvent was removed by rotary evaporation under vacuum, until approximately 20 mL remained. After which 10 mL of saturated sodium bicarbonate and 30 mL of deionized water were added. The mixture was washed three times with 25 mL portions of ethyl acetate in a separatory funnel. The aqueous layer was adjusted to approximately pH 2 with 5 M HCl and was extracted twice with 120 mL portions of ethyl acetate. The organic layers were combined and washed with 20 mL of a solution composed of saturated NaCI and IM HCl at a ratio of 4:1.
The organic layer was then dried over 14 g of anhydrous sodium sulfate and solvent was removed by rotary evaporation under vacuum to give 5.4 g of product 8 (70% yield). The material can be taken to the next step without further purification. 1H NMR (CDC13): δl.54 (6H, s), 2.15-2.21 (2H, m), 2.64 (3H, s), 2.69-2.72 (2H, m). MS (M + Na+) calc: 217.0, found: 217.1
[218] N-Hydroxysuccinimidyl 4-methyl-4-(methyldithio)pentanoate (9) :
Methyldithiopentanoic acid 8 (3.0 g, 15 mmol) was dissolved in 20 mL of methylene chloride and stined magnetically as N-hydroxysuccinimide (2.65 g, 23 mmol) was added followed by 1-
[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDC, 4.4 g, 23 mmol). The mixture was stined under an argon atmosphere for 2 hours. The reaction mixture was poured into a 125 mL separatory funnel, 40 mL of ethyl acetate was added and the solution was washed twice with 20 mL portions of 50 mM potassium phosphate buffer, pH 6.0, and once with 12 mL of saturated sodium chloride. The organic layer was dried over 14 g of anhydrous Na2S04 and solvent was removed by rotary evaporation under vacuum to give 4.0 g of product 9 (90 % yield), which was used without further purification. 1H NMR (CDC13): δl.30 (6H, s), 2.00-2.05 (2H, m), 2.39 (3H, s), 2.68-2.72 (2H, m), 2.73-2.83 (4H, m). MS (M + Na+) calc: 314.0, found: 314.1
[219] N-methyl-N-(4-methyl-4-methyldithio-l-oxopentyl)-L-alanine (10): N-Methyl-L- alanine (2.85 g, 18.0 mmol) was dissolved in 50 mL of a 1:1 solution of dimethoxyethane and deionized water in a 125 mL flask equipped with a magnetic stir bar. Triethylamine (6.9 g, 36 mmol) was added and the solution was vigorously stined as 9 (5.44g, 18 mmol) dissolved in 40 mL of the same solvent mixture was added drop-wise over approximately 5 min. After 2 hours the reaction mixture was concentrated to approximately 40 mL by rotary evaporation under vacuum, then 10 mL of deionized water and 1 M HCl were added to give a pH of approximately 2. The mixture was poured into a separatory funnel and extracted twice with 50 mL portions of ethyl acetate. The organic layers were combined and then washed with 7 mL of saturated sodium chloride solution. The organic layer was dried over 8.0 g of anhydrous Νa2S0 and the solvent was removed by rotary evaporation under vacuum. The residue was taken up in a minimum volume of ethyl acetate and purified by chromatography on silica (silica: 40 micron flash grade, silica bed: 24 x 3.0 cm, mobile phase: hexanes: ethyl acetate: acetic acid 50:48:2). Fractions containing desired product were combined and solvent was removed under vacuum. Residual acetic acid was removed by dissolving the residue in a minimum volume of ethyl acetate and precipitating product by the rapid but drop-wise addition of hexane with stirring. Hexane was added until product was no longer detected in the supernatant by TLC analysis. The precipitate was vacuum dried for 4 hours to give 2.2 g of product 10 (51 % yield). 1H NMR (CDC13): δl.32 (6H, s), 1.42 (3H, d, J = 7 Hz), 1.90-97 (2H, m),.2.40 (3H, s), 2.42-2.49 (2H, m), 2.9 (3H, s), 5.15 (1H, q, J= 7 Hz). MS (M + Na+) calc: 302.1, found: 302.0. [220] N2'-deacetyl-N2'-(4-methyl-4-methyldithio-l-oxopentyl)maytansine (L-DM4-SMe, 4e). A solution of maytansinol (11, 25 mg, 0.44 mmol) and N-methyl-N-(4-methyl-4- methyldithio-l-oxopentyl)-L-alanine (10, 42.0 mg, 0.177 mmol) in 3 mL dichloromethane was magnetically stined under an argon atmosphere as a solution of dicyclohexylcarbodiimide (DCC, 57.1 mg, 0.277 mmol) in 0.67 mL dichloromethane was added. After 1 min a solution of 1 M
/
ZnCl2 in diethyl ether (0.03 mL, 0.03 mmol) was added. The mixture was stined at room temperature for 2 hours then 5 mL of ethyl acetate was added and the mixture was vacuum filtered through course filter paper. The filtrate was washed with 2 mL of saturated sodium bicarbonate solution followed by 1 mL of saturated sodium chloride solution. The organic layer was dried over 2 g of anhydrous sodium sulfate. And solvent was removed under vacuum and the residue was purified by silica chromatography using a mixture of dichloromethane and methanol to remove unreacted maytansinol. Fractions containing desired product were combined and solvent was removed under vacuum to give a mixture of diastereomers 4e and 4f. The residue was taken up in a minimum volume of ethyl acetate and purified on a 50 cm by 250 cm, 10 micron Diazem™ CΝ column using as mobile phase a mixture of hexane, 2-propanol and ethyl acetate at a ratio of 68:8:24. The flow rate was 118 mlVmin. Under these conditions the desired product 4e eluted with a retention time of 11 min and the undesired diastereomer 4f had a retention time of 19 min. Fractions containing desired product were combined and solvent was removed under vacuum to give 12.0 mg of product 4e (36% yield). 1H NMR (CDC13): δθ.80 (3H, s), 1.28-1.36 (13H, m), 1.42-1.46(2H, m), 1.53-1.63 (2H, m), 1.64 (3H, s), 1.75-1.85 (1H, m), 1.90-2.10 (1H, m), 2.18 (1H, dd, 7=3 Hz and 14 Hz), 2.31 (3H,s), 2.40-2.49 (1H, m), 2.50- 2.65 (1H, m), 2.85 (3H, s), 3.04 (1H, d, J=9 Hz), 3.11 (lH,d,J=ll Hz), 3.23 (3H,s), 3.35 (3H,s), 3.49 (1H, d, 7=9 Hz), 3.63 (1H, d, J=12 Hz), 3.98 (3H, s), 4.27 (1H, t, 7=10 Hz), 4.79 (1H, dd, 7=3 Hz and 12 Hz), 5.41 (1H, q, 7=7 Hz), 5.66 (1H, dd 7=9 Hz and 15 Hz), 6.21 (1H, s), 6.42 (1H, dd, 7=11 Hz and 15 Hz), 6.65 ( 1H, d, 7=1.5 Hz), 6.73 (1H, d, 7=11 Hz), 6.81 (1H, d, 7=1.5 Hz). High resolution MS (M + IT) calc: 826.3174, found: 826.3150. [221] N2'-deacetyl-N '-(4-mercapto-4-methyl-l-oxopentyl)maytansine (L-DM4, 4b). The disulfide 4e from above (12 mg, 0.015 mmol) was dissolved in 1.0 mL of 1:1 ethyl acetate : i methanol. A solution of dithiothreitol (18 mg, 0.117 mmol) in 0.50 mL of 50 mM phosphate buffer, pH 7.5, was then added. The solution was magnetically stined under an argon atmosphere for 3 hours, then 1 mL of 200 mM phosphate buffer, pH 6.0, was added and the mixture was extracted three times with 2 mL portions of ethyl acetate. The organic layers were combined and washed with 1 mL of saturated sodium chloride solution, then dried over 1 g of anhydrous sodium sulfate. The solvent was removed under vacuum and the residue was taken up in a minimum of ethyl acetate and purified on a 50 cm x 250 cm, 10 micron Diazem™ CN column using as mobile phase a mixture of hexane, 2-propanol and ethyl acetate at a ratio of 70:8:22. The flow rate was 22 mL/min. The desired product 4b eluted with a retention time of 10 min. Fractions containing pure 4b were combined and the solvent was removed under vacuum to give \ 11 mg of 4b (97% yield). 1H NMR (CDC13): δθ.80 (3H, s), 1.19-1.23(lH,m), 1.28-1.36 (12H, m), 1.42-1.46(2H, m), 1.53-1.63 (2H, in), 1.64 (3H, s), 1.75-1.85 (IH, m), 1.90-2.10 (IH, m), 2.18 (IH, dd, 7=3 Hz and 14 Hz), 2.40-2.49 (IH, m), 2.50-2.65 (2H, m), 2.88 (3H, s), 3.04 (IH, d, J=9 Hz), 3.11 (lH,d,J=ll Hz), 3.23 (3H,s), 3.35 (3H,s), 3.49 (IH, d, 7=9 Hz), 3.63 (IH, d, 7=12 Hz), 3.98 (3H, s), 4.27 (IH, t, 7=10 Hz), 4.79 (IH, dd, 7=3 Hz and 12 Hz), 5.41 (IH, q, 7=7 Hz), 5.66 (IH, dd 7=9 Hz and 15 Hz), 6.21 (IH, s), 6.42 (IH, dd, 7=11 Hz and 15 Hz), 6.65 ( IH, d, 7=1.5 Hz), 6.73 (IH, d, 7=11 Hz), 6.81 (IH, d, 7=1.5 Hz). High resolution MS (M + Na+) calc: 802.3101, found: 802.3116.
EXAMPLE 2
Synthesis of Maytansinoid 4a
[222] 4-Methyldithio-pentanoic acid (13): A solution of 4-mercaptopentanoic acid (12, 16.6 g, 124 mmol) was dissolved in 350 mL of deionized water in a 500 mL flask. The solution was magnetically stined as sodium carbonate (19.7 g, 186 mmol) was added to the acid at a rate that would not cause excessive frothing. The flask was equipped with a 250 mL addition funnel, which was charged with a solution of methyl methanethiolsulfonate (23.4 g, 186 mmol) dissolved in 220 mL of glass-distilled 100 % ethanol. The flask was cooled in an ice/water bath and the system was maintained under an argon atmosphere. The methyl methanethiolsulfonate solution was added drop-wise to the flask as rapidly as possible but at such a speed as to prevent excessive frothing. The cooling bath was removed and the reaction mixture was allowed to stir for an additional 2 hours. Solvent was removed by rotary evaporation under vacuum, until approximately 250 mL remained. After which 30 mL of saturated sodium bicarbonate solution and 50 mL of deionized water were added. The mixture was washed three times with 200 mL portions of ethyl acetate in a separatory funnel. The aqueous layer was adjusted to approximately pH 2 with 5 M HCl and was extracted twice with 400 mL portions of ethyl acetate. The organic layers were combined, then washed with 60 mL of a 4: 1 mixture of saturated NaCI solution and IM HCl, then dried over 50 g of anhydrous sodium sulfate, and finally, the solvent was removed by rotary evaporation under vacuum to give 10.2 g of product 13 (45 % yield). The material was used in the next reaction without further purification. H1 NMR δl.36 (3H, d, J = 7 Hz), 1.84-1.95 (H, m), 1.85-2.56 (IH, m), 2.42 (3H, s), 2.53 (2H, t, J = 7 Hz), 2.85-2.95 (IH, m), MS (M + Na+) calc: 203.3, found: 203.2.
[223] N-Hydroxysuccinimidyl 4-methyldithio-pentanoate (14): 4-methyldithio-pentanoic acid (13, 0.75 g, 4.16 mmol) was dissolved in 7.0 mL of methylene chloride and stined magnetically while N-hydroxysuccinimide (0.526 g, 4.57 mmol) was added followed by l-[3- (dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (0.877 g, 4.57 mmol). The mixture was stined under an argon atmosphere for 2.5 hours, then poured into a 60 mL separatory funnel containing 20 mL of ethyl acetate. The resulting solution was washed twice with 15 mL portions of 50 mM potassium phosphate buffer, pH 6.0, and once with 5 mL of saturated sodium chloride. The organic layer was dried over 8 g of anhydrous Νa2S04 and the solvent was removed by rotary evaporation under vacuum to give 1.15 g of product 14 (87 % yield), which was used for the next reaction without further purification. H1 NMR δl.48(3H, d, J = 7), 2.06(1H, m), 2.17(1H, m), 2.55(3H, s), 2.93(2H, t, J= 7), 2.98(4H, s), 3.15(1H, m). MS (M + Na+) calc: 304.1, found: 304.0.
[224] N-methyl-N-(4-methyldithio-l-oxopentyl) -L-alanine (15): N-Methyl-L-alanine (0.64 g, 6.2 mmol) was dissolved in 8 mL of a 1:1 mixture of dimethoxyethane and deionized water in a 125 mL flask equipped with a magnetic stir bar. Triethylamine (0.841 g, 8.3 mmol) was added and the flask was vigorously stined as a solution of 14 (1.0 g, 3.6 mmol) in 8 mL of the same solvent mixture was added drop-wise over approximately 5 min. After 2 hours, the reaction mixture was concentrated to approximately 3 mL by rotary evaporation under vacuum, then 15 mL of deionized water and 1 M HCl were added to give a pH of approximately 2. The mixture was poured into a 60 mL separatory funnel and extracted twice with 15 mL portions of ethyl acetate. The organic layers were combined, washed with 3 mL of saturated sodium chloride solution, then dried over 8.0 g of anhydrous Na2S04, and finally, the solvent was removed by rotary evaporation under vacuum. The residue was taken up in a minimum volume of ethyl acetate and purified by silica chromatography (silica: 40 micron flash grade, silica bed 24 x 3.0 cm, mobile phase hexanes: ethyl acetate: acetic acid 50:48:2). Fractions containing desired product 15 were combined and the solvent was removed under vacuum. Residual acetic acid was removed by dissolving the residue in a minimum volume of ethyl acetate and precipitating product by the rapid but drop-wise addition of hexane with stirring. Hexane was added until product was no longer detected in the supernatant by TLC analysis. The precipitate was vacuum dried to give 0.60 g of product 15 (62 % yield). H1 NMR δl.35(3H, d, J = 7), 1.41 (3H,d,J = 7), 1.94-2.03 (2H,m), 2.43(3H,s), 2.50-2.55 (2H,m), 2.83-2.93 (lH,m), 2.98 (3H,s), 5.14(1H, q, J= 7). MS (M + Na+) calc: 288.1, found: 288.1.
[225] N2'-deacetyl-N2'-(4-methyldithio-l-oxopentyl)maytansine (L-DM3-SMe, 4c): A solution of Maytansinol (25 mg, 0.44 mmol) and 15 (42.0, 0.177 mmol) in 3 tnL dichloromethane was magnetically stined under an argon atmosphere as a solution of dicyclohexylcarbodiimide (DCC, 57.1 mg, 0.277 mmol) in 0.67 mL dichloromethane was added. After 1 min, a solution of 1 M ZnCl2 in diethyl ether (0.03 mL, 0.03 mmol) was added. The mixture was stined at room temperature for 2 hours, then 5 mL of ethyl acetate was added and the mixture was vacuum filtered through course filter paper. The filtrate was washed with 2 mL of saturated sodium bicarbonate solution followed by 1 mL of saturated sodium chloride solution. The organic layer was dried over 2 g of anhydrous sodium sulfate, then the solvent was removed under vacuum. The residue was purified by silica chromatography using a mixture of dichloromethane and methanol to remove unreacted maytansinol. Fractions containing desired product were combined and solvent was removed under vacuum to give a mixture of the diastereomers 4c and 4d. The residue was taken up in a minimum volume of ethyl acetate and purified on a 50 cm by 250 cm, 10 micron Diazem™ CN column using as mobile phase a 68:8:24 mixture of hexane, 2-propanol and ethyl acetate. The flow rate was 118 mL/min. The desired product 4c eluted with a retention time of 11 min, the undesired diastereomer 4d had a retention time of 19 min. Fractions containing the desired product were combined and stripped of the solvent under vacuum to give 12.0 mg of product 4c (36% yield). 1H NMR (CDC13): δθ.80 (3H, s), 1.19-1.23(lH,m), 1.28-1.36 (9H, m), 1.42-1.46QH, m), 1.53-1.63 (2H, m), 1.64 (3H, s), 1.80-1.89 (IH, m), 1.90-2.09 (IH, m), 2.18 (IH, dd, 7=3 Hz and 14 Hz), 2.32 (3H, s), 2.33-2.42 (IH, m), 2.49-2.62 (2H, m), 2.88 (3H, s), 3.04 (IH, d, J=9 Hz), 3.11 (lH,d,J=ll Hz), 3.23 (3H,s), 3.35 (3H,s), 3.49 (IH, d, 7=9 Hz), 3.63 (IH, d, 7=12 Hz), 3.98 (3H, s), 4.27 (IH, t, 7=10 Hz), 4.79 (IH, dd, 7=3 Hz and 12 Hz), 5.41 (IH, q, 7=7 Hz), 5.66 (IH, dd 7=9 Hz and 15 Hz), 6.21 (IH, s), 6.42 (IH, dd, 7=11 Hz and 15 Hz), 6.65 ( IH, d, 7=1.5 Hz), 6.73 (IH, d, 7=11 Hz), 6.81 (IH, d, 7=1.5 Hz). MS (M + Na+) calc: 834.3, found: 834.3.
[226] N2'-deacetyl-N2'-(4-mercapto-l-oxopentyl)maytansine (L-DM3, 4a): L-DM3-SMe (4c, 12 mg, 0.015 mmol) was dissolved in 1.0 mL of a 1: 1 mixture of ethyl acetate and methanol. A solution of dithiothreitol (18 mg, 0.117 mmol) in 0.50 mL of 50 mM phosphate buffer, pH 7.5, was then added. The reaction solution was magnetically stined under an argon atmosphere for 3 hours, then 1 mL of 200 mM phosphate buffer pH 6.0 was added and the mixture was extracted three times with 2 mL portions of ethyl acetate. The organic layers were combined and washed with 1 mL of saturated sodium chloride solution, then dried over 1 g of anhydrous sodium sulfate. Solvent was removed under vacuum and the residue was taken up in a minimum of ethyl acetate and purified on a 50 cm x 250 cm, 10 micron Diazem™ CN column using as mobile phase a 70:8:22 mixture of hexane, 2-propanol and ethyl acetate. The flow rate was 22 mL/min. The desired product eluted with a retention time of 10 min. Fractions containing pure product were combined and the solvent was removed under vacuum to give 11 mg of product 4a (97% yield). 1H NMR (CDC13): δθ.80 (3H, s), 1.19-1.23(lH,m), 1.28-1.36 (9H, m), 1.42-1.46(1H, m), 1.53-1.63 (2H, m), 1.64 (3H, s), 1.80-1.89 (IH, m), 1.90-2.09 (IH, m), 2.18 (IH, dd, 7=3 Hz and 14 Hz), 2.33-2.42 (IH, m), 2.49-2.62 (2H, m), 2.88 (3H, s), 3.04 (IH, d, J=9 Hz), 3.11 (lH,d,J=ll Hz), 3.23 (3H,s), 3.35 (3H,s), 3.49 (IH, d, 7=9 Hz), 3.63 (IH, d, 7=12 Hz), 3.98 (3H, s), 4.27 (IH, t, 7=10 Hz), 4.79 (IH, dd, 7=3 Hz and 12 Hz), 5.41 (IH, q, 7=7 Hz), 5.66 (IH, dd 7=9 Hz and 15 Hz), 6.21 (IH, s), 6.42 (IH, dd, 7=11 Hz and 15 Hz), 6.65 ( IH, d, 7=1.5 Hz), 6.73 (IH, d, 7=11 Hz), 6.81 (IH, d, 7=1.5 Hz). MS: (M + Na+) calc: 788.3, found: 788.3.
EXAMPLE 3
Synthesis of Maytansinoid 4g,h (FIG. 3c).
[227] R-l,3-Di-O-p-toluenesulfonyl-butane (17): A solution of #-(-)- 1,3-butanediol (16, 2.00 g, 22.22 mmol) in a mixture of dry pyridine (40 mL) and dry toluene (60 mL), was treated with p-toluenesulfonyl chloride (12.70 g, 66.84 mmol) under argon at 0 °C. After stirring at 0 °C for 5 min. followed by stirring at room temperature for 2 h, the mixture was evaporated under vacuum, redissolved in ethyl acetate, and washed with 0.1 M aqueous NaHC03, followed by saturated NaCI. The organic layer was dried over MgS04, filtered, and the solvent was evaporated. Purification by chromatography on silica gel, eluting with 1:2 (v/v) ethyl acetate/hexane gave 6.51 g (74%) of the title product 17. Rf = 0.40 (1:1 EtOAc/hexane); 1H NMR (CDC13) 7.76 (dd, 4H, J = 1.0, 8.0 Hz), 7.35 (dt, 4H, J = 0.4, 8.0 +8.0 Hz), 4.70 (m, IH), 4.03 (m, IH), 3.94 (m, IH), 2.46 (s, 6H), 1.92 (m, 2H), 1.26 (d, 3H, J = 6.3 Hz); l3C NMR 145.17, 133.00, 130.11, 128.12, 127.91, 76.28, 66.21, 36.08, 21.86, 21.06; MS: 420.99 (M + Na)+, 421.93 (M+1+Na)+. [228] S-4-O-Ethylxanthic-pentanenitrile (18): A solution of i?-l,3-di-0-p-toluenesulfonyl- butane (17, 4.80 g, 12.06 mmol) in dry DMSO (50 mL) was treated with NaCN (0.65). After stirring at RT under argon for 18 h, the reaction mixture was diluted with ethyl acetate, washed successively with cold 1.0 M of NaH2P04 pH 7.5, water and 1.0 M of NaH2P04 pH 4.0. The organic layer was separated and dried over MgS0 , filtered, and then evaporated to give 2.63 g crude of i?-3-0-p-toluenesulfonyl-pentanenitrile. MS 275.80 (M + Na)+, 276.75 (M +1 +Na)+. The product was used directly without further purification.
[229] To the solution of crude of 7^-3-O-p-toluenesulfonyl-pentanenitrile (2.63 g) in ethanol (15 mL) was added potassium O-ethylxanthate (4.55 g) in ethanol (50 mL). After stirring overnight under argon, the mixture was concentrated, diluted with ethyl acetate, and filtered through a short silica column. The eluant was concentrated and purified by chromatography on silica gel, eluting with 1:4 (v/v) EtOAc/hexane, to give 1.54 g (63%, 2 steps) of the title product 18. Rf = 0.40 (1:4 EtAc/hexane). 1H NMR (CDC13) 4.67 (dd, 2H, J = 7.1, 14.2 Hz), 3.86 (ddd, IH, J = 7.0, 14.0, 21.9 Hz), 2.50 (t, 2H J = 7.3 + 7.6 Hz), 2.06 (m, 2H), 1.44 (m, 6H); I3C NMR 213.04, 119.16, 70.28, 44.57, 32.10, 20.20, 15.21, 13.93; MS: 226.51 (M + Na)+, 242.51 (M + K)+. [230] S-(+)-4-MethyIdithio-pentanoic acid (19): To a solution of S-4-O-Ethylxanthic- pentanenitrile (18, 1.95 g (9.61 mmol) in a mixture of ethanol (10 mL) and water (150 mL) was added 5.0 g of NaOH. The reaction mixture was refluxed overnight under argon. The mixture was cooled to room temperature and diluted with water (150 ml) and extracted with 1:1 EtOAc/hexane (2 x 100 ml). The aqueous layer was acidified with H3P0 to pH 2.5 ~ 3.0 and extracted with EtOAc (6 x 75 ml). The organic layers were combined, dried over MgS04, filtered and evaporated to dryness to give the crude 5-4-mercaptopentanoic acid. This crude product was used directly for next step without further purification.
[231] To a solution of crude S-4-mercaptopentanoic acid (1.2 g) in a mixture of ethanol (50 mL) and 0.5 M NaH2P03, pH 7.0 (75 mL), was added dropwise methyl methanethiolsulfonate (1.47 g, 11.65 mmol) in 5 dry THF (5 mL) over 45 min at 0°C. After stirring under argon at 0 °C for 30 min, followed by stirring at room temperature for 2 h, the mixture was concentrated and extracted with dichloromethane (2 x 50 ml). The aqueous layer was acidified with H3P04 to pH 2.5 ~ 3.0 and extracted with EtOAc (4 x 100 ml). The organic layers were combined, dried over MgS04, filtered and evaporated. The residue was purified by chromatography over silica gel, eluting with (1:100:400 HOAc/EtOAc/hexane) to give 1.43 g (83%) of the title product 19. Rf = 0.32 (1:100:400 HOAc/EtAc/hexane); Η NMR (CDC13) 2.91 (ddd, IH, J = 6.8, 13.7, 20.5 Hz), 2.53 (t, 2H, J = 7.7 + 7.4 Hz), 2.42 (s, 3H), 1.94 (m, 2H), 1.36 (d, 3H, J = 6.8 Hz); 13C NMR 179.18, 45.35, 31.58, 30.73, 24.70, 21.05; MS: 202.92 (M+Na)+, 203.91 (M+1+Na)+; [α] = 41.35 (c = 2, CH3OH). [232] N-methyI-N-[4-(S)-methyldithio-l-oxopentyl[-5-alanine (15a): S-(+)-4- (Methyldithio)-pentanoic acid (19) was converted into the Ν-hydroxysuccinimdyl ester 20, by the method described above for compound 14. Reaction with N-methyl-L-alanine by the procedure described above for compound 15 gave 15a, (62 % yield). H1 ΝMR δl.36(3H, d, J = 7), 1.42 (3H,d,J = 7), 1.93-1.98 (2H,m), 2.40(3H,s), 2.50-2.53 (2H,m), 2.90-2.95 (lH,m), 2.99 (3H,s), 5.14 (IH, q, J= 7), MS: (M + Νa) calc: 288.1, found: 288.1 [233] N2'-deacetyl-Ν2'-(4- S methyldithio-l-oxopentyl)maytansine (DM3-SMe, 4g,h): Maytansinol (11) was coupled with 15a, using DCC and zinc chloride in dichloromethane, as described above for the synthesis of 4c. A mixture of 2 diastereomers bearing the N-methyl-5- alanyl moiety (4g, S,S) and the N-methyl-/?-alanyl moiety (4h,R,S) were obtained. The diastereomers were separated by HPLC on a Kromasil cyano column (4.6 mm x 250 mm), using an isocratic elution at a flow arte of 1 mL/min, with hexane: ethyl acetate:2-propanol (68:24:8, v/v/v). Under these conditions, the isomer 4g (S.S) eluted at 24.5 min. Mass spectrum: m/z 834.2 (M + Νa)+. The peak for the other isomer 4h (R,S) was well separated and eluted at 34.6 min. MS: m z 834.2 (M + Na)+.
EXAMPLE 4
Synthesis of Maytansinoid 4k ,1 (FIG.3d)
[234] 5-1,3-Di-O-p-toluenesulfonyl-butane 22: A solution of S-(-)-l,3-butanediol (21,2.00 g
(22.22 mmol) in a mixture of dry pyridine (40 mL) and dry toluene (60 mL) was treated with p- toluenesulfonyl chloride (12.70 g, 66.84 mmol) under argon at 0 °C. After stirring at 0°C for 5 min. followed by stirring at room temperature for 2 h, the mixture was evaporated under vacuum.
The residue was redissolved in ethyl acetate, washed with 0.1 M aqueous NaHC03, and saturated NaCI. The organic layer was separated, dried over MgS04, filtered and evaporated. The residue was purified by chromatography over silica gel, eluting with 1:2 ethyl acetate/hexane to give 6.25 g (71%) of the title product 22 Rf = 0.40 (1:1 EtOAc/hexane); 1HNMR (CDC13) 7.76 (dd, 4H, J = 1.0, 8.0 Hz), 7.35 (dt, 4H, J = 0.4, 8.0 +8.0 Hz), 4.70 (m, IH), 4.03 (m, IH), 3.94 (m, IH), 2.46 (s, 6H), 1.92 (m, 2H), 1.26 (d, 3H, J = 6.3 Hz); 13C NMR 145.17, 133.00, 130.11, 128.12, 127.91, 76.28, 66.21, 36.08, 21.86, 21.06; MS: 420.99 (M + Na)+. [235] R-4-O-EthyIxanthic-pentanenitrile (23): A solution of S-l,3-di-0-p-toluenesulfonyl- butane (22, 6.25 g (15.70 mmol) in 60 dry DMSO (50 mL) was treated with NaCN (0.85 g). The reaction mixture was stined under argon for 18h at RT. The reaction mixture was then diluted with ethyl acetate, washed sequentially with cold 1.0 M of NaH2P04 pH 7.5, water and 1.0 M of NaH2P04 pH 4.0. The organic layer was dried over MgS04, filtered, evaporated to give 3.62 g crude of S-3-O-p-toluenesulfonyl-ρentanenitrile. The product was used directly without further purification.
[236] To a solution of crude S-3-O-p-toluenesulfonyl-pentanenitrile (3.62 g) in ethanol (50 mL), was added potassium 0-ethylxanthate (5.72 g) in ethanol (100 mL). After stirring under argon overnight, the mixture was concentrated, diluted with ethyl acetate and filtered through a short column of silica gel. The eluant was concentrated, and the residue was purified by chromatography over silica gel, eluting with 1:4 EtOAc/hexane to give 2.0 g (62%, 2 steps) of the title product 23. Rf = 0.40 (1:4 EtAc/hexane). 1H NMR (CDC13) 4.67 (dd, 2H, J = 7.1, 14.2 Hz), 3.86 (ddd, IH, J = 7.0, 14.0, 21.9 Hz), 2.50 (t, 2H J = 7.3 + 7.6 Hz), 2.06 (m, 2H), 1.44 (m, 6H); 13C NMR 213.04, 119.16, 70.28, 44.57, 32.10, 20.20, 15.21, 13.93; MS: 226.51 (M + Na)+, 242.51 (M + K)+. [237] R-(-)-4-Methyldithio-pentanoic acid (24): A solution of #-4-0-Ethylxanthic- pentanenitrile (23, 2.0 g, 9.85 mmol) in a mixture of ethanol (10 mL) and 200 ml of water was treated with NaOH (6.0 g). The reaction mixture was refluxed overnight under argon. The mixture was diluted with water (150 ml) and extracted with 1:1 EtOAc/hexane (2 x 100 ml). The aqueous layer was acidified with H3P0 to pH 2.5 ~ 3.0 and extracted with EtAc (6 x 75 ml). The organic layers were combined, dried over MgS0 , filtered and evaporated to dryness to give the crude i?-4-mercaptopentanoic acid. This crude product was used directly for next step without further purification.
[238] To a solution of 1.60 g of the crude i?-4-mercaptopentanoic acid in a mixture of ethanol (50 mL) and 0.5 M NaH2P0 , pH 7.0 (75 mL) was added dropwise methyl methanethiolsulfonate (1.96 g, 15.53 mmol) in dry THF (7 mL) over 45 min at 0°C. The reaction mixture was stined under argon at 0°C for 30 min and then at room temperature for 2 h. The mixture was concentrated and extracted with dichloromethane (2 x 50 ml). The aqueous layer was acidified with H3P04 to pH 2.5 - 3.0 and extracted with EtOAc (4 x 100 ml). The organic layers were combined, dried over MgS04, filtered and evaporated. The residue was purified by chromatography over silica gel, eluting with 1:100:400 HOAc EtOAc/hexane to give 1.65 g (93%) of the title product 24. Rf = 0.32 (1:100:400 HOAc/EtOAc/hexane); 1H NMR (CDC13) 2.91 (ddd, IH, J = 6.8, 13.7, 20.4 Hz), 2.53 (t, 2H, J = 7.7 + 7.4 Hz), 2.42 (s, 3H), 1.96 (m, 2H), 1.36 (d, 3H, J = 6.8 Hz); 13C NMR 179.46, 45.67, 31.91, 31.07, 25.02, 21.36; MS: 202.9 (M+Na)+, 203.9 (M+1+Na)+; [cc] = -39.16 (c = 2, CH3OH). 1
[239] N-methyl-N-[4-(R)-methyIdithio-l-oxopentyl]-S-alanine (15b): i?-(+)-4-Methyldithio- pentanoic acid (24) was converted into the N-hydroxysuccinimdyl ester 25, by the method described above for compound 14. Reaction with N-methyl-L-alanine by the procedure described above for compound 15 gave 15b. MS: m/z'(M + Νa): calc: 288.1, found: 288.1
[240] N2'-deacetyl-Ν2'-(4-(RJ-methyldithio-l-oxopentyl)maytansine (DM3-SMe, 4k,l):
Maytansinol (11) was coupled with 15b, using DCC and zinc chloride in dichloromethane, as described above for the synthesis of 4c. A mixture of 2 diastereomers bearing the N-methyl-S- alanyl moiety (4k, S,R) and the N-methyl-i?-alanyl moiety (4l,R,R) were obtained. The diastereomers were separated by HPLC on a Kromasil cyano column (4.6 mm x 250 mm), using an isocratic elution at a flow arte of 1 rnlJmin, with hexane: ethyl acetate:2-proρanol (68:24:8, v/v/v). Under these conditions, the isomer 4k (S.R) eluted at 23.9 min. Mass spectrum: m/z 834.2 (M + Νa)+. The peak for the other isomer 41 (R,R) was well separated and eluted at 33.7 min. MS: m/z 834.2 (M + Na)+.
EXAMPLE 5a
In vitro Cytotoxicity of Maytansinoids and Antibody-Maytansinoid conjugates
[241] The KB (ATCC CC1-17) cell line is of human epithelial origin. The SK-BR-3 (ATCC HTB-30) cell line was established from a human breast adenocarcinoma. The human colon tumor cell lines COLO 205 (ATCC CCL-222) and HT-29 (ATCC HTB 38), the human melanoma cell line A-375 (ATCC CRL 1619), the human Burkitts lymphoma cell line Ramos (ATCC CRL-1596) and the human myeloid leukemia cell line HL-60 (ATCC CCL-240) were all obtained from ATCC, Maryland. Cell lines were grown in Dulbecco's modified Eagles Medium (DMEM, Biowhittaker, Walkersville, MD) with L-gluta ine supplemented with 10% fetal bovine serum (Hyclone, Logan, Utah) and 50 μg/mL gentamycin sulfate (Life Technologies, Rockville, MD). Cells were maintained at 36-37.5 °C in a humidified atmosphere that contained 6% C02.
[242] The cytotoxicity study performed used a clonogenic assay. The test cell lines were plated into 6-well culture dishes at a constant number of 1000 cells per well. Cells were incubated with varying concentrations (0 to 3 nM) of the various maytansinoids (free or conjugated to antibodies) for 72 hours. The medium was then aspirated from the plates and replaced with fresh medium. Cultures were allowed to grow, and form colonies, for a total of 7 - 10 days after plating. The cultures were then fixed and stained with 0.2% crystal violet in 10% formalin/PBS and colonies were counted. Plating efficiency of non-treated cells (medium alone) was determined by dividing the number of colonies counted by the number of cells plated. Surviving fraction of cells exposed to the drags was determined by dividing the number of colonies in wells that were exposed to the drug by the number of colonies in the control wells. [243] The results of the in vitro cytotoxicity measurements of the new maytansinoids of the present invention are shown in Figure 4. The new maytansinoids 4c,e bearing hindered disulfide bonds are highly cytotoxic towards both cell lines tested, SK-BR-3 and A-375, with IC50 values ranging from 7 x 10"12 M to 2.5 x 10"11 M. Thus, incorporation of alkyl substituents on the carbon bearing the disulfide moiety has preserved high cytotoxic potency. The sterically hindered thiol-containing maytansinoid 4a of the present invention is 30 to 50-fold more potent than the previously described conesponding unhindered maytansinoid 1. Thus, incorporation of alkyl substituents on the carbon atom bearing the thiol moiety greatly enhances potency. [244] The results of in vitro testing of antibody conjugates of the maytansinoids of the present invention are shown in Figures 4c and 4d. The linkage of the two new maytansinoids, 4a or 4b, to the huC242 antibody directed against human colon tumors, resulted in antigen-specific killing of target cells. Thus, the conjugates are highly potent towards antigen-positive COLO 205 cells, with IC50 values ranging from 1.1 to 1.3 x 10"nM. In contrast, the conjugates are 100 to 200-fold less cytotoxic towards antigen- negative A-375 cells, demonstrating that the new maytansinoids of the present invention produce conjugates that possess sterically hindered disulfide bonds, and display high target specific cytotoxicity.
EXAMPLE 5b
Preparation of cytotoxic conjugates of huC242 antibody using Maytansinoids 4a or 4b (METHOD A, FIG. 5 a,b)
[245] A solution of huC242 antibody (8 mg mL) in aqueous buffer (50 mM potassium phosphate, 50 mM sodium chloride, 2 mM ethylenediaminetetraacetic acid disodium salt), pH 6.5, was incubated for 2 h with a 7 to 10-fold molar excess of SPDP [succinimidyl 3-(2- pyridyldithio)propionate, 3 a), or with N-succinimidyl-4-(2-pyridyldithio)butanoate (SPDB, 3b). The reaction mixture was purified by passage through a Sephadex G25 gel filtration column. The concentration of the antibody was determined spectrophotometrically using the known extinction
coefficients for the antibody ε28oam = 217,560 M-lcm-1.
[246] The modified antibody was diluted to 2.5 mg/mL in aqueous buffer (50 mM potassium phosphate, 50 mM sodium chloride, 2 mM ethylenediaminetetraacetic acid disodium salt), pH 6.5, and then treated with a 1.5 to 2.5 molar excess of either DM3 or DM4 in dimethylacetamide (final concentration of DMA was 3% v/v). The reaction mixture was incubated for 18 h at room temperature. The reaction mixture was purified by passage through a Sephadex G25 gel filtration column. The concentration of the conjugate was determined spectrophotometrically using the known extinction coefficients for the antibody 8280™ = 217,560 M" cm" and ε25 nm =
80,062 M' 1; for DM3 or DM4, ε280nm = 5,700 M' 1 and 8252DM = 26,790 M^cm"1). The
resulting conjugate was monomeric and contained, on the average, 3.2-3.5 DM3 or DM4 molecules linked per antibody molecule.
EXAMPLE 5c
Preparation of cytotoxic conjugates of huC242 antibody using Maytansinoids 4a or 4b (METHOD B, FIG. 5c)
[247] A solution of huC242 antibody (8 mg/mL) in aqueous buffer (50 mM potassium phosphate, 50 mM sodium chloride, 2 M ethylenediaminetetraacetic acid disodium salt), pH 6.5, was incubated for 2 h with a 7 to 10-fold molar excess of SMCC [succinimidyl 4-(N- maleimidomethyl)-cyclohexane-l-carboxylate, 26). The reaction mixture was purified by passage through a Sephadex G25 gel filtration column. The concentration of the antibody was determined spectrophotometrically using the known extinction coefficients for the antibody
Figure imgf000092_0001
[248] The modified antibody was diluted to 2.5 mgmL in aqueous buffer (50 mM potassium phosphate, 50 mM sodium chloride, 2 mM ethylenediaminetetraacetic acid disodium salt), pH 6.5, and then treated with a 1.5 to 2.5 molar excess of either DM3 or DM4 in dimethylacetamide (final concentration of DMA was 3% v/v). The reaction mixture was incubated for 18 h at room temperature. The reaction mixture was purified by passage through a Sephadex G25 gel filtration column. The concentration of the conjugate was determined spectrophotometrically
using the known extinction coefficients (for the antibody ε280nm = 217,560 M^cm" and ε252nrn = 80,062 MT 1; for DM3 or DM4, ε280nm = 5,700 M' 1 and 8252DM = 26,790 M"1cm"1). The
resulting conjugate was monomeric and contained, on the average, 3.2-3.5 DM3 or DM4 molecules linked per antibody molecule.
EXAMPLE 5d
Preparation of cytotoxic conjugates of huC242 antibody using Maytansinoids 4a or 4b (METHOD C, FIG. 5d)
[249] A solution of huC242 antibody (8 mg/mL) in aqueous buffer (50 mM potassium phosphate, 50 mM sodium chloride, 2 mM ethyleneώaminetetraacetic acid disodium salt), pH 6.5, was incubated for 2 h with a 7 to 10-fold molar excess of SIAB [N-succinimidyl (4- iodoacetyl)aminobenzoate, 27). The reaction mixture was purified by passage through a Sephadex G25 gel filtration column. The concentration of the antibody was determined
spectrophotometrically using the known extinction coefficients for the antibody ε280mιl = 217,560
M- 1.
EXAMPLE 6
In vivo efficacy of huC242-Maytansinoid conjugates against HT-29 xenografts.
[250] Five-week-old female SCID mice (20 animals) were inoculated subcutaneously in the right flank with HT-29 human colon carcinoma cells (1.5 x 106 cells/mouse) in 0.1 mL of serum- free medium. The tumors were grown for 11 days to an average size of 100 mm3. The animals were then randomly divided into four groups (5 animals per group). The first group received huC242-DMl conjugate (DM1 dose of 75 μg/kg, qd x 5) administered intravenously. The
second group received huC242-DM3 conjugate (DM3 dose of 75 μg/kg, qd x 5) administered intravenously. The third group received huC242-DM4 conjugate (DM4 dose of 75 μg kg, qd x 5), while a fourth group of animals served as controls and received PBS using the same treatment schedule as in groups 1-3.
[251] The sizes of the tumors were measured twice weekly and the tumor volumes were calculated with the formula: tumor volume = ^(length x width x height). The weight of the animals was also measured twice per week. The results are shown in Figure 7. The tumors in the control group of mice grew to a size of nearly 1000 mm3 in 35 days. Treatment with huC242-DMl resulted in a tumor growth delay of 18 days, while conjugates made with the maytansinoids 4a and 4b of the present invention were significantly more efficacious and prolonged the tumor growth delay to 28 days and 36 days, respectively.
EXAMPLE 7
In vivo efficacy of huC242-Maytansinoid conjugates against COLO 205 xenografts
[252] Five-week-old female SCID mice (20 animals) were inoculated subcutaneously in the right flank with COLO 205 human colon carcinoma cells (1.5 x 106 cells/mouse) in 0.1 mL of serum-free medium. The tumors were grown for 11 days to an average size of 100 mm3. The animals were then randomly divided into four groups (5 animals per group). The first group received huC242-DMl conjugate (DM1 dose of 75 μg/kg, qd x 5) administered intravenously. ,
The second group received huC242-DM3 conjugate (DM3 dose of 75 μg/kg, qd x 5) administered intravenously. The third group received huC242-DM4 conjugate (DM4 dose of 75 μg/kg, qd x 5), while a fourth group of animals served as controls and received PBS using the same treatment schedule as in groups 1-3. [253] The sizes of the tumors were measured twice weekly and the tumor volumes were calculated with the formula: tumor volume = ^(length x width x height). The weight of the animals was also measured twice per week. The results are shown in Figure 8. The tumors in the control group of mice grew to a size of nearly 900 mm3 in 24. days. Treatment with huC242- DM1 resulted in a tumor growth delay of 20 days, while the conjugate made with the maytansinoid 4a of the present invention was considerably more efficacious and caused complete tumor regressions lasting 45 days. Treatment with the conjugate made with the maytansinoid 4b of the present invention was even more efficacious, resulting in cures of all the treated animals.
EXAMPLE 8
In vivo efficacy of MY9-6-Maytansinoid conjugates against HL-60 xenografts
[254] Five-week-old female SCDD mice (20 animals) were inoculated subcutaneously in the right flank with HL-60 human myeloid leukemia cells (1.5 x 106 cells/mouse) in 0.1 mL of serum-free medium. The tumors were grown for 12 days to an average size of 100 mm3. The animals were then randomly divided into four groups (5 animals per group). The first group received MY9-6-DM1 conjugate (DM1 dose of 200 μg/kg, qd x 5) administered intravenously.
The second group received MY9-6-DM3 conjugate (DM3 dose of 200 μg/kg, qd x 5) administered intravenously. The third group received MY9-6-DM4 conjugate (DM4 dose of 200 μg/kg, qd x 5) administered intravenously, while a fourth group of animals served as controls and received PBS using the same treatment schedule as in groups 1-3.
[255] The sizes of the tumors were measured twice weekly and the tumor volumes were calculated with the formula: tumor volume = x/2(length x width x height). The weight of the animals was also measured twice per week. The results are shown in Figure 9. The tumors in the control group of mice grew rapidly to a size of nearly 1600 mm3 in 21 days. Treatment with MY9-6-DM1 resulted in a tumor growth delay of about 5 days, while conjugates made with the maytansinoids 4a and 4b of the present invention were significantly more efficacious prolonging the tumor growth delay to greater than 20 days.
EXAMPLE 9
Preparation of a cytotoxic conjugate of huMy9-6 antibody using Maytansinoid DM4 (4b).
[256] A solution of huMy9-6 antibody at a concentration of 8 mg/ mL was incubated for
2 h with a 6.5 molar excess of SSNPB [sulfosuccinimidyl 4-(5'-nitro-2'-pyridyldithio)butyrate] in 50 mM potassium phosphate buffer, pH 6.5, containing 2 mM ethylenediaminetetraacetic acid ' (buffer A) with 5% ethanol. The modified antibody was purified by passage through a Sephadex G25 gel filtration column equilibrated in buffer A and the concentration of the purified antibody was determined spectrophotometrically using. the extinction coefficient for the antibody at 280 nm. The modified antibody was diluted to 4.9 mg/mL with buffer A and incubated for 18 h at room temperature with 1.7-fold molar excess of DM4, which was added to the reaction mixture as a stock solution in dimethylacetamide (final concentration of dimethylacetamide was 3% v/v). The antibody-drug conjugate was purified by passage through a Sephadex G25 column equilibrated in PBS, pH 6.5. The concentration of conjugate was determined spectrophotometrically using the know extinction coefficients for antibody and DM4 (for the
antibody, ε280llm = 206,460 M' 1, 8252nm = 72,261 M' 1; for DM4, ε 8onm = 5,700 M' 1,
ε252πM = 26,790 M^cm"1). The resulting antibody-drug conjugate contained an average of 3.6 DM4 molecules per antibody molecule. Biochemical analysis demonstrated that the antibody remained greater than 94% monomeric following conjugation and had a binding affinity comparable to the unmodified antibody as determined by flow cytometry. The amount of drug associated with the antibody that was not linked covalently (free drug) was determined by HPLC analysis and found to be less than 1% of the total linked drug.
EXAMPLE 10
In vitro Selectivity and Efficacy of huMy9-6-DM4 conjugate
[257] The cytotoxicity of huMy9-6-DM4 toward CD33 expressing cells (HL-60) and
CD33-negative Namalwa cells was tested using a clonogenic assay, where cell killing activity is determined by quantifying the number of colonies that can grow following treatment. huMy9-6- DM4 exhibits potent cell killing activity toward CD33-positive HL-60 human tumor cells in vitro (Figure 10). No significant toxicity toward CD33-negative human Namalwa cells was observed, indicating that the CD33-dependent cytotoxicity was due to specific targeting by the anti-CD33 antibody, huMy9-6 of the conjugate.
EXAMPLE 11
In vivo efficacy of huMy9-6-DM4 conjugates against HL60 human tumor xenografts in
SCED mice
[258] The efficacy of huMy9-6-DM4 in vivo was determined in SCUD mice bearing human HL-60 tumor xenografts. HL-60 cells were injected subcutaneously and tumors were allowed to grow to an average size of 100 mm3. HuMy9-6-DM4 conjugate was delivered i.v. once a day for 5 days at the dose indicated in Figure 11. Dosage is expressed as μg DM4 in the
conjugate, which conesponds to an antibody dose of approximately 67 μg antibody per μg of DM4. Tumor volume was measured as an indication of treatment efficacy and mouse body weight was monitored to indicate toxicity due to treatment. huMy9-6-DM4 induces prolonged tumor growth delay of human HL-60 cell xenografts at doses that cause little toxicity (Figure 11). The efficacy of huMy9-6-DM4 was also compared with that of huMy9-6-DMl. Unexpectedly, it was found that huMy9-6-DM4 was more effective than huMy9-6-DMl. HuMy9-6-DM4 maintained the animals in complete remission (CR) for nearly sixty days, whereas animals treated with huMy9-6-DMl relapsed after about 20 days in CR.
EXAMPLE 12
Preparation of a cytotoxic conjugate of huB4 antibody using Maytansinoid DM4 (4b).
[259] A solution of huB4 antibody at a concentration of 20 mg mL was incubated for
1.5 h with an 8-fold molar excess of SSNPB [sulfosuccinimidyl 4-(5'-nitro-2'- pyridyldithio)butyrate] in 50 mM potassium phosphate buffer, pH 6.5 containing 2 mM ethylenediaminetetraacetic acid (buffer A) with 5% dimethylacetamide. The modified antibody was purified by passage through a Sephadex G25 gel filtration column equilibrated in buffer A and the concentration of the purified antibody was determined spectrophotometrically using the extinction coefficient for the antibody at 280 nm (199,560 MT'cm"1). The modified antibody was diluted to 8 mg/mL with buffer A and incubated for 3 h at ambient temperature with a 1.7-fold molar excess of DM4, which was added to the reaction mixture as a stock solution in dimethylacetamide (final concentration of dimethylacetamide was 3% v/v). The antibody-drug conjugate was purified by passage through a Sephadex G25 column and a Sephadex S300 column, both equilibrated in PBS buffer, pH 6.5. The concentration of conjugate was determined spectrophotometrically using the know extinction coefficients for antibody (ε28onm:
199,560 M' 1; ε252nm: 67,850 M^cm"1) and DM4 (ε28onm = 5,700 ivr'cm \ EasaiM = 26,790
M'Om"1). The resulting antibody-drag conjugate contained an average of 4.0 DM4 molecules per antibody molecule. Biochemical analysis demonstrated that the antibody remained greater than 98% monomeric following conjugation and had a binding affinity comparable to the unmodified antibody as determined by flow cytometry. The amount of drug associated with the antibody that was not linked covalently (free drug) was determined by HPLC analysis and was approximately 2% of the total linked drug.
EXAMPLE 13
In vitro Selectivity and Efficacy of huB4-DM4 conjugate
[260] The cytotoxicity of huB4-DM4 toward CD19-expressing cells (Ramos) compared to a CD19-negative cell line (Colo 205) was tested using an MTT-based assay, where cell killing activity is determined by quantifying the number of viable cells that remain following treatment with conjugate. Viable cell number is determined by spectrophotometric quantitation following incubation of the cells with the vital dye MTT. HuB4-DM4 exhibits potent cell killing activity toward CD19-positive Ramos human tumor cells in vitro (Figure 12). No significant toxicity toward CD19-negative cells was observed, indicating that the CD19-dependent cytotoxicity was due to specific targeting by the anti-CD 19 antibody, huB4. EXAMPLE 14
In vivo efficacy of huB4-DM4 conjugate against Ramos human tumor xenografts in SCID mice
[261] The efficacy of huB-DM4 in vivo was determined using SCID mice bearing established human Ramos tumor xenografts. Ramos cells were injected subcutaneously and tumors were allowed to grow to an average size of 100 mm3. HuB4-DM4 conjugate was delivered i.v. as a single injection at the doses indicated in Figure 13a. Dosage is expressed as μg DM4 in the conjugate, which conesponds to an antibody dose of approximately 44 μg
antibody per μg of DM4. Tumor volume was measured as an indication of treatment efficacy and mouse body weight was monitored to indicate toxicity due to treatment. At doses above 50 μg/kg, HuB4-DM4 causes complete regression of the tumors in all animals. Animals remain without measurable disease for about 35 days in the 100 mg/kg treatment group, and for more than 55 days in the two highest dose groups. These treatments caused very little if any toxicity (Figure 13b) as judged by changes in the body weight of the treated animals.

Claims

What is claimed is:
1. A maytansinoid having, at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, an acylated amino acid side chain with an acyl group bearing a hindered sulfhydryl group, wherein the carbon atom of the acyl group bearing the thiol functionality has one or two substituents, said substituents being CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition one of the
I substituents can be H, and wherein the acyl group has a linear chain length of at least three carbon atoms between the carbonyl functionality and the sulfur atom.
2. A compound represented by formula 4':
Figure imgf000101_0001
wherein:
Y' represents (CR7CR8)1(CR9=CRI0)p(CC)qAr(CR5CR6)mDu(CRi1=CRi2)r(CC)sBt(CR3CR4)IiCR1R2SZ, wherein: Rj and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
A, B, D are cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;
R3, i, R5, R6, R7, R8, R9, R , and RJ2 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time;
Z is H, SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
3. The compound of claim 2, wherein Ri is H, R2 is methyl and Z is H.
4. The compound of claim 2, wherein Ri and R2 are methyl and Z is H.
5. The compound of claim 2, wherein Ri is H, R2 is methyl, and Z is -SCH3.
6. The compound or claim 2, wherein Ri and R2 are methyl and Z is -SCH3.
7. A compound represented by formula (I-L), (I-D), or (I-D,L):
Figure imgf000103_0001
D D, L
(I) wherein:
Y represents (CR7CR8)ι(CR5CR6)πι(CR3CR )nCR1R2SZ, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, t, R5, R6, R and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z is H, SR or -COR, wherein R is linear alkyl, branched alkyl or cyclic alkyl having from 1 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical; and
May represents a maytansinoid which bears the side chain at C-3, C-14 hydroxymethyl, C-15 hydroxy or C-20 desmethyl.
8. The compound of claim 7, wherein Ri is H, R2 is methyl, R5, R6, R7 and R8 are each H, 1 and m are each 1, n is 0, and Z is H.
9. The compound of claim 7, wherein Ri and R2 are methyl, R5, R6, R7 and R8 are each H, 1 and m are 1, n is 0, and Z is H.
10. The compound of claim 7, wherein Ri is H, R2 is methyl, R5, R6, R7, and R8 are each H, 1 and m are each 1, n is 0, and Z is -SCH3.
11. The compound or claim 7, wherein Ri and R2 are methyl, R5, R6, R7, R8 are each H, 1 and m are 1, n is 0, and Z is -SCH3.
12. The compound of any one of claimsl to 11 or 12, wherein the compound is represented by formula (I-L).
13. A compound represented by formula 4 :
Figure imgf000104_0001
wherein:
Y represents (CR7CR8)ι(CR CR6)m(CR3CR )nCRiR2SZ, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be
H; R3, Jλt, R5, Re, R7 and R8 are each independently H, CH3, C2Hs, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
Z is H, SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl orheterocyclic aromatic or heterocycloalkyl radical.
14. The compound of claim 13, wherein Ri is H, R2 is methyl, R5, Re, R , and R8 are each H, 1 and m are each 1, n is 0, and Z is H.
15. The compound of claim 13, wherein Rj and R2 are methyl, R5, R6; R , and R8 are each H, 1 and m are 1, n is 0, and Z is H.
16. The compound of claim 13, wherein Ri is H, R2 is methyl, R5, R6, R7 , and R8 are each H, 1 and m are each 1, n is 0, and Z is -SCH3.
17. The compound of claim 13, wherein Ri and R2 are methyl; R , R6, R7, R8 are each H, 1 and m are 1, n is 0, and Z is -SCH3.
18. A maytansinoid-cell-binding agent conjugate comprising at least one maytansinoid linked to the cell-binding agent, wherein the cell-binding agent is linked to the maytansinoid using the thiol or disulfide functionality that is present on the acyl group of an acylated amino acid side chain found at C-3, C-14 hydroxymethyl, C-15 hydroxy or C-20 desmethyl of the maytansinoid, and wherein the acyl group of the acylated amino acid side chain has its thiol or disulfide functionality located at a carbon atom that has one or two substituents, said substituents being CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition one of the substituents can be H, and wherein the acyl group has a linear chain length of at least three carbon atoms between the carbonyl functionality and the sulfur atom.
19. The maytansinoid-cell-binding agent conjugate of claim 18, wherein the cell- binding agent comprises at least one binding site of an antibody.
20. The maytansinoid-cell-binding agent conjugate of claim 19, wherein the antibody is MY9, anti-B4 or C242.
21. The maytansinoid-cell-binding agent conjugate of claim 19, wherein the antibody is humanized or resurfaced MY9, humanized or resurfaced anti-B4, or humanized or resurfaced C242.
22. A maytansinoid-cell-binding agent conjugate, wherein the maytansinoid is represented by formula 4ι':
Figure imgf000106_0001
4ι' wherein: Yi' represents (CR7CR8)1(CR9=CR1o)p(C=C)qAr(CR5CR6)mDu(CRii=CRi2)r(C=C)sBt(CR3CR4)I1CRιR2S-, wherein:
A, B, and D, each independently is cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl, or heterocyclic aromatic or heterocycloalkyl radical;
R3, t, R5, R6, R , R8, R , Rn, and R12 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical; and
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are non-not zero at any one time
23. The maytansinoid-cell-binding agent conjugate of claim 22, wherein Ri is H and R2 is methyl.
24. The maytansinoid-cell-binding agent conjugate of claim 22, wherein Ri and R2 are methyl.
25. The maytansinoid-cell-binding agent conjugate of any one of claims 22, 23 or 24, wherein the cell-binding agent comprises at least one binding site of an antibody.
26. The maytansinoid-cell-binding agent conjugate of claim 25, wherein the antibody is MY9, anti-B4 or C242.
27. The maytansinoid-cell-binding agent conjugate of claim 25, wherein the antibody is humanized or resurfaced MY4, humanized or resurfaced anti-B4, or humanized or resurfaced C242.
'
28. A maytansinoid-cell-binding agent conjugate comprising at least one maytansinoid linked to the cell-binding agent, wherein the maytansinoid is represented by formula (JJ-L), 03-D) or (JJ-D, L):
Figure imgf000108_0001
wherein:
Yi represents (CR7CR8)1(CR5CR6)m(CR3CR4)aCRiR2S-) wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl orheterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, t, R5, Rδ, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl orheterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and May represents a maytansinoid which bears the side chain at C-3, C-14 hydroxymethyl, C-15 hydroxy or C-20 desmethyl.
29. The maytansinoid-cell-binding agent conjugate of claim 28, wherein Ri is H, R2 is methyl, R5, R6, R7 and R8 are each H; 1 and m are each 1; n is 0. i
30. The maytansinoid-cell-binding agent conjugate of claim 28, wherein Ri and R2 are methyl; R5, R6, R7 and R8 are each H; 1 and m are 1; n is 0.
31. The maytansinoid-cell-binding agent conjugate of claim 28 , wherein the maytansinoid is represented by formula (LT-L).
32. The maytansinoid-cell-binding agent conjugate of claim 29, wherein the maytansinoid is represented by formula (Il-L).
33. The maytansinoid-cell-binding agent conjugate of claim 30, wherein the maytansinoid is represented by formula (JJ-L).
34. The maytansinoid-cell-binding agent conjugate of any one of claims 28 to 32 or 33, wherein the cell-binding agent comprises at least one binding site of an antibody.
35. The maytansinoid-cell-binding agent conjugate of claim 34, wherein the antibody is MY9, anti-B4 or C242.
36. The maytansinoid-cell-binding agent conjugate of claim 34, wherein the antibody is humanized or resurfaced MY9, humanized or resurfaced anti-B4, or humanized or resurfaced C242.
37. A maytansinoid-cell-binding agent conjugate, wherein the maytansinoid is represented by formula 4j:
Figure imgf000110_0001
4ι wherein:
Yi represents (CR7CR8)ι(CR5CR6)m(CR3CR )nCRiR2S-, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, i, R5, Re, R and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0.
38. The maytansinoid-cell-binding agent conjugate of claim 37, wherein Ri is H, R2 is methyl, R5, R6, R7 and R8 are each H; 1 and m are each 1; and n is 0.
39. The maytansinoid-cell-binding agent conjugate of claim 37, wherein Ri and R2 are methyl; R5, R6, R7 and R8 are each H; 1 and m are 1; and n is 0.
40. The maytansinoid-cell-binding agent conjugate of any one of claims 37, 38 or 39, wherein the cell-binding agent comprises at least one binding site of an antibody.
41. The maytansinoid-cell-binding agent conjugate of claim 40, wherein the antibody is MY9, anti-B4 or C242.
42. The maytansinoid-cell-binding agent conjugate of claim 40, wherein the antibody is humanized or resurfaced MY9, humanized or resurfaced anti-B4, or humanized or resurfaced C242.
43. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of any one of claims 18 to 24, 28 to 33, 37, 38 or 39, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
44. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 25, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
45. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 26, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
46. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 27, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
47. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 34, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
48. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 35, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
49. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 36, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
50. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 40, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
51. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 41, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
52. A pharmaceutical composition comprising an effective amount of the maytansinoid-cell-binding agent of claim 42, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
53. A method of esterification of a maytansinoid at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with an acylated amino acid where the acyl group bears a protected sulfhydryl group, wherein the carbon atom of the acyl group bearing the protected sulfhydryl group has one or two substituents, said substituents being CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition one of the substituents can be H, and wherein the acyl group has a linear chain length of at least three carbon atoms between the carbonyl functionality and the sulfur atom, said method comprising reacting a maytansinoid at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with the acylated amino acid where the acyl group bears a protected sulfhydryl group.
54. A method of esterification of maytansinol to give a maytansinoid of the formula
42':
Figure imgf000113_0001
42' wherein:
Y2' represents (CR7CR8)1(CR9=CRio)p(C=C)qAr(CR5CR6)mDu(CRii=CRi2)r(C=C)sBt(CR3CR4)I1CR1R2SZ2, wherein:
Ri and R2 are each independently CH3, C2Hs, linear branched or alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
A, B, and D each independently is cycloalkyl or cycloalkenyl having 3 to 10 carbon atoms, simple or substituted aryl, or heterocyclic aromatic or heterocycloalkyl radical;
R3, Rt, R5, R6, R7, R8, R9, Rn, and Rj2 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time; and
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 - 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical, said method comprising reacting maytansinol of the structure 11 at the C-3:
Figure imgf000114_0001
11 with a compound of formula (Ifi'-L), (ffl'-D), or (UI'-D, L):
Figure imgf000115_0001
(HT) wherein:
Y2- represents (CR7CR8)I(CR9=CRio)p(CC)qAr(CR5CR6)mDu(CRii=CRi2)r(C=C)sBt(CR3CR4)nCRiR2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
A, B, and D each, independently is cycloalkyl or cycloalkenyl having 3 -10 carbon atoms, simple or substituted aryl, or heterocyclic aromatic or heterocycloalkyl radical;
R3) i, R5, , Rη, R8, R9, Rϋ, and Rj2 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m, n, o, p, q, r, s, and t are each independently 0 or an integer of from 1 to 5, provided that at least two of 1, m, n, o, p, q, r, s and t are not zero at any one time; and Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
55. The method of claim 54, wherein the compound of formula (I) is represented by formula (I-L).
56. The method of claim 54, wherein Rj is H and R2 is methyl,.
57. A method of esterification of a maytansinoid to produce a maytansinoid ester represented by formula (IN-L), (JN-D), or (IV-D,L):
Figure imgf000116_0001
wherein:
Y2 represents (CR7CR8)i(CR5CR6)m(CR3CR4)nCRiR2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, Rt, R5, R6, 7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical; 1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 - 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical; and
May is a maytansinoid; said method comprising reacting said maytansinoid at C-3, C-14 hydroxymethyl, C-15 hydroxy, or C-20 desmethyl, with a compound of formula (UI-L), (LTJ-D), or (JJI-D,L):
Figure imgf000117_0001
L D D,L
(in) wherein:
Y2 represents (CR7CR8)i(CR5CR6)m(CR3CR4)nCR1R2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear branched or alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, Rt, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical; 1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 - 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
58. The method of claim 57, wherein Ri is H, R2 is methyl, R5, R6, R7, and R8 are each H; 1 and m are each 1; and n is 0.
59. The method of any one of claims 58, wherein the compound of formula (I) is represented by formula (I-L).
60. The method of claim 58, wherein said compound of formula (IJJ-L) is compound 15a(S,S), 15b(S,R) or a mixture of 15a(S,S) and 15b(S,R).
61. The method of claim 58, wherein said compound of formula (JJJ-D) is compound 15 (R, S), 15(R,R), or a mixture of 15(R,S) and 15(R,R).
62. The method of claim 58, wherein said compound of formula (JJJ-D ,L) is racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of R or S chirality to give compounds of the structure of 15.
63. The method of claim 60, wherein said mixture of 15a(S,S) and 15b(S,R) is made by a process comprising:
(1) reacting 4-mercaptoρentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its Ν-hydroxysuccinimide ester 14; (3) reacting compound 14 with N-methyl-L-alanine to give said mixture of compounds 15a(S,S) and 15b(S,R).
64. The method of claim 60, wherein said compound 15a(S,S) is made by a method comprising:
(1) converting (R)-l,3-butanediol into (S)-4-(methydithio)pentanoic acid 19;
(2) converting compound 19 into its Ν-hydroxysuccinimide ester (20); and
(3) reacting compound 20 with N-methyl-L-alanine to give said compound 15a(S,S).
65. The method of claim 60, wherein said compound 15b(S,R) is made by a method comprising:
(1) converting (S)-l ,3-butanediol into (R)-4-(methydithio)pentanoic acid 24;
(2) converting compound 25 into its Ν-hydroxysuccinimide ester (25); and
(3) reacting compound 25 with N-methyl-L-alanine to give said compound 15b(S,R)
66. The method of claim 61, wherein said mixture of compounds 15(R,S) and 15(R,R) can be made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with N-methyl-D-alanine to give said mixture of compounds 15(R,S) and 15(R,R).
67. The method of claim 62, wherein said racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the stracture of 15 is made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with racemic N-methylalanine to give said racemic N- methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of R or S chirality to give compounds of the stracture 15.
68. The method of claim 56, wherein Ri and R2 are methyl; R3, R4, R5, and R6 are each H; 1 and m are 1 ; and n is 0.
69. The method of claim 68, wherein said compound of formula (1TJ-L) is compound 10 containing N-methyl-L -alanine.
70. The method of claim 68, wherein said compound of formula (lU-D) is compound 10 containing N-methyl-D- alanine.
71. The method of claim 68, wherein said compound of formula (IJJ-D,L) is compound 10 containing racemic N-methylalanine.
72. The method of any one of claims 69, 70 or 71, wherein said compound 10 containing N-methyl-L- alanine, N-methyl-D-alanine, or racemic N-methylalanine is made by a process comprising: (1) reacting isobutylene sulfide (5) with the anion of acetonitrile to give compound 6;
(2) hydrolyzing compound 6 to give 4-mercapto-4-rnethylpentanoic acid (7);
(3) converting compound 7 into disulfide 8 by reaction with methylmethanethiolsulfonate;
(4) converting compound 8 into its N-hydroxysuccinimide ester 9; and
(5) reacting compound 9 with N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine to give said compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine.
73. A method of making a maytansinoid by the method of any one of claims57, 58, 59 or 60, further comprising separating diastereomers, if present, and purifying the maytansinoid by HPLC on cyano-bonded silica.
74. A method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by the method of claim 73, and reacting the purified maytansinoid with a cell-binding agent comprising a reactive dithio group or a sulfhydryl group.
75. The method of claim 74, wherein the reactive dithio group is a dithiopyridyl group or a substituted dithiopyridyl group.
76. A method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by the method of claim 72, and reacting the purified maytansinoid with a cell-binding agent comprising a maleimido group or a haloacetyl group.
77. A method of esterification of maytansinol to give a maytansinoid of the formula 42:
Figure imgf000122_0001
42 wherein:
Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR4)nCR1R2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear branched or alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, i, R5, Re, Rη and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0;
Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical;, said method comprising reacting maytansinol of the structure 11 at the C-3:
Figure imgf000123_0001
11 with a compound of formula (UI-L), (LTJ-D), or (JJI-D, L):
Figure imgf000123_0002
D D, L
(in) wherein:
Y2 represents (CR7CR8)ι(CR5CR6)m(CR3CR4)nCRιR2SZ2, wherein:
Ri and R2 are each independently CH3, C2Hs, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R R , R5, Re, Ri and R8 are each independently H, CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical;
1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; Z2 is SR or -COR, wherein R is linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 - 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
78. The method of claim 77, wherein the compound of formula (I) is represented by formula (I-L).
79. The method of claim 77, wherein Ri is H, R2 is methyl, R5, R6, R7, and R8 are each H; 1 and m are each 1 ; and n is 0.
80. The method of claim 77, wherein said compound of formula (LTJ-L) is compound 15a(S,S), 15b(S,R) or a mixture of 15a(S,S) and 15b(S,R).
81. The method of claim 77, wherein said compound of formula (ffl-D) is compound 15(R, S), 15(R,R), or a mixture of 15(R,S) and 15(R,R).
82. The method of claim 77, wherein said compound of formula (III-D ,L) is racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of R or S chirality to give compounds of the structure of 15.
83. The method of claim 80, wherein said mixture of 15a(S,S) and 15b(S,R) is made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methylmethanethiolsulfonate to give compound 13;
(2) converting compound 13 into its Ν-hydroxysuccinimide ester (14); and
(3) reacting compound 14 with N-methyl-L-alanine to give said mixture of 15a(S,S) and 15b(S,R).
84. The method of claim 80, wherein said compound 15a(S,S) is made by a method comprising:
(1) converting (R)-l,3-butanediol into (S)-4-(methydithio)pentanoic acid 19;
(2) converting compound 19 into its N-hydroxysuccinimide ester (20); and
(3) reacting compound 20 with N-methyl-L-alanine to give said compound 15a(S,S).
85. The method of claim 80, wherein said compound 15b(S,R) is made by a method comprising:
(1) converting (S)-l,3-butanediol into (R)-4-(methydithio)ρentanoic acid 24;
(2) converting compound 24 into its Ν-hydroxysuccinimide ester (25); and
I
(3) reacting compound 25 with N-methyl-L-alanine to give said compound 15b(S,R)
86. The method of claim 81, wherein said mixture of compounds 15(R,S) and 15(R,R) can be made by a process comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with N-methyl-D-alanine to give said mixture of t compounds 15(R,S) and 15(R,R).
87. The method of claim 82, wherein said racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of R or S chirality to give compounds of the structure df 15 is made by a process comprising: (1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with racemic N-methylalanine to give said racemic N- methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of R or S chirality to give compounds of the structure 15.
88. The method of claim 77, wherein Ri and R2 are methyl; R5, Rg, R7, and R8 are each H; 1 and m are 1; and n is 0.
89. The method of claim 77, wherein said compound of formula (IJJ-L) is compound 10 containing N-methyl-L-alanine.
90. The method of claim 77, wherein said compound of formula (LTJ-D) is compound 10 containing N-methyl-D-alanine.
91. The method of claim 77, wherein said compound of formula (UI-D,L) is compound 10 containing racemic N-methyl-alanine.
92. The method of any one of claims 89, 90 or 91, wherein said compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine or racemic N-methylalanine is made by a process comprising:
(1) reacting isobutylene sulfide (5)with the anion of acetonitrile to give compound 6;
(2) hydrolyzing compound 6 to give 4-mercapto-4-methylpentanoic acid (7); (3) converting compound 7 into the disulfide 8 by reaction with methylmethanethiolsulfonate;
(4) converting compound 8 into its N-hydroxysuccinimide ester 9; and
(5) reacting compound 9 with N-methyl-L-alanine, N-methyl-D-alanine or racemic N- methylalanine to give said compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine or racemic N-methylalanine.
93. The method of making a maytansinoid of any one of claims 77, 79 or 88, further comprising separating diastereomers, if present, and purifying the maytansinoid by HPLC on cyano-bonded silica.
94. A method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by the method of claim 93, and reacting the purified maytansinoid with a cell-binding agent comprising a reactive dithio group or a sulfhydryl group.
95. The method of claim 94, wherein the reactive dithio group is a dithiopyridyl group or a substituted dithiopyridyl group.
96. A method of making a maytansinoid-cell-binding agent conjugate comprising making a purified maytansinoid by the method of claim 93, and reacting the purified maytansinoid with a cell-binding agent comprising a maleimido or an haloacetyl group.
97. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of any one of claims 18 to 24, 28 to 33, 37, 38 or 39, or a pharmaceutically acceptable salt or solvate thereof.
98. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 25, or a pharmaceutically acceptable salt or solvate thereof.
99. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 26, or a pharmaceutically acceptable salt or solvate thereof. ^
100. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 27, or a pharmaceutically acceptable salt or solvate thereof.
101. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 34, or a pharmaceutically acceptable salt or solvate thereof.
102. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 35, or a pharmaceutically acceptable salt or solvate thereof.
103. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 36, or a pharmaceutically acceptable salt or solvate thereof.
104. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 40, or a pharmaceutically acceptable salt or solvate thereof.
105. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 41, or a pharmaceutically acceptable salt or solvate thereof.
106. A method of treatment comprising administering to a subject in need of treatment an effective amount of the conjugate of claim 42, or a pharmaceutically acceptable salt or solvate thereof.
107. A compound of formula HI:
Figure imgf000129_0001
L D D,L
(HI) wherein: Y2 represents (CR7CR8)1(CR5CR6)m(CR3CR4)nCRiR2SZ2, wherein:
Ri and R2 are each independently CH3, C2H5, linear alkyl or alkenyl having from 1 to 10 carbon atoms, branched or cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical, and in addition R2 can be H;
R3, i, R5, R6, R7 and R8 are each independently H, CH3, C2H5, linear branched or alkyl or alkenyl having from 1 to 10 carbon atoms, cyclic alkyl or alkenyl having from 3 to 10 carbon atoms, phenyl, substituted phenyl or heterocyclic aromatic or heterocycloalkyl radical; 1, m and n are each independently an integer of from 1 to 5, and in addition n can be 0; and
Z2 is SR or -COR, wherein R is linear alkyl, branched alkyl or cyclic alkyl having from 1 to 10 carbon atoms, or simple or substituted aryl or heterocyclic aromatic or heterocycloalkyl radical.
108. Compounds 10 (S), 10 (R) or racemic 10.
109. A method of making compound 10 containing N-methyl-L-alanine, N-methyl-D- alanine, or racemic N-methylalanine comprising:
(1) reacting isobutylene sulfide (5) with the anion of acetonitrile to give compound 6;
(2) hydrolyzing compound 6 to give 4-mercapto-4-methylpentanoic acid (7);
(3) converting compound 7 into disulfide 8 by reaction with methylmethanethiolsulfonate;
(4) converting compound 8 into its Ν-hydroxysuccinimide ester 9; and
(5) reacting compound 9 with N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine to give said compound 10 containing N-methyl-L-alanine, N-methyl-D-alanine, or racemic N-methylalanine.
110. A mixture of compounds 15a(S ,S) and 15b(S ,R).
111. A method of making a mixture of compounds 15a(S,S) and 15b(S,R), comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methylmethanethiolsulfonate to give compound 13;
(2) converting compound 13 into its Ν-hydroxysuccinimide ester (14); and (3) reacting compound 14 with N-methyl-L-alanine to give said mixture of compounds 15a(S,S) and 15b(S,R).
112. A mixture of compounds 15(R,S) and 15(R,R).
113. A method of making a mixture of compounds 15(R,S) and 15(R,R) comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with N-methyl-D-alanine to give said mixture of compounds 15(R,S) and 15(R,R,).
114. Racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of a structure of 15.
115. A method of making racemic N-methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of structure 15, comprising:
(1) reacting 4-mercaptopentanoic acid (12) with methyl methanethiolsulfonate to give compound 13;
(2) converting compound 13 into its N-hydroxysuccinimide ester 14;
(3) reacting compound 14 with racemic N-methylalanine to give said racemic N- methylalanine acylated with a carboxylic group bearing a protected thiol functionality, in which the carbon center bearing the sulfur atom is either racemic or of the R or S chirality to give compounds of the structure 15.
116. Compound 15a(S,S).
117. A method of making compound 15a(S,S) comprising:
(1) converting (R)-l,3-butanediol into (S)-4-(methydithio)pentanoic acid 19;
(2) converting compound 19 into its N-hydroxysuccinimide ester (20); and
(3) reacting compound 20 with N-methyl-L-alanine to give said compound 15a(S,S).
118. Compound 15b(S,R).
119. A method of making compound 15b(S ,R) comprising:
(1) converting (S)-l,3-butanediol into (R)-4-(methydithio)pentanoic acid 24;
(2) converting compound 24 into its Ν-hydroxysuccinimide ester (25); and
(3) reacting compound 25 with N-methyl-L-alanine to give said compound 15b(S,R).
120. A pharmaceutical composition comprising an effective amount of the compound of any one of claims 2, 8, 13 or 108, a pharmaceutically acceptable salt or solvate thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
121. The pharmaceutical composition of claim 430122, further comprising an antibody.
122. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agent of any one of claims 18 to 24, 28 to 33, 37r^8 to 40 or 3941, a salt or solvate thereof.
123. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 25, a salt or solvate thereof.
124. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 26, a salt or solvate thereof.
125. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 27, a salt or solvate thereof.
126. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 34, a salt or solvate thereof.
127. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 35, a salt or solvate thereof.
128. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 36, a salt or solvate thereof.
129. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 42, a salt or solvate thereof.
130. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 43, a salt or solvate thereof.
131. A method for inducing cell death in selected cell populations comprising contacting target cells or tissue containing target cells with an effective amount of a the maytansinoid-cell-binding agents of claim 44, a salt or solvate thereof.
PCT/US2004/013314 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids WO2004103272A2 (en)

Priority Applications (30)

Application Number Priority Date Filing Date Title
MXPA05011811A MXPA05011811A (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids.
PL04750945T PL1651162T3 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
CR20170291A CR20170291A (en) 2003-05-20 2004-05-20 IMPROVED CYTOTOXIC AGENTS UNDERSTANDING NEW MAITANSINÓIDES
ES04750945.0T ES2559670T3 (en) 2003-05-20 2004-05-20 Enhanced cytotoxic agents comprising new maitansinoids
JP2006532511A JP5208420B2 (en) 2003-05-20 2004-05-20 Improved cytotoxic drugs containing novel maytansinoids
EP04750945.0A EP1651162B1 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
MX2016009879A MX370281B (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids.
PL19160750T PL3524611T3 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
EP15190436.4A EP3031810B1 (en) 2003-05-20 2004-05-20 Maytansinoid-cell-binding agent conjugates
CA2525130A CA2525130C (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
SI200432295T SI1651162T1 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
NZ542695A NZ542695A (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
EP19160750.6A EP3524611B1 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
EA200501836A EA010909B1 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
DK04750945.0T DK1651162T3 (en) 2003-05-20 2004-05-20 IMPROVED CYTOTOXIC AGENTS WITH NEW MAYTANSINOIDS
AU2004240541A AU2004240541B2 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
KR1020057022166A KR101145506B1 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids
BRPI0410748A BRPI0410748B8 (en) 2003-05-20 2004-05-20 maytansinoid compounds, their pharmaceutical compositions, methods of esterification of maytansinoids, as well as methods for their production, and maytansinoid-cell binding agent conjugate
EP20216572.6A EP3851126A1 (en) 2003-05-20 2004-05-20 Maytansinoid-cell-binding agent conjugates
MX2013008224A MX340862B (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids.
BRPI0419348A BRPI0419348B8 (en) 2003-05-20 2004-05-20 methods for making the maytansinoid-cell binding agent conjugate
IL171170A IL171170A (en) 2003-05-20 2005-09-29 Maytansinoid derivatives and pharmaceutical compositions containing the same, methods of producing the same and methods of use thereof
NO20056039A NO339597B1 (en) 2003-05-20 2005-12-19 Enhanced cytotoxic agents which include novel maytansinoids; process for their preparation; intermediates thereof and process for their preparation; conjugate between the maytansinoids and a cell binding agent; process for its preparation and its use in a therapeutic method or for the manufacture of a medicament, and a pharmaceutical preparation thereof.
IL213876A IL213876A (en) 2003-05-20 2011-06-30 Maytansinoid derivatives and pharmaceutical compositions containing the same
IL223297A IL223297A (en) 2003-05-20 2012-11-27 Maytansinoid derivatives and pharmaceutical compositions containing the same and methods of producing the same
IL231810A IL231810A (en) 2003-05-20 2014-03-30 Maytansinoid derivatives and pharmaceutical compositions containing the same, methods of producing the same and methods of use thereof for use in treating cancer
IL238894A IL238894A (en) 2003-05-20 2015-05-19 Maytansinoid derivatives and methods of producing the same
IL241211A IL241211B (en) 2003-05-20 2015-09-06 Maytansinoid derivatives and pharmaceutical compositions containing the same
HRP20160046TT HRP20160046T1 (en) 2003-05-20 2016-01-14 Improved cytotoxic agents comprising new maytansinoids
CY20211100265T CY1124278T1 (en) 2003-05-20 2021-03-26 IMPROVED CYTOTOXIC AGENTS CONTAINING NOVEL MAYTANSINOIDS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47173903P 2003-05-20 2003-05-20
US60/471,739 2003-05-20

Publications (2)

Publication Number Publication Date
WO2004103272A2 true WO2004103272A2 (en) 2004-12-02
WO2004103272A3 WO2004103272A3 (en) 2006-11-23

Family

ID=33476883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/013314 WO2004103272A2 (en) 2003-05-20 2004-05-20 Improved cytotoxic agents comprising new maytansinoids

Country Status (28)

Country Link
EP (4) EP3851126A1 (en)
JP (2) JP5208420B2 (en)
KR (1) KR101145506B1 (en)
CN (2) CN101186613B (en)
AU (1) AU2004240541B2 (en)
BR (2) BRPI0410748B8 (en)
CA (1) CA2525130C (en)
CL (1) CL2012000651A1 (en)
CO (1) CO5660276A2 (en)
CR (1) CR20170291A (en)
CY (2) CY1117161T1 (en)
DK (2) DK1651162T3 (en)
EA (1) EA010909B1 (en)
EC (1) ECSP056149A (en)
ES (2) ES2863498T3 (en)
HK (1) HK1116777A1 (en)
HR (2) HRP20160046T1 (en)
HU (2) HUE028314T2 (en)
IL (6) IL171170A (en)
LT (1) LT3524611T (en)
MX (3) MX370281B (en)
NO (1) NO339597B1 (en)
NZ (1) NZ542695A (en)
PL (2) PL1651162T3 (en)
PT (2) PT1651162E (en)
SI (2) SI1651162T1 (en)
WO (1) WO2004103272A2 (en)
ZA (1) ZA200507845B (en)

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086733A3 (en) * 2005-02-11 2007-06-07 Immunogen Inc Process for preparing maytansinoid antibody conjugates
WO2007024536A3 (en) * 2005-08-24 2007-07-05 Immunogen Inc Process for preparing maytansinoid antibody conjugates
EP1813614A1 (en) 2006-01-25 2007-08-01 Sanofi-Aventis Cytotoxic agents comprising new tomaymycin derivatives
EP1868649A2 (en) * 2005-04-15 2007-12-26 Immunogen, Inc. Elimination of heterogeneous or mixed cell population in tumors
EP2062591A1 (en) 2005-04-07 2009-05-27 Novartis Vaccines and Diagnostics, Inc. CACNA1E in cancer diagnosis detection and treatment
EP2083088A2 (en) 2005-04-07 2009-07-29 Novartis Vaccines and Diagnostics, Inc. Cancer-related genes
WO2011001052A1 (en) 2009-06-29 2011-01-06 Sanofi-Aventis Novel conjugates, preparation thereof, and therapeutic use thereof
WO2011023883A1 (en) 2009-08-25 2011-03-03 Sanofi-Aventis Conjugates of pyrrolo[1,4]benzodiazepine dimers as anticancer agents
WO2011039721A1 (en) 2009-10-02 2011-04-07 Sanofi-Aventis New maytansinoids and the use of said maytansinoids to prepare conjugates with an antibody
WO2011045396A2 (en) 2009-10-16 2011-04-21 Novartis Ag Biomarkers of tumor pharmacodynamic response
EP2389946A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2407483A1 (en) 2006-04-13 2012-01-18 Novartis Vaccines and Diagnostics, Inc. Methods of treating, diagnosing or detecting cancers
WO2012016227A2 (en) 2010-07-29 2012-02-02 Xencor, Inc. Antibodies with modified isoelectric points
WO2012014147A1 (en) 2010-07-26 2012-02-02 Sanofi Anticancer derivatives, preparation thereof and therapeutic use thereof
WO2012045085A1 (en) 2010-10-01 2012-04-05 Oxford Biotherapeutics Ltd. Anti-rori antibodies
WO2012061590A1 (en) * 2010-11-03 2012-05-10 Immunogen, Inc. Cytotoxic agents comprising new ansamitocin derivatives
EP2474556A2 (en) 2007-03-14 2012-07-11 Novartis AG APCDD1 inhibitors for treating, diagnosing or detecting cancer
EP2524929A1 (en) * 2011-05-17 2012-11-21 Sanofi Use of anti-CD19 maytansinoid immunoconjugate antibody for the treatment of CD19+ B-cell malignancies syptoms
EP2550975A1 (en) * 2011-07-29 2013-01-30 Sanofi Combination therapy for the treatment of CD19+ B-cell malignancies symptoms comprising an anti-CD19 maytansinoid immunoconjugate and rituximab
US8603483B2 (en) 2004-12-09 2013-12-10 Janssen Biotech, Inc. Anti-integrin immunoconjugates, methods and uses
WO2014114207A1 (en) 2013-01-23 2014-07-31 上海新理念生物医药科技有限公司 Tridentate connexon and use thereof
US8795673B2 (en) 2011-03-29 2014-08-05 Immunogen, Inc. Preparation of maytansinoid antibody conjugates by a one-step process
WO2015009740A2 (en) 2013-07-15 2015-01-22 Cell Signaling Technology, Inc. Anti-mucin 1 binding agents and uses thereof
WO2015149077A1 (en) 2014-03-28 2015-10-01 Xencor, Inc. Bispecific antibodies that bind to cd38 and cd3
US9150649B2 (en) 2008-04-30 2015-10-06 Immunogen, Inc. Potent conjugates and hydrophilic linkers
WO2016014984A1 (en) 2014-07-24 2016-01-28 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
WO2016036804A1 (en) 2014-09-03 2016-03-10 Immunogen, Inc. Cytotoxic benzodiazepine derivatives
US9376500B2 (en) 2009-06-03 2016-06-28 Immunogen, Inc. Conjugation methods
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
WO2016192527A1 (en) 2015-05-29 2016-12-08 Newbio Therapeutics, Inc. Derivatives of dolastatin 10 and uses thereof
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US9650446B2 (en) 2013-01-14 2017-05-16 Xencor, Inc. Heterodimeric proteins
WO2017088734A1 (en) 2015-11-23 2017-06-01 四川科伦博泰生物医药股份有限公司 Anti-erbb2 antibody-drug conjugate and composition thereof, preparation method therefor, and application thereof
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9738722B2 (en) 2013-01-15 2017-08-22 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
US9850320B2 (en) 2014-11-26 2017-12-26 Xencor, Inc. Heterodimeric antibodies to CD3 X CD20
US9856327B2 (en) 2014-11-26 2018-01-02 Xencor, Inc. Heterodimeric antibodies to CD3 X CD123
EP3284755A1 (en) 2010-12-30 2018-02-21 Takeda Pharmaceutical Company Limited Conjugated anti-cd38 antibodies
EP3311846A1 (en) 2014-09-02 2018-04-25 ImmunoGen, Inc. Methods for formulating antibody drug conjugate compositions
EP3160518A4 (en) * 2014-06-30 2018-05-23 Tarveda Therapeutics, Inc. Targeted conjugates and particles and formulations thereof
US10035817B2 (en) 2012-10-04 2018-07-31 Immunogen, Inc. Method of purifying cell-binding agent-cytotoxic agent conjugates with a PVDF membrane
WO2018160539A1 (en) 2017-02-28 2018-09-07 Immunogen, Inc. Maytansinoid derivatives with self-immolative peptide linkers and conjugates thereof
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
WO2018195243A1 (en) 2017-04-20 2018-10-25 Immunogen, Inc. Cytotoxic benzodiazepine derivatives and conjugates thereof
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
EP3421495A2 (en) 2013-03-15 2019-01-02 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US10227410B2 (en) 2015-12-07 2019-03-12 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
WO2019105835A1 (en) 2017-11-29 2019-06-06 Bayer Consumer Care Ag Combinations of copanlisib and anetumab ravtansine
US10316088B2 (en) 2016-06-28 2019-06-11 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
WO2019133652A1 (en) 2017-12-28 2019-07-04 Immunogen, Inc. Benzodiazepine derivatives
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
US10449258B2 (en) 2015-06-09 2019-10-22 Xdcexplorer (Shanghai) Co., Ltd. Antibody drug conjugate, intermediate, preparation method, pharmaceutical composition and uses thereof
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US10501543B2 (en) 2016-10-14 2019-12-10 Xencor, Inc. IL15/IL15Rα heterodimeric Fc-fusion proteins
WO2019238843A1 (en) 2018-06-14 2019-12-19 Berlin-Chemie Ag Pharmaceutical combinations
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
EP3587448A1 (en) 2013-03-15 2020-01-01 Xencor, Inc. Heterodimeric proteins
US10526417B2 (en) 2014-11-26 2020-01-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
WO2020010079A2 (en) 2018-07-02 2020-01-09 Amgen Inc. Anti-steap1 antigen-binding protein
US10532019B2 (en) 2005-12-01 2020-01-14 University Of Massachusetts Lowell Botulinum nanoemulsions
WO2020023871A1 (en) 2018-07-27 2020-01-30 Promega Corporation Quinone-containing conjugates
EP3611187A1 (en) 2011-10-10 2020-02-19 Xencor, Inc. A method for purifying antibodies
US10654873B2 (en) 2016-09-15 2020-05-19 Polytherics Limited Cytotoxic agents and conjugates thereof
US10787518B2 (en) 2016-06-14 2020-09-29 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
WO2020234114A1 (en) 2019-05-21 2020-11-26 Bayer Aktiengesellschaft A novel stable high concentration formulation for anetumab ravtansine
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
EP3778601A1 (en) 2014-09-03 2021-02-17 ImmunoGen, Inc. Cytotoxic benzodiazepine derivatives
US10944190B2 (en) 2012-09-26 2021-03-09 Immunogen, Inc. Methods for the acylation of maytansinol
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10982006B2 (en) 2018-04-04 2021-04-20 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US11084863B2 (en) 2017-06-30 2021-08-10 Xencor, Inc. Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains
US11160871B2 (en) 2015-10-28 2021-11-02 Tarveda Therapeutics, Inc. SSTR-targeted conjugates and particles and formulations thereof
US11311496B2 (en) 2016-11-21 2022-04-26 Eirion Therapeutics, Inc. Transdermal delivery of large agents
US11312770B2 (en) 2017-11-08 2022-04-26 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-PD-1 sequences
US11319355B2 (en) 2017-12-19 2022-05-03 Xencor, Inc. Engineered IL-2 Fc fusion proteins
US11358999B2 (en) 2018-10-03 2022-06-14 Xencor, Inc. IL-12 heterodimeric Fc-fusion proteins
US11365258B2 (en) 2017-03-10 2022-06-21 Berlin-Chemie Ag Pharmaceutical combinations comprising an anti-LY75 antibody
US11472890B2 (en) 2019-03-01 2022-10-18 Xencor, Inc. Heterodimeric antibodies that bind ENPP3 and CD3
US11505595B2 (en) 2018-04-18 2022-11-22 Xencor, Inc. TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains
US11524991B2 (en) 2018-04-18 2022-12-13 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
US11591401B2 (en) 2020-08-19 2023-02-28 Xencor, Inc. Anti-CD28 compositions
US11634508B2 (en) 2019-07-10 2023-04-25 Cybrexa 2, Inc. Peptide conjugates of cytotoxins as therapeutics
WO2023089314A1 (en) 2021-11-18 2023-05-25 Oxford Biotherapeutics Limited Pharmaceutical combinations
US11739144B2 (en) 2021-03-09 2023-08-29 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CLDN6
US11859012B2 (en) 2021-03-10 2024-01-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and GPC3
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2525130C (en) * 2003-05-20 2014-04-15 Immunogen, Inc. Improved cytotoxic agents comprising new maytansinoids
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
EP2486023A4 (en) * 2009-10-06 2014-05-07 Immunogen Inc Potent conjugates and hydrophilic linkers
RU2451010C1 (en) * 2011-01-11 2012-05-20 Закрытое Акционерное Общество "Ива Фарм" Palladium-copper catalysts for homogeneous selective oxidation of thiol groups, combination and composition based on said catalysts and therapeutic treatment method
CN104974252B (en) * 2014-04-01 2020-04-24 三生国健药业(上海)股份有限公司 Antibody-small molecule drug conjugate for inhibiting tumor growth and preparation method and application thereof
SI3956332T1 (en) * 2019-04-18 2023-05-31 Indena S.P.A. Diasteroselective process for the preparation of thiol- or disulfide-containing maytansinoid esters and intermediates thereof
CR20220057A (en) 2019-07-10 2022-07-19 Cybrexa 3 Inc Peptide conjugates of microtubule-targeting agents as therapeutics

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896111A (en) 1973-02-20 1975-07-22 Research Corp Ansa macrolides
US4151042A (en) 1977-03-31 1979-04-24 Takeda Chemical Industries, Ltd. Method for producing maytansinol and its derivatives
US4137230A (en) 1977-11-14 1979-01-30 Takeda Chemical Industries, Ltd. Method for the production of maytansinoids
US4307016A (en) 1978-03-24 1981-12-22 Takeda Chemical Industries, Ltd. Demethyl maytansinoids
US4265814A (en) 1978-03-24 1981-05-05 Takeda Chemical Industries Matansinol 3-n-hexadecanoate
JPS5562090A (en) 1978-10-27 1980-05-10 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
US4256746A (en) 1978-11-14 1981-03-17 Takeda Chemical Industries Dechloromaytansinoids, their pharmaceutical compositions and method of use
JPS5566585A (en) 1978-11-14 1980-05-20 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55164687A (en) 1979-06-11 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55102583A (en) 1979-01-31 1980-08-05 Takeda Chem Ind Ltd 20-acyloxy-20-demethylmaytansinoid compound
JPS55162791A (en) 1979-06-05 1980-12-18 Takeda Chem Ind Ltd Antibiotic c-15003pnd and its preparation
JPS55164685A (en) 1979-06-08 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55164686A (en) 1979-06-11 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
US4309428A (en) 1979-07-30 1982-01-05 Takeda Chemical Industries, Ltd. Maytansinoids
JPS5645483A (en) 1979-09-19 1981-04-25 Takeda Chem Ind Ltd C-15003phm and its preparation
EP0028683A1 (en) 1979-09-21 1981-05-20 Takeda Chemical Industries, Ltd. Antibiotic C-15003 PHO and production thereof
JPS5645485A (en) 1979-09-21 1981-04-25 Takeda Chem Ind Ltd Production of c-15003pnd
WO1982001188A1 (en) 1980-10-08 1982-04-15 Takeda Chemical Industries Ltd 4,5-deoxymaytansinoide compounds and process for preparing same
US4450254A (en) 1980-11-03 1984-05-22 Standard Oil Company Impact improvement of high nitrile resins
US4315929A (en) 1981-01-27 1982-02-16 The United States Of America As Represented By The Secretary Of Agriculture Method of controlling the European corn borer with trewiasine
US4313946A (en) 1981-01-27 1982-02-02 The United States Of America As Represented By The Secretary Of Agriculture Chemotherapeutically active maytansinoids from Trewia nudiflora
JPS57192389A (en) 1981-05-20 1982-11-26 Takeda Chem Ind Ltd Novel maytansinoid
US5208020A (en) * 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
CA2026147C (en) * 1989-10-25 2006-02-07 Ravi J. Chari Cytotoxic agents comprising maytansinoids and their therapeutic use
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
SE9102074D0 (en) 1991-07-03 1991-07-03 Kabi Pharmacia Ab TOMOUR ANTIGEN SPECIFIC ANTIBODY
DK1024191T3 (en) 1991-12-02 2008-12-08 Medical Res Council Preparation of autoantibodies displayed on phage surfaces from antibody segment libraries
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
CA2297070A1 (en) 1997-08-01 1999-02-11 Morphosys Ag Novel method and phage for the identification of nucleic acid sequences encoding members of a multimeric (poly)peptide complex
CA2385528C (en) * 1999-10-01 2013-12-10 Immunogen, Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
US6333410B1 (en) * 2000-08-18 2001-12-25 Immunogen, Inc. Process for the preparation and purification of thiol-containing maytansinoids
EP1258255A1 (en) * 2001-05-18 2002-11-20 Boehringer Ingelheim International GmbH Conjugates of an antibody to CD44 and a maytansinoid
US6441163B1 (en) * 2001-05-31 2002-08-27 Immunogen, Inc. Methods for preparation of cytotoxic conjugates of maytansinoids and cell binding agents
PL374363A1 (en) * 2001-09-05 2005-10-17 Genentech, Inc. Methods for the identification of polypeptide antigens associated with disorders involving aberrant cell proliferation and compositions useful for the treatment of such disorders
KR101424624B1 (en) * 2003-05-14 2014-07-31 이뮤노젠 아이엔씨 Drug Conjugate Composition
CA2525130C (en) * 2003-05-20 2014-04-15 Immunogen, Inc. Improved cytotoxic agents comprising new maytansinoids
AU2004258955C1 (en) * 2003-07-21 2012-07-26 Immunogen, Inc. A CA6 antigen-specific cytotoxic conjugate and methods of using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1651162A4 *

Cited By (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603483B2 (en) 2004-12-09 2013-12-10 Janssen Biotech, Inc. Anti-integrin immunoconjugates, methods and uses
WO2006086733A3 (en) * 2005-02-11 2007-06-07 Immunogen Inc Process for preparing maytansinoid antibody conjugates
JP2008531484A (en) * 2005-02-11 2008-08-14 イムノゲン インコーポレーティッド Method for preparing stable drug conjugates
AU2006213662B2 (en) * 2005-02-11 2010-08-05 Immunogen, Inc. Process for preparing stable drug conjugates
EP2062591A1 (en) 2005-04-07 2009-05-27 Novartis Vaccines and Diagnostics, Inc. CACNA1E in cancer diagnosis detection and treatment
EP2083088A2 (en) 2005-04-07 2009-07-29 Novartis Vaccines and Diagnostics, Inc. Cancer-related genes
US8388960B2 (en) 2005-04-15 2013-03-05 Immunogen Inc. Elimination of heterogeneous or mixed cell population in tumors
EP1868649A2 (en) * 2005-04-15 2007-12-26 Immunogen, Inc. Elimination of heterogeneous or mixed cell population in tumors
US8137669B2 (en) 2005-04-15 2012-03-20 Immunogen, Inc. Elimination of heterogeneous or mixed cell population in tumors
EP1868649A4 (en) * 2005-04-15 2011-06-29 Immunogen Inc Elimination of heterogeneous or mixed cell population in tumors
EP2662096A1 (en) * 2005-08-24 2013-11-13 ImmunoGen, Inc. Process for preparing maytansinoid antibody conjugates
US11471536B2 (en) 2005-08-24 2022-10-18 Immunogen, Inc. Process for preparing purified drug conjugates
EP3539572A1 (en) * 2005-08-24 2019-09-18 ImmunoGen, Inc. Process for preparing maytansinoid antibody conjugates
US9789204B2 (en) 2005-08-24 2017-10-17 Immunogen, Inc. Process for preparing purified drug conjugates
US7811572B2 (en) 2005-08-24 2010-10-12 Immunogen, Inc. Process for preparing purified drug conjugates
JP2013014604A (en) * 2005-08-24 2013-01-24 Immunogen Inc Process for preparing maytansinoid antibody conjugate
US8933205B2 (en) 2005-08-24 2015-01-13 Immunogen, Inc. Process for preparing purified drug conjugates
US8383122B2 (en) 2005-08-24 2013-02-26 Immunogen, Inc. Process for preparing purified drug conjugates
WO2007024536A3 (en) * 2005-08-24 2007-07-05 Immunogen Inc Process for preparing maytansinoid antibody conjugates
JP2014196307A (en) * 2005-08-24 2014-10-16 イムノゲン インコーポレーティッド Method for preparing maytansinoid-antibody conjugate
EA013327B1 (en) * 2005-08-24 2010-04-30 Иммуноджен, Инк. Process for preparing purified drug conjugate
US10576034B2 (en) 2005-12-01 2020-03-03 University Of Massachusetts Lowell Botulinum nanoemulsions
US10532019B2 (en) 2005-12-01 2020-01-14 University Of Massachusetts Lowell Botulinum nanoemulsions
EP2386559A1 (en) 2006-01-25 2011-11-16 Sanofi Cytotoxiv agents comprising new tomaymycin derivatives and their therapeutic use
US8163736B2 (en) 2006-01-25 2012-04-24 Sanofi-Aventis Cytotoxic agents comprising new tomaymycin derivatives
EP1813614A1 (en) 2006-01-25 2007-08-01 Sanofi-Aventis Cytotoxic agents comprising new tomaymycin derivatives
EP2371827A1 (en) 2006-01-25 2011-10-05 Sanofi Cytotoxic agents comprising new tomaymycin derivatives and their therapeutic use
EP2389948A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389950A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389947A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389951A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389949A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2389946A1 (en) 2006-03-23 2011-11-30 Novartis AG Anti-tumor cell antigen antibody therapeutics
EP2407483A1 (en) 2006-04-13 2012-01-18 Novartis Vaccines and Diagnostics, Inc. Methods of treating, diagnosing or detecting cancers
EP2474556A2 (en) 2007-03-14 2012-07-11 Novartis AG APCDD1 inhibitors for treating, diagnosing or detecting cancer
US9150649B2 (en) 2008-04-30 2015-10-06 Immunogen, Inc. Potent conjugates and hydrophilic linkers
US9376500B2 (en) 2009-06-03 2016-06-28 Immunogen, Inc. Conjugation methods
US10815309B2 (en) 2009-06-03 2020-10-27 Immunogen, Inc. Methods for preparing antibody-drug conjugates
US11498979B2 (en) 2009-06-03 2022-11-15 Immunogen, Inc. Methods for preparing a purified maytansinoid conjugate in a solution
US9771432B2 (en) 2009-06-03 2017-09-26 Immunogen, Inc. Conjugation methods
US10233257B2 (en) 2009-06-03 2019-03-19 Immunogen, Inc. Methods for preparing antibody-drug conjugates
US8952147B2 (en) 2009-06-29 2015-02-10 Sanofi Conjugates, preparation thereof, and therapeutic use thereof
WO2011001052A1 (en) 2009-06-29 2011-01-06 Sanofi-Aventis Novel conjugates, preparation thereof, and therapeutic use thereof
US8481042B2 (en) 2009-08-25 2013-07-09 Sanofi Conjugates of pyrrolo[1,4]benzodiazepine dimers as anticancer agents
WO2011023883A1 (en) 2009-08-25 2011-03-03 Sanofi-Aventis Conjugates of pyrrolo[1,4]benzodiazepine dimers as anticancer agents
WO2011039721A1 (en) 2009-10-02 2011-04-07 Sanofi-Aventis New maytansinoids and the use of said maytansinoids to prepare conjugates with an antibody
WO2011045396A2 (en) 2009-10-16 2011-04-21 Novartis Ag Biomarkers of tumor pharmacodynamic response
US9056914B2 (en) 2010-07-26 2015-06-16 Sanofi Anticancer derivatives, preparation thereof and therapeutic use thereof
WO2012014147A1 (en) 2010-07-26 2012-02-02 Sanofi Anticancer derivatives, preparation thereof and therapeutic use thereof
WO2012016227A2 (en) 2010-07-29 2012-02-02 Xencor, Inc. Antibodies with modified isoelectric points
EP3029066A2 (en) 2010-07-29 2016-06-08 Xencor, Inc. Antibodies with modified isoelectric points
EP3828205A1 (en) 2010-10-01 2021-06-02 Oxford BioTherapeutics Ltd Anti-ror1 antibodies
EP3219731A1 (en) 2010-10-01 2017-09-20 Oxford BioTherapeutics Ltd Anti-ror1 antibodies
WO2012045085A1 (en) 2010-10-01 2012-04-05 Oxford Biotherapeutics Ltd. Anti-rori antibodies
CN106349254A (en) * 2010-11-03 2017-01-25 伊缪诺金公司 Cytotoxic agents comprising new ansamitocin derivatives
AU2011323316A9 (en) * 2010-11-03 2016-02-18 Immunogen, Inc. Cytotoxic agents comprising new ansamitocin derivatives
AU2011323316B2 (en) * 2010-11-03 2016-02-25 Immunogen, Inc. Cytotoxic agents comprising new ansamitocin derivatives
US9090629B2 (en) 2010-11-03 2015-07-28 Immunogen, Inc. Cytotoxic agents comprising new ansamitocin derivatives
CN103269712A (en) * 2010-11-03 2013-08-28 伊缪诺金公司 Cytotoxic agents comprising new ansamitocin derivatives
WO2012061590A1 (en) * 2010-11-03 2012-05-10 Immunogen, Inc. Cytotoxic agents comprising new ansamitocin derivatives
CN103269712B (en) * 2010-11-03 2016-09-21 伊缪诺金公司 Comprise the cytotoxic agent of new ansamitocin derivant
EP3284755A1 (en) 2010-12-30 2018-02-21 Takeda Pharmaceutical Company Limited Conjugated anti-cd38 antibodies
EP3798231A1 (en) 2010-12-30 2021-03-31 Takeda Pharmaceutical Company Limited Conjugated anti-cd38 antibodies
US9428543B2 (en) 2011-03-29 2016-08-30 Immunogen, Inc. Preparation of maytansinoid antibody conjugates by a one-step process
US11090390B2 (en) 2011-03-29 2021-08-17 Immunogen, Inc. Preparation of maytansinoid antibody conjugates by a one-step process
US11744900B2 (en) 2011-03-29 2023-09-05 Immunogen, Inc. Preparation of maytansinoid antibody conjugates by a one-step process
US9914748B2 (en) 2011-03-29 2018-03-13 Immunogen, Inc. Preparation of maytansinoid antibody conjugates by a one-step process
US8795673B2 (en) 2011-03-29 2014-08-05 Immunogen, Inc. Preparation of maytansinoid antibody conjugates by a one-step process
US10435432B2 (en) 2011-03-29 2019-10-08 Immunogen, Inc. Preparation of maytansinoid antibody conjugates by a one-step process
AU2012258254B2 (en) * 2011-05-17 2016-04-21 Sanofi Use of anti-CD19 maytansinoid immunoconjugate antibody for the treatment of B-cell malignancies symptoms
EP2524929A1 (en) * 2011-05-17 2012-11-21 Sanofi Use of anti-CD19 maytansinoid immunoconjugate antibody for the treatment of CD19+ B-cell malignancies syptoms
WO2012156455A1 (en) * 2011-05-17 2012-11-22 Sanofi Use of anti-cd19 maytansinoid immunoconjugate antibody for the treatment of b-cell malignancies symptoms
EA028574B1 (en) * 2011-05-17 2017-12-29 Санофи Method of treating b-cell malignancies expressing cd19
CN103547596A (en) * 2011-05-17 2014-01-29 赛诺菲 Use of anti-CD19 maytansinoid immunoconjugate antibody for the treatment of b-cell malignancies symptoms
US9555126B2 (en) 2011-05-17 2017-01-31 Sanofi Use of anti-CD19 maytansinoid immunoconjugate antibody for the treatment of B-cell malignancies symptoms
EP2550975A1 (en) * 2011-07-29 2013-01-30 Sanofi Combination therapy for the treatment of CD19+ B-cell malignancies symptoms comprising an anti-CD19 maytansinoid immunoconjugate and rituximab
WO2013017540A1 (en) * 2011-07-29 2013-02-07 Sanofi Combination therapy for the treatment of cd19+ b-cell malignancies symptoms comprising an anti-cd19 maytansinoid immunoconjugate and rituximab
EP3611187A1 (en) 2011-10-10 2020-02-19 Xencor, Inc. A method for purifying antibodies
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
US10944190B2 (en) 2012-09-26 2021-03-09 Immunogen, Inc. Methods for the acylation of maytansinol
US10035817B2 (en) 2012-10-04 2018-07-31 Immunogen, Inc. Method of purifying cell-binding agent-cytotoxic agent conjugates with a PVDF membrane
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US11718667B2 (en) 2013-01-14 2023-08-08 Xencor, Inc. Optimized antibody variable regions
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US11634506B2 (en) 2013-01-14 2023-04-25 Xencor, Inc. Heterodimeric proteins
US9650446B2 (en) 2013-01-14 2017-05-16 Xencor, Inc. Heterodimeric proteins
US10472427B2 (en) 2013-01-14 2019-11-12 Xencor, Inc. Heterodimeric proteins
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US10738133B2 (en) 2013-01-14 2020-08-11 Xencor, Inc. Heterodimeric proteins
US10738132B2 (en) 2013-01-14 2020-08-11 Xencor, Inc. Heterodimeric proteins
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US9738722B2 (en) 2013-01-15 2017-08-22 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
WO2014114207A1 (en) 2013-01-23 2014-07-31 上海新理念生物医药科技有限公司 Tridentate connexon and use thereof
US10960082B2 (en) 2013-01-23 2021-03-30 Newbio Therapeutics, Inc. Tridentate connexon and use thereof
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
US11299554B2 (en) 2013-03-15 2022-04-12 Xencor, Inc. Heterodimeric proteins
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
US11814423B2 (en) 2013-03-15 2023-11-14 Xencor, Inc. Heterodimeric proteins
US10544187B2 (en) 2013-03-15 2020-01-28 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
EP3421495A2 (en) 2013-03-15 2019-01-02 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US10287364B2 (en) 2013-03-15 2019-05-14 Xencor, Inc. Heterodimeric proteins
EP3587448A1 (en) 2013-03-15 2020-01-01 Xencor, Inc. Heterodimeric proteins
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
WO2015009740A2 (en) 2013-07-15 2015-01-22 Cell Signaling Technology, Inc. Anti-mucin 1 binding agents and uses thereof
EP3699200A1 (en) 2013-07-15 2020-08-26 Cell Signaling Technology, Inc. Anti-mucin 1 binding agents and uses thereof
US9822186B2 (en) 2014-03-28 2017-11-21 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
US11840579B2 (en) 2014-03-28 2023-12-12 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
US10858451B2 (en) 2014-03-28 2020-12-08 Xencor, Inc. Bispecific antibodies that bind to CD38 and CD3
WO2015149077A1 (en) 2014-03-28 2015-10-01 Xencor, Inc. Bispecific antibodies that bind to cd38 and cd3
US10322191B2 (en) 2014-06-30 2019-06-18 Tarveda Therapeutics, Inc. Targeted conjugates and particles and formulations thereof
US11458206B2 (en) 2014-06-30 2022-10-04 Tva (Abc), Llc Targeted conjugates and particles and formulations thereof
US10624967B2 (en) 2014-06-30 2020-04-21 Tarveda Therapeutics, Inc. Targeted conjugates and particles and formulations thereof
EP3160518A4 (en) * 2014-06-30 2018-05-23 Tarveda Therapeutics, Inc. Targeted conjugates and particles and formulations thereof
WO2016014984A1 (en) 2014-07-24 2016-01-28 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
EP3311846A1 (en) 2014-09-02 2018-04-25 ImmunoGen, Inc. Methods for formulating antibody drug conjugate compositions
US10603388B2 (en) 2014-09-02 2020-03-31 Immunogen, Inc. Methods for formulating antibody drug conjugate compositions
EP3778601A1 (en) 2014-09-03 2021-02-17 ImmunoGen, Inc. Cytotoxic benzodiazepine derivatives
WO2016036804A1 (en) 2014-09-03 2016-03-10 Immunogen, Inc. Cytotoxic benzodiazepine derivatives
US10526417B2 (en) 2014-11-26 2020-01-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
US11859011B2 (en) 2014-11-26 2024-01-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US11225528B2 (en) 2014-11-26 2022-01-18 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US11673972B2 (en) 2014-11-26 2023-06-13 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US11111315B2 (en) 2014-11-26 2021-09-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US9850320B2 (en) 2014-11-26 2017-12-26 Xencor, Inc. Heterodimeric antibodies to CD3 X CD20
US9856327B2 (en) 2014-11-26 2018-01-02 Xencor, Inc. Heterodimeric antibodies to CD3 X CD123
US11945880B2 (en) 2014-11-26 2024-04-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US10889653B2 (en) 2014-11-26 2021-01-12 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US10913803B2 (en) 2014-11-26 2021-02-09 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US11352442B2 (en) 2014-11-26 2022-06-07 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US10227411B2 (en) 2015-03-05 2019-03-12 Xencor, Inc. Modulation of T cells with bispecific antibodies and FC fusions
US11091548B2 (en) 2015-03-05 2021-08-17 Xencor, Inc. Modulation of T cells with bispecific antibodies and Fc fusions
WO2016192527A1 (en) 2015-05-29 2016-12-08 Newbio Therapeutics, Inc. Derivatives of dolastatin 10 and uses thereof
US10449258B2 (en) 2015-06-09 2019-10-22 Xdcexplorer (Shanghai) Co., Ltd. Antibody drug conjugate, intermediate, preparation method, pharmaceutical composition and uses thereof
US11160871B2 (en) 2015-10-28 2021-11-02 Tarveda Therapeutics, Inc. SSTR-targeted conjugates and particles and formulations thereof
WO2017088734A1 (en) 2015-11-23 2017-06-01 四川科伦博泰生物医药股份有限公司 Anti-erbb2 antibody-drug conjugate and composition thereof, preparation method therefor, and application thereof
US10227410B2 (en) 2015-12-07 2019-03-12 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
US11623957B2 (en) 2015-12-07 2023-04-11 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
US11492407B2 (en) 2016-06-14 2022-11-08 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
US11236170B2 (en) 2016-06-14 2022-02-01 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
US10787518B2 (en) 2016-06-14 2020-09-29 Xencor, Inc. Bispecific checkpoint inhibitor antibodies
US10316088B2 (en) 2016-06-28 2019-06-11 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
US11225521B2 (en) 2016-06-28 2022-01-18 Xencor, Inc. Heterodimeric antibodies that bind somatostatin receptor 2
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
US10654873B2 (en) 2016-09-15 2020-05-19 Polytherics Limited Cytotoxic agents and conjugates thereof
US10501543B2 (en) 2016-10-14 2019-12-10 Xencor, Inc. IL15/IL15Rα heterodimeric Fc-fusion proteins
US10550185B2 (en) 2016-10-14 2020-02-04 Xencor, Inc. Bispecific heterodimeric fusion proteins containing IL-15-IL-15Rα Fc-fusion proteins and PD-1 antibody fragments
US11311496B2 (en) 2016-11-21 2022-04-26 Eirion Therapeutics, Inc. Transdermal delivery of large agents
WO2018160539A1 (en) 2017-02-28 2018-09-07 Immunogen, Inc. Maytansinoid derivatives with self-immolative peptide linkers and conjugates thereof
US11365258B2 (en) 2017-03-10 2022-06-21 Berlin-Chemie Ag Pharmaceutical combinations comprising an anti-LY75 antibody
EP4257614A2 (en) 2017-03-10 2023-10-11 Berlin-Chemie AG Pharmaceutical combinations comprising an anti-ly75 antibody
WO2018195243A1 (en) 2017-04-20 2018-10-25 Immunogen, Inc. Cytotoxic benzodiazepine derivatives and conjugates thereof
US11084863B2 (en) 2017-06-30 2021-08-10 Xencor, Inc. Targeted heterodimeric Fc fusion proteins containing IL-15 IL-15alpha and antigen binding domains
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
US11312770B2 (en) 2017-11-08 2022-04-26 Xencor, Inc. Bispecific and monospecific antibodies using novel anti-PD-1 sequences
WO2019105835A1 (en) 2017-11-29 2019-06-06 Bayer Consumer Care Ag Combinations of copanlisib and anetumab ravtansine
US11319355B2 (en) 2017-12-19 2022-05-03 Xencor, Inc. Engineered IL-2 Fc fusion proteins
WO2019133652A1 (en) 2017-12-28 2019-07-04 Immunogen, Inc. Benzodiazepine derivatives
US10982006B2 (en) 2018-04-04 2021-04-20 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
US11505595B2 (en) 2018-04-18 2022-11-22 Xencor, Inc. TIM-3 targeted heterodimeric fusion proteins containing IL-15/IL-15RA Fc-fusion proteins and TIM-3 antigen binding domains
US11524991B2 (en) 2018-04-18 2022-12-13 Xencor, Inc. PD-1 targeted heterodimeric fusion proteins containing IL-15/IL-15Ra Fc-fusion proteins and PD-1 antigen binding domains and uses thereof
WO2019238843A1 (en) 2018-06-14 2019-12-19 Berlin-Chemie Ag Pharmaceutical combinations
WO2020010079A2 (en) 2018-07-02 2020-01-09 Amgen Inc. Anti-steap1 antigen-binding protein
US11857638B2 (en) 2018-07-27 2024-01-02 Promega Corporation Quinone-containing conjugates
WO2020023871A1 (en) 2018-07-27 2020-01-30 Promega Corporation Quinone-containing conjugates
US11358999B2 (en) 2018-10-03 2022-06-14 Xencor, Inc. IL-12 heterodimeric Fc-fusion proteins
US11472890B2 (en) 2019-03-01 2022-10-18 Xencor, Inc. Heterodimeric antibodies that bind ENPP3 and CD3
WO2020234114A1 (en) 2019-05-21 2020-11-26 Bayer Aktiengesellschaft A novel stable high concentration formulation for anetumab ravtansine
US11634508B2 (en) 2019-07-10 2023-04-25 Cybrexa 2, Inc. Peptide conjugates of cytotoxins as therapeutics
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
US11919958B2 (en) 2020-08-19 2024-03-05 Xencor, Inc. Anti-CD28 compositions
US11591401B2 (en) 2020-08-19 2023-02-28 Xencor, Inc. Anti-CD28 compositions
US11739144B2 (en) 2021-03-09 2023-08-29 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CLDN6
US11859012B2 (en) 2021-03-10 2024-01-02 Xencor, Inc. Heterodimeric antibodies that bind CD3 and GPC3
WO2023089314A1 (en) 2021-11-18 2023-05-25 Oxford Biotherapeutics Limited Pharmaceutical combinations

Also Published As

Publication number Publication date
IL238894A (en) 2017-06-29
HRP20210464T1 (en) 2021-05-14
AU2004240541B2 (en) 2009-08-20
BRPI0410748B8 (en) 2021-05-25
JP2013082733A (en) 2013-05-09
CN101186613B (en) 2014-09-17
MX340862B (en) 2016-07-28
EA200501836A1 (en) 2006-08-25
CY1124278T1 (en) 2021-10-29
ES2559670T3 (en) 2016-02-15
BRPI0410748A (en) 2006-06-27
BRPI0419348B8 (en) 2021-05-25
IL231810A (en) 2016-02-29
DK1651162T3 (en) 2016-02-01
WO2004103272A3 (en) 2006-11-23
MX370281B (en) 2019-12-09
DK3524611T3 (en) 2021-04-06
JP2007514646A (en) 2007-06-07
IL238894A0 (en) 2015-06-30
IL223297A0 (en) 2012-12-31
IL231810A0 (en) 2014-05-28
SI1651162T1 (en) 2016-02-29
ECSP056149A (en) 2006-10-17
HK1116777A1 (en) 2009-01-02
PL1651162T3 (en) 2016-04-29
PL3524611T3 (en) 2021-06-14
NZ542695A (en) 2009-04-30
AU2004240541A1 (en) 2004-12-02
KR20060003120A (en) 2006-01-09
IL241211A0 (en) 2015-11-30
IL213876A (en) 2013-12-31
IL241211B (en) 2019-09-26
CY1117161T1 (en) 2017-04-05
EA010909B1 (en) 2008-12-30
HUE028314T2 (en) 2016-12-28
IL171170A (en) 2015-09-24
HUE054074T2 (en) 2021-08-30
LT3524611T (en) 2021-04-12
PT3524611T (en) 2021-04-01
KR101145506B1 (en) 2012-05-15
JP5208420B2 (en) 2013-06-12
BRPI0410748B1 (en) 2019-02-19
EP3031810B1 (en) 2019-03-06
CO5660276A2 (en) 2006-07-31
CN1956722A (en) 2007-05-02
CA2525130C (en) 2014-04-15
EP1651162B1 (en) 2015-10-21
EP1651162A4 (en) 2010-06-30
IL223297A (en) 2014-04-30
JP5563673B2 (en) 2014-07-30
EP1651162A2 (en) 2006-05-03
IL213876A0 (en) 2011-07-31
EP3031810A1 (en) 2016-06-15
CN101186613A (en) 2008-05-28
ZA200507845B (en) 2007-03-28
CL2012000651A1 (en) 2012-10-19
HRP20160046T1 (en) 2016-02-12
ES2863498T3 (en) 2021-10-11
BRPI0419348B1 (en) 2018-10-16
PT1651162E (en) 2016-02-22
EP3851126A1 (en) 2021-07-21
EP3524611A1 (en) 2019-08-14
SI3524611T1 (en) 2021-05-31
EP3524611B1 (en) 2020-12-30
CR20170291A (en) 2017-07-27
NO20056039L (en) 2006-02-20
CA2525130A1 (en) 2004-12-02
NO339597B1 (en) 2017-01-09
MXPA05011811A (en) 2006-02-17

Similar Documents

Publication Publication Date Title
US20180043013A1 (en) Cytotoxic agents comprising new maytansinoids (dm4)
EP3524611B1 (en) Improved cytotoxic agents comprising new maytansinoids
EP0425235B1 (en) Cytotoxic agents comprising maytansinoids and their therapeutic use
US5208020A (en) Cytotoxic agents comprising maytansinoids and their therapeutic use
US8198417B2 (en) Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates and methods of making said conjugates
JP2013542958A (en) Cytotoxic agents containing ansamitocin derivatives
JP2024059792A (en) Methods for targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via non-cleavable linkers, said conjugates, and methods for making said conjugates

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005/07845

Country of ref document: ZA

Ref document number: 542695

Country of ref document: NZ

Ref document number: 200507845

Country of ref document: ZA

Ref document number: 2004240541

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 171170

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 542695

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2004240541

Country of ref document: AU

Date of ref document: 20040520

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004240541

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004750945

Country of ref document: EP

Ref document number: 4915/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 05112351A

Country of ref document: CO

Ref document number: PA/a/2005/011811

Country of ref document: MX

Ref document number: 05112351

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2525130

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20048134886

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: CR2005-008100

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 2006532511

Country of ref document: JP

Ref document number: 1020057022166

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200501836

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020057022166

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004750945

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0410748

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 223297

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 231810

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 238894

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 241211

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2017291

Country of ref document: CR

Ref document number: CR2017-000291

Country of ref document: CR