WO2004096404A1 - Processes involving the use of antisolvent crystallisation - Google Patents
Processes involving the use of antisolvent crystallisation Download PDFInfo
- Publication number
- WO2004096404A1 WO2004096404A1 PCT/EP2004/004383 EP2004004383W WO2004096404A1 WO 2004096404 A1 WO2004096404 A1 WO 2004096404A1 EP 2004004383 W EP2004004383 W EP 2004004383W WO 2004096404 A1 WO2004096404 A1 WO 2004096404A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- salt
- antisolvent
- antisolvents
- water
- settler
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 133
- 230000008569 process Effects 0.000 title claims abstract description 105
- 238000005185 salting out Methods 0.000 title description 19
- 239000012296 anti-solvent Substances 0.000 claims abstract description 187
- 150000003839 salts Chemical class 0.000 claims abstract description 170
- 239000013078 crystal Substances 0.000 claims abstract description 117
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 117
- 239000012266 salt solution Substances 0.000 claims abstract description 70
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 63
- 239000007864 aqueous solution Substances 0.000 claims abstract description 48
- 239000012528 membrane Substances 0.000 claims abstract description 41
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 38
- 239000003966 growth inhibitor Substances 0.000 claims abstract description 37
- 239000011780 sodium chloride Substances 0.000 claims abstract description 33
- 239000002002 slurry Substances 0.000 claims abstract description 31
- 238000001728 nano-filtration Methods 0.000 claims abstract description 29
- 239000003112 inhibitor Substances 0.000 claims abstract description 28
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 26
- 238000004090 dissolution Methods 0.000 claims abstract description 7
- 238000004064 recycling Methods 0.000 claims abstract description 7
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 3
- 235000002639 sodium chloride Nutrition 0.000 claims description 196
- 229920000642 polymer Chemical group 0.000 claims description 36
- 238000005406 washing Methods 0.000 claims description 16
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 claims description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical group CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 235000019743 Choline chloride Nutrition 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 claims description 8
- 229960003178 choline chloride Drugs 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 7
- 229920001223 polyethylene glycol Polymers 0.000 claims description 7
- 229920000858 Cyclodextrin Chemical group 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 6
- 125000000129 anionic group Chemical group 0.000 claims description 6
- 125000002091 cationic group Chemical group 0.000 claims description 6
- 150000003841 chloride salts Chemical class 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- 239000002608 ionic liquid Substances 0.000 claims description 6
- 150000002500 ions Chemical group 0.000 claims description 6
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 6
- 150000003242 quaternary ammonium salts Chemical group 0.000 claims description 6
- 159000000000 sodium salts Chemical class 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- -1 aromatic alcohols Chemical class 0.000 claims description 5
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical group CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- 102000015636 Oligopeptides Human genes 0.000 claims description 4
- 108010038807 Oligopeptides Proteins 0.000 claims description 4
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical group Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 claims description 4
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 4
- 150000002016 disaccharides Chemical group 0.000 claims description 4
- 150000004676 glycans Chemical group 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- 150000002772 monosaccharides Chemical group 0.000 claims description 4
- FVZVCSNXTFCBQU-UHFFFAOYSA-N phosphanyl Chemical group [PH2] FVZVCSNXTFCBQU-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims description 4
- 229920001184 polypeptide Polymers 0.000 claims description 4
- 229920001282 polysaccharide Chemical group 0.000 claims description 4
- 239000005017 polysaccharide Chemical group 0.000 claims description 4
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims description 2
- GSFSVEDCYBDIGW-UHFFFAOYSA-N 2-(1,3-benzothiazol-2-yl)-6-chlorophenol Chemical compound OC1=C(Cl)C=CC=C1C1=NC2=CC=CC=C2S1 GSFSVEDCYBDIGW-UHFFFAOYSA-N 0.000 claims description 2
- RXGSAYBOEDPICZ-UHFFFAOYSA-N 2-[6-[[amino-(diaminomethylideneamino)methylidene]amino]hexyl]-1-(diaminomethylidene)guanidine Chemical compound NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)N RXGSAYBOEDPICZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004382 Amylase Substances 0.000 claims description 2
- 102000013142 Amylases Human genes 0.000 claims description 2
- 108010065511 Amylases Proteins 0.000 claims description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- 241000195493 Cryptophyta Species 0.000 claims description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 2
- 229940120146 EDTMP Drugs 0.000 claims description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical class NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 2
- 108091005804 Peptidases Proteins 0.000 claims description 2
- 229920002873 Polyethylenimine Polymers 0.000 claims description 2
- 229920002367 Polyisobutene Chemical class 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 239000004365 Protease Substances 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 2
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 claims description 2
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 150000007513 acids Chemical class 0.000 claims description 2
- 125000003158 alcohol group Chemical group 0.000 claims description 2
- 235000019418 amylase Nutrition 0.000 claims description 2
- 235000015197 apple juice Nutrition 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 claims description 2
- 150000001735 carboxylic acids Chemical class 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 claims description 2
- 230000035622 drinking Effects 0.000 claims description 2
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 claims description 2
- 125000004185 ester group Chemical group 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 2
- 229920001519 homopolymer Polymers 0.000 claims description 2
- 239000004021 humic acid Substances 0.000 claims description 2
- 150000002505 iron Chemical class 0.000 claims description 2
- 239000004310 lactic acid Substances 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical group Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 claims description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 2
- 229940099596 manganese sulfate Drugs 0.000 claims description 2
- 239000011702 manganese sulphate Chemical group 0.000 claims description 2
- 235000007079 manganese sulphate Nutrition 0.000 claims description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical group [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 2
- QOHMWDJIBGVPIF-UHFFFAOYSA-N n',n'-diethylpropane-1,3-diamine Chemical class CCN(CC)CCCN QOHMWDJIBGVPIF-UHFFFAOYSA-N 0.000 claims description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 2
- 235000015205 orange juice Nutrition 0.000 claims description 2
- 150000003904 phospholipids Chemical class 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 229920000056 polyoxyethylene ether Polymers 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 239000000344 soap Substances 0.000 claims description 2
- 239000001509 sodium citrate Substances 0.000 claims description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 2
- 235000011152 sodium sulphate Nutrition 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 229960001124 trientine Drugs 0.000 claims description 2
- 210000005253 yeast cell Anatomy 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims 1
- 239000000276 potassium ferrocyanide Chemical group 0.000 claims 1
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical group [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 claims 1
- 238000002425 crystallisation Methods 0.000 abstract description 43
- 239000000203 mixture Substances 0.000 abstract description 22
- 238000012360 testing method Methods 0.000 description 56
- 239000011575 calcium Substances 0.000 description 43
- 239000012452 mother liquor Substances 0.000 description 40
- 229920006395 saturated elastomer Polymers 0.000 description 40
- 238000002474 experimental method Methods 0.000 description 33
- 239000000243 solution Substances 0.000 description 32
- 239000000654 additive Substances 0.000 description 29
- 230000000996 additive effect Effects 0.000 description 28
- 238000005192 partition Methods 0.000 description 24
- 239000012267 brine Substances 0.000 description 23
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 23
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 20
- 238000011109 contamination Methods 0.000 description 20
- 230000007423 decrease Effects 0.000 description 19
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 16
- 239000012071 phase Substances 0.000 description 16
- 229910052712 strontium Inorganic materials 0.000 description 16
- 229910052791 calcium Inorganic materials 0.000 description 15
- 238000001704 evaporation Methods 0.000 description 12
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 11
- 229910052700 potassium Inorganic materials 0.000 description 11
- 238000009835 boiling Methods 0.000 description 10
- 230000008020 evaporation Effects 0.000 description 10
- 229910052925 anhydrite Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 229910000019 calcium carbonate Inorganic materials 0.000 description 8
- 239000000356 contaminant Substances 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 230000005764 inhibitory process Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 229910052794 bromium Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 229910052602 gypsum Inorganic materials 0.000 description 5
- 239000010440 gypsum Substances 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 5
- 230000003204 osmotic effect Effects 0.000 description 5
- 239000012466 permeate Substances 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 229910006130 SO4 Inorganic materials 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 238000010903 primary nucleation Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 238000005029 sieve analysis Methods 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- 229910001427 strontium ion Inorganic materials 0.000 description 2
- 229960004793 sucrose Drugs 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- PASHVRUKOFIRIK-UHFFFAOYSA-L calcium sulfate dihydrate Chemical compound O.O.[Ca+2].[O-]S([O-])(=O)=O PASHVRUKOFIRIK-UHFFFAOYSA-L 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005443 coulometric titration Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910021432 inorganic complex Inorganic materials 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001529 polyepoxysuccinic acid Polymers 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical class [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D3/00—Halides of sodium, potassium or alkali metals in general
- C01D3/22—Preparation in the form of granules, pieces, or other shaped products
- C01D3/24—Influencing the crystallisation process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/027—Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/029—Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/005—Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
- B01D9/0054—Use of anti-solvent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D3/00—Halides of sodium, potassium or alkali metals in general
- C01D3/14—Purification
- C01D3/16—Purification by precipitation or adsorption
Definitions
- the present invention relates to a process to make inorganic salt compositions comprising the crystallisation of said salt from a crude aqueous solution using an antisolvent, and to a process for the preparation of drinking and/or process water.
- inorganic salts are made industrially from aqueous solutions produced by dissolving a natural source of the salt in water.
- the salt is usually obtained by crystallising it from the aqueous solution by evaporation of the water, which is generally accomplished using multiple-effect or vapour recompression evaporators.
- Multiple-effect systems typically contain three or more forced- circulation evaporating vessels connected in series. The steam produced in each evaporator is fed to the next one in the multiple-effect system to increase energy efficiency.
- Vapour recompression forced-circulation evaporators consist of a crystalliser, a compressor, and a vapour scrubber. The aqueous salt solution enters the crystalliser vessel, where salt is crystallised.
- the above-mentioned problems also arise in conventional processes for the preparation of sodium chloride compositions.
- the conventional process to make sodium chloride and wet sodium chloride involves producing a brine by dissolving a natural source of NaCI in water and subsequent evaporative crystallisation of said brine.
- the brine will contain quantities of dissolved K, Br, SO 4 , Mg, Sr and/or Ca, since these contaminations are typically present in natural NaCI sources.
- a disadvantage of such a process is that the salt obtained has imperfections in the crystal lattice and contains occlusions, i.e. small pockets of mother liquor of the evaporative crystallisation process which are present in cavities in the salt crystals.
- the crystallisation can be carried out in either a single- or a two-phase system.
- the salt crystallises because of the introduction of the antisolvent into the aqueous salt solution, which reduces the solubility of the salt by binding of the water.
- the two-phase system three phases co-exist in the crystalliser, i.e. a solid salt phase and antisolvent-rich and water-rich liquid phases.
- the driving force for crystallisation is created by the extraction of water from the aqueous phase into the organic antisolvent-rich phase, and by the dissolution of antisolvent in the aqueous phase.
- contacting as used throughout this specification is meant to comprise any conventional technique for adding the antisolvent(s) to the aqueous solution comprising the inorganic salt, such that the antisolvent(s) and said aqueous solution are able to at least partially dissolve in one another, wherein partially means that in a 1 :1 mixture of an antisolvent and water, at least 0.5 wt%, preferably at least 2 wt% of the antisolvent will dissolve in the aqueous solution, and/or that at least 0.5 wt%, preferably at least 2 wt% of water will dissolve in the antisolvent.
- membrane which is placed inside a nanofiltration unit for separating the one or more antisolvents from the aqueous salt solution, as used throughout this specification, is meant any conventional membrane having a molecular weight cut-off of at least 100 Da, preferably at least 150 Da, more preferably at least 200 Da, and most preferably at least 250 Da, and wherein the molecular weight cut-off is at most 100,000 Da, preferably at most 25,000 Da, more preferably at most 10,000 Da, and most preferably at most 2,500 Da.
- the antisolvent crystallisation process of the present invention is suitable for the preparation of high-purity salt.
- crystal growth inhibiting antisolvent and/or crystal growth inhibitor(s) prevent primary nucleation of salt crystals, which finally results in relatively coarse salt crystals (i.e. crystals with a diameter of about 300 microns) with a uniform crystal size distribution, which can be easily separated from the aqueous slurry, e.g. by use of a centrifuge.
- the narrow crystal size distribution makes it possible to also apply conventional centrifuges at relatively small average crystal sizes.
- the process is used for the crystallisation of sodium chloride.
- the sodium chloride used as raw material is rock salt and/or a subterraneous salt deposit. More preferably, it is a subterraneous salt deposit exploited by means of dissolution mining.
- the process may also be used for the crystallisation and purification of solar salt (salt or saturated brine obtained by evaporating water from brine using solar heat), including solar sea salt, which is typically obtained from sea water.
- solar salt salt or saturated brine obtained by evaporating water from brine using solar heat
- solar sea salt which is typically obtained from sea water.
- the term "sodium chloride” as used throughout this document is meant to denominate all types of sodium chloride of which more than 25wt% is NaCI.
- such sodium chloride contains more than 50wt% of NaCI. More preferably, the sodium chloride contains more than 75wt% of NaCI, while a sodium chloride containing more than 90wt% of NaCI is most preferred.
- Fig. 1 is a schematic depiction of a preferred flow chart for the above-disclosed novel process.
- Water (1) is fed to a salt source (A), where it dissolves at least part of the salt.
- A salt source
- the solution comes out of the source (2) it is preferably saturated with salt and generally will comprise contaminants, such as dissolved K, Br, SO 4 , Mg, Sr and/or Ca ions.
- the (saturated) solution is fed to a conventional crystalliser/settler (B), which preferably comprises an inlet pipe.
- One or more antisolvents (3) are also fed to the crystalliser/settler (B).
- the crystalline salt composition formed is removed from the crystalliser/settler (B) as an aqueous slurry (6) and preferably fed to a centrifuge.
- said salt slurry (6) that is removed from the crystalliser/settler (B) by one or more outlets may still contain relatively large quantities of antisolvent, most preferably, before said salt slurry is fed to a centrifuge, it is fed to a washing leg.
- the salt slurry is to be used for electrolysis purposes, it is important to wash the adhered mother liquor, i.e. the residual solution which remains after the crystallised salt(s) have been removed, and/or antisolvent from the salt crystals. This can be realised by feeding said salt slurry to a conventional washing leg operated with a raw aqueous salt solution or a purified aqueous salt solution as washing medium.
- a purified aqueous salt solution can be produced by washing the salt crystals with water on a centrifuge. In this way, the production of washing brine is combined with an additional washing step on the centrifuge, while the filtrate of the centrifuge can be used as washing brine.
- the overflow (4) of the crystalliser/settler which comprises the combined antisolvent and aqueous salt solution is fed to a nanofiltration unit (C) comprising a membrane wherein the one or more antisolvents can be separated from the aqueous salt solution.
- the membrane is permeable to salt and to the contaminations present in the aqueous solution, but not to antisolvent.
- the aqueous solution (5) which is undersaturated with salt, and the antisolvent (7) are removed from the nanofiltration unit. It is possible to remove traces of antisolvent in the aqueous solution (5) removed from the nanofiltration unit by the addition of adsorbents with a high specific surface area such as clay minerals, or by means of a conventional ion exchanger.
- the recovered antisolvent (7) is reused by being recycled to the crystalliser/settler.
- the process is a continuous, closed loop process wherein the aqueous solution filtered through the membrane, being undersaturated for salt, is recycled from the nanofiltration unit to the salt source. There it is used to dissolve more salt, thus producing a, preferably saturated, aqueous solution which can be fed to the crystalliser/settler.
- the crystalline salt composition is removed from the crystalliser/settler (B) and fed to a centrifuge as a slurry, after which the recycle of the centrifuge is recycled back into the crystalliser/settler and/or to the salt source.
- a closed loop antisolvent crystallisation process has the major advantage that there is no discharge of aqueous salt solution flows.
- An antisolvent suitable for use in the process according to the present invention is a liquid compound or mixture of liquid compounds in which the salt to be crystallised is less soluble than in water at 20°C.
- an antisolvent can be employed which is a gaseous or solid component.
- the term "antisolvent" as used throughout this application is meant to include each component, liquid compound, or mixture of components and/or liquid compounds which leads to the crystallisation of 5 g or more of salt after the addition of 500 g of the antisolvent to 1,000 ml of saturated aqueous salt solution at a temperature between -10 and 110°C. The exact temperature at which said crystallisation is performed depends on the salt, the liquid compound(s) and/or component(s) used, and on the desired processing temperature.
- one or more antisolvents which are fluid at 20°C are used in the process according to the present invention. More preferably, a liquid compound which is an organic solvent, an ionic solvent, or an organic or inorganic complex is used as antisolvent. Most preferably, an organic solvent is used as the antisolvent.
- the testing temperature is the temperature at which the crystallisation according to the invention is conducted.
- the antisolvent is used in an amount of at least 1 g per litre of saturated aqueous salt solution. More preferably, at least 50 g and most preferably, at least 200 g are used per litre of saturated aqueous salt solution.
- antisolvents for the antisolvent crystallisation process according to the invention are organic solvents which exhibit crystal growth inhibiting properties and/or scale inhibiting properties.
- test 3 is used, more preferably test 2, and most preferably test 1.
- the diameter at which 50 wt% of the crystals have a larger crystal diameter and 50 wt% of the crystals have a smaller crystal diameter is determined.
- an antisolvent is considered to be a crystal growth inhibitor if the quantity of occluded water decreases by more than 5% and/or the partition coefficient decreases by more than 5% and/or the d50 value changes by more than 5%. Moreover, if analysis by means of a (light) microscope shows crystals with (111) faces, the antisolvent is also considered to have crystal growth inhibiting properties.
- an antisolvent Preferably, 50 wt% antisolvent is used, based on the total weight of the reaction mixture.
- An antisolvent is considered to be a crystal growth inhibitor if the quantity of occluded water decreases by more than 5% and/or the partition coefficient decreases by more than 5% and/or the d50 value changes by more than 5%.
- analysis by means of a (light) microscope shows crystals with (111) faces, the antisolvent is also considered to exhibit crystal growth inhibiting properties.
- an antisolvent Preferably, 50 wt% antisolvent is used, based on the total weight of the reaction mixture.
- An antisolvent is considered to be a crystal growth inhibitor if the quantity of occluded water decreases by more than 5% and/or the partition coefficient decreases by more than 5% and/or the d50 value increases by more than 5%.
- analysis by means of a (light) microscope shows crystals with (111) faces, the antisolvent is also considered to exhibit crystal growth inhibiting properties.
- antisolvent which exhibits scaling inhibiting properties means that the antisolvent inhibits both the crystallisation and the scaling of calcium and/or strontium salts. Preferably, said antisolvents inhibit the crystallisation and the scaling of magnesium and/or potassium salts too. This has the advantage that fouling of the membrane in the nanofiltration unit will be greatly reduced and that brine purification by use of chemicals can be omitted. Whether or not an antisolvent exhibits scale inhibiting properties can be determined using one of the following three tests. If in one of these tests, preferably in two or more of these tests, and most preferably in all of these tests an antisolvent is considered to be a scaling inhibitor, said antisolvent is suitable for use in the process according to the present invention.
- the reaction mixture is filtered over a 0.2 micron filter and the quantity of dissolved Ca, Sr, and CO 3 in the mother liquor determined by means of conventional ICP (Inductively Coupled Plasma) spectrometry (for the quantity of Ca and Sr ions) and titrimetry (for the quantity of CO 3 ).
- ICP Inductively Coupled Plasma
- titrimetry for the quantity of CO 3
- the procedure is repeated using 10 g/l of antisolvent.
- the quantities of Ca, Sr, and CO 3 in the mother liquor are now compared to the quantities of Ca, Sr, and CO 3 in the mother liquor as observed for the blank experiment.
- An antisolvent is considered to have scale inhibiting properties if the quantities of dissolved Ca and/or Sr and/or CO 3 increase by more than 5%.
- test 1f is used, more preferably test 1e, more preferably still test 1d, even more preferably test 1c, even more preferably still test 1b, and most preferably, test 1a is used in order to test an antisolvent for its scale inhibiting properties.
- An antisolvent is considered to have scale inhibiting properties if the quantity of Ca and/or SO 4 dissolved in the mother liquor increases by more than 5% as compared to the blank experiment.
- the pH is controlled and 10 meq/l OH is added.
- An additive is considered to be a crystal growth inhibitor if the quantity of occluded water decreases by more than 5% and/or the partition coefficient decreases by more than 5% and/or the d50 value changes by more than 5%. Moreover, if analysis by means of a (light) microscope shows crystals with (111) faces, the additive is also considered to be a crystal growth inhibitor. 2) In a stirred glass beaker, 1 I of a saturated aqueous salt solution comprising 200 mg/l of bromide is heated to reflux.
- the boiling solution is then saturated again by the addition of extra salt.
- the saturated solution is left in a hood at room temperature for 48 h.
- the precipitated salt is filtered off, washed with 500 ml of saturated acidified aqueous salt solution (0.1 M HCI), centrifuged, and dried. Again the quantity of occluded water, the quantity of bromide, and the d50 value are determined as described above for method 1 of the test for determining whether an antisolvent exhibits crystal growth inhibiting properties. This is the blank experiment.
- An additive is considered to be a crystal growth inhibitor if the quantity of occluded water decreases by more than 5% and/or the partition coefficient decreases by more than 5% and/or the d50 value changes by more than 5%. Moreover, if analysis by means of a (light) microscope shows crystals with (111) faces, the additive is also considered to be a crystal growth inhibitor.
- an additive is a scaling inhibitor can be determined using one of the following four tests. If in one of these tests, preferably in two or more of these tests, and most preferably in all of these tests an additive is considered to be a scaling inhibitor, said additive is suitable for use in the process according to the present invention.
- the reaction mixture is filtered over a 0.2 micron filter and the quantity of dissolved Ca, Sr, and CO 3 in the mother liquor determined as described above for method 1a of the test for determining whether an antisolvent inhibits crystallisation and scaling of SrCO 3 and/or CaCO 3 .
- This is the blank experiment.
- the procedure is repeated using 10 pp of an additive.
- the quantities of Ca, Sr, and CO 3 in the mother liquor are now compared to the quantities of Ca, Sr, and CO 3 in the mother liquor as observed for the blank experiment.
- An additive is considered to be a scaling inhibitor if the quantities of dissolved Ca and/or Sr and/or CO 3 increase by more than 5%.
- An effective quantity of scaling inhibitor is present if the quantity of dissolved Ca and/or Sr and/or SO and/or CO 3 in the mother liquor changes by more than 5% compared to mother liquor produced from the same salt solution under the same conditions, but without the addition of a scaling inhibitor.
- the quantity of said crystal growth inhibitor present in the mother liquor-antisolvent system is less than 5,000 mg per kg of mother liquor.
- the quantity of said crystal growth inhibitor present in the mother liquor-antisolvent system is less than 5,000 mg per kg of mother liquor.
- less than 1 ,500 mg/kg and more preferably less than 300 mg/kg is used.
- concentrations of crystal growth inhibitor higher than 5,000 mg per kg mother liquor are also possible.
- more than 10 mg, preferably more than 12.5 mg, and most preferably more than 14 mg of crystal growth inhibitor is used per kg of mother liquor.
- the quantity of said scaling inhibitor present in the mother liquor-antisolvent system is less than 5,000 mg per kg of mother liquor as well.
- less than 1 ,500 mg/kg and more preferably less than 300 mg/kg is used.
- concentrations of scaling inhibitor higher than 5,000 mg per kg mother liquor are also possible.
- more than 1 mg, preferably more than 3 mg, and most preferably more than 5 mg of scaling inhibitor is used per kg of mother liquor.
- only one antisolvent is employed. More preferably, an antisolvent is used which exhibits crystal growth inhibiting properties and/or scaling inhibiting properties, optionally in combination with one or more scaling inhibitors and/or crystal growth inhibitors.
- the antisolvent may be, but is not necessarily, (partially) miscible with pure water. It is also possible to use an antisolvent or mixture of antisolvents which will result in the formation of an emulsion after it/they are added to the aqueous salt solution. Preferably, an antisolvent or mixture of antisolvents is used which is partially miscible with the aqueous salt solution because such antisolvent(s) can be recovered by a temperature induced liquid-liquid separation. I.e. the system has two liquid phases below a certain critical temperature or above a certain critical temperature. Phase- separation of the water layer and the antisolvent can then be a temperature induced phase-separation as is generally known in the art. Most preferably, the antisolvent(s) used in the process according to the present invention is/are environmentally friendly, and preferably, it/they is/are also food grade. Moreover, the preferred antisolvents are solvents which are cheap and readily available.
- Antisolvents which exhibit crystal growth inhibiting and/or scale inhibiting properties for brine crystallisation processes are preferably selected from the group consisting of aliphatic or aromatic alcohols, nitrilotriacetic acid, carboxylic acids or polycarboxylic acids, phosphonates, polyphosphonates, functionalised or unfunct ⁇ onalised carboxymethyl cellulose, organocomplexes of Fe(ll) and Fe(lll) ions, ethanol, acetone, isopropanol, quaternary ammonium salts, cyclodextrines, polymers bearing amino groups, polymers bearing quaternary ammonium groups, polymers comprising nitrogen-containing aliphatic rings, sodium salts of polymers bearing anionic groups, and chloride salts of polymers bearing cationic groups.
- ionic liquids are employed as the antisolvent(s).
- ionic liquids suitable for use as an antisolvent in the process according to the present invention include but are not limited to choline chloride based ionic liquids such as choline chloride/urea, choline chloride/phenol, or choline chloride/saccharide. Most preferably, ionic liquids are used which are nitrogen-free.
- Crystal growth inhibitors suitable for use in the process of antisolvent crystallisation of a salt include all conventional crystal growth inhibitors.
- the crystal growth inhibitor for a brine crystallisation process is selected from the group consisting of oligopeptides, polypeptides, and polymers bearing two or more carboxylic acid groups or carboxyalkyl groups and optionally also phosphate, phosphonate, phosphino, sulfate and/or sulfonate groups; functionalised or unfunctionalised monosaccharides, disaccharides, and polysaccharides; ferrocyanide salts; lead chloride; cadmium chloride; manganese sulfate; quaternary ammonium salts; cyclodextrines; polymers bearing amino groups; polymers bearing quaternary ammonium groups; polymers comprising nitrogen-containing aliphatic rings; sodium salts of polymers bearing anionic groups; and chloride salts of polymers bearing cationic groups.
- the crystal growth inhibitor is selected from the group consisting of polymaleic acid, polyacrylates, glycose, saccharose, and urea.
- a crystal growth inhibitor is used which will not pass the membrane in the nanofiltration step. Instead, it will remain in the antisolvent stream, which is subsequently recycled to the crystalliser/settler.
- the crystal size distribution could be influenced. It appeared that increasing quantities of crystal growth inhibitor in the antisolvent resulted in the production of smaller crystals.
- the d50 crystal diameter i.e. the diameter at which 50 wt% of the crystals have a larger crystal diameter and 50 wt% of the crystals have a smaller crystal diameter, can be shifted by more than 10% compared to the size of crystals grown in the absence of a crystal growth inhibitor just by adapting the quantities of crystal growth inhibitor in the antisolvent.
- the crystal size distribution could be determined by means of conventional techniques such as sieve analysis or using a light microscope.
- Scaling inhibitors suitable for use in the process of antisolvent crystallisation of a salt include any conventional scaling inhibitor.
- the scaling inhibitor for a brine crystallisation process is selected from the group consisting of oligopeptides, polypeptides, polymers bearing 2 or more carboxylic acid groups or ester groups, and optionally also phosphate, phosphonate, phosphino, sulfate and/or sulfonate groups, functionalised or unfunctionalised mono- saccharides, disaccharides, polysaccharides, polymers with one or more alcohol groups, humic acids, surfactants from a natural source such as disproportionated rosin acid soap, lactic acid, phospholipids, a suspension of yeast cells, a suspension of algae, N,N-diethyl-1 ,3-diaminopropane, ethylene diamine, polyisobutylene derivatives, N,N-dimethyl-1 ,3-diaminopropane, diethylene triamine, tri
- any water supply normally used in conventional salt crystallisation processes can be employed.
- closed loop antisolvent crystallisation process according to the present invention only small quantities of water are needed.
- water is needed to start the crystallisation process by dissolving part of the salt source.
- an aqueous salt slurry is removed from the crystalliser/settler.
- a quantity of water which preferably equals the quantity of water lost via the aqueous salt slurry is then added to the salt source in order to allow continuation of the process.
- the quantity of water needed in order to preserve a continuous crystallisation process can be lowered even further if the recycle of the centrifuge, to which the crystallised salt in an aqueous slurry is preferably fed, is recycled into the crystalliser/settler and/or to the salt source.
- the salt source is a subterraneous sodium chloride deposit in a well exploited by means of dissolution mining.
- the undersaturated aqueous salt solution which is removed from the nanofiltration unit and recycled to the sodium chloride deposit will contain certain levels of contaminants, such as K, Br, SO , Mg, Sr, and/or Ca contaminations.
- contaminants such as K, Br, SO , Mg, Sr, and/or Ca contaminations.
- the concentrations of said contaminations in the saturated aqueous salt solution leaving the sodium chloride deposit will increase during the process until said solution is also saturated with these contaminations.
- aqueous salt solutions in evaporation processes can be increased by reducing the quantity of the contaminations, such as anhydrite, gypsum, and polyhalite (and/or their strontium analogues), that dissolve in said aqueous solutions.
- This is typically done by adding certain agents to the water used in the process, or by mixing such agents with the salt source before adding the water.
- agents are conventionally called "retarding agents.” Although such agents are not required for the production of high-purity salt via the process of the present invention, if desired, these types of additives may be added to the water supply.
- the nanofiltration unit used in the process according to the present invention may comprise any conventional membrane which is able to separate the one or more antisolvents and the aqueous salt solution.
- the separation can be based upon molecular dimensions and/or upon electrostatic repulsion. Preferably, the separation is based on molecular dimensions only.
- a membrane is used which is permeable to salt and to the contaminations present in the aqueous solution, but not for antisolvent.
- the membrane is 75-100% selective for the separation of the antisolvent and the aqueous salt solution.
- the membrane is 85- 100% selective, even more preferably 95-100% selective, and most preferably 99.9-100% selective, in order to limit the quantity of antisolvent which will leave the nanofiltration unit together with the undersaturated aqueous salt solution.
- Antisolvent which does pass the membrane ends up in the undersaturated aqueous salt solution stream, from which it is removed from the system, or, in the preferred embodiment, recycled to the salt source. In the latter case, the undersaturated aqueous salt solution comprising some antisolvent is saturated again and returned to the crystalliser/settler unit as the saturated aqueous salt solution. Hence, the loss of antisolvent from the closed loop process will be insignificant.
- the optimum process temperature may vary. Typical temperatures for the separation of antisolvent and aqueous salt solution range from -10 to 110°C.
- the crystalliser/settler suitable for use in the process according to the present invention may be any conventional crystalliser/settler.
- it is a crystalliser/settler with a vertical feed hose system and no impeller or other moving parts, which comprises a continuous phase in the crystalliser containing the one or more antisolvents so that the salt will crystallise continuously.
- the crystalliser/settler is a reactor for precipitating and/or crystallising a substance comprising at least a bottom wall, a vertical wall preferably having a cylindrical cross-section, at least a first inlet, preferably at least first and second inlets for feeding first and second reactants to the reactor, and an outlet.
- Such a crystalliser/settler is for example described in US 4,747,917. However, most preferably, a crystalliser/settler is used wherein the one or more inlets comprise respective discharge openings arranged to direct the reactants to a surface and cause them to collide with the same, which is for example disclosed in NL 7215309.
- the crystallised salt is removed from the crystalliser/settler as an aqueous slurry. Preferably, it is fed to a centrifuge, where a wet salt is produced.
- the term "wet salt” is used to denominate salt containing a substantial quantity of water. More particularly, it is water-containing salt of which more than 50 wt% consists of the pure salt. Preferably, such salt contains more than 90 wt% of the pure salt. More preferably, the salt contains more than 92 wt% of the pure salt, while a salt of essentially the pure salt and water is most preferred.
- the wet salt will contain more than 0.5, preferably more than 1.0, more preferably more than 1.5 wt% of water.
- the wet salt may be dried in a conventional manner to obtain dried salt comprising less than 0.5 wt% of water.
- the process further comprises a reverse osmosis step before the overflow of the crystalliser/settler comprising antisolvent(s), water, and salt is fed to a nanofiltration unit.
- a reverse osmosis step water is removed from the mixture of the aqueous solution comprising the salt and the antisolvents, thus resulting in a more concentrated aqueous component. As a consequence, more of the salt will be forced to crystallise out.
- the process of osmosis is well-known and may be defined in general terms as the diffusion which proceeds through a semipermeable membrane separating two solutions comprising a solute in unequal concentrations.
- concentration of the solute in each solution will be equalised.
- pure water will diffuse from a first aqueous solution having a lower solute concentration through the semipermeable membrane into a second aqueous solution having a higher solute concentration.
- the second aqueous solution is subjected to an elevated hydraulic pressure relative to the hydraulic pressure existing in the first solution, diffusion of the water through the membrane is restrained.
- the pressure at which diffusion into the second solution is substantially halted is the osmotic pressure. If the hydraulic pressure applied to the second solution is further increased relative to that of the first solution so that the osmotic pressure of the second solution is exceeded, reverse osmosis occurs, i.e. water from the second aqueous solution diffuses through the membrane into the first aqueous solution.
- the osmotic pressure of saturated brine relative to water is approximately 300 bars. This means that for reverse osmosis, hydraulic pressures higher than 300 bars are required to crystallise salt. Such high pressures require special equipment. Moreover, high energy costs are involved. However, when an antisolvent is added to the brine, the solubility of the salt will decrease.
- a solution which essentially consists of water is used as a first solution, whereas for the second solution use is made of the overflow of the crystalliser/settler comprising antisolvent(s), water, and salt.
- the pressure applied to the second solution preferably is such that water will diffuse into the first solution.
- the pressure at which said reverse osmosis takes place is generally dependent upon the composition of the second solution. Normally, pressures between 1-250 bars, preferably 5-150 bars are required. More preferably, pressures between 8-100 bars are applied, even more preferably pressures between 10-80 bars, and most preferably pressures between 10-50 bars are applied.
- the first solution preferably is water of high quality which can be used as drinking water and/or process water, or, if so desired, may be safely discharged into streams, rivers, lakes, and the like, without additional treatments.
- the antisolvent-membrane technology according to the invention is suitable for the production of drinking water or process water from aqueous solutions comprising salt, using one or more antisolvents. Especially in regions where water is very scarce, reverse osmosis up to very high concentrations of the second solution is desired.
- the economical feasibility of the process according to the present invention depends on the pressure required to filter the brine through the nanofiltration unit or the reverse osmosis unit. It is noted that the pressure required for the reverse osmosis step can be strongly reduced when the first solution, which comprises water, is combined with a waste stream comprising alkali and/or alkaline earth salts, such as raw brine or an ion-comprising waste stream of a different process. Preferably, said waste stream may be safely discharged into streams, rivers, lakes, and the like, without additional treatments.
- the process further comprises a reverse osmosis step wherein water from a second solution, comprising at least part of the overflow of the crystalliser/settler, diffuses into a first solution, which comprises water and a waste stream comprising alkali and/or alkaline earth salts.
- Feeding part of said second solution to the crystalliser/settler has the advantage that the supersaturation level in the overflow of the crystalliser/settler will decrease, so that the quantity of salt which crystallises during the reverse osmosis step will be lowered.
- the antisolvent exhibits crystallisation inhibiting properties and/or comprises one or more crystal growth inhibitors, nucleation will be inhibited, which will also help to reduce the quantity of salt which will crystallise during the reverse osmosis step.
- the semipermeable membrane to be used in the reverse osmosis step according to the invention can be any conventional semipermeable membrane which has a definite permeability to water, while at the same time it is impermeable to the contaminants present in the aqueous solution and the antisolvents used.
- the semipermeable membrane has a permeability of less than 25% to antisolvent and contaminants, more preferably less than 15%, even more preferably less than 5%, and most preferably less than 0.1%.
- the reverse osmosis step preferably at least 10 wt% of water, based on the total weight of the aqueous solution comprising the salt, is removed.
- At least 50 wt% of water, even more preferably at least 75 wt% and most preferably at least 99 wt% of water, based on the total weight of the aqueous solution comprising the salt, is removed.
- a slightly adapted crystalliser/settler is used.
- the process is slightly adapted. For a schematic depiction of a flow chart for said embodiment see Fig. 2.
- water (1) is fed to a salt source (A), where it dissolves at least part of the salt.
- the salt solution which is preferably saturated, comes out of the salt source (2), it is fed to a conventional crystalliser/settler (B).
- One or more antisolvents (3) are also fed to the crystalliser/settler (B).
- Settler (B) preferably comprises an inlet pipe (F) and a partition wall (E) having a circular cross-section which is placed on the bottom wall, surrounding the lower end of the inlet pipe (F).
- the partition wall (E) has the effect of creating an upward flow, which causes the slurry to eddy.
- the height of the partition wall is less than 60%, preferably less than 50% of the effective height of the settler (B), since in such configurations the slurry above the partition wall (E) will eddy in a direction opposite to the flow within the partition wall (E), thus enhancing the settling of solids.
- the formed crystalline composition will settle in the space between the partition wall (E) and the side wall of the settler and is removed, in the form of a salt slurry, via one or more outlets (6) in the bottom part of the side wall.
- the salt slurry is fed to a centrifuge.
- said salt slurry that is removed from the crystalliser/settler (B) by one or more outlets (6) may still contain relatively large quantities of antisolvent, most preferably, before said salt slurry is fed to a centrifuge, it is fed to a washing leg, where a raw aqueous salt solution or a purified aqueous salt solution is used as washing medium. Especially if the salt slurry is to be used for electrolysis purposes, it is important to wash the adhered mother liquor and/or antisolvent from the salt crystals.
- the washing step is executed in the crystalliser/settler (B) by feeding (part of) the solution coming out of the source (2) to the crystalliser/settler (B) near the bottom in the space between the partition wall (E) and the side wall of the settler.
- the slurry removed from the crystalliser/settler is washed continuously with fresh antisolvent-free raw aqueous salt solution. Consequently, the salt slurry that is removed from the crystalliser/settler by the one or more outlets (6) is already free of antisolvent(s) prior to being sent to the centrifuge.
- the salt can be washed in an additional washing leg or on the centrifuge to remove contaminations dissolved in the solution coming out of the source (2).
- the overflow (4) of the crystalliser/settler comprising antisolvent(s), water, and salt is fed to the reverse osmosis unit (D), where part of the water which has dissolved in the antisolvent is removed.
- Produced demineralised water (9) is removed from the reverse osmosis unit (D), whereas 0-50 wt%, preferably 5-40 wt%, more preferably 10-25 wt% of the concentrated antisolvent stream leaving the reverse osmosis unit is fed (8) to the inlet pipe (F) of the settler (B), and 100-50 wt%, preferably 95-60 wt%, more preferably 90-75wt% is fed (10) to the nanofiltration unit (C) comprising a membrane wherein the one or more antisolvents are separated from the water and any salt still present in the antisolvent stream.
- the membrane is permeable to the salt and to the contaminations present in the antisolvent stream, but not to antisolvent.
- the purge (11) comprising water and dissolved salt and contaminations and the antisolvent (3) are removed from the nanofiltration unit.
- the purge (11) does not exceed 20 wt%, more preferably 10 wt% of the total weight of the stream (2) which was fed to the crystalliser/settler.
- the recovered antisolvent (3) from the nanofiltration unit is reused by being recycled to the crystalliser/settler.
- hydrophilic antisolvent preferably an antisolvent as defined above which will take up at least 5 wt% of water, more preferably at least 10 wt% of water, and most preferably at least 20 wt% of water, based on the total weight of the antisolvent.
- the hydrophilic antisolvent preferably does not take up more than 60 wt% of water, more preferably 50 wt% of water, and most preferably 40 wt% of water, based on the total weight of the antisolvent.
- Such a hydrophilic antisolvent will extract water from the aqueous solution comprising the salt, thus forcing said salt to crystallise.
- a hydrophilic antisolvent is applied which has a density of less than 1,200 kg/m 3 , even more preferably of less than 1,150 kg/m 3 , and most preferably of less than 1 ,125 kg/m 3 .
- a two-phase system will be formed inside the crystalliser/settler (B), with the overflow of the crystalliser/- settler (B) being mostly antisolvent comprising water.
- the salt will dissolve in said antisolvent/water phase.
- the overflow of the crystalliser/setller is fed to the nanofiltration unit (C) wherein the antisolvent(s) are separated from the aqueous solution.
- the recovered antisolvent(s) are recycled to the crystalliser/settler. (B), whereas the recovered aqueous solution can be drained off.
- Preferred hydrophilic antisolvents include but are not limited to choline chloride/phenol ionic liquid and polypropylene glycol.
- any additive suitable for improving the flux of the membrane in the nanofiltration unit and/or of the reverse osmosis membrane by preventing the membrane from fouling may be added to the antisolvent(s) and/or the aqueous salt solution.
- surfactants are added to the antisolvent in order to increase the flux of the membrane(s).
- the salt is sodium chloride.
- (Wet) sodium chloride according to the present invention is preferably used to prepare brine for electrolysis processes and most preferably for the modern membrane electrolysis processes.
- the sodium chloride produced in the above-described manner can also be used for consumption purposes. It is for instance suitable as table salt.
- polyethylene glycol not only functions as an antisolvent, it also exhibits crystal growth inhibiting properties. Especially the concentrations of K and Br are significantly lower than in normal electrolysis (vacuum) salt.
- a solution was prepared from:
- the experiment was performed under recycle conditions, i.e. the total permeate stream was fed back to the pressure side of the membrane.
- the CF i.e. the concentration factor
- PEG600 is an antisolvent that can be retained by a nanofiltration membrane.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/552,733 US20060150892A1 (en) | 2003-04-29 | 2004-04-23 | Processes Involving the Use of Antisolvent Crystallisation |
JP2006505267A JP2006524564A (en) | 2003-04-29 | 2004-04-23 | Methods involving the use of anti-solvent crystallization |
EP04729063A EP1620192A1 (en) | 2003-04-29 | 2004-04-23 | Processes involving the use of antisolvent crystallisation |
NO20055606A NO20055606L (en) | 2003-04-29 | 2005-11-28 | Processes involving the use of anti-solvent crystallization |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46638903P | 2003-04-29 | 2003-04-29 | |
US60/466,389 | 2003-04-29 | ||
US48647303P | 2003-07-11 | 2003-07-11 | |
US60/486,473 | 2003-07-11 | ||
EP03078314.6 | 2003-10-21 | ||
EP03078314 | 2003-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004096404A1 true WO2004096404A1 (en) | 2004-11-11 |
Family
ID=36651960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/004383 WO2004096404A1 (en) | 2003-04-29 | 2004-04-23 | Processes involving the use of antisolvent crystallisation |
Country Status (4)
Country | Link |
---|---|
US (1) | US20060150892A1 (en) |
EP (1) | EP1620192A1 (en) |
JP (1) | JP2006524564A (en) |
WO (1) | WO2004096404A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006087302A1 (en) * | 2005-02-18 | 2006-08-24 | Akzo Nobel N.V. | Process to prepare salt |
NL2000640C2 (en) * | 2007-03-05 | 2008-09-08 | Stichting Wetsus Ct Of Excelle | Method and system for purifying a liquid. |
CN100535389C (en) * | 2006-12-14 | 2009-09-02 | 国投新疆罗布泊钾盐有限责任公司 | Method for collecting kainite salt mine |
US8038884B2 (en) | 2005-02-18 | 2011-10-18 | Akzo Nobel N.V. | Process to prepare chlorine-containing compounds |
EP2671845A1 (en) | 2012-06-04 | 2013-12-11 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Crystallisation assisted membrane separation process |
CN103497749A (en) * | 2013-09-25 | 2014-01-08 | 天津亿利科能源科技发展股份有限公司 | Application of disodium EDTA (Ethylene Diamine Tetraacetic Acid) as sodium carbonate solution low-temperature crystallizing separation inhibitor |
CN111215017A (en) * | 2019-12-10 | 2020-06-02 | 山东省鲁洲食品集团有限公司 | Device and method for preventing liquid dextrin from aging in storage process |
EP4032601A4 (en) * | 2019-09-17 | 2022-07-27 | Asahi Kasei Kabushiki Kaisha | Method for concentrating raw material solution, and system for concentrating raw material solution |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0705159D0 (en) * | 2007-03-19 | 2007-04-25 | Prosonix Ltd | Process for making crystals |
NL1034470C2 (en) * | 2007-10-04 | 2009-04-07 | Stichting Wetsus Ct Of Excelleence | Method and device for purifying a liquid. |
ATE544829T1 (en) * | 2007-10-15 | 2012-02-15 | M I Swaco Norge As | METHOD FOR IMPROVED ADSORPTION OF AN INHIBITOR ON A WELL AREA |
JP5557981B2 (en) * | 2007-11-13 | 2014-07-23 | 赤穂化成株式会社 | Production method and product of water-soluble inorganic salt of fine particles |
ES2468568T3 (en) * | 2008-01-07 | 2014-06-16 | Council Of Scientific & Industrial Research | Process for preparing spherical crystals of common salt |
US8361952B2 (en) | 2010-07-28 | 2013-01-29 | Ecolab Usa Inc. | Stability enhancement agent for solid detergent compositions |
BR112013016778A2 (en) * | 2010-12-30 | 2017-06-20 | Feyecon Bv | dehydration process that employs an ionic liquid choline salt |
WO2012121703A1 (en) * | 2011-03-07 | 2012-09-13 | Empire Technology Development Llc | Systems, materials, and processes for isolating nanoparticles |
US20120311822A1 (en) * | 2011-06-10 | 2012-12-13 | Culkin Joseph B | Solute crystallizing apparatus |
CA2894162A1 (en) * | 2012-12-07 | 2014-06-12 | Advanced Water Recovery, Llc | Dissolved air flotation, antisolvent crystallisation and membrane separation for separating buoyant materials and salts from water |
US20140158616A1 (en) * | 2012-12-07 | 2014-06-12 | Advanced Water Recovery, Llc | Systems, apparatus, and methods for separating salts from water |
JP5962538B2 (en) * | 2013-02-27 | 2016-08-03 | Jfeエンジニアリング株式会社 | Water treatment method and apparatus |
FR3007753A1 (en) | 2013-06-26 | 2015-01-02 | Solvay | PROCESS FOR THE PREPARATION OF ALKALI METAL BICARBONATE PARTICLES |
CN103341284B (en) * | 2013-06-30 | 2015-06-17 | 金川集团股份有限公司 | Denitration system and method for SO2 flue gas sodium citrate absorption liquid |
WO2015021062A1 (en) | 2013-08-05 | 2015-02-12 | Gradiant Corporation | Water treatment systems and associated methods |
CA2925869A1 (en) * | 2013-09-23 | 2015-03-26 | Gradiant Corporation | Desalination systems and associated methods |
FR3025792B1 (en) * | 2014-09-17 | 2016-11-25 | Veolia Water Solutions & Tech | DEVICE FOR TREATMENT OF SATURATED SALIN EFFLUENTS IN THE PRESENCE OF PRECIPITATION INHIBITORS |
US10167218B2 (en) | 2015-02-11 | 2019-01-01 | Gradiant Corporation | Production of ultra-high-density brines |
US10308526B2 (en) | 2015-02-11 | 2019-06-04 | Gradiant Corporation | Methods and systems for producing treated brines for desalination |
CA2993007C (en) | 2015-07-29 | 2023-04-04 | Gradiant Corporation | Osmotic desalination methods and associated systems |
WO2017030937A1 (en) | 2015-08-14 | 2017-02-23 | Gradiant Corporation | Production of multivalent ion-rich process streams using multi-stage osmotic separation |
WO2017030932A1 (en) | 2015-08-14 | 2017-02-23 | Gradiant Corporation | Selective retention of multivalent ions |
US20190022550A1 (en) | 2016-01-22 | 2019-01-24 | Gradiant Corporation | Formation of solid salts using high gas flow velocities in humidifiers, such as multi-stage bubble column humidifiers |
WO2017147113A1 (en) | 2016-02-22 | 2017-08-31 | Gradiant Corporation | Hybrid desalination systems and associated methods |
US10881123B2 (en) | 2017-10-27 | 2021-01-05 | Frito-Lay North America, Inc. | Crystal morphology for sodium reduction |
US11041373B2 (en) * | 2018-03-13 | 2021-06-22 | Caverneer Holdings LLC | Brine management system for salt cavern development and operations |
CN108905264A (en) * | 2018-07-17 | 2018-11-30 | 凯莱英医药集团(天津)股份有限公司 | Application and continuous crystallization system of the continuous crystallization method in beta-lactam antibiotic synthesis |
SG11202101293TA (en) | 2018-08-22 | 2021-03-30 | Gradiant Corp | Liquid solution concentration system comprising isolated subsystem and related methods |
CN109485070B (en) * | 2018-11-23 | 2020-10-16 | 山东汇海医药化工有限公司 | Method for treating triazine ring sodium salt mother liquor slag |
CN110950360B (en) * | 2019-12-09 | 2022-09-30 | 广东飞南资源利用股份有限公司 | Separation method of sodium bromide and sodium chloride and recovery method of sodium bromide in solid bromine roasting slag |
WO2022108891A1 (en) | 2020-11-17 | 2022-05-27 | Gradiant Corporaton | Osmotic methods and systems involving energy recovery |
CN115777906A (en) * | 2021-09-10 | 2023-03-14 | 吉林大学 | Sodium chloride nano-micron particle and preparation method and application thereof |
CN118724380A (en) * | 2024-08-28 | 2024-10-01 | 北京中科环通工程科技有限公司 | Method for recycling waste incineration fly ash washing liquid |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3155458A (en) * | 1962-08-08 | 1964-11-03 | Morton Salt Co | Process for producing salt |
US4747917A (en) * | 1987-03-02 | 1988-05-31 | Olin Corporation | Scale-free process for purifying concentrated alkali metal halide brines containing sulfate ions as an impurity |
US5330618A (en) * | 1992-12-10 | 1994-07-19 | University Of Chicago | Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators |
CA2414292A1 (en) * | 2001-08-21 | 2003-02-21 | Akzo Nobel N.V. | Co-retarding agents for preparing purified brine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133771A (en) * | 1972-04-25 | 1979-01-09 | Pielkenrood-Vinitex B.V. | Apparatus for bringing about particle growth in a flowing liquid suspension |
-
2004
- 2004-04-23 US US10/552,733 patent/US20060150892A1/en not_active Abandoned
- 2004-04-23 JP JP2006505267A patent/JP2006524564A/en active Pending
- 2004-04-23 EP EP04729063A patent/EP1620192A1/en not_active Withdrawn
- 2004-04-23 WO PCT/EP2004/004383 patent/WO2004096404A1/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3155458A (en) * | 1962-08-08 | 1964-11-03 | Morton Salt Co | Process for producing salt |
US4747917A (en) * | 1987-03-02 | 1988-05-31 | Olin Corporation | Scale-free process for purifying concentrated alkali metal halide brines containing sulfate ions as an impurity |
US5330618A (en) * | 1992-12-10 | 1994-07-19 | University Of Chicago | Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators |
CA2414292A1 (en) * | 2001-08-21 | 2003-02-21 | Akzo Nobel N.V. | Co-retarding agents for preparing purified brine |
WO2003035551A1 (en) * | 2001-08-21 | 2003-05-01 | Akzo Nobel N.V. | Co-retarding agents for preparing purified brine |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8038883B2 (en) | 2005-02-18 | 2011-10-18 | Akzo Nobel N.V. | Process to prepare salt |
NO20073880L (en) * | 2005-02-18 | 2007-07-24 | Akzo Nobel Chemicals Int Bv | Process for the preparation of salt |
NO341704B1 (en) * | 2005-02-18 | 2018-01-02 | Akzo Nobel Chemicals Int Bv | Process for the preparation of salt |
US8038884B2 (en) | 2005-02-18 | 2011-10-18 | Akzo Nobel N.V. | Process to prepare chlorine-containing compounds |
WO2006087302A1 (en) * | 2005-02-18 | 2006-08-24 | Akzo Nobel N.V. | Process to prepare salt |
CN101119930B (en) * | 2005-02-18 | 2010-12-29 | 阿克佐诺贝尔股份有限公司 | Process to prepare salt |
CN100535389C (en) * | 2006-12-14 | 2009-09-02 | 国投新疆罗布泊钾盐有限责任公司 | Method for collecting kainite salt mine |
WO2008108636A1 (en) * | 2007-03-05 | 2008-09-12 | Stichting Wetsus Centre Of Excellence For Sustainable Water Technology | Method and system for purifying a liquid comprising crystal inhibitor recovery |
NL2000640C2 (en) * | 2007-03-05 | 2008-09-08 | Stichting Wetsus Ct Of Excelle | Method and system for purifying a liquid. |
EP2671845A1 (en) | 2012-06-04 | 2013-12-11 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Crystallisation assisted membrane separation process |
WO2013183993A1 (en) | 2012-06-04 | 2013-12-12 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Crystallisation assisted membrane separation process |
CN103497749A (en) * | 2013-09-25 | 2014-01-08 | 天津亿利科能源科技发展股份有限公司 | Application of disodium EDTA (Ethylene Diamine Tetraacetic Acid) as sodium carbonate solution low-temperature crystallizing separation inhibitor |
CN103497749B (en) * | 2013-09-25 | 2015-09-30 | 天津亿利科能源科技发展股份有限公司 | EDETATE SODIUM separates out the application of inhibitor as sodium carbonate solution low temperature crystallization |
EP4032601A4 (en) * | 2019-09-17 | 2022-07-27 | Asahi Kasei Kabushiki Kaisha | Method for concentrating raw material solution, and system for concentrating raw material solution |
CN111215017A (en) * | 2019-12-10 | 2020-06-02 | 山东省鲁洲食品集团有限公司 | Device and method for preventing liquid dextrin from aging in storage process |
CN111215017B (en) * | 2019-12-10 | 2021-06-25 | 山东省鲁洲食品集团有限公司 | Device and method for preventing liquid dextrin from aging in storage process |
Also Published As
Publication number | Publication date |
---|---|
JP2006524564A (en) | 2006-11-02 |
US20060150892A1 (en) | 2006-07-13 |
EP1620192A1 (en) | 2006-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060150892A1 (en) | Processes Involving the Use of Antisolvent Crystallisation | |
WO2006045795A2 (en) | Processes involving the use of antisolvent crystallization | |
CA2598339C (en) | Process to prepare salt | |
CA2584696C (en) | Method for crystallizing soluble salts of divalent anions from brine | |
DK2300371T3 (en) | METHOD OF PREPARING SODIUM CHLORIDE | |
JP2008516883A5 (en) | ||
JP2018535309A (en) | Process for recovering valuable lithium from lithium-containing brine | |
JP6376825B2 (en) | Removal of sodium sulfate from biologically treated wastewater | |
CN104909390B (en) | A kind of embrane method couples lime-flue gas purified brine technique | |
CA2741935C (en) | Sodium chloride production process with mother liquor recycle | |
CN1780671A (en) | Processes involving the use of antisolvent crystallisation | |
KR20060009873A (en) | Processes involving the use of antisolvent crystallisation | |
WO2000029327A1 (en) | Method for production of magnesium chloride from sea water | |
WO2024080132A1 (en) | Method for fixing carbon dioxide | |
RU2006476C1 (en) | Method of producing mineral substances of sea water | |
CN117164153A (en) | Method and system for recycling inorganic salt by fractional crystallization of salt-containing wastewater | |
AU693247B2 (en) | Process for the removal of organic poisons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004729063 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 171612 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057020461 Country of ref document: KR Ref document number: 2793/CHENP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048116106 Country of ref document: CN Ref document number: 2006505267 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9081 Country of ref document: GE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005136987 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 2006150892 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10552733 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2004729063 Country of ref document: EP Ref document number: 1020057020461 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 10552733 Country of ref document: US |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2004729063 Country of ref document: EP |