WO2004099814A1 - System for producing an ultrasound image using line-based image reconstruction - Google Patents
System for producing an ultrasound image using line-based image reconstruction Download PDFInfo
- Publication number
- WO2004099814A1 WO2004099814A1 PCT/IB2004/001935 IB2004001935W WO2004099814A1 WO 2004099814 A1 WO2004099814 A1 WO 2004099814A1 IB 2004001935 W IB2004001935 W IB 2004001935W WO 2004099814 A1 WO2004099814 A1 WO 2004099814A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasound
- image
- generating
- scan line
- reference point
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52085—Details related to the ultrasound signal acquisition, e.g. scan sequences
- G01S7/52087—Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques
- G01S7/52088—Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques involving retrospective scan line rearrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5284—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving retrospective matching to a physiological signal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8934—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
- G01S15/8938—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
- G01S15/894—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/895—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
- G01S15/8956—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using frequencies at or above 20 MHz
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52034—Data rate converters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52079—Constructional features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52085—Details related to the ultrasound signal acquisition, e.g. scan sequences
Definitions
- the present invention relates to producing an ultrasound image using line based image reconstruction.
- Ultrasound ECG techniques have focused on the acquisition of complete image frames at specific time intervals on the ECG wave form. By 'triggering' the start of ultrasound frame acquisition at a specified time relative to each heart beat, and acquiring image after image at the same point in the cardiac cycle, systems can effectively freeze the motion of the heart using a "strobing" principle. Systems also begin image acquisition at a specified interval from a standard point in the ECG wave form, such that two sets of moving heart images can be synchronized and compared, beginning from the same point in the cardiac cycle. ECG gating on a frame by frame basis is a good technique so long as the acquisition time for any given frame is relatively short compared to the movements depicted. A good analogy is a photograph with a short exposure time.
- ECG based frame reordering has also been attempted to visualize rapidly moving anatomy.
- a frame based reordering technique a moderate increase in frame rate can be achieved by collecting data frames, and reordering the data frames by comparing the start time of each frame acquisition to the ECG signal. Frames can then be replayed at a faster rate.
- this technique does not yield a true representation of the rapidly moving anatomy because the finite time required to acquire a frame causes data overlap between frames. Thus each "stop motion" frame may not have complete time independence.
- the invention is a system for developing an ultrasound image, comprising a scan head having a transducer capable of generating ultrasound energy at a frequency of at least 20 megahertz (MHz), and a processor for receiving ultrasound energy and for generating an ultrasound image at an effective frame rate of at least 500 frames per second (fps) using scan line based image reconstruction.
- a scan head having a transducer capable of generating ultrasound energy at a frequency of at least 20 megahertz (MHz)
- a processor for receiving ultrasound energy and for generating an ultrasound image at an effective frame rate of at least 500 frames per second (fps) using scan line based image reconstruction.
- Figure 1 is a block diagram of an ultrasound imaging system.
- Figures 2A and 2B are schematic representations depicting methods of ultrasound imaging.
- Figures 3A through 3E are schematic diagrams illustrating the system for generating an ultrasound image using line based image reconstruction.
- Figure 4 is an exemplary electrocardiogram signal used in the system of
- Figure 1 is flowchart illustrating the overall operation of the system for producing an ultrasound image using line based image reconstruction.
- Figure 6 is a flowchart illustrating the operation of the acquisition block of Figure 5.
- Figure 7 is a flowchart illustrating the operation of the process data block of Figure 5.
- Figure 8 is a schematic view of an ultrasound system of Figure 1.
- Figure 9 is a schematic view of an ultrasound scanhead of Figure 1.
- Figure 10 is a schematic view of the electrodes of Figure 1.
- Figure 11 is a plan view of Figure 10.
- the system for producing an ultrasound image using line based image reconstruction provides an ultrasound image having an effective frame rate in excess of 500 frames per second.
- the system incorporates an ECG based technique that enables significantly higher time resolution than what was previously available, thus allowing the accurate depiction of a rapidly moving structure, such as a heart, in a small animal, such as a mouse, rat, rabbit, or other small animal, using ultrasound (and ultrasound biomicroscopy).
- Biomicrosopy is an increasingly important application due to recent advances in biological, genetic, and biochemical techniques, which have advanced the mouse as a desirable test subject for the study of diseases, including the cardiovascular diseases.
- the system for producing an ultrasound image using line based image resonstruction addresses specifically the need to image and analyze the motions of the heart of a small animal with proportionally relevant time and detail resolution.
- imaging is also applicable to imaging small structures within a human body. It also applies to other ultrasound imaging applications where effective frame rates greater than, for example, 200 frames per second are desired.
- the human heart during rest beats regularly at a typical rate of 60-90 bpm (beats per minute). With clinical ultrasound, physicians generally desire 100 frames per heart beat to accurately depict motion, resulting in imaging frame rates of approximately 100 fps (frames per second). An adult mouse heart under similar conditions typically beats at a rate of 300-600 bpm. Therefore, to achieve 100 frames per heart beat, the desired imaging frame rate is approximately at or above 500-1000 fps, or higher.
- Ultrasound images are formed by the analysis and amalgamation of multiple pulse echo events.
- An image is formed, effectively, by scanning regions within a desired imaging area using individual pulse echo events, referred to as "A- Scans", or ultrasound "lines.”
- A- Scans individual pulse echo events
- Each pulse echo event requires a minimum time for the acoustic energy to propagate into the subject and to return to the transducer.
- the image is completed by "covering" the desired image area with a sufficient number of scan lines, referred to as “painting in” the desired imaging area so that sufficient detail of the subject anatomy can be displayed.
- the number of and order in which the lines are acquired can be controlled by the ultrasound system, which also converts the raw data acquired into an image.
- scan conversion or image construction
- the image is subdivided into regions, where each region corresponds to a single scan line.
- ECG signals acquired during the ultrasound scanning operation are used to time register individually the subdivided data (i.e., the individual pulse-echo events," or "raw data" associated with each scan line).
- a scan conversion mechanism utilizes the ultrasound lines, which are time registered with the ECG signal, to develop an image having an effective frame rate significantly greater that the frame rate that may be obtained in real-time.
- a sequential series of image frames is reconstructed from the pool of time and position registered raw data to reconstruct a very high precision (i.e., high frame rate) representation of the rapidly moving structure.
- FIG. 1 is a block diagram illustrating an imaging system 100.
- the system 100 operates on a subject 102.
- An ultrasound probe 112 is placed in proximity to the subject 102 to obtain image information.
- the ultrasound probe generates ultrasound energy at high frequencies, such as but not limited to greater than 20 MHz and including 25 MHz, 30 MHz, 35 MHz, 40 MHz, 45 MHz, 50 MHz, 55 MHz, 60 MHz and higher. Further, ultrasound operating frequencies significantly greater than those mentioned above are also contemplated.
- the subject 102 is connected to electrocardiogram (ECG) electrodes 104 to obtain a cardiac rhythm from the subject 102.
- ECG electrocardiogram
- the cardiac signal from the electrodes 104 is transmitted to an ECG amplifier 106 to condition the signal for provision to an ultrasound system 131.
- the ultrasound system 131 includes a control subsystem 127, an image construction subsystem 129, sometimes referred to as a "scan converter", the transmit subsystem 118, the receive subsystem 120 and the user input device 136.
- the processor 134 is coupled to the control subsystem 127 and the display 116 is coupled to the processor 134.
- a memory 121 is coupled to the processor 134.
- the memory 121 can be any type of computer memory, and is typically referred to as random access memory "RAM,” in which the software 123 of the invention executes.
- the software 123 controls the acquisition, processing and display of the ultrasound data allowing the ultrasound system 131 to display a high frame rate image so that movement of a rapidly moving structure may be imaged.
- the software 123 comprises one or more modules to acquire, process, and display data from the ultrasound system 131.
- the software comprises various modules of machine code which coordinate the ultrasound subsystems, as will be described below. Data is acquired from the ultrasound system, processed to form complete images, and then displayed to the user on a display 116.
- the software 123 allows the management of multiple acquisition sessions and the saving and loading of these sessions. Post processing of the ultrasound data is also enabled through the software 123.
- the system for producing an ultrasound image using line-based image reconstruction can be implemented using a combination of hardware and software.
- the hardware implementation of the system for producing an ultrasound image using line based image reconstruction can include any or a combination of the following technologies, which are all well known in the art: discrete electronic components, a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit having appropriate logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc.
- the software for the system for producing an ultrasound image using line based image reconstruction comprises an ordered listing of executable instructions for implementing logical functions, and can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
- a "computer-readable medium" can be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
- the computer readable medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (a non-exhaustive list) of the computer-readable medium would include the following: an electrical connection (electronic) having one or more wires, a portable computer diskette (magnetic), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory) (magnetic), an optical fiber (optical), and a portable compact disc read-only memory (CDROM) (optical).
- an electrical connection electronic having one or more wires
- a portable computer diskette magnetic
- RAM random access memory
- ROM read-only memory
- EPROM or Flash memory erasable programmable read-only memory
- CDROM portable compact disc read-only memory
- the computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via for instance optical scanning of the paper or other medium, then compiled, interpreted or otherwise processed in a suitable manner if necessary, and then stored in a computer memory.
- the memory 121 can include the image data 110 obtained by the ultrasound system 100.
- a computer readable storage medium 138 is coupled to the processor for providing instructions to the processor to instruct and/or configure processor to perform steps or algorithms related to the operation of the ultrasound system 131 , as further explained below.
- the computer readable medium can include hardware and/or software such as, by way of example only, magnetic disks, magnetic tape, optically readable medium such as CD ROM's, and semiconductor memory such as PCMCIA cards. In each case, the medium may take the form of a portable item such as a small disk, floppy diskette, cassette, or it may take the form of a relatively large or immobile item such as hard disk drive, solid state memory card, or RAM provided in the support system.
- the ultrasound system 131 can include a control subsystem 127 to direct operation of various components of the ultrasound system 131.
- the control subsystem 127 and related components may be provided as software for instructing a general purpose processor or as specialized electronics in a hardware implementation.
- the ultrasound system 131 includes an image construction subsystem 129 for converting the electrical signals generated by the received ultrasound echoes to data that can be manipulated by the processor 134 and that can be rendered into an image on the display 116.
- the control subsystem 127 is connected to a transmit subsystem 118 to provide an ultrasound transmit signal to the ultrasound probe 112.
- the ultrasound probe 112 in turn provides an ultrasound receive signal to a receive subsystem 120.
- the receive subsystem 120 also provides signals representative of the received signals to the image construction subsystem 129.
- the receive subsystem 120 is also connected to the control subsystem 127.
- the scan converter 32 is directed by the control subsystem 127 to operate on the received data to render an image for display using the image data 110.
- the ultrasound system 131 can include an ECG signal processor 108 configured to receive signals from the ECG amplifier 106.
- the ECG signal processorl08 provides various signals to the control subsystem 127.
- the receive subsystem 120 also receives an ECG time stamp from the ECG signal processor 108.
- the receive subsystem 120 is connected to the control subsystem 127 and an image construction subsystem 129.
- the image construction subsystem 129 is directed by the control subsystem 127.
- the ultrasound system 131 transmits and receives ultrasound data through the ultrasound probe 112, provides an interface to a user to control the operational parameters of the imaging system 100, and processes data appropriate to formulate still and moving images that represent anatomy and/or physiology. Images are presented to the user through the interface display 116.
- the human-machine interface 136 of the ultrasound system 131 takes input from the user, and translates such input to control the operation of the ultrasound probe 106.
- the human-machine interface 136 also presents processed images and data to the user through the display 116.
- the software 123 in cooperation with the image construction subsystem 129 operate on the electrical signals developed by the receive subsystem 120 to develop a high frame-rate ultrasound image that can be used to image rapidly moving anatomy of the subject 102.
- FIGs 2A and 2B are schematic representations depicting methods of ultrasound imaging.
- the operation of the ultrasound probe 112 in a sector format scan is illustrated generally.
- use of the ultrasound probe 112 to obtain a sector format image is shown by the numeral 200.
- An ultrasound signal propagates in direction 202 projecting a "line" 206 of ultrasound energy.
- the ultrasound probe 112 moves along an arc 204.
- the ultrasound signal thus images, or "paints in,” a portion 208 of a sector format image 210.
- An alternative format of image is shown in Figure 2 A by the numeral 220.
- the ultrasound probe 112 propagates a signal in direction 222 projecting a "line" 226 of ultrasound energy.
- the position of the ultrasound probe 112 moves along a line 224.
- the ultrasound signal thus images, or "paints in," a portion 228 of rectangular format image 230.
- Many other formats of images may be used with the ultrasound probe 112.
- the above examples illustrate the general principles that are used for other formats of images. Any technique that acquires spatially limited data may be used, including painting in a region, two-dimensional, and three-dimensional imaging.
- the control subsystem 127 coordinates the operation of the ultrasound probe 112, based on user selected parameters, and other system inputs.
- the control subsystem 127 ensures that data is acquired at each spatial location, and for each time window relative to the ECG signal. Therefore, a full data set includes raw data for each time window along the ECG signal, and for each spatial portion of the image frame. It is recognized that an incomplete data set may be used with appropriate interpolation between the values in the incomplete data set being used to approximate the complete data set.
- the transmit subsystem 118 generates ultrasound pulses based on user selected parameters.
- the ultrasound pulses are sequenced appropriately by the control subsystem 127 and are applied to the probe 112 for transmission toward the subject 102.
- the receive subsystem 120 records the echo data returning from the subject 102, and processes the ultrasound echo data based on user selected parameters.
- the receive subsystem 120 also receives a spatial registration signal from the probe 112 and provides position and timing information related to the received data to the image construction subsystem 129.
- Figures 3A through 3E are schematic diagrams illustrating the operation of the system for producing an ultrasound image using line-based image reconstruction. The operation described below maybe implemented using the software 123 to control the operation ultrasound system 131.
- Figure 3 A shows an ultrasound frame 300.
- the ultrasound probe 112 ( Figure 1) produces an ultrasound signal along line 302.
- Figure 3A shows an exemplary representative signal which shows the general form of ultrasound signals.
- Each position of the ultrasound probe 112 along the line 308 provides a scan line 304 in the rectangular format image frame 306.
- the scan lines are labelled 304] through 304 n , depending on the number of lines per frame.
- Figure 3B is a schematic diagram 320 showing a plurality of image frames 306 along a cardiac rhythm trace 322.
- the portions 326a and 326b of the cardiac rhythm trace 322 are referred to as an "R" wave.
- a specific point 324 in the cardiac rhythm trace 322 may be identified, and a time stamp obtained for each line 304 relative to and offset from the point 324.
- the point 324 is referred to as the peak of the R wave.
- an acquisition sequence 340 is obtained.
- the acquisition sequence 340 comprises frames 306 in which the same scan line 304 is collected, thus yielding a full cycle of the heart between points 324.
- the frames 306 may be reconstructed by reassembling multiple scan lines 304 ⁇ and 304 2 , for example.
- Each position X n , X- + ⁇ of the ultrasound probe 112 yields lines at times TI, T2, ..., T7 shown in Figure 3E.
- the image construction subsystem 129 records as input all of the raw data associated with the scan lines 304, including position and ECG-time registration information for each line.
- the control subsystem 127 sends a signal to the image construction subsystem 129 initiating a reconstruction sequence in which the raw data for each scan line 304 is assembled into a complete image, by collecting sub-regions (i.e., individual scan lines 304) of the image.
- the sub-regions are temporally relative to a specific point 324 in the ECG cycle and generally correspond to the cardiac cycle from R wave to R wave.
- the assembly of the individual scan lines over a series of image frames results in a sequential time-series of complete image frames. When viewed, the time-series of constructed image frames appears to have an effective frame rate in excess of 500 fps and appears as a smooth and accurate depiction of rapidly moving structures.
- the minimum time of frame acquisition represented is thus the maximum time required to obtain each raw data scan line 304, rather than the time required to obtain an entire image frame 306, thus providing an effective frame rate much greater that what would be obtained using real-time or frame-based image reconstruction.
- An exemplary ECG signal is shown in Figure 4 by the numeral 400.
- the ECG signal is represented by the trace 322.
- the ECG signal processing module 108 ( Figure 1) of the ultrasound system 131 automatically detects, using peak detection of the R-wave pulse, a fixed and repeatable point (324 in Figure 3B) on the ECG signal trace 322 from which the scan lines 304 are referenced in time. This automatically detects a point in time which is used as the origin for relative ECG time stamps for each element of raw data associated with each can line.
- Figures 5, 6 and 7 are flowcharts collectively illustrating the operation of the system for producing an ultrasound image using line based image reconstruction.
- the blocks in the flowcharts may be executed in the order shown, out of the order shown, or concurrently.
- FIG. 5 is flowchart 500 illustrating the overall operation of the system for producing an ultrasound image using line based image reconstruction.
- the transducer in the probe 112 is registered at its home position at one end of its travel. The movement of the transducer 112 is described in commonly assigned, co- pending U.S. Patent Application No. 10/683,890, entitled "High Frequency, High Frame-Rate Ultrasound Imaging System, filed on October 10, 2003, which is incorporated herein by reference.
- ultrasound data is acquired for the probe location described in block 502 and stored in memory 121 ( Figure 1). The operation of block 504 will be described in greater detail in Figure 6.
- the data acquired in block 504 is processed. The operation of block 506 will be described in greater detail in Figure 7.
- block 508 the data acquired in block 504 and processed in block 506 is displayed.
- block 512 it is determined whether the probe 112 has reached the end of its travel, or sweep. If the probe 112 has not reached the end of its travel, its position is incremented in block 514 and the process returns to block 504 and data acquisition continues. If, in block 512 it is determined that the probe 112 has reached the end of its travel, then, in block 516, a line based reconstructed image is displayed on display 116 as what is referred to as a "B mode" loop.
- FIG. 6 is a flowchart 600 illustrating the operation of the acquisition block 504 of Figure 5.
- ECG data is acquired and stored in memory 121 in block 606.
- ultrasound data is acquired and stored in memory 121 in block 608.
- Each line 304 ( Figure 3 A and Figure 3B) of ultrasound data is stored in block 608.
- the ultrasound signal includes the data associated with a scan line and also includes a spatial registration signal associated with the scan line.
- the ultrasound signal containing the raw data and the spatial registration information is identified with the time stamp by the receive subsystem 120.
- ECG and ultrasound data acquisition is continued for a period of time specified by a user of the system.
- FIG. 7 is a flowchart 700 illustrating the operation of the process data block 506 of Figure 5.
- the ECG data stored in block 606 ( Figure 6) is scanned to locate the first specific point 324 in the R wave (326a and 326b) as shown in Figure 3B as described above. This automatically detects a point in time which is used as the origin for relative ECG time stamps for each element of raw data associated with each can line.
- each line 304 of ultrasound data following this point is placed, in block 710, into a reconstructed frame 306 ( Figures 3C and 3D) based on its time displacement from the peak 324. For example, a line 304 acquired Tn milliseconds after the peak 324 will be placed into frame Tn.
- block 712 it is determined whether the peak 324 of the next R wave has been reached. If the peak 324 of the next R wave has not been reached, the process returns to block 706. If, in block 712 it is determined that the next peak 324 has been reached, then, in block 714, it is determined whether there is any additional data to process. If there is additional data to process, the image reconstruction subsystem 129 resets its time counter in block 716. . If, in block 714 it is determined that there is no additional data to process, then the process ends.
- the ultrasound system 100 is shown by way of example only.
- the ultrasound system 100 is a freestanding unit on casters for mobility.
- the human machine interface 136 includes a display 116, a keyboard 146, and a foot control 148.
- the control subsystem 127 and related components are located inside a case.
- an embodiment of the ultrasound probe 112 is shown by way of example only.
- the purpose of the ultrasound probe 112 is to generate and receive ultrasound signals, and feed these signals back to the ultrasound system 131, with position registration of each of the scan lines containing the raw data.
- the ultrasound probe 112 also referred to as a scan head comprises a piezoelectric element(s) to convert ultrasound pressure waves to electrical signals, and received ultrasound pressure waves to electrical signals, and a mechanism to reposition (and record spatial location of) the ultrasound beam.
- the positioning mechanism comprises an optical position encoder connected to a high resolution stepping motor as described in commonly assigned, copending U.S. Patent Application No. 10/683,890, entitled "High Frequency, High Frame-Rate Ultrasound Imaging System, filed on October 10, 2003, which is incorporated herein by reference.
- the positioning mechanism comprises an array of piezoelectric elements which can be electronically steered using variable pulsing and delay mechanisms.
- the ECG apparatus comprises ECG electrodes 104, and an ECG amplifier 106 ( Figure 1).
- the ECG amplifier 106 is typically located close to the ECG electrodes 104 ( Figure 1) in a control module (not shown) which also controls a small animal heating element (not shown).
- the embodiment of Figures 10 and 11 illustrates an example of a set of ECG electrodes designed to collect ECG signals from an adult mouse.
- knobs are provided to adjust the position of the platform as required in various procedures.
- a control provides a quick height adjustment for the platform.
- a knob operates a magnet for holding the platform in position and allowing a quick release for coarse positioning of the platform.
- each scan line having a raw data element By accurately registering the position of the probe 112 for each scan line, the time of acquisition of each scan line relative to a reference point in the ECG trace 322 ( Figure 3B), each scan line having a raw data element, an effective frame rate at or in excess of 200 frames per second can be achieved during playback of a fully reconstructed data set.
- An ultrasound system constructed in accordance with the invention records both position registration with respect to the probe 112 and time registration with respect to the scan line relative to the ECG cycle, thus identifying each raw data element. The raw data elements are then used to construct a high precision high frame rate image.
- First implementations have demonstrated the capability to acquire image sequences with complete data independence at for example 1000 frames per second. It is anticipated that operations may be performed at much higher frame rates.
- the frame rate may be as high as the pulse repetition frequency (PRF) limit for any given ultrasound line.
- PRF pulse repetition frequency
- the PRF limits the maximum image depth.
- the maximum image depth is equal to the speed of sound divided by twice the PRF (i.e. speed of sound / ( 2 * PRF)). It is anticipated that this could be as high as approximately 100,000 frames per second.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2525220A CA2525220C (en) | 2003-05-09 | 2004-05-10 | System for producing an ultrasound image using line-based image reconstruction |
EP04731980A EP1642154B1 (en) | 2003-05-09 | 2004-05-10 | System for producing an ultrasound image using line-based image reconstruction |
DE602004007520T DE602004007520T2 (en) | 2003-05-09 | 2004-05-10 | APPARATUS FOR ULTRASONIC IMAGING USING A LINE-BASED IMAGE RECONSTRUCTION |
CN200480019107.5A CN1833181B (en) | 2003-05-09 | 2004-05-10 | System for producing an ultrasound image using line-based image reconstruction |
JP2006506630A JP4805140B2 (en) | 2003-05-09 | 2004-05-10 | System for generating ultrasound images using line-based image reconstruction |
HK06111032A HK1089240A1 (en) | 2003-05-09 | 2006-10-05 | System for producing an ultrasound image using line-based image reconstruction |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46895803P | 2003-05-09 | 2003-05-09 | |
US46895603P | 2003-05-09 | 2003-05-09 | |
US60/468,956 | 2003-05-09 | ||
US60/468,958 | 2003-05-09 | ||
US47023403P | 2003-05-14 | 2003-05-14 | |
US60/470,234 | 2003-05-14 | ||
US10/736,232 US7052460B2 (en) | 2003-05-09 | 2003-12-15 | System for producing an ultrasound image using line-based image reconstruction |
US10/736,232 | 2003-12-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004099814A1 true WO2004099814A1 (en) | 2004-11-18 |
WO2004099814A8 WO2004099814A8 (en) | 2006-10-26 |
Family
ID=33437191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2004/001935 WO2004099814A1 (en) | 2003-05-09 | 2004-05-10 | System for producing an ultrasound image using line-based image reconstruction |
Country Status (8)
Country | Link |
---|---|
US (2) | US7052460B2 (en) |
EP (1) | EP1642154B1 (en) |
JP (3) | JP4805140B2 (en) |
CN (1) | CN1833181B (en) |
AT (1) | ATE366944T1 (en) |
CA (1) | CA2525220C (en) |
DE (1) | DE602004007520T2 (en) |
WO (1) | WO2004099814A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005099345A2 (en) * | 2004-03-01 | 2005-10-27 | Sunnybrook And Women's College Health Sciences Centre | System and method for ecg-triggered retrospective color flow ultrasound imaging |
EP1757955A1 (en) * | 2005-08-24 | 2007-02-28 | Medison Co., Ltd. | Apparatus and method for processing an ultrasound image |
WO2007056104A3 (en) * | 2005-11-02 | 2007-08-30 | Visualsonics Corp | High frequency array ultrasound system |
EP1853169A2 (en) * | 2005-03-04 | 2007-11-14 | VisualSonics Inc. | Method for synchronization of breathing signal with the capture of ultrasound data |
US8317714B2 (en) | 2005-08-19 | 2012-11-27 | Visualsonics Inc. | Systems and methods for capture and display of blood pressure and ultrasound data |
WO2013140353A3 (en) * | 2012-03-23 | 2013-12-05 | Koninklijke Philips N.V. | Imaging system for imaging a periodically moving object |
PT106930A (en) * | 2013-05-03 | 2014-11-03 | Univ Trás Os Montes E Alto Douro | WORKING SURFACE WITH CONTROLLED HEATING AREA FOR BODY TEMPERATURE MAINTENANCE IN ANIMALS |
US9935254B2 (en) | 2008-09-18 | 2018-04-03 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US10596597B2 (en) | 2008-09-18 | 2020-03-24 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US20210263151A1 (en) * | 2018-05-09 | 2021-08-26 | Dalhouse University | Systems and methods of sparse orthogonal diverging wave ultrasound imaging |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004034694A2 (en) | 2002-10-10 | 2004-04-22 | Visualsonics Inc. | High frequency high frame-rate ultrasound imaging system |
EP2213310A1 (en) | 2004-01-20 | 2010-08-04 | Sunnybrook and Women's College Health Sciences Centre | High frequency ultrasound imaging using contrast agents |
US7746514B2 (en) * | 2004-04-14 | 2010-06-29 | Hung-Yi Hsu | Scanner and exposure control method thereof |
US7230368B2 (en) * | 2004-04-20 | 2007-06-12 | Visualsonics Inc. | Arrayed ultrasonic transducer |
US20070222339A1 (en) * | 2004-04-20 | 2007-09-27 | Mark Lukacs | Arrayed ultrasonic transducer |
US20050288585A1 (en) * | 2004-06-24 | 2005-12-29 | Siemens Medical Solutions Usa, Inc. | Flexible physiological cycle detection and use for ultrasound |
WO2006044997A2 (en) * | 2004-10-15 | 2006-04-27 | The Trustees Of Columbia University In The City Of New York | System and method for localized measurement and imaging of viscosity of tissues |
CN101184428B (en) * | 2005-04-01 | 2013-09-25 | 视声公司 | Method for 3-d visualization of vascular structures using ultrasound |
US10687785B2 (en) | 2005-05-12 | 2020-06-23 | The Trustees Of Columbia Univeristy In The City Of New York | System and method for electromechanical activation of arrhythmias |
WO2006124603A2 (en) * | 2005-05-12 | 2006-11-23 | The Trustees Of Columbia University In The City Of New York | System and method for electromechanical wave imaging of body structures |
WO2007058895A2 (en) * | 2005-11-11 | 2007-05-24 | Visualsonics Inc. | Overlay image contrast enhancement |
US7750536B2 (en) | 2006-03-02 | 2010-07-06 | Visualsonics Inc. | High frequency ultrasonic transducer and matching layer comprising cyanoacrylate |
US7808156B2 (en) | 2006-03-02 | 2010-10-05 | Visualsonics Inc. | Ultrasonic matching layer and transducer |
WO2008027520A2 (en) * | 2006-08-30 | 2008-03-06 | The Trustees Of Columbia University In The City Of New York | Systems and methods for composite elastography and wave imaging |
US8073211B2 (en) * | 2007-02-23 | 2011-12-06 | General Electric Company | Method and apparatus for generating variable resolution medical images |
DK2181342T3 (en) * | 2007-08-23 | 2017-05-08 | Verasonics Inc | Adaptive reconstruction of ultrasound images based on measurement of local media movement |
WO2010014977A1 (en) | 2008-08-01 | 2010-02-04 | The Trustees Of Columbia University In The City Of New York | Systems and methods for matching and imaging tissue characteristics |
WO2010030819A1 (en) | 2008-09-10 | 2010-03-18 | The Trustees Of Columbia University In The City Of New York | Systems and methods for opening a tissue |
WO2010031192A1 (en) | 2008-09-18 | 2010-03-25 | Visualsonics Inc. | Methods for manufacturing ultrasound transducers and other components |
EP2480144B1 (en) | 2009-09-21 | 2024-03-06 | The Trustees of Columbia University in the City of New York | Systems for opening of a tissue barrier |
CN101999908A (en) * | 2010-11-26 | 2011-04-06 | 温州医学院眼视光研究院 | Portable ophthalmic ultrasonic biomicroscope |
US9320491B2 (en) | 2011-04-18 | 2016-04-26 | The Trustees Of Columbia University In The City Of New York | Ultrasound devices methods and systems |
WO2012162664A1 (en) | 2011-05-26 | 2012-11-29 | The Trustees Of Columbia University In The City Of New York | Systems and methods for opening of a tissue barrier in primates |
CN105726064B (en) * | 2012-07-31 | 2019-06-11 | 东芝医疗系统株式会社 | Diagnostic ultrasound equipment and control method |
WO2014059170A1 (en) | 2012-10-10 | 2014-04-17 | The Trustees Of Columbia University In The City Of New York | Systems and methods for mechanical mapping of cardiac rhythm |
US20140128738A1 (en) * | 2012-11-05 | 2014-05-08 | Fujifilm Visualsonics, Inc. | System and methods for forming ultrasound images |
US9502023B2 (en) | 2013-03-15 | 2016-11-22 | Fujifilm Sonosite, Inc. | Acoustic lens for micromachined ultrasound transducers |
US9211110B2 (en) | 2013-03-15 | 2015-12-15 | The Regents Of The University Of Michigan | Lung ventillation measurements using ultrasound |
US9247921B2 (en) | 2013-06-07 | 2016-02-02 | The Trustees Of Columbia University In The City Of New York | Systems and methods of high frame rate streaming for treatment monitoring |
US10322178B2 (en) | 2013-08-09 | 2019-06-18 | The Trustees Of Columbia University In The City Of New York | Systems and methods for targeted drug delivery |
US10028723B2 (en) | 2013-09-03 | 2018-07-24 | The Trustees Of Columbia University In The City Of New York | Systems and methods for real-time, transcranial monitoring of blood-brain barrier opening |
US10265047B2 (en) | 2014-03-12 | 2019-04-23 | Fujifilm Sonosite, Inc. | High frequency ultrasound transducer having an ultrasonic lens with integral central matching layer |
CN104200500B (en) * | 2014-07-29 | 2017-06-06 | 沈阳东软医疗系统有限公司 | The method for reconstructing and device of a kind of cardiac image |
US11304676B2 (en) * | 2015-01-23 | 2022-04-19 | The University Of North Carolina At Chapel Hill | Apparatuses, systems, and methods for preclinical ultrasound imaging of subjects |
KR101797042B1 (en) * | 2015-05-15 | 2017-11-13 | 삼성전자주식회사 | Method and apparatus for synthesizing medical images |
US10560147B1 (en) * | 2017-03-07 | 2020-02-11 | Cpg Technologies, Llc | Guided surface waveguide probe control system |
WO2020086815A1 (en) * | 2018-10-25 | 2020-04-30 | Butterfly Network, Inc. | Methods and apparatuses for ultrasound imaging using different image formats |
EP3890606B1 (en) | 2018-12-04 | 2023-07-26 | Fujifilm Sonosite, Inc. | Photoacoustic electrocardiogram-gated kilohertz visualization |
JP7094237B2 (en) * | 2019-03-14 | 2022-07-01 | 富士フイルム株式会社 | How to operate the ultrasonic diagnostic system and the ultrasonic diagnostic system |
CN112461932B (en) * | 2020-12-04 | 2022-11-22 | 飞依诺科技股份有限公司 | Object scanning method, device and storage medium |
CN113545800B (en) * | 2021-07-13 | 2022-12-30 | 上海深至信息科技有限公司 | Carotid artery ultrasonic scanning video quality screening method and system |
CN115237308B (en) * | 2022-06-29 | 2024-06-18 | 青岛海信医疗设备股份有限公司 | Ultrasound image amplification method and ultrasound device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4413521A (en) * | 1981-04-29 | 1983-11-08 | U.S. Philips Corporation | Apparatus for examining an object by means of ultrasonic waves |
WO1998040014A1 (en) * | 1997-03-10 | 1998-09-17 | Robin Medical Inc. | Method and apparatus for the assessment and display of variability in mechanical activity of the heart, and enhancement of ultrasound contrast imaging by variability analysis |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6432849A (en) * | 1987-07-28 | 1989-02-02 | Toshiba Corp | Ultrasonic diagnostic apparatus |
JP2557410B2 (en) * | 1987-09-22 | 1996-11-27 | 株式会社東芝 | Ultrasonic Doppler blood flow imaging device |
US4888694A (en) * | 1987-10-28 | 1989-12-19 | Quantum Medical Systems, Inc. | Ultrasound imaging system for relatively low-velocity blood flow at relatively high frame rates |
JPH01230346A (en) * | 1988-03-11 | 1989-09-13 | Hitachi Medical Corp | Diagnosis device by ultra sonic wave |
US5099847A (en) * | 1989-11-13 | 1992-03-31 | Advanced Technology Laboratories, Inc. | High frame rate ultrasound system |
JPH07100133A (en) * | 1993-10-08 | 1995-04-18 | Ken Ishihara | Image display method for ultrasonograph |
US5390674A (en) * | 1993-12-30 | 1995-02-21 | Advanced Technology Laboratories, Inc. | Ultrasonic imaging system with interpolated scan lines |
EP0674185A1 (en) * | 1994-03-25 | 1995-09-27 | Laboratoires D'electronique Philips S.A.S. | Method and system for detecting and characterising a segment of a blood vessel by ultrasonic echography |
JP3537594B2 (en) * | 1996-06-13 | 2004-06-14 | アロカ株式会社 | Ultrasonic diagnostic equipment |
JP3834365B2 (en) * | 1996-10-16 | 2006-10-18 | アロカ株式会社 | Ultrasonic diagnostic equipment |
US5797846A (en) * | 1996-12-30 | 1998-08-25 | General Electric Company | Method to control frame rate in ultrasound imaging |
US5940123A (en) * | 1997-02-13 | 1999-08-17 | Atl Ultrasound | High resolution ultrasonic imaging through interpolation of received scanline data |
FR2772590B1 (en) * | 1997-12-18 | 2000-04-14 | Michel Puech | USE OF AN ULTRASONIC TRANSDUCER FOR ECHOGRAPHIC EXPLORATION OF THE POSTERIOR SEGMENT OF THE EYEBALL |
US6200267B1 (en) * | 1998-05-13 | 2001-03-13 | Thomas Burke | High-speed ultrasound image improvement using an optical correlator |
US6123670A (en) * | 1998-12-15 | 2000-09-26 | General Electric Company | Ultrasound imaging with optimal image quality in region of interest |
US7756304B2 (en) * | 1998-12-30 | 2010-07-13 | Siemens Medical Solutions Usa, Inc. | Medical diagnostic ultrasonic imaging method and system for displaying multi-phase, multi-frame images |
US6099473A (en) * | 1999-02-05 | 2000-08-08 | Animal Ultrasound Services, Inc. | Method and apparatus for analyzing an ultrasonic image of a carcass |
US6193662B1 (en) * | 1999-02-17 | 2001-02-27 | Atl Ultrasound | High frame rate pulse inversion harmonic ultrasonic diagnostic imaging system |
US6139500A (en) * | 1999-02-24 | 2000-10-31 | Agilent Technologies Inc. | Methods and apparatus for 3D cardiac ultrasound imaging |
US6238345B1 (en) * | 1999-06-30 | 2001-05-29 | Atl Ultrasound | Image memory for extended field of view ultrasonic diagnostic imaging |
US6350238B1 (en) * | 1999-11-02 | 2002-02-26 | Ge Medical Systems Global Technology Company, Llc | Real-time display of ultrasound in slow motion |
US6468216B1 (en) * | 2000-08-24 | 2002-10-22 | Kininklijke Philips Electronics N.V. | Ultrasonic diagnostic imaging of the coronary arteries |
US6544175B1 (en) * | 2000-09-15 | 2003-04-08 | Koninklijke Philips Electronics N.V. | Ultrasound apparatus and methods for display of a volume using interlaced data |
JP2002248101A (en) * | 2001-02-26 | 2002-09-03 | Fuji Photo Film Co Ltd | Ultrasonic photographic method and ultrasonic photographic apparatus |
US6755785B2 (en) * | 2001-11-20 | 2004-06-29 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic image generating apparatus and ultrasonic image generating method |
JP4060615B2 (en) * | 2002-03-05 | 2008-03-12 | 株式会社東芝 | Image processing apparatus and ultrasonic diagnostic apparatus |
US6695778B2 (en) * | 2002-07-03 | 2004-02-24 | Aitech, Inc. | Methods and systems for construction of ultrasound images |
WO2004034694A2 (en) | 2002-10-10 | 2004-04-22 | Visualsonics Inc. | High frequency high frame-rate ultrasound imaging system |
US7331234B2 (en) * | 2002-11-13 | 2008-02-19 | Fujifilm Corporation | Ultrasonic imaging method and ultrasonic imaging apparatus |
US7297118B2 (en) * | 2003-06-12 | 2007-11-20 | Ge Medical Systems Global Technology Company | Ultrasound method and apparatus for multi-line acquisition |
US6951543B2 (en) * | 2003-06-24 | 2005-10-04 | Koninklijke Philips Electronics N.V. | Automatic setup system and method for ultrasound imaging systems |
US20050049498A1 (en) * | 2003-08-13 | 2005-03-03 | Ctrl Systems, Inc. | Method of ultrasound non-contact early detection of respiratory diseases in fowls and mammals |
DE102005008490B8 (en) * | 2004-02-25 | 2009-06-18 | Fujinon Corporation | Ultrasonic diagnostic apparatus |
CN101002107B (en) * | 2004-03-01 | 2010-06-23 | 阳光溪流女子学院健康科学中心 | System and method for ECG-triggered retrospective color flow ultrasound imaging |
-
2003
- 2003-12-15 US US10/736,232 patent/US7052460B2/en not_active Expired - Lifetime
-
2004
- 2004-05-10 CA CA2525220A patent/CA2525220C/en not_active Expired - Lifetime
- 2004-05-10 WO PCT/IB2004/001935 patent/WO2004099814A1/en active IP Right Grant
- 2004-05-10 EP EP04731980A patent/EP1642154B1/en not_active Expired - Lifetime
- 2004-05-10 DE DE602004007520T patent/DE602004007520T2/en not_active Expired - Lifetime
- 2004-05-10 JP JP2006506630A patent/JP4805140B2/en not_active Expired - Lifetime
- 2004-05-10 CN CN200480019107.5A patent/CN1833181B/en not_active Expired - Lifetime
- 2004-05-10 AT AT04731980T patent/ATE366944T1/en not_active IP Right Cessation
-
2006
- 2006-04-06 US US11/399,184 patent/US20060241448A1/en not_active Abandoned
-
2007
- 2007-05-08 JP JP2007124006A patent/JP2007268288A/en active Pending
-
2011
- 2011-05-06 JP JP2011103793A patent/JP2011172970A/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4413521A (en) * | 1981-04-29 | 1983-11-08 | U.S. Philips Corporation | Apparatus for examining an object by means of ultrasonic waves |
WO1998040014A1 (en) * | 1997-03-10 | 1998-09-17 | Robin Medical Inc. | Method and apparatus for the assessment and display of variability in mechanical activity of the heart, and enhancement of ultrasound contrast imaging by variability analysis |
Non-Patent Citations (2)
Title |
---|
FOSTER F S ET AL: "High frequency ultrasound imaging: from man to mouse", IEEE ULTRASONICS SYMPOSIUM, vol. 2, 22 October 2000 (2000-10-22), pages 1633 - 1638, XP010540928 * |
TURNBULL D H ET AL: "In vivo ultrasound biomicroscopy in developmental biology", TRENDS IN BIOTECHNOLOGY, ELSEVIER PUBLICATIONS, CAMBRIDGE, GB, vol. 20, no. 8, 1 August 2002 (2002-08-01), pages S29 - S33, XP004371933, ISSN: 0167-7799 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7674228B2 (en) | 2004-03-01 | 2010-03-09 | Sunnybrook And Women's College Health Sciences Centre | System and method for ECG-triggered retrospective color flow ultrasound imaging |
WO2005099345A3 (en) * | 2004-03-01 | 2006-03-30 | Sunnybrook & Womens College | System and method for ecg-triggered retrospective color flow ultrasound imaging |
WO2005099345A2 (en) * | 2004-03-01 | 2005-10-27 | Sunnybrook And Women's College Health Sciences Centre | System and method for ecg-triggered retrospective color flow ultrasound imaging |
JP4942666B2 (en) * | 2005-03-04 | 2012-05-30 | ビジュアルソニックス インコーポレイテッド | Respiration signal synchronization method by capturing ultrasound data |
JP2008531173A (en) * | 2005-03-04 | 2008-08-14 | ビジュアルソニックス インコーポレイテッド | Respiration signal synchronization method by capturing ultrasound data |
EP1853169A4 (en) * | 2005-03-04 | 2008-12-10 | Visualsonics Inc | Method for synchronization of breathing signal with the capture of ultrasound data |
EP1853169A2 (en) * | 2005-03-04 | 2007-11-14 | VisualSonics Inc. | Method for synchronization of breathing signal with the capture of ultrasound data |
US7798963B2 (en) | 2005-03-04 | 2010-09-21 | Visualsonics Inc. | Method for synchronization of breathing signal with the capture of ultrasound data |
US8317714B2 (en) | 2005-08-19 | 2012-11-27 | Visualsonics Inc. | Systems and methods for capture and display of blood pressure and ultrasound data |
US9445787B2 (en) | 2005-08-19 | 2016-09-20 | Fujifilm Sonosite, Inc. | Systems and methods for capture and display of blood pressure and ultrasound data |
EP1757955A1 (en) * | 2005-08-24 | 2007-02-28 | Medison Co., Ltd. | Apparatus and method for processing an ultrasound image |
US7628755B2 (en) | 2005-08-24 | 2009-12-08 | Medison Co., Ltd. | Apparatus and method for processing an ultrasound image |
WO2007056104A3 (en) * | 2005-11-02 | 2007-08-30 | Visualsonics Corp | High frequency array ultrasound system |
US11094875B2 (en) | 2008-09-18 | 2021-08-17 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US12029131B2 (en) | 2008-09-18 | 2024-07-02 | Fujifilm Sonosite, Inc. | Methods for patterning electrodes of ultrasound transducers and other components |
US9935254B2 (en) | 2008-09-18 | 2018-04-03 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US11845108B2 (en) | 2008-09-18 | 2023-12-19 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
US10596597B2 (en) | 2008-09-18 | 2020-03-24 | Fujifilm Sonosite, Inc. | Methods for manufacturing ultrasound transducers and other components |
WO2013140353A3 (en) * | 2012-03-23 | 2013-12-05 | Koninklijke Philips N.V. | Imaging system for imaging a periodically moving object |
US10251629B2 (en) | 2012-03-23 | 2019-04-09 | Koninklijke Philips N.V. | Imaging system for imaging a periodically moving object |
PT106930A (en) * | 2013-05-03 | 2014-11-03 | Univ Trás Os Montes E Alto Douro | WORKING SURFACE WITH CONTROLLED HEATING AREA FOR BODY TEMPERATURE MAINTENANCE IN ANIMALS |
US20210263151A1 (en) * | 2018-05-09 | 2021-08-26 | Dalhouse University | Systems and methods of sparse orthogonal diverging wave ultrasound imaging |
US11885877B2 (en) * | 2018-05-09 | 2024-01-30 | Dalhousie University | Systems and methods of sparse orthogonal diverging wave ultrasound imaging |
Also Published As
Publication number | Publication date |
---|---|
DE602004007520T2 (en) | 2008-03-20 |
JP2006525837A (en) | 2006-11-16 |
WO2004099814A8 (en) | 2006-10-26 |
CN1833181A (en) | 2006-09-13 |
CN1833181B (en) | 2012-06-20 |
US7052460B2 (en) | 2006-05-30 |
DE602004007520D1 (en) | 2007-08-23 |
EP1642154B1 (en) | 2007-07-11 |
JP4805140B2 (en) | 2011-11-02 |
ATE366944T1 (en) | 2007-08-15 |
EP1642154A1 (en) | 2006-04-05 |
JP2011172970A (en) | 2011-09-08 |
CA2525220C (en) | 2012-03-13 |
CA2525220A1 (en) | 2004-11-18 |
US20060241448A1 (en) | 2006-10-26 |
US20040236219A1 (en) | 2004-11-25 |
JP2007268288A (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2525220C (en) | System for producing an ultrasound image using line-based image reconstruction | |
JP4942666B2 (en) | Respiration signal synchronization method by capturing ultrasound data | |
US7674228B2 (en) | System and method for ECG-triggered retrospective color flow ultrasound imaging | |
EP2582302B1 (en) | Automated heart rate detection for 3d ultrasonic fetal imaging | |
EP3052023B1 (en) | Ultrasound systems and methods for automated fetal heartbeat identification | |
JP5475280B2 (en) | Method and apparatus for 3D ultrasound imaging in which parameters are estimated using a fixed beam | |
US20040077952A1 (en) | System and method for improved diagnostic image displays | |
US7758507B2 (en) | Blood flow imaging | |
WO2006064676A1 (en) | Ultrasonic diagnosis apparatus | |
US20140128738A1 (en) | System and methods for forming ultrasound images | |
US11944485B2 (en) | Ultrasound device, systems, and methods for lung pulse detection by plueral line movement | |
JP2008104641A (en) | Ultrasonic diagnostic apparatus, heartbeat synchronizing signal generator and heartbeat synchronizing signal generation method | |
EP1845391A1 (en) | System for producing an ultrasound image using line-based image reconstruction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480019107.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2525220 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006506630 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004731980 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004731980 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2004731980 Country of ref document: EP |