WO2004092791A1 - Phase film and polarizer - Google Patents

Phase film and polarizer Download PDF

Info

Publication number
WO2004092791A1
WO2004092791A1 PCT/JP2004/003976 JP2004003976W WO2004092791A1 WO 2004092791 A1 WO2004092791 A1 WO 2004092791A1 JP 2004003976 W JP2004003976 W JP 2004003976W WO 2004092791 A1 WO2004092791 A1 WO 2004092791A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
retardation
resin
phase difference
transmitted light
Prior art date
Application number
PCT/JP2004/003976
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Sekiguchi
Yasuhiro Sakakura
Hiraku Shibata
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2004092791A1 publication Critical patent/WO2004092791A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to a retardation film and a polarizing plate comprising a thermoplastic norbornene resin.
  • Cyclic polyolefin resin has a high glass transition temperature due to the rigidity of the main chain structure, is amorphous due to the presence of bulky groups in the main chain structure, has high light transmittance, and has an anisotropic refractive index. It has features such as low birefringence due to its low heat resistance, and is attracting attention as a transparent thermoplastic resin with excellent heat resistance, transparency and optical properties.
  • cyclic polyolefin-based resins can be applied to the fields of optical materials such as optical discs, optical lenses and optical fibers, and sealing materials such as optical semiconductor encapsulation by utilizing the above characteristics. Is being considered. Attempts have also been made to improve the problems of conventional optical films by applying them to optical films, as described below.
  • Films made of polycarbonate, polyester, triacetyl acetate, etc. which have been conventionally used as optical films, have a large photoelastic coefficient, so that a small stress change causes a phase difference to appear or change. Certain types have problems such as heat resistance and deformation due to water absorption. Therefore, films made of cyclic polyolefin-based resin have been proposed as various optical films.
  • Patent Documents 7 to 10 disclose a retardation plate formed of a film made of a cyclic polyolefin-based resin.
  • Prior Documents 11 to 13 describe that a film made of a cyclic polyolefin resin is used as a protective film for a polarizing plate.
  • Patent Document 14 discloses a substrate for a liquid crystal display element comprising a film of a cyclic polyolefin-based resin. These patent documents describe that a cyclic polyolefin resin having a water absorption of 0.05% or less can be easily obtained, and that it is characterized by the fact that low water absorption is obtained and is necessary. Have been.
  • the cyclic polyolefin-based resin has various configurations, the water absorption of all the cyclic polyolefin-based resins is not always 0.05% or less, so that the water absorption is 0.05%.
  • the cyclic polyolefin resin must have a structure consisting of only carbon atoms and hydrogen atoms. It was necessary to have a structure.
  • an optical film containing a thermoplastic norbornene-based resin having a polar group introduced into the molecule has been proposed (for example, see the prior art). 15 and Reference 16)). These optical films have excellent optical properties such as high transparency, small retardation applied to transmitted light, and uniform and stable retardation when stretched and oriented. It has the advantages of good heat resistance, good adhesion to other materials, good adhesion, etc., and low water absorption deformation.However, it does not have sufficient handling and processing properties during processing and use. Was.
  • liquid crystal display elements have been improved to provide higher resolution, higher luminance contrast ratios, and excellent visibility of viewing angles. Those having optical characteristics are required. For this reason, for example, a liquid crystal display device using a retardation film to which a retardation is given by stretching orientation as a viewing angle compensation film has been proposed, and is used as a viewing angle compensation film.
  • a retardation film for example, a retardation film described in Reference Document 17 has been proposed. This retardation film is a retardation film having a small variation in retardation and excellent viewing angle characteristics, but a liquid crystal display device having such a retardation film is required. It did not have enough of the desired properties.
  • liquid crystal used in the liquid crystal display device a TN type liquid crystal molecule is conventionally used in which liquid crystal molecules are horizontally aligned in a plane, but the liquid crystal molecules are vertically aligned in a plane centering on a television monitor. Since the VA type has been used, there is a demand for a retardation film capable of exhibiting a viewing angle characteristic most suitable for a liquid crystal display device composed of the VA type liquid crystal.
  • Prior document 17 Disclosure of the invention disclosed in Japanese Patent Application Laid-Open No. 11-18738
  • the present invention has been made in view of the above circumstances, and aims to exhibit various optical characteristics, heat resistance, and adhesion / adhesion to other materials of a thermoplastic norbornene resin.
  • a thin film retardation finolem with high toughness, excellent retardation characteristics, and good workability during processing and use, and a polarizing plate using this retardation film are provided. Is to do.
  • the retardation film of the present invention is a retardation film made of a thermoplastic norbornene-based resin, having a refractive index in the in-plane fast axis direction of nx, a refractive index in the in-plane slow axis direction of ny, and a film thickness direction.
  • nz is the refractive index of the film
  • d [nm] is the film thickness.
  • film A A film in which the specific conditions are the following conditions (a) to (e) (hereinafter, also referred to as “film A”).
  • film B A film in which the specific conditions are the following conditions (a) to (c), (f) and (g) (hereinafter also referred to as “film B”).
  • film C A film in which the specific conditions are the following conditions (a) to (d) and (h) (hereinafter, also referred to as “film C”).
  • the thermoplastic norbornene-based resin preferably has a glass transition temperature of 100 to 250 ° C.
  • thermoplastic norbornene-based resin has a structural unit a represented by the following general formula (1) and a structural unit b represented by the following general formula (2) Is preferred.
  • m is an integer of 1 or more
  • p is 0 or an integer of 1 or more
  • R 1 To R 4 each independently represent a hydrogen atom; a halogen atom; a substituted or unsubstituted carbon atom having a linking group containing an oxygen atom, a nitrogen atom, a zeo atom or a silicon atom. Or 30 hydrocarbon groups; or a polar group.
  • R 1 and R 2 , R 3 and R 4, or R 2 and R 3 are bonded to each other to form a carbocyclic or heterocyclic ring having a polycyclic structure by condensing a monocyclic structure or another ring.
  • the carbocyclic or heterocyclic ring formed may be an aromatic ring or a non-aromatic ring.
  • R 5 to R 8 are each independently a hydrogen atom, a halogen atom, an oxygen atom, a nitrogen
  • a substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms which may have a linking group containing an atom, a zeo atom or a silicon atom; or a polar group.
  • R 5 and R 6 , R 7 and R 8, or R 6 and R 7 are bonded to each other to form a monocyclic structure or a condensed other ring to form a carbocyclic or heterocyclic ring having a polycyclic structure.
  • a ring (however, except for the structure represented by the general formula (1)) may be formed, and the formed carbon ring or hetero ring may be an aromatic ring or a non-aromatic ring.
  • the number of bright spots per lm 2 on the film surface is preferably 10 or less.
  • the polarizing plate of the present invention has a configuration in which protective films are laminated on both sides of a polarizing film, and the protective film laminated on one surface of the polarizing film is formed by laminating a film A and a film B. Or film A or film B.
  • the polarizing plate of the present invention has a configuration in which a protective film is laminated on both surfaces of a polarizing film, and a protective film laminated on one surface of the polarizing film is formed of a film C, and is formed on the other surface of the polarizing film.
  • the laminated protective film is formed by laminating a film A and a film B, or a film A or a film B.
  • the number of luminescent spots per 1 m 2 on the protective film surface is preferably 10 or less.
  • the invention's effect The retardation film of the present invention exhibits high transparency, low retardation, and other optical properties, heat resistance, adhesion and adhesion to other materials, and the like, which the thermoplastic norbornene-based resin has, and has a small water-absorbing deformation.
  • Such a retardation film of the present invention can be provided with a light diffusing function, and can be laminated with a transparent conductive layer or an antireflection layer.
  • the polarizing plate of the present invention uses the above retardation film as a protective film. Since the retardation film has a protective function and a retardation providing function, it is used for a liquid crystal display element or the like. In this case, the number of parts can be reduced as compared with the conventional case.
  • a liquid crystal display device made of VA type liquid crystal can be manufactured with high production efficiency, and the viewing angle characteristics optimal for the obtained liquid crystal display device and the like can be obtained. And can be further reduced in thickness and size.
  • FIG. 1 is a view showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (a-6) obtained in Example 1.
  • FIG. 2 is a view showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (b-6) obtained in Example 2.
  • FIG. 3 is a view showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (c-6) obtained in Example 3.
  • FIG. 4 is a diagram showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (d-6) obtained in Example 4.
  • FIG. 5 is a diagram showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (e-6) obtained in Example 5.
  • FIG. 6 is a diagram showing the relationship between the wavelength dispersion value in transmitted light and the light wavelength of the comparative retardation film (f-6) obtained in Comparative Example 1.
  • FIG. 7 is a view showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the comparative retardation film (g-6) obtained in Comparative Example 2.
  • the retardation film of the present invention is a film made of a thermoplastic norbornene-based resin and having a function of giving a retardation to transmitted light, and includes the following three types of films (1) to (3).
  • retardation films are capable of giving a retardation to transmitted light because the polymer chains of the thermoplastic norportene resin as a material are oriented in a certain direction.
  • d [nm] indicates the film thickness
  • ⁇ ( ⁇ ) [nm] is the refractive index in the in-plane fast axis direction (the direction in which the refractive index is the minimum) is nx, and the in-plane slow axis direction (the direction in which the refractive index is the maximum).
  • ny is the refractive index in the film thickness direction and nz is the film thickness
  • I3 (550) [nm] is the light wave The figure shows the phase difference in the thickness direction of the transmitted light of 550 nm in length.
  • ⁇ ( ⁇ ) / a (550) indicates the wavelength dispersion of the retardation (550) [nm] in the film plane of the transmitted light having a light wavelength of 550 nm
  • / 3 ( ⁇ ) “ ⁇ (550)” indicates the wavelength dispersion of a phase difference of 3 (550) [nm] in the film thickness direction of transmitted light having a light wavelength of 550 nm.
  • the finolem thickness d is 0.1 to: LOO / zm (100 to 100, 000 nm), preferably 0.5 to 80 ⁇ (500 to 80, 000 nm), most preferably :! 7070 m (1, 000-70, OO O nm).
  • a product such as a liquid crystal display element can be reduced in size and thickness.
  • the phase difference ⁇ (550) is from 0 to 40 nm, preferably from 0 to 20 nm, more preferably from 0 to: 10 nm, and most preferably from 0 to 5 nm.
  • Retardation] 3 (550) is 150-300 nm, preferably 170-270 nm, more preferably 190-250 nm.
  • the wavelength dispersion ( ⁇ ) / a (550) of the phase difference ⁇ (550) is 0.95 to: L.05, preferably 0.97 to: L.03 in the light wavelength range of 400 to 700 nm. is there.
  • the wavelength dispersion ( ⁇ ) ⁇ ⁇ (550) of the phase difference (550) is 0.95 to: L.05, preferably 0.97 to: I.03 in the light wavelength range of 400 to 700 nm.
  • the film thickness d is 0.1 to: l O O juni (100 to 100, 000 nm), preferably 0.5 to 80 ⁇ (500 to 80, O O O nm), and most preferably :! ⁇ 70 / im (l, 000-70, OO O nm).
  • a product such as a liquid crystal display device can be reduced in size and thickness.
  • phase difference ⁇ (550) is 50 to: L 50 nm, preferably 70 to 130 nm, and more preferably 90 to 110 nm.
  • Phase difference] 3 (550) is 30 ⁇ :! OO nm, preferably 40 to 90 nm, more preferably 40 to 80 nm.
  • the wavelength dispersion ⁇ ( ⁇ ) / a (550) of the phase difference ⁇ (550) is 0.95 to: L.05, preferably 0.97 to: L.03 in the light wavelength range of 400 to 700 nm. is there.
  • the wavelength dispersions ( ⁇ ) and ⁇ (550) of the phase difference (550) are 0.95 to: L.05, preferably 0.97 to: 1 in the light wavelength range of 400 to 700 nm. 03.
  • the finolem thickness d is 0.1 to: ⁇ (100 to 100, 000 nm), preferably 0.5 to 80 / xm (500 to 80, 000 nm). Preferably:! 7070 ⁇ (1,000-70, OO O nm).
  • a product such as a liquid crystal display device can be reduced in size and thickness.
  • the phase difference ⁇ (550) is 0 to 40 nm, preferably 0 to 20 nm, and more preferably 0 to L 0 nm.
  • the phase difference (550) is from 0 to 80 nm, preferably from 10 to 60 nm, more preferably from 20 to 40 nm.
  • the wavelength dispersion (X) / a (550) of the phase difference ⁇ (550) is 0.95- in the light wavelength range of 400-700 nm: L.05, preferably 0.997- : I.03.
  • Wavelength dispersibility of phase difference / 3 (550)] 3 ( ⁇ ) / ⁇ (550) is 0.95 to: L.05, preferably 0.997 in a light wavelength range of 400 to 700 nm. ⁇ : 1.03.
  • the uniformity of the phase difference of light transmitted through the specific retardation film is high.
  • the variation at a light wavelength of 550 nm is usually 20% or less of soil, preferably 10% or less, more preferably 5% or less of soil. If the variation of the phase difference exceeds the range of 20% of the soil, when used in a liquid crystal display device or the like, color unevenness or the like occurs, and the performance of the display body deteriorates.
  • the specific retardation film as described above is formed from a thermoplastic norbornene-based resin as a molding material and stretched into, for example, a film formed by a melt extrusion method, a casting method, or the like described below (hereinafter, also referred to as a “film before processing”). It can be obtained by regularly aligning the polymer chains by performing processing such as alignment treatment.
  • “regular orientation” means that when a normal polymer is formed into a film by a melt extrusion method, a casting method, or the like, the magnitude of the film distortion generated in the process is large or small.
  • the molecular chain is in a random state without any specific direction, but the specific retardation film is generally composed of molecular chains that are regular in the uniaxial or biaxial direction of the film plane and in the thickness direction. Means that they are orientationally oriented. The degree of orientation regularity varies.
  • the specific retardation film is made of a thermoplastic norbornene-based resin. As the thermoplastic norbornene-based resin for obtaining the specific retardation film, the following (a) to (e) are used. (Hereinafter, also referred to as “specific polymer”).
  • (C) A hydrogenated product of the ring-opening polymer of (a) or (ring).
  • R 1 to R 4 are each independently a hydrogen atom; a halogen atom; an oxygen atom, a nitrogen atom, a zeo atom, or a silicon atom.
  • R 1 and R 2 , R 3 and R 2 and R 3 are bonded to each other to form a carbocyclic or heterocyclic ring having a polycyclic structure by condensing a monocyclic structure or another ring.
  • the carbocyclic or heterocyclic ring formed may be an aromatic ring or a non-aromatic ring.
  • the specific polymer a compound represented by the following general formula (4) (hereinafter, also referred to as “specific monomer b”) as a copolymerizable monomer is used. Obtained by copolymerizing monomer b Preferably, it is According to the specific polymer having such a configuration, the finally obtained specific retardation film has more excellent mechanical properties such as toughness, and is required for the specific retardation film by stretching. It is easy to obtain a desired phase difference.
  • R 1 to R 4 each independently represent a hydrogen atom; a halogen atom; a linking group containing an oxygen atom, a nitrogen atom, an iodine atom or a silicon atom, substituted or unsubstituted.
  • R 1 and R 2 , R 3 and R 4, or R 2 and R 3 are bonded to each other to form a monocyclic structure or a condensed other ring to form a carbocyclic or heterocyclic ring having a polycyclic structure (however, , Except for the structure represented by the general formula (1)), and the carbocyclic or heterocyclic ring formed may be an aromatic ring or a non-aromatic ring.
  • the specific polymer is a ring-opened polymer of the specific monomer a and the specific monomer b, and the structural unit derived from the specific monomer a represented by the general formula (1) ( Hereinafter, also referred to as “structural unit a”.) And a structural unit derived from the specific monomer b represented by the general formula (2) (hereinafter, also referred to as “structural unit b”). It's preferable that there is.
  • the specific polymer having such a configuration is preferable because it can balance heat resistance and heat processability by stretching or the like!
  • the halogen atom in the general formulas (1) to (4) includes a fluorine atom, a chlorine atom and a bromine atom.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, and a propyl group; a cycloalkyl group such as a pentyl group and a hexyl group; a vinyl group, an aryl group, and a And alkenyl groups such as benzyl groups.
  • substituted or unsubstituted hydrocarbon group in the general formulas (1) to (4) may be directly bonded to the ring structure, or may be bonded via the linking group (1). Have been Is also good.
  • linking group examples include a divalent hydrocarbon group having 1 to 10 carbon atoms [eg, an alkylene group represented by one (CH 2 ) resort-(where q is an integer of 1 to 10)]; oxygen atom, a nitrogen atom, linking groups [e.g., a carbonyl group containing Iou atom or Kei atom (-CO-), O key aryloxycarbonyl group (-0 (CO) -), sulfone group (- S0 2 -), ether bond (-0-), Chioeteru bond (- S_), imino group (- NH-), amide bond (- NHCO-, -CONH-), siloxane bond (-OS i (R 9 2) - ( wherein, R 9 is an alkyl group such as methyl, ethyl, etc.)] or a group in which two or more of these are bonded, etc.
  • linking groups e.g., a carbonyl group containing Iou atom or Kei
  • Examples of the polar group include a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, and alkoxycarbonyl.
  • Examples include a triorganosiloxy group, a triorganosilinole group, an amino group, an acyl group, an alkoxysilyl group, a sulfonyl-containing group, a carboxyl group, etc.
  • the alkoxy group includes, for example, a methoxy group Alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group; aryloxycarbonyl group such as phenoxycarbonyl group, naphthyloxycarbonyl group, and the like.
  • the amino group include a primary amino group
  • examples of the alkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group.
  • Specific examples of the specific monomer a include:
  • Pentacyclo [9. 2. 1. I 3 '9 0 2.' 10 0 4.. '8] - 12- pentadecene, pentacyclo [9. 2. 1. I 5' 8 0 2 '. 10 0 4' 9 ] ⁇ 12-pentadecene,
  • the specific monomer a is not limited to these compounds. These compounds can be used alone or in combination of two or more as the specific monomer a.
  • R 1 and R 3 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 2 and R 4 correspond to a hydrogen atom or a monovalent organic group
  • at least one of R 2 and R 4 is a polar group other than a hydrogen atom and a hydrocarbon group. This is preferable from the viewpoint of enhancing the adhesion.
  • the content of the polar group in the obtained specific polymer is determined by a desired function or the like required for the finally obtained specific retardation film, and is not particularly limited.
  • the structural unit derived from the specific monomer a having a polar group in all the structural units derived from the constant monomer a is usually 1 mol% or more, preferably 5 mol% or more, more preferably 10 mol% or more. Yes, all structural units derived from the specific monomer a may have a polar group.
  • R 2 and R 4 has a polar group represented by the following general formula (5).
  • the glass transition temperature and water absorption of the coalesced are preferred in terms of controlling the temperature.
  • n is an integer of 0 to 5
  • R 1 (5 is a monovalent organic group.)
  • the monovalent organic group represented by R 1 (1 ) in the general formula (5) include, for example, an alkynole group such as a methyl group, an ethyl group, and a propynole group; a phenyl group, a naphthyl group, an anthracenyl group, Aryl groups such as a aryl group; and other monovalent groups having an aromatic ring such as fluorenes such as diphenylsulfone and tetrahydrofluorene and a heterocyclic ring such as a furan ring and an imido ring.
  • an alkynole group such as a methyl group, an ethyl group, and a propynole group
  • a phenyl group, a naphthyl group, an anthracenyl group such as a aryl group
  • other monovalent groups having an aromatic ring such as fluorenes such as diphenylsulfone and
  • n is an integer of 0 to 5, preferably 0 to 2, and more preferably 0.
  • the specific monomer a in which n is 0 is preferable because its synthesis is easy.
  • the compound a is preferably a compound of the general formula (3) in which an alkyl group is further bonded to the carbon atom to which the polar group represented by the general formula (5) is bonded, whereby the specific polymer obtained is obtained.
  • the balance between the heat resistance and the water absorption can be achieved.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 2, and particularly preferably 1.
  • Specific examples of the specific monomer b include: Bicyclo [2.2.1] hept-2-ene,
  • the specific monomer b is not limited to these conjugates.
  • these compounds can be used alone or in combination of two or more as the specific monomer b.
  • R 5 to R 8 I in the general formula (4) are all hydrogen atoms, or one of them is a hydrocarbon group having 1 to 30 carbon atoms, and all others are hydrogen atoms.
  • R 5 to R 8 1S are all hydrogen atom, or either 1 One of which is a methynole group, an ethyl group or a phenyl group, and all of which are hydrogen atoms are preferable in that a specific polymer having high heat resistance of '14 can be obtained.
  • bicyclo [2.2.1] Heputo 2 E down, tricyclo [5.2.2 1.0 2 '6] dec-one 8-E down, 5- phenylene Rubishikuro [2. 2.1] Heputo 2 -Ene is preferred because the effect of improving the toughness of the finally obtained specific retardation film is extremely remarkable.
  • the specific polymer obtained by copolymerizing the specific monomer a and the specific monomer b is copolymerized with another copolymerizable monomer other than the specific monomer a and the specific monomer b. It may be polymerized.
  • Examples of other copolymerizable monomers include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclootaten, and dicyclopentadiene.
  • the number of carbon atoms in cycloolefin is preferably from 4 to 20, more preferably from 5 to 12.
  • a specific monomer in the presence of an unsaturated hydrocarbon polymer having an olefinic unsaturated bond in the main chain such as polybutadiene, polyisoprene, styrene-butadiene copolymer, ethylene-non-conjugated diene copolymer, polynorbornene, etc.
  • the polymer a and, if necessary, the specific monomer b may be polymerized, and the specific polymer thus obtained is useful as a raw material for a resin having high impact resistance.
  • the intrinsic viscosity (7; inh ) of the specific polymer measured at 30 ° C. in a cross-section form is preferably 0.2 to 5 d1 Zg. More preferably, it is 0.3 to 4 dlZg, particularly preferably 0.5 to 3 dlZg. If the intrinsic viscosity exceeds 5 dlZg, the solution viscosity becomes too high, and the processability may deteriorate. If the intrinsic viscosity is less than 0.2 dlZg, the film strength may decrease.
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is usually 8,000 to 1,000,000, preferably 10,000 to 500. , 000, more preferably 20,000 to 1 00,000, particularly preferably 30,000 to 100,000, and weight-average molecular weight (Mw) power usually 20,000 to 3,000,000, preferably 30,000 to 100,000, It is preferably in the range of 40,000 to 500,000, particularly preferably in the range of 40,000 to 300,000.
  • the molecular weight distribution of the specific polymer is usually 1.5 to 10, preferably 2 to 8, more preferably 2.5 to 5, particularly preferably 2.5 to 4.5. .
  • the saturated water absorption of the specific polymer at 23 ° C. is usually 0.05 to 1% by weight, preferably 0.1 to 0.7% by weight, more preferably 0.1 to 0.5% by weight.
  • various optical properties such as transparency, phase difference, uniformity of phase difference or dimensional accuracy are maintained even under conditions such as high temperature and high humidity, and adhesion to other materials is maintained. Because of its excellent properties and adhesion, it does not peel off during use, and also has good compatibility with additives such as antioxidants, so that the degree of freedom of addition increases.
  • the saturated water absorption is less than 0.05% by weight, adhesion and adhesion to other materials are poor, and peeling is liable to occur during use, and there are restrictions on the addition of additives such as antioxidants. .
  • the saturated water absorption exceeds 1% by weight, the absorption of water tends to cause changes in optical characteristics and dimensional changes.
  • the above saturated water absorption is a value determined by immersing in water at 23 ° C for one week and measuring the weight gain in accordance with ASTM D570.
  • SP value of the specific polymer is preferably 10 to 30 (MP a 1/2), more preferably 12 to 25 (MPa 1/2), and particularly preferably 15 to 20 (MP a 3 / 2 ).
  • the thermoplastic norbornene-based resin can be easily dissolved in a general-purpose solvent in the film production described later, and the production of the film can be stably performed.
  • the properties of the finally obtained specific retardation film become uniform, and furthermore, the adhesiveness and the adhesion to the substrate can be improved, and the water absorption can be controlled appropriately. Can be controlled.
  • the glass transition temperature (Tg) of the specific polymer is determined by, for example, adjusting the type of the structural unit a and the structural unit b or the ratio of the structural unit a to the structural unit b, or adding an additive. Although it can be adjusted as appropriate, it is usually 100 to 250 ° C, preferably 110 to 200 ° C, and more preferably 120 to 180. C. If the T g is less than 100 ° C, the heat distortion temperature will be low, which may cause a problem in heat resistance. Optical properties can be significantly affected by temperature. If the Tg is 250 ° C or more, the possibility of thermal degradation of the thermoplastic norbornene-based resin increases when the material is heated to around Tg for stretching or the like.
  • the ratio (a / b) between the structural unit a and the structural unit b is preferably aZb Q 5/5 to 595, more preferably a molar ratio. 95/5 to 60/40. If the ratio of the structural unit a is larger than the above range, the effect of improving the toughness may not be expected. On the contrary, if the ratio of the structural unit a is smaller than the above range, the glass transition temperature becomes low, and the heat resistance becomes high. There may be problems with sex.
  • the ratio (composition ratio) of the structural unit a to the structural unit b in the polymer preferably has a small variation in the entire range of the molecular weight distribution.
  • the composition ratio at an arbitrary molecular weight relative to the ratio of the specific monomer a and the specific monomer b subjected to the polymerization reaction is within ⁇ 50%, preferably within ⁇ 30%, and More preferably, a more uniform specific retardation film can be obtained by keeping the variation within ⁇ 20%. Further, by keeping the content within such a range, it is possible to obtain more uniform retardation when stretch-oriented.
  • the specific monomer a and, if necessary, the specific monomer b or other copolymerizable monomers are subjected to ring-opening copolymerization, or after the ring-opening copolymerization of these monomers.
  • the conditions for producing a specific polymer obtained by hydrogenating the obtained ring-opening copolymer will be described.
  • the ring-opening polymerization reaction of the monomer is performed in the presence of a metathesis catalyst.
  • the metathesis catalyst comprises (a) at least one selected from compounds of W, Mo, and Re; (b) a group IA element (eg, Li, Na, K, etc.) of the Deming periodic table; Element (eg, Mg, Ca, etc.), Group IIB element (eg, Zn, Cd, Hg, etc.), Group IIIB element (eg, B, A1, etc.), Group IVA element (eg, Ti, ⁇ r, etc.) or IVB
  • a compound of a group III element for example, Si, Sn, Pb, etc. which is a catalyst comprising a combination of at least one element selected from those having at least one element-carbon bond or the element-hydrogen bond. is there.
  • an additive (c) described below may be added to the mixture.
  • suitable as component W as a representative example of the compounds of Mo or Re is a WC 1 6, Mo C 15, ReOC 13 and compounds described in JP-A-1 240 517 it is and Ageruko.
  • component (b) examples include n—C 4 H 9 L i, (C 2 H s ) 3 Al, and (C 2 H 5 )
  • component (c) As typical examples of the component (c), alcohols, aldehydes, ketones, amines and the like can be suitably used, and further, compounds described in JP-A-1-240517 can be used. .
  • the amount of the metathesis catalyst used is determined by the molar ratio of the component (a) to the specific monomer a and the specific monomer b (hereinafter, both of them are referred to as “specific monomer”). :
  • the specific monomer is usually in the range of 1: 500 to 1: 50,000, preferably in the range of 1: 1000 to 1: 1000.
  • the ratio of the component (a) to the component (b) is such that “(a) :( b)” is in the range of 1: 1 to 1:50, preferably 1: 2 to 1:30 in terms of metal atom ratio.
  • the molar ratio of the component (a) to the component (c) is such that the molar ratio of “(c): (&)” is 0.005: 1 to 15: 1, preferably 0.05: 1 to 7: 1. It is.
  • the molecular weight of the specific polymer can be adjusted by the polymerization temperature, the type of catalyst, and the type of solvent. In the present invention, it is preferable to adjust the molecular weight by coexisting a molecular weight modifier in the reaction system.
  • Suitable molecular weight regulators include, for example, ⁇ -olefins such as ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1_heptene, 1-otaten, 1-nonene, 1-decene and styrene. Among them, 1-butene and 1-hexene are preferable.
  • molecular weight regulators can be used alone or in combination of two or more.
  • the amount of the molecular weight modifier used is 0.0 per mole of the specific monomer used in the polymerization reaction.
  • It is from 0.05 to 0.6 mol, preferably from 0.02 to 0.5 mol.
  • Solvent for ring-opening polymerization reaction Solvents used in the ring-opening polymerization reaction include, for example, alkanes such as pentane, hexane, heptane, octane, nonane and decane; cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin and norbornane; benzene Aromatic hydrocarbons such as benzene, tonolen, xylene, ethylbenzene and cumene; halogens such as chlorobutane, bromohexane, chloromethylene, dichloroethane, hexamethylene dibromide, benzene, chloroform and tetrachloroethylene Saturated carboxylic esters such as ethyl acetate, n-butyl acetate, so-butyl acetate, and methyl prop
  • the solvent is used in an amount of solvent: specific monomer (weight ratio) force S, usually in an amount of 1: 1 to 10: 1, preferably in an amount of 1: 1 to 5: 1.
  • the ring-opening copolymer obtained by the above ring-opening polymerization can be used as a specific polymer as it is, but a hydrogenated product in which the remaining olefinic unsaturated bond in the ring-opening copolymer is hydrogenated. Les, which you prefer.
  • the hydrogenated product has excellent thermal stability, and its properties are less likely to be degraded by heating during film formation and elongation, or during use as a product.
  • the hydrogenation ratio with respect to the olefinic unsaturated bond is 50% or more, preferably 70% or more, more preferably 90% or more, and particularly preferably 98% or more.
  • the aromatic ring is not substantially hydrogenated after hydrogenation.
  • the hydrogenation reaction is carried out in a usual manner, that is, a hydrogenation catalyst is added to a solution of the ring-opening copolymer, and hydrogen gas at normal pressure to 300 atm, preferably 3 to 200 atm is added to the solution at 0 to 2 atm. It is carried out by working at 00 ° C, preferably at 20-180 ° C.
  • the hydrogenation catalyst those used for a normal hydrogenation reaction of an olefinic compound can be used.
  • a heterogeneous catalyst and a homogeneous catalyst are publicly available. Is knowledge. When hydrogenating a ring-opening polymer having a substituent having an aromatic ring in the molecule, it is preferable to select a condition under which the unsaturated bond of the aromatic ring is not substantially hydrogenated.
  • the heterogeneous catalyst include a solid catalyst in which a noble metal such as palladium, platinum, nickel, rhodium, and ruthenium is supported on a carrier such as carbon, silica, alumina, and titania.
  • homogeneous catalysts include nickel naphthenate z triethylaluminum, nickel acetylacetonato / triethylaluminum, and cobalt otatenate.
  • titanocene dichloride Z getyl aluminum monochloride, rhodium acetate, rhodium chlorotris (triphenylphosphine), rhodium dichlorotris (triphenylinolephosphine) norethenium, chlorohydranoleboninoletris (trifeninole) Phosphine) ruthenium, dichlorocarbonyltris (triphenylphosphine) ruthenium, and the like.
  • the form of the catalyst may be powder or granular.
  • hydrogenation catalysts are used in a ratio of a ring-opening polymer: hydrogenation catalyst (weight ratio) of 1: 1 ⁇ 10 16 to 1: 2.
  • the specific polymer may contain known thermoplastic resins, thermoplastic elastomers, rubbery polymers, organic fine particles, inorganic fine particles, and the like as long as transparency and heat resistance are not impaired.
  • antioxidants include 2,6-di-t-butyl-4-monomethylphenol, 2,2'-dioxy-3,3,1-di-t-butyl-1,5,5,1-dimethyldiphenylmethane, Thrakis [methylene-3- (3,5-di-t-butyl-1-hydroxyphenyl) propionate] methane, pentaerythyltetrakis [methylene-13- (3,5-di-t-butyl-4-) Hydroxyphenyl) propionate], 1,1,3-tris (2-methyl-4-hydroxy-1-5-t-butylphenyl) butane, 1,3,5-trimethinole-1,2,4,6-tris (3,5-di — T-butyl-4-hydroxybenzyl) benzene, stearyl — ⁇ - (3,5-di-t-butyl-4-hydroxybenzyl) benzene, stearyl — ⁇ - (3,5-di
  • ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-14-methoxybenzophenone, and the like.
  • the amount of these additives is usually 0.01 to 3 parts by weight, preferably 0.05 to 2 parts by weight, based on 100 parts by weight of the specific polymer.
  • additives such as a lubricant may be added for the purpose of improving processability.
  • the unprocessed film is obtained by molding a thermoplastic norbornene-based resin made of a specific polymer into a film or sheet by a melt molding method or a solution casting method (solvent casting method).
  • solvent casting method it is preferable to use the solvent casting method in order to obtain a pre-processing film having high uniformity in thickness and good surface smoothness.
  • the solvent casting method includes, for example, dissolving or dispersing a thermoplastic norbornene-based resin in a solvent to prepare a film-forming solution containing a thermoplastic norbornene-based resin at an appropriate concentration. Is poured or coated on a suitable carrier, dried, and then separated from the carrier.
  • the concentration of the thermoplastic norbornene-based resin is usually 0.1 to 90% by weight, preferably 1 to 50% by weight, more preferably 10 to 10% by weight. To 35% by weight.
  • the concentration is less than 0.1% by weight, it may be difficult to obtain a pre-processed film having a required thickness, and when the solvent is removed by drying, the evaporation of the solvent may occur. Foaming or the like is likely to occur with the release, which may make it difficult to obtain a pre-processed film having good surface smoothness.
  • the concentration exceeds 90% by weight, the solution viscosity of the film-forming solution becomes too high, so that it may be difficult to obtain a film having a uniform thickness and surface condition.
  • the viscosity of the film-forming solution at room temperature is usually 1 to: I, 000,000 (mPas), preferably 10 to 100,000 (mPa's), more preferably 100 to 50,000. 0 (mPas), particularly preferably 1000 to 40,000 (mPas).
  • Solvents used for preparing the film forming solution include aromatic solvents such as benzene, toluene, and xylene; cellosolve solvents such as methyl sorb, ethyl sorb; 1-methoxy-12-propanol; and diacetone alcohol.
  • SP value solubility parameter force normal 10 to 30 (MP a 1/2), preferably 10 to 25 (MP a 1/2), more preferably 15-25 (MP a 2 ), and particularly preferably, a solvent in the range of 15 to 20 (MPa 1/2 ) can be used to obtain a processed film having excellent surface uniformity and optical characteristics.
  • the above solvents can be used alone or in combination of two or more.
  • the range of the SP value of the obtained mixed solvent is preferably within the above range.
  • the SP value of the mixed solvent can be obtained from the weight ratio of each solvent constituting the mixed solvent.
  • thermoplastic norbornene resin When a mixed solvent is used as the solvent in the film-forming liquid, a pre-processed film having a light diffusion function is obtained by combining a good solvent and a poor solvent for the thermoplastic norbornene resin.
  • the SP value of the thermoplastic norbornene resin is SPx
  • the SP value of the good solvent of the thermoplastic norbornene resin is SPy
  • the SP value of the poor solvent of the thermoplastic norbornene resin is SPz.
  • the difference between SPx and SPy is preferably 7 or less, more preferably 5 or less, particularly preferably 3 or less
  • the difference between SPx and SPz is preferably 7 or more, more preferably 8 or more, and particularly preferably 9 or less.
  • the difference between SPy and SPz is preferably 3 or more, more preferably 5 or more, and still more preferably 7 or more, a light diffusing function can be imparted to the obtained unprocessed film.
  • the specific retardation film finally obtained can be made to have a light diffusion function.
  • the proportion of the poor solvent in the mixed solvent is preferably 50% by weight or less, more preferably 30% by weight or less, particularly preferably 15% by weight or less, and most preferably 10% by weight or less.
  • the difference between the boiling point of the poor solvent and the boiling point of the good solvent is preferably 1 ° C or more, more preferably 5 ° C or more, particularly preferably 10 ° C or more, most preferably 20 ° C or more, In particular, the boiling point of the poor solvent is preferably higher than the boiling point of the good solvent.
  • the temperature for dissolving or dispersing the thermoplastic norbornene-based resin in the solvent may be room temperature or high temperature. By sufficiently stirring, a film-forming liquid in which the thermoplastic norbornene-based resin is uniformly dissolved or dispersed can be obtained.
  • a coloring agent such as a dye or a pigment can be appropriately added to the film forming liquid, whereby a colored unprocessed film can be obtained.
  • a leveling agent may be added to the film forming liquid for the purpose of improving the surface smoothness of the obtained unprocessed film.
  • a leveling agent various types can be used as long as it is a general one. Specific examples thereof include a fluorine-based nonionic surfactant, a special acrylic resin-based leveling agent, and a silicone-based leveling agent. And the like.
  • Carriers for forming the liquid layer of the film forming liquid include metal drums, steel belts, polyester films made of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and polytetrafluoroethylene belts. Can be used.
  • a method using a die coater, a spray method, a brush coating method, a roll coating method, a spin coating method, a dipping method, or the like can be used.
  • the thickness and surface smoothness of the obtained unprocessed film can be controlled.
  • a surface-treated film may be used.
  • the surface treatment method examples include a commonly used hydrophilic treatment method, for example, an acrylic resin, a method of coating a sulfonic acid group-containing resin, and laminating with a laminate, or a method of corona discharge treatment or the like.
  • a specific method for removing the solvent in the liquid layer is not particularly limited, and a commonly used drying treatment method, for example, a method of passing a solvent through a drying oven with a number of rollers is used.
  • a drying treatment method for example, a method of passing a solvent through a drying oven with a number of rollers is used.
  • the drying step must be performed in two or more stages. It is preferable to control the temperature or air volume in each step.
  • the residual solvent content in the unprocessed film thus obtained is usually at most 10% by weight, preferably at most 5% by weight, more preferably at most 1% by weight, particularly preferably at most 0.5% by weight. . If the residual solvent content in the unprocessed film exceeds 10% by weight, the specific retardation film obtained by stretching the unprocessed film is subject to aging when actually used. It is not preferable because the dimensional change is large and the glass transition temperature is lowered by the residual solvent, and the heat resistance is also lowered.
  • the amount of the residual solvent in the film before processing is usually 10 to 0.1% by weight, preferably 5 to 0.1% in order to stably and uniformly express the retardation in the film by the stretching orientation treatment. % By weight, more preferably 1 to 0.1% by weight.
  • the thickness of the film before processing is usually:! ⁇ 500 ⁇ (1,000-500, OOO nm), preferably:! ⁇ 300 ⁇ (1,000-300, OOO nm), more preferably 1-200 jum (1,000-200, 000), most preferably 1: 100 ⁇ (1,000-100, OOO nm) ). If the thickness is less than 1 ⁇ m, it becomes difficult to substantially handle the unprocessed film. On the other hand, if the thickness is 500 ⁇ or more, when the unprocessed film is wound into a roll, a so-called “winding” may be attached, and handling in post-processing or the like may be difficult. is there.
  • the thickness distribution of the film before processing is usually within 20% of soil, preferably within 10%, more preferably within ⁇ 5%, and particularly preferably within ⁇ 3% of the average value.
  • the variation in thickness per 1 cm is usually 10% or less, preferably 5% or less, more preferably 1% or less, and particularly preferably 0.5% or less.
  • the thickness distribution of the film before processing By controlling to be within the range, it is possible to prevent the occurrence of phase difference unevenness when performing the stretching orientation treatment on the film before processing.
  • the stretching method for producing the specific retardation film include a known uniaxial stretching method and a biaxial stretching method. That is, horizontal uniaxial stretching method by tenter method, compression stretching method between holes, longitudinal uniaxial stretching method using two sets of rolls having different circumferences, biaxial stretching method combining horizontal uniaxial and longitudinal uniaxial, inflation It is better to use a stretching method by the method.
  • the stretching speed is usually 1 to 5,000% / min, preferably 50 to ⁇ , 000% / min, more preferably 100 to 1,000 ° / 0 min. Preferably, it is 100 to 500%.
  • stretching may be performed simultaneously in two directions, or after uniaxial stretching, stretching may be performed in a direction different from the initial stretching direction.
  • the intersection angle between the two stretching axes for controlling the shape of the refractive index ellipsoid of the stretched film is not particularly limited because it is determined by desired characteristics, but is usually in the range of 120 to 60 degrees. It is.
  • the stretching speed may be the same or different in each stretching direction, and is usually 1 to 5,000%, preferably 50 to 1,000% / min, and more preferably 100 to 1,000% / min. 1,1,000% Z min, particularly preferably 100-500% min.
  • the processing temperature in the stretching orientation treatment is not particularly limited, but is usually Tg ⁇ 30 ° C, preferably Tg ⁇ 15 ° C, based on the glass transition Tg of the thermoplastic norbornene resin used. More preferably, it is in the range of Tg-5 ° C to Tg + 15 ° C.
  • the stretching ratio is not particularly limited because it is determined by desired properties, but it is usually 1.01 to 10 times, preferably 1.03 to 5 times, and more preferably 1.03 to 3 times. If the stretching ratio is 10 times or more, it may be difficult to control the phase difference.
  • the stretched film may be cooled as it is, but is kept in an atmosphere of Tg-20 ° C to Tg for at least 10 seconds, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes. It is preferable to heat set. This makes it possible to obtain a stable retardation film with little change over time in the retardation of transmitted light.
  • the dimensional shrinkage due to heating of the specific retardation film is generally 10% or less, preferably 5% or less, more preferably 3% or less, and more preferably 3% or less, when heating at 100 ° C. for 500 hours. Or less than 1%.
  • thermoplastic norpolene resin In order to keep the dimensional shrinkage ratio within the above range, it is necessary to select a specific monomer a, a specific monomer b, or another copolymerizable monomer which is a raw material of the thermoplastic norpolene resin. It can be controlled by a casting method or a stretching method.
  • the dimensional shrinkage due to the force D heat of the unprocessed film in the state where the stretching orientation treatment is not performed is usually 5% or less, preferably 3% when heating at 100 ° C. is performed for 500 hours. Or less, more preferably 1% or less, particularly preferably 0.5% or less.
  • the film stretched as described above gives a phase difference to the transmitted light due to the orientation of the molecules by stretching.
  • This phase difference depends on the type of thermoplastic norbornene resin used as a raw material. It can be controlled by adjusting the stretching ratio, the stretching temperature or the thickness of the film before stretching (the film before processing). For example, regarding the stretching ratio, even if the film has the same thickness before stretching, the larger the stretching ratio, the larger the absolute value of the phase difference of the transmitted light tends to be. A film giving a phase difference to transmitted light can be obtained. Regarding the thickness of the film before stretching (the film before processing), the absolute value of the phase difference given to the transmitted light tends to increase as the thickness of the film before stretching increases even if the stretching ratio is the same.
  • a retardation film that gives a desired retardation to transmitted light By changing the thickness of the film before stretching, a retardation film that gives a desired retardation to transmitted light can be obtained.
  • the stretching temperature the lower the stretching temperature, the larger the absolute value of the phase difference of the transmitted light tends to be. Therefore, by changing the stretching temperature, a phase difference film that gives a desired phase difference to the transmitted light is obtained. be able to.
  • the thickness of the specific retardation film can be controlled by adjusting the thickness of the film before processing, the stretching ratio, and the like. Specifically, for example, the thickness of the retardation film can be reduced by reducing the thickness of the film before processing or by increasing the stretching ratio.
  • the number of bright points when converted into per lm 2 on the film surface 1 0 or less, preferably 7 or less, more preferably 5 or less, preferably especially the 3 or less, most preferably 0 or 1.
  • the “bright point” is a partial leakage of light observed by the naked eye when the specific retardation film is sandwiched between polarizing plates in a crossed Nicols state, and usually has an outer diameter of ⁇ or more ( If it is circular, measure its diameter; if it has any other shape, measure its length). Of course, depending on the required performance, something smaller than this may be measured as a bright spot.
  • phase difference may be different from the phase difference of the peripheral portion, and it is considered that light leaks due to the difference in the phase difference.
  • the number of foreign substances when converted to lm 2 on the film surface is preferably 10 or less, more preferably 5 or less, particularly preferably 3 or less, and most preferably. Set to 0 or 1.
  • the term “foreign matter” as used herein substantially impedes transmission of light when light is transmitted through the specific retardation film.
  • a foreign substance When such a foreign substance is present in the specific retardation film, it affects the transmitted light intensity, and when used in a liquid crystal display device or the like, there is a possibility of causing pixel omission or deterioration of characteristics.
  • the size of the foreign material to be measured is usually 1 m or more in outer diameter (the diameter for a circular shape, or the length in the longitudinal direction for other shapes). May measure something smaller than this as a foreign substance.
  • the specific retardation film can be used alone or in a state of laminating two or more different films on a polarizing film as a protective film, and such a protective film is formed on both surfaces of the polarizing film.
  • the laminate having a configuration bonded to each of them can be suitably used as a polarizing plate.
  • the structure of the laminate that can be used as the polarizing plate are, for example, as follows.
  • TAC triacetyl cellulose
  • an adhesive or an adhesive can be used.
  • the pressure-sensitive adhesive and the adhesive it is preferable to use those having excellent transparency.
  • Specific examples thereof include natural rubber, synthetic rubber, biel acetate / bulco chloride polymer, polybutyl ether, acrylic resin, and modified polyolefin.
  • Curable pressure-sensitive adhesive obtained by adding a curing agent such as an isocyanate group-containing compound to the above-mentioned resin having a functional group such as a hydroxyl group or an amino group, a polyurethane-based dry laminating adhesive, a synthetic rubber-based adhesive or the like.
  • An adhesive, an epoxy-based adhesive, and the like can be given.
  • the specific retardation film may be preliminarily laminated with an adhesive layer or an adhesive layer in order to improve the workability of lamination with other films, sheets, substrates and the like.
  • the above-mentioned pressure-sensitive adhesive or adhesive can be used as the pressure-sensitive adhesive or adhesive.
  • a transparent conductive layer may be laminated on at least one surface of the specific retardation film.
  • a metal such as Sn, In, Ti, Pb, Au, Pt, and Ag, or an oxide thereof can be used.
  • the transparent conductive layer made of a metal oxide can be formed by directly depositing the metal oxide on the substrate.However, the transparent conductive layer is formed by depositing the metal oxide in the form of a simple metal or a lower oxide on the substrate to form a film. Thereafter, it can be formed by performing an oxidizing treatment such as a heating oxidizing treatment, an anodic oxidizing treatment or a liquid-phase oxidizing treatment to make it transparent.
  • an oxidizing treatment such as a heating oxidizing treatment, an anodic oxidizing treatment or a liquid-phase oxidizing treatment to make it transparent.
  • the transparent conductive layer is formed by optically filtering other sheets or films having the transparent conductive layer. It may be formed by bonding to a specific retardation film by plasma polymerization, sputtering, vacuum deposition, plating, ion plating, spraying, electrolytic deposition, etc. Good.
  • the thickness of such a transparent conductive layer is determined according to desired characteristics and is not particularly limited, but is usually 10 to 100, 000, preferably 50 to 50,000. .
  • an adhesive layer or an anchor coat layer may be formed between the specific retardation film and the transparent conductor, if necessary.
  • a heat-resistant resin such as epoxy resin, polyimide, polybutadiene, phenol resin, and polyetheretherketone can be exemplified.
  • the anchor coat layer epoxy diatalylate, urethane Examples thereof include those obtained by using a material containing a so-called acrylic prepolymer such as diatalylate or polyester diacrylate as a component and curing by a known curing method, for example, UV curing and heating and curing.
  • a specific retardation film (hereinafter, also referred to as a “composite film for optical use”) formed by laminating a transparent conductive layer may include polyvinylidene chloride, if necessary, in order to reduce the permeability of oxygen and water vapor.
  • a gas barrier material such as polyvinyl alcohol or the like may be laminated on at least one surface of the composite film for optical use.
  • a hard coat layer may be laminated directly on the optical composite film or on the gas barrier layer.
  • an organic hard coat material such as an organic silicon resin, a melamine resin, an epoxy resin, or an acrylic resin, or an inorganic hard coat material such as silicon dioxide can be used.
  • a hard coat material such as an organic silicon resin or an acrylic resin is preferable.
  • the organic silicon-based resin a resin having various functional groups is used. A resin having an epoxy group is preferable.
  • An antireflection layer can be laminated on at least one surface of the specific retardation film.
  • Examples of the method of forming the anti-reflection layer include, for example, commonly used inorganic materials such as metal oxides such as silicon, titanium, tantalum, and dinoleconium, and vinylidene fluoride and hexafluoro.
  • Co polymers of propylene and tetrafluoroethylene and fluorine-containing
  • An organic anti-reflective coating made of a fluorine-containing compound such as a polymer
  • the thickness of the antireflection layer is usually from 0.1 to 50 m, preferably from 0.1 to 30 m, more preferably from 0.5 to 20 ⁇ .
  • the thickness is less than 0.01 ⁇ m, the anti-reflection effect cannot be exerted, and when the thickness exceeds 50 m, the thickness of the coating film tends to be uneven, and ⁇ i and the like are unfavorable. .
  • the specific retardation film having the antireflection layer laminated thereon may have a known hard coat layer or antifouling layer laminated thereon, or may have the transparent conductive layer described above laminated thereon. Furthermore, as the specific retardation film on which the antireflection layer is laminated, a film having a light diffusion function can be used as the specific retardation film.
  • the anti-reflection film may be a retardation plate, a light diffusion film, or a polarizing film.
  • the polarizing plate of the present invention has a configuration in which a protective film is laminated on both sides of a polarizing film.
  • the protective films laminated on one surface of the polarizing film are films A and F.
  • a protective film laminated on one surface of the polarizing film is composed of the film C, and a protective film laminated on the other surface of the polarizing film.
  • the film includes a laminate of film A and film B, or a film composed of film A or film B and two types of polarizing plates.
  • the protective film composed of the specific retardation film and the laminated body of the specific retardation film may be a protective film composed of a laminate having the specific retardation film.
  • a structure in which a film such as a TAC film is laminated can be used.
  • the protective film has a protective function and a retardation providing function, there is an advantage that it is not necessary to attach a retardation plate to the polarizing plate again.
  • Products such as liquid crystal display devices can be made thinner and more sophisticated, and a good optical compensation function can be exhibited for VA type liquid crystals.
  • the number of bright spots per lm 2 on the protective film surface is 10 Or less, preferably 7 or less, more preferably 5 or less, particularly preferably 3 or less, and most preferably 0 or 1.
  • the “bright point” is a partial light leakage that is visually observed when the protective film is sandwiched between polarizing plates in a crossed Nicols state, and usually has an outer diameter of 1 Aim or more (circular shape). If it has a different shape, measure its diameter, and if it has another shape, measure its length). Of course, depending on the required performance, a smaller one may be measured as a bright spot.
  • the number of foreign substances per lm 2 on the protective film surface is preferably 10 or less, more preferably 5 or less, particularly preferably 3 or less, and most preferably 0 or 1.
  • the "foreign matter" substantially impedes light transmission when light is transmitted through the protective film.
  • the size of the foreign material to be measured is usually the outer diameter ⁇ or more (the diameter is circular if it is circular, and the length in the longitudinal direction if it is other shapes). Depending on the case, a smaller object may be measured as a foreign substance.
  • the retardation film and the polarizing plate of the present invention can be used for various liquid crystal displays such as, for example, mobile phones, digital information terminals, bottlebells, navigation, in-vehicle liquid crystal displays, liquid crystal monitors, dimming panels, displays for OA equipment, and displays for AV equipment. It can be used for a display element, an electroluminescence display element, a touch panel, or the like. It is also useful as a wave plate used in a recording / reproducing apparatus for optical discs such as CD, CD-R, MD, MO, and DVD.
  • the glass transition temperature, the saturated water absorption, the total light transmittance, the phase difference of transmitted light, the number of bright spots, the brightness and the viewing angle, the contrast ratio, the scratch resistance, and the film toughness were determined by the following methods. It was measured.
  • the sample was immersed in water at 23 ° C for one week, the weight change of the sample before and after immersion was measured, and the saturated water absorption was determined from the value.
  • Total light transmittance was measured using a haze meter “HGM-2DP type” of Suga Test Machine.
  • the sample On a light source with a brightness of 1000 cd / m 2 , the sample was sandwiched between polarizing plates in a crossed Nicols state, and the leakage of partial light having an outer diameter of 1 ⁇ m or more observed with the naked eye was measured as a bright spot.
  • the luminance, the viewing angle and the contrast ratio were measured in accordance with EIA JED-2522 of the Japan Electronic Machinery Manufacturers Association Standard.
  • the film sample was tested in the longitudinal and transverse directions at 5 points each, and the Elmendorf tear load value was measured.
  • the average value of the obtained Elmendorf bow I crack load value was used as the film toughness. It was evaluated as a value.
  • the polymerization conversion rate in this polymerization reaction was 97%, and the intrinsic viscosity (77 inh ) of the ring-opening copolymer constituting the obtained ring-opening copolymer solution in a 30 ° C black hole form was measured.
  • the hydrogenation rate of the obtained resin (a-1) was measured by a 400 MHz, H-NMR spectrum and found to be 99.9%.
  • the ratio of structural unit b derived from bicyclo [2.2.1] hept-12-ene in resin (a-1) was measured and measured at about 400MHz-NMR spectrum, and appeared at around 3.7ppm to 8-methyl one 8-carboxymethyl tetracyclo [4. 4. 0. I 2 '5 . 1 7' 10] -3- dodecene absorption peak of pro tons of methyl methyl ester of structural units a derived It was 20.1% when calculated on the basis of the peak and the absorption peak of the alicyclic structure protons of the structural units a and b appearing at 0.15 to 3 ppm.
  • polystyrene-equivalent weight average molecular weights (Mw) of 10,000 or less, those of more than 10,000 and 30,000 or less, and those of more than 30,000 are collected by genole permeation chromatography (GPC).
  • GPC genole permeation chromatography
  • the SP value of the resin (a-1) was measured to be 19 (MPa 1/2 ) .
  • the intrinsic viscosity ( ⁇ inh ) of the resin (a-1) was measured at 30 ° C in a closed mouth form. 67 d 1 Zg.
  • the hydrogenation rate of the obtained resin (b-1) was determined to be 99.9% by a 400 MHz-NMR spectrum, and it was confirmed that the aromatic ring was substantially not hydrogenated. confirmed.
  • the resin (b-1) was analyzed for number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene by geno permeation chromatography (GPC, solvent: tetrahydrofuran).
  • the (Mn) was 47,000
  • the weight average molecular weight (Mw) was 187,000
  • the molecular weight distribution (Mw / Mn) was 3.98.
  • the glass transition temperature (Tg) of the resin (b-1) was 160 ° C
  • the saturated water absorption at 23 ° C was 0.3% by weight.
  • the specific occupancy ( ⁇ inh ) of the resin (b-1) was measured in a chromate tube at 30 ° C. and found to be 0.68 d 1 / g.
  • the hydrogenation rate of the obtained resin (c-11) was measured by a 400 MHz 1 H_NMR spectrum, and was 99.9%. Further, it was confirmed that the aromatic ring was substantially not hydrogenated. confirmed.
  • the resin (c-1) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to measure the number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene.
  • the (Mn) was 32,000
  • the weight average molecular weight (Mw) was 120,000
  • the molecular weight distribution (Mw / Mn) was 3.75.
  • the glass transition temperature (Tg) of the resin (c-1) is 155 ° C
  • the saturated water absorption at 23 ° C is 0.2 weight 0 /. Met.
  • the specificity (77 inh ) of the resin (c_l) measured at 30 ° C. in a closed mouth form was 0.61 d 1 / g.
  • the hydrogenation rate of the obtained resin (d-1) was determined to be 99.9% by a 400 MHz-NMR spectrum, and it was confirmed that the aromatic ring was substantially not hydrogenated. confirmed.
  • the resin (d-1) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to measure its polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw). (Mn) was 42,000, weight average molecular weight (Mw) was 180,000, and molecular weight distribution (Mw / Mn) was 4.29.
  • the glass transition temperature (Tg) of the resin (dl) was 175 ° C.
  • the hydrogenation rate of the obtained resin (e-1) was determined to be 99.9% by a 400 MHz-NMR spectrum, and it was confirmed that the aromatic ring was substantially not hydrogenated. confirmed.
  • the resin (e-1) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to measure its polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw).
  • Mn polystyrene-equivalent number average molecular weight
  • Mw weight average molecular weight
  • Mw molecular weight distribution
  • the glass transition temperature (Tg) of the resin (e-1) was 155 ° C, and the saturated water absorption at 23 ° C was 0.2% by weight.
  • the intrinsic viscosity ( ⁇ inh) of the resin (e-1) measured at 30 ° C in a mouthpiece was 0.52 dl, g.
  • the hydrogenation rate of the obtained resin (g_l) was determined to be 99.9% by using a NMR spectrometer at 400 ° C.
  • the resin (g-1) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to measure the polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw).
  • Mn was 25,000
  • Mw was 100,000
  • Mw / Mn was 4.0.
  • the glass transition temperature (Tg) of the resin (g-1) was 169 ° C, and the saturated water absorption at 23 ° C was 0.49% by weight.
  • the intrinsic viscosity ( ⁇ inh) of the resin (g-1) measured in chloroform at 30 ° C. was 0.72 dlZg.
  • a reaction vessel is charged with 250 parts of distilled water, and 90 parts of butyl acrylate, 8 parts of 2-hydroxyethyl methacrylate, 2 parts of dibutylbenzene, and 0.1 part of potassium oleate are added to the reaction vessel. After that, the system was stirred and dispersed by a Teflon (registered trademark) stirring blade. Then, after the inside of the reaction vessel was replaced with nitrogen, the temperature of the system was raised to 50 ° C, and Polymerization was initiated by adding 0.2 part of potassium sulfate.
  • Teflon registered trademark
  • the polymer dispersion is concentrated using an evaporator until the solid content concentration becomes 70% by weight, whereby an aqueous pressure-sensitive adhesive (a pressure-sensitive adhesive having a polar group) comprising an aqueous dispersion of an acrylate polymer is obtained. ) Got.
  • water-based pressure-sensitive adhesive A Acrylate ester polymer constituting the water-based pressure-sensitive adhesive thus obtained was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to obtain polystyrene.
  • GPC gel permeation chromatography
  • Mw weight average molecular weight
  • water-based adhesive A was 1. 2 d lZg was measured intrinsic viscosity (7j i nh) in black port Holm 30 ° C.
  • the resin (a-1) was dissolved in toluene at a concentration of 30%.
  • the solution viscosity of the obtained solution at room temperature was 30, OOmPa ⁇ s.
  • pentaerythrityltetrakis [3- (3,5-di-t-butyl-14-hydroxyhydrinole) propionate] was added as an antioxidant to 100 parts by weight of the resin (a-1).
  • 0.1 part by weight of the solution was added, and the obtained solution was filtered using a metal sintering filter with a pore size of 5 ⁇ from Nippon Pole, while controlling the flow rate of the solution so that was within 0.4 MPa.
  • the surface was treated with an acrylic acid-based surface treatment agent to make it hydrophilic (easy adhesion), and the thickness was ⁇ ⁇ . It was applied to PET Huinorem (“Noremirror U94” manufactured by Toray Industries, Inc.).
  • PET Huinorem (“Noremirror U94” manufactured by Toray Industries, Inc.).
  • the obtained liquid layer is subjected to a primary drying treatment at 50 ° C., further subjected to a secondary drying treatment at 90 ° C., and then peeled off from the PET film to have a thickness of 100 ⁇ .
  • a resin film hereinafter, also referred to as “resin film (a-2)”) was formed.
  • the residual solvent amount of the obtained resin film (a-2) was 0.5% by weight, and the light transmittance was 93% or more.
  • resin film (a-3) a resin film having a residual solvent amount of 0.4% by weight and a thickness of 80111
  • a residual solvent a resin film having a residual solvent amount of 0.4% by weight and a thickness of 80111
  • a-4 film a resin film having a thickness of 0.3% by weight and a thickness of 50 / zm
  • the resin film (a-2) is heated in a tenter to 120 ° C (Tg + 10 ° C) and stretched 1.3 times in the machine direction at a stretching speed of 300% / min.
  • the film is stretched 1.3 times in the transverse direction in the plane of the film, and then cooled while maintaining this state for 1 minute in an atmosphere of 90 ° C (Tg-20 ° C). It was further cooled at room temperature and taken out of the tenter to obtain a retardation film (hereinafter, also referred to as “retardation film (a-5)”).
  • the resin film (a-3) is heated to 120 ° C (Tg + 10 ° C) in a tenter, and the width in the in-plane direction is kept constant at a stretching speed of 300% / min. After stretching it 1.3 times in the machine direction while maintaining it, cool it while maintaining this state for about 1 minute in an atmosphere of 90 ° C (Tg-20 ° C), further cool it at room temperature, and By taking it out from the inside, a retardation film (a-6) was obtained.
  • the resin film (a-4) is heated to 120 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the in-plane direction at a stretching speed of 300% / min. After stretching, stretch in the transverse direction of the film in the direction of 1.1 times, then cool in an atmosphere of 90 ° C (T g-20 ° C) for 1 minute while maintaining this state, and then room temperature. Then, the resultant was taken out of the tenter to obtain a retardation film (hereinafter, also referred to as “retardation film (a-7)”).
  • the wavelength dispersion ⁇ ( ⁇ ) / a (550) and the wavelength dispersion i3 ( ⁇ ) / ⁇ (550) of the retardation films (a-5) to (a-7) were examined. These values were substantially the same for the retardation films (a-5) to (a-7).
  • Fig. 1 shows the results for the retardation film (a-6).
  • resin film (b-2) a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 80 ⁇
  • resin film (b-3) a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 50 / zm
  • resin film (b-4) (Hereinafter, also referred to as “resin film (b-4)”).
  • the total light transmittance of each of the obtained resin films (b-2) to (b_4) was 93% or more.
  • the resin film (b-2) is heated to 170 ° C (Tg + 10 ° C) in a tenter and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300% min.
  • the film is stretched 1.3 times in the transverse direction in the plane of the film, and then cooled under an atmosphere of 140 ° C (Tg-20 ° C) for 1 minute while maintaining this state, and further cooled at room temperature.
  • a retardation film hereinafter, also referred to as “retardation film (b-5)” was obtained.
  • the resin film (b-3) is heated to 170 ° C (Tg + 10 ° C) in a tenter and stretched at a stretching speed of 300% Z while maintaining a constant horizontal width in the in-plane direction of the film. After stretching it 1.3 times in the direction, cool it while maintaining this state for about 1 minute in an atmosphere of 140 ° C (Tg-20 ° C), further cool it at room temperature, and take it out of the tenter.
  • a retardation film (b-6) was obtained.
  • the resin film (b-4) is heated to 170 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the longitudinal direction of the film at a stretching speed of 300%.
  • the film is stretched 1.1 times in the in-plane direction, then cooled in a 140 ° C (Tg-20 ° C) atmosphere for 1 minute, and further cooled at room temperature.
  • a retardation film hereinafter, also referred to as “retardation film (b-7)
  • the number of bright spots in each of the retardation films (b-5) to (b-7) was 0 to 2.
  • the amount of the residual solvent was 0.4 wt.
  • the resin (c-1) was used instead of the resin (a-1). / 0 and 100 / zm thick resin film
  • the resin film (c-2) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300% min.
  • the film is stretched 1.3 times in the transverse direction in the plane of the film, then cooled in an atmosphere of 135 ° C (Tg-20 ° C) for 1 minute while maintaining this state, and further cooled at room temperature.
  • a retardation film hereinafter, also referred to as “retardation film (c_5)
  • the resin film (c-3) is heated to 165 ° C (Tg + 10 ° C) in a tenter, and the width in the in-plane direction is kept constant at a stretching speed of 300% for 300%. After stretching it 1.3 times in the machine direction, cool it while maintaining this state for about 1 minute in an atmosphere of 135 ° C (Tg-20 ° C), further cool it at room temperature, and take it out of the tenter. As a result, a retardation film (c-16) was obtained.
  • the resin film (c-4) was heated to 170 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the machine direction at a stretching speed of 300%. Later, in-film direction Stretched 1.1 times in the horizontal direction, and then cooled in an atmosphere of 140 ° C (Tg-20 ° C) for 1 minute while maintaining this state, further cooled at room temperature, and taken out of the tenter As a result, a retardation film (hereinafter, also referred to as “retardation film (c-17)”) was obtained.
  • the number of bright spots in each of the retardation films (c-5) to (c-7) was 0 to 2.
  • the resin film (d-2) is heated to 185 ° C (Tg + 10 ° C) in a tenter and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300% Z.
  • the film is stretched 1.3 times in the transverse direction in the plane of the film, then cooled in an atmosphere of 155 ° C (Tg-20 ° C) for 1 minute while maintaining this state, and further cooled at room temperature.
  • a retardation film hereinafter, also referred to as “retardation film (d-5)” was obtained.
  • the obtained retardation film (d-5) was measured for retardation (550), retardation) 3 (550), film thickness, and film toughness. Table 1 shows the results.
  • the resin film (d-3) is heated to 185 ° C (Tg + 10 ° C) in a tenter and stretched at a stretching speed of 300% / min while maintaining a constant horizontal width in the film plane. After stretching it 1.3 times in the direction, cool it while maintaining this state for about 1 minute in an atmosphere of 155 ° C (Tg-20 ° C), then cool it at room temperature and take it out of the tenter.
  • the resin film (d-4) is heated in a tenter to 185 ° C (Tg + 10 ° C) and stretched in the longitudinal direction in the in-plane direction at a stretching speed of 300% Z for 1.1 times.
  • the film is stretched 1.1 times in the transverse direction in the plane of the film, and then cooled while maintaining this state for 1 minute in an atmosphere of 5.55 ° C (Tg-20 ° C).
  • the resultant was further cooled at room temperature and taken out of the tenter to obtain a retardation film (hereinafter, also referred to as “retardation film (d_7)”).
  • the wavelength dispersion ⁇ ( ⁇ ) / a (550) and the wavelength dispersion J3 ( ⁇ ) / ⁇ (550) of the retardation films (d-5) to (d-7) were examined. Are substantially the same for the retardation films (d-5) to (d_7).
  • Fig. 4 shows the results for the retardation film (d-6).
  • the number of bright spots in each of the retardation films (d-5) to (d-7) was 0.
  • resin film (e — 2) a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 80
  • a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 5 O rn a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 5 O rn.
  • resin film (e-4) (Hereinafter, also referred to as “resin film (e-4)”).
  • resin film (e-4) had a total light transmittance of 93% or more.
  • the resin film ( e -2) is heated to 165 ° C (Tg + 10 ° C) in a tenter, and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300% min. After stretching, stretch 1.3 times in the transverse direction in the plane of the film, and then cool while maintaining this state for 1 minute in an atmosphere of 135 ° C (Tg-20 ° C). , further cooled at room temperature and taken out of the tenter to give a retardation film (hereinafter also referred to as "retardation film (e _ 5)".) was obtained.
  • the resin film (e-3) is placed in the tenter, and then 165. C (T g + 10 ° C), and stretch in the longitudinal direction while keeping the horizontal width in the film plane constant at a stretching speed of 300% min.
  • the resin film (e-4) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the longitudinal direction of the film at a stretching speed of 300% min. After stretching, stretch 1.1 times in the transverse direction of the film plane, and then cool while maintaining this state for 1 minute in an atmosphere of 135 ° C (Tg-20 ° C). After further cooling at room temperature and taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (e-7)”) was obtained.
  • the wavelength dispersion ⁇ ( ⁇ ) / a (550) and the wavelength dispersion ( ⁇ ) / j3 (550) of the retardation films (e-5) to (e-7) were examined. Are substantially the same in the retardation films (e-5) to (e-7).
  • Figure 5 shows the results for the retardation film (e-6).
  • the number of bright spots in each of the retardation films (e-5) to (e-7) was 0 to 1.
  • Residual solvent was obtained in the same manner as in Example 1, except that Idemitsu Petrochemical's polycarbonate resin “A2700” was used in place of resin (a_l) and dimethylene chloride was used in place of toluene.
  • Resin film having an amount of 0.4% by weight and a thickness of 100 m
  • resin film (f-1) Also referred to as “resin film (f-1)”.
  • A) the resin film residual solvent content 0.3 weight 0/0 a and the film thickness of 80 // in (hereinafter, "Kitsuki effect film (f one 3)" also referred to.)
  • resin film (f-14) Also referred to as “resin film (f-14)”. ) And got. Obtained resin film (f-2)
  • the total light transmittance of each of (f-4) was 91%.
  • the resin film (f-2) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched 1.03 times in the longitudinal direction of the film at a stretching speed of 300%.
  • the film is stretched 1.03 times in the inward direction, then cooled in a 135 ° C (Tg-20 ° C) atmosphere for 1 minute, and further cooled to room temperature.
  • a retardation film hereinafter, also referred to as “retardation film (f-5)” was obtained.
  • the resin film (f_3) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched at a stretching speed of 300% / min. After stretching to 1.03 times, cool it while maintaining this state for about 1 minute in an atmosphere of 135 ° C (Tg-20 ° C), further cool it at room temperature, and take it out of the tenter.
  • a phase difference film (f-6) was obtained.
  • the obtained retardation film (f-6) was measured for retardation (550), retardation (550), film thickness, and film toughness. Table 1 shows the results.
  • the resin film (f-4) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched 1.01 times in the longitudinal direction in the film plane at a stretching speed of 300% Z.
  • the film is stretched 101 times in the inward direction of the film, then cooled in an atmosphere of 135 ° C (Tg-20 ° C) for 1 minute, and further cooled at room temperature. Then, the film was taken out of the tenter to obtain a retardation film (hereinafter, also referred to as “retardation film (f-7)”).
  • the wavelength dispersion ⁇ ( ⁇ ) / ⁇ (550) and the wavelength dispersion J3 ( ⁇ ) ⁇ (550) of the retardation films (f-5) to (f-7) were examined.
  • the values were substantially the same for the retardation films (f-5) to (f_7).
  • Fig. 6 shows the results for the phase difference film (f-1 6).
  • Each of the retardation films (f-5) to (f-7) had 11 to 18 bright spots.
  • Example 1 was repeated except that the resin (g-1) was used in place of the resin (a-1).
  • a resin film having a residual solvent amount of 0.7% by weight and a thickness of 200 ⁇ hereinafter also referred to as “resin film (g_2)”
  • a residual solvent amount of 0.5% by weight by and resin film film thickness of 180 ⁇ hereinafter, referred to together as "resin film (g- 3)”.
  • the residual solvent amount is 0.4 wt 0/0 resin film thickness of 120 Aim Film (hereinafter, also referred to as “resin film (g-4)”).
  • the total light transmittance of each of the obtained resin films (g-2) to (g-4) was 93% or more.
  • the resin film (g-2) is heated to 179 ° C (Tg + 10 ° C) in a tenter and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300%.
  • the film is stretched 1.3 times in the transverse direction in the plane of the film, and then cooled while maintaining this state for 1 minute in an atmosphere of 149 ° C (Tg-20 ° C), and further cooled at room temperature.
  • a retardation film hereinafter, also referred to as “retardation film (g-5)” was obtained.
  • the resin film (g-3) is placed in a tenter, 179. C (Tg + 10 ° C) and stretched 1.3 times in the machine direction at a stretching speed of 300% / min while keeping the width in the in-plane direction constant. -20 ° C) for about 1 minute while cooling in this state, further cooling at room temperature, and taking it out of the tenter to obtain a retardation film (hereinafter referred to as “retardation film (g-6)”). ).
  • the resin film (g-4) is heated to 179 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the longitudinal direction of the film at a stretching speed of 300%.
  • the film is stretched 1.1 times in the transverse direction in the plane of the film, then cooled in an atmosphere of 149 ° C (Tg-20 ° C) for 1 minute while maintaining this state, and further cooled at room temperature.
  • a retardation film hereinafter, also referred to as “retardation film (g-7)” was obtained.
  • the number of bright spots in each of the retardation films (g-5) to (g-7) was 0 to 1.
  • Polyvinyl alcohol (hereinafter abbreviated as “PVA”) is treated in a dyeing bath at a temperature of 30 ° C consisting of an aqueous solution having an iodine concentration of 0.03% by weight and a potassium iodide concentration of 0.5% by weight.
  • Pre-stretching is performed at a draw ratio of 3 times, and then a draw ratio of 2 times in a crosslinking bath at a temperature of 55 ° C consisting of an aqueous solution having a boric acid concentration of 5% by weight and a concentration of 8% by weight.
  • a post-stretching process and drying treatment were performed to obtain a polarizing film (hereinafter, also referred to as “polarizer (1)”).
  • a retardation film (a-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and a TAC film is applied to the other surface of the polarizer (1) using a PVA-based adhesive.
  • a polarizing plate (hereinafter, also referred to as a “polarizing plate (a-8)”) is formed by attaching a retardation film (a-5) to the top surface of the TAC film using an aqueous adhesive A, and further attaching the retardation film (a-5). ) Got.
  • the transmittance of the obtained polarizing plate (a-8) was 44.0%, the degree of polarization was 99.9%, and the number of bright spots was 0 to 1.
  • the polarizing plate (a-8) was subjected to a pencil hardness test, and found to have a hardness of 2 H and to show good scratch resistance.
  • a retardation film (a-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached. the surface, the phase difference by using a water-based adhesive a film (a- 6) Paste the further the upper surface of the retardation film (a- 7), a nitride Kei containing under vacuum at pressure 1 X 10- 4 to rr Evaporate to form a first deposited film with a thickness of 80 nm, and then deposit a terbium-iron-cobalt alloy (TbFeCo) to deposit a second deposited film with a thickness of 20 nm, and silicon nitride.
  • TbFeCo terbium-iron-cobalt alloy
  • an anti-reflection layer consisting of a total of four deposited films laminated The anti-reflection function derived from was given. Then, in a reactor equipped with a reflux condenser and a stirrer on the anti-reflection layer, 25 parts of methinoletrimethoxysilane and methanol-dispersed co-danoresili (solid content: 30%, Nissan Chemical Industry Co., Ltd.
  • the obtained polarizing plate (a-9) had a transmittance of 47.0%, a degree of polarization of 99.9%, and the number of bright spots was 0 to: I.
  • the reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the anti-reflection layer side to the polarizing plate (a-9). The reflectance for any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
  • the liquid crystal television “LC-13B1_S” of Sharp Corporation which adopts the ASV type low-reflection black TFT liquid crystal, has a phase difference with the polarizer attached to both sides of the liquid crystal panel.
  • the film is peeled off, and a polarizing plate (a-8) and a retardation film (a-5) constituting the polarizing plate (a-8) are brought into contact with the liquid crystal panel on one surface of the backlight side of the liquid crystal panel.
  • the polarizing plate (a-9) is attached to the other surface of the liquid crystal panel, and the retardation film (a-6) constituting the polarizing plate (a-9) is in contact with the liquid crystal panel.
  • modified LCD TV hereinafter, also referred to as “modified LCD TV (1)” was obtained.
  • the brightness, viewing angle, and contrast ratio of the obtained modified LCD television (1) are checked, and then the modified LCD television (1) is left under an environment of 100 ° C for 2000 hours. After that, the durability was evaluated again by confirming the brightness, the viewing angle, and the contrast ratio. Table 2 shows the results.
  • a polarizer (1) was obtained in the same manner as in Example 6.
  • a retardation film (b-7) was attached to one surface of the polarizer (1) using an aqueous adhesive A, and the polarizer (1) was obtained.
  • the polarizing plate hereinafter referred to as “ Polarizing plate (b-8) ").
  • the transmittance of the obtained polarizing plate (b-8) was 44.0%, the degree of polarization was 99.9%, and the number of luminescent spots was 0 to 2.
  • a pencil hardness test was performed on the polarizing plate (b-8), and it was confirmed that the polarizing plate had a hardness of 2 H and had excellent scratch resistance.
  • a retardation film (b-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached.
  • a phase difference film (b-6) is attached to the surface using an aqueous adhesive A, and an antireflection function derived from the antireflection layer is provided on the upper surface of the phase difference film (b_6) in the same manner as in Example 6.
  • polarizing plate (b-9) a cured coating film was formed on the antireflection layer to obtain a polarizing plate (hereinafter, also referred to as “polarizing plate (b-9)”).
  • the transmittance of the obtained polarizing plate (b-9) was 47.0%, the degree of polarization was 99.9%, and the number of luminescent spots was 02.
  • the reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the antireflection layer side to the polarizing plate (b-9), the reflectance for light of any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
  • Example 6 a polarizing plate (b-8) was used instead of the polarizing plate (a-8), and a polarizing plate (b-9) was used instead of the polarizing plate (a-9).
  • a modified liquid crystal television hereinafter, also referred to as “modified liquid crystal television (2)” was obtained.
  • a polarizer (1) was obtained in the same manner as in Example 6.
  • a retardation film (c-17) was attached to one surface of the polarizer (1) using an aqueous adhesive A, and the polarizer (1) was obtained.
  • a TAC film is adhered using PVA-based adhesive, and a retardation film (c-5) is adhered on the upper surface of the TAC film using an aqueous adhesive A.
  • the transmittance of the obtained polarizing plate (c-8) was 44.0%, the degree of polarization was 99.9%, and the number of luminescent spots was 02.
  • the polarizing plate (c-8) was subjected to a pencil hardness test, and found to have a hardness of 2H and to have excellent scratch resistance.
  • a retardation film (c-7) is adhered to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached.
  • a retardation film (c-16) is attached, and an antireflection function derived from the antireflection layer is provided on the upper surface of the retardation film (c_6) in the same manner as in Example 6.
  • polarizing plate (c-19) was obtained.
  • the transmittance of the obtained polarizing plate (c-19) was 47.0%, the degree of polarization was 99.9%, and the number of bright spots was 0 to 2.
  • the reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the antireflection layer side to the polarizing plate (c-19), the reflectance for light of any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
  • Example 6 a polarizing plate (c-8) was used instead of the polarizing plate (a-8), and a polarizing plate (c-9) was used instead of the polarizing plate (a-9).
  • a modified liquid crystal television hereinafter, also referred to as “modified liquid crystal television (3)” was obtained.
  • a polarizer (1) was obtained in the same manner as in Example 6.
  • a retardation film (d-7) was attached to one surface of the polarizer (1) using an aqueous adhesive A, and the polarizer (1) was obtained.
  • a TAC film is adhered to the other surface using PVA-based adhesive, and a retardation film (d_5) is adhered to the upper surface of the TAC film using water-based adhesive A. (D-8) ").
  • the transmittance of the obtained polarizing plate (d-8) was 44.0%, the degree of polarization was 99.9%, and the number of bright spots was 0 to: I.
  • a retardation film (d-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached.
  • a phase difference film (d_6) is adhered to the surface using an aqueous adhesive A, and an antireflection function derived from the antireflection layer is provided on the upper surface of the phase difference film (d-6) in the same manner as in Example 6.
  • a hard coating film on the antireflection layer was obtained.
  • the transmittance of the obtained polarizing plate (d-9) was 47.0%, the degree of polarization was 99.9%, and the number of bright spots was 0I.
  • the reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the antireflection layer side to the polarizing plate (d-9), the reflectance for light of any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
  • Example 6 a polarizing plate (d-8) was used instead of the polarizing plate (a-8), and a polarizing plate (d-9) was used instead of the polarizing plate (a-9).
  • a modified liquid crystal television hereinafter, also referred to as “modified liquid crystal television (4)” was obtained.
  • a polarizer (1) was obtained in the same manner as in Example 6.
  • a retardation film (e-7) was attached to one surface of the polarizer (1) using an aqueous adhesive A, and the polarizer (1) was obtained.
  • the polarizing plate (hereinafter referred to as “ Polarizing plate (e-8) ”) was obtained.
  • the transmittance of the obtained polarizing plate (e_8) was 44.0%, the degree of polarization was 99.9%, and the number of bright spots was 0.
  • a retardation film (e-7) is adhered to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached.
  • a phase difference film (e-6) is adhered to the surface using an aqueous adhesive A, and an antireflection function derived from the antireflection layer is formed on the upper surface of the phase difference film (e-6) in the same manner as in Example 6.
  • a cured coating film was formed on the antireflection layer to obtain a polarizing plate (hereinafter, also referred to as “polarizing plate (e-9)”).
  • the polarizing plate (e-9) obtained has a transmittance of 47.0%, a degree of polarization of 99.9%, and the number of bright spots was zero.
  • the reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the anti-reflection layer side to the polarizing plate (e-9).
  • the reflectance for light of any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
  • Example 6 a polarizing plate (e-8) was used instead of the polarizing plate (a-8), and a polarizing plate (e-9) was used instead of the polarizing plate (a-9).
  • a modified liquid crystal television hereinafter, also referred to as “modified liquid crystal television (5)” was obtained.
  • a polarizer (1) was obtained in the same manner as in Example 6, and a retardation film (f_7) was adhered to one surface of the polarizer (1) using an aqueous adhesive A.
  • a TAC film is adhered to the surface using a PVA-based adhesive, and a retardation film (f_5) is adhered to the upper surface of the TAC film using an aqueous adhesive A. (F-8) ”).
  • the transmittance of the obtained polarizing plate (f-18) was 44.0%, the degree of polarization was 99.9%, and the number of bright spots was 1118.
  • a retardation film (f-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached.
  • a phase difference film (f-6) is adhered to the surface using an aqueous adhesive A, and the antireflection function derived from the antireflection layer is applied to the upper surface of the phase difference film (f-6) in the same manner as in Example 6.
  • a cured coating film was formed on the antireflection layer to obtain a polarizing plate (hereinafter, also referred to as “polarizing plate (f-9)”).
  • the transmittance of the obtained polarizing plate (f-19) was 47.0%, the degree of polarization was 99.9%, and the number of bright spots was 1118.
  • Example 6 except that the polarizing plate (f-8) was used instead of the polarizing plate (a-8), and the polarizing plate (f-19) was used instead of the polarizing plate (a-9).
  • a modified liquid crystal television (hereinafter also referred to as “comparative modified liquid crystal television (1)”) was obtained in the same manner as in Example 6.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A thin phase film exhibiting various optical characteristics, heat-resistance, and adhesion to other materials that thermoplastic norbornene resin has, having a high toughness and an excellent phase characteristic, and easy to handle when processed and used. A polarizer comprising this thin phase film is also disclosed. The phase film is made of thermoplastic norbornene resin. The phase film is characterized in that if the index of refraction along the in-plane fast axis is denoted by nx, the index of refraction along the in-plane slow axis by ny, the index of refraction in the direction of the film thickness by nz, the thickness of the film by d, the phase difference in the plane of film of the transmitted light having a wavelength λ in a specific range by α(λ), and the phase difference in the direction of the film thickness of the transmitted light having a wavelength λ nm by β(λ); the phase difference α(550) in the plane of the film of the transmitted light having a wavelength of 550 nm, the phase difference β(550) in the direction of the film thickness of the film of the transmitted light having a wavelength of 550 nm, and the thickness d of the film satisfy specific conditions.

Description

明 細 書 位相差フィルムおよび偏光板  Description Retardation film and polarizing plate
技 術 分 野 Technical field
本発明は、 熱可塑性ノルボルネン系樹脂よりなる位相差フィルムおよび偏光板に関する  The present invention relates to a retardation film and a polarizing plate comprising a thermoplastic norbornene resin.
背 景 技 術 Background technology
環状ポリオレフイン系樹脂は、 主鎖構造の剛直性に起因してガラス転移温度が高く、 主 鎖構造に嵩高い基が存在するために非晶性で光線透過率が高く、 しかも屈折率の異方性が 小さいことによる低複屈折性を示すなどの特長を有しており、 耐熱性、 透明性、 光学特性 に優れた透明熱可塑性樹脂として注目されている。  Cyclic polyolefin resin has a high glass transition temperature due to the rigidity of the main chain structure, is amorphous due to the presence of bulky groups in the main chain structure, has high light transmittance, and has an anisotropic refractive index. It has features such as low birefringence due to its low heat resistance, and is attracting attention as a transparent thermoplastic resin with excellent heat resistance, transparency and optical properties.
力かる環状ポリオレフイン系樹脂としては、 種々の構造のものが提案されている (例え ば、 先行文献 1〜先行文献 6等参照。 ) 。  As a powerful cyclic polyolefin-based resin, those having various structures have been proposed (see, for example, Prior Documents 1 to 6).
近年、 環状ポリオレフイン系樹脂においては、 上記の特徴を利用して、 例えば光デイス ク、 光学レンズ、 光ファイバ一などの光学材料、 光半導体封止などの封止材料などの分野 に応用することが検討されている。 また、 光学用フィルムに応用し、 以下に示すように、 従来の光学用フィルムの問題点を改良する試みもなされている。  In recent years, cyclic polyolefin-based resins can be applied to the fields of optical materials such as optical discs, optical lenses and optical fibers, and sealing materials such as optical semiconductor encapsulation by utilizing the above characteristics. Is being considered. Attempts have also been made to improve the problems of conventional optical films by applying them to optical films, as described below.
従来から光学用フィルムとして使用されているポリカーボネート、 ポリエステルあるい はトリァセチルァセテート等よりなるフィルムは、 光弾性係数が大きいために微小な応力 変化によつて位相差が発現したり変化する、 あるレ、は耐熱性や吸水変形等の問題があるた め、 環状ポリオレフイン系樹脂からなるフィルムが光学用の各種フィルムとして提案され ている。 例えば、 先行文献 7〜先行文献 1 0には、 環状ポリオレフイン系樹脂よりなるフ イルムからなる位相差板が記載されている。 また、 先行文献 1 1〜先行文献 1 3には、 環 状ポリオレフイン系樹脂よりなるフィルムを偏光板の保護フィルムとして使用することが 記載されている。 更に、 先行文献 1 4には、 環状ポリオレフイン系樹脂のフィルムからな る液晶表示素子用基板が記載されている。 これらの特許文献には、 環状ポリオレフイン系樹脂として吸水率が 0 . 0 5 %以下のも のが容易に得られること、 また低吸水性が得られる点が特徴でありかつ必要であることが 記載されている。 Films made of polycarbonate, polyester, triacetyl acetate, etc., which have been conventionally used as optical films, have a large photoelastic coefficient, so that a small stress change causes a phase difference to appear or change. Certain types have problems such as heat resistance and deformation due to water absorption. Therefore, films made of cyclic polyolefin-based resin have been proposed as various optical films. For example, Patent Documents 7 to 10 disclose a retardation plate formed of a film made of a cyclic polyolefin-based resin. Prior Documents 11 to 13 describe that a film made of a cyclic polyolefin resin is used as a protective film for a polarizing plate. Further, Patent Document 14 discloses a substrate for a liquid crystal display element comprising a film of a cyclic polyolefin-based resin. These patent documents describe that a cyclic polyolefin resin having a water absorption of 0.05% or less can be easily obtained, and that it is characterized by the fact that low water absorption is obtained and is necessary. Have been.
しかしながら、 このような低吸水性の環状ポリオレフイン系樹脂よりなるフィルムを、 例えば位相差板や液晶表示素子用基板として用いる場合には、 それらの表面に形成される ハードコート層、 反射防止膜や透明導電層との密着性、 あるいは、 偏光板やガラスとの接 着性に問題が生じることがある。 また、 偏光板の保護フィルムとして用いる場合には、 上 記の問題に加えて、 偏光膜との貼合に通常水系接着剤が使用されるため、 当該水系接着剤 中の水分が乾燥し難レ、という問題も生じる。  However, when such a film made of a low water-absorbing cyclic polyolefin-based resin is used as, for example, a retardation plate or a substrate for a liquid crystal display element, a hard coat layer, an antireflection film, a transparent film, A problem may occur in the adhesion to the conductive layer or the adhesion to the polarizing plate or glass. In addition, when used as a protective film for a polarizing plate, in addition to the above-mentioned problems, since an aqueous adhesive is usually used for bonding to a polarizing film, moisture in the aqueous adhesive is difficult to dry. , Also arises.
また、 環状ポリオレフイン系樹脂は、 種々の構成のものがあるため、 それら全ての環状 ポリオレフイン系樹脂の吸水率が 0 . 0 5 %以下になるとは限らないことから、 吸水率が 0 . 0 5 %以下の環状ポリオレフイン系樹脂を得るためには、 環状ポリオレフイン系樹脂 を炭素原子と水素原子とのみからなる構造のものとする力 \ あるレ、は一部の水素の代わり にハ口ゲン原子を含む構造のものとすることが必要であつた。  Further, since the cyclic polyolefin-based resin has various configurations, the water absorption of all the cyclic polyolefin-based resins is not always 0.05% or less, so that the water absorption is 0.05%. To obtain the following cyclic polyolefin resin, the cyclic polyolefin resin must have a structure consisting of only carbon atoms and hydrogen atoms. It was necessary to have a structure.
而して、 上記の低吸水性に由来する問題を解決するために、 分子内に極性基を導入した 熱可塑性ノルボルネン系樹脂を含有してなる光学用フィルムが提案されている (例えば、 先行文献 1 5および先行文献 1 6参照。 ) 。 これらの光学用フィルムは、 透明性が高いこ と、 透過光に与える位相差が小さいこと、 更に延伸配向させたときには均一で安定した位 相差が付与されること等の優れた光学特性を有すると共に、 耐熱性および他材料との密着 性や接着性等が良好であり、 しかも吸水変形が小さいという利点を有するものであるが、 加工時や使用時における取り极レ、性が十分なものではなかつた。  Therefore, in order to solve the above-mentioned problem derived from low water absorption, an optical film containing a thermoplastic norbornene-based resin having a polar group introduced into the molecule has been proposed (for example, see the prior art). 15 and Reference 16)). These optical films have excellent optical properties such as high transparency, small retardation applied to transmitted light, and uniform and stable retardation when stretched and oriented. It has the advantages of good heat resistance, good adhesion to other materials, good adhesion, etc., and low water absorption deformation.However, it does not have sufficient handling and processing properties during processing and use. Was.
また、 近年における液晶ディスプレイの大型化や、 液晶パネルがテレビモニターに採用 されていることなどに伴い、 液晶表示素子として、 一層精細で輝度のコントラスト比が高 く、 視野角認知性などの優れた光学特性を有するものが要求されている。 このため、 例え ば延伸配向させることによつて位相差の付与された位相差フィルムを視野角補償用フィル ムとして用いた液晶表示素子が提案されており、 また、 視野角補償用フィルムとして用い られる位相差フィルムとして、 例えば先行文献 1 7に記載の位相差フィルムが提案されて いる。 この位相差フィルムは位相差バラツキが小さくて優れた視野角特性を有する位相差 フィルムではあるが、 このような位相差フィルムを備えてなる液晶表示素子は要求されて いる所望の特性を十分に有するものではなかった。 Also, with the recent increase in the size of liquid crystal displays and the adoption of liquid crystal panels in television monitors, liquid crystal display elements have been improved to provide higher resolution, higher luminance contrast ratios, and excellent visibility of viewing angles. Those having optical characteristics are required. For this reason, for example, a liquid crystal display device using a retardation film to which a retardation is given by stretching orientation as a viewing angle compensation film has been proposed, and is used as a viewing angle compensation film. As a retardation film, for example, a retardation film described in Reference Document 17 has been proposed. This retardation film is a retardation film having a small variation in retardation and excellent viewing angle characteristics, but a liquid crystal display device having such a retardation film is required. It did not have enough of the desired properties.
更に、 液晶表示素子に用いられる液晶としては、 従来は液晶分子が面内に水平配向され ている T Nタイプのものが用いられていたが、 テレビモニターを中心として液晶分子が面 内に垂直配向されている V Aタイプのものが用いられてきていることから、 この V Aタイ プの液晶よりなる液晶表示素子に最適な視野角特性を発現するできる位相差フィルムが求 められている。  Further, as the liquid crystal used in the liquid crystal display device, a TN type liquid crystal molecule is conventionally used in which liquid crystal molecules are horizontally aligned in a plane, but the liquid crystal molecules are vertically aligned in a plane centering on a television monitor. Since the VA type has been used, there is a demand for a retardation film capable of exhibiting a viewing angle characteristic most suitable for a liquid crystal display device composed of the VA type liquid crystal.
しかしながら、 このような要求を満足するためには、 その特性の不十分さから複数の位 相差フィルムを重ねて用いる必要があり、 また、 偏光板にあらためて貼合することが必要 であることなどから、 その製造工程におレ、ては工業的な生産ロスがあり高レ、生産効率が得 られなレ、といつ問題カめつ i  However, in order to satisfy such requirements, it is necessary to use a plurality of retardation films in a stack because of their insufficient properties, and it is necessary to re-lamination on a polarizing plate. In the manufacturing process, there is a problem that industrial production loss causes high production and production efficiency cannot be obtained.
先行文献 1 :特開平 1一 1 3 2 6 2 5号公報  Prior document 1: Japanese Patent Application Laid-Open No. Hei 11-32 6 25
先行文献 2 :特開平 1一 1 3 2 6 2 6号公報  Prior document 2: Japanese Patent Application Laid-Open No. Hei 11-32 13
先行文献 3 :特開昭 6 3 2 1 8 7 2 6号公報  Prior document 3: Japanese Patent Application Laid-Open No. Sho 63321878726
先行文献 4 :特開平 2— 1 3 3 4 1 3号公報  Prior document 4: Japanese Patent Application Laid-Open No. 2-1334334
先行文献 5 :特開昭 6 1 ― 1 2 0 8 1 6号公報  Prior document 5: Japanese Patent Application Laid-Open No. 61-1200816
先行文献 6 :特開昭 6 1 ― 1 1 5 9 1 2号公報  Prior document 6: JP-A-61-111 912
先行文献 7 :特開平 4一 2 4 5 2 0 2号公報  Prior document 7: Japanese Patent Application Laid-Open No. Hei 21-42502
先行文献 8 :特開平 4一 3 6 1 2 0号公報  Prior Document 8: Japanese Patent Application Laid-Open No. Hei 4-31620
先行文献 9 :特開平 5— 2 1 0 8号公報  Prior Document 9: JP-A-5-21008
先行文献 1 0 :特開平 5 ― 6 4 8 6 5号公報  Prior document 10: Japanese Patent Application Laid-Open No. Hei 5-646845
先行文献 1 1 :特開平 5 ― 2 1 2 8 2 8号公報  Prior document 11: Japanese Patent Application Laid-Open No. 5-212128
先行文献 1 2 :特開平 6 ― 5 1 1 1 7号公報  Prior document 1 2: Japanese Patent Application Laid-Open No. Hei 6-51-111
先行文献 1 3 :特開平 7 ― 7 7 6 0 8号公報  Prior Document 13: JP-A-7-7766 08
先行文献 1 4 :特開平 5 ― 6 1 0 2 6号公報  Prior document 14: JP-A-5-61026
先行文献 1 5 :特開平 7一 2 8 7 1 2 2号公報  Prior document 15: Japanese Patent Application Laid-Open No. Hei 71-2877-1222
先行文献 1 6 :特開平 7 ― 2 8 7 1 2 3号公報  Prior document 16: Japanese Patent Laid-Open No. 7-28771
先行文献 1 7 :特開平 1 1一 1 8 3 7 2 4号公報 発 明 の 開 示 本発明は、 以上のような事情に基づいてなされたものであって、 その目的は、 熱可塑性 ノルボルネン系樹脂が有する各種の光学特性、 耐熱性および他素材との密着性 ·接着性等 が発揮され、 しかも、 靱性が高く、 優れた位相差特性を有すると共に、 加工時や使用時に おける取极性が良好であって薄膜な位相差フイノレムおよびこの位相差フィルムを用いてな る偏光板を提供することにある。 Prior document 17: Disclosure of the invention disclosed in Japanese Patent Application Laid-Open No. 11-18738 The present invention has been made in view of the above circumstances, and aims to exhibit various optical characteristics, heat resistance, and adhesion / adhesion to other materials of a thermoplastic norbornene resin. In addition, a thin film retardation finolem with high toughness, excellent retardation characteristics, and good workability during processing and use, and a polarizing plate using this retardation film are provided. Is to do.
本発明の位相差フィルムは、 熱可塑性ノルボルネン系樹脂よりなる位相差フィルムであ つて、 面内進相軸方向の屈折率を n x、 面内遅相軸方向の屈折率を n y、 フィルム厚み方 向の屈折率を n z、 フィルム厚みを d [nm] とし、 光線波長 400〜700 nmの範囲 内において選択される光線波長; L [nm] の透過光のフィルム面内の位相差を式ひ (λ) = (n x-n y) Xdで表される値ひ (λ) [nm] 、 当該光線波長え [nm] の透過光 のフィルム厚み方向の位相差を式 j3 (λ) = { (nx + ny) /2 -n z } Xdで表され る値 (λ) 〔nm〕 とするとき、 光線波長 5 50 nmの透過光のフィルム面内の位相差 a (5 50) [nm] 、 光線波長 5 50 nmの透過光のフィルム厚み方向の位相差3 (5 50) [nm] およびフィルム厚み d [nm] 力 特定の条件を満たすことを特徴とし、 下記の (A) 〜 (C) のいずれかの形態を有するものである。 The retardation film of the present invention is a retardation film made of a thermoplastic norbornene-based resin, having a refractive index in the in-plane fast axis direction of nx, a refractive index in the in-plane slow axis direction of ny, and a film thickness direction. Where nz is the refractive index of the film and d [nm] is the film thickness. The light wavelength selected within the light wavelength range of 400 to 700 nm; ) = (n xn y) Xd (λ) [nm], and the phase difference in the film thickness direction of the transmitted light of the relevant wavelength [nm] is expressed by the equation j3 (λ) = {(nx + ny ) / 2 -nz} Xd where (λ) [nm], the phase difference a (550) [nm] in the film plane of the transmitted light with a light wavelength of 550 nm, and the light wavelength of 550 The phase difference of the transmitted light of nm in the thickness direction of the film 3 (550) [nm] and the film thickness d [nm] Force It is characterized by satisfying specific conditions, and is one of the following (A) to (C) With a form That.
(A) 特定の条件が、 下記の条件 (a) 〜 (e) であるフィルム (以下、 「フィルム A」 ともいう。 )  (A) A film in which the specific conditions are the following conditions (a) to (e) (hereinafter, also referred to as “film A”).
(B) 特定の条件が、 下記の条件 (a) 〜 (c) 、 ( f ) および (g) であるフィルム ( 以下、 「フィルム B」 ともいう。 )  (B) A film in which the specific conditions are the following conditions (a) to (c), (f) and (g) (hereinafter also referred to as “film B”).
(C) 特定の条件が、 下記の条件 (a) 〜 (d) および (h) であるフィルム (以下、 「 フィルム C」 ともいう。 )  (C) A film in which the specific conditions are the following conditions (a) to (d) and (h) (hereinafter, also referred to as “film C”).
条件; Condition;
(a) 1 00く d≤ 1 00000  (a) 1 00 ku d ≤ 1 00000
(b) 0. 9 5≤ α (λ) / a (5 50) ≤ 1. 0 5  (b) 0.95 ≤ α (λ) / a (5 50) ≤ 1.05
(c) 0. 9 5≤i3 (λ) /β (5 50) ≤ 1 - 0 5  (c) 0.9 5≤i3 (λ) / β (5 50) ≤ 1-0 5
(d) 0≤α (5 50) ≤40  (d) 0≤α (5 50) ≤40
(e) 1 50≤ β (5 50) ≤ 300  (e) 1 50 ≤ β (5 50) ≤ 300
( f ) 50≤α (5 50) ≤ 1 50  (f) 50 ≤ α (5 50) ≤ 1 50
(g) 30≤β (5 50) ≤ 1 00 (h) 0≤β (5 50) ≤ 80 (g) 30≤β (5 50) ≤100 (h) 0≤β (5 50) ≤80
本発明の位相差フィルムにおいては、 熱可塑性ノルボルネン系樹脂は、 ガラス転移温度 が 1 00〜250°Cのものであることが好ましい。  In the retardation film of the present invention, the thermoplastic norbornene-based resin preferably has a glass transition temperature of 100 to 250 ° C.
本発明の位相差フィルムにおいては、 熱可塑性ノルボルネン系樹脂が下記一般式 (1) で表される構造単位 aと、 下記一般式 (2) で表される構造単位 bとを有するものである ことが好ましい。  In the retardation film of the present invention, the thermoplastic norbornene-based resin has a structural unit a represented by the following general formula (1) and a structural unit b represented by the following general formula (2) Is preferred.
[化 1] 一般式 (1 )  [Formula 1] General formula (1)
Figure imgf000007_0001
Figure imgf000007_0001
[式中、 mは 1以上の整数、 pは 0または 1以上の整数であり、 Xは、 ビニレン基 (-C H=CH-) またはエチレン基 (一CH2 CH2 ―) を示し、 R1 〜R4 は、 それぞれ独 立に、 水素原子;ハロゲン原子;酸素原子、 窒素原子、 ィォゥ原子若しくはケィ素原子を 含む連結基を有していてもよレ、置換若しくは非置換の炭素原子数 1〜 30の炭化水素基; または極性基を示す。 更に、 R1 と R2 、 R3 と R4 または R2 と R3 は、 互いに結合し て、 単環構造若しくは他の環が縮合して多環構造を有する炭素環または複素環を形成して いてもよく、 形成される炭素環または複素環は芳香環であってもよいし非芳香環であって ちょい。 ] [化 2] 一般式 (2) [In the formula, m is an integer of 1 or more, p is 0 or an integer of 1 or more, X represents a vinylene group (-CH = CH-) or an ethylene group (one CH 2 CH 2- ), and R 1 To R 4 each independently represent a hydrogen atom; a halogen atom; a substituted or unsubstituted carbon atom having a linking group containing an oxygen atom, a nitrogen atom, a zeo atom or a silicon atom. Or 30 hydrocarbon groups; or a polar group. Further, R 1 and R 2 , R 3 and R 4, or R 2 and R 3 are bonded to each other to form a carbocyclic or heterocyclic ring having a polycyclic structure by condensing a monocyclic structure or another ring. The carbocyclic or heterocyclic ring formed may be an aromatic ring or a non-aromatic ring. ] [Formula 2] General formula (2)
Figure imgf000008_0001
Figure imgf000008_0001
[式中、 Yは、 ビニレン基 (一 CH = CH— ) またはエチレン基 (_CH2 CH2 一) を 示し、 R5 〜R8 は、 それぞれ独立に、 水素原子;ハロゲン原子;酸素原子、 窒素原子、 ィォゥ原子若しくはケィ素原子を含む連結基を有していてもよい置換若しくは非置換の炭 素原子数 1〜30の炭化水素基;または極性基を示す。 更に、 R5 と R6 、 R7 と R8 ま たは R6 と R7 は、 互いに結合して、 単環構造若しくは他の環が縮合して多環構造を有す る炭素環または複素環 (但し、 一般式 (1) で表される構造を除く) を形成してもよく、 形成される炭素環または複素環は芳香環であってもよいし非芳香環であってもよい。 ] 本発明の位相差フィルムにおいては、 フィルム面上における lm2 当たりの輝点の数が 10個以下であることが好ましい。 [In the formula, Y represents a vinylene group (one CH = CH-) or an ethylene group (_CH 2 CH 2 one), R 5 to R 8 are each independently a hydrogen atom, a halogen atom, an oxygen atom, a nitrogen A substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms which may have a linking group containing an atom, a zeo atom or a silicon atom; or a polar group. Further, R 5 and R 6 , R 7 and R 8, or R 6 and R 7 are bonded to each other to form a monocyclic structure or a condensed other ring to form a carbocyclic or heterocyclic ring having a polycyclic structure. A ring (however, except for the structure represented by the general formula (1)) may be formed, and the formed carbon ring or hetero ring may be an aromatic ring or a non-aromatic ring. In the retardation film of the present invention, the number of bright spots per lm 2 on the film surface is preferably 10 or less.
本発明の偏光板は、 偏光膜の両面の各々に保護フィルムが積層されてなる構成を有し、 偏光膜の一面に積層されてなる保護フィルムがフィルム Aおよぴフィルム Bを積層したも の、 あるいはフィルム Aまたはフィルム Bよりなることを特徴とする。  The polarizing plate of the present invention has a configuration in which protective films are laminated on both sides of a polarizing film, and the protective film laminated on one surface of the polarizing film is formed by laminating a film A and a film B. Or film A or film B.
本発明の偏光板は、 偏光膜の両面の各々に保護フィルムが積層されてなる構成を有し、 偏光膜の一面に積層されてなる保護フイルムがフィルム Cよりなり、 当該偏光膜の他面に 積層されてなる保護フィルムがフィルム Aおよびフィルム Bを積層したもの、 あるいはフ イルム Aまたはフィルム Bよりなることを特徴とする。  The polarizing plate of the present invention has a configuration in which a protective film is laminated on both surfaces of a polarizing film, and a protective film laminated on one surface of the polarizing film is formed of a film C, and is formed on the other surface of the polarizing film. The laminated protective film is formed by laminating a film A and a film B, or a film A or a film B.
本発明の偏光板においては、 保護フィルム面上における 1 m2 当たりの輝点の数が 10 個以下であることが好ましい。 発 明 の 効 果 本発明の位相差フィルムは、 熱可塑性ノルボルネン系樹脂が有する高透明性、 低位相差 等の光学特性、 耐熱性および他素材との密着性 ·接着性等が発揮され、 また吸水変形が小 さいという特性を有し、 しかも、 靱性が高く、 加工時や使用時における取扱性が良好であ ると共に、 フィルム面内の位相差と共にフィルム厚み方向の位相差が調整された薄膜であ つて位相差均一性およぴ安定な位相差特性を有するものである。 In the polarizing plate of the present invention, the number of luminescent spots per 1 m 2 on the protective film surface is preferably 10 or less. The invention's effect The retardation film of the present invention exhibits high transparency, low retardation, and other optical properties, heat resistance, adhesion and adhesion to other materials, and the like, which the thermoplastic norbornene-based resin has, and has a small water-absorbing deformation. A thin film with high toughness, good handling characteristics during processing and use, and uniform retardation in the film thickness direction as well as in-plane retardation. It has properties and stable phase difference characteristics.
このような本発明の位相差フィルムには、 光拡散機能を付与することができ、 また、 透 明導電層や反射防止層を積層することができる。  Such a retardation film of the present invention can be provided with a light diffusing function, and can be laminated with a transparent conductive layer or an antireflection layer.
本発明の偏光板は、 上記の位相差フィルムを保護フィルムとして用いてなるものであり 、 当該位相差フィルムが保護機能と位相差付与機能とを有するものであることから、 液晶 表示素子等に用いた場合に、 従来よりもその部品点数を低減することができる。  The polarizing plate of the present invention uses the above retardation film as a protective film. Since the retardation film has a protective function and a retardation providing function, it is used for a liquid crystal display element or the like. In this case, the number of parts can be reduced as compared with the conventional case.
従って、 本発明位相差フィルムおよび偏光板によれば、 VAタイプの液晶よりなる液晶 表示素子等を高い生産効率で製造することができると共に、 得られる液晶表示素子等に最 適な視野角特性を発現することができ、 更に薄膜化や小型化を図ることができる。 図面の簡単な説明  Therefore, according to the retardation film and the polarizing plate of the present invention, a liquid crystal display device made of VA type liquid crystal can be manufactured with high production efficiency, and the viewing angle characteristics optimal for the obtained liquid crystal display device and the like can be obtained. And can be further reduced in thickness and size. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1で得られた位相差フィルム (a— 6 ) について、 その透過光における 波長分散性の値と光線波長との関係を示す図である。  FIG. 1 is a view showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (a-6) obtained in Example 1.
図 2は、 実施例 2で得られた位相差フィルム (b— 6 ) について、 その透過光における 波長分散性の値と光線波長との関係を示す図である。  FIG. 2 is a view showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (b-6) obtained in Example 2.
図 3は、 実施例 3で得られた位相差フィルム (c— 6 ) について、 その透過光における 波長分散性の値と光線波長との関係を示す図である。  FIG. 3 is a view showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (c-6) obtained in Example 3.
図 4は、 実施例 4で得られた位相差フィルム (d— 6 ) について、 その透過光における 波長分散性の値と光線波長との関係を示す図である。  FIG. 4 is a diagram showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (d-6) obtained in Example 4.
図 5は、 実施例 5で得られた位相差フィルム (e— 6 ) について、 その透過光における 波長分散性の値と光線波長との関係を示す図である。  FIG. 5 is a diagram showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the retardation film (e-6) obtained in Example 5.
図 6は、 比較例 1で得られた比較用位相差フィルム (f — 6 ) について、 その透過光に おける波長分散性の値と光線波長との関係を示す図である。  FIG. 6 is a diagram showing the relationship between the wavelength dispersion value in transmitted light and the light wavelength of the comparative retardation film (f-6) obtained in Comparative Example 1.
図 7は、 比較例 2で得られた比較用位相差フィルム (g— 6 ) について、 その透過光に おける波長分散性の値と光線波長との関係を示す図である。 発明を実施するための最良の形態 FIG. 7 is a view showing the relationship between the wavelength dispersion value of transmitted light and the light wavelength of the comparative retardation film (g-6) obtained in Comparative Example 2. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の位相差フィルムは、 熱可塑性ノルボルネン系樹脂樹脂よりなる透過光に位相差 を与える機能を有するフィルムであり、 下記 (1) 〜 (3) の 3種のフィルムが包含され る。  The retardation film of the present invention is a film made of a thermoplastic norbornene-based resin and having a function of giving a retardation to transmitted light, and includes the following three types of films (1) to (3).
これらの位相差フィルムは、 材料の熱可塑性ノルポルネン系樹脂の高分子鎖が一定の方 向に配向しているため、 透過光に位相差を与えることができるものである。  These retardation films are capable of giving a retardation to transmitted light because the polymer chains of the thermoplastic norportene resin as a material are oriented in a certain direction.
(1) 下記条件 (a) 〜 (e) を満たすフィルム (フィルム A)  (1) Film satisfying the following conditions (a) to (e) (Film A)
(2) 下記条件 (a) 〜 (c) 、 ( f ) および (g) を満たすフィルム (フィルム B) (2) A film that satisfies the following conditions (a) to (c), (f) and (g) (Film B)
(3) 下記条件 (a) 〜 (d) および (h) を満たすフィルム (フィルム C) (3) Film satisfying the following conditions (a) to (d) and (h) (Film C)
条件; Condition;
(a) 1 00< d≤ 1 00000  (a) 1 00 <d≤ 1 00000
(b) 0. 9 5≤α (λ) /a (5 50) ≤ 1. 05  (b) 0.9 5≤α (λ) / a (5 50) ≤1.05
(c) 0. 95≤ β (又) / β (5 50) ≤ 1. 0 5  (c) 0.95≤ β (also) / β (5 50) ≤ 1.05
(d) 0≤α (5 50) ≤40 . (d) 0≤α (5 50) ≤40.
(e) 1 50≤i3 (5 50) ≤ 300 (e) 1 50 ≤ i3 (5 50) ≤ 300
( f ) 50≤α (5 50) ≤ 1 50  (f) 50 ≤ α (5 50) ≤ 1 50
(g) 30≤i3 (5 50) ≤ 1 00  (g) 30≤i3 (5 50) ≤100
(h) 0≤β (5 50) ≤ 80  (h) 0≤β (5 50) ≤80
ここに、 「d 〔nm〕 」 は、 フィルム厚みを示す。  Here, “d [nm]” indicates the film thickness.
α (λ) 〔nm〕 」 は、 面内進相軸方向 (屈折率が最小となる方向) の屈折率を nx 、 面内遅相軸方向 (屈折率が最大となる方向) の屈折率を ny、 フィルム厚み方向の屈折 率を n z、 フィルム厚みを d 〔nm〕 とするとき、 式 α (λ) = (η χ-η y) X dで表 される、 光線波長 400〜7 00 nmの範囲内において選択される任意の光線波長; I (n m〕 の透過光のフィルム面内の位相差を示し、 「α (5 50) [nm] 」 は、 光線波長 5 50 nmの透過光のフィルム面内の位相差を示す。 Α (λ) [nm]” is the refractive index in the in-plane fast axis direction (the direction in which the refractive index is the minimum) is nx, and the in-plane slow axis direction (the direction in which the refractive index is the maximum). Where ny is the refractive index in the film thickness direction and nz is the film thickness and d (nm) is the wavelength of the light beam, expressed by the equation α (λ) = (η χ -ηy) Xd, from 400 to 700 nm. Any light wavelength selected within the range; I (nm) indicates the in-plane retardation of the transmitted light, and “α (550) [nm]” is the transmitted light of the light wavelength 550 nm. The in-plane retardation of the film is shown.
また、 ' 「 (λ) [nm] 」 は、 式) 3 (λ) = { (nx + ny) /2 -n z } Xdで表 される、 光線波長 400〜700 nmの範囲内において選択された任意の光線波長; I 〔n m〕 の透過光のフィルム厚み方向の位相差を示し、 「i3 (550) [nm] 」 は、 光線波 長 550 nmの透過光のフィルム厚み方向の位相差を示す。 Also, '' (λ) [nm] 'is selected within the light wavelength range of 400 to 700 nm, expressed by the formula) 3 (λ) = {(nx + ny) / 2 -nz} Xd Arbitrary light wavelength; shows the phase difference of the transmitted light of I [nm] in the film thickness direction. "I3 (550) [nm]" is the light wave The figure shows the phase difference in the thickness direction of the transmitted light of 550 nm in length.
また、 「α (λ) /a (550) 」 は、 光線波長 550 n mの透過光のフィルム面内の 位相差ひ (550) [nm] の波長分散性を示し、 また、 /3 (λ) Ζβ (550) 」 は 、 光線波長 550 nmの透過光のフィルム厚み方向の位相差3 (550) [nm] の波長 分散性を示す。  “Α (λ) / a (550)” indicates the wavelength dispersion of the retardation (550) [nm] in the film plane of the transmitted light having a light wavelength of 550 nm, and / 3 (λ) “Β (550)” indicates the wavelength dispersion of a phase difference of 3 (550) [nm] in the film thickness direction of transmitted light having a light wavelength of 550 nm.
フイノレム Aにおいては、 フイノレム厚み dは、 0. 1〜: L O O /zm (1 00〜: 100, 0 00 nm) 、 好ましくは 0. 5〜80 μπι (500〜 80, 000 nm) 、 最も好ましく は:!〜 70 m (l, 000〜70, O O O nm) である。  In the finolem A, the finolem thickness d is 0.1 to: LOO / zm (100 to 100, 000 nm), preferably 0.5 to 80 μπι (500 to 80, 000 nm), most preferably :! 7070 m (1, 000-70, OO O nm).
このような厚みのフィルム Aを用いることにより、 例えば液晶表示素子などの製品の小 型ィ匕および薄肉化を図ることができる。  By using the film A having such a thickness, for example, a product such as a liquid crystal display element can be reduced in size and thickness.
また、 位相差 α (550) は、 0〜40 nmであり、 好ましくは 0〜20 nm、 更に好 ましくは 0〜: 10 nm、 最も好ましくは 0〜5 nmである。  The phase difference α (550) is from 0 to 40 nm, preferably from 0 to 20 nm, more preferably from 0 to: 10 nm, and most preferably from 0 to 5 nm.
位相差 ]3 (550) は、 1 50〜300 nm、 好ましくは 1 70〜270 nm、 更に好 ましくは 1 90〜 250 nmである。  Retardation] 3 (550) is 150-300 nm, preferably 170-270 nm, more preferably 190-250 nm.
位相差 α (550) の波長分散性ひ (λ) /a (550) は、 光線波長 400〜700 nmの範囲において 0. 95〜: L. 05、 好ましくは 0. 97〜: L. 03である。  The wavelength dispersion (λ) / a (550) of the phase difference α (550) is 0.95 to: L.05, preferably 0.97 to: L.03 in the light wavelength range of 400 to 700 nm. is there.
位相差 (550) の波長分散性 (λ) Ζ β (550) は、 光線波長 400〜700 nmの範囲において 0. 95〜: L. 05、 好ましくは 0. 97〜: I. 03である。  The wavelength dispersion (λ) Ζ β (550) of the phase difference (550) is 0.95 to: L.05, preferably 0.97 to: I.03 in the light wavelength range of 400 to 700 nm.
フィルム Bにおいては、 フィルム厚み dは、 0. 1〜: l O O juni (100〜100, 0 00 nm) 、 好ましくは 0. 5〜80μπι (500〜 80, O O O nm) 、 最も好ましく は:!〜 70 /im (l, 000〜70, O O O nm) である。  In the film B, the film thickness d is 0.1 to: l O O juni (100 to 100, 000 nm), preferably 0.5 to 80 μπι (500 to 80, O O O nm), and most preferably :! ~ 70 / im (l, 000-70, OO O nm).
このような厚みのフィルム Bを用いることにより、 例えば液晶表示素子などの製品の小 型化および薄肉化を図ることができる。  By using the film B having such a thickness, for example, a product such as a liquid crystal display device can be reduced in size and thickness.
また、 位相差 α (550) は、 50〜: L 50 nm、 好ましくは 70〜130 nm、 更に 好ましくは 90〜1 10 nmである。  Further, the phase difference α (550) is 50 to: L 50 nm, preferably 70 to 130 nm, and more preferably 90 to 110 nm.
位相差 ]3 (550) は、 30〜:! O O nm、 好ましくは 40〜90 nm、 更に好ましく は 40〜80 nmである。  Phase difference] 3 (550) is 30 ~ :! OO nm, preferably 40 to 90 nm, more preferably 40 to 80 nm.
位相差 α (550) の波長分散性 α (λ) /a (550) は、 光線波長 400〜700 nmの範囲において 0. 95〜: L. 05、 好ましくは 0. 97〜: L. 03である。 位相差 (5 50) の波長分散性 (λ) ,β (5 50) は、 光線波長 400〜700 nmの範囲において 0. 9 5〜: L . 0 5、 好ましくは 0. 9 7〜: 1. 03である。 The wavelength dispersion α (λ) / a (550) of the phase difference α (550) is 0.95 to: L.05, preferably 0.97 to: L.03 in the light wavelength range of 400 to 700 nm. is there. The wavelength dispersions (λ) and β (550) of the phase difference (550) are 0.95 to: L.05, preferably 0.97 to: 1 in the light wavelength range of 400 to 700 nm. 03.
フィルム Cにおいては、 フイノレム厚み dは、 0. 1〜: ί θ θ μπι (1 00〜1 00, 0 00 nm) 、 好ましくは 0. 5〜80 /xm (500〜80, 000 nm) 、 最も好ましく は:!〜 70 μπι (1, 000〜70, O O O nm) である。  In the film C, the finolem thickness d is 0.1 to: ίθθμπι (100 to 100, 000 nm), preferably 0.5 to 80 / xm (500 to 80, 000 nm). Preferably:! 7070 μπι (1,000-70, OO O nm).
このような厚みのフイルム Cを用いることにより、 例えば液晶表示素子などの製品の小 型化および薄肉化を図ることができる。  By using the film C having such a thickness, for example, a product such as a liquid crystal display device can be reduced in size and thickness.
また、 位相差 α (5 50) は、 0〜40 nm、 好ましくは 0〜 20 n m、 更に好ましく は 0〜: L 0 nmである。  The phase difference α (550) is 0 to 40 nm, preferably 0 to 20 nm, and more preferably 0 to L 0 nm.
位相差 (5 50) は、 0〜80 nm、 好ましくは 1 0〜60 nm、 更に好ましくは 2 0〜40 nmである。  The phase difference (550) is from 0 to 80 nm, preferably from 10 to 60 nm, more preferably from 20 to 40 nm.
位相差 α (5 50) の波長分散性ひ (X) /a (5 50) は、 光線波長 400〜700 nmの範囲において 0. 9 5〜: L. 0 5、 好ましくは 0. 9 7〜: I . 0 3である。  The wavelength dispersion (X) / a (550) of the phase difference α (550) is 0.95- in the light wavelength range of 400-700 nm: L.05, preferably 0.997- : I.03.
位相差 /3 (5 50) の波長分散性 ]3 (λ) /β (5 50) は、 光線波長 400〜700 nmの範囲において 0. 95〜: L . 0 5、 好ましくは 0. 9 7〜: 1. 03である。  Wavelength dispersibility of phase difference / 3 (550)] 3 (λ) / β (550) is 0.95 to: L.05, preferably 0.997 in a light wavelength range of 400 to 700 nm. ~: 1.03.
フィルム A、 フィルム Bおよびフィルム C (以下、 これらをまとめて 「特定位相差フィ ルム」 ともいう。 ) においては、 特定位相差フィルムを透過した光の位相差の均一性が高 いことが好ましく、 光線波長 5 50 nmにおけるバラツキは通常は土 20%以下であり、 好ましくは 1 0 %以下、 更に好ましくは土 5 %以下である。 位相差のバラツキが土 20 % の範囲を超えると、 液晶表示素子等に用いた場合、 色ムラ等が発生し、 ディスプレイ本体 の性能が悪化する。  In film A, film B and film C (hereinafter collectively referred to as “specific retardation film”), it is preferable that the uniformity of the phase difference of light transmitted through the specific retardation film is high. The variation at a light wavelength of 550 nm is usually 20% or less of soil, preferably 10% or less, more preferably 5% or less of soil. If the variation of the phase difference exceeds the range of 20% of the soil, when used in a liquid crystal display device or the like, color unevenness or the like occurs, and the performance of the display body deteriorates.
以上のような特定位相差フィルムは、 熱可塑性ノルボルネン系樹脂を成形材料とし、 例 えば後述する溶融押し出し法やキャスト法等によって成形されたフィルム (以下、 「加工 前フィルム」 ともいう。 ) に延伸配向処理等の加工を施すことによって高分子鎖を規則的 に配向させることで得ることができる。  The specific retardation film as described above is formed from a thermoplastic norbornene-based resin as a molding material and stretched into, for example, a film formed by a melt extrusion method, a casting method, or the like described below (hereinafter, also referred to as a “film before processing”). It can be obtained by regularly aligning the polymer chains by performing processing such as alignment treatment.
ここで、 「規則的な配向」 とは、 通常の高分子 (ポリマー) を溶融押し出し法やキャス ト法等によりフィルム状に成形した場合には、 その工程中で発生するフィルムの歪みの大 小にもよるが分子鎖は特定方向を向力ずランダムな状態であるのに对し、 特定位相差フィ ルムは全体として分子鎖がフィルム平面の一軸方向、 又は二軸方向、 更に厚み方向に規則 的に配向していることを意味する。 配向の規則性の程度はさまざまである。 特定位相差フィルムは、 熱可塑性ノルポルネン系樹脂よりなるものであるが、 この特定 位相差フィルムを得るための熱可塑性ノルボルネン系樹脂としては、 下記の (ィ) 〜 (ホ ) に示す (共) 重合体 (以下、 「特定重合体」 ともいう。 ) が挙げられる。 Here, “regular orientation” means that when a normal polymer is formed into a film by a melt extrusion method, a casting method, or the like, the magnitude of the film distortion generated in the process is large or small. Although depending on the molecular chain, the molecular chain is in a random state without any specific direction, but the specific retardation film is generally composed of molecular chains that are regular in the uniaxial or biaxial direction of the film plane and in the thickness direction. Means that they are orientationally oriented. The degree of orientation regularity varies. The specific retardation film is made of a thermoplastic norbornene-based resin. As the thermoplastic norbornene-based resin for obtaining the specific retardation film, the following (a) to (e) are used. (Hereinafter, also referred to as “specific polymer”).
(ィ) 下記一般式 (3 ) で表される化合物 (以下、 「特定単量体 a」 ともいう。 ) の開環 重合体。  (A) A ring-opened polymer of a compound represented by the following general formula (3) (hereinafter, also referred to as “specific monomer a”).
(口) 特定単量体 aと、 当該特定単量体 aと共重合可能な化合物 (以下、 「共重合性単量 体」 ともいう。 ) との開環重合体。  (Mouth) A ring-opened polymer of a specific monomer a and a compound copolymerizable with the specific monomer a (hereinafter, also referred to as “copolymerizable monomer”).
(ハ) 上記 (ィ) の開環重合体または (口) の開環重合体の水素添加物。  (C) A hydrogenated product of the ring-opening polymer of (a) or (ring).
(二) 上記 (ィ) の開環重合体または (口) の開環重合体をフリーデルクラフト反応によ り環化して得られた化合物若しくはその水素添加物。  (2) A compound obtained by cyclizing the ring-opening polymer of (a) or the ring-opening polymer of (mouth) by a Friedel-Craft reaction or a hydrogenated product thereof.
(ホ) 特定単量体 aの付加型重合体または特定単量体 aと不飽和二重結合含有化合物との 付加型重合体若しくはその水素添加物。 (E) An addition polymer of the specific monomer a or an addition polymer of the specific monomer a and an unsaturated double bond-containing compound or a hydrogenated product thereof.
[化 3 ]  [Formula 3]
Figure imgf000013_0001
Figure imgf000013_0001
[式中、 mは 1以上の整数、 pは 0または 1以上の整数であり、 R 1 〜R 4 は、 それぞれ 独立に、 水素原子;ハロゲン原子;酸素原子、 窒素原子、 ィォゥ原子若しくはケィ素原子 を含む連結基を有していてもよレ、置換若しくは非置換の炭素原子数 1〜 3 0の炭化水素基[Wherein, m is an integer of 1 or more, p is 0 or an integer of 1 or more, and R 1 to R 4 are each independently a hydrogen atom; a halogen atom; an oxygen atom, a nitrogen atom, a zeo atom, or a silicon atom. A substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, which may have a linking group containing an atom
;または極性基を示す。 更に、 R 1 と R 2 、 R 3 と または R 2 と R 3 は、 互いに結合 して、 単環構造若しくは他の環が縮合して多環構造を有する炭素環または複素環を形成し ていてもよく、 形成される炭素環または複素環は芳香環であってもよいし非芳香環であつ てもよい。 ] Or a polar group. Further, R 1 and R 2 , R 3 and R 2 and R 3 are bonded to each other to form a carbocyclic or heterocyclic ring having a polycyclic structure by condensing a monocyclic structure or another ring. The carbocyclic or heterocyclic ring formed may be an aromatic ring or a non-aromatic ring. ]
特定重合体は、 共重合性単量体として下記一般式 (4 ) で表される化合物 (以下、 「特 定単量体 b」 ともいう。 ) を用い、 特定単量体 aと、 特定単量体 bとを共重合して得られ るものであることが好ましい。 このような構成の特定重合体によれば、 最終的に得られる 特定位相差フィルムが靱性等の機械的な特性が一層優れたものとなり、 また、 延伸加工に より特定位相差フィルムに必要とされる所望の位相差を得やすくなる。 As the specific polymer, a compound represented by the following general formula (4) (hereinafter, also referred to as “specific monomer b”) as a copolymerizable monomer is used. Obtained by copolymerizing monomer b Preferably, it is According to the specific polymer having such a configuration, the finally obtained specific retardation film has more excellent mechanical properties such as toughness, and is required for the specific retardation film by stretching. It is easy to obtain a desired phase difference.
[化 4]  [Formula 4]
一般式 (4) General formula (4)
Figure imgf000014_0001
Figure imgf000014_0001
[式中、 R1 〜R4 は、 それぞれ独立に、 水素原子;ハロゲン原子;酸素原子、 窒素原子 、 ィォゥ原子若しくはケィ素原子を含む連結基を有していてもよレ、置換若しくは非置換の 炭素原子数 1〜30の炭化水素基;または極性基を示す。 更に、 R1 と R2 、 R3 と R4 または R2 と R3 は、 互いに結合して、 単環構造若しくは他の環が縮合して多環構造を有 する炭素環または複素環 (但し、 一般式 (1) で表される構造を除く) を形成してもよく 、 形成される炭素環または複素環は芳香環であってもよいし非芳香環であってもよレ、。 ] 更に、 特定重合体は、 特定単量体 aと特定単量体 bとの開環重合体であって、 上記一般 式 (1) で表される特定単量体 aに由来の構造単位 (以下、 「構造単位 a」 ともいう。 ) と、 上記一般式 (2) で表される特定単量体 bに由来の構造単位 (以下、 「構造単位 b」 ともいう。 ) とを有するものであることが好ましレ、。 このような構成の特定重合体は、 耐 熱性と延伸加工等による加熱加工性とのバランスを図ることができる点で好まし!/、。 一般式 (1) 〜一般式 (4) におけるハロゲン原子としては、 フッ素原子、 塩素原子お よび臭素原子が挙げられる。 [Wherein, R 1 to R 4 each independently represent a hydrogen atom; a halogen atom; a linking group containing an oxygen atom, a nitrogen atom, an iodine atom or a silicon atom, substituted or unsubstituted. Represents a hydrocarbon group having 1 to 30 carbon atoms; or a polar group. Further, R 1 and R 2 , R 3 and R 4, or R 2 and R 3 are bonded to each other to form a monocyclic structure or a condensed other ring to form a carbocyclic or heterocyclic ring having a polycyclic structure (however, , Except for the structure represented by the general formula (1)), and the carbocyclic or heterocyclic ring formed may be an aromatic ring or a non-aromatic ring. Further, the specific polymer is a ring-opened polymer of the specific monomer a and the specific monomer b, and the structural unit derived from the specific monomer a represented by the general formula (1) ( Hereinafter, also referred to as “structural unit a”.) And a structural unit derived from the specific monomer b represented by the general formula (2) (hereinafter, also referred to as “structural unit b”). It's preferable that there is. The specific polymer having such a configuration is preferable because it can balance heat resistance and heat processability by stretching or the like! The halogen atom in the general formulas (1) to (4) includes a fluorine atom, a chlorine atom and a bromine atom.
炭素原子数 1〜30の炭化水素基としては、 例えばメチル基、 ェチル基、 プロピル基等 のアルキル基;シク口ペンチル基、 シク口へキシル基等のシクロアルキル基; ビニル基、 ァリル基、 プロぺニル基等のアルケニル基などが挙げられる。  Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group such as a methyl group, an ethyl group, and a propyl group; a cycloalkyl group such as a pentyl group and a hexyl group; a vinyl group, an aryl group, and a And alkenyl groups such as benzyl groups.
また、 一般式 (1) 〜一般式 (4) における置換または非置換の炭化水素基は、 直接環 構造に結合していてもよいし、 あるいは連結基 (1 i nk a g e) を介して結合していて もよい。 Further, the substituted or unsubstituted hydrocarbon group in the general formulas (1) to (4) may be directly bonded to the ring structure, or may be bonded via the linking group (1). Have been Is also good.
連結基としては、 例えば炭素原子数 1〜10の 2価の炭化水素基 〔例えば、 一 (CH2 ) „ - (式中、 qは 1〜10の整数) で表されるアルキレン基〕 ;酸素原子、 窒素原子、 ィォゥ原子若しくはケィ素原子を含む連結基 〔例えば、 カルボニル基 (—CO— ) 、 ォキ シカルボニル基 (-0 (CO) -) 、 スルホン基 (― S02 —) 、 エーテル結合 (-0- ) 、 チォエーテル結合 (― S_) 、 イミノ基 (― NH— ) 、 アミド結合 (― NHCO—, -CONH-) 、 シロキサン結合 (-OS i (R9 2 ) - (式中、 R9 はメチル、 ェチル 等のアルキル基) 〕 、 あるいはこれらの 2種以上が結合されたものなどが挙げられる。 極性基としては、 例えば水酸基、 炭素原子数 1〜10のアルコキシ基、 アルコキシカル ボニル基、 ァリーロキシカルボニル基、 シァノ基、 アミ ド基、 イミド環含有基、 トリオル ガノシロキシ基、 トリオルガノシリノレ基、 アミノ基、 ァシル基、 アルコキシシリル基、 ス ルホニル含有基、 およびカルボキシル基などが挙げられる。 更に具体的には、 上記アルコ キシ基としては、 例えばメ トキシ基、 エトキシ基等が挙げられ;アルコキシカルボニル基 としては、 例えばメ トキシカルボニル基、 エトキシカルボニル基等が挙げられ;ァリ一口 キシカルボニル基としては、 例えばフエノキシカルボニル基、 ナフチルォキシカルボニル 基、 フルォレニルォキシカルボニル基、 ビフエ二リルォキシカルボニル基等が挙げられ; トリオルガノシロキシ基としては例えばトリメチルシ口キシ基、 トリェチルシロキシ基等 が挙げられ; トリオルガノシリノレ基としてはトリメチルシリノレ基、 トリェチルシリル基等 が挙げられ;ァミノ基としては第 1級ァミノ基が挙げられ、 アルコキシシリル基としては 例えばトリメ トキシシリル基、 トリエトキシシリル基等が挙げられる。 Examples of the linking group include a divalent hydrocarbon group having 1 to 10 carbon atoms [eg, an alkylene group represented by one (CH 2 ) „-(where q is an integer of 1 to 10)]; oxygen atom, a nitrogen atom, linking groups [e.g., a carbonyl group containing Iou atom or Kei atom (-CO-), O key aryloxycarbonyl group (-0 (CO) -), sulfone group (- S0 2 -), ether bond (-0-), Chioeteru bond (- S_), imino group (- NH-), amide bond (- NHCO-, -CONH-), siloxane bond (-OS i (R 9 2) - ( wherein, R 9 is an alkyl group such as methyl, ethyl, etc.)] or a group in which two or more of these are bonded, etc. Examples of the polar group include a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, and alkoxycarbonyl. Group, aryloxycarbonyl group, cyano group, amide group, imide ring-containing group Examples include a triorganosiloxy group, a triorganosilinole group, an amino group, an acyl group, an alkoxysilyl group, a sulfonyl-containing group, a carboxyl group, etc. More specifically, the alkoxy group includes, for example, a methoxy group Alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group; aryloxycarbonyl group such as phenoxycarbonyl group, naphthyloxycarbonyl group, and the like. A fluorenyloxycarbonyl group, a biphenylyloxycarbonyl group and the like; a triorganosiloxy group such as a trimethylcyclooxy group and a triethylsiloxy group; and a triorganosilinole group Silinole group, Trietilsi Examples of the amino group include a primary amino group, and examples of the alkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group.
特定単量体 aの具体例としては、  Specific examples of the specific monomer a include:
テトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン、 Tetracyclo [4. 4. 0. I 2 ' 5. I 7 ' 10 ] —3-dodecene,
ペンタシクロ [9. 2. 1. I3' 9 . 02' 10. 04' 8 ] ― 12—ペンタデセン、 ペンタシクロ [9. 2. 1. I5' 8 . 02' 10. 04' 9 ] ― 12—ペンタデセン、Pentacyclo [9. 2. 1. I 3 '9 0 2.' 10 0 4.. '8] - 12- pentadecene, pentacyclo [9. 2. 1. I 5' 8 0 2 '. 10 0 4' 9 ] ― 12-pentadecene,
8 メ トキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン 8 methoxycarbonyltetracyclo [4. 4. 0. I 2 ' 5. I 7 ' 10 ] —3-dodecene
8—エトキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン 8- ethoxycarbonyl two Rutetorashikuro [4. 4. 0. I 2 '5 . I 7' 10] -3- dodecene
8— n—プロポキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ド デセン、 8- n-propoxy carbonylation Rutetorashikuro [4. 4. 0. I 2 '5 . I 7' 10] -3- de Desen,
8—イソプロポキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] — 3—ド デセン、 8-isopropoxycarbonyltetracyclo [4. 4. 0. I 2 ' 5. I 7 ' 10 ] — 3-dodecene,
8— n—ブトキシカルボ二ルテトラシクロ [4. 4. 0. 12· 5 . I7' 10] — 3—ドデ セン、 8- n-butoxycarbonyl two Rutetorashikuro [4. 4. 0. 1 2 · 5 I 7 '10.] - 3- dodecene,
8—フエノキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] — 3—ドデセ ン、 8 Fuenokishikarubo two Rutetorashikuro [4. 4. 0. I 2 '5 I 7.' 10] - 3- dodec down,
8—メチル一8—カルボキシメチルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3 -ドデセン、 8-methyl-one 8-carboxymethyl tetracyclo [4. 4. 0. I 2 '5 I 7.' 10] -3 - dodecene,
8—メチル一8—エトキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] — 3一ドデセン、 8-methyl-one 8-ethoxycarbonyl two Rutetorashikuro [4. 4. 0. I 2 '5 I 7.' 10] - 3 one dodecene,
8—メチルー 8— η—プロポキシカルボ二ルテトラシクロ [4. 4. 0. I2· 5· I7' 10] —3—ドデセン、 8-methyl-8-.eta. propoxy carbonylation Rutetorashikuro [4. 4. 0. I 2 · 5 · I 7 '10] -3- dodecene,
8—メチル一8—イソプロポキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5. I7' 10] —3—ドデセン、 8-methyl-one 8-isopropoxyphenyl carbonylation Rutetorashikuro [4. 4. 0. I 2 '5 . I 7' 10] -3- dodecene,
8—メチル _8— η—ブトキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5 . 17' 10 ] -3-ドデセン、 8-methyl _8- .eta. butoxycarbonyl two Rutetorashikuro [4. 4. 0. I 2 '5 . 1 7' 10] -3- dodecene,
8—メチル一8—フエノキシカルボ二ルテトラシクロ [4. 4, 0. I2' 5 . I7' 10] 一 3—ドデセン、 8-methyl-one 8-Fuenokishikarubo two Rutetorashikuro [4. 4, 0. I 2 ' 5. I 7' 10] one 3- dodecene,
8—ェチリデンテトラシクロ [4. 4. 0. 12' 5 . I7' 10] —3—ドデセン、 8—フエ二ルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン、 8 E dust Den tetracyclo [4. 4. 0. 1 2 '5 . I 7' 10] -3- dodecene, 8-phenylene Rutetorashikuro [4. 4. 0. I 2 '5 . I 7' 10 ] —3—Dodecene,
8—メチル一8—フエ二ルテトラシクロ [4. 4. 0. I2' 5. I7' 10] —3—ドデセ ン、 8-methyl-one 8-phenylene Rutetorashikuro [4. 4. 0. I 2 '5 . I 7' 10] -3- dodec down,
8—フルォロテトラシクロ [4. 4. 0. I2' 5 . 17' 10] — 3—ドデセン、 8 Full O b tetracyclo [4. 4. 0. I 2 '5 1 7.' 10] - 3- dodecene,
8—フルォロメチルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン、 8—ジフルォロメチルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン、 8—トリフルォロメチルテトラシクロ [4. 4. 0. I2' 5 . 17' 10] — 3—ドデセン 8 Full O b methyl tetracyclo [4. 4. 0. I 2 '5 . I 7' 10] -3- dodecene, 8-difluoromethyl O b methyl tetracyclo [4. 4. 0. I 2 '5 . I 7 '10] -3- dodecene, 8-triflate Ruo Russia methyl tetracyclo [4. 4. 0. I 2' 5 1 7 '10] -. 3- dodecene
8 _ペンタフルォロェチルテトラシクロ [4. 4. 0. 12· 6 . I7' 10] — 3_ドデセ ン、 8 _ penta full O Roe chill tetracyclo [4. 4. 0. 1 2 · 6 I 7 '10.] - 3_ dodec ,
8, 8—ジフルォロテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン、 8, 9—ジフルォロテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン、 8, 8—ビス (トリフルォロメチル) テトラシクロ [4. 4. 0. I2' 5 . I7' 10] — 3—ドデセン、 8, 8-difluoromethyl O b tetracyclo [4. 4. 0. I 2 '5 . I 7' 10] -3- dodecene, 8, 9-difluoromethyl O b tetracyclo [4. 4. 0. I 2 ' . 5 I 7 '10] -3- dodecene, 8, 8- bis (triflate Ruo ii methyl) tetracyclo [4. 4. 0. I 2' 5 I 7 '10] -. 3- dodecene,
8, 9—ビス (トリフノレオロメチノレ) テトラシクロ [4. 4. 0. I2' 5 . I7' 10] — 3-ドデセン、 8, 9-bis (triflate Honoré Oro methylcarbamoyl Honoré) tetracyclo [4. 4. 0. I 2 '5 I 7.' 10] - 3- dodecene,
8—メチル一8—トリフルォロメチルテトラシクロ [4. 4. 0. I2' 5 . I7' 10] — 3—ドデセン、 8-methyl-one 8-triflate Ruo Russia methyl tetracyclo [4. 4. 0. I 2 '5 I 7.' 10] - 3- dodecene,
8, 8, 9—トリフルォロテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセ ン、 8,8,9-Trifluorotetracyclo [4.4.0. I 2 ' 5. I 7 ' 10 ] —3-dodecene,
8, 8, 9ートリス (トリフルォロメチル) テトラシクロ [4. 4. 0. 12' 5. I7' 10] 一 3—ドデセン、 8, 8, 9 Torisu (triflate Ruo ii methyl) tetracyclo [4. 4. 0. 1 2 '5 . I 7' 10] one 3- dodecene,
8, 8, 9, 9—テトラフルォロテトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3— ドデセン、 8, 8, 9, 9-tetra full O b tetracyclo [4. 4. 0. I 2 '5 . I 7' 10] -3- dodecene,
8, 8 , 9, 9—テトラキス (トリフノレオロメチノレ) テトラシクロ [4. 4. 0. 12'8,8,9,9-tetrakis (trif-noleolomethinole) tetracyclo [4. 4.0.1 2 '
10] -3-ドデセン、 10 ] -3-dodecene,
8, 8 —ジフルオロー 9, 9—ビス (トリフルォロメチル) テトラシクロ [4. 4. 0 . I7' 10] —3—ドデセン、 8, 8 - difluoro -9, 9-bis (triflate Ruo ii methyl) tetracyclo [. 4. 4. 0 I 7 ' 10] -3- dodecene,
8, 9 —ジフルオロー 8, 9—ビス (トリフルォロメチル) テトラシクロ [4. 4. 0 . 17' 10] —3—ドデセン、 8, 9 - difluoro over 8, 9- bis (triflate Ruo ii methyl) tetracyclo [. 4.4.1 0 1 7 '10] -3-dodecene,
8, 8 , 9一トリフルオロー 9—トリフルォロメチルテトラシクロ [4. 4. 0. I2'8,8,9-Trifluoro-9-trifluoromethyltetracyclo [4.4.0.I 2 '
10] —3—ドデセン、 10 ] —3-dodecene,
8, 8 , 9一トリフルォロ _ 9—トリフルォロメ トキシテトラシクロ [4. 4. 0. 1 8,8,9-Trifluoro_9—Trifluoromethoxytetracyclo [4. 4.0.1
7· 10] 一 3—ドデセン、 7 · 10 ] One 3-dodecene,
8, 8 , 9一トリフノレオ口一 9—ペンタフノレォロプロポキシテトラシクロ [4. 4. 0 . 17' 10] —3—ドデセン、 8, 8, 9 one Torifunoreo port one 9-penta unloading Reo b propoxy tetracyclo [4. 4.0. 1-7 '10] -3-dodecene,
8—フルオロー 8 _ペンタフルォロェチル一 9, 9—ビス (トリフノレオロメチル) テト ラシクロ [4. 4. 0. I2' 5 . I7' 10] — 3—ドデセン、 8, 9—ジフルオロー 8—ヘプタフルォロ i s o—プロピル一 9 _トリフルォロメチル テトラシクロ [4. 4. 0. I2' 5 . 17' 10] _ 3—ドデセン、 8 Furuoro 8 _ penta full O Roe chill one 9, 9-bis (triflate Honoré Oro methyl) Tet Rashikuro [4. 4. 0. I 2 '5 I 7.' 10] - 3- dodecene, 8, 9-difluoro over 8 Heputafuruoro iso- propyl one 9 _ triflate Ruo Russia methyl tetracyclo [4. 4. 0. I 2 '5 . 1 7' 10] _ 3- dodecene,
8—クロロー 8, 9, 9一トリフルォロテトラシクロ [4. 4. 0. I2' 5 . 17' 10] —3—ドデセン、 8- chloro 8, 9, 9 one triflumizole Ruo b tetracyclo [4. 4. 0. I 2 '5 . 1 7' 10] -3- dodecene,
8, 9—ジクロロ一 8, 9—ビス (トリ ブノレオロメチノレ) テトラシクロ [4. 4. 0. I2' 5 . I7' 10] —3—ドデセン、 8, 9-dichloro-one 8, 9-bis (tri Buno Leo Lome Chino Les) tetracyclo [4. 4. 0. I 2 '5 . I 7' 10] -3- dodecene,
8- (2, 2, 2—トリフルォロエトキシカルボニル) テトラシクロ [4. 4. 0. 1 8- (2,2,2-trifluoroethoxycarbonyl) tetracyclo [4.4.0.1
2, 5 . 1ァ. 10] — 3一ドデセン、 2, 5.1 a. 10 ] — 3 dodecene,
8—メチノレー 8— (2, 2, 2—トリフルォロエトキシカルボニル) テトラシクロ [4 . 4. 0. I2' 5 . I7' 10] -3 -ドデセン 8- Mechinore 8- (2, 2, 2-triflate Ruo b ethoxycarbonyl) tetracyclo [4 4. 0. I 2 '5 I 7.' 10.] -3 - dodecene
8— (4—ビフエニルカルボ二ルォキシメチノレ) テトラシクロ [4. 4. 0. I2' 5 . 17· 10] -3-ドデセン、 8- (4-Bifuenirukarubo two Ruokishimechinore) tetracyclo [4. 4. 0. I 2 '5 . 1 7 · 10] -3- dodecene,
8 - (4ービフエニルカルボニルォキシェチル) テトラシクロ [4. 4. 0. I2' 5 . 17' 10] — 3—ドデセン、 8 - (4-Biff thienylcarbonyl O key shell chill) tetracyclo [4. 4. 0. I 2 '5 1 7.' 10] - 3- dodecene,
8—メチノレ一 8— (4—ビフエ二ルカルポニルォキシメチル) テトラシクロ [4. 4. 0. 12' 5 . 17' 10] —3—ドデセン、 8 Mechinore one 8- (4-Bifue two Luca Lupo sulfonyl O carboxymethyl) tetracyclo [4.4.1 0.1 2 '5.1 7' 10] -3-dodecene,
8— (2—ビフエニルカルボニルォキシメチル) テトラシクロ [4. 4. 0. I2' 5 . 17' 10] —3—ドデセン、 8- (2-Biff thienylcarbonyl O carboxymethyl) tetracyclo [4. 4. 0. I 2 '5 . 1 7' 10] -3- dodecene,
8—メチノレ一 8— (2—ビフエ二ルカルポニルォキシメチル) テトラシクロ [4. 4. 0. 12' 5 . 17' 10] —3—ドデセン、 8 Mechinore one 8- (2-Bifue two Luca Lupo sulfonyl O carboxymethyl) tetracyclo [4.4.1 0.1 2 '5.1 7' 10] -3-dodecene,
8 - (3—ビフエ二ルカルポニルォキシメチル) テトラシクロ [4. 4. 0. I2' 5 .8 - (3-Bifue two Luca Lupo sulfonyl O carboxymethyl) tetracyclo [4. 4. 0. I 2 '5 .
17. 10] — 3一ドデセン、 17. 10] — three dodecenes,
8—メチノレ一 8— (3—ビフエ二ルカルボニルォキシメチル) テトラシクロ [4. 4. 0. 12' 5 . 17' 10] — 3—ドデセン、 8 Mechinore one 8- (3-Bifue two ylcarbonyl O carboxymethyl) tetracyclo [4.4.1 .1 2 '5 1 7.' 10] - 3-dodecene,
8— (1一ナフチルカルボニルォキシメチル) テトラシクロ [4. 4. 0. I2' 5 . 1 7' ュ °] 一 3—ドデセン、 8- (1 one naphthylcarbonyl O carboxymethyl) tetracyclo [4. 4. 0. I 2 '5 . 1 7' Interview °] one 3- dodecene,
8—メチル一8— (1 _ナフチルカルボニルォキシメチル) テトラシクロ [4. 4. 0 12' 5 . 17' 10] —3—ドデセン、 8-methyl-one 8- (1 _ naphthylcarbonyl O carboxymethyl) tetracyclo [4.4.1 0 1 2 '5.1 7' 10] -3-dodecene,
8 - (2—ナフチノレカルボ二ルォキシメチノレ) テトラシクロ 「4. 4. 0. 12' 5 . 1 7' 10] —3—ドデセン、 8 -. (2-Nafuchinorekarubo two Ruokishimechinore) tetracyclo "4.4.1 0.1 2 '5 1 7 '10] -3-dodecene,
8—メチルー 8— (2 _ナフチルカルボニルォキシメチル) テトラシクロ [4. 4. 0 . 12' 5 . 17' 10] -3-ドデセン、 8-methyl-8- (2 _ naphthylcarbonyl O carboxymethyl) tetracyclo [4. 4.0. 1 2 '5.1 7' 10] -3-dodecene,
8 - (9—アントラセニルカルボニルォキシメチル) テトラシクロ [4. 4. 0. I2' 5 . 17' 10] — 3—ドデセン、 8 - (9-anthracenyl carbonyl O carboxymethyl) tetracyclo [4. 4. 0. I 2 '5 1 7.' 10] - 3- dodecene,
8—メチノレ一 8— (9—アントラセニルカルボニルォキシメチル) テトラシクロ [4. 4. 0. I2' 5 . 17' 10] — 3—ドデセン、 8 Mechinore one 8- (9-anthracenyl carbonyl O carboxymethyl) tetracyclo [4. 4. 0. I 2 '5 1 7.' 10] - 3- dodecene,
1, 2 - (2H、 3H- [1, 3] ェピシクロペンタ) 一1, 2—ジヒ ドロアセナフチ レンとシクロペンタジェンとのディー/レス ·アルダー付加体  1,2-(2H, 3H- [1,3] epicyclopenta) Dee / less Alder adduct of 1,1,2-dihydroaceenaphthylene and cyclopentadiene
などを挙げることができるが、 特定単量体 aは、 これらの化合物に限定されるものでなは レ、。 また、 これらの化合物は、 単独でまたは 2種以上を組み合わせて特定単量体 aとして 用いることができる。 However, the specific monomer a is not limited to these compounds. These compounds can be used alone or in combination of two or more as the specific monomer a.
これらの中では、 分子内に少なくとも 1つの極性基を有する化合物が好ましく、 特に、 一般式 (3) において、 R1 および R3 が水素原子または炭素原子数 1〜10の炭化水素 基であり、 R2 および R4 が水素原子または一価の有機基に相当するものであって、 かつ R2 および R4 の少なくとも一つが水素原子および炭化水素基以外の極性基であるものが 、 他素材との密着性 ·接着性を高めるという観点から好ましい。 Among these, compounds having at least one polar group in the molecule are preferred. In particular, in the general formula (3), R 1 and R 3 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, R 2 and R 4 correspond to a hydrogen atom or a monovalent organic group, and at least one of R 2 and R 4 is a polar group other than a hydrogen atom and a hydrocarbon group. This is preferable from the viewpoint of enhancing the adhesion.
ここに、 得られる特定重合体中の極性基の含有量は、 最終的に得られる特定位相差フィ ルムに要求される所望の機能等により決定されるものであり、 特に限定はされないが、 特 定単量体 aに由来する全構造単位中に極性基を有する特定単量体 aに由来の構造単位が、 通常 1モル%以上、 好ましくは 5モル%以上、 更に好ましくは 10モル%以上であり、 特 定単量体 aに由来する全構造単位が極性基を有するものであってもよい。 Here, the content of the polar group in the obtained specific polymer is determined by a desired function or the like required for the finally obtained specific retardation film, and is not particularly limited. The structural unit derived from the specific monomer a having a polar group in all the structural units derived from the constant monomer a is usually 1 mol% or more, preferably 5 mol% or more, more preferably 10 mol% or more. Yes, all structural units derived from the specific monomer a may have a polar group.
また、 特定単量体 aとしては、 一般式 (3) において、 R2 および R4 の少なくとも一 つが下記一般式 (5) で表される極性基を有するものであることが、 得られる特定重合体 のガラス転移温度と吸水性を制御しゃすレヽ点で好ましレ、。 [化 5] In addition, as the specific monomer a, in the general formula (3), at least one of R 2 and R 4 has a polar group represented by the following general formula (5). The glass transition temperature and water absorption of the coalesced are preferred in terms of controlling the temperature. [Formula 5]
一般式 (5) General formula (5)
一 (CH2 ) n COOR'0 One (CH 2 ) n COOR ' 0
〔式中、 nは 0〜5の整数であり、 R 1(5は一価の有機基である。 〕 [In the formula, n is an integer of 0 to 5, and R 1 (5 is a monovalent organic group.)
一般式 (5) において R 1(1で表される一価の有機基の具体例としては、 例えばメチル基 、 ェチル基、 プロピノレ基等のアルキノレ基;フエニル基、 ナフチル基、 アントラセニル基、 ビフエ二リル基等のァリール基; この他にもジフエニルスルホン、 テトラヒ ドロフルォレ ン等のフルオレン類等の芳香環やフラン環、 イミ ド環等の複素環を有する一価の基等が挙Specific examples of the monovalent organic group represented by R 1 (1 ) in the general formula (5) include, for example, an alkynole group such as a methyl group, an ethyl group, and a propynole group; a phenyl group, a naphthyl group, an anthracenyl group, Aryl groups such as a aryl group; and other monovalent groups having an aromatic ring such as fluorenes such as diphenylsulfone and tetrahydrofluorene and a heterocyclic ring such as a furan ring and an imido ring.
(ずられる。 (Shifted.
また、 一般式 (5) において、 nは 0〜5の整数、 好ましくは 0〜2の整数、 より好ま しくは 0である。 nの値が小さいものほど得られる特定重合体のガラス転移温度が高くな るので好ましく、 特に nが 0である特定単量体 aは、 その合成が容易である点で好ましい 更に、 特定単量体 aは、 一般式 (3) において、 一般式 (5) で表される極性基が結合 した炭素原子に更にアルキル基が結合したものであることが好ましく、 これにより、 得ら れる特定重合体の耐熱性と吸水性とのバランスを図ることができる。 ここで、 アルキル基 の炭素原子数は 1〜 5であることが好ましく、 更に好ましくは 1〜2、 特に好ましくは 1 である。  In the general formula (5), n is an integer of 0 to 5, preferably 0 to 2, and more preferably 0. The smaller the value of n, the higher the glass transition temperature of the obtained specific polymer is preferable. Particularly, the specific monomer a in which n is 0 is preferable because its synthesis is easy. The compound a is preferably a compound of the general formula (3) in which an alkyl group is further bonded to the carbon atom to which the polar group represented by the general formula (5) is bonded, whereby the specific polymer obtained is obtained. The balance between the heat resistance and the water absorption can be achieved. Here, the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 2, and particularly preferably 1.
また、 特定単量体 aとしては、 一般式 (3) において mが 1であり pが 0であるものは 、 ガラス転移温度の高い特定重合体が得られる点で好ましい。  As the specific monomer a, those in which m is 1 and p is 0 in the general formula (3) are preferable in that a specific polymer having a high glass transition temperature can be obtained.
而して、 前述の特定単量体 aの具体例の中から挙げるならば、 8—メチル—8—メ トキ シカルボ二ルテトラシクロ [4. 4. 0. I2' 5 . 17' 10] —3—ドデセンが特に好まし く、 このような特定単量体 aを用いることにより、 ガラス転移温度が高く、 吸水による変 形等の悪影響を殆ど受けずかつ他材料との密着性や接着性が良好となる程度の吸水性を有 する特定重合体を得ることができる。 And Thus, if given from the specific examples of the specific monomer a described above, 8-methyl-8-main Toki Shikarubo two Rutetorashikuro [4. 4. 0. I 2 '. 5 1 7' 10] - 3-Dodecene is particularly preferred. By using such a specific monomer a, the glass transition temperature is high, there is almost no adverse effect such as deformation due to water absorption, and the adhesion and adhesion to other materials are improved. It is possible to obtain a specific polymer having water absorption of a satisfactory level.
特定単量体 bの具体例としては、 ビシクロ [2. 2. 1] ヘプト一 2—ェン、 Specific examples of the specific monomer b include: Bicyclo [2.2.1] hept-2-ene,
トリシクロ [5. 2. 1. 02' 6 ] デカー 8—ェン、 Tricyclo [5.2.1.02 2 ' 6 ] Deca 8
トリシクロ [6. 2. 1. 02' 7 ] ゥンデ力一 9—ェン、 Tricyclo [6.2.1.02 2 ' 7 ]
5—メチルビシクロ [2. 2. 1] ヘプト一 2 _ェン、  5-Methylbicyclo [2.2.1] heptane 2 _
5—ェチノレビシクロ [2. 2. 1] ヘプ卜一 2—ェン、  5-Echinorebicyclo [2.2.1] Hept 1 2-ene,
5—メ トキシカルボ二ルビシクロ [2. 2. 1] ヘプトー 2—ェン、  5-methoxycarbonylbicyclo [2.2.1] heptoe 2-ene,
5—メチル一5—メ トキシカルボ二ルビシクロ [2· 2. 1] ヘプトー 2—ェン、 5-methyl-5-methoxycarbonylbicyclo [2.2.1] hept-2-ene,
5—フエノキシ力 ボニルビシクロ [2. 2. 1] ヘプト一 2—ェン、 5-phenoxy force bonyl bicyclo [2.2.1] hept-2-ene,
5—メチル一5—フエノキシカルボ二ルビシクロ [2. 2. 1] ヘプトー 2—ェン、 5-methyl-5-phenoxycarbonylbicyclo [2.2.1] hept-2-ene,
5—シァノビシクロ [2. 2. 1] ヘプト一 2—ェン、 5-cyanobicyclo [2.2.1] hept-2-ene,
5—ェチリデンビシクロ [2. 2. 1] ヘプト一 2 _ェン、  5-ethylidenebicyclo [2.2.1] heptane 2 _
5一フエ二ルビシクロ [2. 2. 1] ヘプト一 2—ェン、  5 1-phenylbicyclo [2.2.1] hept-2-ene,
5― (2—ナフチル) ビシクロ [2. 2. 1] ヘプト— 2—ェン 体および 体) 5- (2-naphthyl) bicyclo [2.2.1] hept-2-ene body and body)
5-フルォロビシクロ [2. 2. 1] ヘプト一 2—ェン、 5-fluorobicyclo [2.2.1] hept-2-ene,
5―フルォロメチルビシクロ [2. 2. 1] ヘプト一 2—ェン、  5-fluoromethylbicyclo [2.2.1] hept-2-ene,
5-トリフルォロメチルビシクロ [2. 2. 1] ヘプトー 2—ェン、  5-trifluoromethylbicyclo [2.2.1] hept-2-ene,
5-ペンタフルォロェチルビシクロ [2. 2. 1] ヘプト一 2 _ェン、  5-pentafluoroethylbicyclo [2.2.1] heptone-2-ene,
5, 5—ジフルォロビシクロ [2. 2. 1] ヘプト一 2—ェン、  5, 5-difluorobicyclo [2.2.1] hept-2-ene,
5, 6—ジフルォロビシクロ [2. 2. 1] ヘプト一 2—ェン、  5, 6-difluorobicyclo [2.2.1] hept-2-ene,
5, 5—ビス (トリフルォロメチル) ビシクロ [2. 2. 1] ヘプトー 2—ェン、 5,5-bis (trifluoromethyl) bicyclo [2.2.1] heptoe 2-ene,
5, 6—ビス (トリフルォロメチル) ビシクロ [2. 2. 1] ヘプトー 2—ェン、5,6-bis (trifluoromethyl) bicyclo [2.2.1] heptoe 2-ene,
5-メチノレ一 5 _トリフルォロメチノレビシクロ [2. 2. 1] ヘプト一 2—ェン、5-Methinole-5_trifluorometinolebicyclo [2.2.1] hept-2-ene,
5, 5, 6—トリフルォロビシクロ [2. 2. 1] ヘプト— 2—ェン、 5, 5, 6—Trifluorobicyclo [2.2.1] hept-2-ene,
5, 5, 6—トリス (フルォロメチル) ビシクロ [2. 2. 1] ヘプト一 2 -ェン、 5, 5, 6—tris (fluoromethyl) bicyclo [2.2.1] hept-12-ene,
5, 5, 6, 6—テトラフルォロビシクロ [2. 2. 1] ヘプト一 2—ェン、 5, 5, 6, 6-tetrafluorobicyclo [2.2.1. 1] hept-12-
5, 5, 6, 6—テトラキス (トリフルォロメチル) ビシクロ [2. 2 . 1] ヘプト 5,5,6,6-tetrakis (trifluoromethyl) bicyclo [2.2.1] hept
2—ェン、 2--
5, 5—ジフノレオ口一 6, 6—ビス (トリフルォロメチル) ビシクロ [2. 2. 1] へ プトー 2—ェン、 5, 6—ジフルオロー 5, 6—ビス (トリフルォロメチル) ビシクロ [2. 2. 1] へ プトー 2—ェン、 To 5,5-diphnoleo 6,6-bis (trifluoromethyl) bicyclo [2.2.1] To 5,6-difluoro-5,6-bis (trifluoromethyl) bicyclo [2.2.1] putto 2-ene,
5, 5, 6—トリフルオロー 5—トリフルォロメチルビシクロ [2. 2. 1] ヘプト一 2一ェン、  5, 5, 6-trifluoro-5-trifluoromethylbicyclo [2.2.1] heptone,
5—フルオロー 5—ペンタフルォロェチル一 6, 6—ビス (トリフルォロメチル) ビシ クロ [2. 2. 1] ヘプトー 2—ェン、  5-fluoro-5-pentafluoroethyl-1,6-bis (trifluoromethyl) bicyclo [2.2.1] heptoto-2-ene,
5, 6—ジフルオロー 5—ヘプタフルオロー i s o—プロピル一 6—トリフルォロメチ ルビシクロ [2. 2. 1] ヘプトー 2—ェン、  5,6-difluoro-5-heptafluoroiso-propyl-1-6-trifluoromethylbicyclo [2.2.1] hept-2-ene,
5—クロ口一 5, 6, 6—トリフルォロビシクロ [2. 2. 1] ヘプト一 2—ェン、 5,6,6-Trifluorobicyclo [2.2.1] hept-2-ene,
5, 6—ジクロロー 5, 6—ビス (トリフノレオロメチズレ) ビシクロ [2. 2. 1] ヘプ ト一 2—ェン、 5,6-dichloro-5,6-bis (trif-noleolomethizle) bicyclo [2.2.1] hept-1-ene,
5, 5, 6—トリフルオロー 6—トリフルォロメ トキシビシクロ [2. 2. 1] ヘプト - 2一ェン、  5,5,6-trifluoro-6-trifluoromethoxybicyclo [2.2.1] hept-2,
5, 5, 6—トリフルオロー 6—ヘプタフルォロプロポキシビシクロ [2. 2. 1] へ プト— 2—ェン、  5,5-, 6-trifluoro-6-heptafluoropropoxybicyclo [2.2.1] hepto-2-ene,
5 - (4一フエユルフェニル) ビシクロ [2. 2. 1] ヘプト一 2—ェン  5-(4-Fuylphenyl) bicyclo [2.2.1] hept-2-ene
4 - (ビシクロ [2. 2. 1] ヘプト一 5—ェン— 2—ィル) フエニルスルホニルベンゼ ン、  4- (bicyclo [2.2.1] hept-5-en-2-yl) phenylsulfonylbenzene,
5 - (4—ビフエニルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプト— 2_ ェン、  5-(4-biphenylcarbonyloxymethyl) bicyclo [2.2.1] hept — 2_
5 - (4—ビフエニルカルボニルォキシェチル) ビシクロ [2. 2. 1] ヘプト— 2— ェン、  5-(4-Biphenylcarbonyloxochetyl) bicyclo [2.2.1] hept-2-ene,
5 - (4ービフエニルカルボニルォキシプロピル) ビシクロ [2. 2. 1] ヘプトー 2 —ェン、  5-(4-biphenylcarbonyloxypropyl) bicyclo [2.2.1] hept-2-en,
5—メチル一5— (4—ビフエニルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプト— 2—ェン、  5-Methyl-1- (4-biphenylcarbonyloxymethyl) bicyclo [2.2.1] hept-2-ene,
5— (2—ビフエニルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプトー 2— ェン、  5- (2-biphenylcarbonyloxymethyl) bicyclo [2.2.1] hept-2-ene,
5— (2—ビフエニルカルボニルォキシェチル) ビシクロ [2. 2. 1] ヘプトー 2— ェン、 5— (2-Biphenylcarbonyloxochetyl) bicyclo [2.2.1] Heptaw 2— En,
5—メチノレ一 5— (2—ビフエ二ルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプトー 2—ェン、  5-Methynole 5- (2-biphenylcarbonyloxymethyl) bicyclo [2.2.1] heptau 2-ene,
5 - (3—ビフエニルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプト一 2— ェン、  5-(3-biphenylcarbonyloxymethyl) bicyclo [2.2.1] hept-2-ene,
5 - (3—ビフエニルカルボニルォキシェチル) ビシクロ [2. 2. 1] ヘプト一 2— ェン、  5-(3-Biphenylcarbonyloxochetyl) bicyclo [2.2.1] hept-1-ene,
5— (1—ナフチルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプト一 2—ェ ン、  5- (1-naphthylcarbonyloxymethyl) bicyclo [2.2.1] hept-12-ene,
5— (1—ナフチルカルボニルォキシェチル) ビシクロ [2. 2. 1] ヘプト— 2—ェ ン、  5— (1-Naphthylcarbonyloxyshethyl) bicyclo [2.2.1] hept-2-ene,
5—メチル—5— (1—ナフチルカルボニルォキシメチル) ビシクロ [2. 2. 1] へ プト一 2—ェン、  5-Methyl-5- (1-naphthylcarbonyloxymethyl) bicyclo [2.2.1]
5 - (2—ナフチルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプト一 2—ェ ン、  5-(2-naphthylcarbonyloxymethyl) bicyclo [2.2.1] hept-12-ene,
5— (2—ナフチルカルボニルォキシェチル) ビシクロ [2. 2. 1] ヘプト— 2—ェ ン、  5— (2-Naphthylcarbonyloxyshethyl) bicyclo [2.2.1.1] hept—2—ene,
5—メチルー 5— (2—ナフチルカルボニルォキシメチル) メチノレビシクロ [2. 2. 1] ヘプト一 2—ェン、  5-methyl-5- (2-naphthylcarbonyloxymethyl) methinorebicyclo [2.2.1] hept-2-ene,
5— (9—アントラセニルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプト一 2—ェン、  5- (9-anthracenylcarbonyloxymethyl) bicyclo [2.2.1] hept-12-
5 - (9—アントラセニルカルボニルォキシェチル) ビシクロ [2. 2. 1] ヘプト一 2—ェン、  5-(9-anthracenylcarbonyloxetyl) bicyclo [2.2.1] hept-1-2-,
5—メチノレー 5— (9—アントラセニルカルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプト一 2—ェン、  5-Methylenol 5- (9-anthracenylcarbonyloxymethyl) bicyclo [2.2.1] hept-12-
ァセナフチレンとシクロペンタジェンとのディー^/ス ·ア^^ダ一付力!]体  Desert of Asenaphthylene and Cyclopentadiene
などを挙げることができるが、 特定単量体 bは、 これらのィ匕合物に限定されるものでなは い。 また、 これらの化合物は、 単独でまたは 2種以上を組み合わせて特定単量体 bとして 用いることができる。 これらの中では、 一般式 (4) における R5 〜R8 I 全て水素原子であるもの、 また はレ、ずれか 1つが炭素原子数 1〜 30の炭化水素基であり、 その他の全部が水素原子であ るものが、 最終的に得られる特定位相差フィルムの吸水性を制御することができる点で好 ましく、 特に、 R5 〜R8 1S 全て水素原子であるもの、 またはいずれか 1つがメチノレ基 、 ェチル基若しくはフエニル基であり、 その他の全部が水素原子であるものが、 耐熱 '14の 高い特定重合体が得られる点で好ましい。 更に、 ビシクロ [2. 2. 1] ヘプトー 2—ェ ン、 トリシクロ [5. 2. 1. 02' 6 ] デカ一 8—ェン、 5—フエ二ルビシクロ [2. 2 . 1] ヘプトー 2—ェンが、 最終的に得られる特定位相差フィルムの靱性を向上させる効 果が極めて顕著である点で好ましい。 However, the specific monomer b is not limited to these conjugates. In addition, these compounds can be used alone or in combination of two or more as the specific monomer b. Among them, those in which R 5 to R 8 I in the general formula (4) are all hydrogen atoms, or one of them is a hydrocarbon group having 1 to 30 carbon atoms, and all others are hydrogen atoms. shall Ah in atoms, finally obtained good Mashiku in being able to control the water absorption of a specific phase difference film, in particular, those R 5 to R 8 1S are all hydrogen atom, or either 1 One of which is a methynole group, an ethyl group or a phenyl group, and all of which are hydrogen atoms are preferable in that a specific polymer having high heat resistance of '14 can be obtained. Furthermore, bicyclo [2.2.1] Heputo 2 E down, tricyclo [5.2.2 1.0 2 '6] dec-one 8-E down, 5- phenylene Rubishikuro [2. 2.1] Heputo 2 -Ene is preferred because the effect of improving the toughness of the finally obtained specific retardation film is extremely remarkable.
特定単量体 aと特定単量体 bとを共重合させることによって得られる特定重合体は、 当 該特定単量体 aおよび特定単量体 b以外の他の共重合性単量体と共に共重合されてなるも のであってもよい。  The specific polymer obtained by copolymerizing the specific monomer a and the specific monomer b is copolymerized with another copolymerizable monomer other than the specific monomer a and the specific monomer b. It may be polymerized.
他の共重合性単量体としては、 例えばシクロブテン、 シクロペンテン、 シクロヘプテン 、 シクロオタテン、 ジシクロペンタジェンなどのシクロォレフインを挙げることができる 。 シクロォレフインの炭素原子数としては、 4〜 20が好ましく、 更に好ましくは 5〜1 2である。  Examples of other copolymerizable monomers include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclootaten, and dicyclopentadiene. The number of carbon atoms in cycloolefin is preferably from 4 to 20, more preferably from 5 to 12.
更にポリブタジエン、 ポリイソプレン、 スチレン一ブタジエン共重合体、 エチレン一非 共役ジェン共重合体、 ポリノルボルネンなどの主鎖にォレフィン性不飽和結合を有する不 飽和炭化水素系ポリマーなどの存在下に特定単量体 aおよび必要に応じて特定単量体 bを 重合させてもよく、 このようにして得られる特定重合体は、 耐衝撃性の大きい樹脂の原料 として有用である。  Furthermore, a specific monomer in the presence of an unsaturated hydrocarbon polymer having an olefinic unsaturated bond in the main chain such as polybutadiene, polyisoprene, styrene-butadiene copolymer, ethylene-non-conjugated diene copolymer, polynorbornene, etc. The polymer a and, if necessary, the specific monomer b may be polymerized, and the specific polymer thus obtained is useful as a raw material for a resin having high impact resistance.
特定重合体の 30°Cクロ口ホルム中で測定した固有粘度 (7; i n h ) は、 0. 2〜5 d 1 Zgであることが好ましレ、。 更に好ましくは 0. 3〜4 d lZg、 特に好ましくは 0. 5 〜3 d lZgである。 固有粘度が 5 d lZgを超えると、 溶液粘度が高くなりすぎ、 加工 性が悪ィヒすることがあり、 固有粘度が 0. 2 d lZg未満であるとフィルム強度が低下す ることがある。 The intrinsic viscosity (7; inh ) of the specific polymer measured at 30 ° C. in a cross-section form is preferably 0.2 to 5 d1 Zg. More preferably, it is 0.3 to 4 dlZg, particularly preferably 0.5 to 3 dlZg. If the intrinsic viscosity exceeds 5 dlZg, the solution viscosity becomes too high, and the processability may deteriorate. If the intrinsic viscosity is less than 0.2 dlZg, the film strength may decrease.
特定重合体の分子量としては、 ゲルパーミエーシヨンクロマトグラフィー (GPC) で 測定されるポリスチレン換算の数平均分子量 (Mn) 力 通常は 8, 000〜1, 000 , 000、 好ましくは 10, 000〜 500, 000、 更に好ましくは 20, 000〜1 00, 000、 特に好ましくは 30, 000〜100, 000、 また、 重量平均分子量 ( Mw) 力 通常は 20, 000〜 3, 000, 000、 好ましくは 30, 000〜1, 0 00, 000、 更に好ましくは 40, 000〜500, 000、 特に好ましくは 40 , 0 00〜300, 000の範囲である。 As the molecular weight of the specific polymer, the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is usually 8,000 to 1,000,000, preferably 10,000 to 500. , 000, more preferably 20,000 to 1 00,000, particularly preferably 30,000 to 100,000, and weight-average molecular weight (Mw) power usually 20,000 to 3,000,000, preferably 30,000 to 100,000, It is preferably in the range of 40,000 to 500,000, particularly preferably in the range of 40,000 to 300,000.
また、 特定重合体の分子量分布は、 上記の Mw/Mnが通常 1. 5〜10、 好ましくは 2~8、 更に好ましくは 2. 5〜5、 特に好ましくは 2. 5~4. 5である。  Further, the molecular weight distribution of the specific polymer, the above Mw / Mn is usually 1.5 to 10, preferably 2 to 8, more preferably 2.5 to 5, particularly preferably 2.5 to 4.5. .
特定重合体の 23 °Cにおける飽和吸水率は、 通常は 0. 05〜 1重量%、 好ましくは 0 . 1〜0. 7重量%、 更に好ましくは 0. 1〜0. 5重量%である。 飽和吸水率がこの範 囲內であることにより、 各種光学特性、 例えば透明性、 位相差や位相差の均一性あるいは 寸法精度が、 高温多湿のような条件下でも維持され、 他材料との密着性や接着性に優れる ため使用途中で剥離などが発生せず、 また、 酸化防止剤等の添加物との相溶性も良好であ るため、 添加の自由度が大きくなる。 飽和吸水率が 0. 05重量%未満であると、 他材料 との密着性や接着性が乏しくなり使用中に剥離を生じやすくなり、 また、 酸化防止剤等の 添加物の配合に制限が生じる。 一方、 飽和吸水率が 1重量%を超えると、 吸水により光学 特性の変化や寸法変化を起こしゃすくなる。 なお、 上記の飽和吸水率は A S TMD 570 に準拠し、 23°Cの水中に 1週間浸漬して増加重量を測定することにより求められる値で ある。  The saturated water absorption of the specific polymer at 23 ° C. is usually 0.05 to 1% by weight, preferably 0.1 to 0.7% by weight, more preferably 0.1 to 0.5% by weight. When the saturated water absorption is within this range, various optical properties such as transparency, phase difference, uniformity of phase difference or dimensional accuracy are maintained even under conditions such as high temperature and high humidity, and adhesion to other materials is maintained. Because of its excellent properties and adhesion, it does not peel off during use, and also has good compatibility with additives such as antioxidants, so that the degree of freedom of addition increases. If the saturated water absorption is less than 0.05% by weight, adhesion and adhesion to other materials are poor, and peeling is liable to occur during use, and there are restrictions on the addition of additives such as antioxidants. . On the other hand, if the saturated water absorption exceeds 1% by weight, the absorption of water tends to cause changes in optical characteristics and dimensional changes. The above saturated water absorption is a value determined by immersing in water at 23 ° C for one week and measuring the weight gain in accordance with ASTM D570.
特定重合体の SP値 (溶解度パラメ一ター) は、 好ましくは 10〜30 (MP a 1/2 ) 、 更に好ましくは 12〜25 (MPa1/2 ) 、 特に好ましくは 15〜20 (MP a 3/2 ) である。 S P値が上記の範囲にある特定重合体を用いることにより、 後述するフィルム製 ¾ェにおいて、 熱可塑性ノルボルネン系樹脂を汎用の溶剤に容易に溶解することができ ると共に、 フィルムの製造を安定に行うことができ、 また、 最終的に得られる特定位相差 フィルムの特性も均一となり、 更に接着性 ·基板との密着性を良好なものとすることがで き、 更に吸水率を適度にコント口ールすることが可能となる。 SP value of the specific polymer (solubility parameter one coater) is preferably 10 to 30 (MP a 1/2), more preferably 12 to 25 (MPa 1/2), and particularly preferably 15 to 20 (MP a 3 / 2 ). By using a specific polymer having an SP value in the above range, the thermoplastic norbornene-based resin can be easily dissolved in a general-purpose solvent in the film production described later, and the production of the film can be stably performed. In addition, the properties of the finally obtained specific retardation film become uniform, and furthermore, the adhesiveness and the adhesion to the substrate can be improved, and the water absorption can be controlled appropriately. Can be controlled.
特定重合体のガラス転移温度 (Tg) は、 例えば特定重合体の構造単位 aおよび構造単 位 bの種類若しくは構造単位 aと構造単位 bとの比の調整、 あるいは添加剤の添加等によ り適宜 することが可能であるが、 通常は 100〜250°C、 好ましくは 110~20 0°C、 更に好ましくは 120〜 180。Cである。 T gが 100°C以下の場合は、 熱変形温 度が低くなり、 耐熱性に問題が生じるおそれがあり、 また、 最終的に得られるフィルムの 光学特性が温度により大きく影響を受けることがある。 また、 Tgが 250°C以上である と、 延伸加工等に T g近辺まで加熱して加工する場合に熱可塑性ノルボルネン系樹脂が熱 劣化する可能性が高くなる。 The glass transition temperature (Tg) of the specific polymer is determined by, for example, adjusting the type of the structural unit a and the structural unit b or the ratio of the structural unit a to the structural unit b, or adding an additive. Although it can be adjusted as appropriate, it is usually 100 to 250 ° C, preferably 110 to 200 ° C, and more preferably 120 to 180. C. If the T g is less than 100 ° C, the heat distortion temperature will be low, which may cause a problem in heat resistance. Optical properties can be significantly affected by temperature. If the Tg is 250 ° C or more, the possibility of thermal degradation of the thermoplastic norbornene-based resin increases when the material is heated to around Tg for stretching or the like.
構造単位 aおよび構造単位 bを有する特定重合体においては、 構造単位 aと構造単位 b との比 (a/b) は、 好ましくはモル比にて aZb Q 5/5〜5 95、 更に好ましく は 95/5〜60/40である。 構造単位 aの割合が上記範囲より大きいと靱性改良の効 果ゃ所望の光学特性が期待できない場合があり、 逆に、 構造単位 aの割合が上記範囲より 小さいとガラス転移温度が低くなり、 耐熱性に問題が生じる場合がある。  In the specific polymer having the structural unit a and the structural unit b, the ratio (a / b) between the structural unit a and the structural unit b is preferably aZb Q 5/5 to 595, more preferably a molar ratio. 95/5 to 60/40. If the ratio of the structural unit a is larger than the above range, the effect of improving the toughness may not be expected. On the contrary, if the ratio of the structural unit a is smaller than the above range, the glass transition temperature becomes low, and the heat resistance becomes high. There may be problems with sex.
更に、 構造単位 aおよび構造単位 bを有する特定重合体において、 当該重合体中の構造 単位 aと構造単位 bの比率 (組成比) は、 分子量分布全範囲においてバラツキが小さいこ とが好ましい。 具体的には、 重合反応に供した特定単量体 aと特定単量体 bとの比率に対 して、 任意の分子量における組成比を、 ±50%以内、 好ましくは ±30%以内、 更に好 ましくは ± 20 %以内のバラツキ範囲に収めることで、 より一層均一な特定位相差フィル ムを得ることができる。 また、 こうした範囲に収めることで、 延伸配向した際に、 位相差 のより一層の均一性を得ることが可能となる。  Further, in the specific polymer having the structural unit a and the structural unit b, the ratio (composition ratio) of the structural unit a to the structural unit b in the polymer preferably has a small variation in the entire range of the molecular weight distribution. Specifically, the composition ratio at an arbitrary molecular weight relative to the ratio of the specific monomer a and the specific monomer b subjected to the polymerization reaction is within ± 50%, preferably within ± 30%, and More preferably, a more uniform specific retardation film can be obtained by keeping the variation within ± 20%. Further, by keeping the content within such a range, it is possible to obtain more uniform retardation when stretch-oriented.
以下に、 特定単量体 a、 および必要に応じて特定単量体 bあるいはその他の共重合性単 量体を開環共重合することにより、 あるいはこれらの単量体を開環共重合した後、 得られ る開環共重合体を水素添加することにより得られる特定重合体を製造するための条件につ いて説明する。  Hereinafter, the specific monomer a and, if necessary, the specific monomer b or other copolymerizable monomers are subjected to ring-opening copolymerization, or after the ring-opening copolymerization of these monomers. The conditions for producing a specific polymer obtained by hydrogenating the obtained ring-opening copolymer will be described.
開環重合触媒: Ring-opening polymerization catalyst:
単量体の開環重合反応は、 メタセシス触媒の存在下に行われる。  The ring-opening polymerization reaction of the monomer is performed in the presence of a metathesis catalyst.
このメタセシス触媒は、 (a) W、 Moおよび R eの化合物から選ばれた少なくとも 1 種と、 (b) デミングの周期律表 I A族元素 (例えば L i、 Na、 Kなど) 、 I I A族元 素 (例えば Mg、 Caなど) 、 I I B族元素 (例えば Zn、 Cd、 Hgなど) 、 I I I B 族元素 (例えば B、 A 1など) 、 I VA族元素 (例えば T i、 Ζ rなど) あるいは I VB 族元素 (例えば S i、 Sn、 Pbなど) の化合物であって、 少なくとも 1つの当該元素一 炭素結合あるいは当該元素一水素結合を有するものから選ばれた少なくとも 1種との組合 せからなる触媒である。 またこの場合に触媒の活性を高めるために、 後述の添加剤 (c) が添カ卩されたものであってもよレ、。 (a) 成分として適当な W、 Moあるいは Reの化合物の代表例としては、 WC 16 、 Mo C 15 、 ReOC 13 など特開平 1— 240517号公報に記載の化合物を挙げるこ とができる。 The metathesis catalyst comprises (a) at least one selected from compounds of W, Mo, and Re; (b) a group IA element (eg, Li, Na, K, etc.) of the Deming periodic table; Element (eg, Mg, Ca, etc.), Group IIB element (eg, Zn, Cd, Hg, etc.), Group IIIB element (eg, B, A1, etc.), Group IVA element (eg, Ti, Ζr, etc.) or IVB A compound of a group III element (for example, Si, Sn, Pb, etc.) which is a catalyst comprising a combination of at least one element selected from those having at least one element-carbon bond or the element-hydrogen bond. is there. In this case, in order to enhance the activity of the catalyst, an additive (c) described below may be added to the mixture. (a) suitable as component W, as a representative example of the compounds of Mo or Re is a WC 1 6, Mo C 15, ReOC 13 and compounds described in JP-A-1 240 517 it is and Ageruko.
(b) 成分の具体例としては、 n— C4 H9 L i、 ( C2 Hs)3 Al 、 ( C2 H5 )Specific examples of the component (b) include n—C 4 H 9 L i, (C 2 H s ) 3 Al, and (C 2 H 5 )
2 A 1 C 1、 ( C2 H5 ) !. 5 A 1 C 1 !. s , ( C2 H5 ) A 1 C 12 、 メチルアルモキ サン、 L i Hなど特開平 1— 240517号公報に記載の化合物を挙げることができる。 2 A 1 C 1, (C 2 H 5)!. 5 A 1 C 1!. S, (C 2 H 5) A 1 C 1 2, Mechiruarumoki Sun, in JP-A 1 240 517 discloses such L i H The compounds described can be mentioned.
(c) 成分の代表例としては、 アルコール類、 アルデヒド類、 ケトン類、 アミン類など を好適に用いることができるが、 更に特開平 1— 240517号公報に記載の化合物を使 用することができる。  As typical examples of the component (c), alcohols, aldehydes, ketones, amines and the like can be suitably used, and further, compounds described in JP-A-1-240517 can be used. .
メタセシス触媒の使用量としては、 上記 (a) 成分と特定単量体 aおよび特定単量体 b (以下、 双方を併せて 「特定単量体」 という。 ) とのモル比で (a) 成分:特定単量体が 、 通常 1 : 500〜1 : 50000となる範囲、 好ましくは 1 : 1000〜1 : 1000 0となる範囲である。  The amount of the metathesis catalyst used is determined by the molar ratio of the component (a) to the specific monomer a and the specific monomer b (hereinafter, both of them are referred to as “specific monomer”). : The specific monomer is usually in the range of 1: 500 to 1: 50,000, preferably in the range of 1: 1000 to 1: 1000.
(a) 成分と (b) 成分との割合は、 金属原子比で 「 (a) : (b) 」 が 1 : 1〜1 : 50、 好ましくは 1 : 2〜1 : 30の範囲である。  The ratio of the component (a) to the component (b) is such that “(a) :( b)” is in the range of 1: 1 to 1:50, preferably 1: 2 to 1:30 in terms of metal atom ratio.
(a) 成分と (c) 成分との割合は、 モル比で 「 (c) : (&) 」 が0. 005 : 1〜 15 : 1、 好ましくは 0. 05 : 1〜7 : 1の範囲である。  The molar ratio of the component (a) to the component (c) is such that the molar ratio of “(c): (&)” is 0.005: 1 to 15: 1, preferably 0.05: 1 to 7: 1. It is.
分子量調節剤: Molecular weight regulator:
特定重合体の分子量の調節は重合温度、 触媒の種類、 溶媒の種類によっても行うことが できるが、 本発明においては、 分子量調節剤を反応系に共存させることにより調節するこ とが好ましい。  The molecular weight of the specific polymer can be adjusted by the polymerization temperature, the type of catalyst, and the type of solvent. In the present invention, it is preferable to adjust the molecular weight by coexisting a molecular weight modifier in the reaction system.
好適な分子量調節剤としては、 例えばエチレン、 プロペン、 1ーブテン、 1—ペンテン 、 1—へキセン、 1 _ヘプテン、 1—オタテン、 1一ノネン、 1—デセンなどの α—ォレ フィン類およびスチレンを挙げることができ、 これらのうち、 1—ブテン、 1—へキセン が好ましい。  Suitable molecular weight regulators include, for example, α-olefins such as ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1_heptene, 1-otaten, 1-nonene, 1-decene and styrene. Among them, 1-butene and 1-hexene are preferable.
これらの分子量調節剤は、 単独であるレ、は 2種以上を併用して用いることができる。 分子量調節剤の使用量としては、 重合反応に供される特定単量体 1モルに対して 0. 0 These molecular weight regulators can be used alone or in combination of two or more. The amount of the molecular weight modifier used is 0.0 per mole of the specific monomer used in the polymerization reaction.
05〜0. 6モル、 好ましくは 0. 02〜0. 5モルである。 It is from 0.05 to 0.6 mol, preferably from 0.02 to 0.5 mol.
開環重合反応用溶媒: 開環重合反応において用いられる溶媒としては、 例えばペンタン、 へキサン、 ヘプタン 、 オクタン、 ノナン、 デカンなどのアルカン類; シクロへキサン、 シクロヘプタン、 シク 口オクタン、 デカリン、 ノルボルナンなどのシクロアルカン類;ベンゼン、 トノレェン、 キ シレン、 ェチルベンゼン、 クメンなどの芳香族炭化水素類;クロロブタン、 ブロムへキサ ン、 塩ィ匕メチレン、 ジクロロェタン、 へキサメチレンジブロミ ド、 クロ口ベンゼン、 クロ 口ホルム、 テトラクロロエチレンなどのハロゲン化炭化水素化合物類;酢酸ェチル、 酢酸 n—ブチル、 酢酸 s o—ブチル、 プロピオン酸メチルなどの飽和カルボン酸エステル類 ;ジメ トキシエタン、 ジブチルエーテノレ、 テトラヒドロフランなどのエーテノレ類を挙げる ことができ、 これらは単独であるいは 2種以上を併用して用いることができる。 これらの 中でも、 上記芳香族炭化水素類が好ましい。 Solvent for ring-opening polymerization reaction: Solvents used in the ring-opening polymerization reaction include, for example, alkanes such as pentane, hexane, heptane, octane, nonane and decane; cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin and norbornane; benzene Aromatic hydrocarbons such as benzene, tonolen, xylene, ethylbenzene and cumene; halogens such as chlorobutane, bromohexane, chloromethylene, dichloroethane, hexamethylene dibromide, benzene, chloroform and tetrachloroethylene Saturated carboxylic esters such as ethyl acetate, n-butyl acetate, so-butyl acetate, and methyl propionate; Athenoles such as dimethoxyethane, dibutyl ether, and tetrahydrofuran Bets can be, they may be used in combination either alone or in combination of two or more. Among these, the above-mentioned aromatic hydrocarbons are preferable.
溶媒の使用量としては、 溶媒:特定単量体 (重量比) 力 S、 通常 1 : 1〜1 0 : 1となる 量、 好ましくは 1 : 1〜5 : 1となる量である。  The solvent is used in an amount of solvent: specific monomer (weight ratio) force S, usually in an amount of 1: 1 to 10: 1, preferably in an amount of 1: 1 to 5: 1.
水素添加: Hydrogenation:
以上の開環重合により得られる開環共重合体は、 そのまま特定重合体として使用するこ ともできるが、 当該開環共重合体において残留するォレフイン性不飽和結合が水素添加さ れた水素添加物とすることが好ましレ、。  The ring-opening copolymer obtained by the above ring-opening polymerization can be used as a specific polymer as it is, but a hydrogenated product in which the remaining olefinic unsaturated bond in the ring-opening copolymer is hydrogenated. Les, which you prefer.
この水素添加物は、 優れた熱安定性を有するものとなり、 フィルム製膜加工時および延 伸加工時、 あるいは製品としての使用時において、 加熱によってその特性が劣化しにくく なる。  The hydrogenated product has excellent thermal stability, and its properties are less likely to be degraded by heating during film formation and elongation, or during use as a product.
このような水素添加物において、 ォレフィン性不飽和結合に対する水素添加率は、 5 0 %以上、 好ましくは 7 0 %以上、 更に好ましくは 9 0 %以上、 特に好ましくは 9 8 %以上 である。  In such a hydrogenated product, the hydrogenation ratio with respect to the olefinic unsaturated bond is 50% or more, preferably 70% or more, more preferably 90% or more, and particularly preferably 98% or more.
また、 水素添加に供される開環共重合体が分子内に芳香環を有するものである場合には 、 水素添加後において、 当該芳香環が実質的に水素添加されていないことが好ましい。 水素添加反応は、 通常の方法、 すなわち開環共重合体の溶液に水素添加触媒を添加し、 これに常圧〜 3 0 0気圧、 好ましくは 3〜2 0 0気圧の水素ガスを 0〜2 0 0 °C、 好まし くは 2 0〜1 8 0 °Cで作用させることによって行われる。  When the ring-opening copolymer to be subjected to hydrogenation has an aromatic ring in the molecule, it is preferable that the aromatic ring is not substantially hydrogenated after hydrogenation. The hydrogenation reaction is carried out in a usual manner, that is, a hydrogenation catalyst is added to a solution of the ring-opening copolymer, and hydrogen gas at normal pressure to 300 atm, preferably 3 to 200 atm is added to the solution at 0 to 2 atm. It is carried out by working at 00 ° C, preferably at 20-180 ° C.
水素添加触媒としては、 通常のォレフィン性化合物の水素添加反応に用いられるものを 使用することができる。 この水素添加触媒としては、 不均一系触媒および均一系触媒が公 知である。 なお、 芳香環を有する置換基を分子內に有する開環重合体を水素添加する場合 には、 芳香環の不飽和結合が実質的に水素添加されない条件を選択することが好ましい。 不均一系触媒としては、 パラジウム、 白金、 ニッケル、 ロジウム、 ルテニウムなどの貴 金属類を、 カーボン、 シリカ、 アルミナ、 チタニアなどの担体に担持させた固体触媒を挙 げることができる。 また、 均一系触媒としては、 ナフテン酸ニッケル zトリェチルアルミ 二ゥム、 ニッケルァセチルァセトナート /トリェチルアルミニウム、 オタテン酸コバルトAs the hydrogenation catalyst, those used for a normal hydrogenation reaction of an olefinic compound can be used. As the hydrogenation catalyst, a heterogeneous catalyst and a homogeneous catalyst are publicly available. Is knowledge. When hydrogenating a ring-opening polymer having a substituent having an aromatic ring in the molecule, it is preferable to select a condition under which the unsaturated bond of the aromatic ring is not substantially hydrogenated. Examples of the heterogeneous catalyst include a solid catalyst in which a noble metal such as palladium, platinum, nickel, rhodium, and ruthenium is supported on a carrier such as carbon, silica, alumina, and titania. In addition, homogeneous catalysts include nickel naphthenate z triethylaluminum, nickel acetylacetonato / triethylaluminum, and cobalt otatenate.
—ブチノレリチウム、 チタノセンジクロリ ド Zジェチルアルミニウムモノクロリ ド、 酢 酸ロジウム、 クロロトリス (トリフエニルホスフィン) ロジウム、 ジクロロトリス (トリ フエ二ノレホスフィン) ノレテニゥム、 クロロヒ ドロカノレボニノレトリス (トリフエニノレホスフ イン) ルテニウム、 ジクロロカルボニルトリス (トリフエニルホスフィン) ルテニウムな どを挙げることができる。 触媒の形態は粉末でも粒状でもよい。 -Butynolelithium, titanocene dichloride Z getyl aluminum monochloride, rhodium acetate, rhodium chlorotris (triphenylphosphine), rhodium dichlorotris (triphenylinolephosphine) norethenium, chlorohydranoleboninoletris (trifeninole) Phosphine) ruthenium, dichlorocarbonyltris (triphenylphosphine) ruthenium, and the like. The form of the catalyst may be powder or granular.
これらの水素添加触媒は、 開環重合体:水素添加触媒 (重量比) 力 1 : 1 X 1 0一6〜 1 : 2となる割合で使用される。 These hydrogenation catalysts are used in a ratio of a ring-opening polymer: hydrogenation catalyst (weight ratio) of 1: 1 × 10 16 to 1: 2.
特定重合体には、 透明性 ·耐熱性を損なわない範囲で公知の熱可塑性樹脂、 熱可塑性ェ ラストマー、 ゴム質重合体、 有機微粒子、 無機微粒子などを配合してもよレ、。  The specific polymer may contain known thermoplastic resins, thermoplastic elastomers, rubbery polymers, organic fine particles, inorganic fine particles, and the like as long as transparency and heat resistance are not impaired.
また、 特定重合体には、 酸化防止剤、 紫外線吸収剤等の添加剤などを添加してもよレヽ。 酸化防止剤の具体例としては、 2, 6—ジ— t—ブチルー 4一メチルフエノール、 2, 2 ' —ジォキシー 3, 3, 一ジー t—ブチル一 5, 5, 一ジメチルジフエニルメタン、 テ トラキス [メチレン一 3— ( 3, 5—ジ一 t—ブチル一4ーヒドロキシフエニル) プロピ ォネート] メタン、 ペンタエリスチルテトラキス [メチレン一 3— (3, 5—ジ一 tーブ チルー 4—ヒドロキシフエニル) プロピオネート] 、 1, 1, 3—トリス (2—メチルー 4ーヒドロキシ一 5— t—ブチルフエニル) ブタン、 1, 3, 5—トリメチノレ一 2, 4, 6—トリス (3, 5—ジ— t—ブチル—4—ヒドロキシベンジル) ベンゼン、 ステアリル — β— ( 3, 5—ジ一 t—プチルー 4—ヒドロキシフエニル) プロピオネート、 2, 2 ' ージォキシ一 3, 3, ージー t—ブチル一 5, 5, 一ジェチノレフエ二ノレメタン、 3, 9— ビス [ 1, 1—ジメチルー 2— ( 0 - ( 3— t _ブチル一4—ヒドロキシ一 5—メチルフ ェニル) プロピオニルォキシ) ェチル] 、 2, 4, 8, 1 0—テトラオキスピロ [ 5 . 5 ] ゥンデカン、 トリス (2, 4ージ一 t—ブチルフエニル) ホスファイト、 サイクリック ネオペンタンテトライルビス (2, 4—ジ一 t一ブチルフエニル) ホスファイト、 サイク リックネオペンタンテトライノレビス (2, 6—ジー t—ブチルー 4—メチルフエ二ノレ) ホ スフアイ ト、 2, 2—メチレンビス (4, 6—ジ一 t一ブチルフエニル) ォクチルホスフ アイトなどが挙げられる。 Further, additives such as an antioxidant and an ultraviolet absorber may be added to the specific polymer. Specific examples of antioxidants include 2,6-di-t-butyl-4-monomethylphenol, 2,2'-dioxy-3,3,1-di-t-butyl-1,5,5,1-dimethyldiphenylmethane, Thrakis [methylene-3- (3,5-di-t-butyl-1-hydroxyphenyl) propionate] methane, pentaerythyltetrakis [methylene-13- (3,5-di-t-butyl-4-) Hydroxyphenyl) propionate], 1,1,3-tris (2-methyl-4-hydroxy-1-5-t-butylphenyl) butane, 1,3,5-trimethinole-1,2,4,6-tris (3,5-di — T-butyl-4-hydroxybenzyl) benzene, stearyl — β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-dioxy-1,3,3, z-t-butyl-1 5 , 5, one jet Nolefeninolemethane, 3,9-bis [1,1-dimethyl-2- (0- (3-t_butyl-14-hydroxy-15-methylphenyl) propionyloxy) ethyl], 2,4,8,1 0-Tetraoxyspiro [5.5] undecane, tris (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbis (2,4-di-t-butylphenyl) phosphite, cyclite Ric neopentane tetralinolebis (2,6-di-tert-butyl-4-methylpheninole) phosphate, 2,2-methylenebis (4,6-di-t-butylphenyl) octylphosphite and the like.
紫外線吸収剤の具体例としては、 2, 4—ジヒ ドロキシベンゾフエノン、 2—ヒ ドロキ シ一 4—メ トキシベンゾフェノンなどが挙げられる。  Specific examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-14-methoxybenzophenone, and the like.
これらの添加剤の添加量は、 特定重合体 100重量部に対して、 通常、 0. 01〜3重 量部、 好ましくは 0. 05〜2重量部である。  The amount of these additives is usually 0.01 to 3 parts by weight, preferably 0.05 to 2 parts by weight, based on 100 parts by weight of the specific polymer.
更に、 酸ィ匕防止剤および紫外線吸収剤以外に、 加工性を向上させる目的で滑剤などの添 加剤を添加することもできる。  Further, in addition to the antioxidant and the ultraviolet absorber, additives such as a lubricant may be added for the purpose of improving processability.
本発明においては、 加工前フィルムは、 特定重合体よりなる熱可塑性ノルボルネン系樹 脂を溶融成形法あるいは溶液流延法 (溶剤キャスト法) などによりフィルム状若しくはシ ート状に成形することによって得られるが、 厚みの均一性が高く、 表面平滑性が良好な加 ェ前フィルムが得られる点で、 溶剤キャス 法を利用することが好ましい。  In the present invention, the unprocessed film is obtained by molding a thermoplastic norbornene-based resin made of a specific polymer into a film or sheet by a melt molding method or a solution casting method (solvent casting method). However, it is preferable to use the solvent casting method in order to obtain a pre-processing film having high uniformity in thickness and good surface smoothness.
溶剤キャスト法としては、 例えば、 熱可塑性ノルボルネン系樹脂を溶媒に溶解または分 散させることにより、 熱可塑性ノルボルネン系樹脂が適度の濃度で含有されてなるフィル ム形成液を調製し、 このフィルム形成液を適当なキヤリヤー上に注ぐかまたは塗布し、 こ れを乾燥した後、 キヤリヤーから剥離させる方法が挙げられる。  The solvent casting method includes, for example, dissolving or dispersing a thermoplastic norbornene-based resin in a solvent to prepare a film-forming solution containing a thermoplastic norbornene-based resin at an appropriate concentration. Is poured or coated on a suitable carrier, dried, and then separated from the carrier.
熱可塑性ノルボルネン系樹脂を溶媒に溶解または分散させる際には、 当該熱可塑性ノル ボルネン系樹脂の濃度を、 通常 0. 1〜 90重量%、 好ましくは 1〜 50重量%、 更に好 ましくは 10〜 35重量%にする。  When dissolving or dispersing the thermoplastic norbornene-based resin in a solvent, the concentration of the thermoplastic norbornene-based resin is usually 0.1 to 90% by weight, preferably 1 to 50% by weight, more preferably 10 to 10% by weight. To 35% by weight.
この濃度が 0. 1重量%未満である場合には、 所要の厚みを有する加工前フィルムを得 ることが困難になるおそれがあり、 また、 乾燥により溶媒を除去する際に、 当該溶媒の蒸 発に伴って発泡等が生じやすく、 表面平滑性が良好な加工前フィルムを得ることが困難に なるおそれがある。 一方、 この濃度が 90重量%を超える場合には、 フィルム形成液の溶 液粘度が高くなりすぎるため、 厚みや表面状態が均一なフィルムを得ることが困難となる おそれがある。  If the concentration is less than 0.1% by weight, it may be difficult to obtain a pre-processed film having a required thickness, and when the solvent is removed by drying, the evaporation of the solvent may occur. Foaming or the like is likely to occur with the release, which may make it difficult to obtain a pre-processed film having good surface smoothness. On the other hand, when the concentration exceeds 90% by weight, the solution viscosity of the film-forming solution becomes too high, so that it may be difficult to obtain a film having a uniform thickness and surface condition.
また、 フィルム形成液の粘度は、 室温で、 通常 1〜: I, 000, 000 (mP a · s) 、 好ましくは 10〜: 100, 000 (mPa ' s) 、 更に好ましくは 100〜50, 00 0 (mP a · s) 、 特に好ましくは 1000〜40, 000 (mP a · s) である。 フィルム形成液の調製に用いられる溶媒としては、 ベンゼン、 トルエン、 キシレンなど の芳香族系溶媒、 メチルセ口ソルブ、 ェチルセ口ソルブ、 1—メ トキシ一 2—プロパノー ル等のセロソルブ系溶媒、 ジアセトンアルコール、 アセトン、 シクロへキサノン、 メチル ェチノレケトン、 4ーメチ Λ^— 2 _ペンタノン、 シクロへキサノン、 ェチノレシクロへキサノ ン、 1, 2—ジメチルシクロへキサン等のケトン系溶媒、 乳酸メチル、 乳酸ェチル等のェ ステル系溶媒、 2, 2, 3, 3—テトラフルオロー 1—プロパノール、 塩ィ匕メチレン、 ク ロロホルム等のハロゲン含有溶媒、 テトラヒドロフラン、 ジォキサン等のエーテル系溶媒 、 1—ペンタノール、 1—ブタノール等のアルコール系溶媒を挙げることができる。 また、 上記の溶媒以外でも、 SP値 (溶解度パラメーター) 力 通常 10〜30 (MP a 1/2 ) 、 好ましくは 10〜25 (MP a 1/2 ) 、 更に好ましくは 15〜25 (MP a 2 ) 、 特に好ましくは 15〜20 (MP a 1/2 ) の範囲の溶媒を使用すれば、 表面均一性 と光学特性の良好な加エフィルムを得ることができる。 The viscosity of the film-forming solution at room temperature is usually 1 to: I, 000,000 (mPas), preferably 10 to 100,000 (mPa's), more preferably 100 to 50,000. 0 (mPas), particularly preferably 1000 to 40,000 (mPas). Solvents used for preparing the film forming solution include aromatic solvents such as benzene, toluene, and xylene; cellosolve solvents such as methyl sorb, ethyl sorb; 1-methoxy-12-propanol; and diacetone alcohol. , Acetone, cyclohexanone, methylethylenoketone, 4-methyl-2- ^ pentanone, cyclohexanone, ethenolecyclohexanone, 1,2-dimethylcyclohexane, and other ketone solvents; methyl lactate, ethyl lactate, etc. Steal solvents, 2,2,3,3-tetrafluoro-1-propanol, halogen-containing solvents such as methylene chloride and chloroform, ether solvents such as tetrahydrofuran and dioxane, 1-pentanol, 1-butanol, etc. Alcohol solvents. Also in addition to the above solvent, SP value (solubility parameter) force normal 10 to 30 (MP a 1/2), preferably 10 to 25 (MP a 1/2), more preferably 15-25 (MP a 2 ), And particularly preferably, a solvent in the range of 15 to 20 (MPa 1/2 ) can be used to obtain a processed film having excellent surface uniformity and optical characteristics.
上記の溶媒は単独であるいは 2種以上を組み合わせて用いることができる。 溶媒を 2種 以上組み合わせて用いる場合には、 得られる混合溶媒の S P値の範囲を上記範囲内とする ことが好ましい。 このとき、 混合溶媒の SP値の値は、 当該混合溶媒を構成する各溶媒の 重量比から求めることができ、 例えば 2種の溶媒から得られる混合溶媒においては、 各溶 媒の S P値おょぴそれらの重量分率を W1およ t V2とし、 また、 3?値を3? 1ぉょぴ S P 2とすると、 混合溶媒の S P値は式: S ?値=^^1 · S P 1 +W2 · S P 2により算 出することができる。  The above solvents can be used alone or in combination of two or more. When two or more solvents are used in combination, the range of the SP value of the obtained mixed solvent is preferably within the above range. At this time, the SP value of the mixed solvent can be obtained from the weight ratio of each solvent constituting the mixed solvent. For example, in the case of a mixed solvent obtained from two kinds of solvents, the SP value of each solvent may be obtained.す る と Assuming that their weight fractions are W1 and t V2, and the 3 value is 3? 1 SP2, the SP value of the mixed solvent is calculated by the formula: S value = ^^ 1 · SP1 + It can be calculated by W2 · SP2.
フィルム形成液における溶媒として混合溶媒を用いる場合において、 熱可塑性ノルボル ネン系樹脂に対して良溶媒となるものと貧溶媒となるものとを組み合わせることにより、 光拡散機能を有する加工前フィルムを得ることができる。 具体的には、 熱可塑性ノルボル ネン系樹脂の S P値を S P x、 熱可塑性ノルボルネン系樹脂の良溶媒の S P値を S P y、 熱可塑性ノルボルネン系樹脂の貧溶媒の SP値を SP zとしたとき、 SPxと SPyとの 差が好ましくは 7以下、 更に好ましくは 5以下、 特に好ましくは 3以下であり、 SPxと S P zとの差が好ましくは 7以上、 更に好ましくは 8以上、 特に好ましくは 9以上であり 、 SPyと SP zとの差が好ましくは 3以上、 更に好ましくは 5以上、 更に好ましくは 7 以上とすることにより、 得られる加工前フィルムに光拡散機能を付与することができ、 そ の結果、 最終的に得られる特定位相差フィルムを光拡散機能を有するものとすることがで さる。 When a mixed solvent is used as the solvent in the film-forming liquid, a pre-processed film having a light diffusion function is obtained by combining a good solvent and a poor solvent for the thermoplastic norbornene resin. Can be. Specifically, the SP value of the thermoplastic norbornene resin is SPx, the SP value of the good solvent of the thermoplastic norbornene resin is SPy, and the SP value of the poor solvent of the thermoplastic norbornene resin is SPz. The difference between SPx and SPy is preferably 7 or less, more preferably 5 or less, particularly preferably 3 or less, and the difference between SPx and SPz is preferably 7 or more, more preferably 8 or more, and particularly preferably 9 or less. When the difference between SPy and SPz is preferably 3 or more, more preferably 5 or more, and still more preferably 7 or more, a light diffusing function can be imparted to the obtained unprocessed film. As a result, the specific retardation film finally obtained can be made to have a light diffusion function. Monkey
また、 混合溶媒中に占める貧溶媒の割合は、 好ましくは 5 0重量%以下、 更に好ましく は 3 0重量%以下、 特に好ましくは 1 5重量%以下、 最も好ましくは 1 0重量%以下であ る。 また、 貧溶媒の沸点と良溶媒の沸点との差は好ましくは 1 °C以上、 更に好ましくは 5 °C以上、 特に好ましくは 1 0 °C以上、 最も好ましくは 2 0°C以上であり、 特に貧溶媒の沸 点が良溶媒の沸点より高いことが好ましい。  The proportion of the poor solvent in the mixed solvent is preferably 50% by weight or less, more preferably 30% by weight or less, particularly preferably 15% by weight or less, and most preferably 10% by weight or less. . Further, the difference between the boiling point of the poor solvent and the boiling point of the good solvent is preferably 1 ° C or more, more preferably 5 ° C or more, particularly preferably 10 ° C or more, most preferably 20 ° C or more, In particular, the boiling point of the poor solvent is preferably higher than the boiling point of the good solvent.
熱可塑性ノルボルネン系樹脂を溶媒に溶解または分散させる際の温度は、 室温でも高温 でもよく、 十分に撹拌することにより、 熱可塑性ノルボルネン系樹脂が均一に溶解または 分散したフィルム形成液が得られる。  The temperature for dissolving or dispersing the thermoplastic norbornene-based resin in the solvent may be room temperature or high temperature. By sufficiently stirring, a film-forming liquid in which the thermoplastic norbornene-based resin is uniformly dissolved or dispersed can be obtained.
また、 必要に応じてフィルム形成液に染料、 顔料等の着色剤を適宜添加することができ 、 これにより、 着色された加工前フィルムを得ることができる。  Further, if necessary, a coloring agent such as a dye or a pigment can be appropriately added to the film forming liquid, whereby a colored unprocessed film can be obtained.
また、 得られる加工前フィルムの表面平滑性を向上させることを目的として、 フィルム 形成液にレベリング剤を添加してもよい。 かかるレベリング剤としては、 一般的なもので あれば種々のものを用いることができ、 その具体例としては、 フッ素系ノニオン界面活性 剤、 特殊アクリル樹脂系レべリング剤、 シリコーン系レべリング剤などが挙げられる。 フィルム形成液の液層を形成するためのキヤリヤーとしては、 金属ドラム、 スチールべ ルト、 ポリエチレンテレフタレート (P E T) やポリエチレンナフタレート (P E N) 等 よりなるポリエステルフィルム、 ポリテトラフルォロエチレン製ベルトなどを用いること ができる。  In addition, a leveling agent may be added to the film forming liquid for the purpose of improving the surface smoothness of the obtained unprocessed film. As such a leveling agent, various types can be used as long as it is a general one. Specific examples thereof include a fluorine-based nonionic surfactant, a special acrylic resin-based leveling agent, and a silicone-based leveling agent. And the like. Carriers for forming the liquid layer of the film forming liquid include metal drums, steel belts, polyester films made of polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and polytetrafluoroethylene belts. Can be used.
フィルム形成液を塗布する方法としては、 ダイスゃコーターを使用する方法、 スプレー 法、 刷毛塗り法、 ロールコート法、 スピンコート法、 デイツビング法などを利用すること ができる。  As a method of applying the film-forming liquid, a method using a die coater, a spray method, a brush coating method, a roll coating method, a spin coating method, a dipping method, or the like can be used.
また、 フィルム形成液を繰り返し塗布することにより、 得られる加工前フィルムの厚み や表面平滑性を制御することもできる。  Further, by repeatedly applying the film forming liquid, the thickness and surface smoothness of the obtained unprocessed film can be controlled.
また、 キヤリヤーとしてポリエステルフィルムを使用する場合には、 表面処理されたフ イルムを使用してもよい。  When a polyester film is used as the carrier, a surface-treated film may be used.
表面処理の方法としては、 一般的に行われている親水化処理方法、 例えばアクリル系樹 脂ゃスルホン酸塩基含有樹脂をコーティングゃラミネ一トにより積層する方法、 あるいは 、 コロナ放電処理等によりフィルム表面の親水性を向上させる方法等が挙げられる。 溶剤キャスト法において、 液層中の溶媒を除去するための具体的な方法としては、 特に 限定されず、 一般的に用いられる乾燥処理法、 例えば多数のローラーによって乾燥炉中を 通過させる方法を利用することができるが、 乾燥工程において溶媒の蒸発に伴って気泡が 発生すると、 最終的に得られる特定位相差フィルムの特性を著しく低下させるので、 これ を回避するために、 乾燥工程を 2段以上の複数工程とし、 各工程における温度あるいは風 量を制御することが好ましい。 Examples of the surface treatment method include a commonly used hydrophilic treatment method, for example, an acrylic resin, a method of coating a sulfonic acid group-containing resin, and laminating with a laminate, or a method of corona discharge treatment or the like. For improving the hydrophilicity of the polymer. In the solvent casting method, a specific method for removing the solvent in the liquid layer is not particularly limited, and a commonly used drying treatment method, for example, a method of passing a solvent through a drying oven with a number of rollers is used. However, if bubbles are generated along with the evaporation of the solvent in the drying step, the properties of the finally obtained specific retardation film will be significantly reduced.To avoid this, the drying step must be performed in two or more stages. It is preferable to control the temperature or air volume in each step.
このようにして得られる加工前フィルム中の残留溶媒量は、 通常 1 0重量%以下、 好ま しくは 5重量%以下、 更に好ましくは 1重量%以下、 特に好ましくは 0. 5重量%以下で ある。 ここで、 加工前フィルム中の残留溶媒量が 1 0重量%を超える場合には、 当該加工 前フィルムを延伸加工することによつて得られる特定位相差フィルムを実際に使用したと きに経時による寸法変化が大きくなり好ましくなく、 また、 残留溶媒によりガラス転移温 度が低くなり、 耐熱性も低下するため好ましくない。  The residual solvent content in the unprocessed film thus obtained is usually at most 10% by weight, preferably at most 5% by weight, more preferably at most 1% by weight, particularly preferably at most 0.5% by weight. . If the residual solvent content in the unprocessed film exceeds 10% by weight, the specific retardation film obtained by stretching the unprocessed film is subject to aging when actually used. It is not preferable because the dimensional change is large and the glass transition temperature is lowered by the residual solvent, and the heat resistance is also lowered.
また、 後述する延伸加工を好適に行うためには、 加工前フィルム中の残留溶媒量を上記 範囲内で適宜調節することが必要となる場合がある。 具体的には、 延伸配向処理によって フィルムに位相差を安定して均一に発現させるために、 加工前フィルム中の残留溶媒量を 通常 1 0〜0. 1重量%、 好ましくは 5〜0. 1重量%、 更に好ましくは 1〜0. 1重量 %にすることがある。 加工前フィルム中に微量の溶媒を残留させることにより、 延伸配向 処理が容易になる、 あるいは位相差の制御が容易になる場合がある。  In addition, in order to suitably perform the stretching process described later, it may be necessary to appropriately adjust the amount of the residual solvent in the film before processing within the above range. Specifically, the amount of the residual solvent in the film before processing is usually 10 to 0.1% by weight, preferably 5 to 0.1% in order to stably and uniformly express the retardation in the film by the stretching orientation treatment. % By weight, more preferably 1 to 0.1% by weight. By leaving a small amount of solvent in the film before processing, the stretching orientation treatment may be facilitated, or the phase difference may be easily controlled.
本発明において、 加工前フィルムの厚みは、 通常:!〜 500 μπι (1, 000〜 500 , O O O nm) 、 好ましくは:!〜 300 μπι (1, 000〜 300, O O O n m) 、 更に 好ましくは 1〜200 jum (1, 000〜200, 000) 、 最も好ましくは 1〜: 1 00 μτίί (1, 000〜 1 00, O O O nm) である。 この厚みが 1 μ m未満である場合には 、 当該加工前フィルムを実質的にハンドリングすることが困難となる。 一方、 この厚みが 500 μπι以上である場合には、 当該加工前フィルムをロール状に卷き取った際に、 いわ ゆる 「卷きぐせ」 がついてしまい後加工等における取扱いが困難になる場合がある。 加工前フィルムの厚み分布は、 平均値に対して通常土 20%以内、 好ましくは士 1 0% 以内、 更に好ましくは ± 5%以内、 特に好ましくは ± 3%以内である。 また、 1 c mあた りの厚みの変動は、 通常は 1 0 %以下、 好ましくは 5 %以下、 更に好ましくは 1 %以下、 特に好ましくは 0. 5%以下であることが望ましい。 加工前フィルムの厚み分布を上記の 範囲内に制御することにより、 当該加工前フィルムに対して延伸配向処理を行う際に、 位 相差ムラが発生することを防止することができる。 In the present invention, the thickness of the film before processing is usually:! ~ 500 μπι (1,000-500, OOO nm), preferably:! ~ 300 μπι (1,000-300, OOO nm), more preferably 1-200 jum (1,000-200, 000), most preferably 1: 100 μτίί (1,000-100, OOO nm) ). If the thickness is less than 1 μm, it becomes difficult to substantially handle the unprocessed film. On the other hand, if the thickness is 500 μπι or more, when the unprocessed film is wound into a roll, a so-called “winding” may be attached, and handling in post-processing or the like may be difficult. is there. The thickness distribution of the film before processing is usually within 20% of soil, preferably within 10%, more preferably within ± 5%, and particularly preferably within ± 3% of the average value. The variation in thickness per 1 cm is usually 10% or less, preferably 5% or less, more preferably 1% or less, and particularly preferably 0.5% or less. The thickness distribution of the film before processing By controlling to be within the range, it is possible to prevent the occurrence of phase difference unevenness when performing the stretching orientation treatment on the film before processing.
特定位相差フィルムを製造するための延伸加工法としては、 具体的に、 公知の一軸延伸 法又は二軸延伸法を挙げることができる。 すなわち、 テンター法による横一軸延伸法、 口 ール間圧縮延伸法、 円周の異なる二組のロールを利用する縦一軸延伸法等あるいは横一軸 と縦一軸を組合わせた二軸延伸法、 インフレーション法による延伸法等を用いることがで さる。  Specific examples of the stretching method for producing the specific retardation film include a known uniaxial stretching method and a biaxial stretching method. That is, horizontal uniaxial stretching method by tenter method, compression stretching method between holes, longitudinal uniaxial stretching method using two sets of rolls having different circumferences, biaxial stretching method combining horizontal uniaxial and longitudinal uniaxial, inflation It is better to use a stretching method by the method.
一軸延伸法の場合、 延伸速度は通常 1〜 5, 000 % /分であり、 好ましくは 50〜丄 , 000 %/分であり、 更に好ましくは 100〜1, 000 °/0 分であり、 特に好ましく は 100〜 500 %ノ分である。 In the case of the uniaxial stretching method, the stretching speed is usually 1 to 5,000% / min, preferably 50 to 丄, 000% / min, more preferably 100 to 1,000 ° / 0 min. Preferably, it is 100 to 500%.
二軸延伸法の場合、 同時 2方向に延伸を行う場合や一軸延伸後に最初の延伸方向と異な る方向に延伸処理する場合がある。 この時、 延伸後のフィルムの屈折率楕円体の形状を制 御するための 2つの延伸軸の交わり角度は、 所望の特性により決定されるため特に限定は されないが、 通常 120〜60度の範囲である。 また、 延伸速度は各延伸方向で同じであ つてもよく、 異なっていてもよく、 通常 1〜5, 000% 分であり、 好ましくは 50〜 1 , 000 % /分であり、 更に好ましくは 100〜1, 000 %Z分であり、 特に好まし くは 100〜 500 % 分である。  In the case of the biaxial stretching method, stretching may be performed simultaneously in two directions, or after uniaxial stretching, stretching may be performed in a direction different from the initial stretching direction. At this time, the intersection angle between the two stretching axes for controlling the shape of the refractive index ellipsoid of the stretched film is not particularly limited because it is determined by desired characteristics, but is usually in the range of 120 to 60 degrees. It is. The stretching speed may be the same or different in each stretching direction, and is usually 1 to 5,000%, preferably 50 to 1,000% / min, and more preferably 100 to 1,000% / min. 1,1,000% Z min, particularly preferably 100-500% min.
延伸配向処理における処理温度は、 特に限定されるものではないが、 用いられる熱可塑 性ノルボルネン系樹月旨のガラス転移 Tgを基準として、 通常 Tg±30°C、 好ましく は T g ± 15°C、 更に好ましくは T g— 5°C〜T g + 15 °Cの範囲である。 処理温度を上 記の範囲内とすることにより、 位相差ムラの発生を抑制することが可能となり、 また、 屈 折率楕円体の制御が容易になることから好ましい。  The processing temperature in the stretching orientation treatment is not particularly limited, but is usually Tg ± 30 ° C, preferably Tg ± 15 ° C, based on the glass transition Tg of the thermoplastic norbornene resin used. More preferably, it is in the range of Tg-5 ° C to Tg + 15 ° C. By setting the treatment temperature within the above range, it is possible to suppress the occurrence of the phase difference unevenness, and it is preferable because the refractive index ellipsoid can be easily controlled.
延伸倍率は、 所望の特性により決定されるため特に限定はされないが、 通常 1. 01〜 10倍、 好ましくは 1. 03〜5倍、 更に好ましくは 1. 03〜3倍である。 延伸倍率が 10倍以上であると、 位相差の制御が困難になる場合がある。  The stretching ratio is not particularly limited because it is determined by desired properties, but it is usually 1.01 to 10 times, preferably 1.03 to 5 times, and more preferably 1.03 to 3 times. If the stretching ratio is 10 times or more, it may be difficult to control the phase difference.
延伸したフィルムは、 そのまま冷却してもよいが、 Tg— 20°C〜Tgの温度雰囲気下 に少なぐとも 10秒以上、 好ましくは 30秒〜 60分間、 更に好ましくは 1分〜 60分間 保持してヒートセットすることが好ましい。 これにより、 透過光の位相差の経時変化が少 なく安定した位相差フィルムが得られる。 特定位相差フィルムの加熱による寸法収縮率は、 1 0 0 °Cにおける加熱を 5 0 0時間行 つた場合に、 通常 1 0 %以下、 好ましくは 5 %以下、 更に好ましくは 3 %以下、 特に好ま しくは 1 %以下である。 The stretched film may be cooled as it is, but is kept in an atmosphere of Tg-20 ° C to Tg for at least 10 seconds, preferably 30 seconds to 60 minutes, more preferably 1 minute to 60 minutes. It is preferable to heat set. This makes it possible to obtain a stable retardation film with little change over time in the retardation of transmitted light. The dimensional shrinkage due to heating of the specific retardation film is generally 10% or less, preferably 5% or less, more preferably 3% or less, and more preferably 3% or less, when heating at 100 ° C. for 500 hours. Or less than 1%.
寸法収縮率を上記範囲内にするためには、 熱可塑性ノルポルネン系樹脂の原料である、 例えば特定単量体 a、 特定単量体 bあるいはその他の共重合性単量体の選択にカ卩え、 キヤ スト方法や延伸方法によりコントロールすることが可能である。  In order to keep the dimensional shrinkage ratio within the above range, it is necessary to select a specific monomer a, a specific monomer b, or another copolymerizable monomer which is a raw material of the thermoplastic norpolene resin. It can be controlled by a casting method or a stretching method.
なお、 延伸配向処理を施していない状態の加工前フィルムの力 D熱による寸法収縮率は、 1 0 0 °Cにおける加熱を 5 0 0時間行った場合に、 通常 5 %以下、 好ましくは 3 %以下、 更に好ましくは 1 %以下、 特に好ましくは 0. 5 %以下である。  Note that the dimensional shrinkage due to the force D heat of the unprocessed film in the state where the stretching orientation treatment is not performed is usually 5% or less, preferably 3% when heating at 100 ° C. is performed for 500 hours. Or less, more preferably 1% or less, particularly preferably 0.5% or less.
上記のようにして延伸したフィルムは、 延伸により分子が配向していることにより、 透 過光に位相差を与えるようになるが、 この位相差は、 原料として用いる熱可塑性ノルボル ネン系樹脂の種類、 延伸倍率、 延伸処理温度あるいは延伸前のフィルム (加工前フィルム ) の厚み等を調整することにより制御することができる。 例えば、 延伸倍率については、 延伸前の厚みが同じフィルムであっても、 延伸倍率が大きいフィルムほど透過光の位相差 の絶対値が大きくなる傾向があるので、 延伸倍率を変更することによって所望の位相差を 透過光に与えるフィルムを得ることができる。 また、 延伸前のフィルム (加工前フィルム ) の厚みについては、 延伸倍率が同じであっても、 延伸前のフィルムの厚みが大きいほど 透過光に与える位相差の絶対値が大きくなる傾向があるので、 延伸前のフィルムの厚みを 変更することによって所望の位相差を透過光に与える位相差フィルムを得ることができる 。 また、 延伸処理温度については、 延伸温度が低いほど透過光の位相差の絶対値が大きく なる傾向があるので、 延伸温度を変更することによって所望の位相差を透過光に与える位 相差フィルムを得ることができる。  The film stretched as described above gives a phase difference to the transmitted light due to the orientation of the molecules by stretching. This phase difference depends on the type of thermoplastic norbornene resin used as a raw material. It can be controlled by adjusting the stretching ratio, the stretching temperature or the thickness of the film before stretching (the film before processing). For example, regarding the stretching ratio, even if the film has the same thickness before stretching, the larger the stretching ratio, the larger the absolute value of the phase difference of the transmitted light tends to be. A film giving a phase difference to transmitted light can be obtained. Regarding the thickness of the film before stretching (the film before processing), the absolute value of the phase difference given to the transmitted light tends to increase as the thickness of the film before stretching increases even if the stretching ratio is the same. By changing the thickness of the film before stretching, a retardation film that gives a desired retardation to transmitted light can be obtained. Regarding the stretching temperature, the lower the stretching temperature, the larger the absolute value of the phase difference of the transmitted light tends to be. Therefore, by changing the stretching temperature, a phase difference film that gives a desired phase difference to the transmitted light is obtained. be able to.
また、 特定位相差フィルムの厚みは、 加工前フィルムの厚み、 延伸倍率等を調整するこ とにより制御することができる。 具体的には、 例えば加工前フィルムの厚みを小さくする こと、 あるいは延伸倍率を大きくすることにより位相差フィルムの厚みを小さくすること ができる。  Further, the thickness of the specific retardation film can be controlled by adjusting the thickness of the film before processing, the stretching ratio, and the like. Specifically, for example, the thickness of the retardation film can be reduced by reducing the thickness of the film before processing or by increasing the stretching ratio.
このような特定位相差フィルムにおいては、 フィルム面上における l m2 当たりに換算 したときの輝点の数は、 1 0個以下、 好ましくは 7個以下、 更に好ましくは 5個以下、 特 に好ましくは 3個以下、 最も好ましくは 0または 1とされる。 ここに、 「輝点」 とは、 特定位相差フィルムをクロスニコル状態の偏光板に挟んで観察 したときに肉眼で確認される部分的な光の漏れであり、 通常外径 Ι μ πι以上 (円形のもの であればその直径、 その他の形状のものであれば長手方向の長さ) のものを計測する。 も ちろん、 要求される性能によっては、 これよりも小さいものを輝点として計測する場合が ある。 In this particular phase difference film, the number of bright points when converted into per lm 2 on the film surface, 1 0 or less, preferably 7 or less, more preferably 5 or less, preferably especially the 3 or less, most preferably 0 or 1. Here, the “bright point” is a partial leakage of light observed by the naked eye when the specific retardation film is sandwiched between polarizing plates in a crossed Nicols state, and usually has an outer diameter of Ιμπι or more ( If it is circular, measure its diameter; if it has any other shape, measure its length). Of course, depending on the required performance, something smaller than this may be measured as a bright spot.
また、 かかる輝点は、 微小領域における位相差の部分的なムラが原因と考えられている 。 すなわち、 加工前フィルム中に異物や泡等が存在すると、 それらが肉眼では確認できな いような大きさであっても、 延伸加工した際に、 異物や泡等が存在する部分に応力が集中 し、 この応力が集中した部分の位相差が周辺部分の位相差と異なってしまうことがあり、 係る位相差の違レ、により光が漏れてしまうと考えられている。  It is considered that such bright spots are caused by partial unevenness of the phase difference in the minute area. In other words, if foreign matter or bubbles are present in the film before processing, even if the size is such that they cannot be seen with the naked eye, stress will concentrate on the part where the foreign matter or bubbles are present during stretching. However, the phase difference of the portion where the stress is concentrated may be different from the phase difference of the peripheral portion, and it is considered that light leaks due to the difference in the phase difference.
また、 特定位相差フィルムにおいては、 フィルム面上における l m2 当たりに換算した ときの異物の数が、 好ましくは 1 0個以下、 更に好ましくは 5個以下、 特に好ましくは 3 個以下、 最も好ましくは 0または 1とされる。 Further, in the specific retardation film, the number of foreign substances when converted to lm 2 on the film surface is preferably 10 or less, more preferably 5 or less, particularly preferably 3 or less, and most preferably. Set to 0 or 1.
ここでいう 「異物」 とは、 特定位相差フィルムに光を透過させた場合に、 実質的に光の 透過を妨げるものである。 このような異物が特定位相差フィルム中に存在する場合には、 透過光強度に影響を与え、 液晶表示素子等に用いた場合、 画素抜けや特性の低下を招くお それがある。  The term “foreign matter” as used herein substantially impedes transmission of light when light is transmitted through the specific retardation film. When such a foreign substance is present in the specific retardation film, it affects the transmitted light intensity, and when used in a liquid crystal display device or the like, there is a possibility of causing pixel omission or deterioration of characteristics.
なお、 計測すべき異物の大きさは、 通常外径 1 m以上 (円形のものであればその直径 、 その他の形状のものであれば長手方向の長さ) であるが、 要求される性能によっては、 これよりも小さいものを異物として計測する場合がある。  The size of the foreign material to be measured is usually 1 m or more in outer diameter (the diameter for a circular shape, or the length in the longitudinal direction for other shapes). May measure something smaller than this as a foreign substance.
特定位相差フィルムは、 単独で、 あるいは種類の異なるフィルムを 2枚以上積層した状 態のものを、 保護フィルムとして偏光膜に貼合することができ、 このような保護フィルム が偏光膜の両面の各々に貼合されてなる構成の積層体は、 偏光板として好適に用いること ができる。  The specific retardation film can be used alone or in a state of laminating two or more different films on a polarizing film as a protective film, and such a protective film is formed on both surfaces of the polarizing film. The laminate having a configuration bonded to each of them can be suitably used as a polarizing plate.
偏光板として用いることのできる積層体の構成の具体例は、 例えば下記の通りである。 Specific examples of the structure of the laminate that can be used as the polarizing plate are, for example, as follows.
( 1 ) 偏光膜の一面にトリァセチルセルロース (以下、 「T A C」 と略する。 ) フィルム を貼合し、 当該偏光膜の他面にフィルム Aを貼合してなる積層体 (1) A laminate obtained by laminating a triacetyl cellulose (hereinafter abbreviated as “TAC”) film on one surface of a polarizing film and laminating film A on the other surface of the polarizing film.
( 2 ) 偏光膜の一面に T A Cフィルムを貼合し、 当該偏光膜の他面にフィルム Bを貼合し てなる積層体 ( 3 ) 偏光膜の一面にフィルム Cを貼合し、 当該偏光膜の他面にフィルム Aを貼合してな る積層体 (2) A laminated body obtained by laminating a TAC film on one surface of a polarizing film and laminating a film B on the other surface of the polarizing film (3) Laminate formed by laminating film C on one surface of a polarizing film and laminating film A on the other surface of the polarizing film
( 4 ) 偏光膜の一面にフィ ^ム Cを貼合し、 当該偏光膜の他面にフィルム Bを貼合してな る積層体  (4) A laminate obtained by laminating film C on one surface of a polarizing film and laminating film B on the other surface of the polarizing film
( 5 ) 偏光膜の一面に T A Cフィルムを貼合し、 当該偏光膜の他面に、 フィルム Aおよび フィルム Bをこの順に重ねて貼合してなる構成の積層体  (5) A laminate having a configuration in which a T AC film is bonded to one surface of a polarizing film, and a film A and a film B are stacked and bonded in this order on the other surface of the polarizing film.
( 6 ) 偏光膜の一面にフィルム Cを貼合し、 当該偏光膜の他面に、 フィルム Aおよびフィ ルム Bを重ねてこの順に貼合してなる積層体  (6) A laminate obtained by laminating a film C on one surface of a polarizing film and laminating a film A and a film B on the other surface of the polarizing film and laminating in this order.
( 7 ) 偏光膜の一面にフィルム Cを貼合し、 当該偏光膜の他面にフィルム Cを貼合してな る積層体  (7) A laminate obtained by laminating film C on one surface of a polarizing film and laminating film C on the other surface of the polarizing film
特定位相差フィルムを他のフィルム、 シート、 基板に積層する場合には、 粘着剤や接着 剤を用いることができる。 かかる粘着剤、 接着剤としては、 透明性に優れたものを用いる ことが好ましく、 その具体例としては、 天然ゴム、 合成ゴム、 酢酸ビエル/塩化ビュルコ ポリマー、 ポリビュルエーテル、 アクリル系樹脂、 変性ポリオレフイン系樹脂等の粘着剤 や、 水酸基、 アミノ基等の官能基を有する前記樹脂等にイソシアナト基含有化合物などの 硬化剤を添加した硬化型粘着剤、 ポリウレタン系のドライラミネート用接着剤、 合成ゴム 系接着剤、 エポキシ系接着剤などが挙げられる。  When the specific retardation film is laminated on another film, sheet or substrate, an adhesive or an adhesive can be used. As the pressure-sensitive adhesive and the adhesive, it is preferable to use those having excellent transparency. Specific examples thereof include natural rubber, synthetic rubber, biel acetate / bulco chloride polymer, polybutyl ether, acrylic resin, and modified polyolefin. Curable pressure-sensitive adhesive obtained by adding a curing agent such as an isocyanate group-containing compound to the above-mentioned resin having a functional group such as a hydroxyl group or an amino group, a polyurethane-based dry laminating adhesive, a synthetic rubber-based adhesive or the like. An adhesive, an epoxy-based adhesive, and the like can be given.
また、 特定位相差フィルムは、 他のフィルムやシート、 基板などとの積層の作業性を向 上させるために、 あらかじめ、 粘着剤層または接着剤層を積層することができる。 積層す る場合には、 粘着剤や接着剤としては前述のような粘着剤あるいは接着剤を用いることが できる。  In addition, the specific retardation film may be preliminarily laminated with an adhesive layer or an adhesive layer in order to improve the workability of lamination with other films, sheets, substrates and the like. When laminating, the above-mentioned pressure-sensitive adhesive or adhesive can be used as the pressure-sensitive adhesive or adhesive.
特定位相差フィルムには、 その少なくとも片面に透明導電層を積層することもできる。 透明導 を形成するための材料としては、 S n、 I n、 T i、 P b、 A u、 P t、 A g等の金属またはそれらの酸化物を用いることができる。  A transparent conductive layer may be laminated on at least one surface of the specific retardation film. As a material for forming the transparent conductive material, a metal such as Sn, In, Ti, Pb, Au, Pt, and Ag, or an oxide thereof can be used.
金属酸化物よりなる透明導電層は、 金属酸化物を基板上に直接堆積させることにより形 成することもできるが、 金属単体または低級酸化物の形態で基板上に堆積させて被膜を形 成し、 しかるのち、 加熱酸化処理、 陽極酸化処理あるいは液相酸ィ匕処理等の酸ィ匕処理を施 して透明化することによって形成することができる。  The transparent conductive layer made of a metal oxide can be formed by directly depositing the metal oxide on the substrate.However, the transparent conductive layer is formed by depositing the metal oxide in the form of a simple metal or a lower oxide on the substrate to form a film. Thereafter, it can be formed by performing an oxidizing treatment such as a heating oxidizing treatment, an anodic oxidizing treatment or a liquid-phase oxidizing treatment to make it transparent.
また、 透明導電層は、 透明導電層を有するその他のシート、 フィルムなどを光学フィル ムに接着することにより形成してもよく、 プラズマ重合法、 スパッタリング法、 真空蒸着 法、 メツキ、 イオンプレーティング法、 スプレー法、 電解析出法などによって特定位相差 フィルム上に直接形成してもよい。 このような透明導電層の厚みは、 所望の特性に応じ て決定され、 特に限定はされないが、 通常 1 0〜 1 0, 0 0 0人、 好ましくは 5 0〜 5, 0 0 0人である。 In addition, the transparent conductive layer is formed by optically filtering other sheets or films having the transparent conductive layer. It may be formed by bonding to a specific retardation film by plasma polymerization, sputtering, vacuum deposition, plating, ion plating, spraying, electrolytic deposition, etc. Good. The thickness of such a transparent conductive layer is determined according to desired characteristics and is not particularly limited, but is usually 10 to 100, 000, preferably 50 to 50,000. .
特定位相差フィルム上に透明導電層を直接形成する場合には、 当該特定位相差フィルム と透明導 «ϋとの間に必要に応じて接着層またはアンカーコート層を形成してもよい。 ここで、 接着層を構成する材料としては、 エポキシ樹脂、 ポリイミド、 ポリブタジエン 、 フエノール樹脂、 ポリエーテルエーテルケトンなどの耐熱樹脂を例示することができる また、 アンカーコート層としては、 エポキシジアタリレート、 ウレタンジアタリレート 、 ポリエステルジァクリレート等のいわゆるアクリルプレボリマーなどを成分として含む ものを用いて、 公知の硬化手法、 例えば UV硬ィ匕ゃ加熱硬ィ匕により硬化させたものが挙げ られる。  When the transparent conductive layer is formed directly on the specific retardation film, an adhesive layer or an anchor coat layer may be formed between the specific retardation film and the transparent conductor, if necessary. Here, as a material constituting the adhesive layer, a heat-resistant resin such as epoxy resin, polyimide, polybutadiene, phenol resin, and polyetheretherketone can be exemplified. As the anchor coat layer, epoxy diatalylate, urethane Examples thereof include those obtained by using a material containing a so-called acrylic prepolymer such as diatalylate or polyester diacrylate as a component and curing by a known curing method, for example, UV curing and heating and curing.
また、 透明導電層を積層してなる特定位相差フィルム (以下、 「光学用複合フィルム」 ともいう。 ) には、 必要に応じて、 酸素や水蒸気の透過性を小さくするために、 ポリビニ リデンクロリ ド、 ポリビエルアルコール等のガスバリア性材料を、 少なくとも光学用複合 フィルムの一方の面に積層することもできる。  A specific retardation film (hereinafter, also referred to as a “composite film for optical use”) formed by laminating a transparent conductive layer may include polyvinylidene chloride, if necessary, in order to reduce the permeability of oxygen and water vapor. Alternatively, a gas barrier material such as polyvinyl alcohol or the like may be laminated on at least one surface of the composite film for optical use.
更に、 光学用複合フィルムの耐傷性および耐熱性を向上させることを目的として、 光学 用複合フィルム上に直接またはガスバリア層の上にハードコート層が積層されていてもよ い。 ここで、 ハードコート剤としては、 有機シリコン系樹脂、 メラミン樹脂、 エポキシ樹 脂、 アクリル樹脂などの有機ハードコート材料、 またはニ酸ィ匕ケィ素などの無機系ハード コート材料を用いることができる。 これらの中では、 有機シリコン系樹脂、 アクリル樹脂 などのハードコート材料が好ましい。 有機シリコン系樹脂としては、 各種の官能基を有す るものが使用される力 エポキシ基を有するものが好ましい。  Further, for the purpose of improving the scratch resistance and heat resistance of the optical composite film, a hard coat layer may be laminated directly on the optical composite film or on the gas barrier layer. Here, as the hard coat agent, an organic hard coat material such as an organic silicon resin, a melamine resin, an epoxy resin, or an acrylic resin, or an inorganic hard coat material such as silicon dioxide can be used. Among them, a hard coat material such as an organic silicon resin or an acrylic resin is preferable. As the organic silicon-based resin, a resin having various functional groups is used. A resin having an epoxy group is preferable.
特定位相差フィルムには、 少なくともその片面に反射防止層を積層することができる。 反射防止層の形成方法としては、 例えば、 一般的に使用される、 例えばシリコン、 チタ ン、 タンタル、 ジノレコニゥム等の金属酸化物などよりなる無機系や、 例えばフッ化ビニリ デン、 へキサフルォロプロピレン、 テトラフルォロエチレンの (共) 重合体や含フッ素 ( メタ) アタリレート (共) 重合体等の含フッ素化合物などよりなる有機系の反射防止膜をAn antireflection layer can be laminated on at least one surface of the specific retardation film. Examples of the method of forming the anti-reflection layer include, for example, commonly used inorganic materials such as metal oxides such as silicon, titanium, tantalum, and dinoleconium, and vinylidene fluoride and hexafluoro. (Co) polymers of propylene and tetrafluoroethylene and fluorine-containing ( (Meth) Atharylate (co) An organic anti-reflective coating made of a fluorine-containing compound such as a polymer
0 . 0 1〜 1 0 // m程度の厚みで、 スパッタリング、 蒸着、 コーティング、 デイツビング などの方法により形成することができる。 反射防止層の厚みは、 通常は 0 . 0 1〜5 0 ; m、 好ましくは 0 . 1〜3 0 m、 更に好ましくは 0 . 5〜2 0 μ πιである。 厚みが 0 . 0 1 μ m未満であると反射防止効果が発揮できず、 厚みが 5 0 mを超えると塗膜の厚み にムラが生じやすくなり ^i などが悪ィ匕し好ましくなレ、。 It can be formed with a thickness of about 0.01 to 10 // m by a method such as sputtering, vapor deposition, coating, and dive. The thickness of the antireflection layer is usually from 0.1 to 50 m, preferably from 0.1 to 30 m, more preferably from 0.5 to 20 μπι. When the thickness is less than 0.01 μm, the anti-reflection effect cannot be exerted, and when the thickness exceeds 50 m, the thickness of the coating film tends to be uneven, and ^ i and the like are unfavorable. .
また、 反射防止層が積層されてなる特定位相差フィルムには、 公知のハードコート層や 防汚層が積層されていてもよく、 また、 上記の透明導電層が積層されていてもよい。 更に 、 反射防止層が積層されてなる特定位相差フィルムとしては、 当該特定位相差フィルムと して光拡散機能を有するものを用いることができる。  Further, the specific retardation film having the antireflection layer laminated thereon may have a known hard coat layer or antifouling layer laminated thereon, or may have the transparent conductive layer described above laminated thereon. Furthermore, as the specific retardation film on which the antireflection layer is laminated, a film having a light diffusion function can be used as the specific retardation film.
このように、 複数の機能を有することにより、 反射防止層が積層されてなる特定位相差 フィルムは、 例えば液晶表示素子に用いた場合、 反射防止フィルムが位相差板、 光拡散フ イルム、 偏光膜保護フィルムあるいは電極基板 (透明導電層) の幾つかの機能を兼用する こととなり、 従来よりもその部品点数を低減することが可能となる。  As described above, when a specific retardation film having a plurality of functions and having an anti-reflection layer laminated thereon is used for, for example, a liquid crystal display device, the anti-reflection film may be a retardation plate, a light diffusion film, or a polarizing film. Some functions of the protective film or the electrode substrate (transparent conductive layer) are also used, and the number of parts can be reduced as compared with the conventional case.
本発明の偏光板は、 偏光膜の両面の各々に保護フィルムが積層されてなる構成を有する ものであって、 (1 ) 偏光膜の一面に積層されてなる保護フィルムがフィルム Aおよぴフ イルム Bを積層したもの、 あるいはフィルム Aまたはフィルム Bよりなるものと、 (2 ) 偏光膜の一面に積層されてなる保護フィルムがフィルム Cよりなり、 当該偏光膜の他面に 積層されてなる保護フィルムがフィルム Aおよびフィルム Bを積層したもの、 あるいはフ イルム Aまたはフィルム Bよりなるものと 2種の偏光板が包含される。  The polarizing plate of the present invention has a configuration in which a protective film is laminated on both sides of a polarizing film. (1) The protective films laminated on one surface of the polarizing film are films A and F. (2) A protective film laminated on one surface of the polarizing film is composed of the film C, and a protective film laminated on the other surface of the polarizing film. The film includes a laminate of film A and film B, or a film composed of film A or film B and two types of polarizing plates.
このような構成の偏光板において、 特定位相差フィルムおよび特定位相差フィルムの積 層体よりなる保護フィルムは、 特定位相差フィルムを有する積層体よりなるものであれば よく、 特定位相差フィルムと、 例えば T A Cフィルムなどのフィルムとが積層されてなる 構成のものを用いることができる。  In the polarizing plate having such a configuration, the protective film composed of the specific retardation film and the laminated body of the specific retardation film may be a protective film composed of a laminate having the specific retardation film. For example, a structure in which a film such as a TAC film is laminated can be used.
このような構成の偏光板によれば、 保護フィルムが保護機能と共に位相差付与機能を有 するものであるため、 当該偏光板にあらためて位相差板を貼合する必要がなくなる利点が あると共に、 例えば液晶表示素子などの製品の薄膜化および高機能化を図ることが可能と なり、 なおかつ V Aタイプの液晶に対して良好な光学補償機能を発現することができる。 本発明の偏光板においては、 保護フィルム面上における l m2 当たの輝点の数は、 1 0 個以下、 好ましくは 7個以下、 更に好ましくは 5個以下、 特に好ましくは 3個以下、 最も 好ましくは 0または 1とされる。 According to the polarizing plate having such a configuration, since the protective film has a protective function and a retardation providing function, there is an advantage that it is not necessary to attach a retardation plate to the polarizing plate again. Products such as liquid crystal display devices can be made thinner and more sophisticated, and a good optical compensation function can be exhibited for VA type liquid crystals. In the polarizing plate of the present invention, the number of bright spots per lm 2 on the protective film surface is 10 Or less, preferably 7 or less, more preferably 5 or less, particularly preferably 3 or less, and most preferably 0 or 1.
ここに、 「輝点」 とは、 保護フィルムをクロスニコル状態の偏光板に挟んで観察したと きに肉眼で確認される部分的な光の漏れであり、 通常外径 1 Ai m以上 (円形のものであれ ばその直径、 その他の形状のものであれば長手方向の長さ) のものを計測する。 もちろん 、 要求される性能によっては、 これよりも小さいものを輝点として計測する場合がある。 また、 保護フィルム面上における l m2 当たりの異物の数が、 好ましくは 1 0個以下、 更に好ましくは 5個以下、 特に好ましくは 3個以下、 最も好ましくは 0または 1とされる ここでいう 「異物」 とは、 保護フィルムに光を透過させた場合に、 実質的に光の透過を 妨げるものである。 Here, the “bright point” is a partial light leakage that is visually observed when the protective film is sandwiched between polarizing plates in a crossed Nicols state, and usually has an outer diameter of 1 Aim or more (circular shape). If it has a different shape, measure its diameter, and if it has another shape, measure its length). Of course, depending on the required performance, a smaller one may be measured as a bright spot. In addition, the number of foreign substances per lm 2 on the protective film surface is preferably 10 or less, more preferably 5 or less, particularly preferably 3 or less, and most preferably 0 or 1. The "foreign matter" substantially impedes light transmission when light is transmitted through the protective film.
なお、 計測すべき異物の大きさは、 通常外径 Ι μ πι以上 (円形のものであればその直径 、 その他の形状のものであれば長手方向の長さ) であるが、 要求される性能によっては、 これよりも小さいものを異物として計測する場合がある。  The size of the foreign material to be measured is usually the outer diameter Ιμπι or more (the diameter is circular if it is circular, and the length in the longitudinal direction if it is other shapes). Depending on the case, a smaller object may be measured as a foreign substance.
本発明の位相差フィルムおよび偏光板は、 例えば携帯電話、 ディジタル情報端末、 ボケ ットベル、 ナビゲーシヨン、 車載用液晶ディスプレイ、 液晶モニター、 調光パネル、 O A 機器用ディスプレイ、 A V機器用ディスプレイなどの各種液晶表示素子やエレクトロノレミ ネッセンス表示素子あるいはタツチパネルなどに用いることができる。 また、 C D、 C D — R、 MD、 MO、 D VD等の光ディスクの記録 ·再生装置に使用される波長板としても 有用である。  The retardation film and the polarizing plate of the present invention can be used for various liquid crystal displays such as, for example, mobile phones, digital information terminals, bottlebells, navigation, in-vehicle liquid crystal displays, liquid crystal monitors, dimming panels, displays for OA equipment, and displays for AV equipment. It can be used for a display element, an electroluminescence display element, a touch panel, or the like. It is also useful as a wave plate used in a recording / reproducing apparatus for optical discs such as CD, CD-R, MD, MO, and DVD.
[実施例]  [Example]
以下、 本発明の具体的な実施例について説明するが、 本発明は、 これらの実施例に限定 されるものではない。 なお、 以下において、 「部」 は、 特に断りのない限り 「重量部」 を 意味する。  Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples. In the following, “parts” means “parts by weight” unless otherwise specified.
また、 以下の実施例において、 ガラス転移温度、 飽和吸水率、 全光線透過率、 透過光の 位相差、 輝点数、 輝度および視野角並びにコントラスト比、 耐傷性、 フィルム靱性は、 下 記の方法により測定した。  In the following examples, the glass transition temperature, the saturated water absorption, the total light transmittance, the phase difference of transmitted light, the number of bright spots, the brightness and the viewing angle, the contrast ratio, the scratch resistance, and the film toughness were determined by the following methods. It was measured.
[ガラス転移温度 (T g ) ]  [Glass transition temperature (T g)]
セイコーインスツルメンッ社製の示差走査熱量計 (D S C) を用い、 窒素雰囲気中にお レ、て昇温速度 20 °C /分の条件でガラス転移温度を測定した。 Using a differential scanning calorimeter (DSC) manufactured by Seiko Instruments, Inc. in a nitrogen atmosphere The glass transition temperature was measured at a heating rate of 20 ° C./min.
[飽和吸水率]  [Saturated water absorption]
ASTM D 570に準拠し、 23 °Cの水中に 1週間サンプルを浸漬し、 浸漬前後のサ ンプルの重量変化測定し、 その値から飽和吸水率を求めた。  According to ASTM D570, the sample was immersed in water at 23 ° C for one week, the weight change of the sample before and after immersion was measured, and the saturated water absorption was determined from the value.
[全光線透過率]  [Total light transmittance]
スガ試験機ネ ± のヘイズメーター 「HGM— 2DP型」 を用い、 全光線透過率を測定し た。  Total light transmittance was measured using a haze meter “HGM-2DP type” of Suga Test Machine.
[透過光の位相差]  [Phase difference of transmitted light]
王子計測機器 (株) 製の 「KOBRA— 21 ADH」 を用い、 波長 480n m、 550 nm、 590 nm、 630 nm、 750nmで測定し、 当該波長以外の部分については前 記波長での位相差値に基づいてコーシ一 (C a u c h y) の分散式を用いて算出した。  Measured at wavelengths of 480 nm, 550 nm, 590 nm, 630 nm, and 750 nm using “KOBRA-21 ADH” manufactured by Oji Scientific Instruments, and the phase difference values at the wavelengths above for the other wavelengths Calculated using Cauchy's variance equation based on
[輝点数]  [Number of bright spots]
輝度 1000 c d/m2 の光源上において、 サンプルをクロスニコル状態の偏光板の間 に挟み、 肉眼で確認される外径 1 μ m以上の大きさの部分的な光の漏れを輝点として計測 した。 On a light source with a brightness of 1000 cd / m 2 , the sample was sandwiched between polarizing plates in a crossed Nicols state, and the leakage of partial light having an outer diameter of 1 μm or more observed with the naked eye was measured as a bright spot.
[輝度、 視野角およびコントラスト比]  [Brightness, viewing angle and contrast ratio]
ミノルタ株式会社製の輝度計 「LS— 1 10」 を用い、 日本電子機械工業会規格 E I A J ED— 2522に準拠し、 輝度と視野角並びにコントラスト比を測定した。  Using a luminance meter “LS-110” manufactured by Minolta Co., Ltd., the luminance, the viewing angle and the contrast ratio were measured in accordance with EIA JED-2522 of the Japan Electronic Machinery Manufacturers Association Standard.
[耐傷性]  [Scratch resistance]
J I S K 5400に準拠し、 鉛筆硬度試験を行うことによつて耐傷性を した。  In accordance with JIS K 5400, a pencil hardness test was performed to determine scratch resistance.
[フィルム顿性]  [Film properties]
J I S K7218に従い、 フィルムサンプルの縦方向および横方向の各々についてそ れぞれ 5点ずつ試験を行い、 エルメンドルフ引裂荷重値を測定し、 得られたエルメンドル フ弓 I裂荷重値の平均値をフィルム靱性値として評価した。  In accordance with JIS K7218, the film sample was tested in the longitudinal and transverse directions at 5 points each, and the Elmendorf tear load value was measured.The average value of the obtained Elmendorf bow I crack load value was used as the film toughness. It was evaluated as a value.
く合成例 1〉 Synthesis Example 1>
窒素置換した反応容器に、 特定単量体 aとして 8—メチル一8—カルボキシメチルテト ラシクロ [4. 4. 0. I2' 5 . 17' 10] —3—ドデセン 225部と、 特定単量体 bとし てビシクロ [2. 2. 1] ヘプト一 2—ェン 25部と、 分子量調節剤として 1—へキセン 18部と、 溶媒としてトルエン 750部とを仕込み、 この溶液を 60°Cに加熱した。 次い で、 反応容器内の溶液に、 重合触媒としてトリェチルアルミニウム 1. 5モル/ 1を含有 するトルエン溶液 0. 62部と、 t—ブタノールおよびメタノールで変性した六塩ィ匕タン グステン ( tーブタノ一ノレ : メタノーノレ : タングステン =0. 35モノレ : 0. 3モノレ : 1 モル) を含有する濃度 0. 05モル Z1のトルエン溶液 3. 7部とを添加し、 この系を 8 0°Cで 3時間加熱撹拌することにより開環共重合反応させて開環共重合体溶液を得た。 この重合反応における重合転化率は 97%であり、 得られた開環共重合体溶液を構成す る開環共重合体の 30°Cのクロ口ホルム中における固有粘度 (77 inh ) を測定したところA reaction vessel was replaced with nitrogen, the specific monomer a as 8-methyl one 8-carboxymethyl Tet Rashikuro [4. 4. 0. I 2 '5 . 1 7' 10] -3- dodecene 225 parts of a specific single 25 parts of bicyclo [2.2.1] hept-1-ene as monomer b, 18 parts of 1-hexene as a molecular weight regulator, and 750 parts of toluene as a solvent were charged. Heated. Next In the reaction vessel, 0.62 parts of a toluene solution containing 1.5 mol / 1 of triethylaluminum as a polymerization catalyst was added to a solution in a reaction vessel, and a hexachloride-modified tungsten (t-butanol) modified with t-butanol and methanol. Nore: Methanol: Tungsten = 0.35 monole: 0.3 monole: 1 mol) Concentration: 0.05 mol Z1 toluene solution 3.7 parts were added, and this system was heated at 80 ° C for 3 hours. A ring-opening copolymerization reaction was performed by heating and stirring to obtain a ring-opening copolymer solution. The polymerization conversion rate in this polymerization reaction was 97%, and the intrinsic viscosity (77 inh ) of the ring-opening copolymer constituting the obtained ring-opening copolymer solution in a 30 ° C black hole form was measured. Place
、 0. 65 d 1 / gであった。 0.65 d1 / g.
得られた開環共重合体溶液 4000部をオートクレープに仕込み、 この開環共重合体溶 液に、 カルボユルクロロヒ ドリ ドトリス (トリフエニルホスフィン) ルテニウム : RuH C 1 (CO) [P (C6 H5 ) 3 ] 3 0. 48部を添加し、 水素ガス圧 100 k gZcrn 2 、 反応温度 165 °Cの条件下で 3時間加熱撹拌することにより水素添加反応を行つた。 得られた反応溶液 (水素添加重合体溶液) を冷却した後、 水素ガスを放圧した。 この反 応溶液を大量のメタノール中に注いで凝固物を分離回収し、 これを乾燥して、 水素添加重 合体 (以下、 「樹脂 (a— 1) 」 ともいう。 ) を得た。 4000 parts of the obtained ring-opening copolymer solution was charged into an autoclave, and carbylchlorohydridotris (triphenylphosphine) ruthenium: RuH C 1 (CO) [P (C 6 H 5 ) 3] 30.48 parts was added, and the mixture was heated and stirred for 3 hours under the conditions of a hydrogen gas pressure of 100 kg Zcrn 2 and a reaction temperature of 165 ° C. to carry out a hydrogenation reaction. After cooling the obtained reaction solution (hydrogenated polymer solution), hydrogen gas was released. The reaction solution was poured into a large amount of methanol to separate and collect the coagulated product, which was dried to obtain a hydrogenated polymer (hereinafter, also referred to as “resin (a-1)”).
得られた樹脂 (a - 1) について、 水素添加率を、 400MHz ,H— NMRスぺク トルにより測定したところ、 99. 9%であった。  The hydrogenation rate of the obtained resin (a-1) was measured by a 400 MHz, H-NMR spectrum and found to be 99.9%.
また、 樹脂 (a— 1) におけるビシクロ [2. 2. 1] ヘプト一 2—ェンに由来の構造 単位 bの割合を、 400MHz — NMRスペク トルを測定し、 約 3. 7 p p m付近 に出現する、 8—メチル一8—カルボキシメチルテトラシクロ [4. 4. 0. I2' 5 . 1 7' 10] —3—ドデセンに由来の構造単位 aのメチルエステルのメチルのプロ トンの吸収ピ ークと、 0. 15〜3 p pmに出現する構造単位 aおよび構造単位 bの脂環構造のプロト ンの吸収ピークとに基づいて算出したところ、 20. 1%であった。 Also, the ratio of structural unit b derived from bicyclo [2.2.1] hept-12-ene in resin (a-1) was measured and measured at about 400MHz-NMR spectrum, and appeared at around 3.7ppm to 8-methyl one 8-carboxymethyl tetracyclo [4. 4. 0. I 2 '5 . 1 7' 10] -3- dodecene absorption peak of pro tons of methyl methyl ester of structural units a derived It was 20.1% when calculated on the basis of the peak and the absorption peak of the alicyclic structure protons of the structural units a and b appearing at 0.15 to 3 ppm.
また、 ゲノレパーミエーシヨンクロマトグラフィー (GPC) により、 ポリスチレン換算 重量平均分子量 Mwが 1万以下のもの、 1万を超えて 3万以下の範囲のもの、 および 3万 を超えたものを分取し、 それぞれの構造単位 bの割合を、 400MHz 'Η— NMRス ベク トルにより確認したところ、 樹脂 (a— 1) 全体における割合である 20. 1%の値 に対するバラツキは、 いずれも 15%以内であった。  In addition, polystyrene-equivalent weight average molecular weights (Mw) of 10,000 or less, those of more than 10,000 and 30,000 or less, and those of more than 30,000 are collected by genole permeation chromatography (GPC). When the ratio of each structural unit b was confirmed by a 400 MHz 'Η-NMR spectrum, the variation with respect to the value of 20.1%, which is the ratio in the entire resin (a-1), was within 15% for all cases. there were.
また、 樹脂 (a— 1) について、 ゲノレパーミエーシヨンクロマトグラフィー (GPC、 溶媒:テトラヒドロフラン) により、 ポリスチレン換算の数平均分子量 (Mn) および重 量平均分子量 (Mw) を測定したところ、 数平均分子量 (Mn) は 39, 000、 重量平 均分子量 (Mw) は 1 16, 000、 分子量分布 (Mw/Mn) は 2. 97であった。 また、 樹脂 (a— 1) のガラス転移温度 (Tg) は 110°Cであり、 23°Cにおける飽 和吸水率は 0. 3重量%であった。 また、 樹脂 (a— 1) の S P値を測定したところ、 1 9 (MP a 1/2 ) であり、 30°Cのクロ口ホルム中で固有粘度 ( η inh ) を測定したとこ ろ 0. 67 d 1 Zgであった。 In addition, for resin (a-1), genole permeation chromatography (GPC, When the number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene were measured using a solvent (tetrahydrofuran), the number average molecular weight (Mn) was 39,000 and the weight average molecular weight (Mw) was 116, The molecular weight distribution (Mw / Mn) was 2.97. The glass transition temperature (Tg) of the resin (a-1) was 110 ° C, and the saturated water absorption at 23 ° C was 0.3% by weight. The SP value of the resin (a-1) was measured to be 19 (MPa 1/2 ) .The intrinsic viscosity (η inh ) of the resin (a-1) was measured at 30 ° C in a closed mouth form. 67 d 1 Zg.
く合成例 2 > Synthesis Example 2>
特定単量体 aとして 8—メチルー 8—メ トキシカルボ二ルテトラシクロ [4. 4. 0. 12· 5 . I7' 10] —3—ドデセン 200部と、 特定単量体 bとして 5— (4—ビフエニル カルボニルォキシメチル) ビシクロ [2. 2. 1] ヘプト一 2—ェン 50部とを用いたこ と以外は合成例 1と同様にして水素添加重合体 (以下、 「樹脂 (b— 1) 」 ともいう。 ) を得た。 Identified as monomer a 8-methyl-8-main Tokishikarubo two Rutetorashikuro [4. 4. 0. 1 2 · 5 . I 7 '10] -3- and dodecene 200 parts, as a specific monomers b 5-(4 —Biphenyl carbonyloxymethyl) bicyclo [2.2.1] hydrogenated polymer (hereinafter referred to as “resin (b—1 ) ").
得られた樹脂 (b— 1) について、 水素添加率を、 400MHz — NMRスぺク トルにより測定したところ、 99. 9%であり、 また、 芳香環は実質的に水素添加されて いないことが確認された。  The hydrogenation rate of the obtained resin (b-1) was determined to be 99.9% by a 400 MHz-NMR spectrum, and it was confirmed that the aromatic ring was substantially not hydrogenated. confirmed.
また、 樹脂 (b— 1) について、 ゲノレパーミエーシヨンクロマトグラフィー (GPC、 溶媒:テトラヒドロフラン) により、 ポリスチレン換算の数平均分子量 (Mn) および重 量平均分子量 (Mw) を測定したところ、 数平均分子量 (Mn) は 47, 000、 重量平 均分子量 (Mw) は 187, 000、 分子量分布 (Mw/Mn) は 3. 98であった。 また、 樹脂 (b— 1) のガラス転移温度 (Tg) は 160°Cであり、 23 °Cにおける飽 和吸水率は 0. 3重量%であった。 また、 樹脂 (b— 1) について、 30°Cのクロ口ホル ム中で固有占度 ( η inh ) を測定したところ 0. 68 d 1/gであった。 The resin (b-1) was analyzed for number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene by geno permeation chromatography (GPC, solvent: tetrahydrofuran). The (Mn) was 47,000, the weight average molecular weight (Mw) was 187,000, and the molecular weight distribution (Mw / Mn) was 3.98. The glass transition temperature (Tg) of the resin (b-1) was 160 ° C, and the saturated water absorption at 23 ° C was 0.3% by weight. The specific occupancy (η inh ) of the resin (b-1) was measured in a chromate tube at 30 ° C. and found to be 0.68 d 1 / g.
<合成例 3> <Synthesis example 3>
特定単量体 aとして 8—メチル一8—メ トキシカルボ二ルテトラシクロ [4. 4. 0. 12· 5 . 17' 10] -3 -ドデセン 175部と、 1, 4—メタノ一 1, 4, 4 a, 9 a—テ トラヒ ドロフルオレン (別称: 1 H, 4H, 4 aH, 9 aH— 1, 4—メタノフルオレンIdentified isolated as dimers a 8-methyl-one 8-main Tokishikarubo two Rutetorashikuro [4.4.1 0.1 2-5 1 7 '10.] -3 - and dodecene 175 parts, 1, 4-methano one 1, 4 , 4a, 9a—Tetrahydrofluorene (Also known as 1H, 4H, 4aH, 9aH—1, 4-Methanofluorene
) 75部とを用いたこと以外は合成例 1と同様にして水素添加重合体 (以下、 「樹脂 (c) The hydrogenated polymer (hereinafter referred to as “resin (c
-1) 」 ともいう。 ) を得た。 得られた樹脂 (c一 1) について、 水素添加率を、 400MHz 1H_NMRスぺク トルにより測定したところ、 99. 9%であり、 また、 芳香環は実質的に水素添加されて いないことが確認された。 -1) ". ) Got. The hydrogenation rate of the obtained resin (c-11) was measured by a 400 MHz 1 H_NMR spectrum, and was 99.9%. Further, it was confirmed that the aromatic ring was substantially not hydrogenated. confirmed.
また、 樹脂 (c— 1) について、 ゲルパーミエーシヨンクロマトグラフィー (GPC、 溶媒:テトラヒドロフラン) により、 ポリスチレン換算の数平均分子量 (Mn) および重 量平均分子量 (Mw) を測定したところ、 数平均分子量 (Mn) は 32, 000、 重量平 均分子量 (Mw) は 120, 000、 分子量分布 (Mw/Mn) は 3. 75であった。 また、 樹脂 (c— 1) のガラス転移温度 (Tg) は 155°Cであり、 23 °Cにおける飽 和吸水率は 0. 2重量0 /。であった。 また、 樹脂 (c_l) について、 30°Cのクロ口ホル ム中で固有 度 (77 inh ) を測定したところ 0. 61 d 1/gであった。 The resin (c-1) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to measure the number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene. The (Mn) was 32,000, the weight average molecular weight (Mw) was 120,000, and the molecular weight distribution (Mw / Mn) was 3.75. The glass transition temperature (Tg) of the resin (c-1) is 155 ° C, and the saturated water absorption at 23 ° C is 0.2 weight 0 /. Met. The specificity (77 inh ) of the resin (c_l) measured at 30 ° C. in a closed mouth form was 0.61 d 1 / g.
<合成例 4> <Synthesis example 4>
特定単量体 aとして 8—メチル一8—メ トキシカルボ二ルテトラシクロ [4. 4. 0. 12. 5 . 丄 7. —3—ドデセン 200部と、 特定単量体 bとして 1, 2— (2H, 3H - [1, 3] ェピシクロペンタ) ー1, 2—ジヒドロアセナフチレン 50部とを用いたこ と以外は合成例 1と同様にして水素添加重合体 (以下、 「樹脂 (d— 1) 」 ともいう。 ) を得た。 As the specific monomer a, 8-methyl-18-methoxycarbonyltetracyclo [4. 4.0.12.5. 丄 7. — 3 —dodecene 200 parts, and as the specific monomer b, 1, 2— (2H , 3H-[1,3] epicyclopenta) -1,2-dihydroacenaphthylene 50 parts by weight in the same manner as in Synthesis Example 1 except that 50 parts by weight were used (hereinafter referred to as “resin (d-1)”). ).
得られた樹脂 (d— 1) について、 水素添加率を、 400MHz — NMRスぺク トルにより測定したところ、 99. 9%であり、 また、 芳香環は実質的に水素添加されて いないことが確認された。  The hydrogenation rate of the obtained resin (d-1) was determined to be 99.9% by a 400 MHz-NMR spectrum, and it was confirmed that the aromatic ring was substantially not hydrogenated. confirmed.
また、 樹脂 (d— 1) について、 ゲルパーミエーシヨンクロマトグラフィー (GPC、 溶媒:テトラヒドロフラン) により、 ポリスチレン換算の数平均分子量 (Mn) および重 量平均分子量 (Mw) を測定したところ、 数平均分子量 (Mn) は 42, 000、 重量平 均分子量 (Mw) は 180, 000、 分子量分布 (Mw/Mn) は 4. 29であった。 ま た、 樹脂 (d— l) のガラス転移温度 (Tg) は 175°Cであった。  The resin (d-1) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to measure its polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw). (Mn) was 42,000, weight average molecular weight (Mw) was 180,000, and molecular weight distribution (Mw / Mn) was 4.29. The glass transition temperature (Tg) of the resin (dl) was 175 ° C.
ぐ合成例 5 > Synthesis Example 5>
特定単量体 aとして 8—メチル一8—メ トキシカルボ二ルテトラシクロ [4. 4. 0. I2' 5 .· I7' 10] ドデ力一 3—ェン 175部と、 特定単量体 bとしてエンド体とェキソ体 とのモル比が 95 : 5であるトリシクロ [5. 2. 1. 02' 6 ] デカ _ 8—ェン 75部と を用いたこと以外は合成例 1と同様にして水素添加重合体 (以下、 「樹脂 (e_l) 」 と もいう。 ) を得た。 Specific monomer a as 8-methyl one 8 main Tokishikarubo two Rutetorashikuro [4. 4. 0. I 2 '5 . · I 7' 10] and de de force one 3-E down 175 parts, specific monomer the molar ratio of the endo isomer and the Ekiso body as b is 95: 5 is tricyclo [5.2.2 1.0 2 '6] except for using the deca _ 8 E emissions 75 parts same manner as in synthesis example 1 Hydrogenated polymer (hereinafter referred to as “resin (e_l)”) Also say. ) Got.
得られた樹脂 (e— 1) について、 水素添加率を、 400MHz — NMRスぺク トルにより測定したところ、 99. 9%であり、 また、 芳香環は実質的に水素添加されて いないことが確認された。  The hydrogenation rate of the obtained resin (e-1) was determined to be 99.9% by a 400 MHz-NMR spectrum, and it was confirmed that the aromatic ring was substantially not hydrogenated. confirmed.
また、 樹脂 (e— 1) について、 ゲルパーミエーシヨンクロマトグラフィー (GPC、 溶媒:テトラヒドロフラン) により、 ポリスチレン換算の数平均分子量 (Mn) および重 量平均分子量 (Mw) を測定したところ、 数平均分子量 (Mn) は 19, 000、 重量平 均分子量 (Mw) は 75, 000、 分子量分布 (Mw/Mn) は 3. 7であった。  The resin (e-1) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to measure its polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw). The (Mn) was 19,000, the weight average molecular weight (Mw) was 75,000, and the molecular weight distribution (Mw / Mn) was 3.7.
また、 樹脂 (e— 1) のガラス転移温度 (Tg) は 155°Cであり、 23°Cにおける飽 和吸水率は 0. 2重量%であった。 また、 樹脂 (e— 1) について、 30°Cのクロ口ホル ム中で固有粘度 ( η i nh ) を測定したところ 0. 52 d l,gであった。  The glass transition temperature (Tg) of the resin (e-1) was 155 ° C, and the saturated water absorption at 23 ° C was 0.2% by weight. In addition, the intrinsic viscosity (η inh) of the resin (e-1) measured at 30 ° C in a mouthpiece was 0.52 dl, g.
<合成例 6 > <Synthesis example 6>
特定単量体 aとして 8—メチル一8—メ トキシカルボ二ルテトラシクロ [4. 4. 0. I2· 5 , 17 1°] ドデカ _ 3—ェン 250部を用いたこと以外は合成例 1と同様にして、 水素添加重合体 (以下、 「榭月旨 (g— 1) 」 ともいう。 ) を得た。 Synthesis example 1 except that 250 parts of dodeca-3-ene were used as the specific monomer a, 8-methyl-18-methoxycarbonyltetracyclo [4.4.0. I 2 · 5 , 17 1 °] In the same manner as described above, a hydrogenated polymer (hereinafter, also referred to as “榭 月 旨 (g-1)”) was obtained.
得られた樹脂 (g_l) について、 水素添加率を 400ΜΗζ、 — NMRスぺタト ルにより測定したところ、 99. 9%であった。  The hydrogenation rate of the obtained resin (g_l) was determined to be 99.9% by using a NMR spectrometer at 400 ° C.
また、 樹脂 (g— 1) について、 ゲルパーミエーシヨンクロマトグラフィー (GPC、 溶媒:テトラヒドロフラン) により、 ポリスチレン換算の数平均分子量 (Mn) および重 量平均分子量 (Mw) を測定したところ、 数平均分子量 (Mn) は 25, 000、 重量平 均分子量 (Mw) は 100, 000、 分子量分布 (Mw/Mn) は 4. 0であった。 また、 樹脂 (g— 1) のガラス転移温度 (Tg) は 169°Cであり、 23°Cにおける飽 和吸水率は 0. 49重量%であった。 また、 樹脂 (g— 1) について、 30°Cのクロロホ ルム中で固有粘度 ( η i nh ) を測定したところ 0. 72 d lZgであった。  The resin (g-1) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to measure the polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw). (Mn) was 25,000, weight average molecular weight (Mw) was 100,000, and molecular weight distribution (Mw / Mn) was 4.0. The glass transition temperature (Tg) of the resin (g-1) was 169 ° C, and the saturated water absorption at 23 ° C was 0.49% by weight. In addition, the intrinsic viscosity (η inh) of the resin (g-1) measured in chloroform at 30 ° C. was 0.72 dlZg.
く調製例 1 > Preparation Example 1>
反応容器に蒸留水 250部を仕込み、 この反応容器にァクリル酸プチル 90部と、 2— ヒドロキシェチルメタタリレート 8部と、 ジビュルベンゼン 2部と、 ォレイン酸カリウム 0. 1部とを添加した後、 この系をテフロン (登録商標) 製の撹拌羽根により撹拌して分 散処理した。 その後、 この反応容器内を窒素置換した後、 この系を 50°Cまで昇温し、 過 硫酸カリウム 0. 2部を添加して重合を開始した。 重合開始から 2時間経過後に、 更に、 重合反応系に過硫酸カリウム 0. 1部を添加した後、 この系を 80°Cまで昇温し、 1時間 にわたつて重合反応を継続させることにより重合体分散液を得た。 A reaction vessel is charged with 250 parts of distilled water, and 90 parts of butyl acrylate, 8 parts of 2-hydroxyethyl methacrylate, 2 parts of dibutylbenzene, and 0.1 part of potassium oleate are added to the reaction vessel. After that, the system was stirred and dispersed by a Teflon (registered trademark) stirring blade. Then, after the inside of the reaction vessel was replaced with nitrogen, the temperature of the system was raised to 50 ° C, and Polymerization was initiated by adding 0.2 part of potassium sulfate. Two hours after the start of the polymerization, 0.1 part of potassium persulfate was further added to the polymerization reaction system, and then the temperature of the system was raised to 80 ° C, and the polymerization reaction was continued for 1 hour, so that the polymerization reaction was continued. A combined dispersion was obtained.
次いで、 エバポレータを用いて、 重合体分散液を固形分濃度が 70重量%となるまで濃 縮することにより、 アクリル酸エステル系重合体の水系分散体からなる水系粘着剤 (極性 基を有する粘着剤) を得た。  Next, the polymer dispersion is concentrated using an evaporator until the solid content concentration becomes 70% by weight, whereby an aqueous pressure-sensitive adhesive (a pressure-sensitive adhesive having a polar group) comprising an aqueous dispersion of an acrylate polymer is obtained. ) Got.
このようにして得られた水系粘着剤 (以下、 「水系粘着剤 A」 という。 ) を構成するァ クリル酸エステ 系重合体について、 ゲルパーミエーシヨンクロマトグラフィー (GPC 、 溶媒:テトラヒドロフラン) により、 ポリスチレン換算の数平均分子量 (Μη) および 重量平均分子量 (Mw) を測定したところ、 数平均分子量 (Mn) は 69, 000、 重量 平均分子量 (Mw) は 135, 000であった。  Acrylate ester polymer constituting the water-based pressure-sensitive adhesive thus obtained (hereinafter referred to as “water-based pressure-sensitive adhesive A”) was subjected to gel permeation chromatography (GPC, solvent: tetrahydrofuran) to obtain polystyrene. The converted number average molecular weight (Μη) and weight average molecular weight (Mw) were measured. The number average molecular weight (Mn) was 69,000 and the weight average molecular weight (Mw) was 135,000.
また、 水系粘着剤 Aについて、 30°Cのクロ口ホルム中で固有粘度 (7j i nh ) を測定し たところ 1. 2 d lZgであった。 Further, the water-based adhesive A, was 1. 2 d lZg was measured intrinsic viscosity (7j i nh) in black port Holm 30 ° C.
[実施例 1]  [Example 1]
樹脂 ( a— 1 ) をトルェンに濃度が 30 %となるように溶解した。 得られた溶液の室温 における溶液粘度は 30, O O OmPa · sであった。 この溶液に、 酸ィ匕防止剤としてべ ンタエリスリチルテトラキス [3— (3, 5—ジ一 t一ブチル一4—ヒ ドロキシフエ二ノレ ) プロピオネート] を、 樹脂 (a— 1) 100重量部に対して 0. 1重量部を添加し、 得 られた溶液を日本ポール製の孔径 5 μπιの金属«焼結フィルターを用い、 が 0. 4 MP a以内に収まるように溶液の流速をコントロールしながら濾過した後、 クラス 100 0のクリーンルーム内に設置した井上金属工業製の 「 I NVEXラボコーター」 を用い、 アクリル酸系表面処理剤によって親水化 (易接着性化) 処理された、 厚みが Ι ΟΟμπιの PETフイノレム (東レ (株) 製の 「ノレミラー U94」 ) に塗布した。 次いで、 得られた液 層に対して、 50°Cで一次乾燥処理を行い、 更に、 90°Cで二次乾燥処理を行った後、 P ETフィルムから剥離させることにより、 厚さ 100 μπιの樹脂フィルム (以下、 「樹脂 フィルム (a— 2) 」 ともいう。 ) を形成した。 得られた樹脂フィルム (a— 2) の残留 溶媒量は 0. 5重量%であり、 光線透過率は 93 %以上であった。  The resin (a-1) was dissolved in toluene at a concentration of 30%. The solution viscosity of the obtained solution at room temperature was 30, OOmPa · s. To this solution, pentaerythrityltetrakis [3- (3,5-di-t-butyl-14-hydroxyhydrinole) propionate] was added as an antioxidant to 100 parts by weight of the resin (a-1). 0.1 part by weight of the solution was added, and the obtained solution was filtered using a metal sintering filter with a pore size of 5 μπι from Nippon Pole, while controlling the flow rate of the solution so that was within 0.4 MPa. After filtration, using an I NVEX Lab Coater (manufactured by Inoue Metal Industry Co., Ltd.) installed in a clean room of class 1000, the surface was treated with an acrylic acid-based surface treatment agent to make it hydrophilic (easy adhesion), and the thickness was Ι ΟΟμπι. It was applied to PET Huinorem (“Noremirror U94” manufactured by Toray Industries, Inc.). Next, the obtained liquid layer is subjected to a primary drying treatment at 50 ° C., further subjected to a secondary drying treatment at 90 ° C., and then peeled off from the PET film to have a thickness of 100 μπι. A resin film (hereinafter, also referred to as “resin film (a-2)”) was formed. The residual solvent amount of the obtained resin film (a-2) was 0.5% by weight, and the light transmittance was 93% or more.
また、 上記と同様の手法により、 残留溶媒量が 0. 4重量%でぁり厚みが80 111でぁ る樹脂フィルム (以下、 「樹脂フィルム (a— 3) 」 ともいう。 ) 、 および残留溶媒量が 0. 3重量%であり厚みが 5 0 /zmである樹脂フィルム (以下、 「樹脂 (a— 4) フィル ム」 ともいう。 ) を形成した。 得られた樹脂フィルム (a— 3) および樹脂フィルム (a ― 4 ) の各々の全光線透過率は何れも 9 3 %以上であった。 In addition, a resin film having a residual solvent amount of 0.4% by weight and a thickness of 80111 (hereinafter also referred to as “resin film (a-3)”) and a residual solvent are obtained by the same method as described above. Quantity A resin film having a thickness of 0.3% by weight and a thickness of 50 / zm (hereinafter, also referred to as “resin (a-4) film”) was formed. Each of the obtained resin films (a-3) and (a-4) had a total light transmittance of 93% or more.
更に、 樹脂フィルム (a— 2) をテンター内で、 1 20°C (T g + 1 0°C) に加熱し、 延伸速度 300%/分でフィルム面內方向の縦方向に 1. 3倍に延伸した後、 フィルム面 内方向の横方向に 1. 3倍に延伸し、 その後、 90°C (T g - 20°C) の雰囲気下で 1分 間この状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことによ り、 位相差フィルム (以下、 「位相差フィルム (a— 5) 」 ともいう。 ) を得た。  Further, the resin film (a-2) is heated in a tenter to 120 ° C (Tg + 10 ° C) and stretched 1.3 times in the machine direction at a stretching speed of 300% / min. The film is stretched 1.3 times in the transverse direction in the plane of the film, and then cooled while maintaining this state for 1 minute in an atmosphere of 90 ° C (Tg-20 ° C). It was further cooled at room temperature and taken out of the tenter to obtain a retardation film (hereinafter, also referred to as “retardation film (a-5)”).
得られた位相差フィルム (a— 5) について、 位相差ひ (5 50) 、 位相差 (5 50 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  For the obtained retardation film (a-5), retardation (550), retardation (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 樹脂フィルム (a— 3) をテンター内で、 1 20°C (T g + 1 0°C) に加熱し、 延伸速度 300 % /分でフィルム面内方向の横方向の幅を一定に保ちながら縦方向に 1. 3倍に延伸した後、 90°C (T g - 20°C) の雰囲気下で約 1分間この状態を保持しなが ら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (a — 6) を得た。  In addition, the resin film (a-3) is heated to 120 ° C (Tg + 10 ° C) in a tenter, and the width in the in-plane direction is kept constant at a stretching speed of 300% / min. After stretching it 1.3 times in the machine direction while maintaining it, cool it while maintaining this state for about 1 minute in an atmosphere of 90 ° C (Tg-20 ° C), further cool it at room temperature, and By taking it out from the inside, a retardation film (a-6) was obtained.
得られた位相差フィルム (a— 6) について、 位相差 α (5 50) 、 位相差 (5 50 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  The retardation α (550), retardation (550), film thickness, and film toughness of the obtained retardation film (a-6) were measured. Table 1 shows the results.
樹脂フィルム (a— 4) をテンター内で、 1 20°C (T g + 1 0°C) に加熱し、 延伸速 度 300%/分でフィルム面内方向の縦方向に 1. 1倍に延伸した後、 フィルム面内方向 の横方向に 1. 1倍に延伸し、 その後、 90°C (T g - 20°C) の雰囲気下で 1分間この 状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位 相差フィルム (以下、 「位相差フィルム (a— 7) 」 ともいう。 ) を得た。  The resin film (a-4) is heated to 120 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the in-plane direction at a stretching speed of 300% / min. After stretching, stretch in the transverse direction of the film in the direction of 1.1 times, then cool in an atmosphere of 90 ° C (T g-20 ° C) for 1 minute while maintaining this state, and then room temperature. Then, the resultant was taken out of the tenter to obtain a retardation film (hereinafter, also referred to as “retardation film (a-7)”).
得られた位相差フィルム (a— 7) について、 位相差 α (5 50) 、 位相差 ]3 (5 5 0 ) 、 フィルム厚み、 フィルム靱性を測定した。 結果を表 1に示す。  For the obtained retardation film (a-7), retardation α (550), retardation] 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 位相差フィルム (a— 5) 〜 (a— 7) について、 波長分散性 α (λ) /a (5 50) 、 波長分散性 i3 (λ) /β (5 50) を調べたところ、 これらの値は位相差フィル ム (a— 5) 〜 (a— 7) において実質的に同じであった。 位相差フィルム (a— 6) に 係る結果を図 1に示す。  The wavelength dispersion α (λ) / a (550) and the wavelength dispersion i3 (λ) / β (550) of the retardation films (a-5) to (a-7) were examined. These values were substantially the same for the retardation films (a-5) to (a-7). Fig. 1 shows the results for the retardation film (a-6).
また、 位相差フィルム (a— 5) 〜 (a - 7) の各々の輝点の数は 0〜 1個であった。 [実施例 2] The number of bright spots in each of the retardation films (a-5) to (a-7) was 0 to 1. [Example 2]
実施例 1において、 樹脂 (a— 1) に代えて樹脂 (b— 1) を用いたこと以外は実施例 1と同様にして、 残留溶媒量が 0. 4重量%であり厚みが 100 μπιである樹脂フィルム In the same manner as in Example 1 except that the resin (b-1) was used instead of the resin (a-1), the amount of the residual solvent was 0.4% by weight, the thickness was 100 μπι, A certain resin film
(以下、 「樹脂フィルム (b— 2) 」 ともいう。 ) と、 残留溶媒量が 0. 3重量%であり フィルム厚みが 80 μπιである樹脂フィルム (以下、 「樹脂フィルム (b— 3) 」 ともい う。 ) と、 残留溶媒量が 0. 3重量%でありフィルム厚みが 50 /zmである樹脂フィルム(Hereinafter also referred to as “resin film (b-2)”) and a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 80 μπι (hereinafter “resin film (b-3)”). A resin film with a residual solvent content of 0.3% by weight and a film thickness of 50 / zm
(以下、 「樹脂フィルム (b— 4) 」 ともいう。 ) とを得た。 得られた樹脂フィルム (b -2) 〜 (b _ 4) の各々の全光線透過率は何れも 93%以上であった。 (Hereinafter, also referred to as “resin film (b-4)”). The total light transmittance of each of the obtained resin films (b-2) to (b_4) was 93% or more.
樹脂フィルム (b— 2) をテンター内で、 170°C (Tg + 10°C) に加熱し、 延伸速 度 300%ノ分でフィルム面内方向の縦方向に 1. 3倍に延伸した後、 フィルム面内方向 の横方向に 1· 3倍に延伸し、 その後、 140°C (Tg-20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (b— 5) 」 ともいう。 ) を得た。  The resin film (b-2) is heated to 170 ° C (Tg + 10 ° C) in a tenter and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300% min. The film is stretched 1.3 times in the transverse direction in the plane of the film, and then cooled under an atmosphere of 140 ° C (Tg-20 ° C) for 1 minute while maintaining this state, and further cooled at room temperature. By taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (b-5)”) was obtained.
得られた位相差フィルム (b— 5) について、 位相差 α (550) 、 位相差 ]3 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  For the obtained retardation film (b-5), retardation α (550), retardation] 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 樹脂フィルム (b— 3) をテンター内で、 170°C (Tg + 10°C) に加熱し、 延伸速度 300%Z分でフィルム面内方向の横方向の幅を一定に保ちながら縦方向に 1. 3倍に延伸した後、 140 °C (Tg-20°C) の雰囲気下で約 1分間この状態を保持しな がら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム ( b-6) を得た。  In addition, the resin film (b-3) is heated to 170 ° C (Tg + 10 ° C) in a tenter and stretched at a stretching speed of 300% Z while maintaining a constant horizontal width in the in-plane direction of the film. After stretching it 1.3 times in the direction, cool it while maintaining this state for about 1 minute in an atmosphere of 140 ° C (Tg-20 ° C), further cool it at room temperature, and take it out of the tenter. A retardation film (b-6) was obtained.
得られた位相差フィルム (b— 6) について、 位相差 α (550) 、 位相差 ]3 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  For the obtained retardation film (b-6), retardation α (550), retardation] 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
樹脂フィルム (b— 4) をテンター内で、 170°C (Tg + 10°C) に加熱し、 延伸速 度 300% 分でフィルム面内方向の縦方向に 1. 1倍に延伸した後、 フィルム面内方向 の横方向に 1. 1倍に延伸し、 その後、 140°C (Tg-20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (b— 7) 」 ともいう。 ) を得た。  The resin film (b-4) is heated to 170 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the longitudinal direction of the film at a stretching speed of 300%. The film is stretched 1.1 times in the in-plane direction, then cooled in a 140 ° C (Tg-20 ° C) atmosphere for 1 minute, and further cooled at room temperature. By taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (b-7)”) was obtained.
得られた位相差フィルム (b— 7) について、 位相差 α (550) 、 位相差 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。 また、 位相差フィルム (b— 5) 〜 (b— 7) について、 波長分散性ひ U) / OL (5 50) 、 波長分散性 (λ) Χβ (550) を調べたところ、 これらの値は位相差フィル ム (b— 5) 〜 (b— 7) において実質的に同じであった。 位相差フィルム (b— 6) に 係る結果を図 2に示す。 For the obtained retardation film (b-7), retardation α (550), retardation (550), film thickness, and film toughness were measured. Table 1 shows the results. For the retardation films (b-5) to (b-7), the wavelength dispersion (U) / OL (550) and the wavelength dispersion (λ) Χβ (550) were examined. The results were substantially the same for the retardation films (b-5) to (b-7). Fig. 2 shows the results for the retardation film (b-6).
また、 位相差フィルム (b— 5) 〜 (b— 7) の各々の輝点の数は 0〜 2個であった。  The number of bright spots in each of the retardation films (b-5) to (b-7) was 0 to 2.
[実施例 3]  [Example 3]
実施例 1において、 樹脂 (a— 1) に代えて樹脂 (c一 1) を用いたこと以外は実施例 1と同様にして、 残留溶媒量が 0. 4重量。 /0であり厚みが 100/zmである樹脂フィルムThe amount of the residual solvent was 0.4 wt. In the same manner as in Example 1 except that the resin (c-1) was used instead of the resin (a-1). / 0 and 100 / zm thick resin film
(以下、 「樹月旨フィルム (c一 2) 」 ともいう。 ) と、 残留溶媒量が 0. 3重量0 /。であり フィルム厚みが 80 μπιである樹脂フィルム (以下、 「樹脂フィルム (c一 3) 」 ともい う。 ) と、 残留溶媒量が 0. 3重量%でありフィルム厚みが 50 /xmである樹 fl旨フィルム (以下、 「樹月旨フィルム (c— 4) 」 ともいう。 ) とを得た。 得られた樹脂フィルム (c -2) 〜 ( c一 4 ) の各々の全光線透過率は何れも 93 %以上であった。 (Hereinafter, this is also referred to as “judgment film (c-12)”.) And the residual solvent amount is 0.3 weight 0 /. A resin film with a film thickness of 80 μπι (hereinafter also referred to as “resin film (c-13)”) and a resin film with a residual solvent amount of 0.3% by weight and a film thickness of 50 / xm. A film (hereinafter, also referred to as "jujutsu film (c-4)") was obtained. The total light transmittance of each of the obtained resin films (c-2) to (c-14) was 93% or more.
樹脂フィルム (c— 2) をテンター内で、 1 65°C (Tg + 10°C) に加熱し、 延伸速 度 300% 分でフィルム面内方向の縦方向に 1. 3倍に延伸した後、 フィルム面内方向 の横方向に 1. 3倍に延伸し、 その後、 1 35°C (Tg-20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (c _5) 」 ともいう。 ) を得た。  The resin film (c-2) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300% min. The film is stretched 1.3 times in the transverse direction in the plane of the film, then cooled in an atmosphere of 135 ° C (Tg-20 ° C) for 1 minute while maintaining this state, and further cooled at room temperature. Then, by taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (c_5)”) was obtained.
得られた位相差フィルム (c— 5) について、 位相差 α (550) 、 位相差 ]3 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  For the obtained retardation film (c-5), retardation α (550), retardation] 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 樹脂フィルム (c— 3) をテンター内で、 1 65°C (Tg + 1 0°C) に加熱し、 延伸速度 300% 分でフィルム面内方向の横方向の幅を一定に保ちながら縦方向に 1. 3倍に延伸した後、 1 35°C (Tg-20°C) の雰囲気下で約 1分間この状態を保持しな がら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム ( c一 6) を得た。  In addition, the resin film (c-3) is heated to 165 ° C (Tg + 10 ° C) in a tenter, and the width in the in-plane direction is kept constant at a stretching speed of 300% for 300%. After stretching it 1.3 times in the machine direction, cool it while maintaining this state for about 1 minute in an atmosphere of 135 ° C (Tg-20 ° C), further cool it at room temperature, and take it out of the tenter. As a result, a retardation film (c-16) was obtained.
得られた位相差フィルム (c— 6) について、 位相差 α (550) 、 位相差 )3 (550 ) 、 フィルム厚み、 フィルム靱性を測定した。 結果を表 1に示す。  For the obtained retardation film (c-6), retardation α (550), retardation) 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
樹脂フィルム (c— 4) をテンター内で、 1 70°C (Tg + 10°C) に加熱し、 延伸速 度 300 %ノ分でフィルム面內方向の縦方向に 1. 1倍に延伸した後、 フィルム面内方向 の横方向に 1· 1倍に延伸し、 その後、 140°C (Tg-20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (c一 7) 」 ともいう。 ) を得た。 The resin film (c-4) was heated to 170 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the machine direction at a stretching speed of 300%. Later, in-film direction Stretched 1.1 times in the horizontal direction, and then cooled in an atmosphere of 140 ° C (Tg-20 ° C) for 1 minute while maintaining this state, further cooled at room temperature, and taken out of the tenter As a result, a retardation film (hereinafter, also referred to as “retardation film (c-17)”) was obtained.
得られた位相差フィルム (c— 7) について、 位相差 α (550) 、 位相差 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  For the obtained retardation film (c-7), retardation α (550), retardation (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 位相差フィルム (c— 5) 〜 (c— 7) について、 波長分散性 α (λ) /a (5 50) 、 波長分散性3 (1) Ζβ (550) を調べたところ、 これらの値は位相差フィル ム (c— 5) 〜 (c— 7) において実質的に同じであった。 位相差フィルム (c— 6) に 係る結果を図 3に示す。  In addition, when the wavelength dispersion α (λ) / a (550) and the wavelength dispersion 3 (1) Ζβ (550) of the retardation films (c-5) to (c-7) were examined, The values were substantially the same for the retardation films (c-5) to (c-7). Figure 3 shows the results for the retardation film (c-6).
また、 位相差フィルム (c— 5) 〜 (c— 7) の各々の輝点の数は 0〜 2個であった。  The number of bright spots in each of the retardation films (c-5) to (c-7) was 0 to 2.
[実施例 4]  [Example 4]
実施例 1において、 樹脂 (a— 1) に代えて樹脂 (d— 1) を用いたこと以外は実施例 1と同様にして、 残留溶媒量が 0. 4重量%であり厚みが 100 μπιである樹脂フィルム (以下、 「樹脂フィルム (d_2) 」 ともいう。 ) と、 残留溶媒量が 0. 3重量%であり フィルム厚みが 80 mである樹脂フィルム (以下、 「樹脂フィルム (d— 3) 」 ともい う。 ) と、 残留溶媒量が 0. 3重量0 /0でありフィルム厚みが 50 μπιである樹脂フィルム (以下、 「樹脂フィルム (d— 4) 」 ともいう。 ) とを得た。 得られた樹脂フィルム (d — 2 ) 〜 ( d— 4 ) の各々の全光線透過率は何れも 93 %以上であった。 In the same manner as in Example 1 except that the resin (d-1) was used instead of the resin (a-1), the amount of the residual solvent was 0.4% by weight, the thickness was 100 μπι, A resin film (hereinafter also referred to as “resin film (d_2)”) and a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 80 m (hereinafter referred to as “resin film (d-3)”) "it intends also called.) and the resin film amount of residual solvent is 0.3 wt 0/0 a and the film thickness is 50 μπι (hereinafter," resin film (d-4) also called ".) and was obtained. The total light transmittance of each of the obtained resin films (d-2) to (d-4) was 93% or more.
樹脂フィルム (d— 2) をテンター内で、 185°C (Tg + 10°C) に加熱し、 延伸速 度 300%Z分でフィルム面内方向の縦方向に 1. 3倍に延伸した後、 フィルム面内方向 の横方向に 1. 3倍に延伸し、 その後、 155°C (Tg-20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (d— 5) 」 ともいう。 ) を得た。  The resin film (d-2) is heated to 185 ° C (Tg + 10 ° C) in a tenter and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300% Z. The film is stretched 1.3 times in the transverse direction in the plane of the film, then cooled in an atmosphere of 155 ° C (Tg-20 ° C) for 1 minute while maintaining this state, and further cooled at room temperature. By taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (d-5)”) was obtained.
得られた位相差フィルム (d— 5) について、 位相差ひ (550) 、 位相差 )3 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  The obtained retardation film (d-5) was measured for retardation (550), retardation) 3 (550), film thickness, and film toughness. Table 1 shows the results.
また、 樹脂フィルム (d— 3) をテンター内で、 185°C (Tg + 10°C) に加熱し、 延伸速度 300%/分でフィルム面内方向の横方向の幅を一定に保ちながら縦方向に 1. 3倍に延伸した後、 155 °C (Tg-20°C) の雰囲気下で約 1分間この状態を保持しな がら冷却し、 更に室温で却し、 テンター内から取り出すことにより、 位相差フィルム (d —6) を得た。 In addition, the resin film (d-3) is heated to 185 ° C (Tg + 10 ° C) in a tenter and stretched at a stretching speed of 300% / min while maintaining a constant horizontal width in the film plane. After stretching it 1.3 times in the direction, cool it while maintaining this state for about 1 minute in an atmosphere of 155 ° C (Tg-20 ° C), then cool it at room temperature and take it out of the tenter. , Retardation film (d —6)
得られた位相差フィルム (d— 6) について、 位相差 α (5 50) 、 位相差3 (5 50 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  The retardation α (550), retardation 3 (550), film thickness, and film toughness of the obtained retardation film (d-6) were measured. Table 1 shows the results.
樹脂フィルム (d— 4) をテンター内で、 1 8 5°C (T g + 1 0°C) に加熱し、 延伸速 度 300%Z分でフィルム面内方向の縦方向に 1. 1倍に延伸した後、 フィルム面内方向 の横方向に 1. 1倍に延伸し、 その後、 1 5 5°C (T g - 20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (d_ 7) 」 ともいう。 ) を得た。  The resin film (d-4) is heated in a tenter to 185 ° C (Tg + 10 ° C) and stretched in the longitudinal direction in the in-plane direction at a stretching speed of 300% Z for 1.1 times. The film is stretched 1.1 times in the transverse direction in the plane of the film, and then cooled while maintaining this state for 1 minute in an atmosphere of 5.55 ° C (Tg-20 ° C). Then, the resultant was further cooled at room temperature and taken out of the tenter to obtain a retardation film (hereinafter, also referred to as “retardation film (d_7)”).
得られた位相差フィルム (d— 7) について、 位相差ひ (5 50) 、 位相差 (5 5 0 ) 、 フィルム厚み、 フィルム靱性を測定した。 結果を表 1に示す。  With respect to the obtained retardation film (d-7), retardation (550), retardation (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 位相差フィルム (d— 5) 〜 (d— 7) について、 波長分散性 α (λ) /a (5 50) 、 波長分散性 J3 (λ) / β (550) を調べたところ、 これらの値は位相差フィル ム (d— 5) 〜 (d_ 7) において実質的に同じであった。 位相差フィルム (d— 6) に 係る結果を図 4に示す。  The wavelength dispersion α (λ) / a (550) and the wavelength dispersion J3 (λ) / β (550) of the retardation films (d-5) to (d-7) were examined. Are substantially the same for the retardation films (d-5) to (d_7). Fig. 4 shows the results for the retardation film (d-6).
また、 位相差フィルム (d— 5) 〜 (d— 7) の各々の輝点の数は 0個であった。  The number of bright spots in each of the retardation films (d-5) to (d-7) was 0.
[実施例 5]  [Example 5]
実施例 1において、 樹脂 (a— 1) に代えて樹脂 (e— 1) を用いたこと以外は実施例 1と同様にして、 残留溶媒量が 0. 4重量%であり厚みが 1 00 μπιである樹脂フィルム In the same manner as in Example 1 except that the resin (e-1) was used instead of the resin (a-1), the amount of the residual solvent was 0.4% by weight, and the thickness was 100 μπι. Is a resin film
(以下、 「樹脂フィルム (e _ 2) 」 ともいう。 ) と、 残留溶媒量が 0. 3重量%であり フィルム厚みが 80 である樹脂フィルム (以下、 「樹脂フィルム (e— 3) 」 ともい う。 ) と、 残留溶媒量が 0. 3重量%でありフィルム厚みが 5 O rnである樹脂フィルム(Hereinafter also referred to as “resin film (e — 2)”) and a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 80 (hereinafter also referred to as “resin film (e-3)”). ) And a resin film having a residual solvent amount of 0.3% by weight and a film thickness of 5 O rn.
(以下、 「樹脂フィルム (e— 4) 」 ともいう。 ) とを得た。 得られた樹脂フィルム (e - 2) 〜 ( e— 4 ) の各々の全光線透過率は何れも 93 %以上であった。 (Hereinafter, also referred to as “resin film (e-4)”). Each of the obtained resin films (e-2) to (e-4) had a total light transmittance of 93% or more.
樹脂フィルム (e— 2) をテンター内で、 1 6 5°C (T g + 1 0°C) に加熱し、 延伸速 度 300% 分でフィルム面内方向の縦方向に 1. 3倍に延伸した後、 フィルム面内方向 の横方向に 1. 3倍に延伸し、 その後、 1 3 5 °C (T g - 20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (e _ 5) 」 ともいう。 ) を得た。 The resin film ( e -2) is heated to 165 ° C (Tg + 10 ° C) in a tenter, and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300% min. After stretching, stretch 1.3 times in the transverse direction in the plane of the film, and then cool while maintaining this state for 1 minute in an atmosphere of 135 ° C (Tg-20 ° C). , further cooled at room temperature and taken out of the tenter to give a retardation film (hereinafter also referred to as "retardation film (e _ 5)".) was obtained.
得られた位相差フィルム (e— 5) について、 位相差 α (5 50) 、 位相差 (5 5 0 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。 For the obtained retardation film (e-5), the retardation α (550) and the retardation (550) ), Film thickness and film toughness were measured. Table 1 shows the results.
また、 樹脂フィルム (e— 3) をテンター内で、 1 6 5。C (T g + 1 0°C) に加熱し、 延伸速度 300%ノ分でフィルム面内方向の横方向の幅を一定に保ちながら縦方向に 1. In addition, the resin film (e-3) is placed in the tenter, and then 165. C (T g + 10 ° C), and stretch in the longitudinal direction while keeping the horizontal width in the film plane constant at a stretching speed of 300% min.
3倍に延伸した後、 1 3 5 °C (T g - 20°C) の雰囲気下で約 1分間この状態を保持しな がら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム ( e - 6) を得た。 After stretching 3 times, it is cooled for about 1 minute in an atmosphere of 135 ° C (Tg-20 ° C) while maintaining this state, further cooled at room temperature, and taken out from the tenter. A retardation film (e-6) was obtained.
得られた位相差フィルム (e— 6) について、 位相差ひ (5 50) 、 位相差 /3 (5 50 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  For the obtained retardation film (e-6), retardation (550), retardation / 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
樹脂フィルム (e— 4) をテンター内で、 1 6 5°C (T g + 1 0°C) に加熱し、 延伸速 度 300% 分でフィルム面内方向の縦方向に 1. 1倍に延伸した後、 フィルム面内方向 の横方向に 1. 1倍に延伸し、 その後、 1 3 5°C (T g - 20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (e— 7) 」 ともいう。 ) を得た。  The resin film (e-4) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the longitudinal direction of the film at a stretching speed of 300% min. After stretching, stretch 1.1 times in the transverse direction of the film plane, and then cool while maintaining this state for 1 minute in an atmosphere of 135 ° C (Tg-20 ° C). After further cooling at room temperature and taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (e-7)”) was obtained.
得られた位相差フィルム (e _ 7) について、 位相差 α (5 50) 、 位相差 (5 50 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  The retardation α (550), retardation (550), film thickness, and film toughness of the obtained retardation film (e_7) were measured. Table 1 shows the results.
また、 位相差フィルム (e— 5) 〜 (e— 7) について、 波長分散性 α (λ) /a (5 50) 、 波長分散性 (λ) /j3 (5 50) を調べたところ、 これらの値は位相差フィル ム (e— 5) 〜 (e— 7) において実質的に同じであった。 位相差フィルム (e— 6) に 係る結果を図 5に示す。  The wavelength dispersion α (λ) / a (550) and the wavelength dispersion (λ) / j3 (550) of the retardation films (e-5) to (e-7) were examined. Are substantially the same in the retardation films (e-5) to (e-7). Figure 5 shows the results for the retardation film (e-6).
また、 位相差フィルム (e— 5) 〜 (e— 7) の各々の輝点の数は 0〜 1個であった。  The number of bright spots in each of the retardation films (e-5) to (e-7) was 0 to 1.
[比較例 1]  [Comparative Example 1]
実施例 1において、 樹脂 (a _ l) に代えて出光石油化学製のポリカーボネート樹脂 「 A2 700」 を用い、 トルエンに代えて塩ィヒメチレンを用いたこと以外は実施例 1と同様 にして、 残留溶媒量が 0. 4重量%であり厚みが 1 00 mである樹脂フィルム (以下、 Residual solvent was obtained in the same manner as in Example 1, except that Idemitsu Petrochemical's polycarbonate resin “A2700” was used in place of resin (a_l) and dimethylene chloride was used in place of toluene. Resin film having an amount of 0.4% by weight and a thickness of 100 m
「樹脂フィルム (f 一 2) 」 ともいう。 ) と、 残留溶媒量が 0. 3重量0 /0でありフィルム 厚みが 80 //inである樹脂フィルム (以下、 「樹月旨フィルム (f 一 3) 」 ともいう。 ) と 、 残留溶媒量が 0. 3重量0 /0でありフィルム厚みが 5 Ο μπιである樹脂フィルム (以下、Also referred to as “resin film (f-1)”. A), the resin film residual solvent content 0.3 weight 0/0 a and the film thickness of 80 // in (hereinafter, "Kitsuki effect film (f one 3)" also referred to.) And the residual solvent amount There 0.3 wt 0/0 a and the resin film has a thickness of 5 Ο μπι film (hereinafter,
「樹脂フィルム (f 一 4) 」 ともいう。 ) とを得た。 得られた樹脂フィルム (f — 2) 〜Also referred to as “resin film (f-14)”. ) And got. Obtained resin film (f-2)
( f -4) の各々の全光線透過率は何れも 9 1 %であった。 樹脂フィルム (f — 2) をテンター内で、 165°C (Tg + 10°C) に加熱し、 延伸速 度 300% 分でフィルム面内方向の縦方向に 1. 03倍に延伸した後、 フィルム面内方 向の横方向に 1. 03倍に延伸し、 その後、 135°C (Tg-20°C) の雰囲気下で 1分 間この状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことによ り、 位相差フィルム (以下、 「位相差フィルム (f — 5) 」 ともいう。 ) を得た。 The total light transmittance of each of (f-4) was 91%. The resin film (f-2) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched 1.03 times in the longitudinal direction of the film at a stretching speed of 300%. The film is stretched 1.03 times in the inward direction, then cooled in a 135 ° C (Tg-20 ° C) atmosphere for 1 minute, and further cooled to room temperature. By taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (f-5)”) was obtained.
得られた位相差フィルム (f — 5) について、 位相差 α (550) 、 位相差3 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  For the obtained retardation film (f-5), retardation α (550), retardation 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 樹脂フィルム (f _3) をテンター内で、 165°C (Tg + 10°C) に加熱し、 延伸速度 300%/分でフィルム面内方向の横方向の幅を一定に保ちながら縦方向に 1. 03倍に延伸した後、 135°C (Tg-20°C) の雰囲気下で約 1分間この状態を保持し ながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (f -6) を得た。  The resin film (f_3) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched at a stretching speed of 300% / min. After stretching to 1.03 times, cool it while maintaining this state for about 1 minute in an atmosphere of 135 ° C (Tg-20 ° C), further cool it at room temperature, and take it out of the tenter. A phase difference film (f-6) was obtained.
得られた位相差フィルム (f — 6) について、 位相差ひ (550) 、 位相差 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  The obtained retardation film (f-6) was measured for retardation (550), retardation (550), film thickness, and film toughness. Table 1 shows the results.
樹脂フィルム (f — 4) をテンター内で、 165°C (Tg + 10°C) に加熱し、 延伸速 度 300%Z分でフィルム面内方向の縦方向に 1. 01倍に延伸した後、 フィルム面内方 向の横方向に 1. 01倍に延伸し、 その後、 135°C (Tg-20°C) の雰囲気下で 1分 間この状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことによ り、 位相差フィルム (以下、 「位相差フィルム (f — 7) 」 ともいう。 ) を得た。  The resin film (f-4) is heated to 165 ° C (Tg + 10 ° C) in a tenter and stretched 1.01 times in the longitudinal direction in the film plane at a stretching speed of 300% Z. The film is stretched 101 times in the inward direction of the film, then cooled in an atmosphere of 135 ° C (Tg-20 ° C) for 1 minute, and further cooled at room temperature. Then, the film was taken out of the tenter to obtain a retardation film (hereinafter, also referred to as “retardation film (f-7)”).
得られた位相差フィルム (f — 7) について、 位相差 α (550) 、 位相差 ]3 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。 For the obtained retardation film (f-7), retardation α (550), retardation] 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 位相差フィルム (f — 5) 〜 (f — 7) について、 波長分散性 α (λ) /α (5 50) 、 波長分散性 J3 (λ) Ζβ (550) を調べたところ、 これらの値は位相差フィル ム (f — 5) 〜 (f _7) において実質的に同じであった。 位相差フイ^^ム (f 一 6) に 係る結果を図 6に示す。  The wavelength dispersion α (λ) / α (550) and the wavelength dispersion J3 (λ) Ζβ (550) of the retardation films (f-5) to (f-7) were examined. The values were substantially the same for the retardation films (f-5) to (f_7). Fig. 6 shows the results for the phase difference film (f-1 6).
また、 位相差フィルム (f — 5) 〜 (f — 7) の各々の輝点の数は 11〜18個であつ た。  Each of the retardation films (f-5) to (f-7) had 11 to 18 bright spots.
[比較例 2]  [Comparative Example 2]
実施例 1において、 樹脂 (a— 1) に代えて樹脂 (g— 1) を用いたこと以外は実施例 1と同様にして、 残留溶媒量が 0. 7重量%であり厚みが 200 μπιである樹脂フィルム (以下、 「樹脂フィルム (g_2) 」 ともいう。 ) と、 残留溶媒量が 0. 5重量%であり フィルム厚みが 180 μπιである樹脂フィルム (以下、 「樹脂フィルム (g— 3) 」 とも いう。 ) と、 残留溶媒量が 0. 4重量0 /0でありフィルム厚みが 120 Aimである樹脂フィ ルム (以下、 「樹脂フィルム (g— 4) 」 ともいう。 ) とを得た。 得られた樹脂フィルム (g-2) 〜 ( g— 4 ) の各々の全光線透過率は何れも 93 %以上であった。 Example 1 was repeated except that the resin (g-1) was used in place of the resin (a-1). In the same manner as in 1, a resin film having a residual solvent amount of 0.7% by weight and a thickness of 200 μπι (hereinafter also referred to as “resin film (g_2)”), and a residual solvent amount of 0.5% by weight by and resin film film thickness of 180 μπι (hereinafter, referred to together as "resin film (g- 3)".) and the residual solvent amount is 0.4 wt 0/0 resin film thickness of 120 Aim Film (hereinafter, also referred to as “resin film (g-4)”). The total light transmittance of each of the obtained resin films (g-2) to (g-4) was 93% or more.
樹脂フィルム (g— 2) をテンター内で、 179°C (Tg + 10°C) に加熱し、 延伸速 度 300% 分でフィルム面内方向の縦方向に 1. 3倍に延伸した後、 フィルム面内方向 の横方向に 1. 3倍に延伸し、 その後、 149°C (Tg-20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (g— 5) 」 ともいう。 ) を得た。  The resin film (g-2) is heated to 179 ° C (Tg + 10 ° C) in a tenter and stretched 1.3 times in the longitudinal direction of the film at a stretching speed of 300%. The film is stretched 1.3 times in the transverse direction in the plane of the film, and then cooled while maintaining this state for 1 minute in an atmosphere of 149 ° C (Tg-20 ° C), and further cooled at room temperature. By taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (g-5)”) was obtained.
得られた位相差フィルム (g— 5) について、 位相差 α (550) 、 位相差 (550 ) 、 フィルム厚み、 フィルム靭性を測定した。 結果を表 1に示す。  For the obtained retardation film (g-5), retardation α (550), retardation (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 樹脂フィルム (g— 3) をテンター内で、 179。C (Tg + 10°C) に加熱し、 延伸速度 300%/分でフィルム面内方向の横方向の幅を一定に保ちながら縦方向に 1. 3倍に延伸した後、 149 °C (Tg-20°C) の雰囲気下で約 1分間この状態を保持しな がら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム ( 以下、 「位相差フィルム (g— 6) 」 ともいう。 ) を得た。  In addition, the resin film (g-3) is placed in a tenter, 179. C (Tg + 10 ° C) and stretched 1.3 times in the machine direction at a stretching speed of 300% / min while keeping the width in the in-plane direction constant. -20 ° C) for about 1 minute while cooling in this state, further cooling at room temperature, and taking it out of the tenter to obtain a retardation film (hereinafter referred to as “retardation film (g-6)”). ).
得られた位相差フィルム (g— 6) について、 位相差 α (550) 、 位相差 (550 ) 、 フィルム厚み、 フィルム靱性を測定した。 結果を表 1に示す。  The retardation α (550), retardation (550), film thickness, and film toughness of the obtained retardation film (g-6) were measured. Table 1 shows the results.
樹脂フィルム (g— 4) をテンター内で、 179°C (Tg + 10°C) に加熱し、 延伸速 度 300 % 分でフィルム面内方向の縦方向に 1. 1倍に延伸した後、 フィルム面内方向 の横方向に 1. 1倍に延伸し、 その後、 149°C (Tg-20°C) の雰囲気下で 1分間こ の状態を保持しながら冷却し、 更に室温で冷却し、 テンター内から取り出すことにより、 位相差フィルム (以下、 「位相差フィルム (g— 7) 」 ともいう。 ) を得た。  The resin film (g-4) is heated to 179 ° C (Tg + 10 ° C) in a tenter and stretched 1.1 times in the longitudinal direction of the film at a stretching speed of 300%. The film is stretched 1.1 times in the transverse direction in the plane of the film, then cooled in an atmosphere of 149 ° C (Tg-20 ° C) for 1 minute while maintaining this state, and further cooled at room temperature. By taking out from the tenter, a retardation film (hereinafter, also referred to as “retardation film (g-7)”) was obtained.
得られた位相差フィルム (g— 7) について、 位相差 α (550) 、 位相差 /3 (550 ) 、 フィルム厚み、 フィルム靱性を測定した。 結果を表 1に示す。  With respect to the obtained retardation film (g-7), retardation α (550), retardation / 3 (550), film thickness, and film toughness were measured. Table 1 shows the results.
また、 位相差フィルム (g— 5) 〜 (g— 7) について、 波長分散性ひ (λ) /a (5 50) 、 波長分散性) 3 (λ) / (550) を調べたところ、 これらの値は位相差フィル ム (g— 5) 〜 (g— 7) において実質的に同じであった。.位相差フィルム (g— 6) に 係る結果を図 7に示す。 For the retardation films (g-5) to (g-7), the wavelength dispersion (λ) / a (550) and the wavelength dispersion (3) (λ) / (550) were examined. Is the phase difference fill (G-5) to (g-7) were substantially the same. Fig. 7 shows the results for the retardation film (g-6).
また、 位相差フィルム (g— 5) 〜 (g— 7) の各々の輝点の数は 0〜1個であった。  The number of bright spots in each of the retardation films (g-5) to (g-7) was 0 to 1.
[表 1]  [table 1]
フイノレムの フィルム厚み a (550) β (550) フィルム 性 Huinolem film thickness a (550) β (550) Film properties
(n m) (nm) (n m) (g f ) 実施例 1 (a - 5) 56000 1 2 1 0 41  (nm) (nm) (nm) (gf) Example 1 (a-5) 56000 1 2 1 0 41
(a -6) 45000 99 46 38  (a -6) 45000 99 46 38
(a - 7) 43000 1 30 39  (a-7) 43000 1 30 39
実施例 2 (b - 5) 57000 1 243 43  Example 2 (b-5) 57000 1 243 43
(b -6) 44000 1 03 73 40  (b -6) 44000 1 03 73 40
44000 2 27 4 1  44000 2 27 4 1
実施例 3 (c一 5) 56000 1 240 45  Example 3 (c-1 5) 56000 1 240 45
(c -6) 45Ό 00 98 75 42  (c -6) 45Ό 00 98 75 42
(c -7) 42000 1 33 43  (c -7) 42000 1 33 43
実施例 4 (d - 5) 57000 2 244 42  Example 4 (d-5) 57000 2 244 42
(d -6) 46000 96 74 40  (d -6) 46000 96 74 40
(d -7) 44000 3 35 4 1  (d -7) 44000 3 35 4 1
実施例 5 (e -5) 55000 1 24 1 50  Example 5 (e-5) 55000 1 24 1 50
(e -6) 44000 100 76 45  (e -6) 44000 100 76 45
(e -7) 42000 1 29 47  (e -7) 42000 1 29 47
比較例 1 (f -5) 92000 1 2 1 0 60  Comparative Example 1 (f-5) 92000 1 2 1 0 60
( f -6) 77000 99 47 58  (f-6) 77000 99 47 58
(f -7) 48000 3 28 59  (f -7) 48000 3 28 59
比較例 2 (g -5) 1 1 0000 3 2 10 1 1  Comparative Example 2 (g -5) 1 1 0000 3 2 10 1 1
(g - 6) 1 05000 102 49 8  (g-6) 1 05000 102 49 8
(g -7) 1 1 0000 2 35 9 [実施例 6 ] (g -7) 1 1 0000 2 35 9 [Example 6]
ポリビニルアルコール (以下、 「PVA」 と略する。 ) を、 ヨウ素濃度が 0. 03重量 %であってヨウ化カリウム濃度が 0. 5重量%である水溶液よりなる温度 30°Cの染色浴 中において延伸倍率 3倍で前延伸加工を行い、 その後、 ほう酸濃度が 5重量%であってョ ウイ匕カリゥム濃度が 8重量%である水溶液よりなる温度 55 °Cの架橋浴中において延伸倍 率 2倍で後延伸加工を行って乾燥処理することにより、 偏光膜 (以下、 「偏光子 (1) 」 ともいう。 ) を得た。  Polyvinyl alcohol (hereinafter abbreviated as “PVA”) is treated in a dyeing bath at a temperature of 30 ° C consisting of an aqueous solution having an iodine concentration of 0.03% by weight and a potassium iodide concentration of 0.5% by weight. Pre-stretching is performed at a draw ratio of 3 times, and then a draw ratio of 2 times in a crosslinking bath at a temperature of 55 ° C consisting of an aqueous solution having a boric acid concentration of 5% by weight and a concentration of 8% by weight. A post-stretching process and drying treatment were performed to obtain a polarizing film (hereinafter, also referred to as “polarizer (1)”).
次いで、 偏光子 (1) の一面に、 水系接着剤 Aを用いて位相差フィルム (a— 7) を貼 付け、 当該偏光子 (1) の他面に、 PVA系接着剤を用いて TACフィルムを貼付け、 更 に T ACフィルムの上面に、 水系接着剤 Aを用いて位相差フィルム (a— 5) を貼付ける ことにより、 偏光板 (以下、 「偏光板 (a— 8) 」 ともいう。 ) を得た。  Next, a retardation film (a-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and a TAC film is applied to the other surface of the polarizer (1) using a PVA-based adhesive. A polarizing plate (hereinafter, also referred to as a “polarizing plate (a-8)”) is formed by attaching a retardation film (a-5) to the top surface of the TAC film using an aqueous adhesive A, and further attaching the retardation film (a-5). ) Got.
得られた偏光板 ( a— 8 ) の透過率は 44. 0 %、 偏光度は 99. 9 %であり、 輝点の 数は 0〜1個であった。  The transmittance of the obtained polarizing plate (a-8) was 44.0%, the degree of polarization was 99.9%, and the number of bright spots was 0 to 1.
また、 偏光板 (a— 8) について、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良 好な耐傷性を有することを確認した。  The polarizing plate (a-8) was subjected to a pencil hardness test, and found to have a hardness of 2 H and to show good scratch resistance.
更に、 偏光板 (a— 8) とは別にして、 偏光子 (1) の一面に、 水系接着剤 Aを用いて 位相差フィルム (a— 7) を貼付け、 当該偏光子 (1) の他面に、 水系接着剤 Aを用いて 位相差フィルム (a— 6) を貼付け、 更に位相差フィルム (a— 7) の上面に、 圧力 1 X 10— 4To r rの真空下において窒化ケィ素を蒸着させて厚み 80 nmの第 1蒸着膜を形 成し、 更に、 テルビウム—鉄—コバルト合金 (Tb F e Co) を蒸着させて厚み 20 nm の第 2蒸着膜、 窒化ケィ素を蒸着させて厚み 30 nmの第 3蒸着膜および再外層にアルミ ニゥム (A1) を蒸着させて厚み 50 nmの第 4蒸着膜をこの順に形成することにより、 合計 4つの蒸着膜が積層されてなる反射防止層に由来の反射防止機能を付与させた。 次いで、 反射防止層上に、 還流冷却器および撹拌機を備えた反応器内に、 メチノレトリメ トキシシラン 25部と、 メタノール分散コ口ィダノレシリ力 (固形分濃度 30 %、 日産化学 工業 (株) 製、 メタノールゾル) 10部と、 水道水 6部とを仕込み、 この系を 70 °Cに加 熱して 2·時間反応させた後、 i—プロピルアルコール 38部を添加することによって得ら れたコーティング組成物を、 エアースプレーガンを用いて塗布し、 140°Cで 60分間加 熱して厚み 10 μ mの硬化塗膜を形成することにより、 偏光板 (以下、 「偏光板 (a -9 ) 」 ともいう。 ) を得た。 Further, apart from the polarizing plate (a-8), a retardation film (a-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached. the surface, the phase difference by using a water-based adhesive a film (a- 6) Paste the further the upper surface of the retardation film (a- 7), a nitride Kei containing under vacuum at pressure 1 X 10- 4 to rr Evaporate to form a first deposited film with a thickness of 80 nm, and then deposit a terbium-iron-cobalt alloy (TbFeCo) to deposit a second deposited film with a thickness of 20 nm, and silicon nitride. By depositing aluminum (A1) on the third deposited film with a thickness of 30 nm and the outer layer and forming the fourth deposited film with a thickness of 50 nm in this order, an anti-reflection layer consisting of a total of four deposited films laminated The anti-reflection function derived from was given. Then, in a reactor equipped with a reflux condenser and a stirrer on the anti-reflection layer, 25 parts of methinoletrimethoxysilane and methanol-dispersed co-danoresili (solid content: 30%, Nissan Chemical Industry Co., Ltd. Sol) 10 parts and tap water 6 parts are charged, the system is heated to 70 ° C and reacted for 2 hours, and then a coating composition obtained by adding 38 parts of i-propyl alcohol. Is applied using an air spray gun and heated at 140 ° C. for 60 minutes to form a cured coating film having a thickness of 10 μm. ) ". ) Got.
得られた偏光板 ( a— 9 ) 透過率は 47. 0 %、 偏光度は 99. 9 %であり、 輝点の数 は 0〜: I個であった。  The obtained polarizing plate (a-9) had a transmittance of 47.0%, a degree of polarization of 99.9%, and the number of bright spots was 0 to: I.
また、 偏光板 (a— 9) に反射防止層側から波長 400〜700 nmの範囲の光を入射 することによって反射率を測定したところ、 いずれの波長の光に係る反射率は 1 %未満で あり良好な反射防止機能を有することを確認した。  The reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the anti-reflection layer side to the polarizing plate (a-9). The reflectance for any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
更に、 鉛筆硬度試験を行つたところ、 硬度が 2 Hを示し良好な耐傷性を有することを確 認した。  Further, when a pencil hardness test was performed, the hardness was 2 H, and it was confirmed that the material had good scratch resistance.
また、 AS V方式の低反射ブラック T F T液晶を採用しているシャープ株式会ネ: の液 晶テレビ 「 L C— 13 B 1 _ S」 の液晶パネル両面の各々に貼付されている偏光板と位相 差フィルムとを剥離し、 この液晶パネルのバックライト側の一面に、 偏光板 (a— 8) を 、 当該偏光板 (a— 8) を構成する位相差フィルム (a— 5) が液晶パネルに接触する状 態で貼付け、 当該液晶パネルの他面に、 偏光板 (a— 9) を、 当該偏光板 (a— 9) を構 成する位相差フィルム (a— 6) が液晶パネルに接触する状態で貼付けることにより、 改 造液晶テレビ (以下、 「改造液晶テレビ (1) 」 ともいう。 ) を得た。  In addition, the liquid crystal television “LC-13B1_S” of Sharp Corporation, which adopts the ASV type low-reflection black TFT liquid crystal, has a phase difference with the polarizer attached to both sides of the liquid crystal panel. The film is peeled off, and a polarizing plate (a-8) and a retardation film (a-5) constituting the polarizing plate (a-8) are brought into contact with the liquid crystal panel on one surface of the backlight side of the liquid crystal panel. The polarizing plate (a-9) is attached to the other surface of the liquid crystal panel, and the retardation film (a-6) constituting the polarizing plate (a-9) is in contact with the liquid crystal panel. Thus, a modified LCD TV (hereinafter, also referred to as “modified LCD TV (1)”) was obtained.
得られた改造液晶テレビ ( 1 ) の輝度と、 視野角と、 コントラスト比とをそれぞ^ ¾認 し、 その後、 当該改造液晶テレビ (1) を、 温度 100°Cの環境下に 2000時間放置し た後、 再び、 輝度と、 視野角と、 コントラスト比とを確認することによって耐久性を評価 した。 結果を表 2に示す。  The brightness, viewing angle, and contrast ratio of the obtained modified LCD television (1) are checked, and then the modified LCD television (1) is left under an environment of 100 ° C for 2000 hours. After that, the durability was evaluated again by confirming the brightness, the viewing angle, and the contrast ratio. Table 2 shows the results.
[実施例 7]  [Example 7]
実施例 6と同様にして偏光子 (1) を得、 この偏光子 (1) の一面に、 水系接着剤 Aを 用いて位相差フィルム (b— 7) を貼付け、 当該偏光子 (1) の他面に、 PVA系接着剤 を用いて TACフィルムを貼付け、 更に TACフィルムの上面に、 水系接着剤 Aを用いて 位相差フィルム (b— 5) を貼付けることにより、 偏光板 (以下、 「偏光板 (b— 8) 」 ともいう。 ) を得た。  A polarizer (1) was obtained in the same manner as in Example 6. A retardation film (b-7) was attached to one surface of the polarizer (1) using an aqueous adhesive A, and the polarizer (1) was obtained. By attaching a TAC film to the other surface using a PVA-based adhesive, and then attaching a retardation film (b-5) to the upper surface of the TAC film using an aqueous adhesive A, the polarizing plate (hereinafter referred to as “ Polarizing plate (b-8) ").
得られた偏光板 ( b— 8 ) の透過率は 44. 0 %、 偏光度は 99. 9 %であり、 輝点の 数は 0〜 2個であった。  The transmittance of the obtained polarizing plate (b-8) was 44.0%, the degree of polarization was 99.9%, and the number of luminescent spots was 0 to 2.
また、 偏光板 (b— 8) について、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良 好な耐傷性を有することを確認した。 更に、 偏光板 (b— 8) とは別にして、 偏光子 (1) の一面に、 水系接着剤 Aを用いて 位相差フィルム (b— 7) を貼付け、 当該偏光子 (1) の他面に、 水系接着剤 Aを用いて 位相差フィルム (b— 6) を貼付け、 この位相差フィルム (b_6) の上面に、 実施例 6 と同様にして反射防止層に由来の反射防止機能を付与させ、 更に反射防止層上に硬化塗膜 を形成することにより、 偏光板 (以下、 「偏光板 (b— 9) 」 ともいう。 ) を得た。 得られた偏光板 ( b— 9 ) 透過率は 47. 0 %、 偏光度は 99. 9 %であり、 輝点の数 は 0 2個であった。 Further, a pencil hardness test was performed on the polarizing plate (b-8), and it was confirmed that the polarizing plate had a hardness of 2 H and had excellent scratch resistance. Further, apart from the polarizing plate (b-8), a retardation film (b-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached. A phase difference film (b-6) is attached to the surface using an aqueous adhesive A, and an antireflection function derived from the antireflection layer is provided on the upper surface of the phase difference film (b_6) in the same manner as in Example 6. Then, a cured coating film was formed on the antireflection layer to obtain a polarizing plate (hereinafter, also referred to as “polarizing plate (b-9)”). The transmittance of the obtained polarizing plate (b-9) was 47.0%, the degree of polarization was 99.9%, and the number of luminescent spots was 02.
また、 偏光板 (b— 9) に反射防止層側から波長 400 700 nmの範囲の光を入射 することによって反射率を測定したところ、 いずれの波長の光に係る反射率は 1 %未満で あり良好な反射防止機能を有することを確認した。  When the reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the antireflection layer side to the polarizing plate (b-9), the reflectance for light of any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
更に、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良好な耐傷性を有することを確 、し 7  Further, a pencil hardness test was performed, and it was confirmed that the hardness was 2 H and that it had good scratch resistance.
また、 実施例 6において、 偏光板 (a— 8) に代えて偏光板 (b-8) を用い、 偏光板 (a-9) に代えて偏光板 (b-9) を用いたこと以外は実施例 6と同様にして改造液晶 テレビ (以下、 「改造液晶テレビ (2) 」 ともいう。 ) を得た。  In Example 6, a polarizing plate (b-8) was used instead of the polarizing plate (a-8), and a polarizing plate (b-9) was used instead of the polarizing plate (a-9). In the same manner as in Example 6, a modified liquid crystal television (hereinafter, also referred to as “modified liquid crystal television (2)”) was obtained.
得られた改造液晶テレビ (2) について、 実施例 6と同様の手法によって耐久性を評価 した。 結果を表 2に示す。  The durability of the obtained modified liquid crystal television (2) was evaluated in the same manner as in Example 6. Table 2 shows the results.
[実施例 8]  [Example 8]
実施例 6と同様にして偏光子 (1) を得、 この偏光子 (1) の一面に、 水系接着剤 Aを 用いて位相差フィルム (c一 7) を貼付け、 当該偏光子 (1) の他面に、 PVA系接着剤 を用いて TACフィルムを貼付け、 更に TACフィルムの上面に、 水系接着剤 Aを用いて 位相差フィルム (c— 5) を貼付けることにより、 偏光板 (以下、 「偏光板 (c— 8) 」 ともいう。 ) を得た。  A polarizer (1) was obtained in the same manner as in Example 6. A retardation film (c-17) was attached to one surface of the polarizer (1) using an aqueous adhesive A, and the polarizer (1) was obtained. On the other side, a TAC film is adhered using PVA-based adhesive, and a retardation film (c-5) is adhered on the upper surface of the TAC film using an aqueous adhesive A. Polarizing plate (c-8) ").
得られた偏光板 ( c— 8 ) の透過率は 44. 0 %、 偏光度は 99. 9 %であり、 輝点の 数は 0 2個であった。  The transmittance of the obtained polarizing plate (c-8) was 44.0%, the degree of polarization was 99.9%, and the number of luminescent spots was 02.
また、 偏光板 (c— 8) について、 鉛筆硬度試験を行ったところ、 硬度が 2Hを示し良 好な耐傷'性を有することを確認した。  The polarizing plate (c-8) was subjected to a pencil hardness test, and found to have a hardness of 2H and to have excellent scratch resistance.
更に、 偏光板 (c— 8) とは別にして、 偏光子 (1) の一面に、 水系接着剤 Aを用いて 位相差フィルム (c— 7) を貼付け、 当該偏光子 (1) の他面に、 水系接着剤 Aを用いて 位相差フィルム (c一 6) を貼付け、 この位相差フィルム (c_6) の上面に、 実施例 6 と同様にして反射防止層に由来の反射防止機能を付与させ、 更に反射防止層上に硬化塗膜 を形成することにより、 偏光板 (以下、 「偏光板 (c一 9) 」 ともいう。 ) を得た。 得られた偏光板 ( c一 9 ) 透過率は 47. 0 %、 偏光度は 99. 9 %であり、 輝点の数 は 0〜 2個であった。 Further, apart from the polarizing plate (c-8), a retardation film (c-7) is adhered to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached. On the surface, use water-based adhesive A A retardation film (c-16) is attached, and an antireflection function derived from the antireflection layer is provided on the upper surface of the retardation film (c_6) in the same manner as in Example 6. By forming the film, a polarizing plate (hereinafter, also referred to as “polarizing plate (c-19)”) was obtained. The transmittance of the obtained polarizing plate (c-19) was 47.0%, the degree of polarization was 99.9%, and the number of bright spots was 0 to 2.
また、 偏光板 (c一 9) に反射防止層側から波長 400〜 700 nmの範囲の光を入射 することによって反射率を測定したところ、 いずれの波長の光に係る反射率は 1 %未満で あり良好な反射防止機能を有することを確認した。  When the reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the antireflection layer side to the polarizing plate (c-19), the reflectance for light of any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
更に、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良好な耐傷性を有することを確 し /こ o  Furthermore, a pencil hardness test was performed, and it was confirmed that the hardness was 2 H and that it had good scratch resistance.
また、 実施例 6において、 偏光板 (a— 8) に代えて偏光板 (c一 8) を用い、 偏光板 (a-9) に代えて偏光板 (c— 9) を用いたこと以外は実施例 6と同様にして改造液晶 テレビ (以下、 「改造液晶テレビ (3) 」 ともいう。 ) を得た。  In Example 6, a polarizing plate (c-8) was used instead of the polarizing plate (a-8), and a polarizing plate (c-9) was used instead of the polarizing plate (a-9). In the same manner as in Example 6, a modified liquid crystal television (hereinafter, also referred to as “modified liquid crystal television (3)”) was obtained.
得られた改造液晶テレビ (3) について、 実施例 6と同様の手法によって耐久性を評価 した。 結果を表 2に示す。  The durability of the obtained modified liquid crystal television (3) was evaluated in the same manner as in Example 6. Table 2 shows the results.
[実施例 9]  [Example 9]
実施例 6と同様にして偏光子 (1) を得、 この偏光子 (1) の一面に、 水系接着剤 Aを 用いて位相差フィルム (d— 7) を貼付け、 当該偏光子 (1) の他面に、 PVA系接着剤 を用いて TACフィルムを貼付け、 更に TACフィルムの上面に、 水系接着剤 Aを用いて 位相差フィルム (d_5) を貼付けることにより、 偏光板 (以下、 「偏光板 (d— 8) 」 ともいう。 ) を得た。  A polarizer (1) was obtained in the same manner as in Example 6. A retardation film (d-7) was attached to one surface of the polarizer (1) using an aqueous adhesive A, and the polarizer (1) was obtained. A TAC film is adhered to the other surface using PVA-based adhesive, and a retardation film (d_5) is adhered to the upper surface of the TAC film using water-based adhesive A. (D-8) ").
得られた偏光板 ( d— 8 ) の透過率は 44. 0 %、 偏光度は 99. 9 %であり、 輝点の 数は 0〜: I個であった。  The transmittance of the obtained polarizing plate (d-8) was 44.0%, the degree of polarization was 99.9%, and the number of bright spots was 0 to: I.
また、 偏光板 (d— 8) について、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良 好な耐傷性を有することを確認した。  Further, a pencil hardness test was performed on the polarizing plate (d-8), and the result showed that the hardness was 2 H and that the polarizing plate had excellent scratch resistance.
更に、 偏光板 (d— 8) とは別にして、 偏光子 (1) の一面に、 水系接着剤 Aを用いて 位相差フィルム (d— 7) を貼付け、 当該偏光子 (1) の他面に、 水系接着剤 Aを用いて 位相差フィルム (d_6) を貼付け、 この位相差フィルム (d— 6) の上面に、 実施例 6 と同様にして反射防止層に由来の反射防止機能を付与させ、 更に反射防止層上に硬ィ匕塗膜 を形成することにより、 偏光板 (以下、 「偏光板 (d— 9) 」 ともいう。 ) を得た。 得られた偏光板 ( d— 9 ) 透過率は 47. 0 %、 偏光度は 99. 9 %であり、 輝点の数 は 0 I個であった。 Further, apart from the polarizing plate (d-8), a retardation film (d-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached. A phase difference film (d_6) is adhered to the surface using an aqueous adhesive A, and an antireflection function derived from the antireflection layer is provided on the upper surface of the phase difference film (d-6) in the same manner as in Example 6. And a hard coating film on the antireflection layer. Thus, a polarizing plate (hereinafter, also referred to as “polarizing plate (d-9)”) was obtained. The transmittance of the obtained polarizing plate (d-9) was 47.0%, the degree of polarization was 99.9%, and the number of bright spots was 0I.
また、 偏光板 (d— 9) に反射防止層側から波長 400 700 nmの範囲の光を入射 することによって反射率を測定したところ、 いずれの波長の光に係る反射率は 1 %未満で あり良好な反射防止機能を有することを確認した。  When the reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the antireflection layer side to the polarizing plate (d-9), the reflectance for light of any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
更に、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良好な耐傷性を有することを確 S、し 7  Furthermore, a pencil hardness test was performed, and it was confirmed that the hardness was 2 H and that it had good scratch resistance.
また、 実施例 6において、 偏光板 (a— 8) に代えて偏光板 (d— 8) を用い、 偏光板 (a-9) に代えて偏光板 (d— 9) を用いたこと以外は実施例 6と同様にして改造液晶 テレビ (以下、 「改造液晶テレビ (4) 」 ともいう。 ) を得た。  In Example 6, a polarizing plate (d-8) was used instead of the polarizing plate (a-8), and a polarizing plate (d-9) was used instead of the polarizing plate (a-9). In the same manner as in Example 6, a modified liquid crystal television (hereinafter, also referred to as “modified liquid crystal television (4)”) was obtained.
得られた改造液晶テレビ (4) について、 実施例 6と同様の手法によって耐久性を評価 した。 結果を表 2に示す。  The durability of the obtained modified liquid crystal television (4) was evaluated by the same method as in Example 6. Table 2 shows the results.
[実施例 10]  [Example 10]
実施例 6と同様にして偏光子 (1) を得、 この偏光子 (1) の一面に、 水系接着剤 Aを 用いて位相差フィルム (e— 7) を貼付け、 当該偏光子 (1) の他面に、 PVA系接着剤 を用いて TACフィルムを貼付け、 更に TACフィルムの上面に、 水系接着剤 Aを用いて 位相差フィルム (e— 5) を貼付けることにより、 偏光板 (以下、 「偏光板 (e— 8) 」 ともいう。 ) を得た。  A polarizer (1) was obtained in the same manner as in Example 6. A retardation film (e-7) was attached to one surface of the polarizer (1) using an aqueous adhesive A, and the polarizer (1) was obtained. By attaching a TAC film to the other surface using PVA-based adhesive, and then attaching a retardation film (e-5) to the upper surface of the TAC film using an aqueous adhesive A, the polarizing plate (hereinafter referred to as “ Polarizing plate (e-8) ") was obtained.
得られた偏光板 (e_8) の透過率は 44. 0%、 偏光度は 99. 9%であり、 輝点の 数は 0個であった。  The transmittance of the obtained polarizing plate (e_8) was 44.0%, the degree of polarization was 99.9%, and the number of bright spots was 0.
また、 偏光板 (e— 8) について、 鉛筆硬度試験を行ったところ、 硬度が 2Hを示し良 好な耐傷性を有することを確認した。  In addition, a pencil hardness test was performed on the polarizing plate (e-8), and it was confirmed that the polarizing plate had a hardness of 2H and had excellent scratch resistance.
更に、 偏光板 (e— 8) とは別にして、 偏光子 (1) の一面に、 水系接着剤 Aを用いて 位相差フィルム (e— 7) を貼付け、 当該偏光子 (1) の他面に、 水系接着剤 Aを用いて 位相差フィルム (e— 6) を貼付け、 この位相差フィルム (e— 6) の上面に、 実施例 6 と同様にして反射防止層に由来の反射防止機能を付与させ、 更に反射防止層上に硬化塗膜 を形成することにより、 偏光板 (以下、 「偏光板 (e— 9) 」 ともいう。 ) を得た。 得られた偏光板 (e— 9) 透過率は 47. 0%、 偏光度は 99. 9%であり、 輝点の数 は 0個であった。 Further, apart from the polarizing plate (e-8), a retardation film (e-7) is adhered to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached. A phase difference film (e-6) is adhered to the surface using an aqueous adhesive A, and an antireflection function derived from the antireflection layer is formed on the upper surface of the phase difference film (e-6) in the same manner as in Example 6. And a cured coating film was formed on the antireflection layer to obtain a polarizing plate (hereinafter, also referred to as “polarizing plate (e-9)”). The polarizing plate (e-9) obtained has a transmittance of 47.0%, a degree of polarization of 99.9%, and the number of bright spots Was zero.
また、 偏光板 (e— 9) に反射防止層側から波長 400 700 nmの範囲の光を入射 することによって反射率を測定したところ、 いずれの波長の光に係る反射率は 1 %未満で あり良好な反射防止機能を有することを確認した。  The reflectance was measured by injecting light in the wavelength range of 400 to 700 nm from the anti-reflection layer side to the polarizing plate (e-9). The reflectance for light of any wavelength was less than 1%. It was confirmed that it had a good antireflection function.
更に、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良好な耐傷性を有することを確 tv ^し /  Furthermore, when a pencil hardness test was performed, it was confirmed that the hardness was 2 H and that it had good scratch resistance.
また、 実施例 6において、 偏光板 (a— 8) に代えて偏光板 (e— 8) を用い、 偏光板 (a-9) に代えて偏光板 (e -9) を用いたこと以外は実施例 6と同様にして改造液晶 テレビ (以下、 「改造液晶テレビ (5) 」 ともいう。 ) を得た。  In Example 6, a polarizing plate (e-8) was used instead of the polarizing plate (a-8), and a polarizing plate (e-9) was used instead of the polarizing plate (a-9). In the same manner as in Example 6, a modified liquid crystal television (hereinafter, also referred to as “modified liquid crystal television (5)”) was obtained.
得られた改造液晶テレビ (5) について、 実施例 6と同様の手法によって耐久性を評価 した。 結果を表 2に示す。  The durability of the modified LCD television (5) obtained was evaluated in the same manner as in Example 6. Table 2 shows the results.
[比較例 3]  [Comparative Example 3]
実施例 6と同様にして偏光子 (1) を得、 この偏光子 (1) の一面に、 水系接着剤 Aを 用いて位相差フィルム (f _7) を貼付け、 当該偏光子 (1) の他面に、 PVA系接着剤 を用いて TACフィルムを貼付け、 更に TACフィルムの上面に、 水系接着剤 Aを用いて 位相差フィルム (f _5) を貼付けることにより、 偏光板 (以下、 「偏光板 (f — 8) 」 ともいう。 ) を得た。  A polarizer (1) was obtained in the same manner as in Example 6, and a retardation film (f_7) was adhered to one surface of the polarizer (1) using an aqueous adhesive A. A TAC film is adhered to the surface using a PVA-based adhesive, and a retardation film (f_5) is adhered to the upper surface of the TAC film using an aqueous adhesive A. (F-8) ”).
得られた偏光板 ( f 一 8 ) の透過率は 44. 0 %、 偏光度は 99. 9 %であり、 輝点の 数は 11 18個であった。  The transmittance of the obtained polarizing plate (f-18) was 44.0%, the degree of polarization was 99.9%, and the number of bright spots was 1118.
また、 偏光板 (f — 8) について、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良 好な耐傷性を有することを確認した。  In addition, a pencil hardness test was performed on the polarizing plate (f-8), and it was confirmed that the polarizing plate had a hardness of 2 H and had excellent scratch resistance.
更に、 偏光板 (f — 8) とは別にして、 偏光子 (1) の一面に、 水系接着剤 Aを用いて 位相差フィルム (f — 7) を貼付け、 当該偏光子 (1) の他面に、 水系接着剤 Aを用いて 位相差フィルム (f — 6) を貼付け、 この位相差フィルム (f — 6) の上面に、 実施例 6 と同様にして反射防止層に由来の反射防止機能を付与させ、 更に反射防止層上に硬化塗膜 を形成することにより、 偏光板 (以下、 「偏光板 (f — 9) 」 ともいう。 ) を得た。 得られた偏光板 ( f 一 9 ) 透過率は 47. 0 %、 偏光度は 99. 9 %であり、 輝点の数 は 1 1 18個であった。  Further, apart from the polarizing plate (f-8), a retardation film (f-7) is attached to one surface of the polarizer (1) using an aqueous adhesive A, and the other polarizer (1) is attached. A phase difference film (f-6) is adhered to the surface using an aqueous adhesive A, and the antireflection function derived from the antireflection layer is applied to the upper surface of the phase difference film (f-6) in the same manner as in Example 6. And a cured coating film was formed on the antireflection layer to obtain a polarizing plate (hereinafter, also referred to as “polarizing plate (f-9)”). The transmittance of the obtained polarizing plate (f-19) was 47.0%, the degree of polarization was 99.9%, and the number of bright spots was 1118.
また、 偏光板 ( f — 9) に反射防止層側から波長 400 700 nmの範囲の光を入射 することによって反射率を測定したところ、 いずれの波長の光に係る反射率は 1 %未満で あり良好な反射防止機能を有することを確認した。 Also, light with a wavelength range of 400 700 nm is incident on the polarizing plate (f-9) from the anti-reflection layer side. The reflectance was measured by performing the measurement, and it was confirmed that the reflectance with respect to light of any wavelength was less than 1% and that it had a good antireflection function.
更に、 鉛筆硬度試験を行ったところ、 硬度が 2 Hを示し良好な耐傷性を有することを確 ίυι し /こ σ Furthermore, were subjected to a pencil hardness test, the hardness has good scratch resistance indicates 2 H Make Iyi / this σ
また、 実施例 6において、 偏光板 (a— 8 ) に代えて偏光板 (f 一 8 ) を用い、 偏光板 ( a— 9 ) に代えて偏光板 ( f 一 9 ) を用いたこと以外は実施例 6と同様にして改造液晶 テレビ (以下、 「比較用改造液晶テレビ (1 ) 」 ともいう。 ) を得た。  Further, in Example 6, except that the polarizing plate (f-8) was used instead of the polarizing plate (a-8), and the polarizing plate (f-19) was used instead of the polarizing plate (a-9). A modified liquid crystal television (hereinafter also referred to as “comparative modified liquid crystal television (1)”) was obtained in the same manner as in Example 6.
得られた比較用改造液晶テレビ (1 ) について、 実施例 6と同様の手法によって耐久性 を評価した。 結果を表 2に示す。 The durability of the obtained modified LCD television for comparison (1) was evaluated in the same manner as in Example 6. Table 2 shows the results.
] ]
偏光板構成 評価項目 放置 放置後 実施例 6 輝度 [cd/m2 ] 460 455 Polarizer configuration Evaluation item Left After leaving Example 6 Luminance [cd / m 2 ] 460 455
(a -9)  (a -9)
+ コントラス ト比 560 555 液晶パネル  + Contrast ratio 560 555 LCD panel
上下 1 71 1 70 (a - 8) 視野角 [度]  Up and down 1 71 1 70 (a-8) Viewing angle [degree]
左右 1 71 170 実施例 7 輝度 [cd/m2 ] 445 440 Left and right 1 71 170 Example 7 Brightness [cd / m 2 ] 445 440
(b— 9)  (b— 9)
+ コントラスト比 555 550 欣 B¾パネノレ  + Contrast ratio 555 550 Kin B¾ Panenole
上下 170 169 Upper and lower 170 169
(b— 8) 視野角 [度] (b-8) Viewing angle [degree]
左右 170 169 実施例 8 輝度 [cd/m2 ] 450 445 Left and right 170 169 Example 8 Brightness [cd / m 2 ] 450 445
(c一 9)  (c-1 9)
+ コントラスト比 555 550 液晶パネル  + Contrast ratio 555 550 LCD panel
上下 1 70 169 (c -8) 視野角 [度]  Vertical 1 70 169 (c -8) Viewing angle [degree]
左右 170 169 実施例 9 輝度 [cd/ra2 ] 445 440 Left and right 170 169 Example 9 Brightness [cd / ra 2 ] 445 440
(d— 9)  (d—9)
+ コントラスト比 555 550 液晶パネル  + Contrast ratio 555 550 LCD panel
上下 170 169 (d-8) 視野角 [度]  Up and down 170 169 (d-8) Viewing angle [degree]
左右 170 169 実施例 10 輝度 Ccd/rn2 ] 470 465 Left and right 170 169 Example 10 brightness Ccd / rn 2 ] 470 465
(e-9)  (e-9)
+ コントラスト比 570 565 液晶パネル  + Contrast ratio 570 565 LCD panel
上下 1 72 171 (e -8) 視野角 [度]  Vertical 1 72 171 (e -8) Viewing angle [degree]
左右 1 72 171 比較例 3 輝度 [cd/m2 ] 430 410 Left and right 1 72 171 Comparative example 3 Brightness [cd / m 2 ] 430 410
(f -9)  (f -9)
+ コントラスト比 500 450 欣 f曰パネル  + Contrast ratio 500 450 Kin f panel
上下 130 1 10 (f -8) 視野角 [度]  Vertical 130 1 10 (f -8) Viewing angle [degree]
左右 1 30 1 10  Left and right 1 30 1 10

Claims

請 求 の 範 囲 The scope of the claims
1. 熱可塑性ノルボルネン系樹脂よりなる位相差フィルムであって、  1. A retardation film made of a thermoplastic norbornene resin,
面内進相軸方向の屈折率を n x、 面内遅相軸方向の屈折率を n y、 フィルム厚み方向の 屈折率を n z、 フィルム厚みを d [nm] とし、 光線波長 400〜 700 n mの範囲内に おいて選択される光線波長え 〔nm〕 の透過光のフィルム面内の位相差を式 α (λ) = ( n x-n y) Xdで表される値 α (λ) [nm] 、 当該光線波長 λ 〔nm〕 の透過光のフ イルム厚み方向の位相差を式 i3 (え) = { (nx + ny) /2-n z } Xdで表される値 β (λ) [nm] とするとき、 光線波長 5 50 nmの透過光のフィルム面内の位相差 α ( 5 50) [nm] 、 光線波長 5 50 n mの透過光のフィルム厚み方向の位相差) 3 (5 50 ) [nm] およびフィルム厚み d [nm] 、 下記の条件 (a) 〜 (e) を満たすことを 特徴とする位相差フィルム。  The refractive index in the in-plane fast axis direction is nx, the refractive index in the in-plane slow axis direction is ny, the refractive index in the film thickness direction is nz, and the film thickness is d [nm]. The phase difference in the film plane of the transmitted light having the wavelength of light [nm] selected in the equation is defined as a value α (λ) [nm] expressed by the formula α (λ) = (nxny) Xd. The phase difference in the film thickness direction of the transmitted light having a light wavelength of λ [nm] is defined as β (λ) [nm] expressed by the equation i3 (e) = {(nx + ny) / 2-nz} Xd The phase difference α (550) [nm] in the film plane of the transmitted light with a light wavelength of 550 nm, the phase difference in the film thickness direction of the transmitted light with a light wavelength of 550 nm) 3 (550) [nm] And a film thickness d [nm] satisfying the following conditions (a) to (e).
条件; Condition;
(a) 1 00く d≤ 1 00000  (a) 1 00 ku d ≤ 1 00000
(b) 0. 9 5≤ α (λ) /a (5 50) ≤ 1 - 05  (b) 0.9 5 ≤ α (λ) / a (5 50) ≤ 1-05
(c) 0. 9 5≤ i3 (λ) /j3 (5 50) ≤ 1. 05  (c) 0.9 5 ≤ i3 (λ) / j3 (5 50) ≤ 1.05
(d) 0≤a (5 50) ≤40  (d) 0≤a (5 50) ≤40
(e) 1 50≤β (5 50) ≤ 300  (e) 1 50 ≤ β (5 50) ≤ 300
2. 熱可塑性ノルボルネン系樹脂よりなる位相差フィルムであって、  2. A retardation film made of a thermoplastic norbornene resin,
面内進相軸方向の屈折率を n x、 面内遅相軸方向の屈折率を n y、 フィルム厚み方向の 屈折率を n z、 フィルム厚みを d 〔nm〕 とし、 光線波長 400〜700 nmの範囲内に おいて選択される光線波長; [nm] の透過光のフィルム面内の位相差を式 α (λ) = ( n x-n y) X dで表される値 α (λ) [nm] 、 当該光線波長; L [nm] の透過光のフ イルム厚み方向の位相差を式 ]3 (λ) = { (n x + ny) /2-n z } Xdで表される値 β (λ) [nm] とするとき、 光線波長 5 50 nmの透過光のフィルム面内の位相差 α ( 5 50) 〔nm〕 、 光線波長 550 n mの透過光のフィルム厚み方向の位相差 ]3 (5 50 ) [nm] およびフィルム厚み d 〔nm〕 力 下記の条件 (a) 〜 (c;) 、 (f ) およびThe refractive index in the in-plane fast axis direction is nx, the refractive index in the in-plane slow axis direction is ny, the refractive index in the film thickness direction is nz , and the film thickness is d (nm). The phase difference in the film plane of the transmitted light of [nm] is determined by a value α (λ) [nm] expressed by the formula α (λ) = (nxny) Xd. The phase difference in the film thickness direction of the transmitted light having the wavelength of the light; L [nm] is represented by the formula: 3 (λ) = {(nx + ny) / 2-nz} Xd β (λ) [nm ], The in-plane retardation α (550) [nm] of the transmitted light having a light wavelength of 550 nm, and the retardation in the thickness direction of the transmitted light having a light wavelength of 550 nm] 3 (550) [ nm] and film thickness d [nm] force The following conditions (a) to (c;), (f) and
(g) を満たすことを特徴とする位相差フィルム。 (g) a retardation film,
条件; Condition;
(a) 1 00< d≤ 1 00000 (b) 0. 9 5≤α (λ) /a (5 50) ≤ 1. 05 (a) 1 00 <d≤ 1 00000 (b) 0.9 5≤α (λ) / a (5 50) ≤1.05
(c) 0. 9 5≤i3 (λ) Ζβ (5 50) ≤ 1. 0 5  (c) 0.95≤i3 (λ) Ζβ (5 50) ≤1.05
( f ) 50≤ α (5 50) ≤ 1 50  (f) 50 ≤ α (5 50) ≤ 1 50
(g) 3 (5 50) ≤ 1 00  (g) 3 (5 50) ≤ 1 00
3. 熱可塑性ノルボルネン系樹脂よりなる位相差フィルムであって、  3. A retardation film made of a thermoplastic norbornene resin,
面内進相軸方向の屈折率を n x、 面内遅相軸方向の屈折率を n y、 フィルム厚み方向の 屈折率を n z、 フィルム厚みを d [nm] とし、 光線波長 400〜 700 n mの範囲内に おいて選択される光線波長; [nm] の透過光のフィルム面内の位相差を式 α (λ) = ( nx— ny) Xdで表される値 α (λ) [nm] 、 当該光線波長; L [nm] の透過光のフ イルム厚み方向の位相差を式 j3 (λ) = { (n x + n y) /2-η ζ } Xdで表される値 β (λ) 〔nm〕 とするとき、 光線波長 5 50 nmの透過光のフィルム面内の位相差 α ( 5 50) 〔nm〕 、 光線波長 5 50 nmの透過光のフィルム厚み方向の位相差 /3 (5 50 ) 〔nm〕 およびフィルム厚み d 〔nm〕 力 下記の条件 (a) 〜 (d) および (h) を 満たすことを特徴とする位相差フィルム。 The refractive index in the in-plane fast axis direction is nx, the refractive index in the in-plane slow axis direction is ny, the refractive index in the film thickness direction is nz, and the film thickness is d [nm]. The phase difference in the film plane of the transmitted light of [nm] is a value represented by the formula α (λ) = (nx—ny) Xd, α (λ) [nm]. The wavelength difference of the transmitted light of L [nm] in the thickness direction of the film is represented by the formula j3 (λ) = {(nx + ny) / 2-η ζ} Xd β (λ) [nm] , The phase difference α (550) [nm] in the film plane of the transmitted light with a light wavelength of 550 nm, the phase difference in the film thickness direction of the transmitted light with a light wavelength of 550 nm / 3 (5 50) [ nm] and film thickness d [nm] force A retardation film characterized by satisfying the following conditions (a) to (d) and (h).
条件; Condition;
(a) 1 00< d≤ 1 00000  (a) 1 00 <d≤ 1 00000
(b) 0. 9 5≤ α (λ) /a (550) ≤ 1. 05  (b) 0.9 5 ≤ α (λ) / a (550) ≤ 1.05
(c) 0. 9 5≤ j3 (λ) / β (5 50) ≤ 1. 05  (c) 0.95 ≤ j3 (λ) / β (5 50) ≤ 1.05
(d) 0≤α (5 50) ≤40  (d) 0≤α (5 50) ≤40
(h) 0≤/3 (5 50) ≤ 80  (h) 0≤ / 3 (5 50) ≤80
4. 熱可塑性ノルボルネン系樹脂は、 ガラス転移 が1 00〜250°Cのものであるこ とを特徴とする請求の範囲第 1項乃至第 3項のいずれかに記載の位相差フィルム。  4. The retardation film according to any one of claims 1 to 3, wherein the thermoplastic norbornene-based resin has a glass transition of 100 to 250 ° C.
5. 熱可塑性ノルボルネン系樹脂が下記一般式 (1) で表される構造単位 aと、 下記一般 式 (2) で表される構造単位 bとを有するものであることを特徴とする請求の範囲第 1項 乃至第 4項のいずれかに記載の位相差フィルム。 [化 1] 一般式 (1 ) 5. The thermoplastic norbornene-based resin has a structural unit a represented by the following general formula (1) and a structural unit b represented by the following general formula (2). Item 5. The retardation film according to any one of items 1 to 4. [Formula 1] General formula (1)
Figure imgf000066_0001
Figure imgf000066_0001
[式中、 mは 1以上の整数、 pは 0または 1以上の整数であり、 Xは、 ビニレン基 (一 C H = CH— ) またはエチレン基 (一 CH2 CH2 ―) を示し、 R1 〜R4 は、 それぞれ独 立に、 水素原子;ハロゲン原子;酸素原子、 窒素原子、 ィォゥ原子若しくはケィ素原子を 含む連結基を有していてもよい置換若しくは非置換の炭素原子数 1〜30の炭ィヒ水素基; または極性基を示す。 更に、 R1 と R2 、 R3 と R4 または R2 と R3 は、 互いに結合し て、 単環構造若しくは他の環が縮合して多環構造を有する炭素環または複素環を形成して いてもよく、 形成される炭素環または複素環は芳香環であってもよいし非芳香環であって もよい。 ] [Wherein, m is an integer of 1 or more, p is 0 or an integer of 1 or more, X represents a vinylene group (one CH = CH—) or an ethylene group (one CH 2 CH 2 ―), and R 1 To R 4 each independently represent a hydrogen atom; a halogen atom; a substituted or unsubstituted carbon atom having 1 to 30 carbon atoms which may have a linking group containing an oxygen atom, a nitrogen atom, an iodine atom or a silicon atom. Or a polar group. Further, R 1 and R 2 , R 3 and R 4, or R 2 and R 3 are bonded to each other to form a carbocyclic or heterocyclic ring having a polycyclic structure by condensing a monocyclic structure or another ring. The carbocyclic or heterocyclic ring formed may be an aromatic ring or a non-aromatic ring. ]
[化 2]  [Formula 2]
—般式 (2) —General formula (2)
Figure imgf000066_0002
[式中、 Yは、 ビニレン基 (一 CH=CH— ) またはエチレン基 (一 CH2 CH2 ―) を 示し、 R5 〜R8 は、 それぞれ独立に、 水素原子;ハロゲン原子;酸素原子、 窒素原子、 ィォゥ原子若しくはケィ素原子を含む連結基を有していてもよレ、置換若しくは非置換の炭 素原子数 1〜30の炭化水素基;または極性基を示す。 更に、 R5 と R6 、 R7 と R8 ま たは R6 と R7 は、 互いに結合して、 単環構造若しくは他の環が縮合して多環構造を有す る炭素環または複素環 (但し、 一般式 (1) で表される構造を除く) を形成してもよく、 形成される炭素環または複素環は芳香環であってもよいし非芳香環であってもよレ、。 ]
Figure imgf000066_0002
[Wherein, Y represents a vinylene group (one CH = CH—) or an ethylene group (one CH 2 CH 2 —), and R 5 to R 8 each independently represent a hydrogen atom; a halogen atom; an oxygen atom; A substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms, which may have a linking group containing a nitrogen atom, a zeo atom or a silicon atom; or a polar group. Further, R 5 and R 6 , R 7 and R 8, or R 6 and R 7 are bonded to each other to form a monocyclic structure or a condensed other ring to form a carbocyclic or heterocyclic ring having a polycyclic structure. May form a ring (excluding the structure represented by the general formula (1)), and the formed carbon ring or hetero ring may be an aromatic ring or a non-aromatic ring. ,. ]
6. フィルム面上における lm2 当たりの輝点の数が 10個以下であることを特徴とする 請求の範囲第 1項乃至第 5項レ、ずれかに記載の位相差フィルム。 6. the claims the number of bright points per lm 2 on the film plane, characterized in that 10 or less paragraphs 1 through 5 Kore, the retardation film according to any misalignment.
7. 偏光膜の両面の各々に保護フィルムが積層されてなる構成を有し、 偏光膜の一面に積 層されてなる保護フィルムが請求の範囲第 1項および第 2項に記載の位相差フィルムを積 層したもの、 あるいは請求の範囲第 1項または第 2項に記載の位相差フイルムよりなるこ とを特徴とする偏光板。  7. The retardation film according to claim 1, having a configuration in which a protective film is laminated on both sides of the polarizing film, and the protective film laminated on one surface of the polarizing film is provided. A polarizing plate comprising: a layered structure; and the retardation film according to claim 1 or 2.
8. 偏光膜の両面の各々に保護フィルムが積層されてなる構成を有し、 偏光膜の一面に積 層されてなる保護フィルムが請求の範囲第 3項に記載の位相差フイルムよりなり、 当該偏 光膜の他面に積層されてなる保護フィルムが請求の範囲第 1項および第 2項に記載の位相 差フィルムを積層したもの、 あるレ、は請求の範囲第 1項または第 2項に記載の位相差フィ ルムよりなることを特徴とする偏光  8. The polarizing film has a configuration in which a protective film is laminated on both sides of the polarizing film, and the protective film laminated on one surface of the polarizing film is made of the retardation film according to claim 3, A protective film laminated on the other surface of the polarizing film is formed by laminating the retardation film according to Claims 1 and 2, and some protective films are described in Claims 1 or 2. Polarized light comprising the phase difference film described
9. 保護フィルム面上における lm2 当たりの輝点の数が 10個以下であることを特徴と する請求の範囲第 Ί項または第 8項に記載の偏光板。 9. The polarizing plate according to claim 1, wherein the number of bright spots per lm 2 on the protective film surface is 10 or less.
PCT/JP2004/003976 2003-04-10 2004-03-23 Phase film and polarizer WO2004092791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003106778A JP4172310B2 (en) 2003-04-10 2003-04-10 Polarizer
JP2003-106778 2003-04-10

Publications (1)

Publication Number Publication Date
WO2004092791A1 true WO2004092791A1 (en) 2004-10-28

Family

ID=33295848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003976 WO2004092791A1 (en) 2003-04-10 2004-03-23 Phase film and polarizer

Country Status (3)

Country Link
JP (1) JP4172310B2 (en)
TW (1) TW200500658A (en)
WO (1) WO2004092791A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596927B2 (en) * 2005-01-13 2010-12-15 富士フイルム株式会社 Liquid crystal display
US8227053B2 (en) 2005-01-13 2012-07-24 Fujifilm Corporation Optically compensatory film, polarizing plate and liquid-crystal display
JP4530276B2 (en) * 2005-01-31 2010-08-25 日東電工株式会社 Polarizing element, liquid crystal panel, and liquid crystal display device
JP4712455B2 (en) * 2005-06-29 2011-06-29 帝人株式会社 Optical film
JP2007017816A (en) * 2005-07-11 2007-01-25 Okura Ind Co Ltd Optical compensation film comprising thermoplastic norbornene-based resin
JP2007065575A (en) * 2005-09-02 2007-03-15 Jsr Corp Optical film, polarizing plate and liquid crystal display
JP2007171362A (en) * 2005-12-20 2007-07-05 Fujifilm Corp Optical compensation film, polarizing plate and liquid crystal display device
KR101232732B1 (en) * 2006-05-22 2013-02-13 삼성디스플레이 주식회사 Polarizer and Liquid Crystal Display Using the Same
JP2008000955A (en) * 2006-06-21 2008-01-10 Jsr Corp Optical film and its producing method
JP2008058473A (en) * 2006-08-30 2008-03-13 Jsr Corp Optical film, polarizing plate, liquid crystal panel and manufacturing method of optical film
JP2009098682A (en) * 2007-09-28 2009-05-07 Jsr Corp Liquid crystal panel, optical film and optical film set for liquid crystal panel
WO2009041377A1 (en) * 2007-09-28 2009-04-02 Jsr Corporation Liquid crystal panel and optical film set for liquid crystal panel
JP2009128821A (en) * 2007-11-27 2009-06-11 Jsr Corp Method of manufacturing optical film, optical film and liquid crystal display
JP5560551B2 (en) * 2008-03-31 2014-07-30 Jsr株式会社 Liquid crystal panel and optical film set for liquid crystal panel
US20130081612A1 (en) 2010-06-15 2013-04-04 Konica Minolta Advanced Layers, Inc. Film mirror for reflecting sunlight and reflective device for solar thermal power generation
JP2013029792A (en) * 2011-07-29 2013-02-07 Fujifilm Corp Cyclic olefin-based resin film, polarizing plate, and liquid crystal display unit
JP5512624B2 (en) * 2011-09-21 2014-06-04 日本写真印刷株式会社 Capacitive touch sensor and display device having the same
CN104704404A (en) * 2012-10-12 2015-06-10 富士胶片株式会社 Optical film, method of manufacturing optical film, polarizing plate, and image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284971A (en) * 2001-03-23 2002-10-03 Jsr Corp Thermoplastic resin composition and its usage
JP2003014901A (en) * 2001-04-27 2003-01-15 Jsr Corp Thermoplastic norbornene resin-based optical film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284971A (en) * 2001-03-23 2002-10-03 Jsr Corp Thermoplastic resin composition and its usage
JP2003014901A (en) * 2001-04-27 2003-01-15 Jsr Corp Thermoplastic norbornene resin-based optical film

Also Published As

Publication number Publication date
TW200500658A (en) 2005-01-01
JP4172310B2 (en) 2008-10-29
TWI292059B (en) 2008-01-01
JP2004309979A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US7101498B2 (en) Thermoplastic norbornene resin based optical film
JP4238501B2 (en) Thermoplastic norbornene resin-based optical film
JP3899511B2 (en) Thermoplastic norbornene resin-based optical film
WO2004092791A1 (en) Phase film and polarizer
TWI375815B (en)
JP3912159B2 (en) Optical film, method for producing the same, and polarizing plate
TWI453470B (en) Optical film, polarizing plate and liquid crystal display
WO2007026694A1 (en) Optical film, polarizing plate, and liquid crystal display device
TW200946570A (en) Method for producing laminated optical thin film, laminated optical thin film, polarizer and liquid crystal display device
WO2006073102A1 (en) Thermoplastic resin composition, optical film, and process for producing film
JP2007108529A (en) Method for producing phase difference film, phase difference film and its use
JP2005164632A (en) Optical film and polarizing plate
JP5374820B2 (en) Thermoplastic resin composition and optical film comprising the same
JP5566403B2 (en) Retardation film, and organic EL display device and liquid crystal display device using the same
JP4325196B2 (en) Optical film, method for producing the same, and applied product thereof
TWI375690B (en)
US20190011752A1 (en) Optical laminate, polarizing plate, and liquid crystal display device
TW200829631A (en) Method for producing retardation film, retardation film and its use
JP2007223242A (en) Manufacturing method for phase difference film, phase difference film, and its use
WO2007001020A1 (en) Method for producing optical film, optical film and polarizing plate
JP4701715B2 (en) Optical film manufacturing method and optical film
JP4352776B2 (en) Optical film and use thereof
JP2004061829A (en) Optical low pass filter
CN108431653B (en) Optical laminate, method for producing same, polarizing plate, and display device
JP4915409B2 (en) Thermoplastic norbornene resin-based optical film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase