WO2004097453A1 - Motor vehicle assisting device provided with a trajectory prediction module - Google Patents

Motor vehicle assisting device provided with a trajectory prediction module Download PDF

Info

Publication number
WO2004097453A1
WO2004097453A1 PCT/DE2004/000405 DE2004000405W WO2004097453A1 WO 2004097453 A1 WO2004097453 A1 WO 2004097453A1 DE 2004000405 W DE2004000405 W DE 2004000405W WO 2004097453 A1 WO2004097453 A1 WO 2004097453A1
Authority
WO
WIPO (PCT)
Prior art keywords
course
prediction module
navigation system
data
road
Prior art date
Application number
PCT/DE2004/000405
Other languages
German (de)
French (fr)
Inventor
Hermann Winner
Werner Urban
Jens Lueder
Ruediger-Walter Henn
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004097453A1 publication Critical patent/WO2004097453A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0058Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to externally generated signalling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0066Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator responsive to vehicle path curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9316Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles combined with communication equipment with other vehicles or with base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9322Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using additional data, e.g. driver condition, road state or weather data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the invention relates to a driver assistance device with a course prediction module.
  • Driver assistance systems are known for motor vehicles, which support the driver in guiding the vehicle or perform certain functions in connection with the longitudinal and / or transverse guidance of the vehicle automatically. These systems often require information about the course of the road and about the anticipated course of the vehicle and therefore have a course prediction module which provides this information.
  • driver assistance systems are adaptive cruise control systems, also known as ACC systems (Adaptive Cruise Control), which enable automatic control of the distance to a vehicle in front.
  • ACC systems Adaptive Cruise Control
  • the distances and relative speeds of vehicles in front are measured with the aid of a radar sensor or a comparable locating device, and the speed of one's own vehicle is automatically adjusted so that the vehicle immediately ahead is tracked at a suitable safety distance. If no vehicle in front is located, there is one Regulation to a desired speed selected by the driver.
  • results of the course prediction can, however, also be used in driver assistance systems for other purposes, for example for the automatic detection of lane change processes, for the automatic adjustment of the location depth or the main location direction of the radar sensor in accordance with the lane curvature, for a predictive speed adjustment before entering tight bends or for warnings to the driver, for example to prevent the driver from initiating an overtaking maneuver before entering a dangerous curve.
  • Another problem is that the driving dynamics only indicate a course curvature when the vehicle has already entered the curve. In unstable situations, e.g. when changing from a straight section to a curved section, reliable course prediction is therefore not possible.
  • the driver assistance system is combined with a navigation system known per se, which provides more detailed information about the course of the road via a suitable interface.
  • information about the course of the road is stored on a data carrier (for example CD-ROM or DVD).
  • Information about the current position of your own vehicle is provided by a satellite-based positioning system (e.g. GPS).
  • GPS satellite-based positioning system
  • the driving course can be reliably predicted by using this information.
  • a curved lane course can be predicted in advance, before actually entering the curve.
  • the reliability of the course prediction can be further increased.
  • this enables a simple permanent comparison of the driving dynamics and an automatic offset correction.
  • This automatic offset correction benefits all functional units of the driver assistance system in which these dynamic vehicle variables are required, for example the EPS system. If a dynamic driving variable, for example the yaw rate, has an offset, this can be recognized from the fact that there is a constant or gradually drifting difference between the directly measured yaw rate and the yaw rate calculated with the aid of the navigation system on the basis of the curvature of the road.
  • Temporary discrepancies which are caused, for example, by a lane change, can be recognized on the basis of the characteristic pattern of the yaw rate deviation. Longer lasting discrepancies fluctuating in size, however, indicate that the information provided by the navigation system about the The course of the road or the position data of the vehicle are faulty.
  • the reliability of the information about the course of the road provided by the navigation system can be assessed on the basis of a quality number. If the quality of this data is too low, then the traditional price prediction methods can be used.
  • data can also be used which are supplied directly by the navigation system, for example the number of satellites from which signals for determining the position are received, e.g. with disturbed satellite reception in tunnels, or the information that the current vehicle position is not on a road digitized in the navigation system.
  • the navigation system is preferably an advanced, intelligent navigation system which, in addition to the pure course of the lane, provides further information about the lane geometry, in particular information about the lane width and / or the number of lanes in one's own direction of travel.
  • This additional information can either be stored on the data carrier or received by a traffic control system or other data sources by a communication system integrated in the intelligent navigation system. In this case, there is also the option to add to the permanent in
  • Navigation system stored information about the course of the road to download more detailed information with higher spatial resolution for the nearer vehicle environment, so that the curvature of the course can be calculated more precisely. It is also possible in this way to ensure that the information on the road network is more up-to-date, for example in the case of new roads or changes in traffic routing.
  • the information about the calculated route can also be used for the course prediction. drawing
  • FIG. 1 shows a block diagram of a driver assistance device according to the invention
  • Figure 2 is a sketch to explain the operation of the device
  • FIG. 3 shows a sketch to explain a method for calculating the course curvature
  • FIG. 4 shows a block diagram to explain the functioning of the device.
  • FIG. 1 a driver sub-assistance system for motor vehicles is shown as a block diagram, which has an ACC control device 10, the functions of which are carried out, for example, by one or more suitably programmed microprocessors.
  • the ACC control device 10 the functions of which are carried out, for example, by one or more suitably programmed microprocessors.
  • ACC control device 10 is assigned a sensor device 14 and at least one locating sensor, for example an angle-resolving radar sensor 16 for locating preceding vehicles.
  • the sensor device 14 comprises sensors (not shown in more detail) for detecting the longitudinal speed, the yaw rate and other relevant vehicle dynamics variables of the own vehicle.
  • the location data of the radar sensor 16 are processed in a manner known per se in a speed controller (ACC controller) 18, which acts on the drive system 22 of the vehicle and possibly also on the braking system via a command output unit 20.
  • ACC controller speed controller
  • the data measured by the radar sensor 16 are ner evaluation unit 24 evaluated.
  • the evaluation unit 24 then supplies a pair of coordinates for each object located by the radar sensor, which specifies the distance of the object in the direction of travel and the transverse offset of the object with respect to the longitudinal central axis of one's own vehicle, to a selection module 26.
  • all of the located objects are initially selected selected objects that can be identified as vehicles in front that are in the same lane as your own vehicle. Among these vehicles, the vehicle with the smallest distance is then generally selected as the target object, which forms the basis for the distance control in the ACC controller 18. If necessary, however, the distances between the vehicles ahead can also be included in the control so that a more forward-looking driving style is achieved.
  • the selection module 26 For the selection of the vehicles traveling in their own lane, the selection module 26 requires information about the assumed course of the lane. This information is provided by a course prediction module 28.
  • a “driving tube” is understood to mean that area which corresponds in its width and in its course to the assumed width and the assumed course of one's own lane. Located objects that lie within this driving tube and have an absolute speed greater than zero are then assigned to the driver's own lane in the selection module 26. If the road is straight, the travel tube is simply defined with the help of left and right boundaries for the transverse offset of the objects. In the case of a curved roadway, these limits can also be dependent on the distance, so that the travel tube can be modeled according to the roadway curvature.
  • the course prediction module 28 receives information about the yaw rate of the own vehicle from the sensor device 14, for example from a yaw rate sensor, so that the current curvature of the road surface can be calculated when driving through a curve and the course of the travel tube can thus be adapted.
  • the ACC control device 10 is furthermore an intelligent navigation system 30 with an integrated communication system 32. orderly .
  • the navigation system 30 contains, in a known manner, a data carrier (not shown in more detail) on which map information about the road network is stored. A corresponding map section can be displayed on a screen 34.
  • the navigation system also includes a position system, for example a satellite-based position system (GPS; Global Positioning System), with which the current position of one's own vehicle can be determined. The vehicle position is indicated on the screen 34 by a position pointer 36, which at the same time shows the current direction of travel.
  • GPS Global Positioning System
  • lane attributes that indicate the lane width, the number of lanes, one-way street regulations and the like are also stored on the data carrier of the navigation system.
  • the communication system 32 allows the wireless reception of messages from a traffic management system and optionally also the exchange of messages with other road users whose vehicles are equipped with a comparable system.
  • the communication system 32 can also be used to update the lane attributes in the navigation system 30 and to update the position data of temporary disability points such as B. to take construction sites on the route map.
  • the course prediction module 28 is connected to the navigation system 30 via an interface 38, so that it can take over all information available in the navigation system that is relevant for an optimal determination of the travel tube, in particular information about the course of the road, the width of the road, the number and, if applicable, the width of the Lanes per direction of travel, the presence of parallel lanes with the same direction of travel, for example acceleration or deceleration lanes at motorway exits or driveways, parallel lanes at motorway junctions and like.
  • FIG. 1 shows a right-hand curve at some distance from the current vehicle position.
  • Figure 2 shows a sketch of this situation.
  • the course of the road 40 is shown with a median strip 42, which separates the two directional lanes, as well as the vehicle 44 equipped with the ACC system and, as a hatched area, the travel tube 46 calculated by the course prediction module 28 on the basis of the information supplied by the navigation system 30.
  • the yaw rate of the vehicle 44 is approximately zero, so that the impending rightward curvature of the road would not yet be recognizable from the data supplied by the sensor device 14 alone.
  • the information about the course of the road provided by the navigation system 30 allows the driving tube 46 to be adapted to the upcoming road curvature in this situation.
  • the method for determining the course of the course on the basis of the data supplied by the navigation system is illustrated in more detail in FIG.
  • the roads are usually represented by broken lines, that is to say by lines which are composed of straight lines.
  • FIG. 3 three such straight line sections 48, 50, 52 are shown in dashed lines in a coordinate system whose x-axis runs on straight line section 48 in the direction of travel.
  • the line composed of straight pieces should be approximated by piecewise defined polynomials of at least second degree, so that a curved curve 54 is obtained, which is shown in FIG. 3 in solid lines.
  • curve 54 is composed of second-degree polynomials, that is to say composed of parabolic pieces. In the example shown, a slightly different procedure is used. Curve 54 is constructed here from third-degree polynomials, i.e. from functions of the form:
  • An anchor point A or B is defined on each line segment 48, 50, which halves the line segment in question.
  • the polynomial which is defined between these anchor points, i.e. between the x values XA and X B .
  • the requirement is made that the graph of the polynomial passes through points A and B and in each of these points the same slope as the associated straight line segment 48 or 50.
  • This gives four linearly independent equations from which the four coefficients a, b, c and d of the polynomial can be calculated. At the same time, this ensures that the successive polynomial pieces at anchor points A and B have no kinks.
  • the straight line section 48, 50, 52 is greater than a certain limit value, which is dependent on the spatial resolution of the digitized map, it can be assumed that the straight line section actually represents a straight line. In this case, two anchor points near each end are determined on the straight line section in question, and the intermediate piece is formed by a straight line.
  • the information about the course of the road can also be present directly in the form of polynomial pieces, the parameters of which are loaded into the navigation system 30.
  • the road curvature k can be calculated for each polynomial f (x) using the following formula.
  • the current yaw rate is obtained directly, which can then be compared with the yaw rate measured by the sensor device 14.
  • step S1 the route data provided by the navigation system 30 are read via the interface 38, that is to say the coordinates of the line segments 48, 50, 52 for a section of roadway of a suitable length before the current position of the vehicle.
  • step S2 the course of the course is approximated by polynomial pieces in the manner described above, and the yaw rate for the current vehicle position is calculated.
  • step S3 it is checked whether the route and location data transmitted by the navigation system are reliable. For this purpose, a quality number is determined which is dependent on the number of GPS satellites from which position signals are received and on the discrepancy between the vehicle position measured by the GPS system and the calculated course of the road. If satellite reception is disturbed, e.g. in tunnels, the vehicle position can be extrapolated based on the driving speed and the calculated lane course.
  • step S3 the yaw rate calculated in step S2 is compared with the yaw rate measured by sensor device 14. If these yaw rates match within the measurement accuracy, the course prediction takes place in step S4 on the basis of the route data provided by the navigation system. If there is a difference between the yaw rates, but this difference is essentially constant over a long period of time or drifts only gradually, this indicates that the yaw rate measured by the sensor device has an offset, and in
  • Step S4 additionally carries out an offset correction. This correction is also reported back to the sensor device 14, so that other system components can also work with the corrected yaw rate.
  • the yaw rate can also be measured in sensor device 14 in a number of mutually independent ways, for example with the help of a yaw rate sensor and additionally based on the wheel speed difference. In this case, a separate offset correction can be carried out for each method.
  • step S3 it appears in step S3 that the two or more yaw rates provided by the sensor device 14 are consistent with one another, while the yaw rate calculated in step S2 deviates from this, this indicates faulty route and location data, and in this case, the course prediction in step S5 takes place in a conventional manner on the basis of the driving dynamics data or other known methods, without taking into account the route data supplied by the navigation system.
  • step S3 If it is determined in step S3 that the calculated quality number is below a certain threshold value, a branch is also made after step S5.
  • step S5 a branch is also made after step S5.
  • the same also applies in cases in which the discrepancy between the yaw rate calculated in step S2 and the yaw rate (s) supplied by the sensor device 14 varies irregularly, specifically in a way that is not due to a lane change of the own vehicle. In this way it is ensured that the price prediction is always based on the most reliable data either in step S4 or in step S5.

Abstract

The invention relates to a motor vehicle assisting device provided with a trajectory prediction module (28) and characterised in that an interface (38) is connected to a navigation system (30) supplying trajectory information to said trajectory prediction module (28).

Description

Fahrerassistenzvorrichtunσ mit Kursprädiktionsmodul Driver assistance device with course prediction module
Stand der TechnikState of the art
Die Erfindung betrifft eine Fahrerassistenzvorrichtung mit einem Kursprädiktionsmodul .The invention relates to a driver assistance device with a course prediction module.
Für Kraf fahrzeuge sind Fahrerassistenzsysteme bekannt, die den Fahrer bei der Führung des Fahrzeugs unterstützen oder bestimmte Funktionen im Zusammenhang mit der Längs- und/oder Querführung des Fahrzeugs selbsttätig ausführen. Diese Systeme benötigen häufig Informationen über den Fahrbahnverlauf und über den voraussichtlichen Kurs des Fahrzeugs und weisen deshalb ein Kursprädiktionsmodul auf, das diese Informationen bereitstellt.Driver assistance systems are known for motor vehicles, which support the driver in guiding the vehicle or perform certain functions in connection with the longitudinal and / or transverse guidance of the vehicle automatically. These systems often require information about the course of the road and about the anticipated course of the vehicle and therefore have a course prediction module which provides this information.
Ein Beispiel für solche Fahrerassistenzsysteme sind adaptive Ge- schwindigkeitsregler, auch als ACC-Systeme (Adaptive Cruise Con- trol) bezeichnet, die eine automatische Regelung des Abstands zu einem vorausfahrenden Fahrzeug ermöglichen. Bei diesen Systemen werden mit Hilfe eines Radarsensors oder eines vergleichbaren Ortungsgerätes die Abstände und Relativgeschwindigkeiten vorausfahrender Fahrzeuge gemessen, und die Geschwindigkeit des eigenen Fahrzeugs wird automatisch so angepaßt, daß das unmittelbar voraus- fahrende Fahrzeug in einem geeigneten Sicherheitsabstand verfolgt wird. Wenn kein vorausfahrendes Fahrzeug geortet wird, erfolgt eine Regelung auf eine vom Fahrer gewählte Wunschgeschwindigkei .An example of such driver assistance systems are adaptive cruise control systems, also known as ACC systems (Adaptive Cruise Control), which enable automatic control of the distance to a vehicle in front. In these systems, the distances and relative speeds of vehicles in front are measured with the aid of a radar sensor or a comparable locating device, and the speed of one's own vehicle is automatically adjusted so that the vehicle immediately ahead is tracked at a suitable safety distance. If no vehicle in front is located, there is one Regulation to a desired speed selected by the driver.
Auf mehrspurigen Straßen setzt eine korrekte Abstandregelung eine Unterscheidung zwischen Fahrzeugen auf der eigenen Fahrspur und Fahrzeugen auf Nebenspuren voraus. Diese Unterscheidung erfordert generell eine Messung der Ortskoordinaten der vorausfahrenden Fahrzeuge in einem zweidimensionalen Koordinatensystem. Mit einem winkelauflösenden Mehrstrahlradar, wie es typischerweise als Ortungsgerät eingesetzt wird, lassen sich die Orte der vorausfahrenden Fahrzeuge in Polarkoordinaten messen. Die Koordinaten, Abstand und Azimutwinkel, lassen sich dann in die entsprechenden Koordinaten in einem kartesischen Koordinatensystem u rechnen, dessen X-Achse in Fahrtrichtung durch die Fahrzeugmitte verläuft, so daß die y-Koor- dinate unmittelbar den Querversatz des vorausfahrenden Fahrzeugs angibt. Für die Abstandsregelung werden dann nur solche Fahrzeuge berücksichtigt, die innerhalb eines bestimmten, der eigenen Fahrspur entsprechenden Fahrschlauches liegen. Bei gekrümmter Fahrbahn sollte der Fahrschlauch an die mit Hilfe des Kursprädiktions oduls abgeschätzte Fahrbahnkrümmung angepaßt werden.On multi-lane roads, correct distance control requires a distinction between vehicles in their own lane and vehicles in secondary lanes. This distinction generally requires a measurement of the location coordinates of the vehicles in front in a two-dimensional coordinate system. With an angle-resolving multi-beam radar, as is typically used as a locating device, the locations of the vehicles in front can be measured in polar coordinates. The coordinates, distance and azimuth angle can then be calculated into the corresponding coordinates in a Cartesian coordinate system u, the X axis of which runs through the center of the vehicle in the direction of travel, so that the y coordinate immediately indicates the transverse offset of the vehicle in front. Only those vehicles are considered for the distance control, which lie within a certain travel tube corresponding to the own lane. In the case of a curved roadway, the travel tube should be adapted to the roadway curvature estimated using the course prediction module.
Die Ergebnisse der Kursprädiktion können jedoch in Fahrerassistenz- systemen auch für andere Zwecke genutzt werden, beispielsweise für die automatische Erkennung von SpurwechselVorgängen, für die automatische Anpassung der Ortungstiefe oder der Haupt-Ortungsrichtung des Radarsensors entsprechend der Fahrbahnkrümmung, für eine vorausschauende Geschwindigkeitsanpassung vor der Einfahrt in enge Kurven oder für Warnhinweise an den Fahrer, beispielsweise um den Fahrer davor zu bewahren, vor der Einfahrt in eine gefährliche Kurve einen Überholvorgang einzuleiten.The results of the course prediction can, however, also be used in driver assistance systems for other purposes, for example for the automatic detection of lane change processes, for the automatic adjustment of the location depth or the main location direction of the radar sensor in accordance with the lane curvature, for a predictive speed adjustment before entering tight bends or for warnings to the driver, for example to prevent the driver from initiating an overtaking maneuver before entering a dangerous curve.
Bisher werden im Kursprädiktionsmodul üblicherweise fahrdynamische Größen wie z.B. die Gierrate und/oder Raddrehzahldifferenzen und/ oder der Lenkradeinschlagwinkel zur Berechnung der momentanen Kurs- krümmung und damit zur Kursprädiktion verwendet. Diese fahrdynami- sehen Größen werden mit geeigneten Sensoren gemessen und werden zumeist auch in anderen Funktionseinheiten des Fahrerassistenzsystems verwendet, insbesondere in einem elektronischen Fahrdynamikregler (ESP) . Ein Problem besteht jedoch darin, daß diese fahrdynamischen Größen generell fehlerbehaftet sind und insbesondere einen sogenannten Offset aufweisen, der dazu führt, daß bei tatsächlich geradem Fahrbahnverlauf eine gewisse Kurskrümmung vorgetäuscht wird. Dieser Offset kann auch zeitlich driften. Um eine hinreichend gute Kursprädiktion über die Ortungstiefe des Radarsensors (typischer- w'eise in der Größenordnung von 150 Meter) zu ermöglichen, sollten mehrere unabhängig voneinander gemessene fahrdynamische Größen, z.B. Gierraste und Raddrehzahldifferenz, permanent miteinander ab- geglichen werden. Dazu werden aufwendige Statistik- oder Regressi- onsverfahren benötigt, die Zeit- und Rechenkapazität erfordern. Da jede dieser Größen offsetbehaftet sein kann und somit keine den wirklichen Kursverlauf genau wiedergibt, -ist die statistische Auswertung dieser fahrdynamischen Größen insbesondere auf Strecken mit langgezogenen Kurven kritisch.So far, dynamic course variables such as the yaw rate and / or wheel speed differences and / or the steering wheel steering angle have usually been used in the course prediction module to calculate the current course curvature and thus to predict the course. These vehicle dynamics parameters are measured with suitable sensors and are mostly also used in other functional units of the driver assistance system, in particular in an electronic vehicle dynamics controller (ESP). One problem, however, is that these driving dynamics variables are generally error-prone and in particular have a so-called offset, which leads to a certain course curvature being simulated when the road is actually straight. This offset can also drift in time. In order to enable a sufficiently good over the course prediction locating depth of the radar sensor (typically w 'else in the order of 150 meters), should more substituents independently measured driving dynamic variables such as yaw detent and wheel speed can be permanently compensated off each other. This requires complex statistical or regression methods that require time and computing capacity. Since each of these variables can have an offset and therefore does not exactly reflect the actual course of the course, the statistical evaluation of these dynamic vehicle variables is critical, particularly on routes with long curves.
Ein weiteres Problem besteht darin, daß die fahrdynamischen Größen eine Kurskrümmung erst dann anzeigen, wenn das Fahrzeug bereits in die Kurve eingefahren ist. In instabilen Situationen, z.B. beim Übergang von einer geraden Strecke zu einer gekrümmten Strecke, ist deshalb eine verläßliche Kursprädiktion nicht möglich.Another problem is that the driving dynamics only indicate a course curvature when the vehicle has already entered the curve. In unstable situations, e.g. when changing from a straight section to a curved section, reliable course prediction is therefore not possible.
Aus DE 197 22 947 Cl ist es bekannt, geortete Standziele am Fahrbahnrand zur Bestimmung des Fahrbahnverlaufs heranzuziehen. Dies setzt jedoch voraus, daß geeignete Radarziele am Fahrbahnrand vorhanden sind. Weiterhin ist vorgeschlagen worden, die Ortungsdaten vorausfahrender Fahrzeuge zur Kursprädiktion heranzuziehen. Auch dieses Verfahren ist jedoch nicht in allen Verkehrssituationen anwendbar .From DE 197 22 947 Cl it is known to use localized targets at the edge of the road to determine the course of the road. However, this presupposes that suitable radar targets are available at the edge of the road. Furthermore, it has been proposed to use the location data of vehicles traveling ahead to predict the course. However, this method is also not applicable in all traffic situations.
Vorteile der ErfindungAdvantages of the invention
Die Erfindung mit den in Anspruch 1 angegebenen Merkmalen bietet eine weitere Möglichkeit zur Kursprädiktion, die von den oben ge- nannten Verfahren unabhängig ist und die die oben genannten Verfahren ganz oder teilweise ersetzen kann oder aber mit ihnen kombiniert werden kann, um die Redundanz und damit die Verläßlichkeit der Kursprädiktion zu erhöhen.The invention with the features specified in claim 1 offers a further possibility for course prediction which is independent of the above-mentioned methods and which can replace the above-mentioned methods in whole or in part or can be combined with them in order to reduce redundancy and thus the reliability to increase the course prediction.
Erfindungsgemäß wird das Fahrerassistenzsystem mit einem an sich bekannten Navigationssystem kombiniert, das über eine geeignete Schnittstelle nähere Informationen über den Fahrbahnverlauf bereitstellt.According to the invention, the driver assistance system is combined with a navigation system known per se, which provides more detailed information about the course of the road via a suitable interface.
Bei herkömmlichen Navigationssystemen ist Information über den Fahrbahnverlauf auf einem Datenträger (z. B. CD-ROM oder DVD) ge- speichert. Information über die aktuelle Position des eigenen Fahrzeugs wird durch eine satellitengestütztes Positionierungssystem (z.B. GPS) zur Verfügung gestellt. Durch Ausnutzung dieser Informationen kann der Fahrkurs verläßlich vorhergesagt werden. Insbesondere kann ein gekrümmter Fahrbahnverlauf auch schon vorausschauend, vor der tatsächlichen Einfahrt in die Kurve prädiziert werden.In conventional navigation systems, information about the course of the road is stored on a data carrier (for example CD-ROM or DVD). Information about the current position of your own vehicle is provided by a satellite-based positioning system (e.g. GPS). The driving course can be reliably predicted by using this information. In particular, a curved lane course can be predicted in advance, before actually entering the curve.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.Advantageous refinements and developments of the invention result from the subclaims.
Durch den Einsatz der erfindungsgemäßen Vorrichtung in Kombination mit einem oder mehreren der zuvor beschriebenen herkömmlichen Kur- sprädiktionsverfahren läßt sich die Verläßlichkeit der Kursprädiktion weiter steigern. Insbesondere wird so ein einfacher permanenter Abgleich der fahrdynamischen Größen und eine automatische Offsetkorrektur ermöglicht. Diese automatische Offsetkorrektur kommt allen Funktionseinheiten des Fahrerassistenzsystems zugute, in denen diese fahrdynamischen Größen benötigt werden, beispielsweise dem EPS-System. Wenn eine fahrdynamische Größe, beispielsweise die Gierrate, einen Offset aufweist, so ist dies daran zu erken- nen, daß zwischen der direkt gemessenen Gierrate und der mit Hilfe des Navigationssystems anhand der Fahrbahnkrümmung berechneten Gierrate eine konstante oder allmählich driftende Differenz besteht. Vorübergehende Diskrepanzen, die beispielsweise durch einen Spurwechsel verursacht sind, lassen sich anhand des charakteristi- sehen Musters der Gierratenabweichung erkennen. Länger anhaltende, in der Größe fluktuierende Diskrepanzen deuten hingegen darauf hin, daß die vom NavigationsSystem bereitgestellte Information über den Fahrbahnverlauf oder die Positionsdaten des Fahrzeugs fehlerbehaftet sind.By using the device according to the invention in combination with one or more of the conventional course prediction methods described above, the reliability of the course prediction can be further increased. In particular, this enables a simple permanent comparison of the driving dynamics and an automatic offset correction. This automatic offset correction benefits all functional units of the driver assistance system in which these dynamic vehicle variables are required, for example the EPS system. If a dynamic driving variable, for example the yaw rate, has an offset, this can be recognized from the fact that there is a constant or gradually drifting difference between the directly measured yaw rate and the yaw rate calculated with the aid of the navigation system on the basis of the curvature of the road. Temporary discrepancies, which are caused, for example, by a lane change, can be recognized on the basis of the characteristic pattern of the yaw rate deviation. Longer lasting discrepancies fluctuating in size, however, indicate that the information provided by the navigation system about the The course of the road or the position data of the vehicle are faulty.
Die Verläßlichkeit der vom NavigationsSystem bereitgestellten In- formationen über den Fahrbahnverlauf läßt sich anhand einer Quali- tätszahl bewerten. Bei zu geringer Qualität dieser Daten kann dann auf die traditionellen Verfahren zur Kursprädiktion zurückgegriffen werden. Für die Bestimmung der Qualitätszahl können auch Daten herangezogen werden, die direkt vom Navigationssystem geliefert wer- den, beispielsweise die Anzahl der Satelliten, von denen Signale zur Positionsbestimmung empfangen werden, z.B. bei gestörtem Satellitenempfang in Tunneln, oder die Information, daß die aktuelle Fahrzeugposition nicht auf einer im Navigationssystem digitalisierten Straße liegt.The reliability of the information about the course of the road provided by the navigation system can be assessed on the basis of a quality number. If the quality of this data is too low, then the traditional price prediction methods can be used. For the determination of the quality number, data can also be used which are supplied directly by the navigation system, for example the number of satellites from which signals for determining the position are received, e.g. with disturbed satellite reception in tunnels, or the information that the current vehicle position is not on a road digitized in the navigation system.
Bevorzugt handelt es sich bei dem Navigationssystem um ein fortgeschrittenes, intelligentes Navigationssystem, das über den reinen Fahrbahnverlauf hinaus weitere Informationen über die Fahrbahngeometrie bereitstellt, insbesondere Informationen über die Fahrbahn- breite und/oder die Anzahl der Fahrspuren in der eigenen Fahrtrichtung. Diese ergänzenden Informationen können entweder auf dem Datenträger gespeichert sein oder durch ein in das intelligente Navigationssystem integriertes Kommunikationssystem von einem Verkehrs- leitsystem oder anderen Datenquellen empfangen werden. In diesem Fall besteht auch die Möglichkeit, ergänzend zu den permanent imThe navigation system is preferably an advanced, intelligent navigation system which, in addition to the pure course of the lane, provides further information about the lane geometry, in particular information about the lane width and / or the number of lanes in one's own direction of travel. This additional information can either be stored on the data carrier or received by a traffic control system or other data sources by a communication system integrated in the intelligent navigation system. In this case, there is also the option to add to the permanent in
Navigationssystem gespeicherten Informationen über den Fahrbahnverlauf detailliertere Informationen mit höherer räumlicher Auflösung für die nähere Fahrzeugumgebung herunterzuladen, so daß die Kurs- krümmung präziser berechnet werden kann. Ebenso läßt sich auf diese Weise eine größere Aktualität der Information über das Straßennetz erreichen, beispielsweise bei Straßenneubauten oder geänderter Verkehrsführung .Navigation system stored information about the course of the road to download more detailed information with higher spatial resolution for the nearer vehicle environment, so that the curvature of the course can be calculated more precisely. It is also possible in this way to ensure that the information on the road network is more up-to-date, for example in the case of new roads or changes in traffic routing.
Wenn das Navigationssystem zur Routenberechnung und zur Zielführung eingesetzt wird, kann für die Kursprädiktion auch die Information über die berechnete Fahrtroute ausgenutzt werden. ZeichnungIf the navigation system is used for route calculation and route guidance, the information about the calculated route can also be used for the course prediction. drawing
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.An embodiment of the invention is shown in the drawings and explained in more detail in the following description.
Es zeigen:Show it:
Figur 1 ein Blockdiagramm einer erfindungsgemäßen FahrerassistenzVorrichtung;FIG. 1 shows a block diagram of a driver assistance device according to the invention;
Figur 2 eine Skizze zur Erläuterung der Funktionsweise der Vorrichtung;Figure 2 is a sketch to explain the operation of the device;
Figur 3 eine Skizze zur Erläuterung eines Verfahrens zur Berechnung der Kurskrümmung; undFIG. 3 shows a sketch to explain a method for calculating the course curvature; and
Figur 4 ein Blockdiagramm zur Erläuterung der Funkti- onsweise der Vorrichtung.FIG. 4 shows a block diagram to explain the functioning of the device.
In Figur 1 ist als Blockdiagramm ein Fahrerunterassistenzssystem für Kraftfahrzeuge dargestellt, das eine ACC-Steuereinrichtung 10 aufweist, deren Funktionen beispielsweise von einem oder mehreren geeignet programmierten Mikroprozessoren ausgeführt werden. DerIn FIG. 1, a driver sub-assistance system for motor vehicles is shown as a block diagram, which has an ACC control device 10, the functions of which are carried out, for example, by one or more suitably programmed microprocessors. The
ACC-Steuereinrichtung 10 sind eine Sensoreinrichtung 14 und mindestens einen Ortungssensor zugeordnet, beispielsweise ein winkelauf- lösender Radarsensor 16 zur Ortung von vorausfahrenden Fahrzeugen. Die Sensoreinrichtung 14 umfaßt nicht näher gezeigte Sensoren zur Erfassung der Längsgeschwindigkeit, der Gierrate sowie anderer relevanter fahrdynamischer Größen des eigenen Fahrzeugs. Die Ortungsdaten des Radarsensors 16 werden in an sich bekannter Weise in einem Geschwindigkeitsregler (ACC-Regler) 18 verarbeitet, der über eine Befehlsausgabeeinheit 20 auf das Antriebssystem 22 des Fahr- zeugs sowie gegebenenfalls auch auf das Bremssystem einwirkt.ACC control device 10 is assigned a sensor device 14 and at least one locating sensor, for example an angle-resolving radar sensor 16 for locating preceding vehicles. The sensor device 14 comprises sensors (not shown in more detail) for detecting the longitudinal speed, the yaw rate and other relevant vehicle dynamics variables of the own vehicle. The location data of the radar sensor 16 are processed in a manner known per se in a speed controller (ACC controller) 18, which acts on the drive system 22 of the vehicle and possibly also on the braking system via a command output unit 20.
Im einzelnen werden die vom Radarsensor 16 gemessenen Daten in ei- ner Auswerteeinheit 24 ausgewertet. Die Auswerteeinheit 24 liefert dann für jedes vom Radarsensor geortete Objekt ein Koordinatenpaar, das den Abstand des Objekts in Fahrrichtung sowie den Querversatz des Objekts gegenüber der Längsmittelachse des eigenen Fahrzeugs angibt, an ein Auswahlmodul 26. Im Auswahlmodul 26 werden aus der Gesamtheit aller georteten Objekte zunächst diejenigen Objekte ausgewählt, die als vorausfahrende Fahrzeuge identifiziert werden können, die sich auf derselben Fahrspur befinden wie das eigene Fahrzeug. Unter diesen Fahrzeugen wird dann im allgemeinen das Fahrzeug mit dem geringsten Abstand als das Zielobjekt ausgewählt, das die Grundlage für die Abstandsregelung im ACC-Regler 18 bildet. Gegebenenfalls können jedoch auch die Abstände der weiter vorn vorausfah- renden Fahrzeuge in die Regelung einfließen, damit eine voraus- schauendere Fahrweise erreicht wird.In particular, the data measured by the radar sensor 16 are ner evaluation unit 24 evaluated. The evaluation unit 24 then supplies a pair of coordinates for each object located by the radar sensor, which specifies the distance of the object in the direction of travel and the transverse offset of the object with respect to the longitudinal central axis of one's own vehicle, to a selection module 26. In the selection module 26, all of the located objects are initially selected selected objects that can be identified as vehicles in front that are in the same lane as your own vehicle. Among these vehicles, the vehicle with the smallest distance is then generally selected as the target object, which forms the basis for the distance control in the ACC controller 18. If necessary, however, the distances between the vehicles ahead can also be included in the control so that a more forward-looking driving style is achieved.
Für die Auswahl der auf der eigenen Fahrspur fahrenden Fahrzeuge benötigt das Auswahlmodul 26 Information über den vermuteten Verlauf der Fahrbahn. Diese Information wird von einem Kursprädiktionsmodul 28 bereitgestellt. Unter einem "Fahrschlauch" wird derjenige Bereich verstanden, der in seiner Breite und in seinem Verlauf der vermuteten Breite und dem vermuteten Verlauf der eigenen Fahrspur entspricht. Geortete Objekte, die innerhalb dieses Fahrschlauches liegen und eine Absolutgeschwindigkeit größer als null haben, werden dann im Auswahlmodul 26 der eigenen Fahrspur zu- geordnet. Bei geradem Fahrbahnverlauf wird der Fahrschlauch einfach mit Hilfe linker und rechter Grenzen für den Querversatz der Objekte definiert. Bei gekrümmter Fahrbahn können diese Grenzen auch ab- standsabhängig sein, so daß der Fahrschlauch entsprechend der Fahrbahnkrümmung modelliert werden kann. Von der Sensoreinrichtung 14, beispielsweise von einem Gierratensensor, erhält das Kursprädiktionsmodul 28 Information über die Giergeschwindigkeit des eigenen Fahrzeugs, so daß sich beim Durchfahren einer Kurve die aktuelle Fahrbahnkrümmung berechnen und damit der Verlauf des Fahrschlauches anpassen läßt.For the selection of the vehicles traveling in their own lane, the selection module 26 requires information about the assumed course of the lane. This information is provided by a course prediction module 28. A “driving tube” is understood to mean that area which corresponds in its width and in its course to the assumed width and the assumed course of one's own lane. Located objects that lie within this driving tube and have an absolute speed greater than zero are then assigned to the driver's own lane in the selection module 26. If the road is straight, the travel tube is simply defined with the help of left and right boundaries for the transverse offset of the objects. In the case of a curved roadway, these limits can also be dependent on the distance, so that the travel tube can be modeled according to the roadway curvature. The course prediction module 28 receives information about the yaw rate of the own vehicle from the sensor device 14, for example from a yaw rate sensor, so that the current curvature of the road surface can be calculated when driving through a curve and the course of the travel tube can thus be adapted.
Der ACC-Steuereinrichtung 10 ist weiterhin ein intelligentes Navigationssystem 30 mit einem integrierten Kommunikationssystem 32 zu- geordnet .The ACC control device 10 is furthermore an intelligent navigation system 30 with an integrated communication system 32. orderly .
Das Navigationssystem 30 enthält in bekannter Weise einen nicht näher gezeigten Datenträger, auf dem Landkarteninformation über das Straßennetz gespeichert ist. Ein entsprechender Landkartenaus- schnitt kann auf einem Bildschirm 34 dargestellt werden. Das Navigationssystem umfaßt außerdem ein Positionssystem, beispielsweise ein satellitengestütztes Positionssystem (GPS; Global Positioning System) , mit dem sich die aktuelle Position des eigenen Fahrzeugs ermitteln läßt. Die Fahrzeugposition wird auf dem Bildschirm 34 durch einen Positionszeiger 36 angegeben, der zugleich die aktuelle Fahrtrichtung anzeigt.The navigation system 30 contains, in a known manner, a data carrier (not shown in more detail) on which map information about the road network is stored. A corresponding map section can be displayed on a screen 34. The navigation system also includes a position system, for example a satellite-based position system (GPS; Global Positioning System), with which the current position of one's own vehicle can be determined. The vehicle position is indicated on the screen 34 by a position pointer 36, which at the same time shows the current direction of travel.
Ergänzend zu der Information über das Straßennetz sind auf dem Da- tenträger des Navigationssystems auch Fahrbahnattribute gespeichert, die die Fahrbahnbreite, die Anzahl der Fahrspuren, Einbahnstraßenregelungen und dergleichen angeben.In addition to the information about the road network, lane attributes that indicate the lane width, the number of lanes, one-way street regulations and the like are also stored on the data carrier of the navigation system.
Das Kommunikationssystem 32 gestattet den drahtlosen Empfang von Nachrichten von einem VerkehrsleitSystem sowie wahlweise auch den Austausch von Nachrichten mit anderen Verkehrsteilnehmern, deren Fahrzeuge mit einem vergleichbaren System ausgestattet sind. Das Kommunikationssystem 32 kann auch dazu benutzt werden, die Fahrbahnattribute im Navigationssystem 30 zu aktualisieren und die Po- sitionsdaten von temporären Behinderungsstellen wie z. B. Baustellen in die Streckenkarte zu übernehmen.The communication system 32 allows the wireless reception of messages from a traffic management system and optionally also the exchange of messages with other road users whose vehicles are equipped with a comparable system. The communication system 32 can also be used to update the lane attributes in the navigation system 30 and to update the position data of temporary disability points such as B. to take construction sites on the route map.
Das Kursprädiktionsmodul 28 ist über eine Schnittstelle 38 mit dem Navigationssystem 30 verbunden, so daß es alle im Navigationssystem verfügbaren Informationen übernehmen kann, die für eine optimale Bestimmung des Fahrschlauches relevant sind, insbesondere Information über der Fahrbahnverlauf, die Fahrbahnbreite, die Anzahl und gegebenenfalls Breite der Fahrspuren je Fahrtrichtung, das Vorhandensein von Parallelfahrbahnen mit gleicher Fahrtrichtung, bei- spielsweise Beschleunigungs- oder Verzögerungsstreifen an Autobahn- aus- oder Auffahrten, Parallelfahrbahnen an Autobahnkreuzen und dergleichen.The course prediction module 28 is connected to the navigation system 30 via an interface 38, so that it can take over all information available in the navigation system that is relevant for an optimal determination of the travel tube, in particular information about the course of the road, the width of the road, the number and, if applicable, the width of the Lanes per direction of travel, the presence of parallel lanes with the same direction of travel, for example acceleration or deceleration lanes at motorway exits or driveways, parallel lanes at motorway junctions and like.
Die Funktionsweise der Vorrichtung wird in Figur 2 anhand eines Fallbeispiels erläutert.The functioning of the device is explained in FIG. 2 using a case study.
In Figur 1 ist zu erkennen, daß die derzeit vom dem Fahrzeug befahrene, auf dem Bildschirm 34 dargestellte Straße 40 in einiger Entfernung vor der aktuellen Fahrzeugposition eine Rechtskurve beschreibt. Figur 2 zeigt eine Skizze dieser Situation. Dargestellt sind der Verlauf der Straße 40 mit einem Mittelstreifen 42, der die beiden Richtungsfahrspuren voneinander trennt, sowie das mit dem ACC-System ausgerüstete Fahrzeug 44 und, als schraffierte Fläche, der vom Kursprädiktionsmodul 28 anhand der vom Navigationssystem 30 gelieferten Information berechnete Fahrschlauch 46.It can be seen in FIG. 1 that the road 40 currently being driven by the vehicle and shown on the screen 34 describes a right-hand curve at some distance from the current vehicle position. Figure 2 shows a sketch of this situation. The course of the road 40 is shown with a median strip 42, which separates the two directional lanes, as well as the vehicle 44 equipped with the ACC system and, as a hatched area, the travel tube 46 calculated by the course prediction module 28 on the basis of the information supplied by the navigation system 30.
Da das Fahrzeug 44 noch einen geraden Fahrbahnabschnitt befährt, ist die Giergeschwindigkeit des Fahrzeugs 44 annähernd null, so daß die bevorstehende Rechtskrümmung der Fahrbahn allein anhand der von der Sensoreinrichtung 14 gelieferten Daten noch nicht erkennbar wäre. Die vom Navigationssystem 30 bereitgestellte Information über den Fahrbahnverlauf erlaubt es jedoch, den Fahrschlauch 46 bereits in dieser Situation an die bevorstehende Fahrbahnkrümmung anzupassen.Since the vehicle 44 is still traveling on a straight section of the road, the yaw rate of the vehicle 44 is approximately zero, so that the impending rightward curvature of the road would not yet be recognizable from the data supplied by the sensor device 14 alone. However, the information about the course of the road provided by the navigation system 30 allows the driving tube 46 to be adapted to the upcoming road curvature in this situation.
Das Verfahren zur Bestimmung des Kursverlaufes anhand der vom Navigationssystem gelieferten Daten ist in Figur 3 näher illustriert. In der digitalisierten Karte des Streckennetzes im NavigationsSystem 30 sind die Straßen üblicherweise durch gebrochene Linien repräsentiert, also durch Linien, die aus Geradenstücken zusammenge- setzt sind. In Figur 3 sind drei solcher Geradenstücke 48, 50, 52 gestrichelt in einem Koordinatensystem eingezeichnet, dessen x-Ach- se in Fahrtrichtung auf dem Geradenstück 48 verläuft. Um eine realistischere Repräsentation des tatsächlichen Fahrbahnverlaufes zu erhalten, sollte die aus Geradenstucken zusammengesetzte Linie durch stückweise definierte Polynome mindestens zweiten Grades angenähert werden, so daß man eine gekrümmte Kurve 54 erhält, die in Figur 3 in durchgezogenen Linien eingezeichnet ist. Im einfachsten Fall ist die Kurve 54 aus Polynomen zweiten Grades, also aus Parabelstücken zusammengesetzt. Im gezeigten Beispiel wird ein etwas anderes Verfahren angewandt . Die Kurve 54 wird hier aus Polynomen dritten Grades aufgebaut, also aus Funktionen der Form:The method for determining the course of the course on the basis of the data supplied by the navigation system is illustrated in more detail in FIG. In the digitized map of the route network in the navigation system 30, the roads are usually represented by broken lines, that is to say by lines which are composed of straight lines. In FIG. 3, three such straight line sections 48, 50, 52 are shown in dashed lines in a coordinate system whose x-axis runs on straight line section 48 in the direction of travel. In order to obtain a more realistic representation of the actual course of the roadway, the line composed of straight pieces should be approximated by piecewise defined polynomials of at least second degree, so that a curved curve 54 is obtained, which is shown in FIG. 3 in solid lines. In the simplest In this case, curve 54 is composed of second-degree polynomials, that is to say composed of parabolic pieces. In the example shown, a slightly different procedure is used. Curve 54 is constructed here from third-degree polynomials, i.e. from functions of the form:
f (x) = a + bx + ex2 + dx3 f (x) = a + bx + ex 2 + dx 3
Auf jedem Geradenstück 48, 50 wird ein Ankerpunkt A bzw. B definiert, der das betreffende Geradenstück halbiert. Für das Polynom, das zwischen diesen Ankerpunkten, also zwischen den x-Werten XA und XB definiert ist, wird die Forderung aufgestellt, daß der Graph des Polynoms durch die Punkte A und B geht und in jedem dieser Punkte dieselbe Steigung wie das zugehörige Geradenstück 48 bzw. 50 hat. So erhält man vier linear unabhängige Gleichungen, aus denen sich die vier Koeffizienten a, b, c und d des Polynoms berechnen lassen. Zugleich ist so sichergestellt, daß die aufeinanderfolgenden Po- lynomstücke an den Ankerpunkten A und B keine Knickstellen haben.An anchor point A or B is defined on each line segment 48, 50, which halves the line segment in question. For the polynomial, which is defined between these anchor points, i.e. between the x values XA and X B , the requirement is made that the graph of the polynomial passes through points A and B and in each of these points the same slope as the associated straight line segment 48 or 50. This gives four linearly independent equations from which the four coefficients a, b, c and d of the polynomial can be calculated. At the same time, this ensures that the successive polynomial pieces at anchor points A and B have no kinks.
Wenn die Länge der Geradenstücke 48, 50, 52 größer ist als ein be- stimmter Grenzwert, der von der räumlichen Auflösung der digitalisierten Karte abhängig ist, so ist anzunehmen, daß das Geradenstück tatsächlich eine geradlinig verlaufende Straße repräsentiert. In diesem Fall werden auf dem betreffenden Geradenstück zwei Ankerpunkte in der Nähe jedes Endes bestimmt, und das Zwischenstück wird durch eine Gerade gebildet.If the length of the straight line sections 48, 50, 52 is greater than a certain limit value, which is dependent on the spatial resolution of the digitized map, it can be assumed that the straight line section actually represents a straight line. In this case, two anchor points near each end are determined on the straight line section in question, and the intermediate piece is formed by a straight line.
Auf diese Weise erhält man eine realistische Repräsentation für den voraussichtlichen Kurvenverlauf. In einer weiteren Ausbaustufe kann die Informationen über den Straßenverlauf auch direkt in der Form von Polynomstücken vorliegen, deren Parameter in das Navigationssystem 30 geladen werden.In this way you get a realistic representation of the expected course of the curve. In a further expansion stage, the information about the course of the road can also be present directly in the form of polynomial pieces, the parameters of which are loaded into the navigation system 30.
Die Fahrbahnkrümmung k läßt sich für jedes Polynom f(x) nach der folgenden Formel berechnen.The road curvature k can be calculated for each polynomial f (x) using the following formula.
k = f" (x) / (1 + f ' (x)2)3 2 k = f "(x) / (1 + f '(x) 2 ) 3 2
Multipliziert man die Krümmung k mit der Fahrgeschwindigkeit V des Fahrzeugs, so erhält man direkt die aktuelle Gierrate, die dann mit der von der Sensoreinrichtung 14 gemessenen Gierrate abgeglichen werden kann.Multiplying the curvature k by the vehicle speed V des Vehicle, the current yaw rate is obtained directly, which can then be compared with the yaw rate measured by the sensor device 14.
Der Verfahrensablauf ist in Figur 4 dargestellt. In Schritt Sl werden über die Schnittstelle 38 die vom Navigationssystem 30 bereitgestellten Routendaten gelesen, also die Koordinaten der Geradenstücke 48, 50, 52 für einen Fahrbahnabschnitt geeigneter Länge vor der aktuellen Position des Fahrzeugs. In Schritt S2 wird der Kurs- verlauf in der oben beschriebene Weise durch Polynomstücke approximiert, und es wird die Gierrate für die aktuelle Fahrzeugposition berechnet. In Schritt S3 wird geprüft, ob die vom Navigationssystem übermittelten Routen- und Ortsdaten verläßlich sind. Dazu wird eine Qualitätszahl bestimmt, die abhängig ist von der Anzahl der GPS-Sa- telliten, von denen Positionssignale empfangen werden, und von der Diskrepanz zwischen der vom GPS-System gemessenen Fahrzeugposition und dem berechneten Fahrbahnverlauf. Bei gestörtem Satellitenempfang, z.B. in Tunneln, kann wahlweise die Fahrzeugposition anhand der Fahrgeschwindigkeit und des berechneten Fahrbahnverlaufes ex- trapoliert werden.The procedure is shown in Figure 4. In step S1, the route data provided by the navigation system 30 are read via the interface 38, that is to say the coordinates of the line segments 48, 50, 52 for a section of roadway of a suitable length before the current position of the vehicle. In step S2, the course of the course is approximated by polynomial pieces in the manner described above, and the yaw rate for the current vehicle position is calculated. In step S3, it is checked whether the route and location data transmitted by the navigation system are reliable. For this purpose, a quality number is determined which is dependent on the number of GPS satellites from which position signals are received and on the discrepancy between the vehicle position measured by the GPS system and the calculated course of the road. If satellite reception is disturbed, e.g. in tunnels, the vehicle position can be extrapolated based on the driving speed and the calculated lane course.
Weiterhin wird in Schritt S3 die in Schritt S2 berechnete Gierrate mit der von der Sensoreinrichtung 14 gemessenen Gierrate verglichen. Wenn diese Gierraten innerhalb der Meßgenauigkeit überein- stimmen, erfolgt in Schritt S4 die Kursprädiktion anhand der vom Navigationssystem bereitgestellten Routendaten. Wenn zwischen den Gierraten eine Differenz besteht, diese Differenz jedoch über einen längeren Zeitraum im wesentlichen konstant ist oder nur allmählich driftet, so deutet dies darauf hin, daß die von der Sensoreinrich- tung gemessene Gierrate mit einem Offset behaftet ist, und inFurthermore, in step S3, the yaw rate calculated in step S2 is compared with the yaw rate measured by sensor device 14. If these yaw rates match within the measurement accuracy, the course prediction takes place in step S4 on the basis of the route data provided by the navigation system. If there is a difference between the yaw rates, but this difference is essentially constant over a long period of time or drifts only gradually, this indicates that the yaw rate measured by the sensor device has an offset, and in
Schritt S4 erfolgt zusätzlich eine Offsetkorrektur . Diese Korrektur wird auch an die Sensoreinrichtung 14 zurückgemeldet, so daß auch andere Systemkomponenten mit der korrigierten Gierrate arbeiten können.Step S4 additionally carries out an offset correction. This correction is also reported back to the sensor device 14, so that other system components can also work with the corrected yaw rate.
Wahlweise kann die Messung der Gierrate in der Sensoreinrichtung 14 auch auf mehrere voneinander unabhängige Weisen erfolgen, bei- spielsweise mit Hilfe eines Gierratensensors und zusätzlich anhand der Raddrehzahldifferenz. In diesem Fall kann für jedes Verfahren eine gesonderte Offsetkorrektur durchgeführt werden. Wenn sich aber in Schritt S3 zeigt, daß die zwei oder mehreren Gierraten, die von der Sensoreinrichtung 14 geliefert werden, miteinander konsistent .sind, während die in Schritt S2 berechnete Gierrate davon abweicht, so deutet dies auf fehlerhafte Routen- und Ortsdaten hin, und in diesem Fall erfolgt die Kursprädiktion in Schritt S5 in herkömmlicher Weise anhand der fahrdynamischen Daten oder anderer bekannter Verfahren, ohne Berücksichtigung der vom Navigationssystem gelieferten Routendaten.Optionally, the yaw rate can also be measured in sensor device 14 in a number of mutually independent ways, for example with the help of a yaw rate sensor and additionally based on the wheel speed difference. In this case, a separate offset correction can be carried out for each method. However, if it appears in step S3 that the two or more yaw rates provided by the sensor device 14 are consistent with one another, while the yaw rate calculated in step S2 deviates from this, this indicates faulty route and location data, and in this case, the course prediction in step S5 takes place in a conventional manner on the basis of the driving dynamics data or other known methods, without taking into account the route data supplied by the navigation system.
Wenn in Schritt S3 festgestellt wird, daß die berechnete Qualitätszahl unterhalb eines bestimmten Schwellenwertes liegt, erfolgt ebenfalls eine Verzweigung nach Schritt S5. Dasselbe gilt auch in den Fällen, in denen die Diskrepanz zwischen der in Schritt S2 berechneten Gierrate und der oder den von der Sensoreinrichtung 14 gelieferten Gierraten unregelmäßig variiert und zwar in einer Weise, die nicht auf einen Spurwechsel des eigenen Fahrzeugs zurückzu- führen ist. Auf diese Weise ist sichergestellt, daß die Kursprädiktion entweder in Schritt S4 oder in Schritt S5 stets anhand der zuverlässigsten Daten erfolgt. If it is determined in step S3 that the calculated quality number is below a certain threshold value, a branch is also made after step S5. The same also applies in cases in which the discrepancy between the yaw rate calculated in step S2 and the yaw rate (s) supplied by the sensor device 14 varies irregularly, specifically in a way that is not due to a lane change of the own vehicle. In this way it is ensured that the price prediction is always based on the most reliable data either in step S4 or in step S5.

Claims

Ansprüche Expectations
1. Fahrerassistenzvorrichtung für Kraftfahrzeuge, mit einem Kurs- prädiktionsmodul (28) , gekennzeichnet durch eine Schnittstelle (38) zu einem Navigationssystem (30), das dem Kursprädiktionsmodul (28) Informationen über den Fahrbahnverlauf bereitstellt.1. Driver assistance device for motor vehicles, with a course prediction module (28), characterized by an interface (38) to a navigation system (30) which provides the course prediction module (28) with information about the course of the road.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß dem2. Device according to claim 1, characterized in that the
Kursprädiktionsmodul (28) eine Sensoreinrichtung (14) zugeordnet ist, die für die Querbewegung des Fahrzegs repräsentative- fahrdynamische Daten, beispielsweise die Gierrate, ermittelt, und daß das Kursprädiktionsmodul (28) dazu ausgebildet ist, anhand des Fahrbahnverlaufes entsprechende fahrdynamische Daten zu berechnen und mit den von der Sensoreinrichtung (14) gelieferten Daten abzugleichen.Course prediction module (28) is associated with a sensor device (14) which determines representative vehicle dynamics data, for example the yaw rate, for the transverse movement of the vehicle, and that the course prediction module (28) is designed to calculate corresponding vehicle dynamics data on the basis of the course of the road and with it compare the data supplied by the sensor device (14).
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das Kursprädiktionsmodul (28) dazu ausgebildet ist, durch Vergleich der berechneten fahrdynamischen Daten mit den von der Sensoreinrichtung (14) gelieferten fahrdynamischen Daten einen Offset in den Daten der Sensoreinrichtung (14) zu erkennen und zu korrigieren.3. Apparatus according to claim 2, characterized in that the course prediction module (28) is designed to recognize an offset in the data of the sensor device (14) by comparing the calculated driving dynamics data with the driving dynamics data supplied by the sensor device (14) to correct.
4. Vorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß das Kursprädiktionsmodul (28) dazu ausgebildet ist, die Kursprädiktion unabhängig von den vom Navigationssystem (38) übermittelten Daten anhand der von der Sensoreinrichtung (14) gemessenen fahrdynamischen Daten vorzunehmen, die Qualität der vom Navigationssystem (30) übermittelten Informationen über den Fahrbahnverlauf zu bewerten und abhängig vom Bewertungser- gebnis zu entscheiden, ob die Kursprädiktion mit oder ohne Berücksichtigung der Daten des Naviga ionsSys ems erfolgt.4. The device according to claim 2 or 3, characterized in that the course prediction module (28) is designed to make the course prediction independently of the data transmitted by the navigation system (38) on the basis of the vehicle dynamic data measured by the sensor device (14), the quality of the to evaluate information about the course of the road transmitted by the navigation system (30) and depending on the evaluation to decide whether the course prediction is made with or without taking into account the data of the navigation system.
5. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch ge- kennzeichnet, daß das Kursprädiktionsmodul (28) dazu ausgebildet ist, den Fahrbahnverlauf anhand der vom Navi ationsSystem (30) bereitgestellten Informationen durch stückweise definierte Polynome mindestens zweiten Grades zu repräsentieren.5. Device according to one of the preceding claims, characterized in that the course prediction module (28) is designed to represent the course of the lane using the information provided by the navigation system (30) by piecewise defined polynomials of at least second degree.
6. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Navigationssystem (30) ein Kommunikationssystem (32)' für den Empfang von Information über den Fahrbahnverlauf von einer externen Datenquelle enthält. 6. Device according to one of the preceding claims, characterized in that the navigation system (30) contains a communication system (32) ' for receiving information about the course of the road from an external data source.
PCT/DE2004/000405 2003-04-30 2004-03-03 Motor vehicle assisting device provided with a trajectory prediction module WO2004097453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003119445 DE10319445A1 (en) 2003-04-30 2003-04-30 Driver assistance device with course prediction module
DE10319445.2 2003-04-30

Publications (1)

Publication Number Publication Date
WO2004097453A1 true WO2004097453A1 (en) 2004-11-11

Family

ID=33305057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000405 WO2004097453A1 (en) 2003-04-30 2004-03-03 Motor vehicle assisting device provided with a trajectory prediction module

Country Status (2)

Country Link
DE (1) DE10319445A1 (en)
WO (1) WO2004097453A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007019988A1 (en) * 2005-08-18 2007-02-22 Daimler Ag Method for determining the driving path in which a vehicle is moving with high probability
WO2007031580A1 (en) * 2005-09-15 2007-03-22 Continental Teves Ag & Co. Ohg Method and device for predicting a displacement path
EP1775552A2 (en) * 2005-10-14 2007-04-18 Robert Bosch Gmbh Electronic horizon for driver assistance systems
CN102472629A (en) * 2009-07-29 2012-05-23 罗伯特·博世有限公司 Electronic horizon for a driver assistance system
CN106950956A (en) * 2017-03-22 2017-07-14 合肥工业大学 The wheelpath forecasting system of fusional movement model and behavior cognitive model
DE102017212254A1 (en) 2017-07-18 2019-01-24 Volkswagen Aktiengesellschaft Predictive routing of a vehicle
CN112201045A (en) * 2020-09-29 2021-01-08 北京计算机技术及应用研究所 Method for filling up missed reading data of automobile electronic identifier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045386B4 (en) * 2005-09-23 2016-01-14 Bayerische Motoren Werke Aktiengesellschaft Method for driving route determination for a distance-related driving speed control
DE102006036999B4 (en) 2006-08-02 2023-11-16 Volkswagen Ag Vehicle position determination device and method for determining position information for a vehicle
DE102007033259A1 (en) * 2007-07-17 2009-01-22 Continental Automotive Gmbh Method, device and computer program for operating a satellite-based navigation device
DE202014000369U1 (en) * 2014-01-14 2015-04-15 GM GLOBAL TECHNOLOGY OPERATION LLC (n. d. Ges. d. Staates Delaware) Device for estimating the yaw rate of a vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890092A (en) * 1994-09-01 1999-03-30 Aisin Aw Co., Ltd. Navigation system for vehicles including present position calculating means
EP0936517A2 (en) * 1989-12-11 1999-08-18 Caterpillar Inc. Integrated vehicle positioning and navigation system, apparatus and method
WO2001063209A1 (en) * 2000-02-21 2001-08-30 Siemens Aktiengesellschaft Method and assembly for accumulating combined positional information for a system
US20020055819A1 (en) * 2000-11-08 2002-05-09 Yasuhiro Shimizu Vehicle navigation apparatus providing rapid correction for excessive error in dead reckoning estimates of vehicle travel direction by direct application of position and direction information derived from GPS position measurement data
US20020161513A1 (en) * 1999-12-20 2002-10-31 Stephan Bechtolsheim Method and system for providing an electronic horizon in an advanced driver assistance system architecture
EP1255091A1 (en) * 2001-04-26 2002-11-06 Fuji Jukogyo Kabushiki Kaisha Curve approach device, and equipped vehicle
EP1329693A2 (en) * 2002-01-18 2003-07-23 Yeoman Group Plc Navigation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936517A2 (en) * 1989-12-11 1999-08-18 Caterpillar Inc. Integrated vehicle positioning and navigation system, apparatus and method
US5890092A (en) * 1994-09-01 1999-03-30 Aisin Aw Co., Ltd. Navigation system for vehicles including present position calculating means
US20020161513A1 (en) * 1999-12-20 2002-10-31 Stephan Bechtolsheim Method and system for providing an electronic horizon in an advanced driver assistance system architecture
WO2001063209A1 (en) * 2000-02-21 2001-08-30 Siemens Aktiengesellschaft Method and assembly for accumulating combined positional information for a system
US20020055819A1 (en) * 2000-11-08 2002-05-09 Yasuhiro Shimizu Vehicle navigation apparatus providing rapid correction for excessive error in dead reckoning estimates of vehicle travel direction by direct application of position and direction information derived from GPS position measurement data
EP1255091A1 (en) * 2001-04-26 2002-11-06 Fuji Jukogyo Kabushiki Kaisha Curve approach device, and equipped vehicle
EP1329693A2 (en) * 2002-01-18 2003-07-23 Yeoman Group Plc Navigation system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007019988A1 (en) * 2005-08-18 2007-02-22 Daimler Ag Method for determining the driving path in which a vehicle is moving with high probability
WO2007031580A1 (en) * 2005-09-15 2007-03-22 Continental Teves Ag & Co. Ohg Method and device for predicting a displacement path
US8340883B2 (en) 2005-09-15 2012-12-25 Continental Teves Ag & Co. Ohg Method and apparatus for predicting a movement trajectory
EP1775552A2 (en) * 2005-10-14 2007-04-18 Robert Bosch Gmbh Electronic horizon for driver assistance systems
EP1775552A3 (en) * 2005-10-14 2012-02-22 Robert Bosch Gmbh Electronic horizon for driver assistance systems
CN102472629A (en) * 2009-07-29 2012-05-23 罗伯特·博世有限公司 Electronic horizon for a driver assistance system
CN106950956A (en) * 2017-03-22 2017-07-14 合肥工业大学 The wheelpath forecasting system of fusional movement model and behavior cognitive model
CN106950956B (en) * 2017-03-22 2020-02-14 合肥工业大学 Vehicle track prediction system integrating kinematics model and behavior cognition model
DE102017212254A1 (en) 2017-07-18 2019-01-24 Volkswagen Aktiengesellschaft Predictive routing of a vehicle
US10907973B2 (en) 2017-07-18 2021-02-02 Volkswagen Ag Predictive routing of a transportation vehicle
CN112201045A (en) * 2020-09-29 2021-01-08 北京计算机技术及应用研究所 Method for filling up missed reading data of automobile electronic identifier

Also Published As

Publication number Publication date
DE10319445A1 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
DE10030455B4 (en) Apparatus for generating road information from a stored digital map database
EP1135274B1 (en) Method and device for determining the future course of a motor vehicle
DE69730463T2 (en) Method and device for entering routes in a navigation system
EP1844373B1 (en) Method for predicting the course in driver assistance systems for motor vehicles
DE102008018050B4 (en) Method of generating traffic information
DE112016004751T5 (en) AUTONOMOUS TRAVEL SUPPORT SYSTEM, AUTONOMOUS TRAVEL SUPPORT PROCESS AND COMPUTER PROGRAM
DE102018102513A1 (en) Vehicle communication system and vehicle control device
DE102019133861A1 (en) AUTONOMOUS VEHICLE AND VEHICLE DRIVE CONTROL METHOD USING THIS
DE102006040334A1 (en) Lane recognizing method for use with driver assistance system of vehicle i.e. motor vehicle, involves reconstructing characteristics of lane markings and/or lanes from position of supporting points in coordinate system
DE102016208282A1 (en) VEHICLE CONTROL DEVICE
EP3432203A1 (en) Predictive roadway guidance of a vehicle
DE102018100288B4 (en) Vehicle control system
EP1886093A1 (en) Method for determining the geometry of a route section
WO2018019464A1 (en) Method, device and computer-readable storage medium with instructions for determining the lateral position of a vehicle relative to the lanes of a road
DE102019121513A1 (en) Automatic driver assistance device
WO2018019465A1 (en) Method, device and computer-readable storage medium with instructions for determining the lateral position of a vehicle relative to the lanes of a road
DE102018100668A1 (en) Vehicle control device
WO2004097453A1 (en) Motor vehicle assisting device provided with a trajectory prediction module
DE102005051601B4 (en) System and method for transmitting information about roads in front of a vehicle
EP1192418A1 (en) Navigation device
DE112020005630T5 (en) DRIVING ASSISTANCE DEVICE
EP1082585A2 (en) Method for determining the position of a vehicle
EP1696207B1 (en) Method and system for determining an object's position data
DE19753172A1 (en) Process for computer-aided navigation of a vehicle with a terminal, terminal and traffic center
WO2004080745A1 (en) Device for determining the driving path in adaptive cruise control systems for motor vehicles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase