WO2004100832A1 - Living organism tissue retaining unit and living organism tissue treating apparatus including the same - Google Patents

Living organism tissue retaining unit and living organism tissue treating apparatus including the same Download PDF

Info

Publication number
WO2004100832A1
WO2004100832A1 PCT/JP2004/006665 JP2004006665W WO2004100832A1 WO 2004100832 A1 WO2004100832 A1 WO 2004100832A1 JP 2004006665 W JP2004006665 W JP 2004006665W WO 2004100832 A1 WO2004100832 A1 WO 2004100832A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
tissue
flow
cell
living
Prior art date
Application number
PCT/JP2004/006665
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Umezu
Kiyotaka Iwasaki
Shigeyuki Ozaki
Yuji Morimoto
Osamu Endo
Original Assignee
Waseda University
Aubex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Aubex Corporation filed Critical Waseda University
Publication of WO2004100832A1 publication Critical patent/WO2004100832A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/14Rotation or movement of the cells support, e.g. rotated hollow fibers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/12Pulsatile flow

Definitions

  • the present invention relates to a biological tissue holding device and a biological tissue processing device using the same, and is particularly suitable for effectively performing a decellularization process and / or a cell seeding process when transplanting a predetermined biological tissue.
  • the present invention relates to a living tissue holding device and a living tissue processing device using the same. Background art
  • the heart valve of the human body does not work properly and dysfunction occurs, such as stenosis of the opening of the valve or regurgitation of blood, it is necessary to replace the heart valve with a predetermined substitute valve.
  • a mechanical valve formed of a predetermined artificial material, a heterogeneous biological valve collected from an animal such as a pig, and a similar biological valve provided by another human body.
  • the mechanical valve is durable, there is a problem that the anticoagulant must be continuously consumed for a lifetime.
  • the above-mentioned xenogeneic biological valve does not need to keep taking the anticoagulant for a lifetime.However, valve malfunction occurs due to long-term deposition of calcium, etc., and it is necessary to replace it with a new replacement valve in about 15 years. There is a problem that occurs. Further, there is a problem that it is difficult to secure a large amount of the same type of biological valve due to a shortage of donors.
  • the following treatment methods are known for suppressing the immune rejection reaction after transplantation and improving the durability of xenogeneic biological valves collected from animals such as pigs (for example, Japanese Patent Laid-Open Publication No. Hei 6-26). No. 193,3). That is, first, a foreign body valve is immersed in a cell removing solution such as bile acid or a surfactant to remove animal original cells such as animal endothelial cells and fibroblasts (decellularization treatment).
  • a cell removing solution such as bile acid or a surfactant to remove animal original cells such as animal endothelial cells and fibroblasts
  • the xenogeneic biological valve from which the original cells have been removed is immersed in a cell-containing solution containing autologous cells such as endothelial cells and fibroblasts of the transplanted human body, so that the autologous cells are seeded on the xenogeneic biological valve.
  • Cell seeding treatment the decellularization treatment and the cell seeding treatment for the xenobiotic valve collected from the animal cannot be performed effectively, and the xenobiotics after the respective treatments have sufficient biocompatibility. Cannot be provided.
  • the original cells remain to some extent, and the biocompatibility of the heterogeneous biological valve after the treatment is reduced due to the presence of the original cells.
  • autologous cells do not uniformly adhere to the entire area of the xenogeneic biological valve, and the number of autologous cells seeded on the xenogeneic biological valve is not sufficient.
  • the present inventors have conducted intensive experimental research to solve the above-mentioned problem.
  • the blood flow of the human body was introduced into the cell removal solution in which a foreign biological valve was immersed. And / or applying microwaves to a heterogeneous biological valve immersed in the cell-removing solution, the number of remaining progenitor cells is significantly reduced as compared to the above-described treatment method.
  • the heterogeneous biological valve after the decellularization treatment is rotated up and down in the cell-containing solution, and further, a flow substantially corresponding to the blood flow of the human body flows through the cell-containing solution.
  • the autologous cells adhered more uniformly and the number of the adhered cells increased as compared with the above-mentioned treatment method. Disclosure of the invention
  • the present invention has been devised based on such knowledge, and has as its object the purpose of a biological tissue that can contribute to the effective decellularization and cell seeding of a biological tissue such as a heterogeneous biological valve. And a biological tissue processing apparatus using the same.
  • a holding device includes a holding body capable of holding a predetermined living tissue in a solution for decellularization treatment or cell seeding treatment,
  • the holding body includes an inflow portion and an outflow portion of the solution, and an installation space for the living tissue located between the inflow portion and the outflow portion.
  • a decellularization treatment and / or a cell seeding treatment is provided so as to be possible.
  • the living tissue can be immersed in a solution having a flow substantially corresponding to the blood flow of the living body to be transplanted.
  • the device of the present invention it is possible to effectively perform decellularization treatment and cell seeding treatment when a living tissue such as a porcine xenobiopsy valve is implanted into a different kind or the same kind of living body (human body). Can be.
  • a living tissue such as a porcine xenobiopsy valve
  • a configuration in which the holder and the irradiation unit are provided so as to be relatively rotatable can also be adopted. This makes it possible to irradiate the microwave from the irradiating means to substantially the entire region in the rotational direction of the biological tissue, and it is possible to uniformly remove cells in substantially the entire region in the rotational direction of the biological tissue.
  • the irradiating means stops irradiation of the microphone mouth wave when the solution has reached a predetermined temperature or higher, and starts irradiation of the microwave when the solution has reached a predetermined temperature or lower. Then, According to such a configuration, excessive temperature rise due to microwave irradiation can be suppressed, and by appropriately maintaining the temperature of the solution, tissue damage to living tissue due to temperature rise or the like is prevented. be able to.
  • the inflow portion and the outflow portion have first and second flow paths, respectively.
  • Each first flow path is provided so as to be able to communicate through the inside of the tubular biological tissue, while each second flow path is provided with a second flow path.
  • the flow path may be provided so as to be able to communicate through the outside of the living tissue.
  • a configuration may be adopted in which a guide path for guiding a temperature sensor is provided in the first flow path and / or the second flow path in the outflow portion.
  • the temperature sensor can be easily inserted into the first flow path and the Z flow path or the second flow path.
  • the temperature in these flow paths can be easily monitored.
  • the guideway is provided on the outflow side, the flow of the solution before passing through the living tissue is not obstructed by the temperature sensor or the like, and the living tissue is placed in an appropriate flow of the solution.
  • the processing can be appropriately performed.
  • the holding member is provided so as to be rotatable in a direction of inverting the upper and lower sides of the living tissue during the cell seeding process.
  • the biological tissue processing device is a biological tissue processing device that includes the holding device, and performs a decellularization process and / or a cell seeding process on the biological tissue.
  • the circulation device is connected to the inflow portion and the outflow portion, and applies a flow substantially corresponding to the blood flow in the living body to the solution flowing from the inflow portion to the outflow portion. Even with such a configuration, the above-described object can be achieved.
  • a series of processing operations before transplantation of the living body and the tissue can be performed by one closed circuit, and the contamination of the living tissue can be prevented. The cleanliness can be kept.
  • the circulation device includes a drive pump that generates a pulsating flow, and a circulation path that is disposed between the inflow port and the outflow port of the drive pump and that includes the holding device in the middle of the drive pump.
  • the circulation path includes a resistance applying unit that applies flow resistance to the solution, and a hydraulic pressure attenuating unit that is disposed downstream of the resistance applying unit and attenuates the liquid pressure of the solution.
  • the solution can be circulated in a blood circulation state simulating the human body circulation. Therefore, by changing the installation location of the holding device in the circulation, different blood flow conditions in the body such as arteries and veins
  • the flow conditions of the solution can be selected according to the conditions, and the solution can be immersed in various biological tissues with different conditions of the blood that actually flows, with a flow substantially equivalent to them, and the various biological tissues have high
  • a versatile device that provides a decellularization effect and a cell seeding effect can be provided.
  • the circulation path includes an amplitude adjusting unit that adjusts the amplitude of the hydraulic pressure upstream of the resistance applying unit.
  • the amplitude adjusting means may be constituted by an adjusting tube capable of adjusting the amplitude by changing the wall thickness, or may be constituted by a plurality of tubes made of different materials.
  • FIG. 1 is a schematic configuration diagram of a biological tissue processing apparatus applied to the present invention
  • FIG. 2 is a schematic longitudinal sectional view of a driving pump
  • FIG. 3 is a schematic front view of a holding device constituting the biological tissue processing apparatus
  • FIG. 5 is an exploded perspective view of the cover of the holding device
  • FIG. 5 is a schematic cross-sectional view of the holding body
  • FIG. 6 is an exploded cross-sectional view of the right side in FIG. 5
  • FIG. 8 is an exploded cross-sectional view on the left side in FIG. 5
  • FIG. 9 is a schematic exploded perspective view of a flow path forming member at an outflow portion
  • FIG. 10 (A) is a partial extract of FIG.
  • FIG. 12 is a diagram showing an enlarged micrograph of the living tissue obtained in Example 3
  • FIG. 13 is an enlarged view of the living tissue obtained in Example 4. Is a diagram representing the micrograph.
  • FIG. 1 shows a schematic configuration diagram of a biological tissue processing apparatus according to the present embodiment.
  • a living body / tissue processing apparatus 10 is an apparatus used when performing decellularization processing or cell seeding processing of a heterogeneous biological valve, which is a biological tissue.
  • the decellularization treatment is performed before transplanting a xenobiotic valve collected from an animal such as a pig into a human body.
  • the biological valve is immersed in a cell-removing solution such as bile acid to remove the animal cells (hereinafter referred to as “progenitor cells”) so that only a substrate composed of collagen or the like is obtained.
  • a cell-removing solution such as bile acid
  • the autologous biological valve after decellularization is immersed in a cell-containing solution containing cells of a human body to be transplanted (hereinafter, referred to as “autologous cells”). This is a process for causing the particles to adhere.
  • the biological tissue processing apparatus 10 is provided with a circulating apparatus 1 OA for circulating the cell removing solution or the cell-containing solution through a predetermined circuit, and is provided in association with the circulating apparatus 1 OA and holds the heterogeneous biological valve. And a holding device 10B.
  • the cell removing solution and the cell-containing solution are collectively referred to as each solution unless otherwise specified.
  • the circulating device 1 OA includes a known suction / inlet device 11, a polyurethane drive pump 12 connected to the suction / inlet device 11, and each solution discharged from the drive pump 12.
  • the suction / inhalation device 11 configured to include a circulation path 13 disposed so as to return to the position 2 includes a known structure that is capable of inhalation and inhalation with respect to the drive pump 12. Here, detailed description is omitted here.
  • the drive pump 12 is a pulsating pump capable of generating a swirling vortex therein and generating a pulsating flow at the time of discharge. That is, as shown in FIG. 2, the drive pump 12 adopts a structure already proposed by the present applicant (see Japanese Patent Application No. 200202_1667836).
  • a hollow upper structure 17 having a substantially conical outer shape formed with an inflow port 15 and an outflow port 16, and a lower dome-shaped outer structure located below the upper structure 17. It comprises a hollow lower component 18 and a flexible diaphragm 20 that partitions the internal space 31, S 2 of each of these components 17, 18.
  • the inflow port 15 is provided at a position on the right end side in FIG. 2 that is continuous with the peripheral wall of the upper structure 17, and the outflow port 16 is an upper end in FIG. 2 that is on the top side of the upper structure 17. It is provided at the side position.
  • the lower structure 18 is provided with a vent 22 connected to the suction / intake air device 11, and compressed air is sucked and sucked alternately at a predetermined timing in the lower internal space S 2. It is becoming noticeable. Thus, the compressed air is sucked and sucked into the internal space S 2 Due to the deformation of the diaphragm 20, the volume in the upper internal space S1 increases and decreases, thereby generating a pulsating flow in each solution discharged from the outflow port 16. At this time, in the upper internal space S1, as shown by the broken line in FIG. 2, a swirling vortex is generated in which a flow stagnation region is hardly generated.
  • the pressure (positive pressure) of the air supplied into the internal space S2 is set to about 14 OmmHg to about 26 OmmHg.
  • the pressure (negative pressure) of the air sucked from the interior space S2 is set to about 13 OmmHg to about 15 OmmHg.
  • the circulation path 13 has a closed loop shape in which each solution discharged from the outlet port 16 of the drive pump 12 flows into the inlet port 15 in a state of not contacting the outside air.
  • the circulation path 13 includes resistance applying means 23 for applying flow resistance to each solution discharged from the outflow port 16, an upstream tube 24 connected to the outflow port 16, and an upstream side
  • An adjusting tube 25 as an amplitude adjusting means connected to the downstream end of the tube 24; a connecting tube 26 connected to the downstream end of the adjusting tube 25; and the connecting tube 26
  • the downstream tube 27 connected to the inflow port 15 of the drive pump 12 and the connection pump 28 provided between the connection tube 26 and the downstream tube 27 are also disposed on the downstream side. It is comprised including.
  • a well-known connector 29 is used to connect the members 24 to 28 here.
  • the upstream side of the circulation path 13 across the resistance applying means 23 is referred to as an upstream line L1
  • the downstream side is referred to as a downstream line L2.
  • the resistance applying means 23 is provided at one place in the connecting tube 26 assuming the peripheral resistance of the human body, and is not shown, but is a pinch-shaped for tightening the connecting tube 26. It is composed of members. That is, due to the tightening of the connection tube 26 by the resistance applying means 23, even if the drive pump 12 pulsates, the diastolic blood pressure in the upstream line L1 does not become O mmHg, and the blood flow in the arteries of the human body To be simulated.
  • the average pulse pressure in the upstream line L1 can be adjusted to a predetermined value by tightening the connection tube 26. In the present embodiment, the average pulse pressure is substantially equivalent to the average pressure of the human body. To be adjusted to about 10 O mmH g .
  • other members such as a variable stop can be adopted as long as the above-described operation is achieved, in addition to the above-described pinch-shaped member.
  • the upstream tube 24, the connection tube 26, and the downstream tube 27 are not particularly limited, but are formed of Shiridani vinyl.
  • the holding device 10B is provided in the middle of the upstream tube 24, and the heterogeneous biological valve held in the holding device 10B and the downstream tube 27 are provided.
  • the check valve 30 provided at the bottom of the housing ensures that the solutions can be circulated in the direction of the arrow in FIG. 1 without backflow.
  • the adjusting tube 25 is arranged upstream of the resistance applying means 23 and adjusts the amplitude of the pulse pressure of the upstream line L1. That is, the adjustment tube 25 is formed of a soft material that can adjust the amplitude of the pulse pressure in the upstream line L1 by changing its thickness, and is formed of, for example, segmented polyurethane or silicon. I have.
  • the amplitude of the pulse pressure in the upstream line L1 is set so as to approximate the human body, for example, ⁇ 20 mmHg of the average pulse pressure (100 mmHg). .
  • connection pump 28 uses a pulsating flow pump having the same configuration as the drive pump 12, and the same reference numerals are used for the same or equivalent components to the drive pump 12. The description is omitted.
  • the connection pump 28 is also attached so that each solution flows in from the inlet port 15 and the solution is discharged from the outlet port 16. Further, each ventilation port 22 of the connection pump 28 is open to the outside, and the diaphragm 20 is displaced in accordance with the flow of each solution. Also, the amount of the solution filled in the circulation device 1OA is slightly smaller than the maximum filling amount allowed by the device 1OA, and the displacement amount of the diaphragm 20 of the connection pump 28 is Slightly smaller than the maximum allowable displacement.
  • connection pump 28 is arranged downstream of the resistance applying means 23 and constitutes a pulse pressure attenuating means for attenuating the liquid pressure of the solution in the downstream line L2.
  • the blood pressure passing through the connection pump 28 becomes approximately 1 OmmHg, which is equivalent to the left atrial pressure of the human body.
  • connection pump 28 may be provided between the adjustment tube 25 and the connection tube 26.
  • the holding device 10B is a device that guides a solution flowing in the circulation device 10A and holds a heterogeneous biological valve that is immersed in the solution.
  • a porcine aortic valve is applied as a heterogeneous biological valve for performing the decellularization process and the cell seeding process.
  • the holding device 10B is connected to a portion of the circulation path 13 near the blood flow state of the aortic valve portion of the human body, that is, in the middle of the upstream tube 24.
  • the upstream side of the upstream side tube 24 will be referred to as the inlet side tube 24A and the downstream side thereof will be referred to as the outlet side tube 24B with the holding device 10B as a boundary.
  • the holding device 10B can be freely connected to each part of the living tissue to be processed by appropriately selecting a part or the like in the circulation path 13 that is close to the state (pressure or the like) of the blood flowing through the living tissue. can do.
  • the holding device 10 B includes a flat base 33 that can be installed on a predetermined surface F, a device body 35 located above the base 33, and a base 33. Support members 36, 36 erected on the left and right sides to support the apparatus main body 35 are provided.
  • the device main body 35 includes a box-shaped cover 38 having a hexagonal shape in a front view, a holder 39 provided inside the cover 38, and holding the heterogeneous biological valve V, and a holder
  • Irradiation device 4 2 irradiation means for irradiating microwave toward V, and frame member
  • a support shaft 44, 44 extending in the direction of each support member 36, 36 penetrating the cover 38 from the left and right sides of 40, two introduction tubes 46 connected to the holder 39, and a discharge tube. 4 and 7 are provided.
  • the cover 38 has a configuration in which a box having a predetermined shape is vertically divided into two parts, and a front cover 51 located on the front side and a rear cover located on the rear side. 5 and 2
  • the abutting portion of the front cover 51 and the rear cover 52 is formed at a position intersecting the support shafts 44, 44, and the outer edge side of each abutting portion.
  • Each of these flange surfaces 54, 54 has a large number of through holes 55 for bolts and the like, not shown, and the flange surfaces 54, 54 are in contact with each other.
  • the front cover 51 and the rear cover 52 can be integrated by using.
  • the front cover 51 can be separated from the rear cover 52 and can be removed.
  • a rectangular microwave irradiation port 57 that opens forward is formed.
  • the irradiation port 57 is formed at a position substantially opposite to the heterogeneous living body valve V held by the front holder 39 (see FIG. 1), and is provided with a micro-beam from the irradiation device 42 provided on the rear side. Waves are applied to the foreign body valve V in the holder 39 in front through the irradiation port 57.
  • the front cover 51 and the rear cover 52 have a shape and a structure such that the microwave does not leak to the outside when the microwave is irradiated from the irradiation port 57 toward the holder 39. Has become.
  • a door plate 59 of a known material that can see through the state of the holding body 39 and can prevent leakage of microwaves to the outside is provided. .
  • the holding body 39 includes an acrylic cylindrical member 61 extending in the left-right direction in FIG. 5 and an inflow portion 62 located on the right end side of the cylindrical member 61 in FIG.
  • An outflow portion 63 located on the left end side, and an installation space 64 for the heterogeneous biological valve V located between the inflow portion 62 and the outflow portion 63 are provided.
  • each of the solutions flows into the cylindrical member 61 from the inflow portion 62, and is discharged from the outflow portion 63 to the outside through the installation space 64. ing. Both ends of the cylindrical member 61 in the extending direction are open, and an inflow portion 62 and an outflow portion 63 are set in each of the open portions.
  • an aluminum thin plate 66 is attached on the entire periphery except for a central portion substantially opposed to the installation space 64. For this reason, the microwave from the irradiation device 42 (see FIG. 3) passes only through the central region of the peripheral wall of the cylindrical member 61 substantially opposed to the installation space 64, and concentrates the microphone mouth wave in the region. In addition to the above, it is possible to suppress a rise in temperature in a portion located outside the installation space 64.
  • the inflow portion 62 is formed on the outer peripheral surface of the cylindrical member 61.
  • An end member 68 to be engaged and a flow path forming member 69 located inside the end member 68 are provided.
  • the end member 68 is provided in the shape of a bottomed container having the left side open in FIG. 6, and a bottom wall 71 located on the right end side in FIG.
  • a side wall 72 extends substantially perpendicularly to the bottom wall 71 (leftward in FIG. 6).
  • the bottom wall 71 has a through hole 73 formed substantially at the center thereof.
  • the side wall 72 has a thread groove 74 formed on an inner peripheral portion on the open side. The thread groove 74 engages with a thread groove 75 formed on the outer peripheral surface of the cylindrical member 61. It has become.
  • the flow path forming member 69 includes a hollow conical tube 77 having a shape similar to a cone, and an insertion tube 78 inserted into the conical tube 77. It consists of
  • the conical tube 77 has a cylindrical top 79 located on the installation space 64 side, and gradually expands outward from the top 79 to the right in FIG.
  • a skirt-shaped portion 80 extending in the shape of a skirt, a skirt-shaped flange 81 connected to the right end side in FIG. 6 of the skirt-shaped portion 80, and formed inside these portions 79-81, In FIG. 6, an inner space 83 penetrating in the left-right direction is provided.
  • the “front end side” means the top part 79 side of the conical tube 77
  • the “rear end side” means Means the hem 8 1 side of tube 77.
  • a single stop groove 85 is formed on the outer peripheral surface of the top portion 79 along the circumferential direction. As shown in FIG. 5, the stopper groove 85 is covered with an end portion of porcine vascular tissue B including an aortic valve as a heterogeneous living body valve V, and a binding member not shown. By being clamped at, the detachment of the vascular tissue B from the top 79 can be regulated.
  • the outer diameter of the region on the hem portion 81 side is set to be substantially the same as the inner diameter of the cylindrical member 61, and the region on the hem portion 81 side is almost exactly inside the cylindrical member 61. Is to be contained.
  • the skirt portion 81 is provided in an annular shape, and the outer diameter thereof is set to be substantially the same as the inner diameter of the side wall 72 of the end member 68 so that the hem portion 81 is almost exactly accommodated in the end member 68.
  • Nana I'm wearing A thread groove 87 is formed on the inner peripheral surface of the skirt portion 81.
  • the inner space 83 is opened at the right end side in FIG. 6, a base space 89 into which the distal end side of the insertion tube 78 is inserted from the open portion, and formed at the distal end side in communication with the base space 89.
  • a main flow path 91 extending to the open portion 90 and sub flow paths 92 provided at four locations around the main flow path 91 and communicating with the base space 89 are provided.
  • the base space 89 is provided in an internal shape along the distal end shape of the insertion tube 78 so that the insertion tube 78 can be received almost exactly.
  • the main flow passage 91 is formed in a tapered hole shape whose inner diameter gradually decreases from the top 79 side toward the inside. As shown in FIG.
  • the sub-channels 92 are opened at four positions in the circumferential direction at substantially equal intervals on the inclined surface of the skirt portion 80.
  • the total opening area obtained by combining the opening areas of the sub flow paths 92 is set to be substantially the same as the opening area of the main flow path 91.
  • the insertion tube 78 has a spherical portion 94 on the distal end side having a spherical outer shape, and an outer diameter smaller than the spherical portion 94.
  • a cylindrical portion 95 connected to the cylindrical portion 95 through a step, an outer cylindrical portion 96 rotatably inserted into the outer peripheral surface of the cylindrical portion 95, and a rear end side of the outer cylindrical portion 96.
  • annular space formed inside the spherical portion 94 and the cylindrical portion 95 having an annular flange 97 having an outer diameter smaller than the inner diameter of the through hole 73 of the end member 68. 9 and 9 are provided.
  • a screw groove 101 is formed on the outer peripheral surface of the outer cylindrical portion 96, and the screw groove 101 is related to a screw groove 87 formed on an inner peripheral portion of the skirt portion 81.
  • the internal space 99 includes a base passage 103 through which the respective solutions pass, a tip hole 104 communicating with the base passage 103 and opening at the tip side of the spherical portion 94, It is provided at four places around the tip hole 104 and includes a side hole 105 communicating with the base passage 103.
  • the side holes 105 are opened at four positions in the circumferential direction at substantially equal intervals on the surface of the spherical portion 94.
  • the outflow portion 63 has substantially the same components as the inflow portion 62, although the shapes are partially different from each other. It has come to play.
  • the end member 68 of the outflow portion 63 is provided in a nut shape, and a screw hole 1 • 7 penetrating in the left-right direction in FIG.
  • the conical tube 77 of the outflow portion 63 differs from the inflow portion 62 in the shape of the skirt portion 81 connected to the skirt portion 80. That is, the skirt portion 81 here is formed in a screw cylindrical shape having an outer diameter smaller than the maximum outer diameter of the skirt-shaped portion 80, and its outer peripheral portion is formed in the screw hole 1 of the end member 68. 07 are engaged.
  • the conical tube 77 has a guide passage 109 through which a temperature sensor (not shown) is inserted.
  • the guideway 109 is formed outside the internal space 83 and has a first guideway 109A that penetrates from the rear end of the skirt 81 to the slope of the skirt 80. And a second guideway 109B extending from the middle of the first guideway 109A toward the main flow passage 91. It is also possible to omit all or one of the guideways 109A and 109B.
  • the overall shape of the insertion tube 78 of the outflow portion 63 differs from that of the inflow portion 62. That is, the inlet pipe 8 here is provided in such a shape that a cylindrical portion 95 extends toward the distal end side instead of the spherical portion 94.
  • the tip hole 104 is provided on the tip side of the cylindrical portion 95
  • the side hole 105 is provided at approximately four places on the outer peripheral surface on the tip side of the cylindrical portion 95 in the circumferential direction. It is provided at intervals.
  • black members are O-rings for sealing.
  • the frame member 40 rotatably supports the holding body 39 inside thereof.
  • the rotating tubes 1 12 and 112 are configured to protrude outward from the frame member 40 through bearings (not shown) attached to a part of the frame member 40.
  • the holding body 39 is attached to the inside of the frame member 40 so that the rotating pipes 1 12 and 1 12 extend obliquely at 45 degrees in FIG. Rotation (rotation) around 12 is possible.
  • each of the rotary pipes 112 and 112 is connected to an inlet tube 46 and a discharge tube 47 via a rotary joint 115 fixed to the frame member 40 side.
  • the rotary joint 115 here is a known joint that connects two tubular members (rotating pipes 112, 112 and tubes 46, 47) to be connected to each other so as to be rotatable relative to each other and to communicate the inside of the tubular member. Is used.
  • the irradiating device 42 is a known device using a magnet port (not shown) as a source of the microphone port wave, and a detailed description thereof will be omitted.
  • the support shaft 44 has a hollow pipe shape, and accommodates the ends of an introduction tube 46 and a discharge tube 47 therein. That is, a slot hole 117 is formed in a portion of the outer peripheral surface of the support shafts 44, 44 which is located near the inside of each support member 36, 36, and each rotary pipe 117 is formed in the slot hole 117. Tubes 46, 47 extending from 112, 112 are accommodated.
  • the support member 36 is provided inside the first support portion 120 that rotatably supports the support shafts 44, 44, and is provided outside the first support portion 120, and has a rotation structure similar to that of the rotary joint 115 described above. And a joint support portion 122 that supports the joint 121.
  • the rotary joint 1 21 supported by the support member 36 on the left side in FIG. 3 connects the discharge tube 47 inserted into the support shaft 44 on the left side and the outlet tube 24 B. They are connected so that they can rotate relative to each other.
  • the rotary joint 12 1 supported by the support member 36 on the right side in FIG. 3 connects the introduction tube 46 inserted into the support shaft 44 on the right side and the inlet side tube 24 A.
  • the driving member 124 for revolving composed of a motor, gears, etc. is provided on the support member 36 on the right side in FIG. 3.
  • the shafts 4 4 and 4 4 can be rotated.
  • the holder 39 rotates (revolves) together with the frame member 40 around the support shafts 44, 44.
  • the introduction tube 46 and the discharge tube 47 accommodated in the support shaft 44 are provided in the space between the base 33 and the support shaft 44 so as not to interfere with the base 33 during the revolution. The length and arrangement are such that they can pass. As shown in FIG. 10, when the support shaft 44 rotates 180 degrees (half a rotation) from the state of (A) in FIG.
  • the frame member 40 rotates and the upper and lower sides of the holder 39 are inverted.
  • the holding body 39 can perform the revolving operation by the revolving driving means 124 in addition to the revolving operation by the revolving driving means 114 described above.
  • the held vascular tissue B Rotate in the direction to flip the upper and lower sides.
  • Reference numeral 125 in FIG. 3 denotes an operation switch of the driving means 124 for revolution.
  • a cooling means for cooling the periphery of the introduction tube 46 may be provided in order to suppress the temperature rise of the solution.
  • Both ends of the vascular tissue B are fitted, and clamped on the stopper grooves 85, 85 using a binding member not shown.
  • the vascular tissue B is set by the aortic valve V, which is a one-way valve, in a direction that allows the flow of each solution from right to left in FIG.
  • the inflow portion 62 and the outflow portion 63 interconnected via the vascular tissue B are returned into the cylindrical member 61 again, and the end members 68, 68 are attached to the cylindrical member 61, As shown in FIG. 3, the holder 39 is again attached to the rotating tubes 112, 112, and the setting of the vascular tissue B is completed.
  • the cell removing solution is supplied from the introduction tube 46 side to the insertion tube 78 of the inflow portion 62 through the rotary tube 112.
  • the insertion pipes 78, 78 are provided with the side holes 105 and the sub-flow passages 92 of the conical pipe 77, respectively. Are in a position where they can completely communicate with each other.
  • the cell removing solution supplied to the inflow portion 62 enters the vascular tissue B through the tip hole 104 and the main flow passage 91 of the inflow portion 62, and passes through the aortic valve V therein.
  • the outside of the blood vessel and the tissue B is It is sent from the internal space of the cylindrical member 61 to the sub flow path 92 of the outflow part 63 so as to bypass. Then, the cell-removing solution flowing in the main flow path 91 and the sub flow path 92 of the outflow section 63 flows from the inlet pipe 78 of the outflow section 63 through the rotary pipe 112 of FIG. 47 Discharged to the 7 side.
  • the main flow passage 91 and the tip hole 104 provided in the inflow portion 62 and the outflow portion 63, respectively, are connected to the first flow passage through the inside of the tubular living tissue (vascular tissue B).
  • the sub-flow channel 92 and the side hole 105 provided in the inflow portion 62 and the outflow portion 63 respectively communicate with the second through the outside of the living tissue (vascular tissue B). This constitutes a flow path.
  • the irradiation device 42 and the rotation driving means 114 are operated to irradiate the microwave to the vascular tissue B held by the holder 39. While rotating, the holder 39 rotates. As a result, it is possible to perform the decellularization process evenly over the entire circumferential direction of the vascular tissue B. At this time, it is preferable to insert a temperature sensor (not shown) into the first and second guide paths 109A and 109B (see FIG. 5 and the like) and measure the solution temperature inside and outside the vascular tissue B. Les ,.
  • the cell removal solution flows at substantially the same flow rate on both the inner and outer sides of the vascular tissue B so that a temperature difference does not occur on both the inner and outer sides, but the first and second guide paths 109 A, Ten
  • a temperature sensor (not shown) into 9B, it is possible to confirm whether or not there is a temperature difference between the inside and outside.
  • the irradiation device 42 automatically stops microwave irradiation when the temperature on the inside and outside both rises above the human body temperature (for example, 37 ° C.), and when the temperature falls below the body temperature. In addition, microwave irradiation is automatically started.
  • the irradiation device 42 of the present embodiment uses a device capable of irradiating a microwave having a frequency of 2.45 GHz and an output of about OW to 1200 W.
  • the temperature sensor may be arranged so as to be guided into the first flow path from a hole formed in the middle of the discharge tube 47.
  • the irradiation of the microwave by the irradiation device 42 and the rotation of the holder 39 are stopped. Then, the respective insertion pipes 78 and 78 in the holding body 39 are rotated from the state shown in FIG. The hole 105 (see FIG. 5 and the like) is changed to a position where the sub flow path 92 is completely shut off. After the above, the cell-containing solution is supplied into the insertion tube 78 of the inflow portion 62, and enters the vascular tissue B through the distal end hole 104 of the inflow portion 62 and the main flow passage 91.
  • the driving means for revolution 124 shown in FIG. 3 is operated, and the holder 39 rotates together with the frame member 40 around the support shafts 44, 44.
  • the holder 39 is rotated in the direction to reverse the top and bottom, as shown in FIG.
  • the influence of gravity can be eliminated, and the autologous cells in the cell-containing solution can be uniformly attached to the vascular tissue B.
  • vascular tissue B including aortic valve V is collected from an animal such as a pig. Then, as described above, the vascular tissue B is set in the holding device 10B, the cell removing solution is injected into the biological tissue processing device 10, and the cell removing solution is circulated.
  • the cell removing solution for example, deoxycholic acid (bile acid), sodium dodecyl sulfate Surfactants such as PDS (SDS) and Triton X_100 are used.
  • the cell removing solution circulates in a state similar to the blood flow of the human body as follows.
  • the suction / inhalation device 11 shown in FIG. 1 When a predetermined switch (not shown) is turned on, the suction / inhalation device 11 shown in FIG. 1 is operated, and the cell removing solution is circulated in the circulation path 13 by the pulsation of the drive pump 12. That is, the cell removing solution discharged from the drive pump 12 flows in the upstream line L1 at a pressure substantially equivalent to the general aortic pressure of the human body, and the holding device provided in the middle of the upstream line L1 It passes through 10 B and reaches resistance applying means 23 corresponding to the peripheral resistance of the human body. After passing through the resistance applying means 23, the cell removing solution passes through the connection pump 28, and then has a pressure of about 1 OmmHg, which is substantially equivalent to the left atrial pressure of the human body, and is supplied to the drive pump 12. Inflow.
  • the cell removing solution flowing on the inside and outside of the vascular tissue B held by the holding body 39 is given a flow substantially equivalent to the blood flow flowing in the aorta of the human body, and
  • the microwave is irradiated while rotating the vascular tissue B.
  • the vascular tissue B collected from the animal has various progenitor cells (endothelial cells, fibroblasts, smooth muscle cells) removed, and becomes only a substrate composed of collagen and the like.
  • the conditions of the irradiated microwave are set to a frequency of 2.45 GHz and an output of about 100 W to 500 W, but the present invention is not limited to this.
  • the output can be changed within a predetermined range, and electromagnetic waves and sound waves of other frequencies can be obtained. Irradiation is also possible.
  • the flow applied to the cell removing solution may be a pulsating flow that does not simulate the blood flow of the human body.
  • physiological saline is injected into the living tissue processing apparatus 10, and the physiological saline is circulated to circulate the inside of the apparatus 10.
  • the physiological saline is discharged from the living tissue processing apparatus 10.
  • a binder such as fibronectin is directly injected into the first flow path in the holder 39, and the open ends of the inflow portion 62 and the outflow portion 63 are closed, respectively, to thereby obtain the holder 39
  • the vascular tissue B after decellularization held in the above is immersed in a binder for a predetermined time.
  • the mixture is discharged from the inside of the holder 39 to the outside, and the cell-containing solution is injected into the holder 39.
  • the cell-containing solution is obtained by collecting autologous cells (endothelial cells, fibroblasts, and no or smooth muscle cells) of a transplant recipient, culturing for a predetermined time, and adding a predetermined culture solution.
  • the culture solution may be any culture solution that can be used for the cell seeding treatment, and examples thereof include M199 (Mediuml99 medium, manufactured by Life Technology ogno ogies).
  • the vascular tissue B after decellularization is immersed in the cell-containing solution for a predetermined time, and then the circulating device 10A is activated, and the vascular device 10A
  • the cell-containing solution is circulated in a flow substantially corresponding to the blood flow of the human body.
  • the decellularized vascular tissue B is placed in a cell-containing solution having a flow substantially equivalent to blood flowing in the aorta of the human body, and the autologous cells are seeded on the vascular tissue B.
  • the revolving drive means 124 see FIG.
  • vascular tissue B immersed in the cell-containing solution is vertically moved.
  • the cell-containing solution removes the influence of gravity and adheres to substantially the entire vascular tissue B evenly.
  • such a revolving motion may be continuously performed when a pulsatile flow of the cell-containing solution is generated.
  • the decellularization effect and the cell seeding effect can be significantly improved than in the conventional treatment method, but also the vascular tissue B is held in the holder 39 while maintaining the vascular tissue B in the holder 39.
  • the decellularization process and the cell seeding process can be performed in a series of operations, and the effect of easily and quickly processing heterogeneous biological valves accompanying transplantation can be obtained.
  • such a series of processing operations can be performed in one closed circuit, and the effect of preventing contamination of the heterogeneous living body valve and maintaining cleanliness can be obtained.
  • the present inventors conducted an experiment for demonstrating the decellularizing effect and cell seeding effect based on the present invention.
  • Example 1 bile acid at 37 ° C. was used as the cell removing solution. Then, the bile acid is injected into the circulation device 1OA, and a flow in a state substantially equivalent to the blood flow (pulsating flow) in the human aorta is given to the bile acid. Valve including valve The blood vessels and tissues were left for 24 hours. The condition of the circulation device 10 A at this time is that the average flow rate is 5 liters per minute, the number of beats of the drive pump 12 is 70 times per minute, and the maximum and minimum fluid pressures of bile acids are as follows. The average fluid pressure was set to about 90 mmHg, which roughly corresponded to the general maximum and minimum pulse pressures of humans.
  • the vascular tissue after the treatment was imaged in an enlarged state with an electron microscope, and the average number of the original cells (endothelial cells and fibroblasts) per unit area (1 mm 2 ) remaining in the vascular tissue was counted.
  • a predetermined microwave is applied while rotating the vascular tissue using the holding device 10B.
  • a microwave with a frequency of 2.45 GHz was used, and three combinations of output and irradiation time were performed. That is, irradiation was performed for 8 hours at an output of 100 W, irradiation for 12 hours at an output of 500 ⁇ , and irradiation for 24 hours at an output of 500 W.
  • the rotation speed (rotation speed) of the vascular tissue was set to 4 rotations per minute. Then, as in the case of Example 1, the average number of the original cells per unit area (1 mm 2 ) remaining in the vascular tissue was counted.
  • the vascular tissue was immersed for 24 hours in a non-flowing bile acid contained in a predetermined container. Then, as in the case of Example 1, etc., the average number of original cells per unit area (1 mm 2 ) remaining in the vascular tissue was counted.
  • Example 1 As a result, as shown in FIG. 11, about 970 original cells remained per unit area.
  • the vascular tissue used in Examples 1 and 2 and Comparative Example 1 had about 1880 original cells per unit area (1 mm 2 ) in the initial state before the decellularization treatment. From the above results, it can be understood that in Examples 1 and 2, the original cells were significantly removed and a higher decellularization effect was obtained than in Comparative Example 1. In particular, a higher decellularization effect was obtained when microwave irradiation was performed than when only vascular tissue was immersed in bile acid under pulsatile flow (Example 1), and the output was 100 W. From 500W, the original cells will not remain. Although the explanation is omitted this time, the above-mentioned microwave can be applied to the vascular tissue immersed in bile acid with no flow, and even in this case, the decellularization is higher than that of Comparative Example 1. The effect is obtained.
  • Example 3 first, the vascular tissue after the decellularization treatment was washed with physiological saline for about 1 hour, and then immersed in fibronectin for 4 hours. Before or after that, autologous cells (endothelial cells) were collected from the living body to be transplanted to generate a cell-containing solution. In the cell-containing solution, the collected autologous cells are cultured on a culture dish using the aforementioned M199 for 5 days, and then the cultured autologous cells are detached from the culture dish with trypsin and contained in Ml99. Was obtained.
  • FBS Fetal Bovine Serum IWK-500, manufactured by Iwaki
  • antibiotics mixed solution of penicillin nostreptomycin
  • FGF-2 Pepro Tech Ec Ltd
  • the vascular tissue was rotated vertically while the vascular tissue was immersed in the cell-containing solution for about 4 hours. Then, the blood vessel tissue after the cell seeding treatment was imaged in an enlarged state with an electron microscope, and the state of the autologous cells (endothelial cells) seeded in the blood vessel tissue was observed.
  • autologous cells were seeded on almost the entire vascular tissue.
  • about 850 autologous cells adhered per unit area (1 mm 2 ) of vascular tissue.
  • the area ratio (density) of the autologous cells to the unit area (1 mm 2 ) of the vascular tissue was about 18% on average.
  • Example 4 In Example 4, after the same steps as in Example 3 were performed, the cell-containing solution was circulated in the circulation device 10A under the same flow conditions as in Example 1.
  • the blood vessel tissue was immersed in the cell-containing solution in a stationary state for about 48 hours, the blood vessel and the tissue were rotated vertically for about 4 hours. Then, a flow having a state substantially equivalent to the blood flow in the human aorta was applied to the cell-containing solution, and the vascular tissue was left in the flow for 1 hour. Then, as in Example 3, the state of the autologous cells seeded in the vascular tissue was observed.
  • the autologous cells were seeded evenly over substantially the entire area of the vascular tissue, and the autologous cells were regularly arranged in the flow direction of the cell-containing solution.
  • the autologous cells proliferated and became denser than that.
  • the area ratio (density) of the autologous cells to the unit area (1 mm 2 ) of the vascular tissue was about 63% on average.
  • the fifth embodiment is different from the fourth embodiment in that the stationary of the vascular tissue in the cell-containing solution and the vertical rotation of the vascular tissue are processed in reverse order. That is, in this embodiment, after rotating the vascular tissue immersed in the cell-containing solution in the vertical direction for about 4 hours, the vascular tissue is immersed in the cell-containing solution in a stationary state for 48 hours, A flow having a state substantially equivalent to the blood flow in the human aorta was applied to the solution, and the vascular tissue was left in the flow for 1 hour. Other conditions were the same as in Example 4. Then, as in the case of Example 4, the state of the autologous cells seeded in the vascular tissue was observed,
  • Example 6 compared to Example 5, the time for leaving the vascular tissue in the flow of the cell-containing solution under the same conditions as Example 5 was set to 48 hours. Other conditions were the same as in Example 5.
  • Example 7 differs from Example 6 in that the flow conditions of the cell-containing solution were changed, and the other conditions were the same as Example 6. That is, in this example, the average flow rate of the cell-containing solution was 2 liters per minute, and the average liquid pressure of the cell-containing solution was about 2 OmmHg.
  • Example 6 substantially the same effects as in Example 6 were obtained.
  • seeding was performed even if the flow conditions of the cell-containing solution were changed in consideration of the state of the blood flow and the like of the recipient patient and the location of the heart valve at the recipient.
  • Autologous cells proliferate and cover almost the entire surface of vascular tissue.
  • various heart valves with different blood pressures to be used, etc. it is possible to create an optimal biological valve according to the use condition.
  • Example 3 As a comparative example with respect to the above Examples 3 to 7, as compared with Example 3, the vascular tissue was kept stationary without rotating in the vertical direction. Then, as in Example 3 and the like, the state of the autologous cells seeded in the vascular tissue was observed.
  • the present invention in addition to the vascular tissue including the aortic valve described in the above embodiment, the present invention is also applicable to a decellularization process and a cell seeding process for other living tissues that come into contact with blood.
  • the present invention can be applied to processing for the same type of biological valve in addition to processing for the different type of biological valve.
  • the holder 39 is rotated at the time of microwave irradiation. On the contrary, the holder 39 is kept stationary, and the irradiation port 57 side rotates around the holder 39. It may be. Furthermore, in the above-described embodiment, the holding device 10B is used for both the decellularization treatment and the cell seeding treatment. However, even when only one of these treatments is performed, the holding device 10B can of course be applied. .
  • each unit of the device according to the present invention is not limited to the illustrated configuration example, and various changes can be made as long as substantially the same operation is achieved.
  • it is possible to effectively perform the decellularization process and the cell seeding process on the biological tissue of a heterogeneous biological valve or a homogeneous biological valve.
  • the present invention can be used for processing a biological valve collected from an animal including a human so as to be transplantable into a predetermined human body.

Abstract

Living organism tissue treating apparatus (10) comprises circulation unit (10A) capable of circulating a cell removing solution or cell-containing solution through circulation channel (13) under conditions similar to those of blood circulation of a living body and retention unit (10B) retaining a different tissue valve, disposed along the circulation channel (13). The retention unit (10B) is fitted with retention member (39) capable of retaining a living organism tissue in the state of being immersed in a solution and irradiation unit (42) capable of irradiating the living organism tissue retained by the retention member (39) with microwave. The retention member (39) includes inflow part (62) and outflow part (63) for the solution between which space (64) for accommodating the living organism tissue is provided, so that cell removal or cell sowing treatment can be performed while the living organism tissue is arranged in the solution flow from the inflow part (62) to the outflow part (63).

Description

明 細 書  Specification
生体組織の保持装置及びこれを用いた生体組織処理装置 Living tissue holding device and living tissue processing device using the same
技術分野 Technical field
本発明は、 生体組織の保持装置及びこれを用いた生体組織処理装置に係り、 特に、 所定の生体組織を移植する際における脱細胞化処理及び 又は細胞播種処 理を効果的に行うのに適した生体組織の保持装置及びこれを用いた生体組織処理 装置に関する。 背景技術  The present invention relates to a biological tissue holding device and a biological tissue processing device using the same, and is particularly suitable for effectively performing a decellularization process and / or a cell seeding process when transplanting a predetermined biological tissue. The present invention relates to a living tissue holding device and a living tissue processing device using the same. Background art
人体の心臓弁が正常に働かず、 弁の開口部位の狭窄や血液の逆流が生じるよう な機能障害が生じた場合には、 その心臓弁を所定の代替弁に交換する必要がある 。 この代替弁としては、 現在、 所定の人工材料で形成される機械弁、 ブタ等の動 物から採取される異種生体弁、 他の人体から提供される同種生体弁等がある。 こ こで、 前記機械弁は、 耐久性があるものの抗凝固剤を一生飲み続けなければなら ないという問題がある。 一方、 前記異種生体弁は、 抗凝固剤を一生飲み続けなく ても良いが、 長期的なカルシウムの沈着等によって弁機能不全を起こし、 1 5年 程度で新たな代替弁への交換必要性が生じるという問題がある。 また、 前記同種 生体弁は、 ドナー不足により大量確保が難しいという問題がある。  If the heart valve of the human body does not work properly and dysfunction occurs, such as stenosis of the opening of the valve or regurgitation of blood, it is necessary to replace the heart valve with a predetermined substitute valve. At present, there are a mechanical valve formed of a predetermined artificial material, a heterogeneous biological valve collected from an animal such as a pig, and a similar biological valve provided by another human body. Here, although the mechanical valve is durable, there is a problem that the anticoagulant must be continuously consumed for a lifetime. On the other hand, the above-mentioned xenogeneic biological valve does not need to keep taking the anticoagulant for a lifetime.However, valve malfunction occurs due to long-term deposition of calcium, etc., and it is necessary to replace it with a new replacement valve in about 15 years. There is a problem that occurs. Further, there is a problem that it is difficult to secure a large amount of the same type of biological valve due to a shortage of donors.
ところで、 前記異種生体弁は、 十分な数を供給でき、 且つ、 移植後に患者が抗 凝固剤を一生飲み続けなくても良いことから、 欠点とされている耐久性を向上さ せれば、 他の代替弁より有用になることが期待できる。  By the way, since a sufficient number of the heterogeneous biological valves can be supplied, and the patient does not need to keep taking the anticoagulant for a lifetime after transplantation, if the durability which is regarded as a disadvantage is improved, other It can be expected to be more useful than alternative valves.
そこで、 ブタ等の動物から採取した異種生体弁に対し、 移植後の免疫拒絶反応 を抑制し、 且つ、 耐久性を向上させる次の処理方法が知られている (例えば、 特 開平 6— 2 6 1 9 3 3号公報参照)。 すなわち、 先ず、 胆汁酸や界面活性剤等の 細胞除去溶液に異種生体弁を浸漬し、 動物の内皮細胞、 線繊芽細胞等の動物の原 細胞を除去する (脱細胞化処理)。 その後、 移植先人体の内皮細胞、 線繊芽細胞 等の自己細胞を含む細胞含有溶液に、 原細胞が除去された異種生体弁を浸漬させ ることで、 前記自己細胞を異種生体弁に播種する (細胞播種処理)。 しかしながら、 前述した処理方法にあっては、 動物から採取した異種生体弁に 対する脱細胞化処理及び細胞播種処理を効果的に行えず、 当該各処理後の異種生 体弁に十分な生体適合性を付与させることできないという不都合がある。 すなわ ち、 前述の脱細胞化処理では、 原細胞がある程度残存してしまい、 当該原細胞の 存在により、 処理後の異種生体弁の生体適合性が低下する。 また、 前述の細胞播 種処理では、 異種生体弁の全域に自己細胞が均一に付着せず、 異種生体弁に播種 される自己細胞の数も十分ではない。 Therefore, the following treatment methods are known for suppressing the immune rejection reaction after transplantation and improving the durability of xenogeneic biological valves collected from animals such as pigs (for example, Japanese Patent Laid-Open Publication No. Hei 6-26). No. 193,3). That is, first, a foreign body valve is immersed in a cell removing solution such as bile acid or a surfactant to remove animal original cells such as animal endothelial cells and fibroblasts (decellularization treatment). Thereafter, the xenogeneic biological valve from which the original cells have been removed is immersed in a cell-containing solution containing autologous cells such as endothelial cells and fibroblasts of the transplanted human body, so that the autologous cells are seeded on the xenogeneic biological valve. (Cell seeding treatment). However, according to the above-mentioned treatment methods, the decellularization treatment and the cell seeding treatment for the xenobiotic valve collected from the animal cannot be performed effectively, and the xenobiotics after the respective treatments have sufficient biocompatibility. Cannot be provided. That is, in the above-described decellularization treatment, the original cells remain to some extent, and the biocompatibility of the heterogeneous biological valve after the treatment is reduced due to the presence of the original cells. In addition, in the above-described cell seeding treatment, autologous cells do not uniformly adhere to the entire area of the xenogeneic biological valve, and the number of autologous cells seeded on the xenogeneic biological valve is not sufficient.
そこで、 本発明者らは、 前述の課題を解決するために、 鋭意、 実験研究を行つ た結果、 前記脱細胞処理時において、 異種生体弁が浸漬される前記細胞除去溶液 に人体の血流に略相当する流れを付与し、 及び/又は、 前記細胞除去溶液に浸漬 された異種生体弁にマイクロ波を照射したところ、 残存する原細胞数が、 前述の 処理方法より大幅に減少することを知見した。 また、 前記細胞播種処理時におい ては、 脱細胞処理後の異種生体弁を前記細胞含有溶液内で上下方向に回転し、 更 に、 当該細胞含有溶液に人体の血流に略相当する流れを付与したところ、 前述の 処理方法よりも、 前記自己細胞が均一に付着し、 その付着数が増大することを知 見した。 発明の開示  Therefore, the present inventors have conducted intensive experimental research to solve the above-mentioned problem. As a result, during the decellularization treatment, the blood flow of the human body was introduced into the cell removal solution in which a foreign biological valve was immersed. And / or applying microwaves to a heterogeneous biological valve immersed in the cell-removing solution, the number of remaining progenitor cells is significantly reduced as compared to the above-described treatment method. I learned. Further, at the time of the cell seeding treatment, the heterogeneous biological valve after the decellularization treatment is rotated up and down in the cell-containing solution, and further, a flow substantially corresponding to the blood flow of the human body flows through the cell-containing solution. As a result, it was found that the autologous cells adhered more uniformly and the number of the adhered cells increased as compared with the above-mentioned treatment method. Disclosure of the invention
本発明は、 このような知見に基づいて案出されたものであり、 その目的は、 異種生体弁等の生体組織の脱細胞化処理や細胞播種処理を効果的に行うのに寄与 できる生体組織の保持装置及びこれを用いた生体組織処理装置を提供することに ある。  The present invention has been devised based on such knowledge, and has as its object the purpose of a biological tissue that can contribute to the effective decellularization and cell seeding of a biological tissue such as a heterogeneous biological valve. And a biological tissue processing apparatus using the same.
前記目的を達成するため、 本発明に係る保持装置は、 脱細胞化処理用又は細胞播 種処理用の溶液中で所定の生体組織を保持可能な保持体を備え、 In order to achieve the above object, a holding device according to the present invention includes a holding body capable of holding a predetermined living tissue in a solution for decellularization treatment or cell seeding treatment,
前記保持体は、 前記溶液の流入部及び流出部と、 これら流入部及び流出部の間 に位置する前記生体糸且織の設置空間とを備え、 前記流入部から流出部に向かう前 記溶液の流れの中に前記生体組織を配置した状態で、 脱細胞化処理及び/又は細 胞播種処理を可能に設ける、 という構成を採っている。 このような構成によれば 、 移植先の生体の血流に略相当した流れの溶液中に、 前記生体組織が浸溃するこ とになり、 前述した本発明者らの知見により、 前記脱細胞処理時に残存する原細 胞数を大幅に減少させることができるとともに、 前記細胞播種処理時に播種対象 となる生体細胞の付着数を増大させることができる。 従って、 本発明の装置を用 いることで、 ブタの異種生体弁等の生体組織を異種若しくは同種の生体 (人体) に移植する際に、 脱細胞化処理や細胞播種処理を効果的に行うことができる。 本発明において、 脱細胞化処理時に、 前記保持体に保持された生体組織に対し てマイクロ波を照射する照射手段を更に備える、 という構成を採ることが好まし レ、。 このように構成することで、 脱細胞化処理の対象となる生体組織に、 より高 レ、脱細胞効果を付与することが可能となる。 The holding body includes an inflow portion and an outflow portion of the solution, and an installation space for the living tissue located between the inflow portion and the outflow portion. In a state where the living tissue is arranged in the flow, a decellularization treatment and / or a cell seeding treatment is provided so as to be possible. According to such a configuration, the living tissue can be immersed in a solution having a flow substantially corresponding to the blood flow of the living body to be transplanted. According to the above findings of the present inventors, the number of progenitor cells remaining during the decellularization treatment can be significantly reduced, and the number of living cells to be seeded during the cell seeding treatment can be reduced. Can be increased. Therefore, by using the device of the present invention, it is possible to effectively perform decellularization treatment and cell seeding treatment when a living tissue such as a porcine xenobiopsy valve is implanted into a different kind or the same kind of living body (human body). Can be. In the present invention, it is preferable to adopt a configuration further comprising an irradiating means for irradiating the living tissue held by the holder with microwaves during the decellularization treatment. With such a configuration, it is possible to impart a higher decellularization effect to the living tissue to be subjected to the decellularization treatment.
また、 前記保持体及び前記照射手段は、 相対回転可能に設けられる、 という構 成も併せて採用することができる。 これにより、 照射手段からのマイクロ波を生 体組織の回転周方向の略全域に照射することができ、 生体組織の回転周方向の略 全域で均一に細胞を除去することができる。  Further, a configuration in which the holder and the irradiation unit are provided so as to be relatively rotatable can also be adopted. This makes it possible to irradiate the microwave from the irradiating means to substantially the entire region in the rotational direction of the biological tissue, and it is possible to uniformly remove cells in substantially the entire region in the rotational direction of the biological tissue.
更に、 前記照射手段は、 前記溶液が所定温度以上になったときに、 前記マイク 口波の照射を停止する一方、 前記溶液が所定温度以下になったときに、 前記マイ クロ波の照射を開始するとよレ、。 このような構成によれば、 マイクロ波の照射に よる過度の温度上昇を抑制することができ、 当該溶液の温度を適正に保持するこ とで、 温度上昇等による生体組織の組織障害を防止することができる。  Further, the irradiating means stops irradiation of the microphone mouth wave when the solution has reached a predetermined temperature or higher, and starts irradiation of the microwave when the solution has reached a predetermined temperature or lower. Then, According to such a configuration, excessive temperature rise due to microwave irradiation can be suppressed, and by appropriately maintaining the temperature of the solution, tissue damage to living tissue due to temperature rise or the like is prevented. be able to.
また、 前記流入部及び流出部は、 それぞれ第 1及び第 2の流路を有し、 各第 1 の流路は、 管状の生体組織の内側を介して連通可能に設けられる一方、 各第 2の 流路は、 前記生体組織の外側を介して連通可能に設けられる、 という構成を採る ことができる。 このようにすることで、 前記流入部から流出部に向かって、 前記 溶液が生体糸且織の内外をそれぞれ流れることになり、 当該内外の各温度を略同一 に保持することができる。 このため、 生体組織に向かってマイクロ波の照射をし た場合でも、 生体組織の内外間での温度差が殆ど生じず、 当該温度差による前記 組織障害を防止することができる。  The inflow portion and the outflow portion have first and second flow paths, respectively. Each first flow path is provided so as to be able to communicate through the inside of the tubular biological tissue, while each second flow path is provided with a second flow path. The flow path may be provided so as to be able to communicate through the outside of the living tissue. By doing so, the solution flows inside and outside the living tissue from the inflow portion to the outflow portion, and the temperatures inside and outside the living tissue can be kept substantially the same. Therefore, even when the living tissue is irradiated with microwaves, a temperature difference between the inside and the outside of the living tissue hardly occurs, and the tissue failure due to the temperature difference can be prevented.
ここで、 前記流出部には、 前記第 1の流路及び/又は第 2の流路内に温度セン サを案内する案内路が設けられる、 という構成を採るとよい。 このような構成に よれば、 第 1の流路及び Z又は第 2の流路内に簡単に温度センサを揷入可能とな り、 これら流路内の温度を簡単に監視することができる。 特に、 案内路が流出部 側に設けられているため、 生体組織を通過する前の溶液の流れが、 前記温度セン サ等で阻害されず、 適正な溶液の流れの中に生体組織を置くことで、 前記処理を 適正に行うことができる。 Here, a configuration may be adopted in which a guide path for guiding a temperature sensor is provided in the first flow path and / or the second flow path in the outflow portion. According to such a configuration, the temperature sensor can be easily inserted into the first flow path and the Z flow path or the second flow path. Thus, the temperature in these flow paths can be easily monitored. In particular, since the guideway is provided on the outflow side, the flow of the solution before passing through the living tissue is not obstructed by the temperature sensor or the like, and the living tissue is placed in an appropriate flow of the solution. Thus, the processing can be appropriately performed.
また、 前記保持体は、 細胞播種処理時に前記生体組織の上下両側を反転する方 向に回転可能に設けられる、 という構成を採ることが好ましい。 このように構成 することで、 生体組織が上下反転方向に回転しながら、 細胞播種されるため、 生 体組織に細胞が付着する際における重力の影響を抑制し、 当該重力の影響による 細胞の付着ムラを無くして当該細胞を生体組織の略全域に付着させることができ る。  In addition, it is preferable to adopt a configuration in which the holding member is provided so as to be rotatable in a direction of inverting the upper and lower sides of the living tissue during the cell seeding process. With this configuration, since the living tissue is seeded while rotating in the upside down direction, the influence of gravity when the cells adhere to the living tissue is suppressed, and the cells are attached by the influence of the gravity. The cells can be attached to almost the entire area of the living tissue without unevenness.
また、 本発明に係る生体組織処理装置は、 前記保持装置を含み、 前記生体組織 に対して脱細胞化処理及び/又は細胞播種処理を行う生体組織処理装置であって 前記生体組織の移植対象となる生体内の血液の循環に擬似して前記溶液が循環 する循環装置を備え、  Further, the biological tissue processing device according to the present invention is a biological tissue processing device that includes the holding device, and performs a decellularization process and / or a cell seeding process on the biological tissue. A circulation device for circulating the solution in a manner simulating the circulation of blood in a living body,
前記循環装置は、 前記流入部及び流出部に接続され、 前記流入部から流出部に 向かう前記溶液に、 前記生体内の血流に略相当した流れを付与する、 という構成 を採っており、 このような構成によっても、 前述した目的を達成することができ る。 その他、 脱細胞化処理及び細胞播種処理を一装置で行う場合には、 生体,組織 の移植前における一連の処理作業を一つの密閉回路で行うことができ、 前記生体 組織の汚染を防止して、 清潔性を保つことができる。  The circulation device is connected to the inflow portion and the outflow portion, and applies a flow substantially corresponding to the blood flow in the living body to the solution flowing from the inflow portion to the outflow portion. Even with such a configuration, the above-described object can be achieved. In addition, when the decellularization treatment and the cell seeding treatment are performed by one device, a series of processing operations before transplantation of the living body and the tissue can be performed by one closed circuit, and the contamination of the living tissue can be prevented. The cleanliness can be kept.
ここにおいて、 前記循環装置は、 拍動流を生成する駆動ポンプと、 この駆動ポ ンプの流入ポート及び流出ポート間に配置されるとともに、 前記保持装置が途中 に設けられた循環路とを備え、  Here, the circulation device includes a drive pump that generates a pulsating flow, and a circulation path that is disposed between the inflow port and the outflow port of the drive pump and that includes the holding device in the middle of the drive pump.
前記循環路は、 前記溶液に流れ抵抗を付与する抵抗付与手段と、 この抵抗付与 手段の下流側に配置されて前記溶液の液圧を減衰させる液圧減衰手段とを備える 、 という構成を採ることができる。 このような構成によれば、 人体の体循環に擬 似した血液の循環状態で溶液を循環させることができる。 このため、 循環路内で の保持装置の設置場所を変えることで、 動脈や静脈等、 体内での異なる血流条件 に合わせた溶液の流れ条件を選択することができ、 実際に流れる血液の条件が異 なる種々の生体組織に、 それらに略相当した流れで溶液を浸漬可能となり、 種々 の生体組織に、 それぞれ高い脱細胞化効果や細胞播種効果を付与する汎用性のあ る装置とすることができる。 The circulation path includes a resistance applying unit that applies flow resistance to the solution, and a hydraulic pressure attenuating unit that is disposed downstream of the resistance applying unit and attenuates the liquid pressure of the solution. Can be. According to such a configuration, the solution can be circulated in a blood circulation state simulating the human body circulation. Therefore, by changing the installation location of the holding device in the circulation, different blood flow conditions in the body such as arteries and veins The flow conditions of the solution can be selected according to the conditions, and the solution can be immersed in various biological tissues with different conditions of the blood that actually flows, with a flow substantially equivalent to them, and the various biological tissues have high A versatile device that provides a decellularization effect and a cell seeding effect can be provided.
更に、 前記循環路は、 前記抵抗付与手段の上流側で前記液圧の振幅調整をする 振幅調整手段を含む、 という構成を採ることが好ましい。 このように構成するこ とで、 溶液の液圧を任意に変えた種々の状況下で、 脱細胞処理や細胞播処理を行 うことが可能となる。 ここで、 前記振幅調整手段は、 肉厚を変えることで前記振 幅調整が可能な調整チューブにより構成し、 又は、 材料の相違する複数のチュー ブにより構成するとよレ、。 図面の簡単な説明  Further, it is preferable that the circulation path includes an amplitude adjusting unit that adjusts the amplitude of the hydraulic pressure upstream of the resistance applying unit. With such a configuration, it is possible to perform the decellularization treatment and the cell seeding treatment under various conditions in which the solution pressure of the solution is arbitrarily changed. Here, the amplitude adjusting means may be constituted by an adjusting tube capable of adjusting the amplitude by changing the wall thickness, or may be constituted by a plurality of tubes made of different materials. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に適用される生体組織処理装置の概略構成図、 図 2は駆動ボン プの概略縦断面図、 図 3は前記生体組織処理装置を構成する保持装置の概略正面 図、 図 4は前記保持装置のカバーの分解斜視図、 図 5は保持体の概略断面図、 図 6は図 5中右側の分解断面図、 図 7は流入部の流路形成部材の概略分解斜視図、 図 8は図 5中左側の分解断面図、 図 9は流出部の流路形成部材の概略分解斜視図 、 図 1 0 (A) は保持体を含む図 3の一部分を抜粋した図、 図 1 0 ( B ) は (A ) の状態から全体が支持軸回りに 1 8 0度回転した状態を示す図、 図 1 1は実施 例 1、 2及び比較例 1のそれぞれの単位面積当りの原細胞残存数を対比して表し た図表、 図 1 2は実施例 3で得られた生体組織の拡大顕微鏡写真を表す図、 図 1 3は実施例 4で得られた生体組織の拡大顕微鏡写真を表す図である。 発明を実施するための最良の形態  FIG. 1 is a schematic configuration diagram of a biological tissue processing apparatus applied to the present invention, FIG. 2 is a schematic longitudinal sectional view of a driving pump, FIG. 3 is a schematic front view of a holding device constituting the biological tissue processing apparatus, and FIG. 5 is an exploded perspective view of the cover of the holding device, FIG. 5 is a schematic cross-sectional view of the holding body, FIG. 6 is an exploded cross-sectional view of the right side in FIG. 5, FIG. 8 is an exploded cross-sectional view on the left side in FIG. 5, FIG. 9 is a schematic exploded perspective view of a flow path forming member at an outflow portion, and FIG. 10 (A) is a partial extract of FIG. (B) is a view showing a state where the whole is rotated by 180 degrees around the support axis from the state of (A), and FIG. 11 is a diagram showing remaining original cells per unit area in Examples 1, 2 and Comparative Example 1. FIG. 12 is a diagram showing an enlarged micrograph of the living tissue obtained in Example 3, and FIG. 13 is an enlarged view of the living tissue obtained in Example 4. Is a diagram representing the micrograph. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1には、 本実施形態に係る生体組織処理装置の概略構成図が示されている。 この図において、 生体,組織処理装置 1 0は、 生体組織である異種生体弁の脱細胞 化処理や細胞播種処理を行う際に用いられる装置である。 ここで、 前記脱細胞化 処理は、 ブタ等の動物から採取した異種生体弁を人体に移植する前に、 当該異種 生体弁を胆汁酸等の細胞除去溶液に浸漬することにより、 前記動物の細胞 (以下 、 「原細胞」 と称する) を除去してコラーゲン等からなる基質のみにする処理で ある。 一方、 前記細胞播種処理は、 移植先の人体の細胞 (以下、 「自己細胞」 と 称する) を含む細胞含有溶液に脱細胞化後の異種生体弁を浸漬することにより、 前記基質に自己細胞を付着させる処理である。 FIG. 1 shows a schematic configuration diagram of a biological tissue processing apparatus according to the present embodiment. In this figure, a living body / tissue processing apparatus 10 is an apparatus used when performing decellularization processing or cell seeding processing of a heterogeneous biological valve, which is a biological tissue. Here, the decellularization treatment is performed before transplanting a xenobiotic valve collected from an animal such as a pig into a human body. The biological valve is immersed in a cell-removing solution such as bile acid to remove the animal cells (hereinafter referred to as “progenitor cells”) so that only a substrate composed of collagen or the like is obtained. On the other hand, in the cell seeding treatment, the autologous biological valve after decellularization is immersed in a cell-containing solution containing cells of a human body to be transplanted (hereinafter, referred to as “autologous cells”). This is a process for causing the particles to adhere.
この生体組織処理装置 1 0は、 前記細胞除去溶液や前記細胞含有溶液を所定の 回路によって循環させる循環装置 1 O Aと、 この循環装置 1 O Aに付随して設け られ、 前記異種生体弁を保持する保持装置 1 0 Bとを備えて構成されている。 な お、 以下においては、 特に明記しない限り、 前記細胞除去溶液及び前記細胞含有 溶液を各溶液と総称する。  The biological tissue processing apparatus 10 is provided with a circulating apparatus 1 OA for circulating the cell removing solution or the cell-containing solution through a predetermined circuit, and is provided in association with the circulating apparatus 1 OA and holds the heterogeneous biological valve. And a holding device 10B. In the following, the cell removing solution and the cell-containing solution are collectively referred to as each solution unless otherwise specified.
前記循環装置 1 O Aは、 公知の吸送気装置 1 1と、 この吸送気装置 1 1に繋が るポリウレタン製の駆動ポンプ 1 2と、 この駆動ポンプ 1 2から吐出した各溶液 が駆動ポンプ 1 2に戻るように配置された循環路 1 3とを備えて構成されている 前記吸送気装置 1 1は、 駆動ポンプ 1 2に対して吸送気可能に設けられた公知 の構造を備えたものであり、 ここでは、 詳細な説明を省略する。  The circulating device 1 OA includes a known suction / inlet device 11, a polyurethane drive pump 12 connected to the suction / inlet device 11, and each solution discharged from the drive pump 12. The suction / inhalation device 11 configured to include a circulation path 13 disposed so as to return to the position 2 includes a known structure that is capable of inhalation and inhalation with respect to the drive pump 12. Here, detailed description is omitted here.
前記駆動ポンプ 1 2は、 その内部に旋回渦流を発生させ、 吐出時に拍動流を生 成可能な拍動型ポンプである。 すなわち、 この駆動ポンプ 1 2は、 図 2に示され るように、 本出願人によって既提案された構造 (特願 2 0 0 2 _ 1 6 7 8 3 6号 等参照) が採用されており、 流入ポート 1 5及び流出ポート 1 6が形成された略 円錐状の外形をなす中空の上部構成体 1 7と、 この上部構成体 1 7の下方に位置 するとともに、 略ドーム状の外形をなす中空の下部構成体 1 8と、 これら各構成 体 1 7, 1 8の内部空間3 1, S 2を仕切る可撓性のダイアフラム 2 0とを備え て構成されている。 ここで、 前記流入ポート 1 5は、 上部構成体 1 7の周壁に連 なる図 2中右端側位置に設けられ、 流出ポート 1 6は、 上部構成体 1 7の頂部側 となる図 2中上端側位置に設けられている。  The drive pump 12 is a pulsating pump capable of generating a swirling vortex therein and generating a pulsating flow at the time of discharge. That is, as shown in FIG. 2, the drive pump 12 adopts a structure already proposed by the present applicant (see Japanese Patent Application No. 200202_1667836). A hollow upper structure 17 having a substantially conical outer shape formed with an inflow port 15 and an outflow port 16, and a lower dome-shaped outer structure located below the upper structure 17. It comprises a hollow lower component 18 and a flexible diaphragm 20 that partitions the internal space 31, S 2 of each of these components 17, 18. Here, the inflow port 15 is provided at a position on the right end side in FIG. 2 that is continuous with the peripheral wall of the upper structure 17, and the outflow port 16 is an upper end in FIG. 2 that is on the top side of the upper structure 17. It is provided at the side position.
前記下部構成体 1 8には、 吸送気装置 1 1に繋がる通気口 2 2が設けられてお り、 下側の内部空間 S 2内には、 圧縮空気が所定のタイミングで交互に吸送気さ れるようになっている。 このように、 内部空間 S 2内に圧縮空気が吸送気される と、 ダイアフラム 2 0の変形によって、 上側の内部空間 S 1内の容積が増減し、 これによつて、 流出ポート 1 6から吐出される各溶液に拍動流を生じさせる。 こ の際、 上側の内部空間 S 1内では、 図 2中破線で示されるように、 流れの停滞域 が発生し難い旋回渦流が発生するようになっている。 なお、 特に限定されるもの ではないが、 本実施例においては、 内部空間 S 2内に供給される空気の圧力 (陽 圧) は、 1 4 O mmH g〜2 6 O mmH g程度に設定される一方、 内部空間 S 2 内から吸引される空気の圧力 (陰圧) は、 一 3 O mmH g〜一 5 O mmH g程度 に設定される。 The lower structure 18 is provided with a vent 22 connected to the suction / intake air device 11, and compressed air is sucked and sucked alternately at a predetermined timing in the lower internal space S 2. It is becoming noticeable. Thus, the compressed air is sucked and sucked into the internal space S 2 Due to the deformation of the diaphragm 20, the volume in the upper internal space S1 increases and decreases, thereby generating a pulsating flow in each solution discharged from the outflow port 16. At this time, in the upper internal space S1, as shown by the broken line in FIG. 2, a swirling vortex is generated in which a flow stagnation region is hardly generated. Although not particularly limited, in this embodiment, the pressure (positive pressure) of the air supplied into the internal space S2 is set to about 14 OmmHg to about 26 OmmHg. On the other hand, the pressure (negative pressure) of the air sucked from the interior space S2 is set to about 13 OmmHg to about 15 OmmHg.
前記循環路 1 3は、 図 1に示されるように、 駆動ポンプ 1 2の流出ポート 1 6 から吐出した各溶液が、 外気に非接触となる状態で流入ポート 1 5に流入する閉 ループ状に設定されている。 すなわち、 循環路 1 3は、 流出ポート 1 6から吐出 した各溶液に流れ抵抗を付与する抵抗付与手段 2 3と、 前記流出ポート 1 6に接 続された上流側チューブ 2 4と、 この上流側チューブ 2 4の下流側端部に接続さ れた振幅調整手段としての調整チューブ 2 5と、 この調整チューブ 2 5の下流側 端部に接続された連結チューブ 2 6と、 当該連結チューブ 2 6よりも下流側に配 置され、 且つ、 駆動ポンプ 1 2の流入ポート 1 5に接続された下流側チューブ 2 7と、 連結チューブ 2 6及び下流側チューブ 2 7の間に設けられた接続ポンプ 2 8とを備えて構成されている。 なお、 ここにおける各部材 2 4〜2 8の接続には 公知のコネクタ 2 9が用いられている。 また、 以下においては、 説明の便宜上、 循環路 1 3のうち抵抗付与手段 2 3を境にして上流側を上流ライン L 1と称し、 同下流側を下流ライン L 2と称する。  As shown in FIG. 1, the circulation path 13 has a closed loop shape in which each solution discharged from the outlet port 16 of the drive pump 12 flows into the inlet port 15 in a state of not contacting the outside air. Is set. That is, the circulation path 13 includes resistance applying means 23 for applying flow resistance to each solution discharged from the outflow port 16, an upstream tube 24 connected to the outflow port 16, and an upstream side An adjusting tube 25 as an amplitude adjusting means connected to the downstream end of the tube 24; a connecting tube 26 connected to the downstream end of the adjusting tube 25; and the connecting tube 26 The downstream tube 27 connected to the inflow port 15 of the drive pump 12 and the connection pump 28 provided between the connection tube 26 and the downstream tube 27 are also disposed on the downstream side. It is comprised including. A well-known connector 29 is used to connect the members 24 to 28 here. In the following, for convenience of explanation, the upstream side of the circulation path 13 across the resistance applying means 23 is referred to as an upstream line L1, and the downstream side is referred to as a downstream line L2.
前記抵抗付与手段 2 3は、 人体の末梢抵抗を想定して連結チューブ 2 6の途中 一箇所に設けられたものであって、 図示省略しているが、 連結チューブ 2 6を締 め付けるピンチ状部材により構成されている。 つまり、 抵抗付与手段 2 3による 連結チューブ 2 6の締め付けにより、 駆動ポンプ 1 2が拍動しても上流ライン L 1内の最低血圧が O mmH gとならず、 人体の動脈内の血液の流れに擬似させる ようになつている。 ここで、 連結チューブ 2 6の締め付け具合により、 上流ライ ン L 1内の平均脈圧を所定値に調整することができ、 本実施形態では、 当該平均 脈圧として、 人体の平均圧力に略相当する 1 0 O mmH g程度に調整されている 。 なお、 抵抗付与手段 2 3としては、 前述したピンチ状部材の他に、 前述した作 用を奏する限りにおいて、 可変絞り等他の部材を採用することもできる。 The resistance applying means 23 is provided at one place in the connecting tube 26 assuming the peripheral resistance of the human body, and is not shown, but is a pinch-shaped for tightening the connecting tube 26. It is composed of members. That is, due to the tightening of the connection tube 26 by the resistance applying means 23, even if the drive pump 12 pulsates, the diastolic blood pressure in the upstream line L1 does not become O mmHg, and the blood flow in the arteries of the human body To be simulated. Here, the average pulse pressure in the upstream line L1 can be adjusted to a predetermined value by tightening the connection tube 26. In the present embodiment, the average pulse pressure is substantially equivalent to the average pressure of the human body. To be adjusted to about 10 O mmH g . In addition, as the resistance applying means 23, other members such as a variable stop can be adopted as long as the above-described operation is achieved, in addition to the above-described pinch-shaped member.
前記上流側チューブ 2 4、 連結チューブ 2 6及び下流側チューブ 2 7は、 特に 限定されるものではないが、 塩ィ匕ビニルによって形成されている。 なお、 後述す るように、 上流側チューブ 2 4の途中に、 前記保持装置 1 0 Bが設けられており 、 当該保持装置 1 0 B内に保持された異種生体弁と下流側チューブ 2 7内に設け られた逆止弁 3 0とによって、 前記各溶液を逆流させずに図 1中矢印方向に確実 に循環可能となっている。  The upstream tube 24, the connection tube 26, and the downstream tube 27 are not particularly limited, but are formed of Shiridani vinyl. As described later, the holding device 10B is provided in the middle of the upstream tube 24, and the heterogeneous biological valve held in the holding device 10B and the downstream tube 27 are provided. The check valve 30 provided at the bottom of the housing ensures that the solutions can be circulated in the direction of the arrow in FIG. 1 without backflow.
前記調整チューブ 2 5は、 抵抗付与手段 2 3よりも上流側に配置されて上流ラ イン L 1の脈圧の振幅調整をするものである。 すなわち、 調整チューブ 2 5は、 その肉厚を変えることで上流ライン L 1における脈圧の振幅調整を行える軟質材 料により形成されており、 例えば、 セグメント化ポリウレタンやシリコン等によ り形成されている。 なお、 本実施形態では、 上流ライン L 1における脈圧の振幅 力 人体に近似するように、 例えば、 前記平均脈圧 (l O O mmH g ) の ± 2 O mmH gとなるように設定されている。  The adjusting tube 25 is arranged upstream of the resistance applying means 23 and adjusts the amplitude of the pulse pressure of the upstream line L1. That is, the adjustment tube 25 is formed of a soft material that can adjust the amplitude of the pulse pressure in the upstream line L1 by changing its thickness, and is formed of, for example, segmented polyurethane or silicon. I have. In the present embodiment, the amplitude of the pulse pressure in the upstream line L1 is set so as to approximate the human body, for example, ± 20 mmHg of the average pulse pressure (100 mmHg). .
前記接続ポンプ 2 8は、 前記駆動ポンプ 1 2と同一の構成を備えた拍動流ボン プが用いられており、 駆動ポンプ 1 2に対して同一若しくは同等の構成部分につ いては同一符号を用いて説明を省略する。 なお、 接続ポンプ 2 8においても、 流 入ポート 1 5から各溶液が流入して当該溶液が流出ポート 1 6から排出される向 きで取り付けられる。 また、 接続ポンプ 2 8の各通気口 2 2は外部に開放してお り、 各溶液の流れに応じて前記ダイアフラム 2 0が変位するようになっている。 また、 循環装置 1 O A内に充填される溶液は、 当該装置 1 O Aが許容する最大充 填量よりもやや少ない量となっており、 接続ポンプ 2 8のダイアフラム 2 0の変 位量は、 物理的に許容される最大変位量よりも僅かに少なくなる。 これによつて 、 接続ポンプ 2 8は、 その内部を血液が通過したときに、 ダイアフラム 2 0の変 位を許容して圧力損失を生じさせるダンパー効果が付与される。 従って、 接続ポ ンプ 2 8は、 抵抗付与手段 2 3の下流側に配置されて下流ライン L 2内の溶液の 液圧を減衰させる脈圧減衰手段を構成することになる。 本実施形態では、 接続ポ ンプ 2 8を通過した血圧が、 人体の左心房圧に相当する略 1 O mmH gになるよ うに設定されている。 The connection pump 28 uses a pulsating flow pump having the same configuration as the drive pump 12, and the same reference numerals are used for the same or equivalent components to the drive pump 12. The description is omitted. The connection pump 28 is also attached so that each solution flows in from the inlet port 15 and the solution is discharged from the outlet port 16. Further, each ventilation port 22 of the connection pump 28 is open to the outside, and the diaphragm 20 is displaced in accordance with the flow of each solution. Also, the amount of the solution filled in the circulation device 1OA is slightly smaller than the maximum filling amount allowed by the device 1OA, and the displacement amount of the diaphragm 20 of the connection pump 28 is Slightly smaller than the maximum allowable displacement. Thus, when blood passes through the inside of the connection pump 28, a damper effect that allows displacement of the diaphragm 20 and causes a pressure loss is provided. Therefore, the connection pump 28 is arranged downstream of the resistance applying means 23 and constitutes a pulse pressure attenuating means for attenuating the liquid pressure of the solution in the downstream line L2. In the present embodiment, the blood pressure passing through the connection pump 28 becomes approximately 1 OmmHg, which is equivalent to the left atrial pressure of the human body. Is set to
なお、 接続ポンプ 2 8を調整チューブ 2 5と連結チューブ 2 6との間に設けて もよい。  The connection pump 28 may be provided between the adjustment tube 25 and the connection tube 26.
前記保持装置 1 0 Bは、 前記循環装置 1 0 A内を流れる溶液を導き、 当該溶液 に浸潰させた状態の異種生体弁を保持する装置である。 本実施形態では、 前記脱 細胞化処理及び細胞播種処理を行う異種生体弁として、 ブタの大動脈弁が適用さ れている。 このため、 保持装置 1 0 Bは、 人体の大動脈弁部分の血流状態に近い 循環路 1 3の部位、 すなわち、 上流側チューブ 2 4の途中に接続されている。 な お、 以下においては、 説明の便宜上、 上流側チューブ 2 4のうち保持装置 1 0 B を境界として上流側を入口側チューブ 2 4 A、 同下流側を出口側チューブ 2 4 B と称する。 なお、 保持装置 1 0 Bは、 処理対象となる生体組織毎に、 当該生体組 織を流れる血液の状態 (圧力等) に近い循環路 1 3内の部位等を適宜選択して、 自由に接続することができる。  The holding device 10B is a device that guides a solution flowing in the circulation device 10A and holds a heterogeneous biological valve that is immersed in the solution. In the present embodiment, a porcine aortic valve is applied as a heterogeneous biological valve for performing the decellularization process and the cell seeding process. For this reason, the holding device 10B is connected to a portion of the circulation path 13 near the blood flow state of the aortic valve portion of the human body, that is, in the middle of the upstream tube 24. In the following, for convenience of explanation, the upstream side of the upstream side tube 24 will be referred to as the inlet side tube 24A and the downstream side thereof will be referred to as the outlet side tube 24B with the holding device 10B as a boundary. The holding device 10B can be freely connected to each part of the living tissue to be processed by appropriately selecting a part or the like in the circulation path 13 that is close to the state (pressure or the like) of the blood flowing through the living tissue. can do.
この保持装置 1 0 Bは、 図 3に示されるように、 所定面 Fに設置可能な平板状 のベース 3 3と、 このベース 3 3の上方に位置する装置本体 3 5と、 ベース 3 3 の左右両側に立設されて装置本体 3 5を支持する支持部材 3 6 , 3 6とを備えて 構成されている。  As shown in FIG. 3, the holding device 10 B includes a flat base 33 that can be installed on a predetermined surface F, a device body 35 located above the base 33, and a base 33. Support members 36, 36 erected on the left and right sides to support the apparatus main body 35 are provided.
前記装置本体 3 5は、 正面視六角形状をなす箱型のカバー 3 8と、 このカバー 3 8の内部に設けられ、 前記異種生体弁 Vを保持する保持体 3 9と、 この保持体 The device main body 35 includes a box-shaped cover 38 having a hexagonal shape in a front view, a holder 39 provided inside the cover 38, and holding the heterogeneous biological valve V, and a holder
3 9を支持するとともに、 カバー 3 8の内壁に沿って配置された平面視八角形状 の枠部材 4 0と、 カバー 3 8の背面側に設けられ、 保持体 3 9に保持された異種 生体弁 Vに向かってマイクロ波を照射する照射装置 4 2 (照射手段) と、 枠部材An octagonal frame member 40 in a plan view, which is arranged along the inner wall of the cover 38, and a heterogeneous biological valve provided on the back side of the cover 38 and held by the holder 39. Irradiation device 4 2 (irradiation means) for irradiating microwave toward V, and frame member
4 0の左右両側からカバー 3 8を貫通して各支持部材 3 6 , 3 6方向に延びる支 持軸 4 4, 4 4と、 保持体 3 9に繋がる二本の導入チューブ 4 6及び排出チュー ブ 4 7とを備えて構成されている。 A support shaft 44, 44 extending in the direction of each support member 36, 36 penetrating the cover 38 from the left and right sides of 40, two introduction tubes 46 connected to the holder 39, and a discharge tube. 4 and 7 are provided.
前記カバー 3 8は、 図 4に示されるように、 所定形状の箱体を縦に二分したよ うな構成となっており、 手前側に位置する前カバー 5 1と、 後部側に位置する後 カバー 5 2とからなる。 これら前カバー 5 1及び後カバー 5 2の突合せ部分は、 前記支持軸 4 4, 4 4と交差する位置に形成されており、 各突合せ部分の外縁側 には、 当該外縁に略沿うフランジ面 5 4 , 5 4がそれぞれ形成されている。 これ ら各フランジ面 5 4, 5 4には、 図示省略したボルト等の揷通穴 5 5が多数形成 されており、 各フランジ面 5 4, 5 4同士を面接触した状態で、 前記ボルト等を 使って前カバー 5 1及び後カバー 5 2を一体化できるようになつている。 なお、 その状態から前記ボルトを外せば、 前カバー 5 1を後カバー 5 2から分離して取 り外し可能となる。 また、 後カバー 5 2の内部中央付近には、 前方に開放する桥 型をなすマイクロ波の照射口 5 7が形成されている。 この照射口 5 7は、 前方の 保持体 3 9 (図 1参照) に保持されている異種生体弁 Vに略相対する位置に形成 され、 後側に設けられた前記照射装置 4 2からのマイクロ波が、 照射口 5 7を通 じて前方の保持体 3 9内の異種生体弁 Vに照射されるようになっている。 また、 前カバー 5 1及び後カバー 5 2は、 照射口 5 7から保持体 3 9に向かってマイク 口波が照射されたときに、 当該マイクロ波が外部に漏出しないような形状及び構 造となっている。 なお、 前カバー 5 1の前端側には、 保持体 3 9の状態を透視可 能とし、 且つ、 マイクロ波の外部への漏出を阻止可能な公知の材料の扉板 5 9が 設けられている。 As shown in FIG. 4, the cover 38 has a configuration in which a box having a predetermined shape is vertically divided into two parts, and a front cover 51 located on the front side and a rear cover located on the rear side. 5 and 2 The abutting portion of the front cover 51 and the rear cover 52 is formed at a position intersecting the support shafts 44, 44, and the outer edge side of each abutting portion. Are formed with flange surfaces 54, 54 substantially along the outer edge. Each of these flange surfaces 54, 54 has a large number of through holes 55 for bolts and the like, not shown, and the flange surfaces 54, 54 are in contact with each other. The front cover 51 and the rear cover 52 can be integrated by using. If the bolt is removed from this state, the front cover 51 can be separated from the rear cover 52 and can be removed. Near the center of the inside of the rear cover 52, a rectangular microwave irradiation port 57 that opens forward is formed. The irradiation port 57 is formed at a position substantially opposite to the heterogeneous living body valve V held by the front holder 39 (see FIG. 1), and is provided with a micro-beam from the irradiation device 42 provided on the rear side. Waves are applied to the foreign body valve V in the holder 39 in front through the irradiation port 57. Further, the front cover 51 and the rear cover 52 have a shape and a structure such that the microwave does not leak to the outside when the microwave is irradiated from the irradiation port 57 toward the holder 39. Has become. At the front end side of the front cover 51, a door plate 59 of a known material that can see through the state of the holding body 39 and can prevent leakage of microwaves to the outside is provided. .
前記保持体 3 9は、 図 5に示されるように、 同図中左右方向に延びるアクリル 製の円筒部材 6 1と、 この円筒部材 6 1の同図中右端側に位置する流入部 6 2と 、 同左端側に位置する流出部 6 3と、 これら流入部 6 2及び流出部 6 3との間に 位置する異種生体弁 Vの設置空間 6 4とを備えて構成されている。 この保持体 3 9では、 後述するように、 前記各溶液が流入部 6 2から円筒部材 6 1内に流入し 、 設置空間 6 4を通って流出部 6 3から外部に排出されるようになっている。 前記円筒部材 6 1は、 延出方向両端側が開放しており、 当該各開放部位に流入 部 6 2及び流出部 6 3がセッ卜される。 また、 円筒部材 6 1の外周面には、 設置 空間 6 4に略相対する中央部分を除く全周に、 アルミニウム薄板 6 6が貼り付け られている。 このため、 照射装置 4 2 (図 3参照) からのマイクロ波は、 設置空 間 6 4に略相対する円筒部材 6 1の周壁中央領域のみ透過し、 当該領域内に前記 マイク口波を集中的に照射させることができるとともに、 設置空間 6 4よりも外 側に位置する部分の温度上昇を抑制することができる。  As shown in FIG. 5, the holding body 39 includes an acrylic cylindrical member 61 extending in the left-right direction in FIG. 5 and an inflow portion 62 located on the right end side of the cylindrical member 61 in FIG. An outflow portion 63 located on the left end side, and an installation space 64 for the heterogeneous biological valve V located between the inflow portion 62 and the outflow portion 63 are provided. In the holder 39, as described later, each of the solutions flows into the cylindrical member 61 from the inflow portion 62, and is discharged from the outflow portion 63 to the outside through the installation space 64. ing. Both ends of the cylindrical member 61 in the extending direction are open, and an inflow portion 62 and an outflow portion 63 are set in each of the open portions. Further, on the outer peripheral surface of the cylindrical member 61, an aluminum thin plate 66 is attached on the entire periphery except for a central portion substantially opposed to the installation space 64. For this reason, the microwave from the irradiation device 42 (see FIG. 3) passes only through the central region of the peripheral wall of the cylindrical member 61 substantially opposed to the installation space 64, and concentrates the microphone mouth wave in the region. In addition to the above, it is possible to suppress a rise in temperature in a portion located outside the installation space 64.
前記流入部 6 2は、 図 5及び図 6に示されるように、 円筒部材 6 1の外周面に 係合する端部材 6 8と、 この端部材 6 8の内側に位置する流路形成部材 6 9とを 備えている。 As shown in FIGS. 5 and 6, the inflow portion 62 is formed on the outer peripheral surface of the cylindrical member 61. An end member 68 to be engaged and a flow path forming member 69 located inside the end member 68 are provided.
前記端部材 6 8は、 図 6中左側が開放する有底容器状に設けられており、 同図 中右端側に位置する底壁 7 1と、 この底壁 7 1の周縁側に連なって当該底壁 7 1 に対して略垂直方向 (図 6中左方) に延びる側壁 7 2とからなる。 前記底壁 7 1 は、 その略中央に貫通穴 7 3が形成されている。 前記側壁 7 2は、 その開放側内 周部分にねじ溝 7 4が形成されており、 このねじ溝 7 4は、 円筒部材 6 1の外周 面に形成されたねじ溝 7 5に係合するようになつている。  The end member 68 is provided in the shape of a bottomed container having the left side open in FIG. 6, and a bottom wall 71 located on the right end side in FIG. A side wall 72 extends substantially perpendicularly to the bottom wall 71 (leftward in FIG. 6). The bottom wall 71 has a through hole 73 formed substantially at the center thereof. The side wall 72 has a thread groove 74 formed on an inner peripheral portion on the open side. The thread groove 74 engages with a thread groove 75 formed on the outer peripheral surface of the cylindrical member 61. It has become.
前記流路形成部材 6 9は、 図 5〜図 7に示されるように、 円錐に近似した形状 をなす中空の円錐管 7 7と、 この円錐管 7 7の内部に挿入される挿入管 7 8とか らなる。  As shown in FIGS. 5 to 7, the flow path forming member 69 includes a hollow conical tube 77 having a shape similar to a cone, and an insertion tube 78 inserted into the conical tube 77. It consists of
前記円錐管 7 7は、 設置空間 6 4側に位置する円筒状の頂部 7 9と、 この頂部 7 9から図 6中右方に向かって次第に外側に拡開し、 途中から同図中左右方向に 延びる形状のスカート状部 8 0と、 このスカート状部 8 0の図 6中右端側に連な るフランジ状の裾部 8 1と、 これら各部 7 9〜 8 1の内側に形成されて、 図 6中 左右方向に貫通する内部空間 8 3とを備えて構成されている。 なお、 以下におい て、 流路形成部材 6 9に関する説明では、 特に明記しない限り、 「先端側」 とは 、 円錐管 7 7の頂部 7 9側を意味し、 「後端側」 とは、 円錐管 7 7の裾部 8 1側 を意味する。  The conical tube 77 has a cylindrical top 79 located on the installation space 64 side, and gradually expands outward from the top 79 to the right in FIG. A skirt-shaped portion 80 extending in the shape of a skirt, a skirt-shaped flange 81 connected to the right end side in FIG. 6 of the skirt-shaped portion 80, and formed inside these portions 79-81, In FIG. 6, an inner space 83 penetrating in the left-right direction is provided. In the following description of the flow path forming member 69, unless otherwise specified, the “front end side” means the top part 79 side of the conical tube 77, and the “rear end side” means Means the hem 8 1 side of tube 77.
前記頂部 7 9の外周面には、 一条のストツパ溝 8 5が周方向に沿って形成され ている。 このストッパ溝 8 5には、 図 5に示されるように、 異種生体弁 Vとして の大動脈弁を内部に含むブタの血管組織 Bの端部側が被せられた上で、 図示しな い結束部材等でクランプされることで、 血管組織 Bにおける頂部 7 9からの離脱 を規制可能となる。  A single stop groove 85 is formed on the outer peripheral surface of the top portion 79 along the circumferential direction. As shown in FIG. 5, the stopper groove 85 is covered with an end portion of porcine vascular tissue B including an aortic valve as a heterogeneous living body valve V, and a binding member not shown. By being clamped at, the detachment of the vascular tissue B from the top 79 can be regulated.
前記スカート状部 8 0は、 裾部 8 1側の領域の外径が円筒部材 6 1の内径と略 同一に設定されており、 裾部 8 1側の領域が円筒部材 6 1内に略ぴったりと収容 されるようになっている。  In the skirt-shaped portion 80, the outer diameter of the region on the hem portion 81 side is set to be substantially the same as the inner diameter of the cylindrical member 61, and the region on the hem portion 81 side is almost exactly inside the cylindrical member 61. Is to be contained.
前記裾部 8 1は、 円環状に設けられ、 その外径が端部材 6 8の側壁 7 2の内径 と略同一に設定されることで、 端部材 6 8内に略ぴったりと収容されるようにな つている。 また、 裾部 8 1の内周面には、 ねじ溝 8 7が形成されている。 The skirt portion 81 is provided in an annular shape, and the outer diameter thereof is set to be substantially the same as the inner diameter of the side wall 72 of the end member 68 so that the hem portion 81 is almost exactly accommodated in the end member 68. Nana I'm wearing A thread groove 87 is formed on the inner peripheral surface of the skirt portion 81.
前記内部空間 8 3は、 図 6中右端側が開放し、 当該開放部分から挿入管 7 8の 先端側が挿入される基部空間 8 9と、 この基部空間 8 9に連通して先端側に形成 された開放部 9 0に延びる主流路 9 1と、 この主流路 9 1の周囲四箇所に設けら れるとともに、 基部空間 8 9に連通する副流路 9 2とを備えて構成されている。 前記基部空間 8 9は、 挿入管 7 8の先端形状に沿った内部形状に設けられて当該 挿入管 7 8を略ぴったりと受容できるようになつている。 前記主流路 9 1は、 特 に限定されるものではないが、 頂部 7 9側から内部に向かって次第に内径が小さ くなるテーパ穴状に形成されている。 前記副流路 9 2は、 図 7に示されるように 、 スカート状部 8 0の傾斜面上において、 略等間隔となる周方向四箇所位置で開 放するようになっている。 なお、 本実施形態では、 これら副流路 9 2の開口面積 を総合した総開口面積が主流路 9 1の開口面積と略同一に設定されている。 前記挿入管 7 8は、 図 6に示されるように、 球面状の外形をなす先端側の球面 状部 9 4と、 この球面状部 9 4よりも小さな外径を有し、 当該球面状部 9 4に段 差を介して連なる円筒状部 9 5と、 この円筒状部 9 5の外周面に相対回転可能に 挿通された外筒部 9 6と、 この外筒部 9 6の後端側に連なるとともに、 端部材 6 8の貫通穴 7 3の内径よりも小さな外径を有する円環状の鍔部 9 7と、 球面状部 9 4及び円筒状部 9 5の内部に形成された内部空間 9 9とを備えて構成されてい る。 前記外筒部 9 6の外周面には、 ねじ溝 1 0 1が形成されており、 このねじ溝 1 0 1は、 前記裾部 8 1の内周部分に形成されたねじ溝 8 7に係合し、 これによ つて、 挿入管 7 8が円錐管 7 7に取り付けられる。  The inner space 83 is opened at the right end side in FIG. 6, a base space 89 into which the distal end side of the insertion tube 78 is inserted from the open portion, and formed at the distal end side in communication with the base space 89. A main flow path 91 extending to the open portion 90 and sub flow paths 92 provided at four locations around the main flow path 91 and communicating with the base space 89 are provided. The base space 89 is provided in an internal shape along the distal end shape of the insertion tube 78 so that the insertion tube 78 can be received almost exactly. Although not particularly limited, the main flow passage 91 is formed in a tapered hole shape whose inner diameter gradually decreases from the top 79 side toward the inside. As shown in FIG. 7, the sub-channels 92 are opened at four positions in the circumferential direction at substantially equal intervals on the inclined surface of the skirt portion 80. In the present embodiment, the total opening area obtained by combining the opening areas of the sub flow paths 92 is set to be substantially the same as the opening area of the main flow path 91. As shown in FIG. 6, the insertion tube 78 has a spherical portion 94 on the distal end side having a spherical outer shape, and an outer diameter smaller than the spherical portion 94. A cylindrical portion 95 connected to the cylindrical portion 95 through a step, an outer cylindrical portion 96 rotatably inserted into the outer peripheral surface of the cylindrical portion 95, and a rear end side of the outer cylindrical portion 96. And an annular space formed inside the spherical portion 94 and the cylindrical portion 95 having an annular flange 97 having an outer diameter smaller than the inner diameter of the through hole 73 of the end member 68. 9 and 9 are provided. A screw groove 101 is formed on the outer peripheral surface of the outer cylindrical portion 96, and the screw groove 101 is related to a screw groove 87 formed on an inner peripheral portion of the skirt portion 81. Thus, the insertion tube 78 is attached to the conical tube 77.
前記内部空間 9 9は、 前記各溶液が通過する基部流路 1 0 3と、 この基部流路 1 0 3に連通して球面状部 9 4の先端側で開放する先端穴 1 0 4と、 当該先端穴 1 0 4の周囲四箇所に設けられるとともに、 基部流路 1 0 3に連通する側穴 1 0 5とからなる。 前記先端穴 1 0 4は、 挿入管 7 8の先端側が円錐管 7 7の内部空 間 8 3内に受容されると、 主流路 9 1に常時連通するようになっている。 前記側 穴 1 0 5は、 球面状部 9 4の表面上において、 略等間隔となる周方向四箇所位置 で開放するようになっている。 これら側穴 1 0 5は、 挿入管 7 8が円錐管 7 7内 に受容されたときに、 それらの相対回転により、 すべての副流路 9 2に完全に連 通する位置 (最大連通位置) 力 ら、 すべての副流路 9 2に対して完全に遮断する 位置 (遮断位置) まで回転変位可能となっている。 従って、 前記挿入管 7 8は、 全ての副流路 9 2から流出する各溶液の総流量を、 主流路 9 1から流出する各溶 液の流量に略同一とする位置から、 全ての副流路 9 2から流出する溶液の総流量 を略ゼロにする位置まで、 副流路 9 2から流出する各溶液の流量調整を可能とす る可変絞り弁と同等の機能を有する。 The internal space 99 includes a base passage 103 through which the respective solutions pass, a tip hole 104 communicating with the base passage 103 and opening at the tip side of the spherical portion 94, It is provided at four places around the tip hole 104 and includes a side hole 105 communicating with the base passage 103. When the distal end side of the insertion tube 78 is received in the internal space 83 of the conical tube 77, the distal end hole 104 is always in communication with the main flow path 91. The side holes 105 are opened at four positions in the circumferential direction at substantially equal intervals on the surface of the spherical portion 94. These side holes 105 are completely connected to all sub-channels 92 by their relative rotation when the insertion tube 78 is received in the conical tube 77. Rotational displacement is possible from the passing position (maximum communication position) to the position (blocking position) where all sub-flow paths 92 are completely blocked. Therefore, the insertion pipes 78 move all the sub-flows from a position where the total flow rate of each solution flowing out of all the sub-flow paths 92 is almost the same as the flow rate of each solution flowing out of the main flow path 91. It has the same function as a variable throttle valve that can adjust the flow rate of each solution flowing out of the sub flow path 92 up to a position where the total flow rate of the solution flowing out of the flow path 92 becomes substantially zero.
前記流出部 6 3は、 図 5、 図 8及び図 9に示されるように、 前記流入部 6 2に 対し、 一部形状が異なるものの実質的に同一となる構成要素を備え、 略同一の作 用を奏するようになつている。  As shown in FIGS. 5, 8, and 9, the outflow portion 63 has substantially the same components as the inflow portion 62, although the shapes are partially different from each other. It has come to play.
従って、 以下では、 流入部 6 2と同一若しくは同等の流出部 6 3の構成要素に 対し、 同一符号を用いて説明を省略若しくは簡略にし、 流入部 6 2との相違点の みについて補足説明する。  Therefore, in the following, for the components of the outflow portion 63 that are the same as or similar to the inflow portion 62, the description will be omitted or simplified using the same reference numerals, and only the differences from the inflow portion 62 will be supplementarily described. .
流出部 6 3の端部材 6 8は、 ナット状に設けられており、 その略中央に図 8中 左右方向に貫通するねじ穴 1◦ 7が形成されている。  The end member 68 of the outflow portion 63 is provided in a nut shape, and a screw hole 1 • 7 penetrating in the left-right direction in FIG.
流出部 6 3の円錐管 7 7は、 スカート状部 8 0に連なる裾部 8 1の形状が流入 部 6 2に対して相違する。 すなわち、 ここでの裾部 8 1は、 スカート状部 8 0の 最大外径よりも小さな外径をなすねじ筒状に形成されており、 その外周部分が、 端部材 6 8のねじ穴 1 0 7が係合するようになつている。 また、 円錐管 7 7には 、 図示しない温度センサ等を挿通させるための案内路 1 0 9が形成されている。 この案内路 1 0 9は、 内部空間 8 3の外側に形成されており、 裾部 8 1の後端側 からスカート状部 8 0の傾斜面に貫通する第 1の案内路 1 0 9 Aと、 この第 1の 案内路 1 0 9 Aの途中から主流路 9 1に向かって延びる第 2の案内路 1 0 9 Bと からなる。 なお、 これら案内路 1 0 9 A, 1 0 9 Bの全部若しくは何れか一方を 省略することも可能である。  The conical tube 77 of the outflow portion 63 differs from the inflow portion 62 in the shape of the skirt portion 81 connected to the skirt portion 80. That is, the skirt portion 81 here is formed in a screw cylindrical shape having an outer diameter smaller than the maximum outer diameter of the skirt-shaped portion 80, and its outer peripheral portion is formed in the screw hole 1 of the end member 68. 07 are engaged. The conical tube 77 has a guide passage 109 through which a temperature sensor (not shown) is inserted. The guideway 109 is formed outside the internal space 83 and has a first guideway 109A that penetrates from the rear end of the skirt 81 to the slope of the skirt 80. And a second guideway 109B extending from the middle of the first guideway 109A toward the main flow passage 91. It is also possible to omit all or one of the guideways 109A and 109B.
流出部 6 3の挿入管 7 8は、 その全体形状が流入部 6 2に対して相違する。 す なわち、 ここでの揷入管 Ί 8は、 前記球面状部 9 4の代わりに、 円筒状部 9 5が 先端側に向かって延設されたような形状に設けられている。 ここで、 前記先端穴 1 0 4は、 円筒状部 9 5の先端側に設けられ、 前記側穴 1 0 5は、 円筒状部 9 5 の先端側の外周面四箇所に周方向に略等間隔で設けられている。 なお、 図 5、 図 6及び図 8中、 黒塗りの部材は、 シール用の Oリングである。 前記枠部材 40は、 図 3に示されるように、 その内側で保持体 39を回転可能 に支持するようになっている。 すなわち、 各端部材 68, 68の略中央から外側 に突出した前記各挿入管 78, 78は、 管ナット 1 1 1, 1 1 1を介して回転管 1 12, 1 12に連結されるようになっている。 当該回転管 1 12, 1 1 2は、 枠部材 40の一部に取り付けられた図示しないベアリング内を通って枠部材 40 の外方にそれぞれ突出するようになっている。 ここで、 保持体 39は、 枠部材 4 0の内側で、 各回転管 1 12, 1 12が図 3中斜め 45度方向に延出する向きで 取り付けられており、 回転管 1 1 2, 1 12を中心として回転 (自転) 可能とな る。 ここで、 枠部材 40の外面のうち、 図 3中右上の流出部 63側の回転管 1 1 2が突出する部位近傍には、 モータ、 歯車等からなる自転用駆動手段 1 14が設 けられ、 当該自転用駆動手段 1 14の作動によって、 保持体 39が枠部材 40の 内側で自転するようになっている。 また、 各回転管 1 12, 1 12は、 枠部材 4 0側に固定された回転継手 1 15を介して、 導入チューブ 46、 排出チューブ 4 7にそれぞれ接続されている。 ここでの回転継手 1 15は、 接続対象となる二つ の管状部材 (回転管 1 12, 1 12とチューブ 46, 47) を相対回転可能に連 結して当該管状部材の内部を連通させる公知の継手が用いられている。 これによ り、 自転用駆動手段 1 14の作動によって各回転管 1 12, 1 12が回転されて も、 当該回転力が各チューブ 46, 47に伝達されないようになっている。 前記照射装置 42は、 マイク口波の発生源として図示しないマグネト口ンを利 用した公知の装置であり、 ここでは詳細な説明を省略する。 The overall shape of the insertion tube 78 of the outflow portion 63 differs from that of the inflow portion 62. That is, the inlet pipe 8 here is provided in such a shape that a cylindrical portion 95 extends toward the distal end side instead of the spherical portion 94. Here, the tip hole 104 is provided on the tip side of the cylindrical portion 95, and the side hole 105 is provided at approximately four places on the outer peripheral surface on the tip side of the cylindrical portion 95 in the circumferential direction. It is provided at intervals. In FIGS. 5, 6, and 8, black members are O-rings for sealing. As shown in FIG. 3, the frame member 40 rotatably supports the holding body 39 inside thereof. That is, the insertion pipes 78, 78 protruding outward from the approximate centers of the end members 68, 68 are connected to the rotary pipes 112, 112 via pipe nuts 111, 111, respectively. Has become. The rotating tubes 1 12 and 112 are configured to protrude outward from the frame member 40 through bearings (not shown) attached to a part of the frame member 40. Here, the holding body 39 is attached to the inside of the frame member 40 so that the rotating pipes 1 12 and 1 12 extend obliquely at 45 degrees in FIG. Rotation (rotation) around 12 is possible. Here, on the outer surface of the frame member 40, near the portion where the rotary tube 112 protrudes on the outflow portion 63 side on the upper right in FIG. By the operation of the rotation driving means 114, the holding body 39 rotates inside the frame member 40. In addition, each of the rotary pipes 112 and 112 is connected to an inlet tube 46 and a discharge tube 47 via a rotary joint 115 fixed to the frame member 40 side. The rotary joint 115 here is a known joint that connects two tubular members (rotating pipes 112, 112 and tubes 46, 47) to be connected to each other so as to be rotatable relative to each other and to communicate the inside of the tubular member. Is used. Thus, even if each of the rotary tubes 112 and 112 is rotated by the operation of the rotation driving means 114, the rotational force is not transmitted to each of the tubes 46 and 47. The irradiating device 42 is a known device using a magnet port (not shown) as a source of the microphone port wave, and a detailed description thereof will be omitted.
前記支持軸 44は、 中空のパイプ状をなし、 その内部に導入チューブ 46及び 排出チューブ 47の端部が収容されるようになっている。 すなわち、 支持軸 44 , 44の外周面のうち、 各支持部材 36, 36の内側近傍に位置する部位に、 ス ロット穴 1 17が形成されており、 当該スロット穴 1 1 7に、 各回転管 1 12, 1 12から延びる各チューブ 46, 47が収容されるようになっている。  The support shaft 44 has a hollow pipe shape, and accommodates the ends of an introduction tube 46 and a discharge tube 47 therein. That is, a slot hole 117 is formed in a portion of the outer peripheral surface of the support shafts 44, 44 which is located near the inside of each support member 36, 36, and each rotary pipe 117 is formed in the slot hole 117. Tubes 46, 47 extending from 112, 112 are accommodated.
前記支持部材 36は、 支持軸 44, 44を回転可能に支持する内側の第 1支持 部 120と、 この第 1支持部 120の外側に設けられ、 前述した回転継手 1 15 と同様の構造の回転継手 121を支持する継手支持部 122とにより構成されて いる。 ここで、 図 3中左側の支持部材 3 6に支持された回転継手 1 2 1は、 同左 側の支持軸 4 4の内部に挿入された排出チューブ 4 7と前記出口側チューブ 2 4 Bとを相対回転可能に接続するようになっている。 一方、 図 3中右側の支持部材 3 6に支持された回転継手 1 2 1は、 同右側の支持軸 4 4の内部に挿入された導 入チューブ 4 6と前記入口側チューブ 2 4 Aとを相対回転可能に接続するように なっている。 更に、 図 3中右側の支持部材 3 6には、 モータ、 歯車等からなる公 転用駆動手段 1 2 4が設けられており、 当該公転用駆動手段 1 2 4の動作によつ て、 各支持軸 4 4, 4 4を回転させることができるようになつている。 このよう に、 各支持軸 4 4, 4 4が回転すると、 当該支持軸 4 4 , 4 4回りに枠部材 4 0 とともに保持体 3 9が回転 (公転) する。 なお、 支持軸 4 4に収容される導入チ ユーブ 4 6及び排出チューブ 4 7は、 前記公転時にベース 3 3に干渉しないよう に、 当該ベース 3 3と支持軸 4 4との間の空間内を通過するような長さ及び配置 となっている。 このような公転によって、 図 1 0に示されるように、 同図中 (A ) の状態から支持軸 4 4が 1 8 0度回転 (半回転) すると、 同 (B ) に示される ように、 枠部材 4 0が回転して保持体 3 9の上下両側が反転することになる。 つ まり、 保持体 3 9は、 前述した自転用駆動手段 1 1 4による自転動作の他に、 公 転用駆動手段 1 2 4による公転動作も可能で、 当該公転動作時には、 保持された 血管組織 Bの上下両側を反転させる方向に回転する。 なお、 図 3中符号 1 2 5は 、 公転用駆動手段 1 2 4の作動スィッチである。 また、 溶液の温度上昇を抑制す るために、 導入チューブ 4 6の周囲を冷却する冷却手段を設けてもよい。 The support member 36 is provided inside the first support portion 120 that rotatably supports the support shafts 44, 44, and is provided outside the first support portion 120, and has a rotation structure similar to that of the rotary joint 115 described above. And a joint support portion 122 that supports the joint 121. I have. Here, the rotary joint 1 21 supported by the support member 36 on the left side in FIG. 3 connects the discharge tube 47 inserted into the support shaft 44 on the left side and the outlet tube 24 B. They are connected so that they can rotate relative to each other. On the other hand, the rotary joint 12 1 supported by the support member 36 on the right side in FIG. 3 connects the introduction tube 46 inserted into the support shaft 44 on the right side and the inlet side tube 24 A. They are connected so that they can rotate relative to each other. Further, the driving member 124 for revolving composed of a motor, gears, etc. is provided on the support member 36 on the right side in FIG. 3. The shafts 4 4 and 4 4 can be rotated. In this way, when the support shafts 44, 44 rotate, the holder 39 rotates (revolves) together with the frame member 40 around the support shafts 44, 44. In addition, the introduction tube 46 and the discharge tube 47 accommodated in the support shaft 44 are provided in the space between the base 33 and the support shaft 44 so as not to interfere with the base 33 during the revolution. The length and arrangement are such that they can pass. As shown in FIG. 10, when the support shaft 44 rotates 180 degrees (half a rotation) from the state of (A) in FIG. 10 as shown in FIG. 10, as shown in FIG. 10 (B), The frame member 40 rotates and the upper and lower sides of the holder 39 are inverted. In other words, the holding body 39 can perform the revolving operation by the revolving driving means 124 in addition to the revolving operation by the revolving driving means 114 described above. At the time of the revolving operation, the held vascular tissue B Rotate in the direction to flip the upper and lower sides. Reference numeral 125 in FIG. 3 denotes an operation switch of the driving means 124 for revolution. Further, a cooling means for cooling the periphery of the introduction tube 46 may be provided in order to suppress the temperature rise of the solution.
次に、 以上のように構成された保持装置 1 0 Bに対する異種生体弁 Vのセット 手順と当該セット時の保持装置 1 0 Bの作用について説明する。  Next, a procedure for setting the heterogeneous living body valve V to the holding device 10B configured as described above and an operation of the holding device 10B at the time of the setting will be described.
先ず、 図 3の状態から、 回転管 1 1 2と回転継手 1 1 5の接合部ィ を外した上 で、 保持体 3 9に対して管ナツト 1 1 1を回転移動させることで保持体 3 9を回 転管 1 1 2 , 1 1 2から取り外し、 各端部材 6 8 , 6 8を外して、 流入部 6 2及 び流出部 6 3を円筒部材 6 1から取り出す。 そして、 図 5に示されるように、 流 入部 6 2及び流出部 6 3の各頂部 7 9, 7 9を相対させた状態で、 当該各頂部 7 9 , 7 9に大動脈弁 Vを含むブタの血管組織 Bの両端側を嵌め込み、 ストッパ溝 8 5 , 8 5上で図示省略した結束部材を使ってそれぞれクランプする。 ここでは 、 血管組織 Bが、 一方向弁である大動脈弁 Vにより、 図 5中右から左への各溶液 の流れを許容する向きでセットされる。 その後、 血管組織 Bを介して相互に連結 された流入部 6 2及び流出部 6 3を再び円筒部材 6 1の中に戻し、 当該円筒部材 6 1に各端部材 6 8, 6 8を取り付け、 図 3に示されるように、 保持体 3 9を再 び回転管 1 1 2 , 1 1 2に取り付けて血管組織 Bのセットが完了する。 First, from the state shown in FIG. 3, after removing the joint between the rotary pipe 1 12 and the rotary joint 1 15, the pipe nut 111 is rotated with respect to the holder 39 so that the holder 3 is rotated. 9 is removed from the rotating tubes 1 1 2 and 1 1 2, the end members 6 8 and 6 8 are removed, and the inflow portion 6 2 and the outflow portion 6 3 are taken out from the cylindrical member 6 1. Then, as shown in FIG. 5, with the tops 79, 79 of the inflow section 62 and the outflow section 63 facing each other, the pigs including the aortic valve V at the respective tops 79, 79 are shown. Both ends of the vascular tissue B are fitted, and clamped on the stopper grooves 85, 85 using a binding member not shown. here The vascular tissue B is set by the aortic valve V, which is a one-way valve, in a direction that allows the flow of each solution from right to left in FIG. Thereafter, the inflow portion 62 and the outflow portion 63 interconnected via the vascular tissue B are returned into the cylindrical member 61 again, and the end members 68, 68 are attached to the cylindrical member 61, As shown in FIG. 3, the holder 39 is again attached to the rotating tubes 112, 112, and the setting of the vascular tissue B is completed.
次に、 脱細胞化処理を行う場合、 前記細胞除去溶液が導入チューブ 4 6側から 回転管 1 1 2を通って流入部 6 2の挿入管 7 8内に供給される。 この際、 図 5に 示されるように、 流入部 6 2及び流出部 6 3の双方において、 挿入管 7 8, 7 8 は、 その側穴 1 0 5と円錐管 7 7の副流路 9 2とが完全に連通する位置にある。 すると、 流入部 6 2側に供給された細胞除去溶液は、 当該流入部 6 2の先端穴 1 0 4及び主流路 9 1を通って血管組織 B内に入り、 その内部の大動脈弁 Vを通過 して流出部 6 3の主流路 9 1に送り込まれる他、 それと略同一の流量で、 流入部 6 2の側穴 1 0 5及び副流路 9 2を通って、 血管,組織 Bの外側をバイパスするよ うに円筒部材 6 1の内部空間から流出部 6 3の副流路 9 2に送り込まれる。 そし て、 流出部 6 3の主流路 9 1及び副流路 9 2に流れた細胞除去溶液は、 流出部 6 3の揷入管 7 8内から図 3の回転管 1 1 2を通って排出チューブ 4 7側に排出さ れる。 従って、 流入部 6 2及び流出部 6 3にそれぞれ設けられた主流路 9 1及び 先端穴 1 0 4は、 管状の生体糸且織 (血管組織 B ) の内側を介して連通する第 1の 流路を構成し、 流入部 6 2及び流出部 6 3にそれぞれ設けられた副流路 9 2及び 側穴 1 0 5は、 前記生体組織 (血管組織 B ) の外側を介して連通する第 2の流路 を構成することになる。  Next, when performing the decellularization treatment, the cell removing solution is supplied from the introduction tube 46 side to the insertion tube 78 of the inflow portion 62 through the rotary tube 112. At this time, as shown in FIG. 5, in both the inflow section 62 and the outflow section 63, the insertion pipes 78, 78 are provided with the side holes 105 and the sub-flow passages 92 of the conical pipe 77, respectively. Are in a position where they can completely communicate with each other. Then, the cell removing solution supplied to the inflow portion 62 enters the vascular tissue B through the tip hole 104 and the main flow passage 91 of the inflow portion 62, and passes through the aortic valve V therein. In addition to being sent to the main flow passage 91 of the outflow portion 63 and flowing through the side hole 105 and the sub flow passage 92 of the inflow portion 62 at almost the same flow rate, the outside of the blood vessel and the tissue B is It is sent from the internal space of the cylindrical member 61 to the sub flow path 92 of the outflow part 63 so as to bypass. Then, the cell-removing solution flowing in the main flow path 91 and the sub flow path 92 of the outflow section 63 flows from the inlet pipe 78 of the outflow section 63 through the rotary pipe 112 of FIG. 47 Discharged to the 7 side. Therefore, the main flow passage 91 and the tip hole 104 provided in the inflow portion 62 and the outflow portion 63, respectively, are connected to the first flow passage through the inside of the tubular living tissue (vascular tissue B). The sub-flow channel 92 and the side hole 105 provided in the inflow portion 62 and the outflow portion 63 respectively communicate with the second through the outside of the living tissue (vascular tissue B). This constitutes a flow path.
また、 以上の脱細胞化処理を行う場合には、 前記照射装置 4 2及び自転用駆動 手段 1 1 4が作動し、 保持体 3 9に保持された血管組織 Bに向かってマイクロ波 を照射しながら、 保持体 3 9を自転させる。 これによつて、 血管組織 Bの周方向 全域に亘つてムラ無く脱細胞化処理を行うことが可能になる。 この際、 第 1及び 第 2の案内路 1 0 9 A, 1 0 9 B (図 5等参照) に図示しない温度センサを挿入 し、 血管組織 Bの内外における溶液温度を計測しながら行うとよレ、。 すなわち、 この場合には、 血管組織 Bの内外両側で温度差が生じないように、 当該内外両側 で細胞除去溶液が略同一流量で流れるが、 第 1及び第 2の案内路 1 0 9 A, 1 0 9 Bに図示しない温度センサを挿入することで、 前記内外両側で温度差が生じて いないかの確認を行うことができる。 なお、 照射装置 4 2は、 前記内外両側の温 度が人間の体温程度 (例えば、 3 7 °C) より上昇したときに、 マイクロ波の照射 を自動停止する一方、 前記体温程度より下降したときに、 マイクロ波の照射を自 動的に開始するようになっている。 また、 本実施形態の照射装置 4 2は、 周波数 が 2 . 4 5 G H z、 出力が O W〜l 2 0 0 W程度のマイクロ波を照射可能となる ものを用いている。 なお、 温度センサは、 排出チューブ 4 7の途中に形成した穴 から前記第 1の流路内に導くように配置してもよい。 When performing the above-described decellularization treatment, the irradiation device 42 and the rotation driving means 114 are operated to irradiate the microwave to the vascular tissue B held by the holder 39. While rotating, the holder 39 rotates. As a result, it is possible to perform the decellularization process evenly over the entire circumferential direction of the vascular tissue B. At this time, it is preferable to insert a temperature sensor (not shown) into the first and second guide paths 109A and 109B (see FIG. 5 and the like) and measure the solution temperature inside and outside the vascular tissue B. Les ,. That is, in this case, the cell removal solution flows at substantially the same flow rate on both the inner and outer sides of the vascular tissue B so that a temperature difference does not occur on both the inner and outer sides, but the first and second guide paths 109 A, Ten By inserting a temperature sensor (not shown) into 9B, it is possible to confirm whether or not there is a temperature difference between the inside and outside. The irradiation device 42 automatically stops microwave irradiation when the temperature on the inside and outside both rises above the human body temperature (for example, 37 ° C.), and when the temperature falls below the body temperature. In addition, microwave irradiation is automatically started. The irradiation device 42 of the present embodiment uses a device capable of irradiating a microwave having a frequency of 2.45 GHz and an output of about OW to 1200 W. Note that the temperature sensor may be arranged so as to be guided into the first flow path from a hole formed in the middle of the discharge tube 47.
一方、 前記細胞播種処理を行う場合には、 照射装置 4 2によるマイクロ波の照 射及び保持体 3 9の自転が停止する。 そして、 保持体 3 9内の各挿入管 7 8 , 7 8は、 図 5の状態から、 鍔部 9 7を回転して緩めた上で、 円筒状部 9 5を回転す ることで、 側穴 1 0 5 (図 5等参照) と副流路 9 2とが完全に遮断する位置に変 えられる。 以上のようにした後、 前記細胞含有溶液が流入部 6 2の挿入管 7 8内 に供給され、 流入部 6 2の先端穴 1 0 4及び主流路 9 1を通って血管組織 B内に 入り、 その内部の大動脈弁 Vを通過して流出部 6 3の主流路 9 1に送り込まれ、 流出部 6 3の揷入管 7 8側から排出される。 この際、 各挿入管 7 8, 7 8が前記 遮断位置にあるため、 前述の脱細胞化処理の時と異なり、 血管組織 Bの外側には 、 細胞含有溶液が全く流れない。  On the other hand, when the cell seeding process is performed, the irradiation of the microwave by the irradiation device 42 and the rotation of the holder 39 are stopped. Then, the respective insertion pipes 78 and 78 in the holding body 39 are rotated from the state shown in FIG. The hole 105 (see FIG. 5 and the like) is changed to a position where the sub flow path 92 is completely shut off. After the above, the cell-containing solution is supplied into the insertion tube 78 of the inflow portion 62, and enters the vascular tissue B through the distal end hole 104 of the inflow portion 62 and the main flow passage 91. After passing through the internal aortic valve V, it is fed into the main flow passage 91 of the outflow portion 63 and discharged from the inlet tube 78 side of the outflow portion 63. At this time, since each of the insertion tubes 78 and 78 is at the blocking position, the cell-containing solution does not flow outside the vascular tissue B at all, unlike the case of the aforementioned decellularization treatment.
また、 以上の細胞播種処理を行う場合には、 図 3の公転用駆動手段 1 2 4が作 動して、 保持体 3 9が枠部材 4 0とともに支持軸 4 4, 4 4回りに回転し、 これ により、 保持体 3 9は、 図 1 0に示されるように、 天地を逆転する方向に回転さ れる。 このような保持体 3 9の公転により、 重力の影響を排して、 細胞含有溶液 中の自己細胞を血管組織 Bにムラ無く付着させることができる。  In addition, when performing the above-described cell seeding treatment, the driving means for revolution 124 shown in FIG. 3 is operated, and the holder 39 rotates together with the frame member 40 around the support shafts 44, 44. As a result, the holder 39 is rotated in the direction to reverse the top and bottom, as shown in FIG. By such a revolution of the holder 39, the influence of gravity can be eliminated, and the autologous cells in the cell-containing solution can be uniformly attached to the vascular tissue B.
次に、 前記生体組織処理装置 1 0を使つた脱細胞方法及び細胞播種方法にっレ、 て図 1等を用いて説明する。  Next, the decellularization method and cell seeding method using the biological tissue processing apparatus 10 will be described with reference to FIG.
先ず、 ブタ等の動物から大動脈弁 Vを含む血管組織 Bを採取する。 そして、 前 述したように、 当該血管組織 Bを保持装置 1 0 Bにセットして、 生体組織処理装 置 1 0内に細胞除去溶液を注入し、 当該細胞除去溶液を循環させる。 ここで、 細 胞除去溶液として、 例えば、 デォキシコール酸 (胆汁酸)、 ドデシル硫酸ナトリ ゥム (S D S )、 トリ トン X _ 1 0 0等の界面活性剤が用いられる。 このとき、 生体組織処理装置 1 0内では、 次のようにして、 細胞除去溶液が人体の血流に近 似した流れの状態で循環することになる。 First, vascular tissue B including aortic valve V is collected from an animal such as a pig. Then, as described above, the vascular tissue B is set in the holding device 10B, the cell removing solution is injected into the biological tissue processing device 10, and the cell removing solution is circulated. Here, as the cell removing solution, for example, deoxycholic acid (bile acid), sodium dodecyl sulfate Surfactants such as PDS (SDS) and Triton X_100 are used. At this time, in the living tissue processing apparatus 10, the cell removing solution circulates in a state similar to the blood flow of the human body as follows.
図示しない所定のスィッチを投入すると、 図 1の吸送気装置 1 1が作動し、 駆 動ポンプ 1 2の拍動によって、 循環路 1 3内を細胞除去溶液が循環する。 すなわ ち、 駆動ポンプ 1 2から吐出した細胞除去溶液は、 人体の一般的な大動脈圧に略 相当する圧力で上流ライン L 1内を流れ、 当該上流ライン L 1の途中に設けられ た保持装置 1 0 B内を通って、 人体の末梢抵抗に相当する抵抗付与手段 2 3に達 する。 そして、 当該抵抗付与手段 2 3を通過した細胞除去溶液は、 接続ポンプ 2 8を通過した後、 人体の左心房圧に略相当する略 1 O mmH gの圧力となって駆 動ポンプ 1 2に流入する。  When a predetermined switch (not shown) is turned on, the suction / inhalation device 11 shown in FIG. 1 is operated, and the cell removing solution is circulated in the circulation path 13 by the pulsation of the drive pump 12. That is, the cell removing solution discharged from the drive pump 12 flows in the upstream line L1 at a pressure substantially equivalent to the general aortic pressure of the human body, and the holding device provided in the middle of the upstream line L1 It passes through 10 B and reaches resistance applying means 23 corresponding to the peripheral resistance of the human body. After passing through the resistance applying means 23, the cell removing solution passes through the connection pump 28, and then has a pressure of about 1 OmmHg, which is substantially equivalent to the left atrial pressure of the human body, and is supplied to the drive pump 12. Inflow.
この際、 保持装置 1 O Bでは、 保持体 3 9に保持された血管組織 Bの内外両側 を流れる細胞除去溶液は、 人体の大動脈内を流れる血流に略相当する流れが付与 されるとともに、 前述したように、 保持体 3 9の自転により、 血管組織 Bを回転 させながらマイクロ波が照射される。 これにより、 動物から採取した血管組織 B は、 各種の原細胞 (内皮細胞、 線維芽細胞、 平滑筋細胞) が除去され、 コラーゲ ン等からなる基質のみになる。 なお、 本実施形態では、 照射するマイクロ波の条 件を、 周波数 2 . 4 5 G H z、 出力 1 0 0 W〜5 0 0 W程度としているが、 本発 明は、 これに限らず、 血管組織 Bに対し、 人体に影響を与える変性を生じさせず 、 且つ、 所定の脱細胞効果が得られる限りにおいて、 出力を所定の範囲内で変え ることができるとともに、 他の周波数の電磁波、 音波等を照射することも可能で ある。 また、 細胞除去溶液に付与される流れとしては、 人体の血流に擬似しない 拍動流としてもよレ、。  At this time, in the holding device 1 OB, the cell removing solution flowing on the inside and outside of the vascular tissue B held by the holding body 39 is given a flow substantially equivalent to the blood flow flowing in the aorta of the human body, and As described above, by the rotation of the holder 39, the microwave is irradiated while rotating the vascular tissue B. As a result, the vascular tissue B collected from the animal has various progenitor cells (endothelial cells, fibroblasts, smooth muscle cells) removed, and becomes only a substrate composed of collagen and the like. In the present embodiment, the conditions of the irradiated microwave are set to a frequency of 2.45 GHz and an output of about 100 W to 500 W, but the present invention is not limited to this. As long as tissue B does not cause degeneration affecting the human body and can obtain a predetermined decellularization effect, the output can be changed within a predetermined range, and electromagnetic waves and sound waves of other frequencies can be obtained. Irradiation is also possible. Also, the flow applied to the cell removing solution may be a pulsating flow that does not simulate the blood flow of the human body.
そして、 生体組織処理装置 1 0内から細胞除去溶液を排出した後、 当該生体組 織処理装置 1 0内に生理食塩水を注入し、 当該生理食塩水を循環させることで装 置 1 0内を洗浄し、 生体組織処理装置 1 0内から生理食塩水を排出する。 そして 、 フイブロネクチン等の結合剤を保持体 3 9内の前記第 1の流路内に直接注入し 、 流入部 6 2、 流出部 6 3の開放端側をそれぞれ閉塞することで、 保持体 3 9に 保持された脱細胞化後の血管組織 Bを所定時間結合剤に浸潰させる。 その後、 結 合剤を保持体 3 9内から外部に排出し、 保持体 3 9内に前記細胞含有溶液を注入 する。 ここで、 細胞含有溶液は、 移植対象者の自己細胞 (内皮細胞、 線維芽細胞 、 及びノ又は平滑筋細胞) を採取して、 所定時間培養し、 所定の培養液を添加す ることで得られる。 この培養液とじては、 細胞播種処理に使用可能な培養液であ れば何でも良く、 M 1 9 9 (M e d i u m l 9 9培地 L i f e T e c h n o 1 o g i e s製) を例示できる。 そして、 結合剤の場合と同様にして、 脱細胞化 後の血管組織 Bを細胞含有溶液に所定時間浸漬させてから、 循環装置 1 0 Aを作 動させ、 生体組織処理装置 1 0内に、 人体の血流に略相当する流れで細胞含有溶 液を循環させる。 これによつて、 人体の大動脈内を流れる血液と略相当する流れ の細胞含有溶液中に、 脱細胞化後の血管組織 Bが置かれ、 当該血管組織 Bに自己 細胞が播種されることになる。 ここで、 公転用駆動手段 1 2 4 (図 3参照) は、 循環装置 1 0 Aによる拍動流生成前に作動することで、 細胞含有溶液に浸漬され た状態の血管組織 Bが上下方向に回転し、 これにより、 細胞含有溶液が重力の影 響を排して血管組織 Bの略全域でムラ無く付着される。 なお、 このような公転動 作は、 細胞含有溶液の拍動流生成時に引き続き行ってもよい。 Then, after the cell removing solution is discharged from the living tissue processing apparatus 10, physiological saline is injected into the living tissue processing apparatus 10, and the physiological saline is circulated to circulate the inside of the apparatus 10. After washing, the physiological saline is discharged from the living tissue processing apparatus 10. Then, a binder such as fibronectin is directly injected into the first flow path in the holder 39, and the open ends of the inflow portion 62 and the outflow portion 63 are closed, respectively, to thereby obtain the holder 39 The vascular tissue B after decellularization held in the above is immersed in a binder for a predetermined time. Then The mixture is discharged from the inside of the holder 39 to the outside, and the cell-containing solution is injected into the holder 39. Here, the cell-containing solution is obtained by collecting autologous cells (endothelial cells, fibroblasts, and no or smooth muscle cells) of a transplant recipient, culturing for a predetermined time, and adding a predetermined culture solution. Can be The culture solution may be any culture solution that can be used for the cell seeding treatment, and examples thereof include M199 (Mediuml99 medium, manufactured by Life Technology ogno ogies). Then, in the same manner as in the case of the binder, the vascular tissue B after decellularization is immersed in the cell-containing solution for a predetermined time, and then the circulating device 10A is activated, and the vascular device 10A The cell-containing solution is circulated in a flow substantially corresponding to the blood flow of the human body. As a result, the decellularized vascular tissue B is placed in a cell-containing solution having a flow substantially equivalent to blood flowing in the aorta of the human body, and the autologous cells are seeded on the vascular tissue B. . Here, the revolving drive means 124 (see FIG. 3) is activated before the pulsating flow is generated by the circulating device 10A, so that the vascular tissue B immersed in the cell-containing solution is vertically moved. As a result, the cell-containing solution removes the influence of gravity and adheres to substantially the entire vascular tissue B evenly. In addition, such a revolving motion may be continuously performed when a pulsatile flow of the cell-containing solution is generated.
従って、 このような実施形態によれば、 従来の処理方法よりも、 脱細胞化効果 及び細胞播種効果を大幅に高めることができるばかりか、 血管組織 Bを保持体 3 9に保持させたままで、 脱細胞化処理及び細胞播種処理を一連の作業で行うこと ができ、 移植に伴う異種生体弁の加工処理を簡単且つ短時間で行うことができる という効果を得る。 しかも、 このような一連の処理作業を一つの密閉回路で行う ことができ、 前記異種生体弁の汚染を防止して、 清潔性を保つことができるとい う効果をも得る。  Therefore, according to such an embodiment, not only the decellularization effect and the cell seeding effect can be significantly improved than in the conventional treatment method, but also the vascular tissue B is held in the holder 39 while maintaining the vascular tissue B in the holder 39. The decellularization process and the cell seeding process can be performed in a series of operations, and the effect of easily and quickly processing heterogeneous biological valves accompanying transplantation can be obtained. In addition, such a series of processing operations can be performed in one closed circuit, and the effect of preventing contamination of the heterogeneous living body valve and maintaining cleanliness can be obtained.
次に、 本発明者らは、 本発明に基づく脱細胞効果及び細胞播種効果を実証する ための実験を行った。  Next, the present inventors conducted an experiment for demonstrating the decellularizing effect and cell seeding effect based on the present invention.
( 1 ) 脱細胞効果の実験  (1) Decellularization effect experiment
[実施例 1 ]  [Example 1]
実施例 1では、 細胞除去溶液として、 3 7 °Cの胆汁酸を用いた。 そして、 この 胆汁酸を循環装置 1 O A内に注入し、 人間の大動脈内での血液の流れ (拍動流) に略相当する状態の流れを胆汁酸に付与し、 その流れの中で、 大動脈弁を含むブ タの血管,組織を 2 4時間放置した。 このときの循環装置 1 0 Aの条件は、 平均流 量を毎分 5リットルとし、 駆動ポンプ 1 2の拍動数を毎分 7 0回とし、 胆汁酸の 最高液圧、 最低液圧を、 人間の一般的な最高脈圧、 最低脈圧に略相当させて平均 液圧を約 9 0 mmH gとした。 そして、 処理後の血管組織を電子顕微鏡で拡大し た状態で撮像し、 血管組織に残存する原細胞 (内皮細胞及び線維芽細胞) の単位 面積 (1 mm 2) 当りの平均数をカウントした。 In Example 1, bile acid at 37 ° C. was used as the cell removing solution. Then, the bile acid is injected into the circulation device 1OA, and a flow in a state substantially equivalent to the blood flow (pulsating flow) in the human aorta is given to the bile acid. Valve including valve The blood vessels and tissues were left for 24 hours. The condition of the circulation device 10 A at this time is that the average flow rate is 5 liters per minute, the number of beats of the drive pump 12 is 70 times per minute, and the maximum and minimum fluid pressures of bile acids are as follows. The average fluid pressure was set to about 90 mmHg, which roughly corresponded to the general maximum and minimum pulse pressures of humans. Then, the vascular tissue after the treatment was imaged in an enlarged state with an electron microscope, and the average number of the original cells (endothelial cells and fibroblasts) per unit area (1 mm 2 ) remaining in the vascular tissue was counted.
その結果、 図 1 1に示されるように、 原細胞は、 前記単位面積当り約 8 5 0個 残存した。  As a result, as shown in FIG. 11, about 850 original cells remained per unit area.
[実施例 2 ]  [Example 2]
実施例 2では、 前記実施例 1の条件に加え、 前記保持装置 1 0 Bを使って血管 組織を回転させながら所定のマイクロ波を照射した。 ここでは、 周波数が 2 . 4 5 G H zのマイクロ波を使い、 出力及び照射時間の三通りの組み合わせについて 行った。 すなわち、 出力 1 0 0 Wで 8時間照射した場合、 出力 5 0 0 ^^で1 2時 間照射した場合、 及び出力 5 0 0 Wで 2 4時間照射した場合について行った。 ま た、 何れの場合も、 血管組織の回転速度 (自転速度) を毎分 4回転とした。 そし て、 実施例 1の場合と同様に、 血管糸且織に残存する原細胞の単位面積 (1 mm 2 ) 当りの平均数をカウントした。 In the second embodiment, in addition to the conditions of the first embodiment, a predetermined microwave is applied while rotating the vascular tissue using the holding device 10B. Here, a microwave with a frequency of 2.45 GHz was used, and three combinations of output and irradiation time were performed. That is, irradiation was performed for 8 hours at an output of 100 W, irradiation for 12 hours at an output of 500 ^, and irradiation for 24 hours at an output of 500 W. In each case, the rotation speed (rotation speed) of the vascular tissue was set to 4 rotations per minute. Then, as in the case of Example 1, the average number of the original cells per unit area (1 mm 2 ) remaining in the vascular tissue was counted.
その結果、 図 1 1に示されるように、 出力 1 0 0 W、 8時間照射の場合は、 原 細胞が前記単位面積当り約 3 8 0個残存した。 一方、 出力 5 0 0 W、 1 2時間照 射の場合、 及び出力 5 0 0 W、 2 4時間照射の場合は、 何れも原細胞の残存が見 られなかった。 また、 原組織に含有されているタンパク質は略除去された。 一方 何れの場合も、 コラーゲン、 エラスチンには障害が略見られなかった。  As a result, as shown in FIG. 11, when irradiation was performed at 100 W for 8 hours, about 380 original cells remained per unit area. On the other hand, in the case of irradiation at 500 W for 12 hours, and the case of irradiation at 500 W for 24 hours, no residual original cells were observed. In addition, proteins contained in the original tissue were substantially removed. On the other hand, in each case, almost no damage was seen in collagen and elastin.
[比較例 1 ]  [Comparative Example 1]
以上の実施例 1, 2に対する比較例としては、 所定の容器内に入れられた流れ のない胆汁酸に、 前記血管組織を 2 4時間浸漬させた。 そして、 実施例 1等の場 合と同様に、 血管組織に残存する原細胞の単位面積 (1 mm 2) 当りの平均数を カウントした。 As a comparative example to the above Examples 1 and 2, the vascular tissue was immersed for 24 hours in a non-flowing bile acid contained in a predetermined container. Then, as in the case of Example 1, etc., the average number of original cells per unit area (1 mm 2 ) remaining in the vascular tissue was counted.
その結果、 図 1 1に示されるように、 原細胞は、 前記単位面積当り約 9 7 0個 残存した。 なお、 以上の実施例 1, 2及び比較例 1で用いた血管組織は、 脱細胞化処理前 の初期状態で、 原細胞が単位面積 (1mm2) 当り約 1880個存在していた。 以上の結果、 実施例 1, 2の方が、 比較例 1よりも原細胞が大幅に除去され、 高い脱細胞効果が得られることが理解されよう。 特に、 拍動流下の胆汁酸に血管 組織を浸漬させたのみの場合 (実施例 1) よりも、 更にマイクロ波を照射した場 合の方が、 より高い脱細胞効果が得られ、 出力を 100Wから 500Wとすると 原細胞が残存しなくなる。 なお、 今回、 説明を省略しているが、 流れのない胆汁 酸に浸漬された血管組織に、 前述のマイクロ波を与えることもでき、 この場合に あっても、 比較例 1よりも高い脱細胞効果が得られる。 As a result, as shown in FIG. 11, about 970 original cells remained per unit area. The vascular tissue used in Examples 1 and 2 and Comparative Example 1 had about 1880 original cells per unit area (1 mm 2 ) in the initial state before the decellularization treatment. From the above results, it can be understood that in Examples 1 and 2, the original cells were significantly removed and a higher decellularization effect was obtained than in Comparative Example 1. In particular, a higher decellularization effect was obtained when microwave irradiation was performed than when only vascular tissue was immersed in bile acid under pulsatile flow (Example 1), and the output was 100 W. From 500W, the original cells will not remain. Although the explanation is omitted this time, the above-mentioned microwave can be applied to the vascular tissue immersed in bile acid with no flow, and even in this case, the decellularization is higher than that of Comparative Example 1. The effect is obtained.
(2) 細胞播種効果の実験  (2) Experiment of cell seeding effect
[実施例 3]  [Example 3]
実施例 3では、 先ず、 脱細胞化処理後の血管組織に対し、 生理食塩水を使って 1時間程度洗浄してから、 フイブロネクチンに 4時間浸漬させた。 それと前後し て、 移植対象の生体から自己細胞 (内皮細胞) を採取して細胞含有溶液を生成し た。 ここでの細胞含有溶液は、 採取した自己細胞を、 前記 M 1 99を使つて培養 皿上で 5日間培養した後、 培養された自己細胞をトリプシンによって培養皿から 剥がし、 Ml 99に含有させることで得られた。 ここで、 培養時には、 前記 Ml 99に、 FBS (F e t a l B o v i n e S e r um IWK— 500、 I wa k i製)、 抗生物質 (ペニシリンノストレプトマイシン混液)、 及び FGF— 2 (P e p r o Te c h E c L t d製) を添加した。  In Example 3, first, the vascular tissue after the decellularization treatment was washed with physiological saline for about 1 hour, and then immersed in fibronectin for 4 hours. Before or after that, autologous cells (endothelial cells) were collected from the living body to be transplanted to generate a cell-containing solution. In the cell-containing solution, the collected autologous cells are cultured on a culture dish using the aforementioned M199 for 5 days, and then the cultured autologous cells are detached from the culture dish with trypsin and contained in Ml99. Was obtained. Here, at the time of culture, FBS (Fetal Bovine Serum IWK-500, manufactured by Iwaki), antibiotics (mixed solution of penicillin nostreptomycin), and FGF-2 (Pepro Tech Ec Ltd) was added.
その後、 前記細胞含有溶液に血管組織を約 4時間浸漬させながら、 当該血管組 織を上下方向に回転させた。 そして、 細胞播種処理後の血管組織を電子顕微鏡で 拡大した状態で撮像し、 血管組織に播種された自己細胞 (内皮細胞) の状態を観 察した。  Thereafter, the vascular tissue was rotated vertically while the vascular tissue was immersed in the cell-containing solution for about 4 hours. Then, the blood vessel tissue after the cell seeding treatment was imaged in an enlarged state with an electron microscope, and the state of the autologous cells (endothelial cells) seeded in the blood vessel tissue was observed.
その結果、 図 12に示されるように、 自己細胞が血管組織の略全域に播種され た。 なお、 ここでは、 自己細胞が、 血管組織の単位面積 (1mm2) 当り、 平均 約 850個付着した。 また、 血管組織の単位面積 (1mm2) に対する自己細胞 の面積比 (密度) は、 平均約 18%であった。 As a result, as shown in FIG. 12, autologous cells were seeded on almost the entire vascular tissue. Here, on average, about 850 autologous cells adhered per unit area (1 mm 2 ) of vascular tissue. The area ratio (density) of the autologous cells to the unit area (1 mm 2 ) of the vascular tissue was about 18% on average.
[実施例 4] 実施例 4では、 前記実施例 3と同様の工程を経た後、 実施例 1と同様の流れ条 件により、 前記細胞含有溶液を循環装置 1 0 A内で循環させた。 [Example 4] In Example 4, after the same steps as in Example 3 were performed, the cell-containing solution was circulated in the circulation device 10A under the same flow conditions as in Example 1.
具体的に、 流れのなレ、細胞含有溶液に血管組織を静止状態で約 4 8時間浸漬さ せた後で、 当該血管,組織を上下方向に約 4時間回転させた。 そして、 当該細胞含 有溶液に人間の大動脈内での血流に略相当する状態の流れを付与し、 その流れの 中に血管組織を 1時間放置した。 その後、 実施例 3の場合と同様に、 血管組織に 播種された自己細胞の状態を観察した。  Specifically, after the blood vessel tissue was immersed in the cell-containing solution in a stationary state for about 48 hours, the blood vessel and the tissue were rotated vertically for about 4 hours. Then, a flow having a state substantially equivalent to the blood flow in the human aorta was applied to the cell-containing solution, and the vascular tissue was left in the flow for 1 hour. Then, as in Example 3, the state of the autologous cells seeded in the vascular tissue was observed.
その結果、 図 1 3に示されるように、 自己細胞が血管組織の略全域に亘つて均 等に播種されている他、 細胞含有溶液の流れ方向に自己細胞が規則正しく配列さ れ、 実施例 3よりも自己細胞が増殖して高密度になった。 なお、 ここでは、 自己 細胞が、 血管組織の単位面積 (1 mm 2) 当り、 平均約 2 1 7 0個付着した。 ま た、 血管組織の単位面積 (1 mm 2 ) に対する自己細胞の面積比 (密度) は、 平 均約 6 3 %であった。 As a result, as shown in FIG. 13, the autologous cells were seeded evenly over substantially the entire area of the vascular tissue, and the autologous cells were regularly arranged in the flow direction of the cell-containing solution. The autologous cells proliferated and became denser than that. Here, an average of about 217 autologous cells adhered per unit area (1 mm 2 ) of the vascular tissue. The area ratio (density) of the autologous cells to the unit area (1 mm 2 ) of the vascular tissue was about 63% on average.
[実施例 5 ]  [Example 5]
実施例 5は、 前記実施例 4に対し、 細胞含有溶液中の血管組織の静止と、 当該 血管組織の上下方向の回転とを逆順で処理したものである。 すなわち、 本実施例 では、 細胞含有溶液に浸漬された血管組織を上下方向に約 4時間回転させた後で 、 当該血管組織を細胞含有溶液に静止状態で 4 8時間浸漬させてから、 当該細胞 含有溶液に人間の大動脈内での血流に略相当する状態の流れを付与し、 その流れ の中に血管組織を 1時間放置した。 その他の条件は、 前記実施例 4と同様とした 。 そして、 実施例 4の場合と同様に、 血管組織に播種された自己細胞の状態を観 し ,  The fifth embodiment is different from the fourth embodiment in that the stationary of the vascular tissue in the cell-containing solution and the vertical rotation of the vascular tissue are processed in reverse order. That is, in this embodiment, after rotating the vascular tissue immersed in the cell-containing solution in the vertical direction for about 4 hours, the vascular tissue is immersed in the cell-containing solution in a stationary state for 48 hours, A flow having a state substantially equivalent to the blood flow in the human aorta was applied to the solution, and the vascular tissue was left in the flow for 1 hour. Other conditions were the same as in Example 4. Then, as in the case of Example 4, the state of the autologous cells seeded in the vascular tissue was observed,
その結果、 実施例 4の場合と同様に自己細胞が増殖して高密度になった他、 実 施例 4の場合よりも、 自己細胞が全体的にムラなく播種された。  As a result, the autologous cells proliferated and became denser as in the case of Example 4, and the autologous cells were seeded more evenly than in the case of Example 4.
[実施例 6 ]  [Example 6]
実施例 6では、 前記実施例 5に対して、 当該実施例 5と同一条件の細胞含有溶 液の流れ中に血管組織を放置する時間を 4 8時間とした。 その他の条件は、 実施 例 5と同一にした。  In Example 6, compared to Example 5, the time for leaving the vascular tissue in the flow of the cell-containing solution under the same conditions as Example 5 was set to 48 hours. Other conditions were the same as in Example 5.
その結果、 播種した細胞が増殖して血管組織の略全面を覆うようになった。 [実施例 7 ] As a result, the seeded cells proliferated and came to cover almost the entire surface of the vascular tissue. [Example 7]
実施例 7は、 前記実施例 6に対して、 細胞含有溶液の流れ条件を変えたもので あり、 その他の条件は実施例 6と同一にした。 すなわち、 本実施例では、 細胞含 有溶液の平均流量を毎分 2リットルとし、 細胞含有溶液の平均液圧を約 2 O mm H gとした。  Example 7 differs from Example 6 in that the flow conditions of the cell-containing solution were changed, and the other conditions were the same as Example 6. That is, in this example, the average flow rate of the cell-containing solution was 2 liters per minute, and the average liquid pressure of the cell-containing solution was about 2 OmmHg.
その結果、 実施例 6と略同様の効果が得られた。 つまり、 本発明の細胞播種方 法を用いれば、 移植先患者の血流等の状態や移植先の心臓弁の部位を考慮して、 細胞含有溶液の流れ条件を変えたとしても、 播種された自己細胞が増殖して血管 組織のほぼ全面を覆うようになる。 総じて、 体内を循環する血液の量が異なる大 人や子供、 使用される血圧が異なる各種心臓弁等においても、 その使用状態に合 わせた最適な生体弁を作成することができる。  As a result, substantially the same effects as in Example 6 were obtained. In other words, using the cell seeding method of the present invention, seeding was performed even if the flow conditions of the cell-containing solution were changed in consideration of the state of the blood flow and the like of the recipient patient and the location of the heart valve at the recipient. Autologous cells proliferate and cover almost the entire surface of vascular tissue. In general, even in the case of adults and children with different amounts of blood circulating in the body, various heart valves with different blood pressures to be used, etc., it is possible to create an optimal biological valve according to the use condition.
[比較例 2 ]  [Comparative Example 2]
以上の実施例 3〜 7に対する比較例としては、 実施例 3に対して、 血管組織を 上下方向に回転せずに静止状態とした。 そして、 実施例 3等の場合と同様に、 血 管組織に播種された自己細胞の状態を観察した。  As a comparative example with respect to the above Examples 3 to 7, as compared with Example 3, the vascular tissue was kept stationary without rotating in the vertical direction. Then, as in Example 3 and the like, the state of the autologous cells seeded in the vascular tissue was observed.
その結果、 血管組織に播種された自己細胞にムラが見られ、 それによつて、 血 管組織に播種された自己細胞の数も前記実施例 3〜 7の場合に比べ大幅に減少し た。  As a result, unevenness was observed in the autologous cells seeded in the vascular tissue, whereby the number of autologous cells seeded in the vascular tissue was significantly reduced as compared with the cases of Examples 3 to 7.
以上の結果、 実施例 3〜 7の方が、 比較例 2よりも自己細胞が大幅に多く付着 し、 高い細胞播種効果が得られた。 特に、 拍動流下の細胞含有溶液に血管組織を 浸漬させると、 細胞の配向性が良好となり、 細胞の活性化等によって細胞の機能 をより発揮させ、 より多くの細胞播種が可能となる。  As a result, in Examples 3 to 7, autologous cells adhered much more than in Comparative Example 2, and a higher cell seeding effect was obtained. In particular, when vascular tissue is immersed in a cell-containing solution under a pulsating flow, the orientation of the cells is improved, and the cell functions are more exerted by activating the cells and the like, so that more cells can be seeded.
なお、 本発明にあっては、 前記実施形態で説明した大動脈弁を含む血管組織の 他に、 血液が接触するその他の生体組織に対する脱細胞化処理や細胞播種処理に も適用可能である。 また、 異種生体弁に対する処理の他に、 同種生体弁に対する 処理にも本発明を適用できる。  In addition, in the present invention, in addition to the vascular tissue including the aortic valve described in the above embodiment, the present invention is also applicable to a decellularization process and a cell seeding process for other living tissues that come into contact with blood. In addition, the present invention can be applied to processing for the same type of biological valve in addition to processing for the different type of biological valve.
また、 前記実施形態では、 マイクロ波の照射時に保持体 3 9を回転させたが、 逆に、 保持体 3 9を静止状態とし、 当該保持体 3 9の回りを照射口 5 7側が回転 する構造としてもよい。 更に、 前記実施形態では、 保持装置 1 0 Bを脱細胞化処理及び細胞播種処理の 双方の処理に用いたが、 それら各処理の一方のみを行う場合であっても、 勿論適 用可能である。 Further, in the above-described embodiment, the holder 39 is rotated at the time of microwave irradiation. On the contrary, the holder 39 is kept stationary, and the irradiation port 57 side rotates around the holder 39. It may be. Furthermore, in the above-described embodiment, the holding device 10B is used for both the decellularization treatment and the cell seeding treatment. However, even when only one of these treatments is performed, the holding device 10B can of course be applied. .
その他、 本発明における装置各部の構成は図示構成例に限定されるものではな く、 実質的に同様の作用を奏する限りにおいて、 種々の変更が可能である。 以上説明したように、 本発明によれば、 異種生体弁や同種生体弁の生体組織の 脱細胞化処理や細胞播種処理を効果的に行うことができる。 産業上の利用可能性  In addition, the configuration of each unit of the device according to the present invention is not limited to the illustrated configuration example, and various changes can be made as long as substantially the same operation is achieved. As described above, according to the present invention, it is possible to effectively perform the decellularization process and the cell seeding process on the biological tissue of a heterogeneous biological valve or a homogeneous biological valve. Industrial applicability
本発明は、 人間を含む動物から採取した生体弁を所定の人体に移植可能に加工 することに利用できる。  INDUSTRIAL APPLICABILITY The present invention can be used for processing a biological valve collected from an animal including a human so as to be transplantable into a predetermined human body.

Claims

請求の範囲 The scope of the claims
1 . 脱細胞化処理用又は細胞播種処理用の溶液中で所定の生体組織を保持可能な 保持体を備え、  1. With a holder capable of holding a predetermined biological tissue in a solution for decellularization treatment or cell seeding treatment,
前記保持体は、 前記溶液の流入部及び流出部と、 これら流入部及び流出部の間 に位置する前記生体組織の設置空間とを備え、 前記流入部から流出部に向かう前 記溶液の流れの中に前記生体組織を配置した状態で、 脱細胞化処理及び/又は細 胞播種処理を可能に設けたことを特徴とする生体組織の保持装置。  The holding body includes an inflow portion and an outflow portion of the solution, and an installation space for the living tissue located between the inflow portion and the outflow portion, and the flow of the solution flowing from the inflow portion to the outflow portion is provided. A biological tissue holding device provided with a decellularization process and / or a cell seeding process in a state where the biological tissue is disposed therein.
2 . 脱細胞化処理時に、 前記保持体に保持された生体組織に対してマイクロ波を 照射する照射手段を更に備えたことを特徴とするクレーム 1記載の生体組織の保  2. The living tissue preservation according to claim 1, further comprising irradiation means for irradiating the living tissue held by the holder with microwaves during the decellularization treatment.
3 . 前記保持体及び前記照射手段は、 相対回転可能に設けられていることを特徴 とするクレーム 2記載の生体組織の保持装置。 3. The biological tissue holding device according to claim 2, wherein the holder and the irradiation unit are provided so as to be relatively rotatable.
4 . 前記照射手段は、 前記溶液が所定温度以上になったときに、 前記マイクロ波 の照射を停止する一方、 前記溶液が所定温度以下になったときに、 前記マイクロ 波の照射を開始することを特徴とするクレーム 2又は 3記載の生体組織の保持装 置。  4. The irradiating means stops the irradiation of the microwave when the temperature of the solution becomes higher than a predetermined temperature, and starts the irradiation of the microwave when the temperature of the solution becomes lower than the predetermined temperature. 4. The device for holding a living tissue according to claim 2 or 3, characterized by:
5 . 前記流入部及び流出部は、 それぞれ第 1及び第 2の流路を有し、 各第 1の流 路は、 管状の生体糸且織の内側を介して連通可能に設けられる一方、 各第 2の流路 は、 前記生体組織の外側を介して連通可能に設けられていることを特徴とするク レーム 1〜 4の何れかに記載の生体組織の保持装置。  5. The inflow section and the outflow section have first and second flow paths, respectively. Each first flow path is provided so as to be able to communicate via the inside of a tubular living tissue, The biological tissue holding device according to any one of claims 1 to 4, wherein the second flow path is provided so as to be able to communicate through the outside of the biological tissue.
6 . 前記流出部には、 前記第 1の流路及び Z又は第 2の流路内に温度センサを案 内する案内路が設けられていることを特徴とするクレーム 5記載の生体組織の保  6. The preservation of living tissue according to claim 5, wherein the outflow portion is provided with a guide path for accommodating a temperature sensor in the first flow path and the Z or the second flow path.
7 . 前記保持体は、 細胞播種処理時に前記生体組織の上下両側を反転する方向に 回転可能に設けられていることを特徴とするクレーム 1〜6の何れかに記載の生 体組織の保持装置。 7. The living tissue holding device according to any one of claims 1 to 6, wherein the holding body is provided so as to be rotatable in a direction of inverting the upper and lower sides of the living tissue during the cell seeding process. .
8 . クレーム 1〜 7の何れかに記載の保持装置を含み、 前記生体組織に対して脱 細胞化処理及び/又は細胞播種処理を行う生体組織処理装置であって、  8. A biological tissue processing device comprising the holding device according to any one of claims 1 to 7, wherein the biological tissue is subjected to a decellularization process and / or a cell seeding process.
前記生体組織の移植対象となる生体内の血液の循環に擬似して前記溶液が循環 する循環装置を備え、 The solution circulates in a manner simulating the circulation of blood in a living body to be transplanted with the living tissue. Equipped with a circulating device,
前記循環装置は、 前記流入部及び流出部に接続され、 前記流入部から流出部に 向かう前記溶液に、 前記生体内の血流に略相当した流れを付与することを特徴と する生体組織処理装置。  The circulating device is connected to the inflow portion and the outflow portion, and applies a flow substantially corresponding to the blood flow in the living body to the solution flowing from the inflow portion to the outflow portion. .
9 . 前記循環装置は、 拍動流を生成する駆動ポンプと、 この駆動ポンプの流入ポ 一ト及び流出ポート間に配置されるとともに、 前記保持装置が途中に設けられた 循環路とを備え、  9. The circulating device includes a driving pump that generates a pulsating flow, and a circulating passage that is disposed between an inflow port and an outflow port of the driving pump and that has the holding device provided in the middle thereof.
前記循環路は、 前記溶液に流れ抵抗を付与する抵抗付与手段と、 この抵抗付与 手段の下流側に配置されて前記溶液の液圧を減衰させる液圧減衰手段とを備えた ことを特徴とするクレーム 8記載の生体組織処理装置。  The circulation path includes: a resistance applying unit that applies a flow resistance to the solution; and a hydraulic pressure attenuating unit that is disposed downstream of the resistance applying unit and attenuates a hydraulic pressure of the solution. The biological tissue processing apparatus according to claim 8.
1 0 . 前記循環路は、 前記抵抗付与手段の上流側で前記液圧の振幅調整をする振 幅調整手段を含むことを特徴とするクレーム 9記載の生体組織処理装置。  10. The biological tissue processing apparatus according to claim 9, wherein the circulation path includes amplitude adjustment means for adjusting the amplitude of the hydraulic pressure upstream of the resistance applying means.
PCT/JP2004/006665 2003-05-15 2004-05-12 Living organism tissue retaining unit and living organism tissue treating apparatus including the same WO2004100832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003138014A JP2006223101A (en) 2003-05-15 2003-05-15 Living organism tissue retaining unit and living organism tissue treating apparatus including the same
JP2003-138014 2003-05-15

Publications (1)

Publication Number Publication Date
WO2004100832A1 true WO2004100832A1 (en) 2004-11-25

Family

ID=33447279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006665 WO2004100832A1 (en) 2003-05-15 2004-05-12 Living organism tissue retaining unit and living organism tissue treating apparatus including the same

Country Status (2)

Country Link
JP (1) JP2006223101A (en)
WO (1) WO2004100832A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330327A (en) * 2006-06-12 2007-12-27 Cell Remover:Kk Connector and holder of body tissue using it
JP2009505752A (en) * 2005-08-26 2009-02-12 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Decellularization and recellularization of organs and tissues
US9290738B2 (en) 2012-06-13 2016-03-22 Miromatrix Medical Inc. Methods of decellularizing bone
US10233420B2 (en) 2010-09-01 2019-03-19 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US11278643B2 (en) 2016-09-06 2022-03-22 Mayo Foundation For Medical Education And Research Use of resected liver serum for whole liver-engineering
US11452797B2 (en) 2013-03-15 2022-09-27 Miromatrix Medical Inc. Use of perfusion decellularized liver for islet cell recellularization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504216A (en) * 1995-04-27 1999-04-20 アドバンスト ティシュー サイエンシズ,インコーポレーテッド Apparatus and method for sterilizing, inoculating, culturing, storing, transporting and examining tissue, synthetic or natural vascular grafts
JP2001517062A (en) * 1995-06-07 2001-10-02 アドバンスト ティシュー サイエンシズ,インコーポレーテッド Seeding heart valves
JP2003116519A (en) * 2001-10-16 2003-04-22 Yasuhiko Tabata Material for artificial tissue
JP2004187952A (en) * 2002-12-12 2004-07-08 National Cardiovascular Center Method of treating biological tissue by irradiation with microwave

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11504216A (en) * 1995-04-27 1999-04-20 アドバンスト ティシュー サイエンシズ,インコーポレーテッド Apparatus and method for sterilizing, inoculating, culturing, storing, transporting and examining tissue, synthetic or natural vascular grafts
JP2001517062A (en) * 1995-06-07 2001-10-02 アドバンスト ティシュー サイエンシズ,インコーポレーテッド Seeding heart valves
JP2003116519A (en) * 2001-10-16 2003-04-22 Yasuhiko Tabata Material for artificial tissue
JP2004187952A (en) * 2002-12-12 2004-07-08 National Cardiovascular Center Method of treating biological tissue by irradiation with microwave

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IWASAKI KIYOTAKA ET AL.: "Daidomyakuben okikaeyo o mezashita buta soshikiben no datasusaiboka shuho no kento oyobi in vitro hakudoka deno saibo hashuyo bioreactor no kaihatsu", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS KANTO SHIBU DAI 9 KI SOKAI KOENKAI KOEN RONBUNSHU, 13 March 2003 (2003-03-13), pages 83 - 84, XP002979700 *
VISSER C.E. ET AL.: "Microwave treatment of xenogeneic cartilage transplants", BIOMATERIALS, vol. 10, 1989, pages 507 - 510, XP000095298 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505752A (en) * 2005-08-26 2009-02-12 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Decellularization and recellularization of organs and tissues
US10220056B2 (en) 2005-08-26 2019-03-05 Miromatrix Medical, Inc. Decellularization and recellularization of solid organs
JP2019088910A (en) * 2005-08-26 2019-06-13 ミロマトリックス メディカル インコーポレイテッド Decellularization and recellularization of organs and tissues
US10441609B2 (en) 2005-08-26 2019-10-15 Miromatrix Medical Inc. Decellularization and recellularization of solid organs
JP2021120012A (en) * 2005-08-26 2021-08-19 ミロマトリックス メディカル インコーポレイテッド Decellularization and recellularization of organ and tissue
JP7286708B2 (en) 2005-08-26 2023-06-05 ミロマトリックス メディカル インコーポレイテッド Decellularization and recellularization of organs and tissues
JP2007330327A (en) * 2006-06-12 2007-12-27 Cell Remover:Kk Connector and holder of body tissue using it
US10233420B2 (en) 2010-09-01 2019-03-19 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US11414644B2 (en) 2010-09-01 2022-08-16 Regents Of The University Of Minnesota Methods of recellularizing a tissue or organ for improved transplantability
US9290738B2 (en) 2012-06-13 2016-03-22 Miromatrix Medical Inc. Methods of decellularizing bone
US11452797B2 (en) 2013-03-15 2022-09-27 Miromatrix Medical Inc. Use of perfusion decellularized liver for islet cell recellularization
US11278643B2 (en) 2016-09-06 2022-03-22 Mayo Foundation For Medical Education And Research Use of resected liver serum for whole liver-engineering

Also Published As

Publication number Publication date
JP2006223101A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4444918B2 (en) Decellularization method and biological tissue processing apparatus
US7326564B2 (en) Flow system for medical device evaluation and production
US7759099B2 (en) Seeding implantable medical devices with cells
US7759120B2 (en) Seeding implantable medical devices with cells
US8202725B2 (en) Cell sodding method and apparatus
JP2004531291A (en) Method for decellularizing foreign materials for bioprosthesis production
JPH07509369A (en) Apparatus and method for processing adipose tissue to produce endothelial cell products
US11773362B2 (en) Modular bioreactor, compliance chamber for a bioreactor, and cell seeding apparatus
JP2009501562A (en) Apparatus and method for pretreatment of tissue graft
CN111084904B (en) Cell removing method of tissue engineering scaffold
US11905509B2 (en) Cell separation apparatus and methods of use
WO2004100832A1 (en) Living organism tissue retaining unit and living organism tissue treating apparatus including the same
WO2004100833A1 (en) Method of sowing cell
WO2004052416A1 (en) Method of treating biological tissue by microwave-irradiation
WO2005033671A1 (en) Method and device for in vitro simulation of an in vivo fluid flow
KR20140145954A (en) Extracellular matrix material conduits and methods of making and using same
AU2012200361B2 (en) Apparatus and methods for preparing tissue grafts
JP2007330327A (en) Connector and holder of body tissue using it

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase