WO2004099788A1 - Method for producing microarray, and head and apparatus for producing microarray - Google Patents

Method for producing microarray, and head and apparatus for producing microarray Download PDF

Info

Publication number
WO2004099788A1
WO2004099788A1 PCT/JP2004/006205 JP2004006205W WO2004099788A1 WO 2004099788 A1 WO2004099788 A1 WO 2004099788A1 JP 2004006205 W JP2004006205 W JP 2004006205W WO 2004099788 A1 WO2004099788 A1 WO 2004099788A1
Authority
WO
WIPO (PCT)
Prior art keywords
spot
surfactant
solution
microarray
head
Prior art date
Application number
PCT/JP2004/006205
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Tashiro
Tokuji Kitsunai
Chikara Koike
Akihiro Iimura
Motoki Abe
Yoshihiro Kimura
Original Assignee
Riken
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003124655A external-priority patent/JP2004325422A/en
Priority claimed from JP2003124654A external-priority patent/JP2004325421A/en
Application filed by Riken, Thk Co., Ltd. filed Critical Riken
Publication of WO2004099788A1 publication Critical patent/WO2004099788A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0244Drop counters; Drop formers using pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L13/00Cleaning or rinsing apparatus
    • B01L13/02Cleaning or rinsing apparatus for receptacle or instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00387Applications using probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • B01J2219/00533Sheets essentially rectangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/02Drop detachment mechanisms of single droplets from nozzles or pins
    • B01L2400/028Pin is moved through a ring which is filled with a fluid
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries

Definitions

  • Microarray fabrication method Microarray fabrication head and device
  • the present invention relates to a microarray production method and a microarray production apparatus for arranging a large number of biological samples such as DNA fragments and oligonucleotides on a substrate.
  • a DNA microarray (that is, a DNA chip) is an array of numerous spots containing DNA fragments and the like on a slide glass-silicon substrate, which is extremely effective in analyzing gene expression, mutation, diversity, etc. .
  • the size of a typical substrate is one to several tens of cm 2 , and spots of thousands to hundreds of thousands of DNA fragments are arranged in this area.
  • DNA fragments on the substrate are examined using a fluorescently labeled DNA having complementarity. Fluorescence occurs when hybridization occurs between the DNA fragment on the substrate and the fluorescently labeled DNA.
  • the spot where this fluorescence occurs is detected by a fluorescence scanner or the like, and the gene expression, mutation, diversity, etc. can be analyzed by analyzing the fluorescence image.
  • a microarray fabrication technology that precisely arranges the spots of densely packed DNA fragments on a substrate is required.
  • WO 95/35505 Japanese Unexamined Patent Publication No. 10-503841 discloses a microarray production apparatus that arranges DNA fragments prepared in advance on a substrate. This device is formed between a pair of elongated members A spot is placed on the substrate by holding the sample in the open capillary channel and lightly tapping the tip of a head composed of a pair of elongated members onto the substrate.
  • a head that includes a liquid reservoir for holding a solution, and a spot arranging device (for example, a pin or a needle) protruding from the liquid reservoir and disposing a spot on the substrate. ing.
  • the head is often provided with a plurality of spot arranging devices (for example, pins or needles) for simultaneously forming spots on a plurality of substrates.
  • spot arranging devices for example, pins or needles
  • All spot locators must be thoroughly cleaned. Conventionally, washing of the spot arrangement tool of such a microarray manufacturing apparatus has been performed using only water in consideration of the influence on a biological sample.
  • the carrier there was a tendency for the par to be noticeable, and improvements were required. Also, the washing operation to prevent contamination by the previous solution requires a considerable amount of time with water alone even when such ultrasonic vibration is used in combination. There was a place where it was limited.
  • the present invention provides a method for preparing a microarray in which a plurality of spots are arranged on a substrate, whereby contamination of a later spot of a biological sample-containing solution by a previously used biological sample-containing solution can be effectively prevented. It is an object to provide a method and a microarray manufacturing apparatus.
  • the present invention also provides a microarray production method and a microarray which can ensure the washing operation performed prior to the formation of the next spot after the spot formation operation reliably and promptly, increase the efficiency of microarray production, and provide a high quality microarray. It is an object to provide a manufacturing device.
  • the present invention for solving the above problems is a method for producing a plurality of microarrays using a spot disposition tool, wherein a plurality of spots of a biological sample-containing solution are formed on a substrate, which is performed between the formation of each spot.
  • the washing operation of the spot locating device which is performed during the formation of each spot, is performed using a surfactant, the cleaning operation is performed better and faster than when only water is used. Can prevent contamination between samples and reduce the time required for microarray production. It becomes.
  • washing was performed using only water in consideration of the effect on biological samples.However, if an appropriate surfactant is selected, the surfactant is used as in the present invention. The present inventors have found that even with the use of an agent, a reliable washing operation can be performed without adversely affecting a biological sample.
  • the hydrophilicity of the surface of the member constituting such a spot disposition device is improved, and the biological sample-containing solution can be conveyed even in the narrow channel of the spot disposition device. It has also been found that the fluid flows smoothly without forming droplets and the like, and as a result, the size of each spot to be formed can be kept uniform.
  • the cleaning of the spot placement device is performed in the steps of supplying a surfactant solution to the spot placement device, washing with water, and drying. Is shown. As described above, in the cleaning, a more effective cleaning effect can be obtained by first supplying the surfactant to the spot placement device.
  • the spot disposition tool has a nozzle and a stamping pin disposed inside the nozzle and capable of reciprocating in a nozzle axis direction.
  • the supply of the surfactant solution to the spot disposition device is performed by reciprocating the stamping pin while at least the tip of the nozzle is in contact with the surfactant solution.
  • the reciprocating motion of the stamping pin allows the relatively easy concentration of the surfactant in the narrow flow path of the spot disposition tool easily and reliably even when the surfactant has a relatively high concentration.
  • An activator can be provided.
  • the activator concentration is at least 5%.
  • the water washing step is performed by repeating a series of operations consisting of ultrasonic cleaning, running water cleaning, and physical water removal one or more times. It is what is done. Through such a water washing step, the surfactant used for the washing can be quickly and reliably removed.
  • the surfactant used in the surfactant solution is a nonionic surfactant or an amphoteric surfactant, and more preferably, polyoxyethylene. A fatty acid ester.
  • the carry-over rate of the solution containing the biological sample used in the formation of the spot in the subsequent spot is 1% or less.
  • the present invention for solving the above-mentioned problems further provides a microarray manufacturing method for forming a plurality of spots of a solution containing a biological sample on a substrate, wherein the solution in the spot arrangement tool for forming the spots is provided. At least a part of the contact surface of the microarray is coated with a surfactant, and the solution is supplied in this state to form a spot.
  • the surface of the spot placement tool that contacts the biological sample-containing solution is coated with the surfactant, and thus the members constituting such a spot placement tool, for example, stainless steel, etc.
  • the surface is more hydrophilic than that of the surface of the specimen, and even the flow path of the stenosis in the spot placement device contains the biological sample.
  • the solution has a smooth flow without forming droplets and the like, and as a result, the size of each spot to be formed can be kept uniform.
  • the coating with the surfactant is performed by: And what is done by supplying excess water and rinsing with water to remove excess. As described above, if the coating with the surfactant is performed prior to each spot formation, the coating with the surfactant can be performed more reliably and stably. This enables quick and reliable washing and removal of the attached solution from the previous use, prevents contamination between samples, and shortens the microarray preparation time. Further, in one embodiment of the method for producing a microarray of the present invention, a method is described in which the use concentration of the surfactant is 5% or more.
  • the rinsing is performed using 100 to 100 times the volume of water with respect to the amount of the surfactant used. Is shown.
  • the coating with the surfactant is performed by applying a surfactant to a contact surface of the spot placement tool and performing a fixing treatment. It is characterized by.
  • the surfactant is immobilized in this manner, it is not necessary to perform the treatment with the surfactant every time after spot formation, as in the case of the above-described embodiment, and the amount of the surfactant used Can be reduced.
  • the contact angle of the portion of the spot dispenser coated with the surfactant with respect to water is defined as an average value of three arbitrary points in a cross-sectional observation of the site by a microscope. This is a reduction of 10% or more compared to before the cleaning treatment with the activator. Surface activity If the angle of contact with water is reduced by 10% or more in the area covered with the agent, good flow of the sample solution is maintained.
  • the present invention for solving the above-mentioned problems further comprises one or a plurality of spot arranging devices for holding a solution containing a biological sample and arranging a spot of the solution on the substrate by contacting the tip with the substrate.
  • a microarray manufacturing head comprising: a spot arranging device, wherein at least a part of a contact surface with the biological sample is coated with a surfactant. Is.
  • spots of a biological sample solution are formed using such a microarray production head, the size of each spot on the microarray can be kept uniform as described above.
  • the present invention for solving the above-mentioned problems further includes a solution storage section for storing a solution containing a biological sample, a worktable on which a plurality of substrates can be arranged, and holding and taking in the solution from the solution storage section.
  • a solution holding means provided with a spot arranging device for forming a spot of a solution on the substrate; a cleaning application section for cleaning the holding means, etc .;
  • a moving means for moving in the direction of separation, forming a spot by using the holding means, and transporting the holding means in an area including the solution storage section, the work table and the cleaning and application section, and two-dimensional coordinates.
  • Transport means for providing a microarray producing device, wherein at least a part of the contact surface of the spot placement tool with the biological sample is coated with a surfactant. Der Ru.
  • FIG. 1 is a plan view showing a microarray manufacturing device according to the first embodiment of the present invention.
  • FIG. 2 is a front view of the microarray manufacturing apparatus as viewed from the direction of line II-II in FIG.
  • FIG. 3 is a right side view of the microarray manufacturing apparatus as viewed from the direction of line III-III in FIG.
  • FIG. 4 is a left side view of the microarray manufacturing apparatus viewed from the direction of the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of the microarray manufacturing apparatus viewed from the line VV in FIG.
  • FIG. 6 is a front view of the head.
  • FIG. 7 is a right side view of the head as viewed from the line IX-IX in FIG.
  • FIG. 8 is a bottom view of the head as viewed in the X-X line direction in FIG.
  • FIG. 9 is a front view of the head showing a state where the needle protrudes from the liquid storage member.
  • FIG. 10 is a detailed view showing the liquid storage member and the edle.
  • FIG. 11 to FIG. 11E are process diagrams each showing a method of arranging the solution stored in the liquid storage member on the substrate.
  • the first microarray manufacturing method of the present invention is a microarray manufacturing method in which a plurality of spots of a plurality of types of biological sample-containing solutions are formed on a substrate by using a spot arrangement tool.
  • the spot arranging device is washed during the formation using a surfactant solution.
  • the surfactant used for washing the spot disposition device is not particularly limited, and any known surfactant can be used.
  • Nonionic surfactants and amphoteric surfactants are desirable in view of their effect on biopolymers such as DNA and RNA contained in them.
  • nonionic surfactant examples include, but are not limited to, fatty acid glycerin ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyglycerin fatty acid ester, and higher alcohol ethylene glycol. 6205
  • Oxide adducts single long-chain polyoxyethylene alkyl ether, polyoxyethylene alkylaryl ether, polyoxyethylene lanolin alcohol, polyoxyethylene fatty acid ester, polyoxyethylene glycerin fatty acid, polyoxyethylene propylene dalycol fatty acid ester, poly Xyethylene sorbitol fatty acid ester, polyoxyethylene castor oil or hydrogenated castor oil derivative, polyoxyethylene lanolin derivative, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, alkylpyrrolidone, glucamide, alkyl polydarcoside, Mono- or dialkanol amides, polyoxyethylene alcohol mono- or di-amides and alkylamine oxides can be mentioned. That.
  • polyoxyethylene ethers containing 1 to 10 oxyethylene moieties and a C10-C20 linear or branched alkyl chain and 1-20 oxyethylene mono-, di- or tri-fatty acid esters.
  • polyoxyethylene (8) octyl phenyl ether Triton X-114
  • polyoxyethylene 9
  • octyl phenyl ether NP-40
  • polyoxyethylene 10
  • octyl phenyl Monotel Triton X-100
  • polyoxyethylene sorbitan monofatty acid ester typically polyoxyethylene (20) sorbitan monolate, can be preferably used.
  • amphoteric surfactant examples include, but are not particularly limited to, alkyldimethylaminoacetate betaine, alkyldimethylamine oxide, alkylcarboxymethylhydroxyxethylimidazolymbetaine, Rukylamidopropyl betaine and the like.
  • the above-mentioned nonionic surfactants and amphoteric surfactants can be used alone, but if necessary, a plurality of these may be used in combination. Further, it can be used in combination with various Ayuon surfactants or non-ionic surfactants.
  • the biological sample-containing solution is not attached to the spot placement tool and remains.
  • a washing operation with water has been performed to prevent contamination of a solution containing a biological sample.
  • a surfactant solution for cleaning the contact surface of the spot placement tool as described above, it is more efficient in a shorter time than when only water is used.
  • the biological sample-containing solution remaining on the spot placement device can be removed, and contamination of the biological sample-containing solution can be effectively prevented.
  • the method of cleaning the contact surface of the spot placement device with the biological sample-containing solution using such a surfactant is not particularly limited, but preferably, first, the contact of the spot placement device is performed. It is desirable that the surface be supplied with a surfactant, followed by washing with water and drying. Considering the reuse of the surfactant, when washing the spot placement tool after forming the spots, first wash with water before applying the surfactant solution to the spot placement tool with the remaining sample remaining. It would be more advantageous to do so and remove most of the remaining sample. However, in this way, once water has entered the interior of the spot placement device, any subsequent attempts to feed the surfactant solution into the interior of the spot placement device are impeded by the water present.
  • the concentration of the surfactant solution applied to the contact surface of the spot disposition device is particularly high.
  • the force is not limited and depends to some extent on the type of surfactant used.
  • the concentration of the surfactant is 5% or more, preferably 20 to 60% by volume, more preferably. It is desirable that the concentration be relatively high, such as 30 to 50% by volume. If the concentration of the surfactant is extremely low, it is easy to supply the surfactant solution to the contact surface of the spot placement tool, but the cleaning effect of removing the remaining biological sample-containing solution well. On the other hand, even when the concentration of the surfactant is extremely high, a marked difference in the effect of washing and removing the residual solution is obtained when the concentration within the above range is used. This is disadvantageous in terms of economy and other factors.
  • washing with water is performed in order to remove the residue released from the contact surface and the used surfactant solution.
  • water to be used pure water, deionized water, distilled water or the like having a small amount of impurities is used.
  • the amount of water used for the washing is not particularly limited as long as the amount of the residue can be sufficiently removed. Although it depends on whether or not the operation is applied, it is desirable to use water at least 100 times the volume of the surfactant used. If the amount of water is extremely small, the residue cannot be washed out sufficiently, or surplus surfactant remains in the spot disposition device, so that a spot of a biological sample-containing solution is subsequently formed. In this case, a large amount of surfactant flows out into the spot, and in some cases, the characteristics of the obtained microarray may be deteriorated.
  • the amount of water used for washing is preferably 100 to 100 times, more preferably 100 to 300 times the amount of the surfactant used. It is desirable that the surface active agent remains slightly on the wall surface of the spot disposition device.
  • the contact angle of the coated portion with water is not particularly limited, and As an average value of any 3 in cross-sectional observation of the site with a microscope, the angle is reduced by 10% or more compared to that before the cleaning treatment with the surfactant, for example, 40 to 65 °, more preferably Is reformed to an extent within the range of 55 to 65 °.
  • the shape of the spot arranging device used to form the spot of the biological sample-containing solution is not particularly limited, and various types of conventionally known devices can be used.
  • a QUILL system a pin & ring system, a spring pin system, a micropit system using a piezoelectric / electrostrictive element as a micropump, or any other form may be used.
  • the QUILL method is a method in which a sample is stored in a recess formed in a pin tip, and the sample in the recess is transferred to the substrate by contacting the pin tip with the substrate to form a minute spot.
  • the spring pin method is a double pin structure with a built-in spring, in which a sample attached to the pin tip is transferred onto the substrate by pressing the pin tip onto the substrate to form minute spots.
  • a micropit method using a piezoelectric electrostrictive element as a micropump is a method similar to a technique widely used in a general ink jet recording method.
  • the contact surface to the solution containing the biological sample, particularly the inner surface portion which becomes the micropore be cleaned using a surfactant solution. Coating with surfactant
  • a second microarray production method of the present invention is a microarray production method for forming a plurality of spots of a solution containing a biological sample, wherein the spot arrangement tool for forming the spot has a contact surface with the solution. At least a portion is coated with a surfactant, and the solution is supplied in this state to form a spot.
  • the method in the second method for producing a microarray of the present invention, in the first method for producing a microarray, when the spot disposing device is washed with a surfactant solution during the formation of each spot, the method is used for washing.
  • the surfactant can be implemented by supplying the biological sample-containing solution and performing spot formation while maintaining the state in which the surfactant in the solution adheres and remains on the surface of the spot disposition device.
  • the method can be carried out by forming a surfactant coating on the surface of the spot disposition device as described later.
  • the surfactant that covers at least a part of the contact surface of the spot placement device with the solution containing a biological sample is not particularly limited, and any known surfactant may be used.
  • nonionic surfactants and amphoteric surfactants are desirable from the viewpoint of their effect on biological macromolecules such as DNA and RNA contained in the biological sample-containing solution.
  • Specific examples of the nonionic surfactant and the amphoteric surfactant are the same as those described above, and a description thereof will not be repeated.
  • the method for coating at least a part of the contact surface of the spot placement device with the biological sample-containing solution with such a surfactant is not particularly limited. Each time the solution is supplied to form a spot, a surfactant is supplied to the contact surface of the spot placement tool, and the surfactant is rinsed with water to remove the excess. Can be mentioned.
  • the contact surface of the spot placement tool is coated with the surfactant at the same time. Due to the cleaning action of the surfactant, the biological sample-containing solution remaining on the spot placement tool can be removed more efficiently and in a shorter time than when only water is used. National can also be prevented.
  • the concentration of the surfactant to be used is not particularly limited, and is somewhat influenced by the type of the surfactant to be used. although, for example, the concentration of the surfactant 5 volume% or more, preferable properly is 2 0-6 0 volume 0/0, and particularly preferably in the range of 3 0-5 0 volume 0/0.
  • the concentration of the surfactant is extremely low, the contact surface of the spot disposition device cannot be covered with the surfactant satisfactorily, and a cleaning effect of satisfactorily removing the remaining biological sample-containing solution can be expected.
  • the concentration in the above range is more remarkable in the case of using the concentration in the above range and in the effect of coating the contact surface and cleaning and removing the residual solution. This is because there is no significant difference, which is disadvantageous in terms of economics.
  • rinsing with water is performed to remove the excessively attached surfactant.
  • the amount of the surfactant is not particularly limited, but is preferably 100 to 100 times the volume of the surfactant used, more preferably. More preferably, it is 100 to 300 times the capacity. If the amount of water used for rinsing is extremely large, the surfactant adhering to the contact surface of the spot placement device will be almost washed off, and the modification of the contact surface by the surfactant may not be expected. On the other hand, if the amount of water is extremely small, excess surfactant will remain in the spot placement device, and when a spot of a biological sample-containing solution is subsequently formed, this A large amount of surfactant flows out into the spot, and in some cases, the properties of the obtained microarray may be degraded.
  • treatment such as air drying or heat drying may be performed.
  • the coating with the surfactant is performed using the spot placement device. This is performed by applying a surfactant to the contact surface of the substrate and performing immobilization treatment.
  • the method for applying the surfactant to the contact surface of the spot disposition device is not particularly limited, but, for example, a surfactant of a predetermined concentration is brought into contact with the contact surface of the spot disposition device as described above. Thereafter, a method can be adopted in which excess surfactant is removed by rinsing with a solvent such as water.
  • the method of immobilizing the surfactant on the contact surface of the spot dispenser is not particularly limited. For example, physical bonding by heat treatment, plasma treatment, electron beam irradiation, or the like, Any chemical bonding, such as use, introduction of a bonding group or a bonding group to a surfactant, or a combination thereof may be used. It may be one with a relatively loose bond that provides sustained release.
  • the surfactant When the surfactant is immobilized in this way, it is not necessary to use a surfactant every time after spot formation as in the above-described embodiment. In addition, the amount of surfactant used can be reduced.
  • the contact surface of the spot placement device with the biological sample-containing solution is thus coated with the surfactant and made hydrophilic.
  • the contact angle of the coated portion with water is 10% as an average of an arbitrary value of 3 in the cross-sectional observation of the site by microscopic observation as compared with that before the cleaning treatment with the surfactant. It is reduced as described above, and is reformed, for example, to a degree within the range of 40 to 65 °, more preferably 55 to 65 °.
  • a biological sample containing a spot having a predetermined volume of 3 to 5 ⁇ 10-4 mm3 per spot having a predetermined volume of 3 to 5 ⁇ 10-4 mm3 per spot.
  • the rate of variation (variation) in the volume between the spots is typically very low, less than 10%.
  • the shape of the spot arranging device used to form the spot of the biological sample-containing solution is not particularly limited, and various types of conventionally known devices can be used. Specific examples thereof are the same as those described above, and a description thereof will be omitted.
  • any of the spot arranging devices it is effective to perform a coating treatment with a surfactant on a contact surface with the biological sample-containing solution, particularly on an inner surface portion serving as a micropore channel.
  • Microarray preparation head and preparation equipment are effective to perform a coating treatment with a surfactant on a contact surface with the biological sample-containing solution, particularly on an inner surface portion serving as a micropore channel.
  • the head microarray manufacturing apparatus for manufacturing a microarray of the present invention will be described with reference to a preferred embodiment together with an operation example in the above-described microarray manufacturing method of the present invention.
  • the head for microarray production and the microarray production equipment are limited as long as the surface of the spot placement tool that contacts the biological sample-containing solution is coated with a surfactant. It is not done.
  • FIG. 1 is a plan view showing a microarray manufacturing apparatus according to an embodiment of the present invention
  • FIG. 2 is a front view of the apparatus viewed from the II-II line direction in FIG. 1
  • FIG. 3 is a III-III line direction in FIG.
  • Fig. 4 is a left side view of the device seen from the IV-IV line in Fig. 2
  • Fig. 5 is a cross-sectional view of the device seen from the V-V line in Fig. 1. It is.
  • This device arranges a large number of spots of a solution of a biological sample such as a DNA fragment or an oligonucleotide prepared in advance on a substrate made of a glass slide or silicon.
  • a typical substrate size is 1 to several tens cm2, and a large number of DNA fragment spots are arranged in this area.
  • the spot diameter has a size of, for example, several tens to hundreds of microliters.
  • the microarray fabrication device has two regions.
  • One is a stamping area 1 in which a microarray manufacturing head 51 (hereinafter, simply referred to as a head) for holding a solution is hit on a substrate, and a spot of a biological sample solution is arranged on the substrate.
  • the other is a washing area 2 in which the head 51 after forming the spot is washed, and the washed head 51 holds the next solution of a different type.
  • the configuration of the head will be described later.
  • a large number of substrates 3 are arranged on the worktable 4 in a matrix.
  • Substrate 3 is slide glass ⁇ silicon etc.
  • the surface of the substrate 3 is surface-treated so that a biological sample can be attached! / Puru.
  • a test table 5 on which two substrates or dummy substrates for producing a microarray on a trial basis are provided.
  • the needle of the head 51 holding the solution is suddenly struck against the substrate 3, the needle is struck while the solution is still attached. In order to avoid this, a needle is hit on the substrate 3 on the test stand 5, and the solution that has excessively adhered to the needle is dropped.
  • An XY two-axis transport mechanism 6 as a second transport means for transporting the head 51 and giving two-dimensional coordinates to the head 51 is mounted on the work table 4.
  • the XY two-axis transport mechanism 6 proceeds to receive the head 51 up to a transfer position 104 described later, and transports the head 51 after the spot formation is completed to the transfer position 104.
  • the XY two-axis transport mechanism 6 includes an X-axis transport mechanism 6X and a Y-axis transport mechanism 6Y.
  • X-axis moving mechanism 6 X has a longitudinal fixed frame 8 extending in the X-axis direction, and rails 9, 9 mounted on the fixed frame so as to extend in the X-axis direction, and are movable with respect to the rails 9, 9.
  • a linear guide composed of sliders 10 and 10 assembled in a linear guide; a table 11 guided by the linear guide; and a reuer motor 12 for driving the table 11.
  • a longitudinal fixed frame 13 extending in the X-axis direction, rails 14 extending in the X-axis direction and mounted on the fixed frame 13 and A re-air guide including a slider 15 incorporated movably with respect to the rail 14 is provided.
  • the Y-axis driving mechanism 6 Y includes a longitudinal movable frame 17 erected between a table 11 driven by the X-axis driving mechanism 6 and a slider 15, It is attached to this movable frame 17 extending in the Y-axis direction.
  • a linear guide comprising rails 18 and 18 and sliders 19 and 19 movably mounted on the rails 18 and 18; and a table 20 guided by the linear guide.
  • a return motor 21 for driving the table 20.
  • the XY two-axis transport mechanism 6 supports a Z-axis drive mechanism 23 as moving means.
  • the Z-axis drive mechanism 23 moves the head 51 in the Z-axis direction orthogonal to the X-axis and the Y-axis, that is, in the direction approaching / separating from the substrate 3.
  • the Z-axis drive mechanism 23 has a Z1-axis drive mechanism 23 for raising and lowering the entire head 51, and a Z-axis drive mechanism for projecting the needle from the liquid storage member of the head 51. It has a mechanism 2 3 Z 2.
  • the Z1-axis drive mechanism 23 Z1 is composed of an electric actuator that moves a slider using a feed screw and an electric motor.
  • a table 41 is mounted on the slider of the Z1-axis driving mechanism 23 Z1.
  • a Z2-axis moving mechanism 23 3 Z2 is mounted on this table 41.
  • the Z two-axis drive mechanism 23 Z 2 comprises an electric actuator having a configuration similar to that of the Z 1 axis drive mechanism 23 Z 1, and is smaller than the Z 1 axis drive mechanism 23 Z 1.
  • An L-shaped arm 42 for moving the needle of the head 51 up and down is attached to the slider of the Z two-axis moving mechanism 2 3 Z 2.
  • the L-shaped arm 42 can be inserted into the head 51 by an air cylinder (not shown) (see FIG. 7).
  • the tip of the L-shaped arm 42 is inserted into the head 51, and the inserted L-shaped arm 42 is lowered by the Z-axis moving mechanism 23 Z2 to remove the head from the liquid storage member of the head 51.
  • the needle protrudes.
  • the table 41 of Z 1 is provided with a ⁇ axis rotation mechanism 43 as attitude change means for changing the attitude of the head 51.
  • the ⁇ -axis rotating mechanism 43 turns the head 51 in a horizontal plane.
  • ⁇ Shaft rotation mechanism 4 3 The table includes an electric motor 44 attached to a table 41, and a substantially cylindrical chuck portion 45 rotatably supported on the table 41 around the Z axis.
  • the chuck portion 45 is connected to the electric motor 44 via a joint.
  • the chuck portion 45 grips the head 51 detachably.
  • the head 51 has a cylindrical chucked portion 54 attached to the chuck portion 45, a substantially rectangular upper plate 55 fixed to the lower surface of the chucked portion 54, and an upper plate 5.
  • 5 is provided with a substantially rectangular lower plate 57 as a base portion which is connected via a plurality of columns 56.
  • liquid storage members 52 as liquid storage portions for holding a solution to be supplied to the substrates 3 are attached vertically and horizontally in parallel with each other.
  • the needles 5 3... ′ (Also called pins) are housed in the liquid reservoir members 52.
  • the needle 53 is guided by a plurality of needle bushes 66 fixed to a lower plate 57 so as to be able to reciprocate upward and downward.
  • a total of four (4) rows and a horizontal (12) rows and a total of four (8) liquid reservoir members (52) and needles (53) are mounted. Needless to say, the number of liquid reservoir members (52) and needles (53) is one.
  • Various settings can be made according to the number of spots that simultaneously form spots on the substrate 3.
  • the lower plate 57 is provided with a plurality of supply spaces 58 for supplying the cleaning liquid etc. over the entirety of the dollar 53.
  • the cleaning liquid supply space 58 communicates with all of the plurality of liquid storage members 52 arranged vertically and horizontally as shown in FIG.
  • the outer surface of the dollar 53 and the inner surface of the liquid reservoir 52 are coated with a surfactant at least at the time of the sample spot forming operation. It has been done.
  • An intermediate plate 59 is provided so as to be movable.
  • a needle support plate 61 is fixed to the lower surface of the intermediate plate 59 via a connecting portion 60, and a plurality of need nozzles 53 are supported by the needle support plate 61.
  • a flange 53d is formed to be placed on the upper surface of the needle support plate 61.
  • a coil spring 62 is formed between the flange 53d and the intermediate plate 59. Intervened. This coil spring 62 compresses and deforms when the needle 53 comes into contact with the substrate 3, and adjusts the load applied to the substrate 3 from the needle 53.
  • the intermediate plate 59 is provided with a bush 63 for guiding the sliding movement of the intermediate plate 59 with respect to the support column 56.
  • a coil spring 64 is provided between the intermediate plate 59 and the lower plate 57 for raising the needle 53 and retracting the needle 53 in the liquid reservoir member 52.
  • FIG. 9 shows a state where the needles 53 are lowered.
  • the needles 53 are also lowered together with the intermediate plate 59, and the needles 53 project from the lower ends of the liquid storage members 52.
  • the coil springs 62 are compressed and deformed so that no excessive load is applied from the udle 5 3 to the substrate 3.
  • the head 51 is positioned by the XY two-axis transport mechanism 6 in the X and Y directions above the substrate 3.
  • the entire head 51 is lowered by the Z1-axis moving mechanism 23 Z1, and the head 51 is positioned at a predetermined distance from the substrate in the Z direction.
  • the L-shaped arm 42 of the Z 2-axis moving mechanism 2 3 Z 2 is advanced above the intermediate plate 59 in the head 51.
  • the intermediate plate 59 is pushed down by the L-shaped arm 42, whereby the needle 53 protrudes from the liquid reservoir member 52.
  • the L-shaped arm 42 is raised by the Z
  • the intermediate plate 59 is raised by the restoring force of the ring 64, whereby the needle 53 is retracted into the liquid storage member 52.
  • FIG. 10 shows a liquid reservoir member 52 and a dollar 53 holding a solution.
  • the liquid storage member 52 is formed in a tapered tapered tube shape, and the needle 53 is stored in the tapered internal space together with the solution.
  • the lower part of the liquid reservoir member 52 which is the narrowest, also guides the vertical movement of the needle 53.
  • the distal end portion 53 a of the needle 53 also has a tapered outer peripheral surface.
  • the tip surface 53b of the dollar 53 that comes into contact with the substrate 3 is formed as a circular or polygonal flat surface.
  • the outer peripheral surface of the distal end portion 53a is rougher than the outer peripheral surface of the straight portion 53c and the distal end surface 53b of the needle 53 so as to hold the solution.
  • FIG. 11A to FIG. 11E are process diagrams showing a method of arranging the solution stored in the liquid storage member 52 on the substrate 3.
  • FIGS. 11 to 11E show the state of the solution when the dollar 53 moves with respect to the liquid storage member 52 in the Z-axis direction (that is, the vertical direction).
  • the liquid storage member 52 is positioned above the substrate 3.
  • the needle 53 is gradually lowered with respect to the liquid storage member 52.
  • the needle 53 is made to protrude from the liquid reservoir member 52.
  • the solution in the liquid reservoir member 52 is pulled out by the solution adhering to the needle.
  • the distal end face 53 b of the needle 53 is brought into contact with the substrate 3. Needle 5 3 tip
  • the surface 53 b mechanically contacts the substrate 3
  • the solution moves to the substrate 3 from the tip surface 53 b of the needle 53, and the solution is placed on the substrate 3.
  • the solution held at the tip of the udle 53 and the solution in the liquid reservoir 52 are connected.
  • FIG. 11E when the needle 53 is retracted from the substrate 3, a solution spot is formed on the substrate 3.
  • the solution held in the liquid storage member 52 and the solution held in the tip of the needle 53 are integrated, and the solution is pulled from the liquid storage member 52 by utilizing the fact that the solution adheres to the needle.
  • the size and shape of the spots arranged on the substrate 3 can be kept constant.
  • the contact surfaces of these members with the solution are coated with a surfactant, the size and shape of the spot can be kept constant.
  • the outer peripheral surface of the needle 53 rough, the amount of the solution held on the outer peripheral surface of the needle 53 is stabilized. For this reason, the size and shape of the spot arranged on the substrate 3 can be kept more constant.
  • the cleaning region will be described.
  • the head 51 after forming the spot is ultrasonically cleaned, rinsed, and then dried.
  • the washed head 51 holds a new solution of the next biological sample.
  • an ultrasonic cleaning section 71 as a cleaning section for ultrasonically cleaning the head 51, and the head 51 are treated with a surfactant solution.
  • a solution storage section 74 for storing is provided.
  • the ultrasonic cleaning section 71, the surfactant solution processing section 72a, the rinsing section 72b, the drying section 73, and the solution storage section 74 are provided.
  • An XY two-axis transfer mechanism 75 is provided as first transfer means for transferring the head 51 and giving the head 51 two-dimensional coordinates.
  • the XY two-axis transport mechanism 75 is composed of an X-axis transport mechanism 75 X and a ⁇ axis transport mechanism 75 ⁇ .
  • the X-axis moving mechanism 75 X is a longitudinal fixed frame 81 extending in the X-axis direction, and a rail extending and attached to the fixed frame 81 in the X-axis direction.
  • the ⁇ -axis drive mechanism 75 ⁇ is mounted on a movable movable frame 87 fixed on a table 84 driven by the X-axis drive mechanism 75 X, and is mounted on the movable frame 87 by extending in the ⁇ -axis direction.
  • Linear guide consisting of a rail 88 and a slider 89 movably incorporated with respect to the rail 88, a table 90 guided by the linear guide, and a feed for driving the table 90.
  • Screw 9 1 is provided.
  • the biaxial transport mechanism 75 is provided with a biaxial drive mechanism 95 as a moving means.
  • the ⁇ -axis drive mechanism 95 moves the head 51 in the ⁇ -axis direction orthogonal to the X axis and the ⁇ axis, that is, in the direction orthogonal to the washing table 96.
  • the ⁇ -axis drive mechanism 95 has a ⁇ 1-axis drive mechanism 95 ⁇ 1 and a ⁇ 2-axis drive mechanism 95 ⁇ 2, similarly to the ⁇ -axis drive mechanism 23 in the stamping area.
  • the ultrasonic cleaning section 71, the surfactant solution processing section 72a, the rinsing section 72b, the drying section 73, and the solution storage section 74 at any position with respect to the liquid storage member 52.
  • the needle 53 can be protruded.
  • the Z1-axis drive mechanism 95 Z1 is composed of an electric actuator that moves the block using a feed screw and an electric motor, like the Z1-axis drive mechanism 23Z1 in the stamping area.
  • the Z 1 axis drive mechanism 9 5 Z 1 table 9 7 has Z 2 axis moving mechanism 9 5 Z 2 Is attached.
  • the Z two-axis drive mechanism 95 Z 2 is composed of an electric actuator having the same configuration as the 21-axis drive mechanism 95 ⁇ 1, and is smaller than the Z 1-axis drive mechanism 95 Z 1.
  • An L-shaped arm 990 for raising and lowering the needle 53 of the head 51 is attached to the table 98 of the Z two-axis moving mechanism 95 Z2.
  • the L-shaped arm 99 can be inserted into the head 51 by an air cylinder (not shown). Insert the end of the L-shaped arm 99 into the head, and lower the inserted L-shaped arm 99 by the Z-axis moving mechanism 95 Z2 to remove the liquid from the liquid storage member 52 of the head 51. Needle 53 protrudes.
  • a turning motor 100 as a turning unit is attached to the table 97 of the Z1-axis drive mechanism, and a disc 101 that turns in a horizontal plane is provided on the output shaft of the turning motor 100. It is attached.
  • a pair of clamps 102, 102 as a holding portion capable of holding the head 51 at 180 ° intervals is attached to the lower surface of the disk 101.
  • the clamps 102 and 102 are opened and closed by an air cylinder or the like (not shown), and sandwich a flat portion 103 (see FIGS. 6 and 7) formed on the outer periphery of the head 51.
  • the head 51 transported by the XY two-axis transport mechanism 75 in the cleaning area has the same configuration as the head 51 transported by the two-axis transport mechanism 6 in the above-mentioned stamming area, The same reference numerals are given and the description is omitted.
  • the turning motor 100 turns 180 degrees at a time, thereby transferring the head 51 from the XY two-axis transfer mechanism 6 in the stamping area to the XY two-axis transfer mechanism 75 in the washing area, and cleaning. Transfer of the head 51 from the XY two-axis transport mechanism 75 in the area to the XY two-axis transport mechanism 6 in the stamping area is performed.
  • the XY two-axis transport mechanism 6 in the stamping area transports the head 51 after forming the spot to the transfer position 104.
  • the XY 2-axis transport mechanism 75 in the cleaning area The held head 51 is transferred from the transfer position 104 to the reserve position 105 shifted 180 degrees from the transfer position 104. At this time, an empty clamp that does not grip the head is located at the transfer position 104.
  • the clamp 51 of the XY two-axis transport mechanism 75 in the cleaning area grips the head 51 after the spot is transported to the transfer position 104.
  • the head is transferred from the XY two-axis transfer mechanism 6 in the stamping area to the XY two-axis transfer mechanism 75 in the cleaning area.
  • the rotation motor 100 rotates the disk 101 by 180 degrees, and the head 51 after the spot formation is located at the standby position 105 and a head holding a new solution. 5 Position 1 at the transfer position 104.
  • the chuck portion 45 of the XY two-axis transport mechanism 75 in the stamping area grips the head 51 holding the new solution.
  • the head is transferred from the XY two-axis transport mechanism 75 in the cleaning area to the XY two-axis transport mechanism 6 in the stamping area.
  • the head 51 can be transferred between the XY two-axis transport mechanism 6 in the stamping area and the XY two-axis transport mechanism 75 in the cleaning area. While the spot is formed on the substrate 3, the other head 51 can be cleaned or the like.
  • the contact surface of the spot arranging tool is brought into contact with the interface.
  • an operation for forming a surfactant film will be described.
  • the head 51 after spot formation is transported to the surfactant solution processing section 72a by the XY two-axis transport mechanism 75.
  • the surfactant solution processing section 7 2 a has a surfactant solution tank, and the head 51 is moved to an upper part of the tank, and the liquid storage member 5 2 of the spot disposing tool attached to the head 51 is provided.
  • the tip of It is immersed in the surfactant solution in the surfactant solution tank.
  • the needle 53 is moved up and down, for example, at a speed of about 0.5 to 2 times / second, 1 to 10 times, preferably about 3 to 5 times.
  • the surfactant solution has a relatively high concentration, the surfactant solution is easily transported to the inside of the liquid reservoir member 52, and the surfactant solution is applied to the inside of the liquid reservoir member 52 and the outer surface of the needle 53. It can be applied or coated.
  • the head 51 is transferred to the ultrasonic cleaning unit 71 by the XY two-axis transport mechanism 75 in the cleaning area.
  • the liquid storage member 52 is immersed in pure water subjected to ultrasonic vibration to clean the outside thereof.
  • the outside of the needle 53 is also cleaned with the dollar 53 protruding from the liquid storage member 52. By this operation, surplus surfactant mainly adhered to the outside of the liquid storage member 52 is removed.
  • the head 51 is transferred to the rinsing section 72 b by the XY two-axis transfer mechanism 75.
  • the rinsing section 72b removes excess surfactant adhered to the inside and outside of the liquid storage member 52 and the outside of the needle 53.
  • the outside of the liquid storage member 52 is cleaned by incorporating the head 51 into a pure water tank storing ultrapure water as a cleaning liquid and immersing the liquid storage member 52 in ultrapure water.
  • the pure water supply pipe 108 in FIG. 6 provided in the pure water tank is connected to the head 51, and the pure water supply pipe and the supply space 5 Communicates with
  • the lower plate 57 of the head 51 is provided with a space 58 for supplying a cleaning liquid or the like corresponding to the rear end of the liquid reservoir member 52.
  • the cleaning liquid supply space 58 is a wide single space extending over each liquid storage member 52. When pure water with pressure is supplied from the pure water supply pipe 108, the pure water spreads in this single space. The pure water filling the single space is supplied to each liquid storage member 52.
  • the excess interface By applying pressure to the inside of the liquid storage member 52 and supplying water, the excess interface The rinse time of the activator or the washing time of the residual sample can be shortened. Further, by forming a single space extending over the plurality of liquid storage members 52, the pressure loss of pure water supplied into the plurality of liquid storage members 52 is reduced, and each liquid storage member 52 is formed. The pressure loss becomes substantially equal between them. Therefore, the inside of the plurality of liquid reservoir members 52 and the outside of the plurality of needles 53 can be washed by applying substantially equal pressure.
  • the head 51 after rinsing is transported to the drying unit 73 by the XY two-axis transport mechanism 75.
  • a vacuum suction pipe (not shown) having the same arrangement as the pure water supply pipe 108 in FIG. 6 is connected to the head 51, and is connected to the drying tank.
  • This vacuum suction tube communicates with a space 58 for supplying a cleaning liquid or the like. In this state, the space 58 for supplying the cleaning liquid or the like is suctioned under vacuum, and the water remaining in the space of the liquid storage member 52 is sucked and removed.
  • the head 51 is returned to the ultrasonic cleaning section 71 again after vacuum suction of moisture in the drying section. Then, it is sent to the rinsing section 72b and the drying section 73, and the steps of cleaning and vacuum suction in the ultrasonic cleaning section 71 and the rinsing section 72b can be repeated a plurality of times.
  • the inside and outside of the liquid storage member 52 and the outside of the needle 53 are sufficiently dried using, for example, dry compressed air, vacuum suction, or the like.
  • the ultrasonic cleaning unit 71 or the rinsing is performed before the head 51 after forming the spot is immersed in the surfactant solution tank.
  • a method of once washing with water in the washing section 72b to remove most of the remaining sample is also conceivable.However, once water enters the inside of the liquid storage member 52 in this way, it is thereafter The operation as described above Attempts to feed the surfactant solution into the inside of the liquid storage member 52 will be hindered by the existing water, and eventually a sufficient amount or concentration of the surfactant will come into contact with the inside of the liquid storage member 52, etc.
  • the dried head 51 is transferred to the solution storage section 74 by the XY two-axis transfer mechanism 75.
  • the solution storage unit 74 takes out a cassette 122 containing a plurality of titer plates 1 2 1... as a solution holding plate for storing a solution, and takes out the titer plate 121 from the cassette 122 and loads it. And a plate transport mechanism 1 2 3 for transporting to a position 1 32.
  • the head 51 after washing is filled with a new biological sample solution. The operation of immersing the head 51 in the solution and sucking the solution is called loading.
  • a plurality of (for example, 384) recesses are arranged in each titer plate 121, and the solution of the biological sample is stored in these recesses.
  • the head has 48 reservoirs, it can be loaded eight times with one titer plate.
  • the plurality of recesses may be filled with the same type of solution, or may be filled with different types of solutions.
  • a plurality (for example, 10) of titer plates 1 2 1... are stored in the cassette 1 2 at equal intervals in the Z-axis direction (ie, in the vertical direction).
  • Two sets of cassettes 122 are provided above and below the washing table 96, and this device stores a total of 20 titer plates 121.
  • An opening for taking in and out the titer plate 121 is formed on the side of the transport mechanism 123 of the cassette 122. Further, a handle 125 for grasping by hand is provided on the upper surface of the cassette 122.
  • the cassettes 122 are mounted on a cassette support 124 that is slidably mounted on the apparatus. Pull out the cassette support 1 2 4 by hand and press The cassette 1 2 2 is mounted on the set support 1 2 4, and the cassette 1 2 4 is manually returned to the original position, whereby the cassette 1 2 2 is incorporated into the apparatus.
  • the plate transport mechanism 123 includes a Z-axis drive mechanism 123, a Y-axis drive mechanism 123, and an X-axis drive mechanism 123X.
  • the Z-axis drive mechanism 123 has the same configuration as the above-described electric actuator that moves the slider using a feed screw and an electric motor.
  • the Z-axis drive mechanism 1 2 3 Z moves up and down the support plate 1 26 supporting the titer plate 121 between the upper end titer plate 121 and the lower end titer plate 121.
  • the Z-axis drive mechanism 1 2 3 X is attached to the Z-axis drive mechanism 1 2 3 Z table 1 2 7.
  • This X-axis moving mechanism 123 is composed of a so-called rodless cylinder.
  • the rodless cylinder includes a track rail 128 extending in the X-axis direction, and a table 127 capable of sliding the track rail 128.
  • X-axis moving mechanism 1 2 3 Y-axis moving mechanism 1 2 3 Y is attached to X table 1 2 9.
  • the Y-axis moving mechanism 123 Y also comprises a so-called rodless cylinder, which moves the table 130 in the Y-axis direction and positions the table 130 at two positions in the Y-axis direction.
  • the washed and dried head 51 is also transported to the loading position by the two-dimensional transport mechanism 75.
  • the solution is sucked by immersing the reservoir member 52 in the solution of the biological sample.
  • the liquid reservoir member 52 is inserted into the concave portion in the titer plate 121, and the tip of the liquid reservoir member 52 is immersed in the solution.
  • the needle 53 is raised with the position of the liquid reservoir member 52 fixed, the solution is pulled up in accordance with the rise of the dollar 53, and the liquid is filled in the liquid reservoir member 52. From this state, pull up the liquid storage member 52 and needle 53 Then, the solution filled in the liquid storage member is held as it is.
  • a head storage space 135 is provided on the washing table 96. Head 51 is first placed in this headroom 1 35. The operation of the apparatus starts when the XY two-axis transport mechanism 75 in the cleaning area is placed in the head storage space 135 to pick up the head 51.
  • the overall operation of the microarray manufacturing apparatus of the present embodiment will be described according to the procedure for manufacturing a microarray.
  • the XY two-axis transport mechanism 6 and Z-axis drive mechanism 23 in the stamping area, and the XY two-axis transport mechanism 75 and Z-axis drive mechanism 95 in the cleaning area are appropriately operated.
  • the head 51 is sequentially positioned at a predetermined position. Such control is performed by a control device (not shown).
  • a preparation stage a plurality of substrates 3 are arranged in the stamping area, and the vacuum device is operated to suction and fix the substrates 3.
  • a substrate for forming a microarray or a dummy substrate is fixed on a test basis.
  • a plurality of titer plates 1 2 1... are stored in the cassette 1 2 2 of the solution storage section 74 in the washing area. For example, solutions of plural kinds of DNA fragments are put into each recess of the titer plate 1 2 1.
  • the XY two-axis transport mechanism 75 in the cleaning area goes to pick up the head 51 placed in the head storage space 135.
  • the pair of clamps 102 and 102 only one clamp 102 holds the head 51.
  • the XY two-axis transfer mechanism 75 transfers the gripped head 51 to the load position 13 2.
  • a loading step of sucking the solution into the liquid storage member 52 is performed.
  • the plate transport mechanism 123 transports the titer plate 121 containing the required solution to the load position 132 before the head 51 is transported to the load position 132.
  • the Z-axis drive mechanism 1 2 3 Z in the cleaning area The liquid storage member 52 and the needle 53 are raised and lowered so that the material 52 sucks the solution.
  • the XY two-axis transfer mechanism 75 in the cleaning area transfers the head 51 holding the solution to the transfer position 104.
  • the XY two-axis transport mechanism 6 in the stamping area transports the empty check portion 45 to the transfer position 104.
  • the Z1-axis drive mechanism in the stamping area moves down the chuck section 45, and the chuck section 45 holds the head holding the solution.
  • the head is transferred from the XY two-axis transport mechanism 75 in the cleaning area to the XY two-axis transport mechanism 6 in the stamping area.
  • the XY two-axis transport mechanism 6 in the stamping area transports the head 51 to the test table 5.
  • the test table 5 a test process for adjusting the amount of the solution adhering to the needle 53 is performed.
  • a stamping process for forming a spot on the substrate 3 is performed.
  • the XY biaxial transport mechanism 6 in the stamping area moves the head 51 to the spot forming position on the substrate 3.
  • the Z1-axis drive mechanism 23 Z1 in the stamping area descends the head 51 and positions the head 51 slightly above the substrate 3.
  • the Z 2 axis drive mechanism 2 3 Z 2 in the stamping area protrudes the dollar 53 from the liquid reservoir member 52, and strikes the needle 53 on the substrate 3.
  • the XY biaxial transport mechanism in the stamping area moves the head to the next substrate. Then, the above-described stamping step is repeated again.
  • the XY two-axis transfer mechanism 75 in the cleaning area grips the remaining head 51 placed in the head storage area 135, It is transported to load position 1 32. At this loading position 1 32, a loading process for sucking the solution into the liquid storage member 52 is performed. You. Then, the XY two-axis transport mechanism 75 in the cleaning area transports the head 51 holding the solution to the standby position 105. At this time, an empty clamp 102 that does not grip the head is located at the transfer position 104.
  • the biaxial transport mechanism 6 in the stamping area transfers the heads 51 after forming the spots and transports them to the transfer position 104. Then, the heads 51 and 51 gripped between the X X two-axis transfer mechanism 6 in the stamping area and the ⁇ two-axis transfer mechanism 75 in the cleaning area are transferred to each other.
  • the biaxial transport mechanism 6 in the stamping area after the transfer process transports the head 51 again onto the substrate. Then, the test step and the stamping step are performed.
  • the biaxial transport mechanism 75 in the cleaning area after the transfer step executes the cleaning step at the same time that the X-biaxial transport mechanism 6 in the stamping area executes the test step and the stamping step.
  • this cleaning step first, the head 51 after forming the spot is first treated with the surfactant solution treating section 7 as described above.
  • the head 51 is conveyed to the ultrasonic cleaning section 71, and the outside of the liquid storage member 52 is ultrasonically cleaned.
  • the head 51 is conveyed to the rinsing section 72, and the inside, outside, and the needle 53 of the liquid storage member 52 are rinsed. Thereafter, the head 51 is transported to the drying section 73, and the liquid storage member 52 and the dollar 53 are dried.
  • the XY two-axis transport mechanism 6 in the stamping area sequentially executes the head transfer step, the test step, and the stamping step.
  • the XY two-axis transport mechanism 75 in the cleaning area sequentially executes the above-described head transfer step, the above-described cleaning step, and the opening and closing process.
  • a head having sixteen spot arrangement tools liquid reservoir member 52 and Udle 53
  • the surfactant solution was used.
  • the second sample was stamped, and the carry-over rate of the first sample at the stamping spot of the second sample was measured.
  • the tip diameter of the needle used was 75 ⁇ .
  • a fluorescent dye rhodamine
  • a fluorescently labeled oligo DNA 21 mer
  • Fluorescently labeled oligo DNA 45mer
  • Fluorescently labeled CDNA 40 O mer
  • the carry-over rate was calculated by measuring the fluorescence intensity of each spot of the first sample and the fluorescence intensity of each spot of the second sample (there was no fluorescence if there was no carry-over).
  • a surfactant (Tween 20) having a concentration of 40% by volume was used, and after using the surfactant, washing was performed with ultrapure water for about 30 seconds.
  • the carry-over rate was similarly measured for a sample that had been washed only with ultrapure water for about 30 seconds without using a surfactant. The results obtained are shown below.
  • the carrier-to-bar ratio was significantly reduced when the washing was performed using the surfactant solution.
  • washing operation was performed using surfactant solutions of various concentrations as shown below.
  • stamping of the second sample was performed, and the carry-over rate of the first sample at the stamping spot of the second sample was measured, and the difference in the cleaning effect due to the difference in the surfactant concentration was measured. I investigated the difference.
  • the washing operation with the surfactant solution in Example 2 was performed under the condition that the treatment time and the amount of liquid used were increased compared to those in Example 1.
  • the tip diameter of the needle used was 75 ⁇ m.
  • a fluorescent dye rhodamine
  • 3 XSSC buffer was used as a sample.
  • the carryover rate was calculated by measuring the fluorescence intensity of each spot of the first sample and the fluorescence intensity of each spot of the second sample (no fluorescence if there was no carryover), as in Example 1. did.
  • Tween 20 was used as the surfactant, and its concentration was set to 20, 30, 40, 50, and% by volume, respectively. Then, after using the surfactant, cleaning was performed for about 30 seconds with ultrapure water. The results obtained are shown below.
  • a sample having 100 spots was continuously stamped using a head having 16 spot arranging devices (a liquid reservoir member 52 and a dollar 53).
  • a fluorescent dye (rhodamine) solution was used as the sample, and the needle tip diameter was 75 ⁇ . Was.
  • the spot locator was coated with a 40% by volume surfactant (Tween20) solution, followed by rinsing with water.
  • Tween20 40% by volume surfactant
  • the ratio of the largest diameter to the smallest diameter in all spots, the ratio of the largest to the smallest in all spots, and the average spot volume for comparison was determined.
  • Example 4 In an apparatus having a configuration as shown in FIG. 1, stamping of the sample was performed 100 times using a head having 16 spot arranging devices (a liquid reservoir member 52 and a needle 53). . The sample was prepared by adding 10 pmo1 / VL to a fluorescent dye (rhodamine) in 3 XSSC buffer, and measuring the fluorescence intensity of each spot. The amount was determined.
  • a fluorescent dye rhodamine
  • the spot placement device was subjected to a treatment of a surfactant (Tween20) solution at a concentration of 40% by volume and a subsequent washing with ultrapure water.
  • a surfactant Teween20
  • the same measurement was carried out for the case where the washing operation was performed using only the same amount of water without using a surfactant.
  • the change in wettability was measured by measuring the contact angle before and after coating with a surfactant (Tween 20), using the sample that had been subjected to No. 0 polishing. A Tween 20 solution with a concentration of 40% by volume was used. After applying this solution on a plate, the actual rinse was performed. The test was performed after about 30 seconds of washing with running water in the same manner as in the process.
  • the amount of water droplets was set to 12 L, and the contact angle before and after the surfactant was coated was determined as the average value of any three points in cross-sectional observation using a microscope.
  • the washing of the spot arranging device performed between the formation of the spots is performed using a surfactant. Since it is carried out using a solution, contamination between sample solutions can be effectively suppressed, and after a spot forming operation, a washing operation performed prior to the next spot formation can be performed reliably and promptly. It is possible to improve the efficiency of microarray production and provide a high-quality microarray.
  • the microarray manufacturing method for forming a plurality of spots of a solution containing a biological sample on a substrate at least one of contact surfaces of the spot arranging tool for forming the spots with the solution is provided.
  • the surface is coated with a surfactant, and the solution is supplied in this state to form spots. Therefore, the size and shape of each spot are made uniform to produce a microarray. In addition, contamination between sample solutions can be suppressed.
  • a DNA microarray having more excellent properties and quality can be provided. It can greatly contribute to the efficient analysis of differences and diversity.

Abstract

A method for producing a microarray wherein a plurality of spots of a solution containing plural kinds of biological samples are formed on a substrate using a spot-arranging means is characterized in that cleaning of the spot-arranging means during intervals between formation of respective spots is conducted using a surfactant solution. By this method, a cleaning operation conducted after formation of each spot before forming the next spot is performed surely and quickly, and contamination between spots can be prevented. Further, this method enables to form a high-quality microarray of spots having a uniform size and shape efficiently.

Description

糸田 »  Itoda »
マイクロアレイ作製方法、 マイクロアレイ作製用へッドおよび装置 技術分野 Microarray fabrication method, microarray fabrication head and device
本発明は、 DN A断片やオリゴヌクレオチド等の生体試料を基板上に多 数配列させるマイクロアレイ作製方法およびマイクロアレイ作製装置に関 する。 背景技術  The present invention relates to a microarray production method and a microarray production apparatus for arranging a large number of biological samples such as DNA fragments and oligonucleotides on a substrate. Background art
現在、 多彩な生物の全遺伝子機能を効率的に解析するための技術開発が 進んでいる。 DNAマイクロアレイ (すなわち DNAチップ) は、 スライ ドガラスゃシリコンの基板に DN A断片等を含むスポットを多数整列させ たものであり、 遺伝子の発現や変異、 多様性などの解析に非常に有効であ る。  At present, technology development for efficiently analyzing the function of all genes in various organisms is progressing. A DNA microarray (that is, a DNA chip) is an array of numerous spots containing DNA fragments and the like on a slide glass-silicon substrate, which is extremely effective in analyzing gene expression, mutation, diversity, etc. .
一般的な基板の大きさは 1〜数十 cm2で、 この領域に数千〜数十万種 の DNA断片のスポットが整列されている。 基板上の DNA断片は、 相補 性を有する蛍光標識 DN Aを用いて調べられる。 基板上の DN A断片と蛍 光標識 DNAとでハイプリタイゼーションが生じると蛍光が発する。 この 蛍光が生じるスポットを蛍光スキャナ等で検出し、 蛍光イメージを解析す ることで遺伝子の発現や変異、 多様性などを解析することができる。 この DNAマイクロアレイの技術を発展させるためには、 基板上に密集 した DNA断片のスポットを精度良く配列させるマイクロアレイ作製技術 が必要になる。 The size of a typical substrate is one to several tens of cm 2 , and spots of thousands to hundreds of thousands of DNA fragments are arranged in this area. DNA fragments on the substrate are examined using a fluorescently labeled DNA having complementarity. Fluorescence occurs when hybridization occurs between the DNA fragment on the substrate and the fluorescently labeled DNA. The spot where this fluorescence occurs is detected by a fluorescence scanner or the like, and the gene expression, mutation, diversity, etc. can be analyzed by analyzing the fluorescence image. In order to develop this DNA microarray technology, a microarray fabrication technology that precisely arranges the spots of densely packed DNA fragments on a substrate is required.
例えば、 WO 95/35505 (特表平 10— 503841号公報) に は、 あらかじめ調整した DNA断片を基板に配列させるマイクロアレイ作 製装置が開示されている。 この装置は、 細長い一対の部材間に形成された 開放毛管流路に試料を保持するとともに、 細長い一対の部材で構成される へッドの先端を基板に軽く打ち付けることにより、 基板上にスポットを配 置している。 また、 ヘッドにはこれ以外にも、 溶液を保持する液溜め部、 及び該液溜め部から突出し、基板にスポットを配置するスポット配置具(例 えばピン又はニードル) で構成されるものも知られている。 For example, WO 95/35505 (Japanese Unexamined Patent Publication No. 10-503841) discloses a microarray production apparatus that arranges DNA fragments prepared in advance on a substrate. This device is formed between a pair of elongated members A spot is placed on the substrate by holding the sample in the open capillary channel and lightly tapping the tip of a head composed of a pair of elongated members onto the substrate. In addition to the above, there is also known a head that includes a liquid reservoir for holding a solution, and a spot arranging device (for example, a pin or a needle) protruding from the liquid reservoir and disposing a spot on the substrate. ing.
このようなマイクロアレイ作製装置にあっては、 スポット毎の試料の量 を相互に均等となるように制御する必要があるが、 従来知られる装置にお いては、 基板上に多数のスポットを形成するほど、 すなわち、 設計上での 各スポットの所定量が小さくなるほど、 バラツキが生じるようになり、 こ れを改善する上での技術が望まれるところであった。  In such a microarray manufacturing apparatus, it is necessary to control the amount of the sample for each spot so as to be equal to each other. However, in a conventionally known apparatus, a large number of spots are formed on a substrate. That is, the smaller the predetermined amount of each spot in the design, the more the variation occurs, and a technique for improving the variation has been desired.
なお、 このようなマイクロアレイ作製装置にあっては、 スポッ トの形成 作業を終えたへッドに種類の異なる次の溶液を保持させる際、 前の溶液が 混濁しないようにヘッドを洗浄する必要がある。 ヘッドには、 複数の基板 に同時にスポットを形成するために複数のスポット配置具 (例えばピン又 はニードル)が設けられることが多レ、が、溶液の混濁を防止するためには、 これら複数のスポット配置具全てを確実に洗浄しなければならない。従来、 このようなマイクロアレイ作製装置のスポット配置具の洗浄は、 生体試料 への影響性を考慮して、 水のみを用いて行われていた。 そして、 その洗浄 作用を高める上で、 例えば、 特開平 1一 2 5 4 8 7 1号公報、 特開平 8— 2 1 8 4 0号公報におけるような医療用分析機の分注ノズルの洗浄の場合 と同様に、 洗浄部に超音波振動をかけることが行われていた。 しかしなが ら、 前の溶液によるコンタミネーションを防止する上での洗浄操作には、 このような超音波振動を併用しても水のみでは十分な洗浄が行えず、 先の 試料が後の試料中へと持ち越されてしまうキャリーオーバーが発生し、 問 題となっていた。特に、試料中に含まれる生体高分子が高分子量、例えば、 鎖長 1 0 0 O m e r以上となるようなものにおいては、 そのキャリーォー パーが顕著となる傾向が見られ、 改良が求められていた。 また、 前の溶液 によるコンタミネーシヨンを防止する上での洗浄操作には、 このような超 音波振動を併用しても水のみでは相当の時間を要し、 この洗浄工程が、 マ イクロアレイ作製における律速となっているところがあった。 In such a microarray manufacturing apparatus, it is necessary to wash the head so that the previous solution does not become cloudy when the next solution of a different type is held in the head after the spot formation operation. is there. The head is often provided with a plurality of spot arranging devices (for example, pins or needles) for simultaneously forming spots on a plurality of substrates. However, in order to prevent turbidity of the solution, a plurality of spot arranging tools are required. All spot locators must be thoroughly cleaned. Conventionally, washing of the spot arrangement tool of such a microarray manufacturing apparatus has been performed using only water in consideration of the influence on a biological sample. In order to enhance the washing action, for example, the washing of a dispensing nozzle of a medical analyzer as disclosed in Japanese Patent Application Laid-Open No. Hei 1-25471 and Japanese Patent Application Laid-Open No. Hei 8-21840 As in the case, ultrasonic vibration was applied to the cleaning section. However, even when such ultrasonic vibration is used in combination with the washing operation in order to prevent contamination by the previous solution, water alone cannot perform sufficient washing, and the earlier sample is replaced with the latter sample. Carryover, which was carried over to the inside, occurred, which was a problem. In particular, when the biopolymer contained in the sample has a high molecular weight, for example, a chain length of 100 O mer or more, the carrier There was a tendency for the par to be noticeable, and improvements were required. Also, the washing operation to prevent contamination by the previous solution requires a considerable amount of time with water alone even when such ultrasonic vibration is used in combination. There was a place where it was limited.
発明の開示 Disclosure of the invention
従って、 本発明は、 基板上に複数のスポットを配置するにおいて、 前に 使用された生体試料含有溶液による、 後の生体試料含有溶液のスポットの コンタミネーシヨンを有効に防止することのできるマイクロアレイ作製方 法およびマイクロアレイ作製装置を提供することを課題とする。  Therefore, the present invention provides a method for preparing a microarray in which a plurality of spots are arranged on a substrate, whereby contamination of a later spot of a biological sample-containing solution by a previously used biological sample-containing solution can be effectively prevented. It is an object to provide a method and a microarray manufacturing apparatus.
本発明はまた、 スポット形成作業後に、 次のスポット形成に先立ち行わ れる洗浄操作を確実かつ迅速なものとし、 マイクロアレイ作製の効率化を 図ると共に品質の高い イクロアレイを提供し得るマイクロアレイ作製方 法およびマイクロアレイ作製装置を提供することを課題とする。  The present invention also provides a microarray production method and a microarray which can ensure the washing operation performed prior to the formation of the next spot after the spot formation operation reliably and promptly, increase the efficiency of microarray production, and provide a high quality microarray. It is an object to provide a manufacturing device.
本発明はさらに、 基板上に複数のスポットを配置するにおいて、 各スポ ットの大きさを均等に形成することのできるマイクロアレイ作製方法およ びマイクロアレイ作製装置を提供することを課題とする。  It is still another object of the present invention to provide a microarray manufacturing method and a microarray manufacturing apparatus capable of uniformly forming the size of each spot when arranging a plurality of spots on a substrate.
上記課題を解決する本発明は、 基板上に複数種の生体試料含有溶液のス ポットを、 スポット配置具を用いて、 複数形成するマイクロアレイ製作方 法であって、 各スポットの形成間に行われるスポット配置具の洗浄が、 界 面活性剤溶液を用いて行われることを特徴とするマイクロアレイ作製方法 であ 。  The present invention for solving the above problems is a method for producing a plurality of microarrays using a spot disposition tool, wherein a plurality of spots of a biological sample-containing solution are formed on a substrate, which is performed between the formation of each spot. A method for producing a microarray, characterized in that washing of the spot disposition device is performed using a surfactant solution.
このように本発明においては、 各スポットの形成間に行われるスポット 配置具の洗浄操作を界面活性剤を用いておこなうため、 水のみを用いた場 合と比較してより良好にかつ迅速に行うことができ、 各試料間のコンタミ ネーションが防止できると共に、 マイクロアレイ作製時間の短縮化が可能 となる。 As described above, in the present invention, since the washing operation of the spot locating device, which is performed during the formation of each spot, is performed using a surfactant, the cleaning operation is performed better and faster than when only water is used. Can prevent contamination between samples and reduce the time required for microarray production. It becomes.
なお、 従来、 生体試料への影響性を考慮して、 水のみを用いた洗浄が行 われていたが、 使用する界面活性剤として適当なものを選択すれば、 本発 明におけるように界面活性剤を使用することによつても、 生体試料に悪影 響を及ぼすことなく、 確実な洗浄操作が行えることを、 本発明者らは見出 したものである。  Conventionally, washing was performed using only water in consideration of the effect on biological samples.However, if an appropriate surfactant is selected, the surfactant is used as in the present invention. The present inventors have found that even with the use of an agent, a reliable washing operation can be performed without adversely affecting a biological sample.
さらに、 このように界面活性剤を用いた洗浄を行うことで、 このような スポット配置具を構成する部材表面の親水性が改善され、 スポット配置具 における狭窄の流路においても生体試料含有溶液が液滴等を形成すること なくスムーズに流れ、 結果的に、 形成する各スポッ トの大きさを均等に保 つことができるという、 さらなる効果も見出されたものである。  Further, by performing the washing using the surfactant in this manner, the hydrophilicity of the surface of the member constituting such a spot disposition device is improved, and the biological sample-containing solution can be conveyed even in the narrow channel of the spot disposition device. It has also been found that the fluid flows smoothly without forming droplets and the like, and as a result, the size of each spot to be formed can be kept uniform.
さらに本発明のマイクロアレイ作製方法の一実施形態においては、 前記 スポッ ト配置具の洗浄が、 スポッ ト配置具への界面活性剤溶液の供給、 水 洗および乾燥という工程で行われるものであるものが示される。 このよう に、 洗浄において、 スポッ ト配置具へ界面活性剤を最初に供給することに よって、 より効果的な洗浄効果が得られるものである。  Further, in one embodiment of the method for producing a microarray of the present invention, the cleaning of the spot placement device is performed in the steps of supplying a surfactant solution to the spot placement device, washing with water, and drying. Is shown. As described above, in the cleaning, a more effective cleaning effect can be obtained by first supplying the surfactant to the spot placement device.
さらに本発明のマイクロアレイ作製方法の一実施形態においては、 前記 スポット配置具が、 ノズルと、 その内部に配されたノズル軸線方向に往復 動可能とされたスタンビングピンとを有してなるものであり、 このスポッ ト配置具への界面活性剤溶液の供給が、 少なくともこのノズル先端部を界 面活性剤溶液に接触させた状態で、 前記スタンピングピンを往復動させる ことにより行われるものであるものが示される。 このような形状のスポッ ト配置具においては、 スタンビングピンの往復動によって、 比較的高濃度 の界面活性剤であっても、 スポッ ト配置具における狭窄の流路内に、 容易 かつ確実に界面活性剤を供給することができるものである。  Further, in one embodiment of the microarray manufacturing method of the present invention, the spot disposition tool has a nozzle and a stamping pin disposed inside the nozzle and capable of reciprocating in a nozzle axis direction. The supply of the surfactant solution to the spot disposition device is performed by reciprocating the stamping pin while at least the tip of the nozzle is in contact with the surfactant solution. Is shown. In the spot disposition tool having such a shape, the reciprocating motion of the stamping pin allows the relatively easy concentration of the surfactant in the narrow flow path of the spot disposition tool easily and reliably even when the surfactant has a relatively high concentration. An activator can be provided.
また、 本発明のマイクロアレイ作製方法の一実施形態においては、 界面 活性剤濃度が、 5 %以上であることを特徴とするものである。 界面活性剤 濃度として、 このように比較的高濃度のものを適用することによって、 そ の洗浄効果が大きく向上することが期待できるものである。 In one embodiment of the method for producing a microarray of the present invention, The activator concentration is at least 5%. By applying a surfactant having a relatively high concentration as described above, the cleaning effect can be expected to be greatly improved.
本発明のマイクロアレイ作製方法の別の実施形態においては、 前記水洗 工程は、 順に超音波洗浄、 流水洗浄、 および物理的水分除去からなる一連 の操作を、単回ないしは複数回繰り返して行うことが示されるものである。 このような水洗工程を経ることによって、 洗浄に使用された界面活性剤を 迅速かつ確実に除去することができるものである。  In another embodiment of the microarray production method of the present invention, the water washing step is performed by repeating a series of operations consisting of ultrasonic cleaning, running water cleaning, and physical water removal one or more times. It is what is done. Through such a water washing step, the surfactant used for the washing can be quickly and reliably removed.
本発明のマイクロアレイ作製方法の一実施形態においては、 前記界面活 性剤溶液に使用される界面活性剤が、 非ィオン性界面活性剤または両性界 面活性剤である、 より好ましくは、 ポリオキシエチレン脂肪酸エステル、 であることを特徴とする。このような界面活性剤を使用することによって、 用いられる生体試料に対する界面活性剤の影響性をなくすことができるも のである。  In one embodiment of the method for producing a microarray of the present invention, the surfactant used in the surfactant solution is a nonionic surfactant or an amphoteric surfactant, and more preferably, polyoxyethylene. A fatty acid ester. By using such a surfactant, the effect of the surfactant on the biological sample to be used can be eliminated.
さらに、 本発明のマイクロアレイ作製方法の好ましい実施形態において は、 先のスポット形成時に用いられた生体試料含有溶液の、 後のスポット 中へのキヤリ一オーバー率が、 1 %以下となるものである。  Furthermore, in a preferred embodiment of the microarray production method of the present invention, the carry-over rate of the solution containing the biological sample used in the formation of the spot in the subsequent spot is 1% or less.
上記課題を解決する本発明はさらに、 基板上に、 生体試料を含有する溶 液のスポットを、 複数形成するマイクロアレイ製作方法であって、 前記ス ポットを形成するためのスポット配置具における前記溶液との接触面の少 なくとも一部を、 界面活性剤にて被覆し、 この状態で前記溶液を供給して スポットを形成することを特徴とするマイクロアレイ作製方法である。 このように本発明においては、 スポット配置具における生体試料含有溶 液との接触面を界面活性剤にて被覆しているため、 このようなスポット配 置具を構成する部材、 例えば、 ステンレス鋼などの表面と比べて親水化が なされており、 スポット配置具における狭窄の流路においても生体試料含 有溶液が液滴等を形成することなくスムーズに流れ、 結果的に、 形成する 各スポットの大きさを均等に保つことができる。 The present invention for solving the above-mentioned problems further provides a microarray manufacturing method for forming a plurality of spots of a solution containing a biological sample on a substrate, wherein the solution in the spot arrangement tool for forming the spots is provided. At least a part of the contact surface of the microarray is coated with a surfactant, and the solution is supplied in this state to form a spot. As described above, in the present invention, the surface of the spot placement tool that contacts the biological sample-containing solution is coated with the surfactant, and thus the members constituting such a spot placement tool, for example, stainless steel, etc. The surface is more hydrophilic than that of the surface of the specimen, and even the flow path of the stenosis in the spot placement device contains the biological sample. The solution has a smooth flow without forming droplets and the like, and as a result, the size of each spot to be formed can be kept uniform.
さらに本発明のマイクロアレイ作製方法の一実施形態においては、 前記 界面活性剤による被覆は、 前記溶液を供給してスポットを形成する毎に、 これに先立ち、 当該スポット配置具の接触面に界面活性剤を供給し、 水で リンスして過剰分を除去することによって行われるものであるものが示さ れる。 このように、 界面活性剤による被覆を、 スポット形成毎にこれに先 立ち行えば、 界面活性剤による被覆をより確実にかつ安定して行えると共 に、 併せてこの処理において、 スポット配置具に付着した前回使用の溶液 の迅速かつ確実な洗浄除去が可能となり、 各試料間のコンタミネーシヨン が防止できると共に、 マイクロアレイ作製時間の短縮化が可能となる。 さらに本発明のマイクロアレイ作製方法の一実施形態においては、 前記 界面活性剤の使用濃度が、 5 %以上であるものが示される。  Further, in one embodiment of the method for producing a microarray of the present invention, the coating with the surfactant is performed by: And what is done by supplying excess water and rinsing with water to remove excess. As described above, if the coating with the surfactant is performed prior to each spot formation, the coating with the surfactant can be performed more reliably and stably. This enables quick and reliable washing and removal of the attached solution from the previous use, prevents contamination between samples, and shortens the microarray preparation time. Further, in one embodiment of the method for producing a microarray of the present invention, a method is described in which the use concentration of the surfactant is 5% or more.
また、 本発明のマイクロアレイ作製方法の一実施形態においては前記リ ンスは、 使用した界面活性剤の量に対し、 1 0 0〜 1 0 0 0容量倍の水を 用いて行われるものであることが示される。  In one embodiment of the method for producing a microarray of the present invention, the rinsing is performed using 100 to 100 times the volume of water with respect to the amount of the surfactant used. Is shown.
本発明のマイクロアレイ作製方法の別の実施形態においては、 前記界面 活性剤による被覆は、当該スポット配置具の接触面に界面活性剤を塗布し、 固定化処理することで行われたものであることを特徴とする。 このように 界面活性剤を固定化処理していると、 前記した実施形態の場合のように、 スポット形成後毎に、 界面活性剤を用いて処理する必要はなく、 使用する 界面活性剤の量を低減させることができる。  In another embodiment of the method for producing a microarray according to the present invention, the coating with the surfactant is performed by applying a surfactant to a contact surface of the spot placement tool and performing a fixing treatment. It is characterized by. When the surfactant is immobilized in this manner, it is not necessary to perform the treatment with the surfactant every time after spot formation, as in the case of the above-described embodiment, and the amount of the surfactant used Can be reduced.
本発明のマイクロアレイ作製方法の一実施形態においては、 スポット配 置具の界面活性剤による被覆部分の水に対する接触角が、 当該部位の顕微 鏡による断面観察における任意の 3点の平均値として、 界面活性剤による 洗浄処理前と比較して、 1 0 %以上低減されているものである。 界面活性 剤による被覆部分において水に対する接蝕角が 1 0 %以上低減されると、 試料溶液の良好な流通が保たれるものである。 In one embodiment of the method for producing a microarray of the present invention, the contact angle of the portion of the spot dispenser coated with the surfactant with respect to water is defined as an average value of three arbitrary points in a cross-sectional observation of the site by a microscope. This is a reduction of 10% or more compared to before the cleaning treatment with the activator. Surface activity If the angle of contact with water is reduced by 10% or more in the area covered with the agent, good flow of the sample solution is maintained.
上記課題を解決する本発明は、 また、 生体試料を含む溶液を保持し、 先 端が基板に接触することで当該溶液のスポットを基板上に配置するスポッ ト配置具を、 1ないし複数個搭载してなるマイクロアレイ作製用ヘッドで あって、 前記スポット配置具が、 前記生体試料との接触面の少なくとも一 部を、 界面活性剤にて被覆されていることを特徴とするマイクロアレイ作 製用へッドである。  The present invention for solving the above-mentioned problems further comprises one or a plurality of spot arranging devices for holding a solution containing a biological sample and arranging a spot of the solution on the substrate by contacting the tip with the substrate. A microarray manufacturing head, comprising: a spot arranging device, wherein at least a part of a contact surface with the biological sample is coated with a surfactant. Is.
このようなマイクロアレイ作製用へッドを用いて、 生体試料溶液のスポ ット形成を行えば、 上記したように、 マイクロアレイにおける各スポット の大きさを均等に保つことができるものである。  If spots of a biological sample solution are formed using such a microarray production head, the size of each spot on the microarray can be kept uniform as described above.
上記課題を解決する本発明は、 さらに、 生体試科を含む溶液を貯える溶 液貯留部と、 複数枚の基板を配列し得る作業台と、 前記溶液貯留部から前 記溶液を取り入れて保持し、 前記基板上に溶液のスポットを形成するため のスポット配置具を備えた溶液保持手段と、 前記保持手段の洗浄等が行わ れる洗浄等施工部と、 前記保持手段を前記基板に対して近接 ·離間する方 向に移動させ、 前記保持手段をしてスポットを形成せしめる移動手段と、 前記保持手段を前記溶液貯留部、 前記作業台及び前記洗浄等施工部を含む 領域において搬送し且つ二次元座標を与える搬送手段と、 を備え、 前記ス ポット配置具における前記生体試料との接触面の少なくとも一部が、 界面 活性剤にて被覆されてなることを特徴とするマイクロアレイ作製装置であ る。  The present invention for solving the above-mentioned problems further includes a solution storage section for storing a solution containing a biological sample, a worktable on which a plurality of substrates can be arranged, and holding and taking in the solution from the solution storage section. A solution holding means provided with a spot arranging device for forming a spot of a solution on the substrate; a cleaning application section for cleaning the holding means, etc .; A moving means for moving in the direction of separation, forming a spot by using the holding means, and transporting the holding means in an area including the solution storage section, the work table and the cleaning and application section, and two-dimensional coordinates. Transport means for providing a microarray producing device, wherein at least a part of the contact surface of the spot placement tool with the biological sample is coated with a surfactant. Der Ru.
このようなマイクロアレイ作製装置を用いて、 生体試料溶液のスポット 形成を行えば、 上記したように、 マイクロアレイにおける各スポットの大 きさを均等に保つことができるものである。 図面の簡単な説明 If spots of a biological sample solution are formed using such a microarray manufacturing apparatus, the size of each spot on the microarray can be kept uniform as described above. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態におけるマイクロアレイ作製装置を示 す平面図である。  FIG. 1 is a plan view showing a microarray manufacturing device according to the first embodiment of the present invention.
図 2は、図 1における II一 II線方向から見たマイクロアレイ作製装置の 正面図である。  FIG. 2 is a front view of the microarray manufacturing apparatus as viewed from the direction of line II-II in FIG.
図 3は、図 2における III一 III線方向から見たマイクロアレイ作製装置 の右側面図である。  FIG. 3 is a right side view of the microarray manufacturing apparatus as viewed from the direction of line III-III in FIG.
図 4は、図 2における IV— IV線方向から見たマイクロアレイ作製装置の 左側面図である。  FIG. 4 is a left side view of the microarray manufacturing apparatus viewed from the direction of the line IV-IV in FIG.
図 5は、 図 1における V— V線方向から見たマイクロアレイ作製装置の 断面図である。  FIG. 5 is a cross-sectional view of the microarray manufacturing apparatus viewed from the line VV in FIG.
図 6は、 ヘッドの正面図である。  FIG. 6 is a front view of the head.
図 7は、 図 6における IX— IX線方向から見たへッドの右側面図である。 図 8は、 図 6における X— X線方向から見たへッドの底面図である。 図 9は、 ニードルが液溜め部材から突出している状態を示すヘッドの正 面図である。  FIG. 7 is a right side view of the head as viewed from the line IX-IX in FIG. FIG. 8 is a bottom view of the head as viewed in the X-X line direction in FIG. FIG. 9 is a front view of the head showing a state where the needle protrudes from the liquid storage member.
図 1 0は、 液溜め部材及びエードルを示す詳細図である。  FIG. 10 is a detailed view showing the liquid storage member and the edle.
図 1 1 〜図1 1 Eは、 それぞれ、 液溜め部材内に溜められた溶液を基 板上に配置する方法を示す工程図である。  FIG. 11 to FIG. 11E are process diagrams each showing a method of arranging the solution stored in the liquid storage member on the substrate.
なお、 こららの図中において付された符号は、 それぞれ以下のものを表 すものである。 '  The reference numerals given in these figures represent the following, respectively. '
3 基板、  3 substrates,
4 作業台、  4 workbench,
6 スタンビング領域の X Y 2軸搬送機構 (搬送手段)、  6 XY biaxial transport mechanism (transportation means) in the stamping area,
2 3 , 9 5 Z軸駆動機構 (移動手段)、  23, 95 Z-axis drive mechanism (moving means),
5 1 ヘッド (保持手段)、 5 2 液溜め部材 (液溜め部)、 5 1 head (holding means), 5 2 Liquid reservoir member (liquid reservoir),
5 3 ニードル (スポット配置具)、  5 3 Needle (spot placement tool)
5 7 下部プレート (基体部)、  5 7 Lower plate (base)
5 8 洗浄液等供給用空間、  5 8 Cleaning solution supply space,
7 1 超音波洗浄部 (洗浄等施工部)、  7 1 Ultrasonic cleaning part (cleaning etc. part),
7 1 a 界面活性剤処理部 (洗浄等施工部)、  7 1 a Surfactant treatment section (cleaning section)
7 2 b すすぎ洗浄部 (洗浄等施工部)、  7 2 b Rinse cleaning part (cleaning etc. part),
7 4 溶液貯留部 (洗浄等施工部)、  7 4 Solution storage section (washing section)
7 5 洗浄領域の X Y 2軸搬送機構 (搬送手段)。  7 5 XY 2-axis transport mechanism (transportation means) in the cleaning area.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について実施形態に基づき詳細に説明する説明する。 界面活性剤溶液を用いた洗浄  Hereinafter, the present invention will be described in detail based on embodiments. Cleaning with surfactant solution
上記したように、 本発明の第一のマイクロアレイ作製方法は、 基板上に 複数種の生体試料含有溶液のスポットを、 スポット配置具を用いて、 複数 形成するマイクロアレイ製作方法であって、 各スポットの形成間に行われ るスポット配置具の洗浄が、 界面活性剤溶液を用いて行われることを特徴 とする。  As described above, the first microarray manufacturing method of the present invention is a microarray manufacturing method in which a plurality of spots of a plurality of types of biological sample-containing solutions are formed on a substrate by using a spot arrangement tool. The spot arranging device is washed during the formation using a surfactant solution.
本発明において、 前記スポット配置具の洗浄に使用される界面活性剤と しては、 特に限定されるものではなく、 公知のいずれのものを使用するこ とは可能であるが、 生体試料含有溶液中に含まれる D N A, R N A等の生 体高分子に及ぼす影響性の点から、 非ィオン性界面活性剤および両性界面 活性剤であることが望ましい。  In the present invention, the surfactant used for washing the spot disposition device is not particularly limited, and any known surfactant can be used. Nonionic surfactants and amphoteric surfactants are desirable in view of their effect on biopolymers such as DNA and RNA contained in them.
非イオン界面活性剤としては、特に限定されるものではないが、例えば、 脂肪酸グリセリンエステル、 ソルビタン脂肪酸エステル、 スクロース脂肪 酸エステル、 ポリグリセリン脂肪酸エステル、 高級アルコールエチレンォ 6205 Examples of the nonionic surfactant include, but are not limited to, fatty acid glycerin ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyglycerin fatty acid ester, and higher alcohol ethylene glycol. 6205
キシド付加物、 単長鎖ポリオキシエチレンアルキルエーテル、 ポリオキシ エチレンアルキルァリルエーテル、 ポリオキシエチレンラノリンアルコー ル、 ポリオキシエチレン脂肪酸エステル、 ポリオキシエチレングリセリン 脂肪酸、 ポリオキシエチレンプロピレンダリコール脂肪酸エステル、 ポリ ォキシエチレンソルビトール脂肪酸エステル、 ポリオキシエチレンヒマシ 油若しくは硬化ヒマシ油誘導体、 ポリオキシエチレンラノリン誘導体、 ポ リオキシエチレン脂肪酸アミ ド、 ポリオキシエチレンアルキルァミン、 ァ ルキルピロリ ドン、 グルカミ ド、 アルキルポリダルコシド、 モノ若しくは ジァルカノールアミ ド、 ポリオキシエチレンアルコールモノ若しくはジァ ミ ドおよびアルキルアミンォキシドなどを挙げることができる。このうち、 好ましい一例としては、 1〜10のォキシエチレン部分と C 10—C20の直鎖 若しくは分岐アルキル鎖を含むポリオキシエチレンエーテル、 および 1〜 20のォキシエチレンのモノー、ジーまたはトリ一脂肪酸エステルを挙げる ことができ、 具体的には例えば、 ポリオキシエチレン (8 ) ォクチルフエ ニルエーテル (Triton X- 114)、 ポリオキシエチレン ( 9 ) ォクチルフエ- ルエーテル (NP-40)、 ポリオキシエチレン ( 1 0 ) ォクチルフエ二ルェ一 テル (Triton X- 100)、 ポリオキシエチレン ( 2 0 ) ソルビタンモノラウレ ート (Tween20)、 ポリォキシエチレン ( 2 0 ) ソルビタンモノパルミテー ト (Tween40)、 ポリオキシエチレン (2 0 ) ソルビタンモノステアレート (Tween60)、 ポリオキシエチレン (2 0 ) ソルビタントリオレエートなど を挙げることができる。 特に、 ポリオキシエチレンソルビタンモノ脂肪酸 エステル、 代表的には、 ポリオキシエチレン ( 2 0 ) ソルビタンモノラゥ レートを好ましく用いることができる。 Oxide adducts, single long-chain polyoxyethylene alkyl ether, polyoxyethylene alkylaryl ether, polyoxyethylene lanolin alcohol, polyoxyethylene fatty acid ester, polyoxyethylene glycerin fatty acid, polyoxyethylene propylene dalycol fatty acid ester, poly Xyethylene sorbitol fatty acid ester, polyoxyethylene castor oil or hydrogenated castor oil derivative, polyoxyethylene lanolin derivative, polyoxyethylene fatty acid amide, polyoxyethylene alkylamine, alkylpyrrolidone, glucamide, alkyl polydarcoside, Mono- or dialkanol amides, polyoxyethylene alcohol mono- or di-amides and alkylamine oxides can be mentioned. That. Of these, preferred examples include polyoxyethylene ethers containing 1 to 10 oxyethylene moieties and a C10-C20 linear or branched alkyl chain, and 1-20 oxyethylene mono-, di- or tri-fatty acid esters. Specifically, for example, polyoxyethylene (8) octyl phenyl ether (Triton X-114), polyoxyethylene (9) octyl phenyl ether (NP-40), polyoxyethylene (10) octyl phenyl Monotel (Triton X-100), polyoxyethylene (20) sorbitan monolaurate (Tween20), polyoxyethylene (20) sorbitan monopalmitate (Tween40), polyoxyethylene (20) Sorbitan monostearate (Tween60), polyoxyethylene (20) sorbitan trioleate, etc. . In particular, polyoxyethylene sorbitan monofatty acid ester, typically polyoxyethylene (20) sorbitan monolate, can be preferably used.
両性界面活性剤としては、 特に限定されるものではないが、 例えば、 ァ ルキルジメチルァミノ酢酸ベタィン、 アルキルジメチルァミンォキシド、 アルキルカルボキシメチルヒ ドロキシェチルイミダゾリゥムベタイン、 了 ルキルアミ ドプロピルべタインなどが挙げられる。 Examples of the amphoteric surfactant include, but are not particularly limited to, alkyldimethylaminoacetate betaine, alkyldimethylamine oxide, alkylcarboxymethylhydroxyxethylimidazolymbetaine, Rukylamidopropyl betaine and the like.
界面活性剤としては、 上記に例示した非イオン性界面活性剤および両性 界面活性剤を単独にて用いることができるが、 必要に応じてこれらのもの を複数組み合わせて用いることも、 また、 これらをさらに、 各種ァユオン 界面活性剤おょぴ またはノ-ォン界面活性剤と組み合わせて用 、ること もできる。  As the surfactant, the above-mentioned nonionic surfactants and amphoteric surfactants can be used alone, but if necessary, a plurality of these may be used in combination. Further, it can be used in combination with various Ayuon surfactants or non-ionic surfactants.
マイクロアレイの作製においては、 前記したように数千〜数十万種とい う非常に多くの種類の生体試料含有溶液のスポットを形成するため、 同時 に複数のスポット配置具を用いることが一般的であるが、 そのスポット配 置具の数は、 形成しょうとするスポットの生体試料含有溶液の全種類に対 応する程に多数設けることは限界があり、 通常は、 各スポット配置具が、 いくつかの種類の生体試料含有溶液のスポット形成に兼用されることにな る。  In the production of microarrays, as described above, in order to form spots of a very large number of thousands to hundreds of thousands of biological sample-containing solutions, it is common to use a plurality of spot arranging tools at the same time. However, there is a limit to the number of spot locators that can be provided so as to correspond to all types of biological sample-containing solutions of the spot to be formed. This is also used for spot formation of the biological sample-containing solutions of the above types.
このため、 1つの種類の生体試料含有溶液のスポット形成が終了後、 次 の種類の生体試料含有溶液のスポット形成に先立ち、 スポット配置具に付 着残留する前の生体試料含有溶液による、 後の生体試料含有溶液のコンタ ミネーシヨンを防止するため、 従来、 水による洗浄操作が行われている。 本発明においては、 これに代えて、 上記したような当該スポット配置具の 接触面の洗浄に界面活性剤溶液を用いることにより、 水のみを用いた場合 と比較して、 より短時間で効率的にスポット配置具に付着残留する生体試 料含有溶液を除去することができ、 生体試料含有溶液のコンタミネーショ ンを効果的に防止できる。  Therefore, after the formation of the spot of one type of biological sample-containing solution is completed and prior to the formation of the spot of the next type of biological sample-containing solution, the biological sample-containing solution is not attached to the spot placement tool and remains. Conventionally, a washing operation with water has been performed to prevent contamination of a solution containing a biological sample. In the present invention, in place of this, by using a surfactant solution for cleaning the contact surface of the spot placement tool as described above, it is more efficient in a shorter time than when only water is used. Thus, the biological sample-containing solution remaining on the spot placement device can be removed, and contamination of the biological sample-containing solution can be effectively prevented.
このような界面活性剤を用いて、 スポット配置具の生体試料含有溶液と の接触面を洗浄する方法としては、 特に限定されるものではないが、 好ま しくは、 まず、 当該スポット配置具の接触面に界面活性剤を供給し、 その 後水洗し、 乾燥するという工程によって行われることが望ましい。 界面活性剤の再使用という面から考えれば、 スポット形成後のスポット 配置具を洗浄するに際し、 残存試料が残ったままのスポット配置具に界面 活性剤溶液を適用する前に、 先に、 水洗を行い、 大方の残存試料を除去す るといった手法の方が有利であると思われる。 しかしながら、 このように して、一旦、スポット配置具内部に、水が入った状態となると、その後に、 スポット配置具内部に界面活性剤溶液を送り込もうとしても、 存在する水 によってこれが阻害され、 特に、 後述するように好適である比較的高濃度 の導入は困難となり、 有効な洗浄作用が得なれなくなる虞れが生じる。 ま た、 水を除去するために乾燥処理を行った場合には、 スポット配置具内の 溶液が乾燥し、 壁面に固着してしまうため、 その後に界面活性剤を用いて もこれを洗浄除去することが困難となる。 従って、 上記したように、 先に 界面活性剤溶液を供給する手法を採ることが望ましい。 The method of cleaning the contact surface of the spot placement device with the biological sample-containing solution using such a surfactant is not particularly limited, but preferably, first, the contact of the spot placement device is performed. It is desirable that the surface be supplied with a surfactant, followed by washing with water and drying. Considering the reuse of the surfactant, when washing the spot placement tool after forming the spots, first wash with water before applying the surfactant solution to the spot placement tool with the remaining sample remaining. It would be more advantageous to do so and remove most of the remaining sample. However, in this way, once water has entered the interior of the spot placement device, any subsequent attempts to feed the surfactant solution into the interior of the spot placement device are impeded by the water present. In particular, it is difficult to introduce a relatively high concentration, which is suitable as described later, and there is a possibility that an effective cleaning action may not be obtained. In addition, if a drying treatment is performed to remove water, the solution in the spot placement device dries and adheres to the wall, and is then washed and removed using a surfactant. It becomes difficult. Therefore, as described above, it is desirable to adopt a method of first supplying a surfactant solution.
また、 当該スポット配置具の接触面に界面活性剤を供給し、 水でリンス して過剰分を除去することによって、 スポット配置具の接触面に適用され る界面活性剤溶液の濃度等は、 特に限定されるものではなく、 また使用す る界面活性剤の種類によってもある程度左右されるものである力 例えば、 界面活性剤の濃度が 5 %以上、 好ましくは 2 0〜 6 0容量%、 より好まし くは 3 0〜5 0容量%というように比較的高濃度のものであることが望ま しい。 界面活性剤の濃度が極端に低いものであると、 スポット配置具の接 触面への界面活性剤溶液の供給は容易となるものの、 残存する生体試料含 有溶液を良好に除去するという洗浄効果が期待できなくなる虞れがあり、 一方、 界面活个生剤の濃度を極端に高いものとしても、 上記した範囲内にお ける濃度を使用した場合と、 残留溶液の洗浄除去作用において顕著な差異 が見られず、 経済性等の面から不利となるためである。  In addition, by supplying a surfactant to the contact surface of the spot disposition device and rinsing with water to remove the excess, the concentration of the surfactant solution applied to the contact surface of the spot disposition device is particularly high. The force is not limited and depends to some extent on the type of surfactant used. For example, the concentration of the surfactant is 5% or more, preferably 20 to 60% by volume, more preferably. It is desirable that the concentration be relatively high, such as 30 to 50% by volume. If the concentration of the surfactant is extremely low, it is easy to supply the surfactant solution to the contact surface of the spot placement tool, but the cleaning effect of removing the remaining biological sample-containing solution well. On the other hand, even when the concentration of the surfactant is extremely high, a marked difference in the effect of washing and removing the residual solution is obtained when the concentration within the above range is used. This is disadvantageous in terms of economy and other factors.
スポット配置具の接触面に界面活性剤を供給する際には、 この界面活性 剤による洗浄作用を高めるため、 必要に応じ、 超音波振動等の従来行われ ているような付加的な洗浄操作を加えても良い。 When supplying a surfactant to the contact surface of the spot placement tool, conventional methods such as ultrasonic vibrations are used as necessary to enhance the cleaning action of the surfactant. An additional washing operation as described above may be added.
上記したように、 スポット配置具の接触面に界面活性剤溶液を供給した 後、 接触面より遊離した残留物および使用した界面活性剤溶液を除去する ために、 水での洗浄を行う。  As described above, after the surfactant solution is supplied to the contact surface of the spot disposition device, washing with water is performed in order to remove the residue released from the contact surface and the used surfactant solution.
使用される水としては、 純水、 脱イオン水、 蒸留水などの不純物の少な いものを用いる。  As the water to be used, pure water, deionized water, distilled water or the like having a small amount of impurities is used.
洗浄に使用される水の量としては、 残留物を十分に除去できる量であれ ば、 特に限定されるものではなく、 また、 水洗時における、 例えば、 超音 波振動ゃスポット配置具の揺動操作などの適用の有無によっても左右され るが、 使用した界面活性剤の量に対し、 1 0 0容量倍以上の水を使用する ことが望ましい。 水の量が極端に少なすぎると、 残留物を十分に洗い流す ことができなかったり、 また、 余剰の界面活性剤がスポット配置具中に残 つてしまうため、 続いて生体試料含有溶液のスポットを形成した場合に、 このスポット中に界面活性剤が多く流出し、 場合によっては、 得られるマ イクロアレイの特性を低下させてしまう虞れが生じるためである。 一方、 使用した界面活性剤の量に対して必要以上に多くの水の量を用いても、 残 留物の除去率はそれほど向上せず、 処理時間が長期化して不経済となるの みである。 さらに、 本発明者らが得た知見によれば、 後述するように、 界 面活性剤がスポット配置具壁面にわずかに残つて壁面を被覆した状態とな ると、 このような界面活性剤が、 次のスポット形成の際に、 スポット中に 流出するような虞れはないばかりか、 このように壁面に残った界面活性剤 によって、 スポット配置具壁面の親水性が改善され、 その後のスポット形 成が安定化するものとなる。 従って、 洗浄に使用される水の量としては、 使用した界面活性剤の量に対し、、好ましくは 1 0 0〜1 0 0 0容量倍、 よ り好ましくは 1 0 0〜3 0 0容量倍程度とし、 スポット配置具壁面に界面 活性剤がわずかに残るようなものとすることが望ましい。 このようにしてスポット配置具の生体試料含有溶液との接触面が、 界面 活性剤によつて親水化される場合、 特に限定されるわけではないが、 当該 被覆部分の水に対する接触角が、 当該部位の顕微鏡による断面観察におけ る任意の 3の平均値として、 界面活性剤による洗浄処理前と比較して、 そ の角度が 10%以上低減され、 例えば、 4 0〜6 5 ° 、 より好ましくは 5 5 〜6 5 ° の範囲内となる程度に改質される。 The amount of water used for the washing is not particularly limited as long as the amount of the residue can be sufficiently removed. Although it depends on whether or not the operation is applied, it is desirable to use water at least 100 times the volume of the surfactant used. If the amount of water is extremely small, the residue cannot be washed out sufficiently, or surplus surfactant remains in the spot disposition device, so that a spot of a biological sample-containing solution is subsequently formed. In this case, a large amount of surfactant flows out into the spot, and in some cases, the characteristics of the obtained microarray may be deteriorated. On the other hand, if an excessive amount of water is used relative to the amount of the surfactant used, the removal rate of the residue does not increase so much, and the treatment time is prolonged, which is uneconomical. is there. Further, according to the knowledge obtained by the present inventors, as described later, when the surfactant is slightly left on the wall surface of the spot arranging device and becomes in a state of covering the wall surface, such a surfactant becomes However, in the next spot formation, there is no danger of flowing out into the spot, and the surfactant remaining on the wall improves the hydrophilicity of the spot arranging device wall, and the subsequent spot shape The composition is stabilized. Therefore, the amount of water used for washing is preferably 100 to 100 times, more preferably 100 to 300 times the amount of the surfactant used. It is desirable that the surface active agent remains slightly on the wall surface of the spot disposition device. When the contact surface of the spot placement device with the biological sample-containing solution is hydrophilized by the surfactant in this way, the contact angle of the coated portion with water is not particularly limited, and As an average value of any 3 in cross-sectional observation of the site with a microscope, the angle is reduced by 10% or more compared to that before the cleaning treatment with the surfactant, for example, 40 to 65 °, more preferably Is reformed to an extent within the range of 55 to 65 °.
このように、 水による洗浄を行った後に、 スポット配置具内に残る水分 を除去するために、 風乾、 加熱乾燥等の処理を行う。  In this way, after washing with water, treatments such as air drying and heat drying are performed to remove moisture remaining in the spot placement device.
なお、 本発明において、 生体試料含有溶液のスポットを形成するのに用 いられるスポット配置具の形状としては特に限定されず、 従来公知の各種 のものを用いることができる。 例えば、 Q U I L L方式、 ピン &リング方 式、 スプリングピン方式、 圧電 /電歪素子をマイクロポンプとして使用し たマイクロピぺット方式、 その他のいずれの形態のものであってもよい。 ここで、 Q U I L L方式は、 ピン先に形成した凹部に試料を貯め、 ピン 先を基板に接触させることで凹部内の試料を基板上に移して微小スポット を形成する方法であり、 ピン &リング方式は、 試料溶液をリング内でリザ ープした後、 溶液がリザーブされたリング内側を貫通するようにしてピン 先でリング内の試料を捉え、基板上にスポットを形成していく方法であり、 スプリングピン方式は、 スプリングを内蔵した二重ピン構造で、 ピン先に 付着した試料を、 ピン先を基板に押付けることで基板上に移して微小スポ ットを形成する方法であり、 また、 圧電ノ電歪素子をマイクロポンプとし て使用したマイクロピぺット方式は、 一般にインクジヱット記録方式にお いて広く応用されている技術におけるものと同様の方式である。  In the present invention, the shape of the spot arranging device used to form the spot of the biological sample-containing solution is not particularly limited, and various types of conventionally known devices can be used. For example, a QUILL system, a pin & ring system, a spring pin system, a micropit system using a piezoelectric / electrostrictive element as a micropump, or any other form may be used. Here, the QUILL method is a method in which a sample is stored in a recess formed in a pin tip, and the sample in the recess is transferred to the substrate by contacting the pin tip with the substrate to form a minute spot. Is a method in which a sample solution is recovered in a ring, and then the solution penetrates the inside of the reserved ring, captures the sample in the ring with a pin tip, and forms a spot on the substrate. The spring pin method is a double pin structure with a built-in spring, in which a sample attached to the pin tip is transferred onto the substrate by pressing the pin tip onto the substrate to form minute spots. A micropit method using a piezoelectric electrostrictive element as a micropump is a method similar to a technique widely used in a general ink jet recording method.
いずれの形態のスポット配置具においても、 生体試料含有溶液に対する 接触面、 特に、 微小孔路となる内面部を、 界面活性剤溶液を用いて洗浄処 理することが望ましい。 界面活性剤による被覆 Regardless of the form of the spot disposition device, it is desirable that the contact surface to the solution containing the biological sample, particularly the inner surface portion which becomes the micropore, be cleaned using a surfactant solution. Coating with surfactant
本発明の第二のマイクロアレイ作製方法は、 生体試料を含有する溶液の スポットを、 複数形成するマイクロアレイ製作方法であって、 前記スポッ トを形成するためのスポット配置具における前記溶液との接触面の少なく とも一部を、 界面活性剤にて被覆し、 この状態で前記溶液を供給してスポ ットを形成することを特徴とする。  A second microarray production method of the present invention is a microarray production method for forming a plurality of spots of a solution containing a biological sample, wherein the spot arrangement tool for forming the spot has a contact surface with the solution. At least a portion is coated with a surfactant, and the solution is supplied in this state to form a spot.
本発明の第二のマイクロアレイ作製方法は、 前記第一のマイクロアレイ 作製方法において、 各スポットの形成間に行われる界面活性剤溶液を用い たスポット配置具の洗浄が行われた場合に、 洗浄に用いられた界面活性剤 溶液中の界面活性剤がスポット配置具表面に付着残留された状態を保つた まま生体試料含有溶液を供給してスポット形成を行うことによって、 実施 可能である。 あるいは、 後述するようにスポット配置具の表面に界面活性 剤の被膜を形成することによつても実施可能である。  In the second method for producing a microarray of the present invention, in the first method for producing a microarray, when the spot disposing device is washed with a surfactant solution during the formation of each spot, the method is used for washing. The surfactant can be implemented by supplying the biological sample-containing solution and performing spot formation while maintaining the state in which the surfactant in the solution adheres and remains on the surface of the spot disposition device. Alternatively, the method can be carried out by forming a surfactant coating on the surface of the spot disposition device as described later.
本発明において、 前記スポット配置具における生体試料含有溶液との接 触面の少なくとも一部を被覆する界面活性剤としては、 特に限定されるも のではなく、 公知のいずれのものを使用することは可能であるが、 生体試 料含有溶液中に含まれる D N A, R N A等の生体高分子に及ぼす影響性の 点から、 非ィオン性界面活性剤および両性界面活性剤であることが望まし い。 非イオン性界面活性剤および両性界面活性剤の具体例としては、 上述 したものと同様であるため、 説明を省略する。  In the present invention, the surfactant that covers at least a part of the contact surface of the spot placement device with the solution containing a biological sample is not particularly limited, and any known surfactant may be used. Although it is possible, nonionic surfactants and amphoteric surfactants are desirable from the viewpoint of their effect on biological macromolecules such as DNA and RNA contained in the biological sample-containing solution. Specific examples of the nonionic surfactant and the amphoteric surfactant are the same as those described above, and a description thereof will not be repeated.
このような界面活性剤によって、 スポット配置具の生体試料含有溶液と の接触面の少なくとも一部を被覆する方法としても、 特に限定されるもの ではないが、 好ましい第一の態様においては、 前記界面活性剤による被覆 は、 前記溶液を供給してスポットを形成する毎に、 これに先立ち、 当該ス ポット配置具の接触面に界面活性剤を供給し、 水でリンスして過剰分を除 去することによって行う方法を挙げることができる。 The method for coating at least a part of the contact surface of the spot placement device with the biological sample-containing solution with such a surfactant is not particularly limited. Each time the solution is supplied to form a spot, a surfactant is supplied to the contact surface of the spot placement tool, and the surfactant is rinsed with water to remove the excess. Can be mentioned.
このように界面活性剤を用いて、 スポット配置具の生体試料含有溶液と の接触面を洗浄する方法としては、 上記に詳述した通りである。  The method of cleaning the contact surface of the spot placement device with the biological sample-containing solution using the surfactant in this manner is as described in detail above.
このようにスポット配置具の接触面に界面活性剤を供給し、 水でリンス して過剰分を除去するという操作を行うことにより、 スポット配置具の接 触面を界面活性剤で被覆すると同時に、 界面活性剤の洗浄作用によって、 水のみを用いた場合と比較して、 より短時間で効率的にスポット配置具に 付着残留する生体試料含有溶液を除去することができ、 生体試料含有溶液 のコンタミネーシヨンを併せて防止できる。  By supplying the surfactant to the contact surface of the spot placement tool and rinsing it with water to remove the excess, the contact surface of the spot placement tool is coated with the surfactant at the same time. Due to the cleaning action of the surfactant, the biological sample-containing solution remaining on the spot placement tool can be removed more efficiently and in a shorter time than when only water is used. Nation can also be prevented.
生体試料含有溶液を供給してスポットを形成する毎に、 これに先立ち、 当該スポット配置具の接触面に界面活性剤を供給し、 水でリンスして過剰 分を除去することによって、 スポット配置具の接触面に界面活性剤の被膜 を形成する態様において、 使用される界面活性剤の濃度等は、 特に限定さ れるものではなく、 また使用する界面活性剤の種類によってもある程度左 右されるものであるが、 例えば、 界面活性剤の濃度が 5容量%以上、 好ま しくは 2 0〜6 0容量0 /0、 より好ましくは 3 0〜5 0容量0 /0であることが 望ましい。 界面活性剤の濃度が極端に低いものであると、 スポット配置具 の接触面を界面活性剤で良好に被覆できず、 また、 残存する生体試料含有 溶液を良好に除去するという洗浄効果も期待できなくなる虞れがあり、 一 方、 界面活性剤の濃度を極端に高いものとしても、 上記した範囲内におけ る濃度を使用した場合と接触面の被覆および残留溶液の洗浄除去作用にお いて顕著な差異が見られず、 経済性等の面から不利となるためである。 なお、 上記したように、 スポット配置具の接触面に界面活性剤を供給し た後、 過剰に付着した界面活性剤を除去するために、 水でのリンスを行う 力 そのリンスに使用される水の量としては、 特に限定されるものではな いが、 使用した界面活性剤の量に対し、 1 0 0〜 1 0 0 0容量倍、 より好 ましくは 1 0 0〜 3 0 0容量倍であることが望ましい。 リンスに使用する 水の量が極端に多すぎると、 スポット配置具の接触面に付着した界面活性 剤がほとんど洗い流されてしまい、 界面活性剤による当該接触面の改質作 用が期待できなくなる虞れが生じ、 一方、 水の量が極端に少なすぎると、 余剰の界面活性剤がスポット配置具中に残ってしまうため、 続いて生体試 料含有溶液のスポッ 1、を形成した場合に、 このスポット中に界面活性剤が 多く流出し、 場合によっては、 得られるマイクロアレイの特性を低下させ てしまう虞れが生じる。 Each time a spot containing a biological sample is supplied to form a spot, a surfactant is supplied to the contact surface of the spot locator and rinsed with water to remove the excess. In the embodiment in which a surfactant film is formed on the contact surface of the substrate, the concentration of the surfactant to be used is not particularly limited, and is somewhat influenced by the type of the surfactant to be used. although, for example, the concentration of the surfactant 5 volume% or more, preferable properly is 2 0-6 0 volume 0/0, and particularly preferably in the range of 3 0-5 0 volume 0/0. If the concentration of the surfactant is extremely low, the contact surface of the spot disposition device cannot be covered with the surfactant satisfactorily, and a cleaning effect of satisfactorily removing the remaining biological sample-containing solution can be expected. On the other hand, even when the concentration of the surfactant is extremely high, the concentration in the above range is more remarkable in the case of using the concentration in the above range and in the effect of coating the contact surface and cleaning and removing the residual solution. This is because there is no significant difference, which is disadvantageous in terms of economics. In addition, as described above, after supplying the surfactant to the contact surface of the spot disposition device, rinsing with water is performed to remove the excessively attached surfactant. Water used for the rinsing The amount of the surfactant is not particularly limited, but is preferably 100 to 100 times the volume of the surfactant used, more preferably. More preferably, it is 100 to 300 times the capacity. If the amount of water used for rinsing is extremely large, the surfactant adhering to the contact surface of the spot placement device will be almost washed off, and the modification of the contact surface by the surfactant may not be expected. On the other hand, if the amount of water is extremely small, excess surfactant will remain in the spot placement device, and when a spot of a biological sample-containing solution is subsequently formed, this A large amount of surfactant flows out into the spot, and in some cases, the properties of the obtained microarray may be degraded.
このように、 水によるリンスを行った後に、 必要に応じて、 風乾、 加熱 乾燥等の処理を行ってもよい。  Thus, after rinsing with water, if necessary, treatment such as air drying or heat drying may be performed.
あるいは、 上記したような界面活性剤によって、 スポット配置具の生体 試料含有溶液との接触面の少なくとも一部を被覆する好ましい第二の態様 においては、 前記界面活性剤による被覆は、 当該スポット配置具の接触面 に界面活性剤を塗布し、 固定化処理することで行われる。  Alternatively, in a second preferred embodiment in which at least a part of the contact surface of the spot placement device with the biological sample-containing solution is coated with the surfactant as described above, the coating with the surfactant is performed using the spot placement device. This is performed by applying a surfactant to the contact surface of the substrate and performing immobilization treatment.
スポット配置具の接触面に界面活性剤を塗布する方法としては、 特に限 定はないが、 例えば、 上記したと同様に、 所定濃度の界面活性剤をスポッ ト配置具の接触面に接触させた後、 余剰の界面活性剤を水等の溶媒でリン スすることで除去するといつた方法が採択できる。 また、 界面活性剤のス ポット配箧具の接触面への固定化処理の方法としても、 特に限定されず、 例えば、 加熱処理、 プラズマ処理、 電子線照射といった処理による物理的 結合、 あるいはリンカ一使用、 界面活性剤への結合基ないし結合団導入な どによる化学的結合、 ならびにこれらの併用といつたいかなるものであつ てもよく、 また結合自体も強固な形態のものでも、 界面活性剤の徐放をも たらすような比較的緩やかな結合のものであってもよい。  The method for applying the surfactant to the contact surface of the spot disposition device is not particularly limited, but, for example, a surfactant of a predetermined concentration is brought into contact with the contact surface of the spot disposition device as described above. Thereafter, a method can be adopted in which excess surfactant is removed by rinsing with a solvent such as water. The method of immobilizing the surfactant on the contact surface of the spot dispenser is not particularly limited. For example, physical bonding by heat treatment, plasma treatment, electron beam irradiation, or the like, Any chemical bonding, such as use, introduction of a bonding group or a bonding group to a surfactant, or a combination thereof may be used. It may be one with a relatively loose bond that provides sustained release.
このように界面活性剤を固定化処理していると、 前記した実施形態の場 合のように、 スポット形成後毎に、 界面活性剤を用いて処理する必要はな く、 使用する界面活性剤の量を低減させることができる。 When the surfactant is immobilized in this way, it is not necessary to use a surfactant every time after spot formation as in the above-described embodiment. In addition, the amount of surfactant used can be reduced.
また、 この場合も、 スポットを形成する生体試料含有溶液の種類を交換 する場合には、 先の試料での使用後に、 スポット配置具を洗浄する必要が あるが、 前記界面活性剤による被覆がなされているため、 水のみでの洗浄 によっても、 従来の場合と比較して、 より容易にかつ迅速に、 スポット配 置具に残存付着する生体試料含有溶液を除去することができる。 . 本発明においては、 このようにしてスポット配置具の生体試料含有溶液 との接触面の少なくとも一部が、 界面活性剤によって被覆され親水化され る。特に限定されるわけではないが、当該被覆部分の水に対する接触角が、 当該部位の顕微鏡による断面観察における任意の 3の平均値として、 界面 活性剤による洗浄処理前と比較して、 1 0 %以上低減されており、 例えば 4 0〜6 5 ° 、 より好ましくは 5 5〜 6 5 ° の範囲内となる程度に改質さ れる。  Also, in this case, when changing the type of the biological sample-containing solution that forms the spot, it is necessary to wash the spot placement tool after use with the previous sample, but the coating with the surfactant is performed. Therefore, even with washing with water alone, the biological sample-containing solution remaining on the spot device can be removed more easily and more quickly than in the conventional case. In the present invention, at least a part of the contact surface of the spot placement device with the biological sample-containing solution is thus coated with the surfactant and made hydrophilic. Although not particularly limited, the contact angle of the coated portion with water is 10% as an average of an arbitrary value of 3 in the cross-sectional observation of the site by microscopic observation as compared with that before the cleaning treatment with the surfactant. It is reduced as described above, and is reformed, for example, to a degree within the range of 40 to 65 °, more preferably 55 to 65 °.
このため、 このような界面活性剤によつて被覆されたスポット配置具を 用いて、 各スポットの所定容積が、 1スポット当たり 3〜5 X 1 0— 4 m m 3の範囲内にある生体試料含有溶液のスポットを形成した場合に、 各ス ポット間の容積の変動率 (バラツキ) は、 代表的には、 1 0 %以下といつ た非常に低い値に抑えられる。  For this reason, using a spot placement tool coated with such a surfactant, a biological sample containing a spot having a predetermined volume of 3 to 5 × 10-4 mm3 per spot. When spots of the solution are formed, the rate of variation (variation) in the volume between the spots is typically very low, less than 10%.
なお、 本発明において、 生体試料含有溶液のスポットを形成するのに用 いられるスポット配置具の形状としては特に限定されず、 従来公知の各種 のものを用いることができる。 その具体例としては、 上述したものと同様 のものであるため、 説明を省略する。  In the present invention, the shape of the spot arranging device used to form the spot of the biological sample-containing solution is not particularly limited, and various types of conventionally known devices can be used. Specific examples thereof are the same as those described above, and a description thereof will be omitted.
いずれの形態のスポット配置具においても、 生体試料含有溶液に対する 接触面、 特に、 微小孔路となる内面部に対し、 界面活性剤による被覆処理 を施すことが有効である。 マイクロアレイ作製用へッドおよび作製装置 In any of the spot arranging devices, it is effective to perform a coating treatment with a surfactant on a contact surface with the biological sample-containing solution, particularly on an inner surface portion serving as a micropore channel. Microarray preparation head and preparation equipment
次に、 本発明のマイクロアレイ作製用へッドぉょぴマイクロアレイ作製 装置につき、 好ましい一実施形態を挙げて、 本発明の上述したようなマイ クロアレイ作製方法における操作例と共に説明するが、 本発明のマイクロ アレイ作製用ヘッドおょぴマイクロアレイ作製装置は、 上記したように、 そのスポット配置具の生体試料含有溶液に対する接触面が界面活性剤によ る被覆処理をなされたものである限りにおいて、 何ら限定されるものでは ない。  Next, the head microarray manufacturing apparatus for manufacturing a microarray of the present invention will be described with reference to a preferred embodiment together with an operation example in the above-described microarray manufacturing method of the present invention. As described above, the head for microarray production and the microarray production equipment are limited as long as the surface of the spot placement tool that contacts the biological sample-containing solution is coated with a surfactant. It is not done.
図 1は本発明の一実施形態のマイクロアレイ作製装置を示す平面図、 図 2は図 1における II一 II線方向から見たこの装置の正面図、図 3は図 2に おける III— III線方向から見たこの装置の右側面図、図 4は図 2における IV— IV線方向から見たこの装置の左側面図、図 5は図 1における V— V線 方向から見たこの装置の断面図である。  FIG. 1 is a plan view showing a microarray manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a front view of the apparatus viewed from the II-II line direction in FIG. 1, and FIG. 3 is a III-III line direction in FIG. Fig. 4 is a left side view of the device seen from the IV-IV line in Fig. 2, and Fig. 5 is a cross-sectional view of the device seen from the V-V line in Fig. 1. It is.
この装置は、 スライドガラスやシリコン等からなる基板に、 あらかじめ 調製した D N A断片やオリゴヌクレオチド等の生体試料の溶液のスポット を多数配列する。 一般的な基板の大きさは 1〜数十 c m2 で、 この領域に 多数の D N A断片のスポットを配列する。 スポットの径は例えば数十ミク 口ンから数百ミク口ンのサイズを有する。  This device arranges a large number of spots of a solution of a biological sample such as a DNA fragment or an oligonucleotide prepared in advance on a substrate made of a glass slide or silicon. A typical substrate size is 1 to several tens cm2, and a large number of DNA fragment spots are arranged in this area. The spot diameter has a size of, for example, several tens to hundreds of microliters.
図 1に示すように、 マイクロアレイ作製装置は二つの領域を有する。 一 つは、 溶液を保持するマイクロアレイ作製用ヘッド 5 1 (以下単にヘッド という) を基板に打ち付け、 基板上に生体試料の溶液のスポットを配列さ せるスタンビング領域 1である。 もう一つはスポットを形成した後のへッ ド 5 1を洗浄し、 洗浄したへッド 5 1に種類の異なる次の溶液を保持させ る洗浄領域 2である。 へッドの構成については後述する。  As shown in FIG. 1, the microarray fabrication device has two regions. One is a stamping area 1 in which a microarray manufacturing head 51 (hereinafter, simply referred to as a head) for holding a solution is hit on a substrate, and a spot of a biological sample solution is arranged on the substrate. The other is a washing area 2 in which the head 51 after forming the spot is washed, and the washed head 51 holds the next solution of a different type. The configuration of the head will be described later.
まず、 スタンビング領域について説明する。 作業台 4上には多数の基板 3…がマトリクス状に载置される。 基板 3はスライドガラスゃシリコン等 からなり、 基板 3の表面には生体試料を付着できるように表面処理がなさ れて!/ヽる。 First, the stamping region will be described. A large number of substrates 3 are arranged on the worktable 4 in a matrix. Substrate 3 is slide glass ゃ silicon etc. The surface of the substrate 3 is surface-treated so that a biological sample can be attached! / Puru.
作業台 4の一画には、 試験的にマイクロアレイを作製するための 2枚の 基板又はダミー基板が载置されるテスト台 5が設けられる。 溶液を保持し たへッド 5 1のニードルをいきなり基板 3に打ち付けると、 溶液が付きす ぎた状態でニードルを打ち付けることになる。 これを避けるために、 テス ト台 5上の基板 3にニードルを打ち付け、 ニードルに付きすぎた溶液が落 とされる。  On a part of the work table 4, a test table 5 on which two substrates or dummy substrates for producing a microarray on a trial basis are provided. When the needle of the head 51 holding the solution is suddenly struck against the substrate 3, the needle is struck while the solution is still attached. In order to avoid this, a needle is hit on the substrate 3 on the test stand 5, and the solution that has excessively adhered to the needle is dropped.
作業台 4上にはへッド 5 1を搬送し、 ヘッド 5 1に二次元座標を与える 第 2の搬送手段としての X Y 2軸搬送機構 6が取り付けられる。 この X Y 2軸搬送機構 6は後述する受け渡し位置 1 0 4までヘッド 5 1を受け取り にいき、 スポットの形成が終了した後のへッド 5 1を再ぴ受け渡し位置 1 0 4まで搬送する。  An XY two-axis transport mechanism 6 as a second transport means for transporting the head 51 and giving two-dimensional coordinates to the head 51 is mounted on the work table 4. The XY two-axis transport mechanism 6 proceeds to receive the head 51 up to a transfer position 104 described later, and transports the head 51 after the spot formation is completed to the transfer position 104.
図 1及び図 4に示すように、 X Y 2軸搬送機構 6は、 X軸搬送機構 6 X と Y軸搬送機構 6 Yとから構成される。 X軸移動機構 6 Xは X軸方向に延 設された長手固定フレーム 8と、 この固定フレームに X軸方向に伸長して 装着されたレール 9 , 9及び該レール 9, 9に対して移動自在に組まれた スライダ 1 0 , 1 0からなるリニアガイドと、 このリニアガイ ドによって 案内されるテーブル 1 1と、 該テーブル 1 1を駆動するリユアモータ 1 2 とを備える。 X軸搬送機構 6 Xの、 基板を挟んで反対側には X軸方向に延 設された長手固定フレーム 1 3と、 固定フレーム 1 3に X軸方向に伸長し て装着されたレール 1 4及び該レール 1 4に対して移動自在に組み込まれ たスライダ 1 5からなるリエアガイドが設けられる。  As shown in FIGS. 1 and 4, the XY two-axis transport mechanism 6 includes an X-axis transport mechanism 6X and a Y-axis transport mechanism 6Y. X-axis moving mechanism 6 X has a longitudinal fixed frame 8 extending in the X-axis direction, and rails 9, 9 mounted on the fixed frame so as to extend in the X-axis direction, and are movable with respect to the rails 9, 9. A linear guide composed of sliders 10 and 10 assembled in a linear guide; a table 11 guided by the linear guide; and a reuer motor 12 for driving the table 11. On the opposite side of the X-axis transport mechanism 6 X across the substrate, a longitudinal fixed frame 13 extending in the X-axis direction, rails 14 extending in the X-axis direction and mounted on the fixed frame 13 and A re-air guide including a slider 15 incorporated movably with respect to the rail 14 is provided.
図 1及び図 2に示すように、 Y軸駆動機構 6 Yは、 X軸駆動機構 6 に よって駆動されるテーブル 1 1とスライダ 1 5との間に架設された長手可 動フレーム 1 7と、 この可動フレーム 1 7に Y軸方向に伸長して装着され たレール 1 8, 1 8及ぴ該レール 1 8, 1 8に対して移動自在に組み込ま れたスライダ 1 9, 1 9からなるリニアガイドと、 このリニアガイドによ つて案内されるテーブル 2 0と、 該テーブル 2 0を駆動するリユアモータ 2 1とを備える。 As shown in FIGS. 1 and 2, the Y-axis driving mechanism 6 Y includes a longitudinal movable frame 17 erected between a table 11 driven by the X-axis driving mechanism 6 and a slider 15, It is attached to this movable frame 17 extending in the Y-axis direction. A linear guide comprising rails 18 and 18 and sliders 19 and 19 movably mounted on the rails 18 and 18; and a table 20 guided by the linear guide. And a return motor 21 for driving the table 20.
X Y 2軸搬送機構 6には、 移動手段としての Z軸駆動機構 2 3が支持さ れる。 この Z軸駆動機構 2 3が上記 X軸及ぴ Y軸に直交する Z軸方向、 す なわち基板 3に対して近接 ·離間する方向にへッド 5 1を移動する。 Z軸 駆動機構 2 3は、 ヘッド 5 1全体を昇降させるために Z 1軸駆動機構 2 3 Z 1を有し、 へッド 5 1の液溜め部材からニードルを突出させるために Z 2軸駆動機構 2 3 Z 2を有する。  The XY two-axis transport mechanism 6 supports a Z-axis drive mechanism 23 as moving means. The Z-axis drive mechanism 23 moves the head 51 in the Z-axis direction orthogonal to the X-axis and the Y-axis, that is, in the direction approaching / separating from the substrate 3. The Z-axis drive mechanism 23 has a Z1-axis drive mechanism 23 for raising and lowering the entire head 51, and a Z-axis drive mechanism for projecting the needle from the liquid storage member of the head 51. It has a mechanism 2 3 Z 2.
Z 1軸駆動機構 2 3 Z 1は、 送りねじ及び電動モータを用いてスライダ を移動させる電動ァクチユエータからなる。  The Z1-axis drive mechanism 23 Z1 is composed of an electric actuator that moves a slider using a feed screw and an electric motor.
図 1、 図 2及び図 5に示すように、 Z 1軸駆動機構 2 3 Z 1のスライダ には、 テーブル 4 1が取り付けられ、 このテーブル 4 1に Z 2軸移動機構 2 3 Z 2が取り付けられている。 Z 2軸駆動機構 2 3 Z 2は、 Z 1軸駆動 機構 2 3 Z 1と同様な構成を有する電動ァクチユエータからなり、 Z 1軸 駆動機構 2 3 Z 1よりも小型化されている。 この Z 2軸移動機構 2 3 Z 2 のスライダにはへッド 5 1のニードルを昇降させるための L形アーム 4 2 が取り付けられる。 L形アーム 4 2は図示しないエアシリンダによってへ ッド 5 1に差し込み可能にされている (図 7参照)。 L形アーム 4 2の先端 をへッド 5 1に差し込み、 この差し込んだ L形アーム 4 2を Z 2軸移動機 構 2 3 Z 2によって降下させることによってへッド 5 1の液溜め部材から ニードルが突出する。  As shown in Fig. 1, Fig. 2 and Fig. 5, a table 41 is mounted on the slider of the Z1-axis driving mechanism 23 Z1. A Z2-axis moving mechanism 23 3 Z2 is mounted on this table 41. Have been. The Z two-axis drive mechanism 23 Z 2 comprises an electric actuator having a configuration similar to that of the Z 1 axis drive mechanism 23 Z 1, and is smaller than the Z 1 axis drive mechanism 23 Z 1. An L-shaped arm 42 for moving the needle of the head 51 up and down is attached to the slider of the Z two-axis moving mechanism 2 3 Z 2. The L-shaped arm 42 can be inserted into the head 51 by an air cylinder (not shown) (see FIG. 7). The tip of the L-shaped arm 42 is inserted into the head 51, and the inserted L-shaped arm 42 is lowered by the Z-axis moving mechanism 23 Z2 to remove the head from the liquid storage member of the head 51. The needle protrudes.
Z 1軸駆動機構 2 3 Z 1のテーブル 4 1には、 ヘッド 5 1の姿勢を変化 させる姿勢変化手段としての Θ軸回転機構 4 3が取り付けられる。 この Θ 軸回転機構 4 3はへッド 5 1を水平面内で旋回させる。 Θ軸回転機構 4 3 は、 テーブル 4 1に取り付けられた電動モータ 4 4と、 テーブル 4 1に Z 軸周りにおいて回転自在に支持された略円筒状のチャック部 4 5とを備え る。 チャック部 4 5は電動モータ 4 4に継ぎ手を介して違結されている。 このチャック部 4 5がへッド 5 1を着脱自在に把持する。 Z 1 axis drive mechanism 2 3 The table 41 of Z 1 is provided with a Θ axis rotation mechanism 43 as attitude change means for changing the attitude of the head 51. The Θ-axis rotating mechanism 43 turns the head 51 in a horizontal plane. ΘShaft rotation mechanism 4 3 The table includes an electric motor 44 attached to a table 41, and a substantially cylindrical chuck portion 45 rotatably supported on the table 41 around the Z axis. The chuck portion 45 is connected to the electric motor 44 via a joint. The chuck portion 45 grips the head 51 detachably.
図 6及ぴ図 7は、 保持手段としてのへッド 5 1を示す。 ヘッド 5 1はチ ャック部 4 5に取り付けられる円筒状の被チャック部 5 4と、 この被チヤ ック部 5 4の下面に固定される略矩形状の上部プレート 5 5と、 この上部 プレート 5 5に複数本の支柱 5 6…を介して結合される基体部としての略 矩形状の下部プレート 5 7とを概略備える。  6 and 7 show a head 51 as a holding means. The head 51 has a cylindrical chucked portion 54 attached to the chuck portion 45, a substantially rectangular upper plate 55 fixed to the lower surface of the chucked portion 54, and an upper plate 5. 5 is provided with a substantially rectangular lower plate 57 as a base portion which is connected via a plurality of columns 56.
下部プレート 5 7には、 基板 3…に供給すべき溶液が保持される液溜め 部としての液溜め部材 5 2…が互いに平行にして縦横に取り付けられる。 この液溜め部材 5 2…内にはスポット配置具としてのニードル 5 3 ··' (あ るいはピンとも呼ばれる) が収納されている。 このニードル 5 3は、 下部 プレート 5 7に固定された複数のニードル用ブッシュ 6 6によって上下方 向へ往復運動可能に案内されている。 この実施形態では縦 4列横 1 2列の 合計 4 8本の液溜め部材 5 2…及びニードル 5 3…が取り付けられている 力 勿論液溜め部材 5 2…及びニードル 5 3…の本数はひとつの基板 3に 同時にスポットを形成するスポット数によって種々設定し得る。  To the lower plate 57, liquid storage members 52 as liquid storage portions for holding a solution to be supplied to the substrates 3 are attached vertically and horizontally in parallel with each other. The needles 5 3... ′ (Also called pins) are housed in the liquid reservoir members 52. The needle 53 is guided by a plurality of needle bushes 66 fixed to a lower plate 57 so as to be able to reciprocate upward and downward. In this embodiment, a total of four (4) rows and a horizontal (12) rows and a total of four (8) liquid reservoir members (52) and needles (53) are mounted. Needless to say, the number of liquid reservoir members (52) and needles (53) is one. Various settings can be made according to the number of spots that simultaneously form spots on the substrate 3.
また、 下部プレート 5 7には、 複数の-一ドル 5 3…全体にわたる洗浄 液等供給用空間 5 8が設けられる。 そして、 この洗浄液等供給用空間 5 8 は図 8にも示すように、 縦横に配列された複数の液溜め部材 5 2…全てに 連通している。  Further, the lower plate 57 is provided with a plurality of supply spaces 58 for supplying the cleaning liquid etc. over the entirety of the dollar 53. The cleaning liquid supply space 58 communicates with all of the plurality of liquid storage members 52 arranged vertically and horizontally as shown in FIG.
しかして、 この実施形態においては、 この-一ドル 5 3…の外表面およ び液溜め部材 5 2…の内表面は、 少なくとも試料スポット形成操作時にお いては、 界面活性剤による被覆処理がなされた状態とされている。  Thus, in this embodiment, the outer surface of the dollar 53 and the inner surface of the liquid reservoir 52 are coated with a surfactant at least at the time of the sample spot forming operation. It has been done.
上部プレート 5 5と下部プレート 5 7との間には、 支柱に対してスライ ド可能に中間プレート 5 9が設けられる。 中間プレート 5 9の下面には連 結部 6 0を介してニードル支持プレート 6 1が固定され、 複数本のニード ノレ 5 3…はこのニードル支持プレート 6 1に支持されている。 ニードル 5 3…の上部にはニードル支持プレート 6 1の上面に載せられるフランジ 5 3 d…が形成され、このフランジ 5 3 d…と中間プレート 5 9との間には、 コイルスプリング 6 2…が介在されている。 このコイルスプリング 6 2 · ·· は、 ニードル 5 3が基板 3に当接するとき圧縮変形し、 ニードル 5 3から 基板 3に加わる荷重を調整する。 また、 中間プレート 5 9には支柱 5 6に 対する中間プレート 5 9のスライド運動を案内するブッシュ 6 3が設けら れる。 中間プレート 5 9と下部プレート 5 7との間にはニードル 5 3を上 昇させ、 液溜め部材 5 2内に待避させるためのコイルスプリング 6 4が設 けられる。 Slide the support plate between the upper plate 55 and the lower plate 57. An intermediate plate 59 is provided so as to be movable. A needle support plate 61 is fixed to the lower surface of the intermediate plate 59 via a connecting portion 60, and a plurality of need nozzles 53 are supported by the needle support plate 61. At the top of the needle 53, a flange 53d is formed to be placed on the upper surface of the needle support plate 61. Between the flange 53d and the intermediate plate 59, a coil spring 62 is formed. Intervened. This coil spring 62 compresses and deforms when the needle 53 comes into contact with the substrate 3, and adjusts the load applied to the substrate 3 from the needle 53. The intermediate plate 59 is provided with a bush 63 for guiding the sliding movement of the intermediate plate 59 with respect to the support column 56. A coil spring 64 is provided between the intermediate plate 59 and the lower plate 57 for raising the needle 53 and retracting the needle 53 in the liquid reservoir member 52.
図 9は、 ニードル 5 3…が降下した状態を示す。 この図に示すように中 間プレート 5 9を降下すると、 ニードル 5 3…も中間プレート 5 9と共に 降下し、 液溜め部材 5 2…の下端からニードル 5 3…が突出する。 ニード ル 5 3…が基板 3…に当接すると、 ユードル 5 3…から基板 3…に過度の 荷重がかからないようにコイルスプリング 6 2…が圧縮変形する。  FIG. 9 shows a state where the needles 53 are lowered. When the intermediate plate 59 is lowered as shown in this figure, the needles 53 are also lowered together with the intermediate plate 59, and the needles 53 project from the lower ends of the liquid storage members 52. When the needles 53 come into contact with the substrate 3, the coil springs 62 are compressed and deformed so that no excessive load is applied from the udle 5 3 to the substrate 3.
各駆動機構によるヘッド 5 1の動作について説明する。 まず、 ヘッド 5 1は X Y 2軸搬送機構 6によって基板 3上方の X方向及び Y方向に位置決 めされる。 次に、 Z 1軸移動機構 2 3 Z 1によってヘッド 5 1全体が降下 され、 ヘッド 5 1が基板から Z方向に所定距離離して位置決めされる。 次 に、 Z 2軸移動機構 2 3 Z 2の L形アーム 4 2がへッド 5 1内の中間プレ ート 5 9上方に進出される。 Z 2軸移動機構 2 3 Z 2によって L形アーム 4 2を降下すると、 中間プレート 5 9が L形アーム 4 2によって押し下げ られ、 これによりニードル 5 3が液溜め部材 5 2から突出する。 一方、 Z 2軸移動機構 2 3 Z 2によって L形アーム 4 2を上昇すると、 コイルスプ リング 6 4の復元力によって中間プレート 5 9が上昇し、 これによりニー ドル 5 3が液溜め部材 5 2内に退避する。 The operation of the head 51 by each drive mechanism will be described. First, the head 51 is positioned by the XY two-axis transport mechanism 6 in the X and Y directions above the substrate 3. Next, the entire head 51 is lowered by the Z1-axis moving mechanism 23 Z1, and the head 51 is positioned at a predetermined distance from the substrate in the Z direction. Next, the L-shaped arm 42 of the Z 2-axis moving mechanism 2 3 Z 2 is advanced above the intermediate plate 59 in the head 51. When the L-shaped arm 42 is lowered by the Z two-axis moving mechanism 2 3 Z 2, the intermediate plate 59 is pushed down by the L-shaped arm 42, whereby the needle 53 protrudes from the liquid reservoir member 52. On the other hand, when the L-shaped arm 42 is raised by the Z The intermediate plate 59 is raised by the restoring force of the ring 64, whereby the needle 53 is retracted into the liquid storage member 52.
図 1 0は、 溶液を保持する液溜め部材 5 2及び-一ドル 5 3を示す。 液 溜め部材 5 2は先細りのテーパ管形状に形成され、 そのテーパ状の内部空 間には溶液と共にニードル 5 3が収納されている。 最も幅が狭くなつてい る液溜め部材 5 2の下部でもニードル 5 3の上下運動を案内している。 ニードル 5 3の先端部 5 3 aも外周面が先細りのテーパ形状に形成され ている。 また、 基板 3に接触する-一ドル 5 3の先端面 5 3 bは円形又は 多角形の平坦面に形成される。 先端部 5 3 aの外周面は、 ストレート部 5 3 cの外周面及びニードル 5 3の先端面 5 3 bに比べ、 溶液を保持できる ようにその表面粗さが粗くされている。 この表面粗さは、 ニードル 5 3が 液溜め部材 5 2から所定量突出し、 ニードル 5 3の先端面 5 3 bが基板 3 に接触するとき、 先端面 5 3 bに保持される溶液と液溜め部材 5 2内の溶 液とがつながるように設定される。 また、 この表面粗さは砥石加工又は放 電加工によって形成される。 例えば砥石加工の場合、 砥石をニードル 5 3 の長手方向に移動することで、 先端部 5 3 aの外周面が粗くされる。 図 1 1 A〜図 1 1 Eは、 液溜め部材 5 2内に溜められた溶液を基板 3上 に配置する方法を示す工程図である。 この図 1 1 〜図1 1 Eは、 液溜め 部材 5 2に対して-一ドル 5 3が Z軸方向 (すなわち上下方向) に移動す る場合の溶液の様子を示している。  FIG. 10 shows a liquid reservoir member 52 and a dollar 53 holding a solution. The liquid storage member 52 is formed in a tapered tapered tube shape, and the needle 53 is stored in the tapered internal space together with the solution. The lower part of the liquid reservoir member 52, which is the narrowest, also guides the vertical movement of the needle 53. The distal end portion 53 a of the needle 53 also has a tapered outer peripheral surface. In addition, the tip surface 53b of the dollar 53 that comes into contact with the substrate 3 is formed as a circular or polygonal flat surface. The outer peripheral surface of the distal end portion 53a is rougher than the outer peripheral surface of the straight portion 53c and the distal end surface 53b of the needle 53 so as to hold the solution. When the needle 53 protrudes a predetermined amount from the liquid reservoir member 52 and the distal end surface 53 b of the needle 53 comes into contact with the substrate 3, the surface roughness is determined by the solution held in the distal end surface 53 b and the liquid reservoir. It is set so that the solution in the member 52 is connected. The surface roughness is formed by grinding or discharging. For example, in the case of grindstone processing, the outer peripheral surface of the tip 53 a is roughened by moving the grindstone in the longitudinal direction of the needle 53. FIG. 11A to FIG. 11E are process diagrams showing a method of arranging the solution stored in the liquid storage member 52 on the substrate 3. FIGS. 11 to 11E show the state of the solution when the dollar 53 moves with respect to the liquid storage member 52 in the Z-axis direction (that is, the vertical direction).
まず、 図 1 1 Aに示すように、 基板 3の上方に液溜め部材 5 2が位置決 めされる。 次に図 1 1 A、 1 1 Bに示すように、 液溜め部材 5 2に対して ニードル 5 3を除々に下降させる。 次に図 1 1 Dに示すように、 ニードル 5 3を液溜め部材 5 2から突出させる。 このとき、 溶液がニードルに付着 することによって、液溜め部材 5 2内の溶液が引っ張り出される。そして、 ニードル 5 3の先端面 5 3 bを基板 3に接触させる。 ニードル 5 3の先端 面 5 3 bが基板 3に機械的に接触すると、 ニードル 5 3の先端面 5 3 b力 ら基板 3に溶液が移動し、 基板 3上に溶液が配置される。 このとき、 ユー ドル 5 3の先端に保持される溶液と液溜め部材 5 2内の溶液とがつながつ ている。 そして、 図 1 1 Eに示すように、 ニードル 5 3を基板 3から退避 させると、 基板 3上に溶液のスポットが形成される。 First, as shown in FIG. 11A, the liquid storage member 52 is positioned above the substrate 3. Next, as shown in FIGS. 11A and 11B, the needle 53 is gradually lowered with respect to the liquid storage member 52. Next, as shown in FIG. 11D, the needle 53 is made to protrude from the liquid reservoir member 52. At this time, the solution in the liquid reservoir member 52 is pulled out by the solution adhering to the needle. Then, the distal end face 53 b of the needle 53 is brought into contact with the substrate 3. Needle 5 3 tip When the surface 53 b mechanically contacts the substrate 3, the solution moves to the substrate 3 from the tip surface 53 b of the needle 53, and the solution is placed on the substrate 3. At this time, the solution held at the tip of the udle 53 and the solution in the liquid reservoir 52 are connected. Then, as shown in FIG. 11E, when the needle 53 is retracted from the substrate 3, a solution spot is formed on the substrate 3.
このように、 液溜め部材 5 2に保持される溶液とニードル 5 3の先端に 保持される溶液とを一体にし、 溶液がニードルに付着することを利用して 液溜め部材 5 2から溶液を引っ張り出して基板 3に配置することで、 基板 3に配置するスポットの大きさや形状を一定に保つことができる。 特に本 発明においては、 溶液とのこれらの部材の接触面が界面活性剤により被覆 処理されているため、スポットの大きさや形状を一定に保つことができる。 また、 ニードル 5 3の外周面を粗くすることで、 ニードル 5 3の外周面に 保持される溶液の量が安定する。 このため、 基板 3に配置するスポットの 大きさや形状をより一定に保つことができる。  In this way, the solution held in the liquid storage member 52 and the solution held in the tip of the needle 53 are integrated, and the solution is pulled from the liquid storage member 52 by utilizing the fact that the solution adheres to the needle. By taking out and arranging them on the substrate 3, the size and shape of the spots arranged on the substrate 3 can be kept constant. In particular, in the present invention, since the contact surfaces of these members with the solution are coated with a surfactant, the size and shape of the spot can be kept constant. In addition, by making the outer peripheral surface of the needle 53 rough, the amount of the solution held on the outer peripheral surface of the needle 53 is stabilized. For this reason, the size and shape of the spot arranged on the substrate 3 can be kept more constant.
次に、 洗浄領域について説明する。 この洗浄領域ではスポットを形成し た後のへッド 5 1を超音波洗浄し、その後すすぎ洗浄し、その後乾燥する。 洗浄後のへッド 5 1は新しい次の生体試料の溶液を保持する。  Next, the cleaning region will be described. In this cleaning area, the head 51 after forming the spot is ultrasonically cleaned, rinsed, and then dried. The washed head 51 holds a new solution of the next biological sample.
図 1に示すように、 洗浄台 9 6上には、 ヘッド 5 1を超音波洗浄する洗 浄等施工部としての超音波洗浄部 7 1と、 ヘッド 5 1を界面活性剤溶液に て処理する界面活性剤溶液処理部 7 2 aと、 ヘッド 5 1をすすぎ洗浄する 洗浄等施工部としてのすすぎ洗浄部 7 2 bと、 ヘッド 5 1を乾燥する乾燥 部 7 3と、 生体試料を含む溶液を貯える溶液貯留部 7 4とが設けられる。 また、 洗浄台 9 6上には、 これら超音波洗浄部 7 1、 界面活性剤溶液処 理部 7 2 a、 すすぎ洗浄部 7 2 b、 乾燥部 7 3及び溶液貯留部 7 4の間で へッド 5 1を搬送し、 へッド 5 1に 2次元座標を与える第 1の搬送手段と しての X Y 2軸搬送機構 7 5が設けられる。 この X Y 2軸搬送機構 7 5は、 X軸搬送機構 7 5 Xと Υ軸搬送機構 7 5 Υとから構成される。 As shown in FIG. 1, on the cleaning table 96, an ultrasonic cleaning section 71 as a cleaning section for ultrasonically cleaning the head 51, and the head 51 are treated with a surfactant solution. Surfactant solution treatment section 72 a, rinse section 72 b for rinsing head 51, drying section 73 for drying head 51, drying section 73 for drying head 51, and solution containing biological sample A solution storage section 74 for storing is provided. In addition, on the washing table 96, the ultrasonic cleaning section 71, the surfactant solution processing section 72a, the rinsing section 72b, the drying section 73, and the solution storage section 74 are provided. An XY two-axis transfer mechanism 75 is provided as first transfer means for transferring the head 51 and giving the head 51 two-dimensional coordinates. The XY two-axis transport mechanism 75 is composed of an X-axis transport mechanism 75 X and a {axis transport mechanism 75}.
図 1及び図 3に示すように、 X軸移動機構 7 5 Xは X軸方向に延設され た長手固定フレーム 8 1と、 この固定フレーム 8 1に X軸方向に伸長して 装着されたレール 8 2, 8 2及ぴ該レール 8 2, 8 2に対して移動自在に 組まれたスライダ 8 3 , 8 3からなるリニアガイドと、 このリニアガイド によって案内されるテーブル 8 4と、 該テーブル 8 4を駆動する送りねじ 8 5とを備える。  As shown in FIGS. 1 and 3, the X-axis moving mechanism 75 X is a longitudinal fixed frame 81 extending in the X-axis direction, and a rail extending and attached to the fixed frame 81 in the X-axis direction. 82, 82 and a linear guide composed of sliders 83, 83 movably assembled with respect to the rails 82, 82; a table 84 guided by the linear guide; 4 and a feed screw 85 for driving the same.
Υ軸駆動機構 7 5 Υは、 X軸駆動機構 7 5 Xによって駆動されるテープ ル 8 4上に固定された長手可動フレーム 8 7と、 この可動フレーム 8 7に Υ軸方向に伸長して装着されたレール 8 8及ぴ該レール 8 8に対して移動 自在に組み込まれたスライダ 8 9からなるリニアガイドと、 このリニアガ ィドによって案内されるテーブル 9 0と、 該テーブル 9 0を駆動する送り ねじ 9 1とを備える。  The Υ-axis drive mechanism 75 Υ is mounted on a movable movable frame 87 fixed on a table 84 driven by the X-axis drive mechanism 75 X, and is mounted on the movable frame 87 by extending in the Υ-axis direction. Linear guide consisting of a rail 88 and a slider 89 movably incorporated with respect to the rail 88, a table 90 guided by the linear guide, and a feed for driving the table 90. Screw 9 1 is provided.
図 1及ぴ図 2に示すように、 Χ Υ 2軸搬送機構 7 5には移動手段として の Ζ軸駆動機構 9 5が取り付けられる。 Ζ軸駆動機構 9 5は、 ヘッド 5 1 を X軸及び Υ軸に直交する Ζ軸方向、 すなわち洗浄台 9 6に対して直交す る方向に移動する。 この Ζ軸駆動機構 9 5は、 スタンビング領域における Ζ軸駆動機構 2 3と同様に、 Ζ 1軸駆動機構 9 5 Ζ 1及び Ζ 2軸駆動機構 9 5 Ζ 2を有する。 そして、 超音波洗浄部 7 1、 界面活性剤溶液処理部 7 2 a、 すすぎ洗浄部 7 2 b、 乾燥部 7 3及ぴ溶液貯留部 7 4のどの位置で も液溜め部材 5 2に対してニードル 5 3を突出できるようになつている。  As shown in FIG. 1 and FIG. 2, the biaxial transport mechanism 75 is provided with a biaxial drive mechanism 95 as a moving means. The Ζ-axis drive mechanism 95 moves the head 51 in the Ζ-axis direction orthogonal to the X axis and the Υ axis, that is, in the direction orthogonal to the washing table 96. The Ζ-axis drive mechanism 95 has a Ζ1-axis drive mechanism 95 Ζ 1 and a Ζ2-axis drive mechanism 95 Ζ 2, similarly to the Ζ-axis drive mechanism 23 in the stamping area. The ultrasonic cleaning section 71, the surfactant solution processing section 72a, the rinsing section 72b, the drying section 73, and the solution storage section 74 at any position with respect to the liquid storage member 52. The needle 53 can be protruded.
Z 1軸駆動機構 9 5 Z 1は、 スタンビング領域における Z 1軸駆動機構 2 3 Z 1と同様に、 送りねじ及ぴ電動モータを用いてプロックを移動させ る電動ァクチユエータからなる。  The Z1-axis drive mechanism 95 Z1 is composed of an electric actuator that moves the block using a feed screw and an electric motor, like the Z1-axis drive mechanism 23Z1 in the stamping area.
Z 1軸駆動機構 9 5 Z 1のテーブル 9 7には、 Z 2軸移動機構 9 5 Z 2 が取り付けられる。 Z 2軸駆動機構 9 5 Z 2は、 2 1軸駆動機構9 5∑ 1 と同様な構成を有する電動ァクチユエータからなり、 Z 1軸駆動機構 9 5 Z 1よりも小型化されている。 この Z 2軸移動機構 9 5 Z 2のテーブル 9 8にはへッド 5 1のニードル 5 3を昇降させるための L形アーム 9 9が取 り付けられる。 L形アーム 9 9は図示しないエアシリンダによってヘッド 5 1に差し込み可能にされている。 L形アーム 9 9の先端をへッドに差し 込み、 この差し込んだ L形アーム 9 9を Z 2軸移動機構 9 5 Z 2によって 降下させることによってへッド 5 1の液溜め部材 5 2からニードル 5 3が 突出する。 Z 1 axis drive mechanism 9 5 Z 1 table 9 7 has Z 2 axis moving mechanism 9 5 Z 2 Is attached. The Z two-axis drive mechanism 95 Z 2 is composed of an electric actuator having the same configuration as the 21-axis drive mechanism 95 ∑ 1, and is smaller than the Z 1-axis drive mechanism 95 Z 1. An L-shaped arm 990 for raising and lowering the needle 53 of the head 51 is attached to the table 98 of the Z two-axis moving mechanism 95 Z2. The L-shaped arm 99 can be inserted into the head 51 by an air cylinder (not shown). Insert the end of the L-shaped arm 99 into the head, and lower the inserted L-shaped arm 99 by the Z-axis moving mechanism 95 Z2 to remove the liquid from the liquid storage member 52 of the head 51. Needle 53 protrudes.
また、 Z 1軸駆動機構のテーブル 9 7には旋回部としての旋回用モータ 1 0 0が取り付けられ、 この旋回用モータ 1 0 0の出力軸には水平面内を 旋回する円板 1 0 1が取り付けられる。 円板 1 0 1の下面には 1 8 0度間 隔を開けてへッド 5 1を把持可能な把持部としての一対のクランプ 1 0 2 , 1 0 2が取り付けられる。 クランプ 1 0 2 , 1 0 2は図示しないエアシリ ンダ等によって開閉され、へッド 5 1の外周に形成された平坦部 1 0 3 (図 6及ぴ図 7参照) を挟む。  A turning motor 100 as a turning unit is attached to the table 97 of the Z1-axis drive mechanism, and a disc 101 that turns in a horizontal plane is provided on the output shaft of the turning motor 100. It is attached. A pair of clamps 102, 102 as a holding portion capable of holding the head 51 at 180 ° intervals is attached to the lower surface of the disk 101. The clamps 102 and 102 are opened and closed by an air cylinder or the like (not shown), and sandwich a flat portion 103 (see FIGS. 6 and 7) formed on the outer periphery of the head 51.
洗浄領域の X Y 2軸搬送機構 7 5によって搬送されるへッド 5 1は、 上 記スタンビング領域の 2軸搬送機構 6によって搬送されるへッド 5 1と同 —の構成を有するので、 同一の符号を付してその説明を省略する。  Since the head 51 transported by the XY two-axis transport mechanism 75 in the cleaning area has the same configuration as the head 51 transported by the two-axis transport mechanism 6 in the above-mentioned stamming area, The same reference numerals are given and the description is omitted.
旋回用モータ 1 0 0は 1 8 0度ずつ旋回し、 これによりスタンピング領 域の X Y 2軸搬送機構 6から洗浄領域の X Y 2軸搬送機構 7 5へのへッド 5 1の受け渡し、 並びに洗浄領域の X Y 2軸搬送機構 7 5からスタンピン グ領域の X Y 2軸搬送機構 6へのへッド 5 1の受け渡しが行われる。  The turning motor 100 turns 180 degrees at a time, thereby transferring the head 51 from the XY two-axis transfer mechanism 6 in the stamping area to the XY two-axis transfer mechanism 75 in the washing area, and cleaning. Transfer of the head 51 from the XY two-axis transport mechanism 75 in the area to the XY two-axis transport mechanism 6 in the stamping area is performed.
具体的には、 図 1及ぴ図 2に示すように、 まずスタンビング領域の X Y 2軸搬送機構 6がスポットを形成した後のへッド 5 1を受け渡し位置 1 0 4まで搬送する。 一方、 洗浄領域の X Y 2軸搬送機構 7 5が新しい溶液を 保持したへッド 5 1を受け渡し位置 1 0 4から 1 8 0度位置をずらした控 え位置 1 0 5まで搬送する。 このとき、 受け渡し位置 1 0 4にはヘッドを 把持していない空のクランプが位置する。 次に洗浄領域の X Y 2軸搬送機 構 7 5のクランプ 1 0 2が受け渡し位置 1 0 4に搬送されたスポット形成 後のへッド 5 1を把持する。 これによりスタンビング領域の X Y 2軸搬送 機構 6から洗浄領域の X Y 2軸搬送機構 7 5にへッドが受け渡される。 次 に旋回用モータ 1 0 0が円板 1 0 1を 1 8 0度旋回させ、 スポット形成後 のへッド 5 1を控え位置 1 0 5に位置させ且つ新たな溶液を保持したへッ ド 5 1を受け渡し位置 1 0 4に位置させる。 次にスタンピング領域の X Y 2軸搬送機構 7 5のチャック部 4 5が新たな溶液を保持したヘッド 5 1を 把持する。 これにより、 洗浄領域の X Y 2軸搬送機構 7 5からスタンピン グ領域の X Y 2軸搬送機構 6にへッドが受け渡される。 Specifically, as shown in FIGS. 1 and 2, first, the XY two-axis transport mechanism 6 in the stamping area transports the head 51 after forming the spot to the transfer position 104. On the other hand, the XY 2-axis transport mechanism 75 in the cleaning area The held head 51 is transferred from the transfer position 104 to the reserve position 105 shifted 180 degrees from the transfer position 104. At this time, an empty clamp that does not grip the head is located at the transfer position 104. Next, the clamp 51 of the XY two-axis transport mechanism 75 in the cleaning area grips the head 51 after the spot is transported to the transfer position 104. Thus, the head is transferred from the XY two-axis transfer mechanism 6 in the stamping area to the XY two-axis transfer mechanism 75 in the cleaning area. Next, the rotation motor 100 rotates the disk 101 by 180 degrees, and the head 51 after the spot formation is located at the standby position 105 and a head holding a new solution. 5 Position 1 at the transfer position 104. Next, the chuck portion 45 of the XY two-axis transport mechanism 75 in the stamping area grips the head 51 holding the new solution. Thus, the head is transferred from the XY two-axis transport mechanism 75 in the cleaning area to the XY two-axis transport mechanism 6 in the stamping area.
このように、 スタンビング領域の X Y 2軸搬送機構 6と洗浄領域の X Y 2軸搬送機構 7 5とで互いにへッド 5 1を受け渡せるようにしたので、 一 方のへッド 5 1で基板 3上にスポットを形成している間に、 他方のへッド 5 1を洗浄等することができる。  In this way, the head 51 can be transferred between the XY two-axis transport mechanism 6 in the stamping area and the XY two-axis transport mechanism 75 in the cleaning area. While the spot is formed on the substrate 3, the other head 51 can be cleaned or the like.
次に、 上記したような本発明の一実施態様のマイクロアレイ作製装置に おいて、 生体試料含有溶液を供給してスポットを形成する毎に、 これに先 立ち、 当該スポット配置具の接触面を界面活性剤溶液を用いて洗浄する操 作であって、同時に、当該スポット配置具の接触面に界面活性剤を供給し、 水でリンスして過剰分を除去することによって、 スポット配置具の接触面 に界面活性剤の被膜を形成することとなる操作につき説明する。  Next, in the microarray manufacturing apparatus according to one embodiment of the present invention as described above, every time a biological sample-containing solution is supplied to form a spot, the contact surface of the spot arranging tool is brought into contact with the interface. An operation of cleaning using a surfactant solution, and simultaneously supplying a surfactant to the contact surface of the spot disposition device and rinsing with water to remove an excess, thereby obtaining a contact surface of the spot disposition device. Next, an operation for forming a surfactant film will be described.
まず、 スポット形成後のヘッド 5 1は、 X Y 2軸搬送機構 7 5によって 界面活性剤溶液処理部 7 2 aに搬送される。 界面活性剤溶液処理部 7 2 a は、 界面活性剤溶液槽を有しており、 この上部にヘッド 5 1を移動させ、 へッド 5 1に取り付けられたスポット配置具の液溜め部材 5 2の先端部を、 界面活性剤溶液槽中の界面活性剤溶液中に浸漬させる。 この状態で、 ニー ドル 5 3を上下動させる、 例えば、 0 · 5〜 2回/秒程度の速さで、 1〜 1 0回、 好ましくは 3〜5回程度上下動させると、 この動きによって、 比 較的高濃度の界面活性剤溶液であっても、 液溜め部材 5 2の内部へと容易 に運ばれ、 液溜め部材 5 2の内側、 及びニードル 5 3の外面に界面活性剤 溶液を付与ないし被覆することができる。 First, the head 51 after spot formation is transported to the surfactant solution processing section 72a by the XY two-axis transport mechanism 75. The surfactant solution processing section 7 2 a has a surfactant solution tank, and the head 51 is moved to an upper part of the tank, and the liquid storage member 5 2 of the spot disposing tool attached to the head 51 is provided. The tip of It is immersed in the surfactant solution in the surfactant solution tank. In this state, the needle 53 is moved up and down, for example, at a speed of about 0.5 to 2 times / second, 1 to 10 times, preferably about 3 to 5 times. However, even if the surfactant solution has a relatively high concentration, the surfactant solution is easily transported to the inside of the liquid reservoir member 52, and the surfactant solution is applied to the inside of the liquid reservoir member 52 and the outer surface of the needle 53. It can be applied or coated.
次いで、 洗浄領域の X Y 2軸搬送機構 7 5によってヘッド 5 1力 S、 超音 波洗浄部 7 1に搬送される。 超音波洗浄部 7 1では、 超音波振動をかけた 純水中に液溜め部材 5 2を浸して、 その外側を洗浄する。 なお、 この超音 波洗浄部 7 1では、 液溜め部材 5 2から-一ドル 5 3を突出させた状態で ニードル 5 3の外側も洗浄するのが望ましい。 この操作により、 主として 液溜め部材 5 2の外側に付着した余剰の界面活性剤が取り除かれる。  Then, the head 51 is transferred to the ultrasonic cleaning unit 71 by the XY two-axis transport mechanism 75 in the cleaning area. In the ultrasonic cleaning section 71, the liquid storage member 52 is immersed in pure water subjected to ultrasonic vibration to clean the outside thereof. In the ultrasonic cleaning section 71, it is preferable that the outside of the needle 53 is also cleaned with the dollar 53 protruding from the liquid storage member 52. By this operation, surplus surfactant mainly adhered to the outside of the liquid storage member 52 is removed.
さらに、 ヘッド 5 1は、 X Y 2軸搬送機構 7 5によってすすぎ洗浄部 7 2 bに搬送される。 すすぎ洗浄部 7 2 bは、 液溜め部材 5 2の内側、 外側 及びニードル 5 3の外側に付着した余剰の界面活性剤を除去する。  Further, the head 51 is transferred to the rinsing section 72 b by the XY two-axis transfer mechanism 75. The rinsing section 72b removes excess surfactant adhered to the inside and outside of the liquid storage member 52 and the outside of the needle 53.
洗浄液としての超純水が貯えられる純水槽にへッド 5 1を組み込み、 液 溜め部材 5 2を超純水に漬けることによって、 液溜め部材 5 2の外側が洗 浄される。 また、 ヘッド 5 1を純水槽に組み込むことによって、 純水槽に 設けた、 前記図 6における純水供給管 1 0 8がヘッド 5 1に接続され、 純 水供給管と洗浄液等供給用空間 5 8とが連通する。 へッド 5 1の下部プレ ート 5 7には、 液溜め部材 5 2の後端に対応して洗浄液等供給用空間 5 8 が設けられる。 該洗浄液等供給用空間 5 8は各液溜め部材 5 2にわたる広 範な単一空間とされている。 純水供給管 1 0 8から圧力をもった純水が供 給されると、 純水がこの単一空間内で拡がる。 単一空間を充満した純水は 各液溜め部材 5 2に供給される。  The outside of the liquid storage member 52 is cleaned by incorporating the head 51 into a pure water tank storing ultrapure water as a cleaning liquid and immersing the liquid storage member 52 in ultrapure water. In addition, by incorporating the head 51 into a pure water tank, the pure water supply pipe 108 in FIG. 6 provided in the pure water tank is connected to the head 51, and the pure water supply pipe and the supply space 5 Communicates with The lower plate 57 of the head 51 is provided with a space 58 for supplying a cleaning liquid or the like corresponding to the rear end of the liquid reservoir member 52. The cleaning liquid supply space 58 is a wide single space extending over each liquid storage member 52. When pure water with pressure is supplied from the pure water supply pipe 108, the pure water spreads in this single space. The pure water filling the single space is supplied to each liquid storage member 52.
液溜め部材 5 2の内側に圧力をかけて水を供給することで、 余剰の界面 活性剤のリンスないし付着残留試料の洗浄時間を短くすることができる。 また、 複数の液溜め部材 5 2…にわたる単一空間を形成することで、 複数 の液溜め部材 5 2…内に供給される純水の圧力損失が低減し、 且つ各液溜 め部材 5 2間で圧力損失が略均等になる。 したがって、 複数の液溜め部材 5 2…の内側及ぴ複数のニードル 5 3…の外側に略均等な圧力をかけて洗 浄することができる。 By applying pressure to the inside of the liquid storage member 52 and supplying water, the excess interface The rinse time of the activator or the washing time of the residual sample can be shortened. Further, by forming a single space extending over the plurality of liquid storage members 52, the pressure loss of pure water supplied into the plurality of liquid storage members 52 is reduced, and each liquid storage member 52 is formed. The pressure loss becomes substantially equal between them. Therefore, the inside of the plurality of liquid reservoir members 52 and the outside of the plurality of needles 53 can be washed by applying substantially equal pressure.
図 1に示すように、 すすぎ洗浄後のヘッド 5 1は、 X Y 2軸搬送機構 7 5によって乾燥部 7 3に搬送される。  As shown in FIG. 1, the head 51 after rinsing is transported to the drying unit 73 by the XY two-axis transport mechanism 75.
乾燥部 7 3の乾燥槽の中で、 前記図 6における純水供給管 1 0 8と同様 な配置構成を有する真空吸引管 (図示せず) がヘッド 5 1に接続され、 乾 燥槽につながっているこの真空吸引管と洗浄液等供給用空間 5 8とが連通 する。 この状態で、 洗浄液等供給用空間 5 8を真空吸引し、 液溜め部材 5 2空間内に残る水分等を吸引除去する。  In the drying tank of the drying section 73, a vacuum suction pipe (not shown) having the same arrangement as the pure water supply pipe 108 in FIG. 6 is connected to the head 51, and is connected to the drying tank. This vacuum suction tube communicates with a space 58 for supplying a cleaning liquid or the like. In this state, the space 58 for supplying the cleaning liquid or the like is suctioned under vacuum, and the water remaining in the space of the liquid storage member 52 is sucked and removed.
なお、 余剰の界面活性剤の除去が、 十分でないときは、 必要に応じて、 この乾燥部での水分の真空吸引の後に、 へッド 5 1を再度、 前記超音波洗 浄部 7 1へと、 さらにすすぎ洗浄部 7 2 b、 乾燥部 7 3へと送り、 超音波 洗浄部 7 1およびすすぎ洗浄部 7 2 bでの洗浄および真空吸引の工程を複 数回繰り返すことができる。  If the surplus surfactant is not sufficiently removed, if necessary, the head 51 is returned to the ultrasonic cleaning section 71 again after vacuum suction of moisture in the drying section. Then, it is sent to the rinsing section 72b and the drying section 73, and the steps of cleaning and vacuum suction in the ultrasonic cleaning section 71 and the rinsing section 72b can be repeated a plurality of times.
その後、 この乾燥部 7 3では、 液溜め部材 5 2の内側及び外側、 及ぴニ 一ドル 5 3の外側を、 例えば乾燥圧縮エアー、 真空吸引等を用いて十分に 乾燥させる。  Thereafter, in the drying section 73, the inside and outside of the liquid storage member 52 and the outside of the needle 53 are sufficiently dried using, for example, dry compressed air, vacuum suction, or the like.
なお、 使用される界面活性剤の汚れ性という面から考えれば、 スポット 形成後のヘッド 5 1を、 界面活性剤溶液槽へと浸潰させる前に、 先に、 超 音波洗浄部 7 1ないしすすぎ洗浄部 7 2 bで一旦水洗し、 大方の残存試料 を除去するという手法も考えられるが、 このようにして、 一旦、 液溜め部 材 5 2内部に、 水が入った状態となると、 その後に、 上記したような操作 にて、 液溜め部材 5 2内部に界面活性剤溶液を送り込もうとしても、 存在 する水によってこれが阻害され、 結局、 十分な量ないし濃度の界面活性剤 を液溜め部材 5 2内部等と接触させることが困難となる虞れがあるので、 上記したように、 先に界面活性剤を供給する手法を採ることが望ましい。 その後、 図 1及び図 2に示すように、 乾燥後のへッド 5 1は、 X Y 2軸 搬送機構 7 5によって溶液貯留部 7 4に搬送される。 溶液貯留部 7 4は、 溶液を貯える複数枚の溶液保持プレートとしてのタイタープレート 1 2 1 …が収納されるカセット 1 2 2と、 このカセット 1 2 2からタイタープレ ート 1 2 1を取り出し、 ロード位置 1 3 2に搬送するプレート搬送機構 1 2 3とを備える。 この溶液貯留部 7 4では、 洗浄後のヘッド 5 1に新しい 生体試料の溶液を充填する。 溶液にへッド 5 1を漬けて溶液を吸引する動 作はロードと呼ばれる。 From the viewpoint of the contamination of the surfactant to be used, before the head 51 after forming the spot is immersed in the surfactant solution tank, first, the ultrasonic cleaning unit 71 or the rinsing is performed. A method of once washing with water in the washing section 72b to remove most of the remaining sample is also conceivable.However, once water enters the inside of the liquid storage member 52 in this way, it is thereafter The operation as described above Attempts to feed the surfactant solution into the inside of the liquid storage member 52 will be hindered by the existing water, and eventually a sufficient amount or concentration of the surfactant will come into contact with the inside of the liquid storage member 52, etc. Since it may be difficult to cause the surfactant to act, it is desirable to adopt a method of first supplying the surfactant as described above. Thereafter, as shown in FIGS. 1 and 2, the dried head 51 is transferred to the solution storage section 74 by the XY two-axis transfer mechanism 75. The solution storage unit 74 takes out a cassette 122 containing a plurality of titer plates 1 2 1… as a solution holding plate for storing a solution, and takes out the titer plate 121 from the cassette 122 and loads it. And a plate transport mechanism 1 2 3 for transporting to a position 1 32. In the solution storage section 74, the head 51 after washing is filled with a new biological sample solution. The operation of immersing the head 51 in the solution and sucking the solution is called loading.
各タイタープレート 1 2 1には複数の (例えば 3 8 4個の) 凹部が配列 され、 この凹部に生体試料の溶液が溜められている。 例えばヘッドが 4 8 本の液溜め部材を有するとすると、 一枚のタイタープレートで 8回ロード することができる。 複数の凹部には同種類の溶液が充填される場合もある し、 異種の溶液が充填される場合もある。  A plurality of (for example, 384) recesses are arranged in each titer plate 121, and the solution of the biological sample is stored in these recesses. For example, if the head has 48 reservoirs, it can be loaded eight times with one titer plate. The plurality of recesses may be filled with the same type of solution, or may be filled with different types of solutions.
複数枚 (例えば 1 0枚) のタイタープレート 1 2 1…は、 Z軸方向 (す なわち上下方向) に均等間隔を開けてカセット 1 2 2に収納されている。 カセット 1 2 2は洗浄台 9 6の上下に 2組設けられ、 この装置では合計 2 0枚のタイタープレート 1 2 1を収納している。 カセット 1 2 2の搬送機 構 1 2 3側にはタイタープレート 1 2 1を出し入れするための開口が形成 されている。 また、 カセット 1 2 2の上面には人手でつかむための把手 1 2 5が設けられる。  A plurality (for example, 10) of titer plates 1 2 1... Are stored in the cassette 1 2 at equal intervals in the Z-axis direction (ie, in the vertical direction). Two sets of cassettes 122 are provided above and below the washing table 96, and this device stores a total of 20 titer plates 121. An opening for taking in and out the titer plate 121 is formed on the side of the transport mechanism 123 of the cassette 122. Further, a handle 125 for grasping by hand is provided on the upper surface of the cassette 122.
カセット 1 2 2は装置にスライド可能に取り付けられたカセット支持台 1 2 4上に載置される。 このカセット支持台 1 2 4を人手で引き出し、 力 セット支持台 1 2 4の上にカセット 1 2 2を載せ、 カセット支持台 1 2 4 を人手で再び元の位置に戻すことで、 カセット 1 2 2が装置に組み込まれ る。 The cassettes 122 are mounted on a cassette support 124 that is slidably mounted on the apparatus. Pull out the cassette support 1 2 4 by hand and press The cassette 1 2 2 is mounted on the set support 1 2 4, and the cassette 1 2 4 is manually returned to the original position, whereby the cassette 1 2 2 is incorporated into the apparatus.
プレート搬送機構 1 2 3は、 Z軸駆動機構 1 2 3 Zと Y軸駆動機構 1 2 3 Yと X軸駆動機構 1 2 3 Xとから構成される。 Z軸駆動機構 1 2 3 Zは、 送りねじ及び電動モータを用いてスライダを移動させる上述の電動ァクチ ユエータと同じ構成を有する。 Z軸駆動機構 1 2 3 Zは、 上端のタイター プレート 1 2 1と下端のタイタープレート 1 2 1との間でタイタープレー ト 1 2 1を支持する支持板 1 2 6を上下動させる。  The plate transport mechanism 123 includes a Z-axis drive mechanism 123, a Y-axis drive mechanism 123, and an X-axis drive mechanism 123X. The Z-axis drive mechanism 123 has the same configuration as the above-described electric actuator that moves the slider using a feed screw and an electric motor. The Z-axis drive mechanism 1 2 3 Z moves up and down the support plate 1 26 supporting the titer plate 121 between the upper end titer plate 121 and the lower end titer plate 121.
Z軸駆動機構 1 2 3 Zのテーブル 1 2 7には X軸移動機構 1 2 3 Xが取 り付けられる。 この X軸移動機構 1 2 3 Xは、 所謂ロッドレスシリンダか らなる。ロッドレスシリンダは、 X軸方向に伸長する軌道レール 1 2 8と、 該軌道レール 1 2 8をスライ ド可能なテーブル 1 2 9とを備える。  The Z-axis drive mechanism 1 2 3 X is attached to the Z-axis drive mechanism 1 2 3 Z table 1 2 7. This X-axis moving mechanism 123 is composed of a so-called rodless cylinder. The rodless cylinder includes a track rail 128 extending in the X-axis direction, and a table 127 capable of sliding the track rail 128.
X軸移動機構 1 2 3 Xのテーブル 1 2 9には Y軸移動機構 1 2 3 Yが取 り付けられる。 この Y軸移動機構 1 2 3 Yも、 所謂ロッ ドレスシリンダか らなり、 テーブル 1 3 0を Y軸方向に移動させると共にテーブル 1 3 0を Y軸方向の 2つの位置で位置決めする。  X-axis moving mechanism 1 2 3 Y-axis moving mechanism 1 2 3 Y is attached to X table 1 2 9. The Y-axis moving mechanism 123 Y also comprises a so-called rodless cylinder, which moves the table 130 in the Y-axis direction and positions the table 130 at two positions in the Y-axis direction.
タイタープレート 1 2 1がロード位置 1 3 2まで搬送された後、 洗浄 · 乾燥後のへッド 5 1も 2次元搬送機構 7 5によってロード位置まで搬送さ れる。 このロード位置 1 3 2では、 生体試料の溶液に液溜め部材 5 2を漬 けて溶液が吸引される。  After the titer plate 12 1 has been transported to the loading position 13 2, the washed and dried head 51 is also transported to the loading position by the two-dimensional transport mechanism 75. At the loading position 132, the solution is sucked by immersing the reservoir member 52 in the solution of the biological sample.
溶液の吸引方法について説明する。 まず液溜め部材 5 2をタイタープレ ート 1 2 1内の凹部に差込み、 液溜め部材 5 2の先端を溶液に浸ける。 次 に液溜め部材 5 2の位置を固定したままニードル 5 3を上昇させると、 二 一ドル 5 3の上昇に合わせて溶液が引き上げられ、 液溜め部材 5 2内に溶 液が充填される。 この状態から液溜め部材 5 2及びニードル 5 3を引き上 げると、 液溜め部材に充填された溶液がそのまま保持される。 The method for sucking the solution will be described. First, the liquid reservoir member 52 is inserted into the concave portion in the titer plate 121, and the tip of the liquid reservoir member 52 is immersed in the solution. Next, when the needle 53 is raised with the position of the liquid reservoir member 52 fixed, the solution is pulled up in accordance with the rise of the dollar 53, and the liquid is filled in the liquid reservoir member 52. From this state, pull up the liquid storage member 52 and needle 53 Then, the solution filled in the liquid storage member is held as it is.
洗浄台 9 6上には、 へッド置場 1 3 5が設けられる。 ヘッド 5 1は最初 にこのへッド置場 1 3 5におかれる。 洗浄領域の X Y 2軸搬送機構 7 5が へッド置場 1 3 5に置かれた、 ヘッド 5 1を取りに行くことから装置の動 作が始まる。  On the washing table 96, a head storage space 135 is provided. Head 51 is first placed in this headroom 1 35. The operation of the apparatus starts when the XY two-axis transport mechanism 75 in the cleaning area is placed in the head storage space 135 to pick up the head 51.
次に、 マイクロアレイを作製する手順に則して、 本実施形態のマイクロ アレイ作製装置の全体動作について説明する。 なお、 以下の工程では、 ス タンピング領域の X Y 2軸搬送機構 6及び Z軸駆動機構 2 3、 及ぴ洗浄ェ リアの X Y 2軸搬送機構 7 5及び Z軸駆動機構 9 5を適宜動作させること により、 ヘッド 5 1を所定の位置に順次位置決めする。 このような制御は 不図示の制御装置により実行される。  Next, the overall operation of the microarray manufacturing apparatus of the present embodiment will be described according to the procedure for manufacturing a microarray. In the following steps, the XY two-axis transport mechanism 6 and Z-axis drive mechanism 23 in the stamping area, and the XY two-axis transport mechanism 75 and Z-axis drive mechanism 95 in the cleaning area are appropriately operated. , The head 51 is sequentially positioned at a predetermined position. Such control is performed by a control device (not shown).
まず、 準備段階としてスタンビング領域に複数の基板 3…を配列し、 真 空装置を作動させて基板 3…を吸引 ·固定する。 テスト台 5には試験的に マイクロアレイを形成するための基板あるいはダミ一基板を固定する。 一 方、 洗浄領域の溶液貯留部 7 4のカセット 1 2 2内に複数枚のタイタープ レート 1 2 1…を収納する。 タイタープレート 1 2 1…の各凹部には例え ば複数種の D N A断片の溶液が入れられる。  First, as a preparation stage, a plurality of substrates 3 are arranged in the stamping area, and the vacuum device is operated to suction and fix the substrates 3. On the test stand 5, a substrate for forming a microarray or a dummy substrate is fixed on a test basis. On the other hand, a plurality of titer plates 1 2 1... Are stored in the cassette 1 2 2 of the solution storage section 74 in the washing area. For example, solutions of plural kinds of DNA fragments are put into each recess of the titer plate 1 2 1.
次に、 洗浄領域の X Y 2軸搬送機構 7 5がへッド置場 1 3 5に置かれて いるヘッド 5 1を取りに行く。 ここでは、 一対のクランプ 1 0 2 , 1 0 2 の内、 一方のクランプ 1 0 2のみがヘッド 5 1を把持する。  Next, the XY two-axis transport mechanism 75 in the cleaning area goes to pick up the head 51 placed in the head storage space 135. Here, of the pair of clamps 102 and 102, only one clamp 102 holds the head 51.
次に、 X Y 2軸搬送機構 7 5は把持したへッド 5 1をロード位置 1 3 2 に搬送する。 ここでは、 液溜め部材 5 2内に溶液を吸引するロード工程が 行われる。 プレート搬送機構 1 2 3は、 へッド 5 1がロード位置 1 3 2に 搬送される前に、 必要な溶液が入れられたタイタープレート 1 2 1をロー ド位置 1 3 2に搬送する。 X Y 2軸搬送機構 7 5がヘッド 5 1をロード位 置 1 3 2まで搬送した後、 洗浄領域の Z軸駆動機構 1 2 3 Zは、 液溜め部 材 5 2が溶液を吸引するように液溜め部材 5 2及びニードル 5 3を昇降す る。 Next, the XY two-axis transfer mechanism 75 transfers the gripped head 51 to the load position 13 2. Here, a loading step of sucking the solution into the liquid storage member 52 is performed. The plate transport mechanism 123 transports the titer plate 121 containing the required solution to the load position 132 before the head 51 is transported to the load position 132. After the XY 2-axis transport mechanism 75 transports the head 51 to the load position 1 32, the Z-axis drive mechanism 1 2 3 Z in the cleaning area The liquid storage member 52 and the needle 53 are raised and lowered so that the material 52 sucks the solution.
次に、 洗浄領域の X Y 2軸搬送機構 7 5は、 溶液を保持したへッド 5 1 を受け渡し位置 1 0 4まで搬送する。  Next, the XY two-axis transfer mechanism 75 in the cleaning area transfers the head 51 holding the solution to the transfer position 104.
次に、 スタンピング領域の X Y 2軸搬送機構 6は、 空のチヤック部 4 5 を受け渡し位置 1 0 4まで搬送する。 そして、 スタンビング領域の Z 1軸 駆動機構がチャック部 4 5を降下し、 チャック部 4 5で溶液を保持してい るヘッドを把持する。 これにより、 洗浄領域の X Y 2軸搬送機構 7 5から スタンピング領域の X Y 2軸搬送機構 6へへッドが受け渡される。  Next, the XY two-axis transport mechanism 6 in the stamping area transports the empty check portion 45 to the transfer position 104. Then, the Z1-axis drive mechanism in the stamping area moves down the chuck section 45, and the chuck section 45 holds the head holding the solution. Thus, the head is transferred from the XY two-axis transport mechanism 75 in the cleaning area to the XY two-axis transport mechanism 6 in the stamping area.
次に、 スタンビング領域の X Y 2軸搬送機構 6は、 ヘッド 5 1をテスト 台 5に搬送する。 このテスト台 5では、 ニードル 5 3に付着する溶液の量 を調整するテスト工程が行われる。  Next, the XY two-axis transport mechanism 6 in the stamping area transports the head 51 to the test table 5. In the test table 5, a test process for adjusting the amount of the solution adhering to the needle 53 is performed.
テスト工程が終了した後、 基板 3にスポットを形成するスタンピングェ 程が行われる。 このスタンビング工程では、 まずスタンビング領域の X Y 2軸搬送機構 6がへッド 5 1を基板 3上のスポット形成位置に移動する。 そして、 スタンビング領域の Z 1軸駆動機構 2 3 Z 1がへッド 5 1を降下 し、 基板 3の僅か上方にヘッド 5 1を位置させる。 次に、 スタンピング領 域の Z 2軸駆動機構 2 3 Z 2が液溜め部材 5 2から-一ドル 5 3を突出さ せ、 基板 3にニードル 5 3を打ち付ける。  After the test process is completed, a stamping process for forming a spot on the substrate 3 is performed. In this stamping step, first, the XY biaxial transport mechanism 6 in the stamping area moves the head 51 to the spot forming position on the substrate 3. Then, the Z1-axis drive mechanism 23 Z1 in the stamping area descends the head 51 and positions the head 51 slightly above the substrate 3. Next, the Z 2 axis drive mechanism 2 3 Z 2 in the stamping area protrudes the dollar 53 from the liquid reservoir member 52, and strikes the needle 53 on the substrate 3.
所定の基板にスポットを形成した後、 スタンビング領域の X Y 2軸搬送 機構はへッドを次の基板に移動する。 そして再び上述のスタンビング工程 を繰り返す。  After forming a spot on a predetermined substrate, the XY biaxial transport mechanism in the stamping area moves the head to the next substrate. Then, the above-described stamping step is repeated again.
スタンビング領域の X Y 2軸搬送機構 6がスタンビング工程を繰り返し ている間、 洗浄領域の X Y 2軸搬送機構 7 5は、 ヘッド置場 1 3 5に置か れた残りのヘッド 5 1を把持し、 ロード位置 1 3 2に搬送する。 このロー ド位置 1 3 2では液溜め部材 5 2内に溶液を吸引するロード工程が行われ る。 そして、 洗浄領域の X Y 2軸搬送機構 7 5は、 溶液を保持したヘッド 5 1を控え位置 1 0 5まで搬送する。 このとき受け渡し位置 1 0 4にはへ ッドを把持していない空のクランプ 1 0 2が位置する。 While the XY two-axis transfer mechanism 6 in the stamping area repeats the stamping process, the XY two-axis transfer mechanism 75 in the cleaning area grips the remaining head 51 placed in the head storage area 135, It is transported to load position 1 32. At this loading position 1 32, a loading process for sucking the solution into the liquid storage member 52 is performed. You. Then, the XY two-axis transport mechanism 75 in the cleaning area transports the head 51 holding the solution to the standby position 105. At this time, an empty clamp 102 that does not grip the head is located at the transfer position 104.
作業台 4上の全ての基板 3…にスポットを形成した後、 スタンピング領 域の Χ Υ 2軸搬送機構 6はスポットを形成した後のへッド 5 1を受け渡し 位置 1 0 4に搬送する。 そして、 スタンピング領域の X Υ 2軸搬送機構 6 と洗浄領域の Χ Υ 2軸搬送機構 7 5との間で把持しているヘッド 5 1, 5 1を互いに受け渡す。  After spots are formed on all the substrates 3 on the work table 4, the biaxial transport mechanism 6 in the stamping area transfers the heads 51 after forming the spots and transports them to the transfer position 104. Then, the heads 51 and 51 gripped between the X X two-axis transfer mechanism 6 in the stamping area and the ΥΧ two-axis transfer mechanism 75 in the cleaning area are transferred to each other.
受け渡し工程を終えたスタンビング領域の Χ Υ 2軸搬送機構 6は、 再び へッド 5 1を基板上に搬送する。 そして、 上記テスト工程及びスタンピン グ工程を実行する。  The biaxial transport mechanism 6 in the stamping area after the transfer process transports the head 51 again onto the substrate. Then, the test step and the stamping step are performed.
受け渡し工程を終えた洗浄領域の Χ Υ 2軸搬送機構 7 5は、 スタンピン グ領域の X Υ 2軸搬送機構 6がテスト工程及びスタンピング工程を実行す るのと同時に、 洗浄工程を実行する。 この洗浄工程では、 まずスポットを 形成した後のへッド 5 1を前記したようにまず、 界面活性剤溶液処理部 7 The biaxial transport mechanism 75 in the cleaning area after the transfer step executes the cleaning step at the same time that the X-biaxial transport mechanism 6 in the stamping area executes the test step and the stamping step. In this cleaning step, first, the head 51 after forming the spot is first treated with the surfactant solution treating section 7 as described above.
2 aに搬送し、 液溜め部材 5 2の内面および外面、 並びにニードル 5 3の 外面を界面活性剤で被覆処理する。 次いで、 へッド 5 1を超音波洗浄部 7 1に搬送し、 液溜め部材 5 2の外側を超音波洗浄する。 次いで、 ヘッド 5 1をすすぎ洗浄部 7 2に搬送し、 液溜め部材 5 2の内側、 外側及びニード ル 5 3をすすぎ洗浄する。 その後へッド 5 1を乾燥部 7 3に搬送し、 液溜 め部材 5 2及び-一ドル 5 3を乾燥する。 2a, and the inner and outer surfaces of the liquid reservoir member 52 and the outer surface of the needle 53 are coated with a surfactant. Next, the head 51 is conveyed to the ultrasonic cleaning section 71, and the outside of the liquid storage member 52 is ultrasonically cleaned. Next, the head 51 is conveyed to the rinsing section 72, and the inside, outside, and the needle 53 of the liquid storage member 52 are rinsed. Thereafter, the head 51 is transported to the drying section 73, and the liquid storage member 52 and the dollar 53 are dried.
洗浄領域の X Y 2軸搬送機構 7 5は洗浄後のへッド 5 1をロード位置 1 XY 2-axis transport mechanism in the washing area 7 5 Loads the head 5 1 after washing 1
3 2に再ぴ搬送する。 このロード位置では、 洗浄後のヘッド 5 1に新しい 溶液を吸引させるロードエ程が再び行われる。 3 Transport to 2 again. At this loading position, the loading process for sucking a new solution into the head 51 after cleaning is performed again.
これ以降、 スタンビング領域の XY 2軸搬送機構 6は、 上記ヘッド受け 渡し工程、 上記テスト工程、 及び上記スタンビング工程を順次実行する。 一方、 洗浄領域の XY 2軸搬送機構 7 5は、 上記ヘッド受け渡し工程、 上 記洗浄工程、 及び口一ドエ程を順次実行する。 Thereafter, the XY two-axis transport mechanism 6 in the stamping area sequentially executes the head transfer step, the test step, and the stamping step. On the other hand, the XY two-axis transport mechanism 75 in the cleaning area sequentially executes the above-described head transfer step, the above-described cleaning step, and the opening and closing process.
なお、 上記実施形態では、 保持手段 (ヘッド) として、 ニードルと液溜 め部材を具備したものを示したが、 ニードルのみを有する保持手段も適用 可能である。 実施例  In the above embodiment, the holding means (head) provided with a needle and a liquid storage member has been described, but a holding means having only a needle is also applicable. Example
次に本発明を実施例に基づき具体的に説明する。  Next, the present invention will be specifically described based on examples.
実施例 1 Example 1
図 1に示すような構成を有する装置において、 1 6本のスポッ ト配置具 (液溜め部材 5 2およびユードル 5 3) を有するヘッドを用い、 第 1試料 のスタンビングの後、 界面活性剤溶液を用いた洗浄操作を行い、 引きつづ き第 2試料のスタンビングを行い、 第 2試料のスタンビングスポットにお ける第 1試料のキャリーオーバー率を測定した。  In the apparatus having the configuration shown in Fig. 1, a head having sixteen spot arrangement tools (liquid reservoir member 52 and Udle 53) was used, and after the first sample was stamped, the surfactant solution was used. Then, the second sample was stamped, and the carry-over rate of the first sample at the stamping spot of the second sample was measured.
なお、 用いたニードルの先端直径は 7 5 μ πιであった。 第 1試料として は、 3 X S S Cバッファ中に、 (1 ) 蛍光色素 (ローダミン) を 1 0 p m o 1 Lの割合で添加したもの、 (2) 蛍光標識されたオリゴ DNA ( 2 1 m e r ) を l O p m o \ / ιχ Lの割合で添加したもの、 ( 3 ) 蛍光標識され たオリゴ DNA (4 5 m e r ) を Ι Ο ρ πι ο ΐ Ζμ Lの割合で添加したも の、 および (4) 蛍光標識された c DNA (4 0 O m e r ) を l p m o l / ix Lの割合で添加したものを用い、 また第 2試料としては 3 X S S Cバ ッファのみを用いた。 そして、 キャリーオーバー率は、 第 1試料の各スポ ットの蛍光強度と、 第 2試料 (キャリーオーバーが全くなければ蛍光しな い) の各スポッ トの蛍光強度とを測ることにより算出した。  The tip diameter of the needle used was 75 μπι. As a first sample, (1) a fluorescent dye (rhodamine) added at a rate of 10 pmo 1 L in 3 XSSC buffer, and (2) a fluorescently labeled oligo DNA (21 mer) pmo \ / ιχ L, (3) Fluorescently labeled oligo DNA (45mer) added at 割 合 ρ ρ πιο ΐ Ζ μL, and (4) Fluorescently labeled CDNA (40 O mer) was added at a ratio of lpmol / ixL, and only a 3XSSC buffer was used as a second sample. The carry-over rate was calculated by measuring the fluorescence intensity of each spot of the first sample and the fluorescence intensity of each spot of the second sample (there was no fluorescence if there was no carry-over).
また、 界面活性剤としては、 4 0容量%濃度の界面活性剤 (Tw e e n 2 0) を用い、 界面活性剤使用後に超純水で約 3 0秒の洗浄を行った。 なお、 比較対照のために、 界面活性剤を用いず、 超純水で約 30秒の洗 浄のみを行ったものについても同様にキャリーオーバー率を測定した。 得られた結果を以下に示す。 As the surfactant, a surfactant (Tween 20) having a concentration of 40% by volume was used, and after using the surfactant, washing was performed with ultrapure water for about 30 seconds. For comparison, the carry-over rate was similarly measured for a sample that had been washed only with ultrapure water for about 30 seconds without using a surfactant. The results obtained are shown below.
Figure imgf000039_0001
Figure imgf000039_0001
このように、 界面活性剤溶液を使用した洗浄を行った場合、 キャリーォ 一バー率は大幅に低減された。  As described above, the carrier-to-bar ratio was significantly reduced when the washing was performed using the surfactant solution.
また、 別途、 このような界面活' (·生剤を使用した洗浄を行った後に、 上記 したようなオリゴ DNA (21 m e r )、 オリゴ DNA (45 m e r ) およ ぴ cDNA (40 Ome r ) をはじめとする各種の生体試料を含有する溶 液のスタンビングを行い、 得られた各スポット中に含まれる生体試料の異 常の有無を調べたが、 いずれにおいても生体試料の分解、 変性等の異状は 見られなかった。 実施例 2  Separately, after washing using such a surfactant (biocide), the oligo DNA (21 mer), oligo DNA (45 mer) and cDNA (40 Omer) as described above The solution containing various biological samples was stamped, and the presence or absence of an abnormality in the biological sample contained in each of the obtained spots was examined. No abnormality was found.
16本のスポット配置具 (液溜め部材 52およびニードル 53) を有す るヘッドを用いて、 第 1試料のスタンビングの後、 以下に示すような各種 濃度の界面活性剤溶液を用いて洗浄操作を行い、 引きつづき第 2試料のス タンピングを行い、 第 2試料のスタンビングスポットにおける第 1試料の キャリーオーバー率を測定し、 界面活性剤濃度の違いによる洗浄効果の差 異を調べた。なお、この実施例 2における界面活性剤溶液での洗浄操作は、 実施例 1におけるものよりも処理時間およぴ使用液量を増加させた条件下 にて行なわれた。 Using a head with 16 spot placement tools (liquid reservoir 52 and needle 53), after the first sample was stamped, washing operation was performed using surfactant solutions of various concentrations as shown below. Next, stamping of the second sample was performed, and the carry-over rate of the first sample at the stamping spot of the second sample was measured, and the difference in the cleaning effect due to the difference in the surfactant concentration was measured. I investigated the difference. The washing operation with the surfactant solution in Example 2 was performed under the condition that the treatment time and the amount of liquid used were increased compared to those in Example 1.
また、 用いたニードルの先端直径は 75 μ mで、 第 1試料としては、 3 X S S Cバッファ中に、 蛍光色素 (ローダミン) を l O pmo l/j Lの 割合で添加したものを用い、 第 2試料としては 3 X S S Cバッファのみを 用いた。 キャリーオーバー率は、 実施例 1におけると同様に、 第 1試料の 各スポットの蛍光強度と、 第 2試料 (キャリーオーバーが全くなければ蛍 光しない) の各スポットの蛍光強度とを測ることにより算出した。  The tip diameter of the needle used was 75 μm. As the first sample, a fluorescent dye (rhodamine) was added in 3 XSSC buffer at a ratio of l Opmol / jL, and the second sample was used. Only 3 XSSC buffer was used as a sample. The carryover rate was calculated by measuring the fluorescence intensity of each spot of the first sample and the fluorescence intensity of each spot of the second sample (no fluorescence if there was no carryover), as in Example 1. did.
また、 界面活性剤としては、 Twe e n 20を用い、 その濃度を 20、 30、 40、 50、 容量%としたものをそれぞれ準備した。 そして、 界面 活性剤使用後に超純水で約 30秒の洗浄を行った。 得られた結果を以下に 示す。  Tween 20 was used as the surfactant, and its concentration was set to 20, 30, 40, 50, and% by volume, respectively. Then, after using the surfactant, cleaning was performed for about 30 seconds with ultrapure water. The results obtained are shown below.
表 2  Table 2
Figure imgf000040_0001
Figure imgf000040_0001
実施例 3 Example 3
図 1に示すような構成を有する装置において、 1 6本のスポット配置具 (液溜め部材 52および-一ドル 53) を有するヘッドを用い、 連続して 1 00スポットの試料のスタンビングを行った。 なお、 試料としては、 蛍 光色素 (ローダミン) 溶液を用い、 ニードルの先端直径は 75 μπιであつ た。 In a device having a configuration as shown in FIG. 1, a sample having 100 spots was continuously stamped using a head having 16 spot arranging devices (a liquid reservoir member 52 and a dollar 53). . A fluorescent dye (rhodamine) solution was used as the sample, and the needle tip diameter was 75 μπι. Was.
各スポットのスタンビング操作の後には、スポット配置具は、 4 0容量% 濃度の界面活性剤 (T w e e n 2 0 ) 溶液の被覆おょぴその後の水でのリ ンスという処理を行われた。 なお、 比較対照のため、 界面活性剤を使用せ ず同量の水のみにて洗浄操作を行つたものについても同様に測定した。  After the stamping operation of each spot, the spot locator was coated with a 40% by volume surfactant (Tween20) solution, followed by rinsing with water. For comparison, the same measurement was carried out for the case where the washing operation was performed using only the same amount of water without using a surfactant.
1 0 0スポットのスタンビングにおいて、 全スポット中の最大直径のも のと最小直径のものとの比率、 全スポット中の最大量と最小量との比率、 また、 比較対照における平均スポット量と実施例における平均スポット量 との比を求めた。  When stamping 100 spots, the ratio of the largest diameter to the smallest diameter in all spots, the ratio of the largest to the smallest in all spots, and the average spot volume for comparison The ratio to the average spot amount in the examples was determined.
得られた結果を以下に示す。 The results obtained are shown below.
表 3  Table 3
Figure imgf000041_0001
Figure imgf000041_0001
表 1に示すように、 界面活性剤による被覆処理を行うことにより、 液溜 め部材 5 2およびニードル 5 3の表面状態が安定 (濡れ性が安定) し、 ス ポットのばらつきが少なくなり、 またスポット量が増加した。 実施例 4 図 1に示すような構成を有する装置において、 1 6本のスポッ ト配置具 (液溜め部材 5 2およびニードル 5 3 ) を有するへッドを用い、 1 0 0回 の試料のスタンピングを行つた。 なお、 試料としては、 3 X S S Cバッフ ァ一中に蛍光色素 (ローダミン) に 1 0 p m o 1 /V L添加したものを用 い、 各スポッ トの蛍光強度を測ることにより、 各スポッ トの相対的液量を 求めた。 As shown in Table 1, the surface treatment of the liquid storage member 52 and the needle 53 stabilizes (stable wettability), reduces spot variation, and reduces Spot volume increased. Example 4 In an apparatus having a configuration as shown in FIG. 1, stamping of the sample was performed 100 times using a head having 16 spot arranging devices (a liquid reservoir member 52 and a needle 53). . The sample was prepared by adding 10 pmo1 / VL to a fluorescent dye (rhodamine) in 3 XSSC buffer, and measuring the fluorescence intensity of each spot. The amount was determined.
各スポットのスタンビング操作の後には、スポット配置具は、 4 0容量% 濃度の界面活性剤 (T w e e n 2 0 ) 溶液およびその後の超純水での洗浄 という処理を行われた。 なお、 比較対照のため、 界面活性剤を使用せず同 量の水のみにて洗浄操作を行ったものについても同様に測定した。  After the stamping operation of each spot, the spot placement device was subjected to a treatment of a surfactant (Tween20) solution at a concentration of 40% by volume and a subsequent washing with ultrapure water. For comparison, the same measurement was carried out for the case where the washing operation was performed using only the same amount of water without using a surfactant.
その結果、 界面活性剤による被覆を行った場合には、 各スポッ トのばら つき (標準偏差) は、 0 . 0 7 6であり、 一方、 水のみで洗浄したものに おいては、 0 . 1 1 7であり、 また界面活性剤による被覆を行った場合と 水のみで洗浄した場合における蛍光強度比は、 水のみで洗浄した場合を 1 とした場合に、 界面活性剤による被覆を行った場合は 1 . 8であった。 こ れらの点から、 界面活性剤を用いた洗浄操作を行うことにより、 液溜め部 材 5 2およびニードル 5 3の表面状態が安定 (濡れ性が安定) し、 スポッ トのばらつきが少なくなり、 またスポット量が増加した。 実施例 5  As a result, when the coating was performed with the surfactant, the variation (standard deviation) of each spot was 0.076. On the other hand, when the spot was washed with water only, the spot variation was 0.076. The fluorescence intensity ratio between the case where the surface was coated with the surfactant and the case where the surface was washed with water alone was 1. The case was 1.8. From these points, by performing a washing operation using a surfactant, the surface condition of the liquid storage member 52 and the needle 53 becomes stable (stable wettability), and the dispersion of spots is reduced. The spot volume increased. Example 5
界面活性剤洗浄による濡れ性の変化を測定した。 円筒形の液溜め部材 5 2内面上での測定は困難であるため、 この液溜め部材 5 2と同じステンレ ス鋼製のプレートを、 同様の面粗度(R a =0. 1 # 6 0 0番研磨) とした ものを使用し、 界面活性剤 (T w e e n 2 0 ) 被覆前後の接触角を測定す ることで、濡れ性の変化を測定した。なお、 T w e e n 2 0溶液としては、 4 0容量%濃度のものを用い、 これをプレート上に塗布後、 実際のリンス 工程と同様となるように 3 0秒ほどの流水洗浄をおこなった後に、 試験を 行った。 The change in wettability due to surfactant washing was measured. Since it is difficult to measure on the inner surface of the cylindrical liquid storage member 52, the same stainless steel plate as the liquid storage member 52 is used for the same surface roughness (Ra = 0.1 # 60). The change in wettability was measured by measuring the contact angle before and after coating with a surfactant (Tween 20), using the sample that had been subjected to No. 0 polishing. A Tween 20 solution with a concentration of 40% by volume was used. After applying this solution on a plate, the actual rinse was performed. The test was performed after about 30 seconds of washing with running water in the same manner as in the process.
なお、 測定においては、 水滴量は 1 2 Lとし、 顕微鏡による断面観察 における任意の 3点の平均値として界面活性剤被覆前後による接触角を求 めた。  In the measurement, the amount of water droplets was set to 12 L, and the contact angle before and after the surfactant was coated was determined as the average value of any three points in cross-sectional observation using a microscope.
この結果、 界面活性剤被覆前においては、 接触角は 7 4 . 9 5 ° であつ たのに対し、被覆後においては 6 4 . 4 9 ° となり、その差が 1 0 . 4 6 ° と、 大きく濡れ性が変化した。 産業上の利用可能性  As a result, before the surfactant coating, the contact angle was 74.995 °, but after the coating, it was 64.49 °, and the difference was 10.46 °. The wettability changed greatly. Industrial applicability
本発明によれば、 基板上に複数種の生体試料含有溶液のスポットを、 ス ポット配置具を用いて複数形成するにおいて、 各スポットの形成間に行わ れるスポット配置具の洗浄が、 界面活性剤溶液を用いて行うものであるの で、 各試料溶液間のコンタミネーシヨンを有効に抑制することができ、 ま たスポット形成作業後に、 次のスポット形成に先立ち行われる洗浄操作を 確実かつ迅速なものとし、 マイクロアレイ作製の効率化を図ると共に品質 の高いマイクロアレイを提供することができる。  According to the present invention, in forming a plurality of spots of a plurality of types of biological sample-containing solutions on a substrate using a spot arranging device, the washing of the spot arranging device performed between the formation of the spots is performed using a surfactant. Since it is carried out using a solution, contamination between sample solutions can be effectively suppressed, and after a spot forming operation, a washing operation performed prior to the next spot formation can be performed reliably and promptly. It is possible to improve the efficiency of microarray production and provide a high-quality microarray.
また、 本発明によれば、 基板上に、 生体試料を含有する溶液のスポット を、 複数形成するマイクロアレイ製作方法において、 前記スポットを形成 するためのスポット配置具における前記溶液との接触面の少なくとも一部 を、 界面活性剤にて被覆し、 この状態で前記溶液を供給してスポットを形 成するものであるので、 各スポットの大きさおょぴ形状等を均一なものと してマイクロアレイを作製することができ、 また、 各試料溶液間のコンタ ミネーションも抑制することができる。  Further, according to the present invention, in the microarray manufacturing method for forming a plurality of spots of a solution containing a biological sample on a substrate, at least one of contact surfaces of the spot arranging tool for forming the spots with the solution is provided. The surface is coated with a surfactant, and the solution is supplied in this state to form spots. Therefore, the size and shape of each spot are made uniform to produce a microarray. In addition, contamination between sample solutions can be suppressed.
従って、 本発明によれば、 より優れた特性、 品質を有する D N Aマイク ロアレイを提供することができ、 例えば、 多彩な生物の遺伝子の発現や変 異、 多様性などを効率的に解析する上で大きく貢献できるものである。 Therefore, according to the present invention, a DNA microarray having more excellent properties and quality can be provided. It can greatly contribute to the efficient analysis of differences and diversity.

Claims

請求の範囲 The scope of the claims
1 . 基板上に複数種の生体試料含有溶液のスポットを、 スポット配置具 を用いて、 複数形成するマイクロアレイ製作方法であって、 各スポットの 形成間に行われるスポット配置具の洗浄が、 界面活性剤溶液を用いて行わ れることを特徴とするマイクロアレイ作製方法。 1. A method for manufacturing a microarray in which a plurality of spots of a biological sample-containing solution are formed on a substrate using a spot placement tool, wherein the washing of the spot placement tool performed between the formation of the spots is performed using a surfactant. A method for producing a microarray, which is performed using an agent solution.
2 . 前記スポット配置具の洗浄が、 スポット配置具への界面活性剤溶液 の供給、 水洗および乾燥という工程を含んで行われるものである請求項 1 に記載のマイクロアレイ作製方法。 2. The method for producing a microarray according to claim 1, wherein the washing of the spot disposition device is performed including the steps of supplying a surfactant solution to the spot disposition device, washing with water, and drying.
3 . 前記スポット配置具が、 ノズルと、 その内部に配されたノズル軸線 方向に往復動可能とされたスタンビングピンとを有してなるものであり、 このスポット配置具への界面活性剤溶液の供給が、 少なく ともこのノズル 先端部を界面活性剤溶液に接触させた状態で、 前記スタンピングピンを往 復動させることにより行われるものである請求項 2に記載のマイクロアレ ィ作製方法。 3. The spot disposition device has a nozzle and a stamping pin disposed inside the nozzle and capable of reciprocating in a nozzle axis direction. 3. The microarray manufacturing method according to claim 2, wherein the supply is performed by moving the stamping pin forward and backward with at least a tip of the nozzle being in contact with a surfactant solution.
4 . 前記界面活性剤溶液における界面活性剤濃度が、 5 %以上であるこ とを特徴とする請求項 2に記載のマイクロアレイ作製方法。 4. The method for producing a microarray according to claim 2, wherein the surfactant concentration in the surfactant solution is 5% or more.
5 . 前記水洗工程は、 順に超音波洗浄、 流水洗浄、 および物理的水分除 去からなる一連の操作を、 単回ないしは複数回繰り返して行うことにより なされるものである請求項 2〜4のいずれか 1つに記載のマイクロアレイ 作製方法。 5. The water washing step according to any one of claims 2 to 4, wherein a series of operations consisting of ultrasonic cleaning, running water cleaning, and physical moisture removal are sequentially performed once or more than once. The method for producing a microarray according to any one of the first to third aspects.
6 . 前記界面活性剤溶液に使用される界面活性剤が、 非イオン性界面活 性剤または両性界面活性剤であることを特徴とする請求項 1〜 5のいずれ か 1つに記載のマイクロアレイ作製方法。 6. The microarray fabrication according to any one of claims 1 to 5, wherein the surfactant used in the surfactant solution is a nonionic surfactant or an amphoteric surfactant. Method.
7 . 前記界面活性剤溶液に使用される界面活性剤が、 ポリオキシェチレ ン脂肪酸エステルであることを特徴とする請求項 1〜 5のいずれか 1つに 記載のマイクロアレイ作製方法。 7. The method for producing a microarray according to any one of claims 1 to 5, wherein the surfactant used in the surfactant solution is a polyoxyethylene fatty acid ester.
8 . 先のスポット形成時に用いられた生体試料含有溶液の、 後のスポッ ト中へのキャリーオーバー率が、 1 %以下となるものである請求項 1〜 7 のいずれか 1に記載のマイクロアレイ作製方法。 8. The microarray preparation according to any one of claims 1 to 7, wherein a carry-over rate of the solution containing the biological sample used in the formation of the spot in the subsequent spot is 1% or less. Method.
9 . 基板上に、 生体試料を含有する溶液のスポッ トを、 複数形成するマ イクロアレイ製作方法であって、 前記スポットを形成するためのスポット 配置具における前記溶液との接触面の少なくとも一部を、 界面活性剤にて 被覆し、 この状態で前記溶液を供給してスポットを形成することを特徴と するマイクロアレイ作製方法。 9. A microarray manufacturing method for forming a plurality of spots of a solution containing a biological sample on a substrate, wherein at least a part of a contact surface of the spot arranging tool for forming the spot with the solution is formed. A method for producing a microarray, comprising: coating with a surfactant; and supplying the solution in this state to form a spot.
1 0 . 前記界面活性剤による被覆は、 前記溶液を供給してスポットを形 成する毎に、 これに先立ち、 当該スポッ ト配置具の接触面に界面活性剤を 供給し、 水でリンスして過剰分を除去することによって行われるものであ ることを特徴とする請求項 9に記載のマイクロアレイ作製方法。 10. In the coating with the surfactant, each time the solution is supplied to form a spot, the surfactant is supplied to the contact surface of the spot placement tool and then rinsed with water. 10. The method for producing a microarray according to claim 9, wherein the method is performed by removing an excess.
1 1 . 前記界面活性剤の使用濃度が、 5 %以上である請求項 1 0に記載 のマイクロアレイ作製方法。 11. The method for producing a microarray according to claim 10, wherein the used concentration of the surfactant is 5% or more.
1 2 . 前記リンスは、 使用した界面活性剤の量に対し、 1 0 0〜 1 0 0 0容量倍の水を用いて行われるものであることを特徴とする請求項 1 0ま たは 1 1に記載のマイクロアレイ作製方法。 12. The method according to claim 10, wherein the rinsing is performed using 100 to 100 times the volume of water with respect to the amount of the surfactant used. 2. The method for producing a microarray according to 1.
1 3 . 前記界面活性剤による被覆は、 当該スポット配置具の接触面に界 面活性剤を塗布し、 固定化処理することで行われたものである請求項 9に 記載のマイクロアレイ作製方法。 13. The method for producing a microarray according to claim 9, wherein the coating with the surfactant is performed by applying a surfactant to a contact surface of the spot placement tool and performing an immobilization treatment.
1 4 . スポット配置具の界面活性剤による被覆部分の水に対する接触角 力 S、当該部位の顕微鏡による断面観察における任意の 3点の平均値として、 界面活性剤による洗浄処理前と比較して、 1 0 %以上低減されていること を特徵とする請求項 9〜 1 3のいずれか 1つに記載のマイクロアレイ作製 方法。 14 4. The contact angle force S of the spot-covered part with water on the part coated with the surfactant, and the average value of any three points in the cross-sectional observation of the part with a microscope, compared to before the cleaning treatment with the surfactant The method for producing a microarray according to any one of claims 9 to 13, wherein the microarray is reduced by 10% or more.
1 5 . 生体試料を含む溶液を保持し、 先端が基板に接触することで当該 溶液のスポットを基板上に配置するスポット配置具を、 1ないし複数個搭 載してなるマイクロアレイ作製用へッドであって、前記スポット配置具が、 前記生体試料との接触面の少なくとも一部を、 界面活性剤にて被覆されて いることを特徴とするマイクロアレイ作製用へッド。 15 5. A microarray fabrication head that holds one or more spot placement tools that hold a solution containing a biological sample and place the spot of the solution on the substrate when the tip contacts the substrate. A head for producing a microarray, wherein the spot placement tool has at least a part of a contact surface with the biological sample covered with a surfactant.
1 6 . 生体試料を含む溶液を貯える溶液貯留部と、 複数枚の基板を配列 し得る作業台と、 前記溶液貯留部から前記溶液を取り入れて保持し、 前記 基板上に溶液のスポットを形成するためのスポット配置具を備えた溶液保 持手段と、 前記保持手段の洗浄等が行われる洗浄等施工部と、 前記保持手 段を前記基板に対して近接 ·離間する方向に移動させ、 前記保持手段をし てスポットを形成せしめる移動手段と、 前記保持手段を前記溶液貯留部、 前記作業台及び前記洗浄等施工部を含む領域において搬送し且つ二次元座 標を与える搬送手段と、 を備え、 16. A solution storage section for storing a solution containing a biological sample, a worktable on which a plurality of substrates can be arranged, and taking and holding the solution from the solution storage section to form a spot of the solution on the substrate A solution holding means provided with a spot arranging device for cleaning, a cleaning application section for cleaning the holding means, etc .; and moving the holding means in a direction approaching / separating from the substrate. Moving means for forming a spot by means, and the holding means, Transport means for transporting in a region including the workbench and the cleaning and other construction unit and providing a two-dimensional coordinate,
前記スポット配置具における前記生体試料との接触面の少なくとも一部 が、 界面活性剤にて被覆されてなることを特徴とするマイクロアレイ作製  A microarray fabrication characterized in that at least a part of a contact surface of the spot placement tool with the biological sample is coated with a surfactant.
PCT/JP2004/006205 2003-04-30 2004-04-28 Method for producing microarray, and head and apparatus for producing microarray WO2004099788A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003124655A JP2004325422A (en) 2003-04-30 2003-04-30 Method, head, and apparatus for manufacturing microarray
JP2003124654A JP2004325421A (en) 2003-04-30 2003-04-30 Method for manufacturing microarray
JP2003-124655 2003-04-30
JP2003-124654 2003-04-30

Publications (1)

Publication Number Publication Date
WO2004099788A1 true WO2004099788A1 (en) 2004-11-18

Family

ID=33436406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006205 WO2004099788A1 (en) 2003-04-30 2004-04-28 Method for producing microarray, and head and apparatus for producing microarray

Country Status (1)

Country Link
WO (1) WO2004099788A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721157B2 (en) * 1987-08-07 1995-03-08 三愛石油株式会社 Cleaning agent for constant temperature bath
JP2001242184A (en) * 2000-02-29 2001-09-07 Shinya Watanabe Method for cleaning of dispensing needle for forming sample chip
JP2002323507A (en) * 2001-04-26 2002-11-08 Thk Co Ltd Micro-array manufacturing apparatus and method
JP2003505711A (en) * 1999-08-02 2003-02-12 モレキュラー・ダイナミックス・インコーポレイテッド Low volume chemical and biochemical reaction systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721157B2 (en) * 1987-08-07 1995-03-08 三愛石油株式会社 Cleaning agent for constant temperature bath
JP2003505711A (en) * 1999-08-02 2003-02-12 モレキュラー・ダイナミックス・インコーポレイテッド Low volume chemical and biochemical reaction systems
JP2001242184A (en) * 2000-02-29 2001-09-07 Shinya Watanabe Method for cleaning of dispensing needle for forming sample chip
JP2002323507A (en) * 2001-04-26 2002-11-08 Thk Co Ltd Micro-array manufacturing apparatus and method

Similar Documents

Publication Publication Date Title
KR100859393B1 (en) Microarrayer
JP6751382B2 (en) Automated system and method for preparing biological samples for testing
US6428752B1 (en) Cleaning deposit devices that form microarrays and the like
JP3593525B2 (en) Fine particle array manufacturing method and apparatus
KR100547524B1 (en) Micro array manufacturing device
US10792710B2 (en) Smearing member washing method and smear preparing apparatus
JP2005507998A (en) Robot system having a plurality of probes capable of position adjustment
CN1407605A (en) Device for eliminating stress by machining
JP2004325422A (en) Method, head, and apparatus for manufacturing microarray
JP4091340B2 (en) Substrate processing equipment
JP4365947B2 (en) Microarray production equipment
JP4610779B2 (en) Microarray manufacturing head and microarray manufacturing apparatus
JP2004325421A (en) Method for manufacturing microarray
WO2004099788A1 (en) Method for producing microarray, and head and apparatus for producing microarray
JP2002323507A (en) Micro-array manufacturing apparatus and method
JP2002323509A (en) Head for manufacturing micro-array, micro-array manufacturing apparatus using the head, micro-array manufacturing method and micro-array
CN114256102A (en) Unit for removing adhesive layer and method of using the same
JP2004503354A (en) Method and apparatus for cleaning and drying pins in a microarray spotting instrument
JP3705056B2 (en) Dispensing method
JP2001165942A (en) Dispensing method
WO2007116838A1 (en) Reaction container, analysis device, and analysis method
JP3705055B2 (en) Dispensing method
JP2005055316A (en) Solution removing method and solution absorbing tool in living body related material reaction test
WO2013129109A1 (en) Evaluation sample manufacturing device, evaluation sample manufacturing method, and substrate treatment device
JP2017136005A (en) Processing apparatus and processing method for analysis chip

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase