WO2004090957A1 - Light source unit, illumination optical system, exposure apparatus and exposure method - Google Patents

Light source unit, illumination optical system, exposure apparatus and exposure method Download PDF

Info

Publication number
WO2004090957A1
WO2004090957A1 PCT/JP2004/005096 JP2004005096W WO2004090957A1 WO 2004090957 A1 WO2004090957 A1 WO 2004090957A1 JP 2004005096 W JP2004005096 W JP 2004005096W WO 2004090957 A1 WO2004090957 A1 WO 2004090957A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
reflecting mirror
source unit
light
unit according
Prior art date
Application number
PCT/JP2004/005096
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Komatsuda
Hiroyuki Kondo
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2004090957A1 publication Critical patent/WO2004090957A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the present invention relates to a light source unit, an illumination optical device, an exposure device, and an exposure method. More specifically, the present invention is suitable for an exposure apparatus used to manufacture a micro device such as a semiconductor device in a photolithography process using EUV light (extreme ultraviolet light) having a wavelength of about 5 to 50 nm.
  • EUV light extreme ultraviolet light
  • the term “light” refers not only to the narrow sense of light that can be seen by the naked eye, but also to the broad sense of light that includes wavelengths shorter than lmm among electromagnetic waves, including so-called infrared rays to X-rays. means.
  • EUV Extreme Ultraviolet
  • EU VL Extreme Ultraviolet Lithography
  • LPP Laser Produced Plasma
  • DPP discharge Produced Plasma
  • the DPP light source and the LPP light source are collectively referred to as “plasma light source”. Therefore, it is necessary to once collect the divergent light supplied from the plasma light source, that is, the divergent plasma light, and block debris with a pinhole member arranged near the converging point.
  • the prior art no structure has been proposed in which a structure around the light emitting point becomes an obstacle, and the loss of light quantity is suppressed favorably to collect the divergent light with a desired light intensity distribution.
  • the present invention has been made in view of the above-described problems, and does not obstruct structures around a light-emitting point, suppresses light quantity loss, and collects DPP divergent light with a desired light intensity distribution. It is an object of the present invention to provide a light source unit that can be used.
  • a mask pattern is formed on a photosensitive substrate by using EUV light supplied from a light source unit capable of concentrating DPP divergent light with a desired light intensity distribution while favorably suppressing a light quantity loss.
  • An object of the present invention is to provide an exposure apparatus and an exposure method capable of transferring images with high fidelity and high throughput. Disclosure of the invention
  • a target material is turned into plasma, a light source body that emits EUV light from the plasma, a first reflecting mirror having a through-hole, A second reflector having a through-hole disposed in the optical path between the 1 reflector and
  • the EUV light is positioned at a predetermined position through the through-hole of the second reflecting mirror, the reflecting surface of the first reflecting mirror, the reflecting surface of the second reflecting mirror, and the through-hole of the first reflecting mirror.
  • a light source unit characterized by focusing.
  • the first reflecting mirror has a concave reflecting surface You.
  • the second reflecting mirror has a convex reflecting surface, a flat reflecting surface, or a concave reflecting surface.
  • the through holes are formed at the center of the first reflecting mirror and the center of the second reflecting mirror, respectively.
  • the main body of the first reflecting mirror and the main body of the second reflecting mirror are formed of silicon, aluminum, or copper.
  • a cooling mechanism for cooling the first reflecting mirror and the second reflecting mirror is further provided.
  • the first reflecting mirror and the second reflecting mirror are configured to be exchangeable.
  • the apparatus further comprises a position measuring means for measuring the position of the reflecting surface of the first reflecting mirror and the position of the reflecting surface of the second reflecting mirror.
  • a debris removing mechanism for removing debris emitted from the light source body in an optical path between the first reflecting mirror and the second reflecting mirror is provided. It also has more.
  • a light source body for plasmatizing a target material and emitting EUV light from the plasma a first reflector having a through hole, and an optical path between the light source body and the first reflector With a second reflecting mirror arranged inside,
  • a light source unit that focuses the EUV light at a predetermined position via a reflecting surface of the first reflecting mirror, a reflecting surface of the second reflecting mirror, and a through hole of the first reflecting mirror. I will provide a.
  • the debris removing mechanism has a casing for surrounding a space between the first reflecting mirror and the second reflecting mirror.
  • a predetermined gas is introduced into the space.
  • the predetermined gas is preferably helium, argon, neon, xenon, crypton, nitrogen, oxygen, or ozone.
  • the debris removing mechanism includes a plurality of plate members having a cross section extending radially around the optical axis. In this case, the plurality It is preferable that the plate member and the casing are configured to be coolable. Further, it is preferable that a predetermined voltage is applied between the plurality of plate members and the casing. Further, it is preferable that the plurality of plate members are configured to be rotatable around the optical axis.
  • a light source unit according to the first or second aspect, and a light guiding optical system for guiding EUV light from the light source unit to a surface to be irradiated.
  • An illumination optical device is provided.
  • an illumination optical device for illuminating a reflective mask on which a predetermined pattern is formed, and a projection for forming a pattern image of the mask on a photosensitive substrate.
  • An exposure apparatus comprising an optical system.
  • the mask and the photosensitive substrate are moved relative to the projection optical system along a predetermined direction to project and expose the pattern of the mask onto the photosensitive substrate.
  • an exposure step of projecting and exposing on a reactive substrate it is preferable that the mask and the photosensitive substrate are relatively moved along the predetermined direction with respect to the projection optical system to project and expose the pattern of the mask onto the photosensitive substrate.
  • FIG. 1 is a view schematically showing an overall configuration of an exposure apparatus having a light source unit according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a positional relationship between an arc-shaped exposure region (ie, an effective exposure region) formed on a wafer and an optical axis.
  • FIG. 3 is a diagram schematically showing an internal configuration of a light source unit and an illumination optical system of FIG.
  • FIG. 4 is a diagram schematically showing an internal configuration of a light source main body.
  • FIG. 5 is a diagram schematically showing a configuration of a condensing optical system according to a numerical example of the present embodiment.
  • FIG. 6 is a diagram for explaining the inconvenience of a configuration in which DPP divergent light from a DPP light source body is simply condensed by one concave reflecting mirror.
  • FIG. 7 is a diagram for explaining the inconvenience of the configuration in which the divergent DPP light from the DPP light source body is collected by a nested oblique incidence mirror.
  • FIG. 8 is a diagram for explaining the inconvenience of the configuration in which the DPP divergent light from the DPP light source main body is condensed by the Schwarzschild optical system.
  • FIG. 9 is a diagram schematically showing an example of a cooling mechanism for cooling each reflecting mirror of the light collecting optical system.
  • FIG. 10 is a diagram schematically showing an example of a position measuring system for measuring the position of a reflecting surface of a reflecting mirror constituting a light collecting optical system.
  • FIG. 11A is a perspective view schematically showing an example of a debris removing mechanism for removing in a light path between a pair of reflecting mirrors constituting a light collecting optical system.
  • FIG. 1 IB is a view schematically showing an example of a debris removing mechanism for removing in a light path between a pair of reflecting mirrors constituting a focusing optical system, and is a cross-sectional view along an optical axis. Is shown.
  • FIG. 12 is a diagram schematically showing an example in which the debris removing mechanism of the present embodiment is applied to a Schwarzschild condensing optical system.
  • FIG. 13 is a flowchart showing an example of a technique for obtaining a semiconductor device as a micro device.
  • FIG. 1 is a view schematically showing an overall configuration of an exposure apparatus having a light source unit according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a positional relationship between an arc-shaped exposure area (ie, an effective exposure area) formed on a wafer and an optical axis.
  • the Z axis is set in the plane of the wafer
  • the Y axis is set in a direction parallel to the plane of FIG. 1
  • the X axis is set in the wafer plane in a direction perpendicular to the plane of FIG.
  • the exposure apparatus shown in FIG. 1 includes a DPP II type light source unit 1 for supplying exposure light.
  • the EUV light supplied from the light source unit 1 is
  • the wavelength selection filter selectively transmits only EUV light near a predetermined wavelength (for example, 13.5 nm or 11.5 nm) from the EUV light supplied from the light source unit 1, It has the property of blocking transmission of wavelength light.
  • the EUV light 3 transmitted through the wavelength selection filter passes through the illumination optical system 2 and the plane reflecting mirror 4 and is a reflective mask on which a pattern to be transferred is formed.
  • the mask M is held by a mask stage 5 that can move in the Y direction so that the pattern surface extends along the XY plane.
  • the movement of the mask stage 5 is configured to be measured by the laser interferometer 6.
  • the illuminated light from the pattern of the mask M passes through a reflective projection optical system PL to form an image of the mask pattern on a wafer W as a photosensitive substrate. That is, on the wafer W, as shown in FIG. 2, for example, an elongated arc-shaped exposure region symmetrical with respect to the Y axis (that is, a static exposure region) is formed.
  • the length in the X direction is LX so as to touch the image circle IF.
  • An effective exposure area ER having an arc shape having a length of LY in the Y direction is set on the wafer W.
  • the wafer W is arranged along the X direction and the Y direction so that the exposure surface extends along the XY plane. It is held by a dimensionally movable wafer stage 7.
  • the movement of the wafer stage 7 is configured to be measured by a laser interferometer 8 as in the case of the mask stage 5.
  • FIG. 3 is a diagram schematically showing an internal configuration of a light source unit and an illumination optical system of FIG.
  • FIG. 4 is a diagram schematically showing an internal configuration of the light source main body.
  • the light source unit 1 includes a light source body 11 for supplying DPP divergent light, and a condensing optical system 1 for condensing the DPP divergent light from the light source body 11 at a predetermined position. And two. As shown in FIG. 4, the light source body 11 applies a voltage between two electrodes 11 a and 11 b arranged at an interval and two electrodes 11 a and 11 b. And a power supply source 11 c for applying the power.
  • the light source body 11 With the target material inserted between the power source electrode 11a and the anode electrode 11b, a voltage is applied from the power supply source 11c, and the second power source is applied. Discharge occurs between the one electrode 11a and the second electrode 11b as an anode, and the plasma generated by the discharge current is converged by electromagnetic force, resulting in a high-temperature, high-density plasma. EUV light is emitted from this plasma.
  • Xenon (Xe) gas-tin (Sn) or the like is used as the target material.
  • the condensing optical system 12 has, in order from the light source body 11 side, a convex reflecting mirror 12b having a through hole formed in the center, and a through hole formed in the center similarly.
  • a concave reflecting mirror 12a Provided with a concave reflecting mirror 12a.
  • the concave reflecting mirror 12a as the first reflecting mirror has a concave reflecting surface toward the light source body 11, and the convex reflecting mirror 12b as the second reflecting mirror is a concave reflecting mirror 1. It has a reflective surface that is convex toward 2a.
  • the DPP divergent light emitted from the light emitting point of the light source body 11 enters the concave reflecting mirror 12a via the through hole of the convex reflecting mirror 12b.
  • the light reflected by the reflecting surface of the concave reflecting mirror 12a is reflected by the reflecting surface of the convex reflecting mirror 12b, and then passes through the through hole of the concave reflecting mirror 12a to a predetermined point 12c. Focus on
  • the EUV light from the light source unit 1 (1 1, 1 2) is focused once at the focal point 12 c, and then a pinhole member (not shown) placed near the focal point 12 c ).
  • the EUV light that has passed through the pinhole member is converted into a substantially parallel light beam through the concave reflecting mirror 13, and is formed by a pair of fly-eye mirrors 14 a and 14 b.
  • a fly-eye mirror disclosed by the present applicant in Japanese Patent Application Laid-Open No. H11-3132638 can be used.
  • the related description in the publication can be referred to.
  • a substantial surface light source having a predetermined shape is formed in the vicinity of the reflection surface of the second fly-eye mirror 14b, that is, in the vicinity of the emission surface of the optical integrator 14.
  • the light from the substantial surface light source is deflected by the plane reflecting mirror 4 and forms an elongated arc-shaped illumination area on the mask M via a field stop (not shown).
  • Light from the illuminated pattern of the mask M forms an image of the mask pattern on the wafer W via the projection optical system PL.
  • FIG. 5 is a diagram schematically showing a configuration of a condensing optical system according to a numerical example of the present embodiment.
  • This numerical example shows an example of the light-converging optical system 12 whose aberration has been corrected relatively well.
  • Table (1) lists the values of the specifications of the condensing optical system 12 according to the numerical example shown in FIG.
  • is the wavelength of the exposure light (EUV light)
  • is the light emission point (light emission area)
  • the size of the lid object height
  • NA is the object side (light source unit side) aperture.
  • Each represents a number.
  • the surface number is the order of the optical surfaces from the light source unit side
  • r is the radius of curvature (mm) of each optical surface
  • d is the on-axis spacing of each optical surface. That is, the surface spacing (mm) is shown. It is assumed that the sign of the value of the surface distance d changes each time the light is reflected.
  • FIG. 6 shows a configuration in which the DPP divergent light from the DPP light source main body 60 is simply condensed by one concave reflecting mirror 61.
  • a relatively large structure (not shown) for generating a discharge is provided around the pair of electrodes 60a and 60b. The light having received the light-condensing action is blocked by the structure before reaching the light-condensing point 62.
  • FIG. 7 shows a configuration in which DPP divergent light from a light emitting point 72 of a DPP light source main body (not shown) is condensed to a converging point 73 by an incident oblique incidence mirror 71.
  • a part of the light beam is blocked by the oblique incidence mirror 71 having a part of an ellipsoidal sphere having a focal point at the light emitting point 72 and the condensing point 73 and having a reflecting surface, so Since high-frequency undulations occur in the light intensity distribution of the received light beam, the uniformity of the illuminance on the wafer W is adversely affected.
  • FIG. 8 shows a configuration in which DPP divergent light from a light emitting point 80 of a DPP light source main body (not shown) is condensed to a converging point 82 by a Cyval schild optical system 81.
  • the central part of the light beam is focused on the convex reflecting mirror 81 of the Schwarsschild optical system 81. It is largely blocked by b. As a result, a very large light amount loss occurs in the Schwarzschild optical system 81, and the transmission efficiency becomes very poor.
  • the 0? Divergent light from the 0? Light source body 11 is convex.
  • the light enters the concave reflecting mirror 12a through the central through hole of the surface reflecting mirror 12b.
  • the light reflected by the reflecting surface of the concave reflecting mirror 12a is reflected by the reflecting surface of the convex reflecting mirror 12b, and then passes through the central through-hole of the concave reflecting mirror 12a to a condensing point 12c.
  • the central through hole of the convex reflecting mirror 12 b and the concave reflecting mirror 12 a can be kept relatively small.
  • the divergent light from the luminous source body 11 is composed of a concave reflecting mirror 12a and a convex reflecting mirror 12b along the optical axis AX, and is a relatively well-corrected condensing optic.
  • the structure around the pair of electrodes 11a and 11b that is, the structure around the light emitting point 11d becomes an obstacle.
  • the DPP divergent light from the DPP light source main body 11 can be condensed at a predetermined converging point 12c with a desired light intensity distribution while suppressing the loss of light amount. Therefore, the exposure apparatus of the present embodiment uses EUV light 3 supplied from the light source unit 1 which can suppress the light quantity loss and collect the DPP divergent light with a desired light intensity distribution.
  • the pattern of the mask M can be faithfully transferred onto the wafer W with high throughput.
  • the condensing optical system 12 for condensing the DPP divergent light from the DPP light source main body 11 includes a concave reflecting mirror 12a as a first reflecting mirror and a converging reflecting mirror 12a as a second reflecting mirror. It comprises a convex reflecting mirror 12b.
  • a plane reflecting mirror or a concave reflecting mirror may be used as the second reflecting mirror.
  • the reflecting surfaces of the reflecting mirrors 12a and 12b are spherical. However, it is needless to say that the reflecting surfaces may be conical curves, aspheric surfaces, or free-form surfaces.
  • a through-hole is formed at the center of each of the pair of reflecting mirrors constituting the condensing optical system 12.
  • the present invention is not limited to this, and various modifications can be made to the formation position of the through hole of each reflecting mirror, similarly to the power arrangement of each reflecting mirror.
  • the DPP type light source is used as the EUV light source.
  • the concave reflecting mirror 12a and the convex reflecting mirror 12b are not only affected by the irradiation heat of the DPP diverging light, but also have a value of 0? Radiation heat from the light source body 11 is also affected.
  • the body of the concave reflecting mirror 12a and the material having high additivity and high thermal conductivity, such as silicon (Si), aluminum (A1), and copper (Cu), are used.
  • a 12b body is formed.
  • heat transmitted from the front surface (reflection surface) of each reflecting mirror can be quickly transmitted to the back surface, and the heat can be removed from each reflecting mirror by, for example, the action of an appropriate cooling mechanism.
  • FIG. 9 is a diagram schematically showing an example of a cooling mechanism for cooling each reflecting mirror of the condensing optical system.
  • heat pipes 20a and 20b are attached to the back surface of the concave reflecting mirror 12a and the back surface of the convex reflecting mirror 12b, respectively, which constitute the condensing optical system 12 so as to be in close contact with each other. ing.
  • heat pipes 20a and 2 are attached to the back surface of the concave reflecting mirror 12a and the back surface of the convex reflecting mirror 12b, respectively, which constitute the condensing optical system 12 so as to be in close contact with each other. ing.
  • heat pipes 20a and 2 are attached to the back surface of the concave reflecting mirror 12a and the back surface of the convex reflecting mirror 12b, respectively, which constitute the condensing optical system 12 so as to be in close contact with each other. ing.
  • heat pipes 20a and 2 are attached to the back surface of the concave reflecting mirror 12a and the back surface of the convex reflecting
  • the cooling mechanism applicable to each of the reflecting mirrors 12a and 12b of the condensing optical system 12 is not limited to the configuration example of FIG.
  • the concave reflecting mirror 12a and the convex reflecting mirror 12b constituting the condensing optical system 12 control the influence of the radiant heat from the DPP light source main body 11 and the influence of the irradiation heat of the DPP divergent light. Therefore, it is preferable to be configured to be exchangeable.
  • the concave reflecting mirror 12a whose reflecting surface is directly exposed to the DPP light source Since it is expected that replacement will be required frequently, it is desirable that the configuration be easily replaceable.
  • FIG. 10 is a diagram schematically showing an example of a position measuring system for measuring the position of a reflecting surface of a reflecting mirror constituting a light collecting optical system.
  • a position measuring system for measuring the position of a reflecting surface of a reflecting mirror constituting a light collecting optical system.
  • light from the mask 21a, 21b, 21c is transmitted to the front group 22a, 22b, 22c of the imaging optical system, and the concave reflector 12a.
  • a mask pattern is formed on the screen (or CCD) 24a, 24b, 24c via the reflecting surface of the above and the rear group 23a, 23b, 23c of the imaging optical system.
  • a new concave reflector 12a is replaced when the concave reflector 12a is replaced.
  • Positioning can be performed with high accuracy.
  • the position measurement system 21 to 24
  • a new convex reflecting mirror 12b is positioned with high accuracy using the position measurement system (21-24) having the same configuration as that of Fig. 10. Or the degree of dirt on the reflecting surface of the convex reflecting mirror 12b can be detected.
  • the configuration of the measuring system for measuring the position of the reflecting surface of each reflecting mirror and detecting the degree of contamination of the reflecting surface is not limited to the configuration example shown in FIG. It is possible.
  • the debris emitted from the DPP light source body 11 is placed in an optical path between the concave reflecting mirror 12a (first reflecting mirror) and the convex reflecting mirror 12b (second reflecting mirror). It is preferable to have a debris removal mechanism for removal.
  • FIGS. 11A and 11B are diagrams schematically showing an example of a debris removing mechanism for removing in a light path between a pair of reflecting mirrors constituting a condensing optical system.
  • FIG. A shows a perspective view
  • FIG. 11B shows a cross-sectional view along the optical axis.
  • the debris removing mechanism has a cylindrical casing 25 for surrounding the space between the concave reflecting mirror 12a and the convex reflecting mirror 12b.
  • a small amount of a predetermined gas having a relatively high transmittance for EUV light is introduced into this space through the gas inlet 25a.
  • the casing 25 is formed of a metal such as stainless steel, copper, or aluminum, and is connected to the ground potential.
  • a metal such as stainless steel, copper, or aluminum
  • As introducible predetermined gas for example, such as helium (He), argon (Ar), neon (N e), xenon (Xe), krypton (Kr), nitrogen (N 2), oxygen (0 2), ozone ( 0 3 ) can be used.
  • the debris removing mechanism includes a plurality of plate members 26 having a cross section extending radially around the optical axis AX.
  • the plurality of plate members 26 are formed of, for example, a metal such as stainless steel, copper, or aluminum, and are configured such that a positive potential (about several tens of volts to several kV) is applied by a power supply. In other words, a predetermined voltage is set between the plurality of plate members 26 and the casing 25. Further, the plurality of plate members 26 are configured to be integrally rotatable about the optical axis AX. Furthermore, the casing 25 and the plurality of plate members 26 are configured to be able to be cooled by a suitable cooling mechanism (not shown).
  • the debris when the debris is ionized to a positive value, it adheres and deposits on the inner surface of the casing 25 connected to the ground potential.
  • the same potential as or higher than that of the plurality of plate members 26 is applied to the multilayer reflective film coated on the surface of each of the reflecting mirrors 12a and 12b, so that the reflecting surface Adhesion and deposition of debris on the surface can be prevented.
  • an easily peelable sheet an insulating material such as paper, resin, or ceramics, or a metal foil such as aluminum or copper
  • debris may be attached and deposited on the sheet. . In this case, it is possible to easily return to a clean environment simply by changing the sheet after waiting for a large amount of debris to adhere to the sheet.
  • the inside of the casing 25 is opened through an opening (or a light transmitting part) formed in a part of the casing 25.
  • UV light may be introduced into the device, and the action of the UV light may be used to promote ionization of debris.
  • a mercury lamp, an excimer lamp, an excimer laser, or the like can be used as a light source for supplying ultraviolet light.
  • debris may be ionized by introducing an electron beam from the electron source into the casing 25.
  • the plurality of plate members 26 are integrally rotated around the optical axis AX.
  • a positive potential is applied to the plurality of plate members 26, but the invention is not limited thereto, and a negative potential is applied to the plurality of plate members 26. It may be applied.
  • the potential to be applied may be DC or AC.
  • an AC potential is applied, various aspects of the frequency are possible.
  • FIG. 12 is a diagram schematically showing an example in which the debris removing mechanism of the present embodiment is applied to a Schwarzschild condensing optical system.
  • an EUV light source 43 by a DPF (Dense Plasma Focus) method is arranged inside a vacuum vessel 41.
  • the vacuum container 41 is evacuated to a vacuum (eg, 0.1 lTorr or less) by an exhaust device (not shown).
  • EUV light 45 is emitted from plasma 44 generated near the electrode.
  • the emitted EUV light 45 is reflected by a concave reflecting mirror (first reflecting mirror) 46 coated with a Mo / Si multilayer film, and a convex reflecting mirror (second reflecting mirror) similarly coated with a Mo / Si multilayer film.
  • the multilayer film coated on the concave reflecting mirror 46 and the convex reflecting mirror 47 is formed so as to have a peak in reflectance with respect to light having a wavelength of 13.5 nm.
  • EUV light guided to the subsequent optical system after passing through the pinhole 52 is only light having a wavelength near 13.5 nm.
  • the concave reflecting mirror 46 and the convex reflecting mirror 47 are fixed in a casing 48.
  • a gas introduction port 49 is attached to the casing 48, and He gas is introduced from the port 49 into the casing 48.
  • a plurality of aluminum blades 50 are attached so as to be parallel to the optical path.
  • the wing 50 is configured to be rotatable about the optical axis. The rotation of the wings 50 is performed by an ultrasonic motor or an electric motor.
  • the casing 48 is attached to the wall of the vacuum vessel 41.
  • a vacuum vessel 42 is provided next to the vacuum vessel 41, and the vacuum vessels 41 and 42 communicate with each other only through an opening through which EUV light passes.
  • the vacuum container 42 is evacuated separately from the vacuum container 41 by a vacuum exhaust device (not shown).
  • a vacuum exhaust device not shown.
  • the debris that has entered the casing 48 is collided and scattered by the He gas introduced from the port 49, rapidly loses its energy, and floats inside the casing 48.
  • the debris floating in the casing 48 collides with the inner wall of the blade 50 5 casing 48 and is adsorbed. As a result, the amount of debris adhering and accumulating on the concave reflecting mirror 46 and the convex reflecting mirror 47 is greatly reduced, and a decrease in the reflectance of each reflecting mirror can be suppressed.
  • the cylindrical member 51 is arranged near the EUV light beam in the vacuum container 42, debris that has entered the vacuum container 42 collides with the inner wall of the cylindrical member 51 and is adsorbed. It is possible to reduce the inflow of debris downstream of 52. Cooling the casing 48, the wings 50, and the tubular member 51 is preferable because the probability that the adsorbed debris is re-emitted is reduced, and the adsorption efficiency is further increased. As the cooling method, cooling with a refrigerant (a liquid such as water), electronic cooling of a Peltier element, or cooling with a heat pipe may be used. If the degree of vacuum downstream of the pinhole 52 is better without the tubular member 51, the installation of the tubular member 51 may be omitted.
  • a refrigerant a liquid such as water
  • the mask is illuminated by the illumination system (illumination step), and a transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step).
  • micro devices semiconductor devices, imaging devices, liquid crystal display devices, thin-film magnetic heads, etc.
  • a predetermined circuit pattern is formed on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the wafer of the lot.
  • the pattern image on the mask (reticle) is sequentially exposed to each shot area on the wafer of the lot through the projection optical system. Transcribed.
  • step 304 the photoresist on the lot in the lot is developed, and in step 305, etching is performed on the wafer in the lot using the resist pattern as a mask. Thereby, a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer. Thereafter, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput. Industrial potential
  • the light source unit of the present invention is arranged in a light source body for supplying EUV light, a first reflecting mirror having a through hole, and an optical path between the light source body and the first reflecting mirror. And a second reflecting mirror having a through hole.
  • the DPP divergent light from the DPP light source body is condensed to a predetermined light condensing point with a desired light intensity distribution while suppressing the loss of light amount without causing any obstacles around the light emitting point be able to. Therefore, in the exposure apparatus and the exposure method of the present invention, the mask pattern is formed by using EUV light supplied from a light source unit capable of condensing DPP divergent light with a desired light intensity distribution while favorably suppressing a light amount loss. Can be faithfully transferred onto a photosensitive substrate with high throughput, and a high-precision microdevice can be manufactured with high throughput.

Abstract

A light source unit is disclosed which can focus DPP diverging light rays with a desired light intensity distribution by effectually suppressing loss of light quantity without being obstructed by structural bodies around the light-emitting point. The light source unit comprises a light source main body (11) wherein a target material is transformed into a plasma and an EUV light is emitted from the plasma, a first reflecting mirror (12a) having a through hole, and a second reflecting mirror (12b) which is arranged in the optical path between the light source main body and the first reflecting mirror and has a through hole. The light source unit focuses the EUV light on a certain point (12c) via the through hole of the second reflecting mirror, the reflective surface of the first reflecting mirror, the reflective surface of the second reflecting mirror and the through hole of the first reflecting mirror.

Description

明 細 書 光源ユニット、 照明光学装置、 露光装置および露光方法 技術分野  Description Light source unit, illumination optical device, exposure apparatus and exposure method
本発明は、 光源ユニット、 照明光学装置、 露光装置および露光方法に関する。 さらに詳細には、 本発明は、 5〜50 nm程度の波長を有する EUV光 (極端紫 外線) を用いて半導体素子などのマイクロデバイスをフォトリソグラフィ工程で 製造するのに使用される露光装置に好適な光源ュニットに関するものである。 背景技術  The present invention relates to a light source unit, an illumination optical device, an exposure device, and an exposure method. More specifically, the present invention is suitable for an exposure apparatus used to manufacture a micro device such as a semiconductor device in a photolithography process using EUV light (extreme ultraviolet light) having a wavelength of about 5 to 50 nm. Related to a light source unit. Background art
この種の露光装置では、 転写すべき回路パターンの微細化に伴って解像力の一 層の向上が要求されており、 露光光としてより短波長の光を用いるようになって いる。 なお、 本明細書における 「光」 とは、 目で見える狭義の 「光」 だけではな く、 電磁波のうち lmmよりも短い波長を有する、 いわゆる赤外線から X線まで を含む広義の 「光」 を意味する。 近年、 次世代装置として、 5〜50 nm程度の 波長を有する EUV (Extreme Ultraviolet) 光を用いる露光装置 (以下、 「EU VL (Extreme Ultraviolet Li thography:極紫外リソグラフィ) 露光装置」 と いう) が提案されている。  In this type of exposure apparatus, further improvement in resolution is required as the circuit pattern to be transferred becomes finer, and shorter wavelength light is used as exposure light. In this specification, the term “light” refers not only to the narrow sense of light that can be seen by the naked eye, but also to the broad sense of light that includes wavelengths shorter than lmm among electromagnetic waves, including so-called infrared rays to X-rays. means. In recent years, an exposure apparatus using EUV (Extreme Ultraviolet) light having a wavelength of about 5 to 50 nm has been proposed as a next-generation apparatus (hereinafter referred to as “EU VL (Extreme Ultraviolet Lithography) exposure apparatus”). Have been.
現在、 EUV光を供給する光源として、 以下に示す 3つのタイプの光源が提案 されている。  At present, the following three types of light sources have been proposed as light sources that supply EUV light.
(1) SR (シンクロトロン放射光) を供給する光源  (1) Light source that supplies SR (synchrotron radiation)
(2) レーザ光をターゲット上に集光し、 ターゲットをプラズマ化して EUV光 を得る LP P (Laser Produced Plasma) 光源  (2) LPP (Laser Produced Plasma) light source that focuses laser light on the target and converts the target into plasma to obtain EUV light
(3) DPP (Discharge Produced Plasma) 光源。 ターゲット物質からなる電 極、 あるいは電極間に夕一ゲット物質が存在する状態で電極間に電圧を印加する と、 ある電圧を越えたところで電極間で放電が生じ、 ターゲット材料をプラズマ 化する。 この放電によって電極間に大電流が流れ、 この電流によって生じる磁場 によりプラズマ自身が微小空間内に圧縮され、 プラズマ温度を上昇させる。 この 高温プラズマから E U V光が放出される。 このように、 放電によりプラズマにェ ネルギーを供給し (励起し)、 E U V光を放出させる光源を一般に D P P光源と 呼ぶ。 (3) DPP (Discharge Produced Plasma) light source. When a voltage is applied between the electrodes in the presence of an electrode made of a target material or an overnight get material between the electrodes, a discharge occurs between the electrodes when a certain voltage is exceeded, and the target material is turned into plasma. This discharge causes a large current to flow between the electrodes, and the magnetic field generated by this current As a result, the plasma itself is compressed in the minute space and raises the plasma temperature. EUV light is emitted from this high-temperature plasma. A light source that supplies (excited) energy to plasma by discharge and emits EUV light is generally called a DPP light source.
上述の D P P光源や L P P光源では、 所定の発光点より発散光が射出されるが、 この発散光の射出に伴ってデブリ (飛散粒子) も放出される。 以下、 D P P光源 および L P P光源を 「プラズマ光源」 と総称する。 そこで、 プラズマ光源から供 給される発散光すなわちプラズマ発散光を一旦集光させ、 この集光点の近傍に配 置されたピンホール部材によりデブリを遮る必要がある。 従来技術では、 発光点 の周りの構造物が障害になり、 光量損失を良好に抑えて所望の光強度分布でブラ ズマ発散光を集光させる構成が提案されていない。  In the above-described DPP light source and LPP light source, divergent light is emitted from a predetermined light emitting point, and debris (scattered particles) is also emitted with the emission of the divergent light. Hereinafter, the DPP light source and the LPP light source are collectively referred to as “plasma light source”. Therefore, it is necessary to once collect the divergent light supplied from the plasma light source, that is, the divergent plasma light, and block debris with a pinhole member arranged near the converging point. In the prior art, no structure has been proposed in which a structure around the light emitting point becomes an obstacle, and the loss of light quantity is suppressed favorably to collect the divergent light with a desired light intensity distribution.
本発明は、 前述の課題に鑑みてなされたものであり、 発光点の周りの構造物が 障害になることなく、 光量損失を良好に抑えて所望の光強度分布で D P P発散光 を集光させることのできる光源ュニットを提供することを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and does not obstruct structures around a light-emitting point, suppresses light quantity loss, and collects DPP divergent light with a desired light intensity distribution. It is an object of the present invention to provide a light source unit that can be used.
また、 本発明では、 光量損失を良好に抑えて所望の光強度分布で D P P発散光 を集光させることのできる光源ュニットから供給される E U V光を用いて、 マス クパターンを感光性基板上に忠実に且つ高スループッ 1、で転写することのできる 露光装置および露光方法を提供することを目的とする。 発明の開示  Further, in the present invention, a mask pattern is formed on a photosensitive substrate by using EUV light supplied from a light source unit capable of concentrating DPP divergent light with a desired light intensity distribution while favorably suppressing a light quantity loss. An object of the present invention is to provide an exposure apparatus and an exposure method capable of transferring images with high fidelity and high throughput. Disclosure of the invention
前記課題を解決するために、 本発明の第 1形態では、 標的材料をプラズマ化し、 該プラズマから E U V光を放出する光源本体と、 貫通孔を有する第 1反射鏡と、 前記光源本体と前記第 1反射鏡との間の光路中に配置されて貫通孔を有する第 2 反射鏡とを備え、  In order to solve the above-mentioned problems, in a first embodiment of the present invention, a target material is turned into plasma, a light source body that emits EUV light from the plasma, a first reflecting mirror having a through-hole, A second reflector having a through-hole disposed in the optical path between the 1 reflector and
前記 E UV光を、 前記第 2反射鏡の貫通孔、 前記第 1反射鏡の反射面、 前記第 2反射鏡の反射面、 および前記第 1反射鏡の貫通孔を介して、 所定の位置に集光 することを特徴とする光源ュニットを提供する。  The EUV light is positioned at a predetermined position through the through-hole of the second reflecting mirror, the reflecting surface of the first reflecting mirror, the reflecting surface of the second reflecting mirror, and the through-hole of the first reflecting mirror. Provided is a light source unit characterized by focusing.
第 1形態の好ましい態様によれば、 前記第 1反射鏡は、 凹面状の反射面を有す る。 この場合、 前記第 2反射鏡は、 凸面状の反射面、 平面状の反射面、 または凹 面状の反射面を有することが好ましい。 また、 第 1形態では、 前記貫通孔は、 前 記第 1反射鏡の中央および前記第 2反射鏡の中央にそれぞれ形成されていること が好ましい。 According to a preferred mode of the first mode, the first reflecting mirror has a concave reflecting surface You. In this case, it is preferable that the second reflecting mirror has a convex reflecting surface, a flat reflecting surface, or a concave reflecting surface. In the first embodiment, it is preferable that the through holes are formed at the center of the first reflecting mirror and the center of the second reflecting mirror, respectively.
また、 第 1形態の好ましい態様によれば、 前記第 1反射鏡の本体および前記第 2反射鏡の本体は、 シリコン、 アルミニウム、 または銅により形成されている。 また、 前記第 1反射鏡および前記第 2反射鏡を冷却するための冷却機構をさらに 備えていることが好ましい。 また、 前記第 1反射鏡および前記第 2反射鏡は交換 可能に構成されていることが好ましい。 また、 前記第 1反射鏡の反射面の位置お よび前記第 2反射鏡の反射面の位置を計測するための位置計測手段をさらに備え ていることが好ましい。 さらに、 第 1形態の好ましい態様によれば、 前記光源本 体から放出されるデブリを前記第 1反射鏡と前記第 2反射鏡との間の光路中にお いて除去するためのデブリ除去機構をさらに備えている。  According to a preferred mode of the first mode, the main body of the first reflecting mirror and the main body of the second reflecting mirror are formed of silicon, aluminum, or copper. Further, it is preferable that a cooling mechanism for cooling the first reflecting mirror and the second reflecting mirror is further provided. Further, it is preferable that the first reflecting mirror and the second reflecting mirror are configured to be exchangeable. Preferably, the apparatus further comprises a position measuring means for measuring the position of the reflecting surface of the first reflecting mirror and the position of the reflecting surface of the second reflecting mirror. Further, according to a preferred aspect of the first embodiment, a debris removing mechanism for removing debris emitted from the light source body in an optical path between the first reflecting mirror and the second reflecting mirror is provided. It also has more.
本発明の第 2形態では、 標的材料をプラズマ化し 該プラズマから E U V光を 放出する光源本体と、 貫通孔を有する第 1反射鏡と、 前記光源本体と前記第 1反 射鏡との間の光路中に配置された第 2反射鏡とを備え、  According to a second embodiment of the present invention, a light source body for plasmatizing a target material and emitting EUV light from the plasma, a first reflector having a through hole, and an optical path between the light source body and the first reflector With a second reflecting mirror arranged inside,
前記光源本体から放出されるデブリを前記第 1反射鏡と前記第 2反射鏡との間 の光路中において除去するためのデブリ除去機構をさらに備え、  A debris removing mechanism for removing debris emitted from the light source main body in an optical path between the first reflecting mirror and the second reflecting mirror;
前記 E U V光を、 前記第 1反射鏡の反射面、 前記第 2反射鏡の反射面、 および 前記第 1反射鏡の貫通孔を介して、 所定の位置に集光することを特徴とする光源 ュニットを提供する。  A light source unit that focuses the EUV light at a predetermined position via a reflecting surface of the first reflecting mirror, a reflecting surface of the second reflecting mirror, and a through hole of the first reflecting mirror. I will provide a.
第 1形態および第 2形態の好ましい態様によれば、 前記デブリ除去機構は、 前 記第 1反射鏡と前記第 2反射鏡との間の空間を包囲するためのケーシングを有す る。 この場合、 前記空間には所定ガスが導入されていることが好ましい。 また、 この場合、 前記所定ガスは、 ヘリウム、 アルゴン、 ネオン、 キセノン、 クリプ卜 ン、 窒素、 酸素またはオゾンであることが好ましい。 また、 第 1形態および第 2 形態の好ましい態様によれば、 前記デブリ除去機構は、 光軸を中心として放射状 に延びる断面を有する複数のプレート部材を備えている。 この場合、 前記複数の プレート部材および前記ケ一シングは、 冷却可能に構成されていることが好まし い。 また、 前記複数のプレート部材と前記ケーシングとの間には所定の電圧が印 加されていることが好ましい。 また、 前記複数のプレート部材は、 前記光軸を中 心として回転可能に構成されていることが好ましい。 According to a preferred mode of the first mode and the second mode, the debris removing mechanism has a casing for surrounding a space between the first reflecting mirror and the second reflecting mirror. In this case, it is preferable that a predetermined gas is introduced into the space. In this case, the predetermined gas is preferably helium, argon, neon, xenon, crypton, nitrogen, oxygen, or ozone. According to a preferred embodiment of the first and second embodiments, the debris removing mechanism includes a plurality of plate members having a cross section extending radially around the optical axis. In this case, the plurality It is preferable that the plate member and the casing are configured to be coolable. Further, it is preferable that a predetermined voltage is applied between the plurality of plate members and the casing. Further, it is preferable that the plurality of plate members are configured to be rotatable around the optical axis.
本発明の第 3形態では、 第 1形態または第 2形態の光源ユニットと、 該光源ュ ニットからの E U V光を被照射面へ導くための導光光学系とを備えていることを 特徴とする照明光学装置を提供する。  According to a third aspect of the present invention, there is provided a light source unit according to the first or second aspect, and a light guiding optical system for guiding EUV light from the light source unit to a surface to be irradiated. An illumination optical device is provided.
本発明の第 4形態では、 所定のパターンが形成された反射型のマスクを照明す るための第 3形態の照明光学装置と、 前記マスクのパターン像を感光性基板上に 形成するための投影光学系とを備えていることを特徴とする露光装置を提供する。 この場合、 前記投影光学系に対して前記マスクおよび前記感光性基板を所定方向 に沿って相対移動させて前記マスクのパターンを前記感光性基板上へ投影露光す ることが好ましい。  According to a fourth aspect of the present invention, there is provided an illumination optical device according to the third aspect for illuminating a reflective mask on which a predetermined pattern is formed, and a projection for forming a pattern image of the mask on a photosensitive substrate. An exposure apparatus comprising an optical system. In this case, it is preferable that the mask and the photosensitive substrate are moved relative to the projection optical system along a predetermined direction to project and expose the pattern of the mask onto the photosensitive substrate.
本発明の第 5形態では、 第 3形態の照明光学装置を用いて所定のパターンが形 成された反射型のマスクを照明する照明工程と、 投影光学系を介して前記マスク のパターンを前記感光性基板上へ投影露光する露光工程とを含むことを特徴とす る露光方法を提供する。 この場合 前記露光工程では、 前記投影光学系に対して 前記マスクおよび感光性基板を所定方向に沿って相対移動させて前記マスクのパ ターンを前記感光性基板上へ投影露光することが好ましい。 図面の簡単な説明  In a fifth aspect of the present invention, an illumination step of illuminating a reflective mask on which a predetermined pattern is formed using the illumination optical device of the third aspect, and exposing the pattern of the mask to the light through a projection optical system. And an exposure step of projecting and exposing on a reactive substrate. In this case, in the exposing step, it is preferable that the mask and the photosensitive substrate are relatively moved along the predetermined direction with respect to the projection optical system to project and expose the pattern of the mask onto the photosensitive substrate. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態にかかる光源ュニットを備えた露光装置の全体構 成を概略的に示す図である。  FIG. 1 is a view schematically showing an overall configuration of an exposure apparatus having a light source unit according to an embodiment of the present invention.
第 2図は、 ウェハ上に形成される円弧状の露光領域 (すなわち実効露光領域) と光軸との位置関係を示す図である。  FIG. 2 is a diagram showing a positional relationship between an arc-shaped exposure region (ie, an effective exposure region) formed on a wafer and an optical axis.
第 3図は、 第 1図の光源ュニットおよび照明光学系の内部構成を概略的に示す 図である。  FIG. 3 is a diagram schematically showing an internal configuration of a light source unit and an illumination optical system of FIG.
第 4図は、 光源本体の内部構成を概略的に示す図である。 第 5図は、 本実施形態の数値実施例にかかる集光光学系の構成を概略的に示す 図である。 FIG. 4 is a diagram schematically showing an internal configuration of a light source main body. FIG. 5 is a diagram schematically showing a configuration of a condensing optical system according to a numerical example of the present embodiment.
第 6図は、 D P P光源本体からの D P P発散光を単純に 1つの凹面反射鏡によ り集光させる構成の不都合を説明する図である。  FIG. 6 is a diagram for explaining the inconvenience of a configuration in which DPP divergent light from a DPP light source body is simply condensed by one concave reflecting mirror.
第 7図は、 D P P光源本体からの D P P発散光を入れ子状の斜入射ミラーによ り集光させる構成の不都合を説明する図である。  FIG. 7 is a diagram for explaining the inconvenience of the configuration in which the divergent DPP light from the DPP light source body is collected by a nested oblique incidence mirror.
第 8図は、 D P P光源本体からの D P P発散光をシュバルッシルド光学系によ り集光させる構成の不都合を説明する図である。  FIG. 8 is a diagram for explaining the inconvenience of the configuration in which the DPP divergent light from the DPP light source main body is condensed by the Schwarzschild optical system.
第 9図は、 集光光学系の各反射鏡を冷却する冷却機構の一例を概略的に示す図 である。  FIG. 9 is a diagram schematically showing an example of a cooling mechanism for cooling each reflecting mirror of the light collecting optical system.
第 1 0図は、 集光光学系を構成する反射鏡の反射面位置を計測する位置計測系 の一例を概略的に示す図である。  FIG. 10 is a diagram schematically showing an example of a position measuring system for measuring the position of a reflecting surface of a reflecting mirror constituting a light collecting optical system.
第 1 1 A図は、 集光光学系を構成する一対の反射鏡間の光路中において除去す るためのデブリ除去機構の一例を概略的に示す図であって、 斜視図を示している。 第 1 I B図は、 集光光学系を構成する一対の反射鏡間の光路中において除去す るためのデブリ除去機構の一例を概略的に示す図であって、 光軸に沿った断面図 を示している。  FIG. 11A is a perspective view schematically showing an example of a debris removing mechanism for removing in a light path between a pair of reflecting mirrors constituting a light collecting optical system. FIG. 1 IB is a view schematically showing an example of a debris removing mechanism for removing in a light path between a pair of reflecting mirrors constituting a focusing optical system, and is a cross-sectional view along an optical axis. Is shown.
第 1 2図は、 本実施形態のデブリ除去機構をシュバルッシルド集光光学系に適 用した例を概略的に示す図である。  FIG. 12 is a diagram schematically showing an example in which the debris removing mechanism of the present embodiment is applied to a Schwarzschild condensing optical system.
第 1 3図は、 マイクロデバイスとしての半導体デバイスを得る際の手法の一例 について、 そのフローチャートを示す図である。 発明を実施するための最良の形態  FIG. 13 is a flowchart showing an example of a technique for obtaining a semiconductor device as a micro device. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態を、 添付図面に基づいて説明する。  An embodiment of the present invention will be described with reference to the accompanying drawings.
第 1図は、 本発明の実施形態にかかる光源ュニットを備えた露光装置の全体構 成を概略的に示す図である。 また、 第 2図は、 ウェハ上に形成される円弧状の露 光領域 (すなわち実効露光領域) と光軸との位置関係を示す図である。 第 1図に おいて、 投影光学系の光軸方向すなわち感光性基板であるウェハの法線方向に沿 つて Z軸を、 ウェハ面内において第 1図の紙面に平行な方向に Y軸を、 ウェハ面 内において第 1図の紙面に垂直な方向に X軸をそれぞれ設定している。 FIG. 1 is a view schematically showing an overall configuration of an exposure apparatus having a light source unit according to an embodiment of the present invention. FIG. 2 is a diagram showing a positional relationship between an arc-shaped exposure area (ie, an effective exposure area) formed on a wafer and an optical axis. In FIG. 1, along the optical axis direction of the projection optical system, that is, along the normal direction of the wafer serving as the photosensitive substrate. Thus, the Z axis is set in the plane of the wafer, the Y axis is set in a direction parallel to the plane of FIG. 1, and the X axis is set in the wafer plane in a direction perpendicular to the plane of FIG.
第 1図の露光装置は、 露光光を供給するための D P Ρタイプの光源ュニッ卜 1 を備えている。 光源ユニット 1から供給された E U V光は、 波長選択フィル夕 The exposure apparatus shown in FIG. 1 includes a DPP II type light source unit 1 for supplying exposure light. The EUV light supplied from the light source unit 1 is
(不図示) を介して、 照明光学系 2に入射する。 ここで、 波長選択フィルタは、 光源ュニット 1が供給する E U V光から、 所定波長 (たとえば 1 3 . 5 n mまた は 1 1 . 5 n m) 近傍の E UV光だけを選択的に透過させ、 他の波長光の透過を 遮る特性を有する。 波長選択フィルタを透過した E U V光 3は、 照明光学系 2お よび平面反射鏡 4を介して、 転写すべきパターンが形成された反射型のマスク(Not shown) and enters the illumination optical system 2. Here, the wavelength selection filter selectively transmits only EUV light near a predetermined wavelength (for example, 13.5 nm or 11.5 nm) from the EUV light supplied from the light source unit 1, It has the property of blocking transmission of wavelength light. The EUV light 3 transmitted through the wavelength selection filter passes through the illumination optical system 2 and the plane reflecting mirror 4 and is a reflective mask on which a pattern to be transferred is formed.
(レチクル) Mを照明する。 (Reticle) Light M.
マスク Mは、 そのパターン面が X Y平面に沿って延びるように、 Y方向に沿つ て移動可能なマスクステージ 5によつて保持されている。 そして、 マスクステ一 ジ 5の移動は、 レーザ干渉計 6により計測されるように構成されている。 照明さ れたマスク Mのパターンからの光は、 反射型の投影光学系 P Lを介して. 感光性 基板であるウェハ W上にマスクパターンの像を形成する。 すなわち、 ウェハ W上 には、 第 2図に示すように、 たとえば Y軸に関して対称な細長い円弧状の露光領 域 (すなわち静止露光領域) が形成される。  The mask M is held by a mask stage 5 that can move in the Y direction so that the pattern surface extends along the XY plane. The movement of the mask stage 5 is configured to be measured by the laser interferometer 6. The illuminated light from the pattern of the mask M passes through a reflective projection optical system PL to form an image of the mask pattern on a wafer W as a photosensitive substrate. That is, on the wafer W, as shown in FIG. 2, for example, an elongated arc-shaped exposure region symmetrical with respect to the Y axis (that is, a static exposure region) is formed.
第 2図を参照すると、 光軸 A Xを中心とした半径 (ΐ>を有する円形状の領域 (ィ メ一ジサークル) I F内において、 このイメージサークル I Fに接するように X 方向の長さが L Xで Y方向の長さが L Yの円弧状の実効露光領域 E Rが設定され ている。 ウェハ Wは、 その露光面が X Y平面に沿って延びるように、 X方向およ び Y方向に沿つて二次元的に移動可能なウェハステージ 7によつて保持されてい る。 なお、 ウェハステージ 7の移動は、 マスクステージ 5と同様に、 レーザ干渉 計 8により計測されるように構成されている。  Referring to FIG. 2, in a circular area (image circle) IF having a radius (ΐ>) centered on the optical axis AX, the length in the X direction is LX so as to touch the image circle IF. An effective exposure area ER having an arc shape having a length of LY in the Y direction is set on the wafer W. The wafer W is arranged along the X direction and the Y direction so that the exposure surface extends along the XY plane. It is held by a dimensionally movable wafer stage 7. The movement of the wafer stage 7 is configured to be measured by a laser interferometer 8 as in the case of the mask stage 5.
こうして、 マスクステージ 5およびウェハステージ 7を Y方向に沿って移動さ せながら、 すなわち投影光学系 P Lに対してマスク Mおよびウェハ Wを Y方向に 沿って相対移動させながらスキャン露光 (走査露光) を行うことにより、 ウェハ Wの 1つの露光領域にマスク Mのパターンが転写される。 また、 ウェハステージ 7を X方向および Y方向に沿って二次元的に移動させながら走査露光を繰り返す ことにより、 ウェハ Wの各露光領域にマスク Μのパターンが逐次転写される。 第 3図は、 第 1図の光源ュニットおよび照明光学系の内部構成を概略的に示す 図である。 また、 第 4図は、 光源本体の内部構成を概略的に示す図である。 第 3 図を参照すると、 光源ユニット 1は、 D P P発散光を供給するための光源本体 1 1と、 光源本体 1 1からの D P P発散光を所定の位置に集光するための集光光学 系 1 2とを備えている。 光源本体 1 1は、 第 4図に示すように、 間隔を隔てて配 置された 2つの電極 1 1 aおよび 1 1 bと、 2つの電極 1 1 aと 1 1 bとの間に 電圧を印加するための電力供給源 1 1 cとを備えている。 Thus, scan exposure (scan exposure) is performed while moving the mask stage 5 and the wafer stage 7 along the Y direction, that is, while moving the mask M and the wafer W relative to the projection optical system PL along the Y direction. By doing so, the pattern of the mask M is transferred to one exposure area of the wafer W. Also, wafer stage By repeating scanning exposure while moving 7 two-dimensionally in the X and Y directions, the pattern of the mask に is sequentially transferred to each exposure area of the wafer W. FIG. 3 is a diagram schematically showing an internal configuration of a light source unit and an illumination optical system of FIG. FIG. 4 is a diagram schematically showing an internal configuration of the light source main body. Referring to FIG. 3, the light source unit 1 includes a light source body 11 for supplying DPP divergent light, and a condensing optical system 1 for condensing the DPP divergent light from the light source body 11 at a predetermined position. And two. As shown in FIG. 4, the light source body 11 applies a voltage between two electrodes 11 a and 11 b arranged at an interval and two electrodes 11 a and 11 b. And a power supply source 11 c for applying the power.
光源本体 1 1では、 力ソード電極 1 1 aとアノード電極 1 1 bとの間に標的材 料を入れた状態で、 電力供給源 1 1 cからの電圧印加を受けて、 力ソードとして の第 1電極 1 1 aとアノードとしての第 2電極 1 1 bとの間に放電が起こり、 こ の放電電流により発生したブラズマが電磁力により収斂され、 高温で高密度のプ ラズマとなる。 このプラズマから E U V光が放出される。 標的材料として、 キセ ノン (X e ) ガスゃスズ (S n ) 等が用いられる。  In the light source body 11, with the target material inserted between the power source electrode 11a and the anode electrode 11b, a voltage is applied from the power supply source 11c, and the second power source is applied. Discharge occurs between the one electrode 11a and the second electrode 11b as an anode, and the plasma generated by the discharge current is converged by electromagnetic force, resulting in a high-temperature, high-density plasma. EUV light is emitted from this plasma. Xenon (Xe) gas-tin (Sn) or the like is used as the target material.
一方、 集光光学系 1 2は、 第 3図に示すように、 光源本体 1 1側から順に、 中 央に貫通孔が形成された凸面反射鏡 1 2 bと、 同じく中央に貫通孔が形成された 凹面反射鏡 1 2 aとを備えている。 ここで、 第 1反射鏡としての凹面反射鏡 1 2 aは光源本体 1 1に向かって凹面状の反射面を有し、 第 2反射鏡としての凸面反 射鏡 1 2 bは凹面反射鏡 1 2 aに向かって凸面状の反射面を有する。  On the other hand, as shown in Fig. 3, the condensing optical system 12 has, in order from the light source body 11 side, a convex reflecting mirror 12b having a through hole formed in the center, and a through hole formed in the center similarly. Provided with a concave reflecting mirror 12a. Here, the concave reflecting mirror 12a as the first reflecting mirror has a concave reflecting surface toward the light source body 11, and the convex reflecting mirror 12b as the second reflecting mirror is a concave reflecting mirror 1. It has a reflective surface that is convex toward 2a.
こうして、 光源本体 1 1の発光点より発した D P P発散光は、 凸面反射鏡 1 2 bの貫通孔を介して、 凹面反射鏡 1 2 aに入射する。 凹面反射鏡 1 2 aの反射面 で反射された光は、 凸面反射鏡 1 2 bの反射面で反射された後、 凹面反射鏡 1 2 aの貫通孔を介して、 所定の点 1 2 cに集光する。  Thus, the DPP divergent light emitted from the light emitting point of the light source body 11 enters the concave reflecting mirror 12a via the through hole of the convex reflecting mirror 12b. The light reflected by the reflecting surface of the concave reflecting mirror 12a is reflected by the reflecting surface of the convex reflecting mirror 12b, and then passes through the through hole of the concave reflecting mirror 12a to a predetermined point 12c. Focus on
光源ユニット 1 ( 1 1 , 1 2 ) からの E UV光は、 集光点 1 2 cで一旦集光し た後、 この集光点 1 2 cの近傍に配置されたピンホール部材 (不図示) に入射す る。 ピンホール部材を通過した E U V光は、 凹面反射鏡 1 3を介してほぼ平行光 束となり、 一対のフライアイミラー 1 4 aおよび 1 4 bからなるオプティカルィ ンテグレ一夕 1 4に導かれる。 一対のフライアイミラー 1 4 aおよび 1 4 bとし て、 たとえば特開平 1 1— 3 1 2 6 3 8号公報において本出願人が開示したフラ ィアイミラ一を用いることができる。 なお、 フライアイミラーのさらに詳細な構 成および作用については、 同公報における関連の記載を参照することができる。 こうして、 第 2フライアイミラ一 1 4 bの反射面の近傍、 すなわちォプティカ ルインテグレータ 1 4の射出面の近傍には、 所定の形状を有する実質的な面光源 が形成される。 実質的な面光源からの光は、 平面反射鏡 4により偏向された後、 視野絞り (不図示) を介して、 マスク M上に細長い円弧状の照明領域を形成する。 照明されたマスク Mのパターンからの光は、 投影光学系 P Lを介して、 ウェハ W 上にマスクパターンの像を形成する。 The EUV light from the light source unit 1 (1 1, 1 2) is focused once at the focal point 12 c, and then a pinhole member (not shown) placed near the focal point 12 c ). The EUV light that has passed through the pinhole member is converted into a substantially parallel light beam through the concave reflecting mirror 13, and is formed by a pair of fly-eye mirrors 14 a and 14 b. You will be led to Ntegre overnight. As the pair of fly-eye mirrors 14a and 14b, for example, a fly-eye mirror disclosed by the present applicant in Japanese Patent Application Laid-Open No. H11-3132638 can be used. For a more detailed configuration and operation of the fly-eye mirror, the related description in the publication can be referred to. In this way, a substantial surface light source having a predetermined shape is formed in the vicinity of the reflection surface of the second fly-eye mirror 14b, that is, in the vicinity of the emission surface of the optical integrator 14. The light from the substantial surface light source is deflected by the plane reflecting mirror 4 and forms an elongated arc-shaped illumination area on the mask M via a field stop (not shown). Light from the illuminated pattern of the mask M forms an image of the mask pattern on the wafer W via the projection optical system PL.
第 5図は、 本実施形態の数値実施例にかかる集光光学系の構成を概略的に示す 図である。 この数値実施例は、 比較的良好に収差補正された集光光学系 1 2の一 例を示している。 次の表 ( 1 ) に、 第 5図に示す数値実施例にかかる集光光学系 1 2の諸元の値を掲げる。 表 ( 1 ) の主要諸元において、 λは露光光 ( E U V 光) の波長を、 Ηは発光点 (発光領域) l i dの大きさ (物体高) を、 N Aは物 体側 (光源ユニット側) 開口数をそれぞれ表している。 また、 表 ( 1 ) の光学部 材諸元において、 面番号は光源ュニット側からの光学面の順序を、 rは各光学面 の曲率半径 (mm) を、 dは各光学面の軸上間隔すなわち面間隔 (mm) をそれ ぞれ示している。 なお、 面間隔 dの値は、 反射する度にその符号が変わるものと している。  FIG. 5 is a diagram schematically showing a configuration of a condensing optical system according to a numerical example of the present embodiment. This numerical example shows an example of the light-converging optical system 12 whose aberration has been corrected relatively well. The following Table (1) lists the values of the specifications of the condensing optical system 12 according to the numerical example shown in FIG. In the main specifications in Table (1), λ is the wavelength of the exposure light (EUV light), Η is the light emission point (light emission area), the size of the lid (object height), and NA is the object side (light source unit side) aperture. Each represents a number. Also, in the optical component specifications in Table (1), the surface number is the order of the optical surfaces from the light source unit side, r is the radius of curvature (mm) of each optical surface, and d is the on-axis spacing of each optical surface. That is, the surface spacing (mm) is shown. It is assumed that the sign of the value of the surface distance d changes each time the light is reflected.
(表 1 ) (table 1 )
(主要諸元)  (Main specifications)
λ = 1 3 . 5 n m λ = 1 3 .5 n m
H =— 1 mm〜十 1 mm H = — 1 mm to 10 mm
N A = 0 . 7 N A = 0.7
(光学部材諸元) 面番号 r d 光学部材 (Optical component specifications) Surface number rd Optical member
(発光点) 300  (Emission point) 300
1 -353.02832 -285 (凹面反射鏡 12 a)  1 -353.02832 -285 (Concave reflector 12a)
2 -429.74950 435 (凸面反射鏡 12 b)  2 -429.74950 435 (Convex reflector 12b)
(集光点) 前述したように、 従来技術では、 発光点 1 1 dの周りの構造物が障害になり、 光量損失を良好に抑えて所望の光強度分布で D P P発散光を集光させる構成が提 案されていない。 この点について、 第 6図乃至第 8図を参照して簡単に説明する。 第 6図には、 D P P光源本体 60からの DPP発散光を単純に 1つの凹面反射鏡 61により集光させる構成が示されている。 しかしながら、 第 6図に示す構成で は、 一対の電極 60 aおよび 60 bの周りに放電を発生させるための比較的大き な構造物 (不図示) が設けられているので、 凹面反射鏡 61により集光作用を受 けた光が集光点 62に達する前に当該構造物に遮られてしまう。  (Condensing point) As described above, in the conventional technology, the structure around the light emitting point 11d becomes an obstacle, and the light loss is suppressed well, and the DPP divergent light is condensed with the desired light intensity distribution. Has not been proposed. This will be briefly described with reference to FIGS. 6 to 8. FIG. 6 shows a configuration in which the DPP divergent light from the DPP light source main body 60 is simply condensed by one concave reflecting mirror 61. However, in the configuration shown in FIG. 6, a relatively large structure (not shown) for generating a discharge is provided around the pair of electrodes 60a and 60b. The light having received the light-condensing action is blocked by the structure before reaching the light-condensing point 62.
第 7図には、 DPP光源本体 (不図示) の発光点 72からの DPP発散光を入 れ子状の斜入射ミラ一 71により集光点 73に集光させる構成が示されている。 しかしながら、 第 7図に示す構成では、 発光点 72と集光点 73とを焦点とする 楕円球面の一部を反射面とする斜入射ミラ一 71により一部の光束が遮られ、 集 光作用を受けた光束の光強度分布に高周波のうねりが発生するため、 ウェハ W上 の照度均一性に悪影響が及ぶことになる。  FIG. 7 shows a configuration in which DPP divergent light from a light emitting point 72 of a DPP light source main body (not shown) is condensed to a converging point 73 by an incident oblique incidence mirror 71. However, in the configuration shown in FIG. 7, a part of the light beam is blocked by the oblique incidence mirror 71 having a part of an ellipsoidal sphere having a focal point at the light emitting point 72 and the condensing point 73 and having a reflecting surface, so Since high-frequency undulations occur in the light intensity distribution of the received light beam, the uniformity of the illuminance on the wafer W is adversely affected.
第 8図には、 DPP光源本体 (不図示) の発光点 80からの DPP発散光をシ ュバルッシルド光学系 81により集光点 82に集光させる構成が示されている。 しかしながら、 第 8図に示す構成では、 DPP光源本体からの DPP発散光がシ ュバルッシルド光学系 81の凹面反射鏡 81 aに入射する際に、 光束の中央部分 がシュバルッシルド光学系 81の凸面反射鏡 81 bにより大きく遮られる。 その 結果、 シュバルッシルド光学系 81において非常に大きな光量損失が発生し、 伝 達効率が非常に悪くなる。  FIG. 8 shows a configuration in which DPP divergent light from a light emitting point 80 of a DPP light source main body (not shown) is condensed to a converging point 82 by a Cyval schild optical system 81. However, in the configuration shown in FIG. 8, when the DPP diverging light from the DPP light source main body enters the concave reflecting mirror 81a of the Schwarzschild optical system 81, the central part of the light beam is focused on the convex reflecting mirror 81 of the Schwarsschild optical system 81. It is largely blocked by b. As a result, a very large light amount loss occurs in the Schwarzschild optical system 81, and the transmission efficiency becomes very poor.
これに対し、 本実施形態では、 0??光源本体1 1からの0? 発散光が、 凸 面反射鏡 12 bの中央貫通孔を介して、 凹面反射鏡 12 aに入射する。 そして、 凹面反射鏡 12 aの反射面で反射された光が、 凸面反射鏡 12 bの反射面で反射 された後、 凹面反射鏡 12 aの中央貫通孔を介して、 集光点 12 cに達する。 こ のとき、 発光点 1 1 dと凸面反射鏡 12 bおよび凹面反射鏡 12 aと集光点 12 cとをある程度近づけることにより、 凸面反射鏡 12 bの中央貫通孔および凹面 反射鏡 12 aの中央貫通孔のサイズが比較的小さく抑えられる。 On the other hand, in the present embodiment, the 0? Divergent light from the 0? Light source body 11 is convex. The light enters the concave reflecting mirror 12a through the central through hole of the surface reflecting mirror 12b. Then, the light reflected by the reflecting surface of the concave reflecting mirror 12a is reflected by the reflecting surface of the convex reflecting mirror 12b, and then passes through the central through-hole of the concave reflecting mirror 12a to a condensing point 12c. Reach. At this time, by making the light emitting point 11 d closer to the convex reflecting mirror 12 b and the concave reflecting mirror 12 a and the converging point 12 c to some extent, the central through hole of the convex reflecting mirror 12 b and the concave reflecting mirror 12 a The size of the central through-hole can be kept relatively small.
その結果、 本実施形態では、 凹面反射鏡 12 aでの反射および凸面反射鏡 12 bでの反射に際して中央貫通孔に起因する光量損失がわずかに発生するが、 一対 の電極 11 aおよび 1 1 bの周りの構造物 (不図示) により光束が遮られること はない。 また、 0??光源本体1 1からの0??発散光が、 光軸 A Xに沿った凹 面反射鏡 12 aと凸面反射鏡 12 bとからなり比較的良好に収差補正された集光 光学系 12の集光作用を受けるため、 光束の光強度分布に高周波のうねりが発生 することなく、 所望の光強度分布で D P P発散光を集光させることができ、 ひい てはウェハ W上の照度均一性を確保することができる。  As a result, in the present embodiment, a small amount of light loss due to the central through-hole occurs at the time of reflection at the concave reflecting mirror 12a and at the time of reflection at the convex reflecting mirror 12b, but the pair of electrodes 11a and 11b The light flux is not blocked by the surrounding structure (not shown). The divergent light from the luminous source body 11 is composed of a concave reflecting mirror 12a and a convex reflecting mirror 12b along the optical axis AX, and is a relatively well-corrected condensing optic. Due to the light condensing effect of the system 12, it is possible to converge the DPP divergent light with a desired light intensity distribution without generating high-frequency undulations in the light intensity distribution of the light flux, and consequently the illuminance on the wafer W Uniformity can be ensured.
以上のように、 本実施形態の光源ユニット 1 (1 1, 12) では、 一対の電極 1 1 aおよび 1 1 bの周りの構造物すなわち発光点 1 1 dの周りの構造物が障害 になることなく、 DPP光源本体 1 1からの DPP発散光を、 光量損失を良好に 抑えて所望の光強度分布で所定の集光点 12 cへ集光させることができる。 した がって、 本実施形態の露光装置では、 光量損失を良好に抑えて所望の光強度分布 で DP P発散光を集光させることのできる光源ュニット 1から供給される EUV 光 3を用いて、 マスク Mのパターンをウェハ W上に忠実に且つ高スループットで 転写することができる。  As described above, in the light source unit 1 (11, 12) of the present embodiment, the structure around the pair of electrodes 11a and 11b, that is, the structure around the light emitting point 11d becomes an obstacle. Without divergence, the DPP divergent light from the DPP light source main body 11 can be condensed at a predetermined converging point 12c with a desired light intensity distribution while suppressing the loss of light amount. Therefore, the exposure apparatus of the present embodiment uses EUV light 3 supplied from the light source unit 1 which can suppress the light quantity loss and collect the DPP divergent light with a desired light intensity distribution. The pattern of the mask M can be faithfully transferred onto the wafer W with high throughput.
なお、 上述の実施形態では、 DPP光源本体 1 1からの DPP発散光を集光さ せるための集光光学系 12を、 第 1反射鏡としての凹面反射鏡 12 aと第 2反射 鏡としての凸面反射鏡 12 bとにより構成している。 しかしながら、 これに限定 されることなく、 たとえば第 2反射鏡として平面反射鏡や凹面反射鏡を用いるこ ともできる。 また、 本実施形態では、 反射鏡 12 a、 12 bの反射面を球面とし たが、 これを円錐曲線や、 非球面、 自由曲面としても良いことは言うまでもない。 また、 上述の実施形態では、 集光光学系 12を構成する一対の反射鏡の中央に 貫通孔をそれぞれ形成している。 しかしながら、 これに限定されることなく、 各 反射鏡の貫通孔の形成位置については、 各反射鏡のパワー配置と同様に、 様々な 変形例が可能である。 また、 上述の実施形態では、 EUV光源として DPPタイ プの光源を用いているが、 これに限らず、 L P Pタイプの光源を用いることもで さる。 In the above-described embodiment, the condensing optical system 12 for condensing the DPP divergent light from the DPP light source main body 11 includes a concave reflecting mirror 12a as a first reflecting mirror and a converging reflecting mirror 12a as a second reflecting mirror. It comprises a convex reflecting mirror 12b. However, without being limited to this, for example, a plane reflecting mirror or a concave reflecting mirror may be used as the second reflecting mirror. Further, in the present embodiment, the reflecting surfaces of the reflecting mirrors 12a and 12b are spherical. However, it is needless to say that the reflecting surfaces may be conical curves, aspheric surfaces, or free-form surfaces. In the above-described embodiment, a through-hole is formed at the center of each of the pair of reflecting mirrors constituting the condensing optical system 12. However, the present invention is not limited to this, and various modifications can be made to the formation position of the through hole of each reflecting mirror, similarly to the power arrangement of each reflecting mirror. Further, in the above-described embodiment, the DPP type light source is used as the EUV light source.
ところで、 本実施形態では、 DPP光源本体 1 1からの DPP発散光の射出に 際して、 デブリが放出されるだけでなく、 熱も放射される。 したがって、 凹面反 射鏡 12 aおよび凸面反射鏡 12 bは、 DPP発散光の照射熱の影響だけでなく、 0 ?光源本体1 1からの放射熱の影響も受ける。 そこで、 本実施形態では、 加 ェ性が高く且つ熱伝導率の高い材料、 すなわちシリコン (S i)、 アルミニウム (A 1 )、 銅 (Cu) などを用いて、 凹面反射鏡 12 aの本体および凸面反射鏡 By the way, in the present embodiment, when the DPP divergent light is emitted from the DPP light source main body 11, not only debris is emitted but also heat is radiated. Therefore, the concave reflecting mirror 12a and the convex reflecting mirror 12b are not only affected by the irradiation heat of the DPP diverging light, but also have a value of 0? Radiation heat from the light source body 11 is also affected. Thus, in the present embodiment, the body of the concave reflecting mirror 12a and the material having high additivity and high thermal conductivity, such as silicon (Si), aluminum (A1), and copper (Cu), are used. Convex reflector
12 bの本体を形成することが好ましい。 この構成により、 各反射鏡の表面 (反 射面) から伝わる熱を迅速に裏面に伝え、 たとえば適当な冷却機構の作用により 各反射鏡から熱を除去することができる。 Preferably, a 12b body is formed. With this configuration, heat transmitted from the front surface (reflection surface) of each reflecting mirror can be quickly transmitted to the back surface, and the heat can be removed from each reflecting mirror by, for example, the action of an appropriate cooling mechanism.
第 9図は.. 集光光学系の各反射鏡を冷却する冷却機構の一例を概略的に示す図 である。 第 9図を参照すると、 集光光学系 12を構成する凹面反射鏡 12 aの裏 面および凸面反射鏡 12 bの裏面に、 ヒートパイプ 20 aおよび 20 bがそれぞ れ密着するように取り付けられている。 こうして、 ヒートパイプ 20 aおよび 2 FIG. 9 is a diagram schematically showing an example of a cooling mechanism for cooling each reflecting mirror of the condensing optical system. Referring to FIG. 9, heat pipes 20a and 20b are attached to the back surface of the concave reflecting mirror 12a and the back surface of the convex reflecting mirror 12b, respectively, which constitute the condensing optical system 12 so as to be in close contact with each other. ing. Thus, heat pipes 20a and 2
0 bの作用により、 凹面反射鏡 12 aおよび凸面反射鏡 12 bから熱を外部へ逃 がすことができる。 ただし、 集光光学系 12の各反射鏡 12 a, 12 bに適用可 能な冷却機構は、 第 9図の構成例に限定されることなく、 例えば各反射鏡 12 a,By the action of 0b, heat can be radiated from the concave reflecting mirror 12a and the convex reflecting mirror 12b to the outside. However, the cooling mechanism applicable to each of the reflecting mirrors 12a and 12b of the condensing optical system 12 is not limited to the configuration example of FIG.
12 bの本体内部を冷却液体 (冷水など) が通過するような構造を採用すること もできる。 It is also possible to adopt a structure that allows a cooling liquid (such as cold water) to pass through the inside of the body of 12b.
また、 本実施形態では、 集光光学系 12を構成する凹面反射鏡 12 aおよび凸 面反射鏡 12 bは、 DPP光源本体 1 1からの放射熱の影響および DPP発散光 の照射熱の影響を受けるため、 交換可能に構成されていることが好ましい。 特に、 反射面が DPP光源本体 1 1に直接さらされる凹面反射鏡 12 aは、 ある程度頻 繁に交換する必要が予想されるため、 容易に交換可能な構成であることが望まし い。 Further, in the present embodiment, the concave reflecting mirror 12a and the convex reflecting mirror 12b constituting the condensing optical system 12 control the influence of the radiant heat from the DPP light source main body 11 and the influence of the irradiation heat of the DPP divergent light. Therefore, it is preferable to be configured to be exchangeable. In particular, the concave reflecting mirror 12a, whose reflecting surface is directly exposed to the DPP light source Since it is expected that replacement will be required frequently, it is desirable that the configuration be easily replaceable.
集光光学系 1 2を構成する凹面反射鏡 1 2 aおよび凸面反射鏡 12 bの容易な 交換を実現するために、 凹面反射鏡 1 2 aの反射面の位置および凸面反射鏡 1 2 bの反射面の位置を計測するための位置計測手段を備えていることが好ましい。 第 10図は、 集光光学系を構成する反射鏡の反射面位置を計測する位置計測系の 一例を概略的に示す図である。 第 10図に示す位置計測系では、 マスク 2 1 a, 2 1 b, 2 1 cからの光が、 結像光学系の前群 22 a, 22 b, 22 c、 凹面反 射鏡 1 2 aの反射面、 結像光学系の後群 2 3 a, 23 b, 23 cを介して、 スク リーン (または CCD) 24 a, 24 b, 24 cにマスクパターンをそれぞれ形 成する。  In order to realize easy replacement of the concave reflecting mirror 12a and the convex reflecting mirror 12b constituting the focusing optical system 12, the position of the reflecting surface of the concave reflecting mirror 12a and the convex reflecting mirror 12b It is preferable to include a position measuring means for measuring the position of the reflecting surface. FIG. 10 is a diagram schematically showing an example of a position measuring system for measuring the position of a reflecting surface of a reflecting mirror constituting a light collecting optical system. In the position measurement system shown in Fig. 10, light from the mask 21a, 21b, 21c is transmitted to the front group 22a, 22b, 22c of the imaging optical system, and the concave reflector 12a. A mask pattern is formed on the screen (or CCD) 24a, 24b, 24c via the reflecting surface of the above and the rear group 23a, 23b, 23c of the imaging optical system.
こうして、 スクリーン 24 a, 24 b, 24 cにそれぞれ形成されるマスクパ 夕一ンの二次元的な位置情報に基づいて、 凹面反射鏡 12 aの交換に際して、 新 たな凹面反射鏡 1 2 aを高精度に位置決めすることができる。 このとき、 凹面反 射鏡 1 2 aの反射面での反射率の変化を検知するように位置計測系 (2 1〜2 4) を構成することが好ましい。 この構成により、 たとえばデブリに起因する凹 面反射鏡 1 2 aの反射面の汚れ程度 (光学特性の劣化程度) をより一層正確に検 知することができ、 ひいては凹面反射鏡 1 2 aを適切なタイミングで交換するこ とができる。  Thus, based on the two-dimensional position information of the mask panel formed on each of the screens 24a, 24b, and 24c, a new concave reflector 12a is replaced when the concave reflector 12a is replaced. Positioning can be performed with high accuracy. At this time, it is preferable to configure the position measurement system (21 to 24) so as to detect a change in reflectance on the reflecting surface of the concave reflecting mirror 12a. With this configuration, it is possible to more accurately detect the degree of dirt on the reflecting surface of the concave reflecting mirror 12a (deterioration of the optical characteristics) caused by debris, and, consequently, to appropriately control the concave reflecting mirror 12a. They can be exchanged at the right time.
また、 凸面反射鏡 1 2 bの交換に際しても、 第 1 0図と同様な構成を有する位 置計測系 (2 1〜24) を用いて、 新たな凸面反射鏡 1 2 bを高精度に位置決め したり、 凸面反射鏡 1 2 bの反射面の汚れ程度を検知したりすることができる。 なお、 各反射鏡の反射面の位置を計測し且つ反射面の汚れ程度を検知するための 計測系の構成については、 第 1 0図の構成例に限定されることなく、 様々な変形 例が可能である。  Also, when replacing the convex reflecting mirror 12b, a new convex reflecting mirror 12b is positioned with high accuracy using the position measurement system (21-24) having the same configuration as that of Fig. 10. Or the degree of dirt on the reflecting surface of the convex reflecting mirror 12b can be detected. The configuration of the measuring system for measuring the position of the reflecting surface of each reflecting mirror and detecting the degree of contamination of the reflecting surface is not limited to the configuration example shown in FIG. It is possible.
また、 上述したように、 DPP光源本体 1 1からの DPP発散光の射出に際し て放出されるデブリが凹面反射鏡 1 2 aの反射面や凸面反射鏡 1 2 bの反射面に 付着すると、 凹面反射鏡 1 2 aや凸面反射鏡 1 2 bの反射特性 (光学特性) が劣 化し、 その交換頻度が増大してしまう。 そこで、 本実施形態では、 DPP光源本 体 1 1から放出されるデブリを凹面反射鏡 12 a (第 1反射鏡) と凸面反射鏡 1 2 b (第 2反射鏡) との間の光路中において除去するためのデブリ除去機構を備 えていることが好ましい。 Further, as described above, when debris emitted upon emission of DPP divergent light from the DPP light source main body 11 adheres to the reflecting surfaces of the concave reflecting mirror 12a and the convex reflecting mirror 12b, the concave surface Poor reflection characteristics (optical characteristics) of reflector 12a and convex reflector 12b And the replacement frequency increases. Therefore, in the present embodiment, the debris emitted from the DPP light source body 11 is placed in an optical path between the concave reflecting mirror 12a (first reflecting mirror) and the convex reflecting mirror 12b (second reflecting mirror). It is preferable to have a debris removal mechanism for removal.
第 11 A図および第 1 1 B図は、 集光光学系を構成する一対の反射鏡間の光路 中において除去するためのデブリ除去機構の一例を概略的に示す図であって、 第 1 1 A図は斜視図を示し、 第 1 1 B図は光軸に沿った断面図を示している。 第 1 1 A図および第 1 1 B図を参照すると、 デブリ除去機構は、 凹面反射鏡 12 aと 凸面反射鏡 12 bとの間の空間を包囲するための筒状のケ一シング 25を有し、 この空間には EUV光に対して比較的高い透過率を有する微量の所定ガスがガス 導入口 25 aを介して導入されるように構成されている。  FIGS. 11A and 11B are diagrams schematically showing an example of a debris removing mechanism for removing in a light path between a pair of reflecting mirrors constituting a condensing optical system. FIG. A shows a perspective view, and FIG. 11B shows a cross-sectional view along the optical axis. Referring to FIGS. 11A and 11B, the debris removing mechanism has a cylindrical casing 25 for surrounding the space between the concave reflecting mirror 12a and the convex reflecting mirror 12b. However, a small amount of a predetermined gas having a relatively high transmittance for EUV light is introduced into this space through the gas inlet 25a.
ケ一シング 25は、 たとえばステンレス鋼、 銅、 アルミニウムなどの金属によ り形成され、 グランド電位に接続されている。 なお、 導入可能な所定ガスとして、 たとえばヘリウム (He), アルゴン (Ar)、 ネオン (N e)、 キセノン (Xe)、 クリプトン (Kr)、 窒素 (N2)、 酸素 (02)、 オゾン (03) を用いることが できる。 また、 デブリ除去機構は、 光軸 A Xを中心として放射状に延びる断面を 有する複数のプレート部材 26を備えている。 The casing 25 is formed of a metal such as stainless steel, copper, or aluminum, and is connected to the ground potential. As introducible predetermined gas, for example, such as helium (He), argon (Ar), neon (N e), xenon (Xe), krypton (Kr), nitrogen (N 2), oxygen (0 2), ozone ( 0 3 ) can be used. In addition, the debris removing mechanism includes a plurality of plate members 26 having a cross section extending radially around the optical axis AX.
複数のプレー卜部材 26は、 たとえばステンレス鋼、 銅、 アルミニウムなどの 金属により形成され、 電源により正電位 (数 10V〜数 kV程度) が印加される ように構成されている。 換言すれば、 複数のプレート部材 26とケ一シング 25 との間には所定の電圧が印加されるように設定されている。 また、 複数のプレー ト部材 26は、 光軸 AXを中心として一体的に回転可能に構成されている。 さら に、 ケーシング 25および複数のプレート部材 26は、 図示を省略した適当な冷 却機構により冷却可能に構成されている。  The plurality of plate members 26 are formed of, for example, a metal such as stainless steel, copper, or aluminum, and are configured such that a positive potential (about several tens of volts to several kV) is applied by a power supply. In other words, a predetermined voltage is set between the plurality of plate members 26 and the casing 25. Further, the plurality of plate members 26 are configured to be integrally rotatable about the optical axis AX. Furthermore, the casing 25 and the plurality of plate members 26 are configured to be able to be cooled by a suitable cooling mechanism (not shown).
第 1 1 A図および第 1 1 B図に示すデブリ除去機構では、 プラズマから放出さ れたデブリの一部がケ一シング 25の内部空間へ侵入するが、 ケ一シング 25の 内部に導入されたガス分子との衝突により急速にその運動エネルギーを失い、 ガ ス分子とほぼ同じ運動エネルギーを持ってケ一シング 25の内部空間を浮遊する ようになる。 そして、 プラズマから輻射された E U V光により、 浮遊しているデ プリが直接的にイオン化されたり、 イオン化されたガス分子 (原子) との衝突に よりデブリがイオン化されたりする。 In the debris removal mechanism shown in FIGS. 11A and 11B, a part of the debris released from the plasma enters the interior space of the casing 25, but is introduced into the casing 25. Rapidly loses its kinetic energy due to collisions with the gas molecules, and floats in the interior space of the casing 25 with almost the same kinetic energy as the gas molecules. Become like The EUV light radiated from the plasma directly ionizes the floating debris or ionizes debris by collision with ionized gas molecules (atoms).
デブリがマイナスにイオン化された場合、 正電位が印加されている複数のプレ 一ト部材 2 6に引き寄せられて付着 ·堆積する。 その結果、 凹面反射鏡 1 2 aの 反射面および凸面反射鏡 1 2 bの反射面へのデブリの付着を低減することができ、 ひいては反射特性の劣化および反射鏡の交換頻度を低減することができる。 この とき、 各反射鏡 1 2 a , 1 2 bの表面にコートされている多層反射膜をグランド 電位に接続することにより、 反射面へのデブリの付着をさらに効果的に低減する ことができる。  When debris is ionized negatively, the debris is attracted to a plurality of plate members 26 to which a positive potential is applied, and adheres and deposits. As a result, it is possible to reduce the adhesion of debris to the reflecting surface of the concave reflecting mirror 12a and the reflecting surface of the convex reflecting mirror 12b, and, consequently, to reduce the deterioration of the reflection characteristics and the frequency of replacement of the reflecting mirror. it can. At this time, by connecting the multilayer reflecting film coated on the surface of each of the reflecting mirrors 12a and 12b to the ground potential, the adhesion of debris to the reflecting surface can be more effectively reduced.
一方、 デブリがプラスにィォン化された場合、 グランド電位に接続されている ケ一シング 2 5の内側面に付着 ·堆積する。 このとき、 各反射鏡 1 2 a , 1 2 b の表面にコートされている多層反射膜に、 複数のプレート部材 2 6と同じ電位ま たはそれよりも高い電位を印加することにより、 反射面へのデブリの付着 ·堆積 を防ぐことができる。 また、 ケーシング 2 5の内側面に剥離容易なシート (紙、 樹脂、 セラミックスなどの絶縁材料や、 アルミニウム、 銅等の金属箔) を貼って、 このシート上にデブリを付着 *堆積させてもよい。 この場合、 シート上にデブリ が大量に付着するのを待ってシート交換するだけで、 清浄な環境に容易に戻すこ とができる。  On the other hand, when the debris is ionized to a positive value, it adheres and deposits on the inner surface of the casing 25 connected to the ground potential. At this time, the same potential as or higher than that of the plurality of plate members 26 is applied to the multilayer reflective film coated on the surface of each of the reflecting mirrors 12a and 12b, so that the reflecting surface Adhesion and deposition of debris on the surface can be prevented. Also, an easily peelable sheet (an insulating material such as paper, resin, or ceramics, or a metal foil such as aluminum or copper) may be attached to the inner surface of the casing 25, and debris may be attached and deposited on the sheet. . In this case, it is possible to easily return to a clean environment simply by changing the sheet after waiting for a large amount of debris to adhere to the sheet.
なお、 プラズマからの E U V光だけではデブリのィォン化を十分に行うことが できない場合には、 ケーシング 2 5の一部に形成された開口部 (または光透過 部) を介してケーシング 2 5の内部へ紫外線を導入し、 この紫外線の作用により デブリのイオン化を促進するように構成しても良い。 この場合、 紫外線を供給す る光源として、 水銀ランプ、 エキシマランプ、 エキシマレ一ザ一などを用いるこ とができる。 あるいは、 電子源からの電子ビームをケ一シング 2 5の内部へ導入 してデブリをイオン化しても良い。  If the EUV light from the plasma alone cannot sufficiently deionize the debris, the inside of the casing 25 is opened through an opening (or a light transmitting part) formed in a part of the casing 25. UV light may be introduced into the device, and the action of the UV light may be used to promote ionization of debris. In this case, a mercury lamp, an excimer lamp, an excimer laser, or the like can be used as a light source for supplying ultraviolet light. Alternatively, debris may be ionized by introducing an electron beam from the electron source into the casing 25.
なお、 第 1 1 A図および第 1 1 B図に示すデブリ除去機構を用いる場合、 露光 に際して集光光学系 1 2から射出される光束の光強度分布の均一化を図るために、 複数のプレート部材 26を光軸 AX廻りに一体的に回転させることが好ましい。 また、 第 1 1 A図および第 1 1 B図の構成例では、 複数のプレート部材 26に正 電位を印加しているが、 これに限定されることなく、 複数のプレート部材 26に 負電位を印加しても良い。 また、 印加する電位は、 直流でも良いし、 交流でも良 い。 さらに、 交流電位を印加する場合、 その周波数について様々な態様が可能で ある。 When the debris removing mechanism shown in FIGS. 11A and 11B is used, in order to uniformize the light intensity distribution of the light beam emitted from the condensing optical system 12 during exposure, Preferably, the plurality of plate members 26 are integrally rotated around the optical axis AX. Further, in the configuration examples shown in FIGS. 11A and 11B, a positive potential is applied to the plurality of plate members 26, but the invention is not limited thereto, and a negative potential is applied to the plurality of plate members 26. It may be applied. The potential to be applied may be DC or AC. Furthermore, when an AC potential is applied, various aspects of the frequency are possible.
なお、 デブリ除去機構は、 第 1 1 A図および第 11 B図に示すような第 2反射 鏡に貫通孔の開いている集光光学系だけでなく、 シュバルッシルド光学系のよう に第 2反射鏡に貫通孔の開いていない光学系に対しても用いることができる。 第 12図は、 本実施形態のデブリ除去機構をシュバルッシルド集光光学系に適用し た例を概略的に示す図である。 第 12図を参照すると、 真空容器 41の内部に、 DPF (Dense Plasma Focus) 方式による E UV光源 43が配置されている。 真 空容器 41は、 不図示の排気装置により真空 (例えば 0. lTorr 以下) に排気 されている。  The debris removal mechanism is not limited to a condensing optical system with a through-hole in the second reflecting mirror as shown in Figs. 11A and 11B, but also to a second reflecting mirror like a Schwarzschild optical system. It can also be used for an optical system having no through hole. FIG. 12 is a diagram schematically showing an example in which the debris removing mechanism of the present embodiment is applied to a Schwarzschild condensing optical system. Referring to FIG. 12, an EUV light source 43 by a DPF (Dense Plasma Focus) method is arranged inside a vacuum vessel 41. The vacuum container 41 is evacuated to a vacuum (eg, 0.1 lTorr or less) by an exhaust device (not shown).
EUV光源 43では、 電極近傍に生成されたプラズマ 44から EUV光 45が 放出される。 放出された EUV光 45は、 Mo/S i多層膜がコートされた凹面 反射鏡 (第 1反射鏡) 46で反射され 同じく Mo/S i多層膜がコートされた 凸面反射鏡 (第 2反射鏡) 47で反射された後、 ピンホール 52上に集光され、 後段の光学系へ導かれる。 凹面反射鏡 46および凸面反射鏡 47にコートされて いる多層膜は、 波長 13. 5 nmの光に対して反射率のピークがくるように成膜 されている。 すなわち、 ピンホール 52を通過した後に後段の光学系に導かれる EUV光は、 波長が 13. 5 nm近傍の光のみとなる。  In the EUV light source 43, EUV light 45 is emitted from plasma 44 generated near the electrode. The emitted EUV light 45 is reflected by a concave reflecting mirror (first reflecting mirror) 46 coated with a Mo / Si multilayer film, and a convex reflecting mirror (second reflecting mirror) similarly coated with a Mo / Si multilayer film. After being reflected at 47, it is condensed on the pinhole 52 and guided to the subsequent optical system. The multilayer film coated on the concave reflecting mirror 46 and the convex reflecting mirror 47 is formed so as to have a peak in reflectance with respect to light having a wavelength of 13.5 nm. In other words, EUV light guided to the subsequent optical system after passing through the pinhole 52 is only light having a wavelength near 13.5 nm.
凹面反射鏡 46および凸面反射鏡 47は、 ケ一シング 48内に固定されている。 ケーシング 48にはガス導入用のポ一ト 49が取り付けられており、 このポート 49から Heガスがケ一シング 48の内部へ導入される。 ケーシング 48内にお いて凹面反射鏡 46と凸面反射鏡 47との間には、 光路に平行になるように複数 枚のアルミニウム製の薄板からなる羽 50が取り付けられている。 この羽 50は、 光軸を中心として回転可能に構成されている。 羽 5 0の回転駆動は、 超音波モーターや電動モ一夕一により行われる。 ケーシ ング 4 8は、 真空容器 4 1の壁面に取り付けられている。 真空容器 4 1の隣には 真空容器 4 2が設置されており、 真空容器 4 1と 4 2とは E U V光が通過する開 口部のみを介して連通している。 真空容器 4 2は、 不図示の真空排気装置により、 真空容器 4 1とは別に真空排気がなされている。 このような構成とすることによ り、 真空容器 4 1と 4 2との間で差動排気を行うことができ、 ひいてはピンホ一 ル 5 2よりも下流側の真空度の劣化を低減することができる。 The concave reflecting mirror 46 and the convex reflecting mirror 47 are fixed in a casing 48. A gas introduction port 49 is attached to the casing 48, and He gas is introduced from the port 49 into the casing 48. In the casing 48, between the concave reflecting mirror 46 and the convex reflecting mirror 47, a plurality of aluminum blades 50 are attached so as to be parallel to the optical path. The wing 50 is configured to be rotatable about the optical axis. The rotation of the wings 50 is performed by an ultrasonic motor or an electric motor. The casing 48 is attached to the wall of the vacuum vessel 41. A vacuum vessel 42 is provided next to the vacuum vessel 41, and the vacuum vessels 41 and 42 communicate with each other only through an opening through which EUV light passes. The vacuum container 42 is evacuated separately from the vacuum container 41 by a vacuum exhaust device (not shown). By adopting such a configuration, differential evacuation can be performed between the vacuum vessels 41 and 42, and thus, deterioration of the degree of vacuum downstream of the pinhole 52 can be reduced. Can be.
ケ一シング 4 8内に入り込んだデブリは、 ポート 4 9から導入された H eガス により衝突され、 散乱され、 そのエネルギーを急速に失いケーシング 4 8内を浮 遊するようになる。 ケーシング 4 8内を浮遊するデブリは、 羽 5 0ゃケ一シング 4 8の内壁に衝突して吸着される。 その結果、 凹面反射鏡 4 6上および凸面反射 鏡 4 7上に付着 ·堆積するデブリ量は大幅に低減され、 各反射鏡の反射率低下を 抑えることができる。  The debris that has entered the casing 48 is collided and scattered by the He gas introduced from the port 49, rapidly loses its energy, and floats inside the casing 48. The debris floating in the casing 48 collides with the inner wall of the blade 50 5 casing 48 and is adsorbed. As a result, the amount of debris adhering and accumulating on the concave reflecting mirror 46 and the convex reflecting mirror 47 is greatly reduced, and a decrease in the reflectance of each reflecting mirror can be suppressed.
真空容器 4 2内において E U V光束の近傍に筒状の部材 5 1を配置すると、 真 空容器 4 2内に入り込んできたデブリが筒状部材 5 1の内壁に衝突し、 吸着する ので、 ピンホール 5 2よりも下流側にデブリが流入するのを低減することができ る。 ケ一シング 4 8、 羽 5 0および筒状部材 5 1を冷却すると、 吸着したデブリ が再放出される確率が低下し、 ひいては吸着効率がより高くなるので好ましい。 冷却方式としては、 冷媒 (水などの液体) による冷却や、 ペリチェ素子などの電 子冷却や、 ヒートパイプによる冷却などを用いると良い。 筒状部材 5 1がない方 がピンホール 5 2よりも下流側の真空度が良い場合には、 筒状部材 5 1の設置を 省略することもできる。 上述の実施形態にかかる露光装置では、 照明系によってマスクを照明し (照明 工程)、 投影光学系を用いてマスクに形成された転写用のパターンを感光性基板 に露光する (露光工程) ことにより、 マイクロデバイス (半導体素子、 撮像素子、 液晶表示素子、 薄膜磁気ヘッド等) を製造することができる。 以下、 本実施形態 の露光装置を用いて感光性基板としてのウェハ等に所定の回路パターンを形成す ることによって、 マイクロデバイスとしての半導体デバイスを得る際の手法の一 例につき第 1 3図のフローチャートを参照して説明する。 If the cylindrical member 51 is arranged near the EUV light beam in the vacuum container 42, debris that has entered the vacuum container 42 collides with the inner wall of the cylindrical member 51 and is adsorbed. It is possible to reduce the inflow of debris downstream of 52. Cooling the casing 48, the wings 50, and the tubular member 51 is preferable because the probability that the adsorbed debris is re-emitted is reduced, and the adsorption efficiency is further increased. As the cooling method, cooling with a refrigerant (a liquid such as water), electronic cooling of a Peltier element, or cooling with a heat pipe may be used. If the degree of vacuum downstream of the pinhole 52 is better without the tubular member 51, the installation of the tubular member 51 may be omitted. In the exposure apparatus according to the above-described embodiment, the mask is illuminated by the illumination system (illumination step), and a transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step). And micro devices (semiconductor devices, imaging devices, liquid crystal display devices, thin-film magnetic heads, etc.). Hereinafter, a predetermined circuit pattern is formed on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. Thus, an example of a method for obtaining a semiconductor device as a micro device will be described with reference to the flowchart in FIG.
先ず、 第 1 3図のステップ 3 0 1において、 1ロットのウェハ上に金属膜が蒸 着される。 次のステップ 3 0 2において、 その 1ロットのウェハ上の金属膜上に フォトレジストが塗布される。 その後、 ステップ 3 0 3において、 本実施形態の 露光装置を用いて、 マスク (レチクル) 上のパターンの像がその投影光学系を介 して、 その 1ロットのウェハ上の各ショット領域に順次露光転写される。  First, in step 301 of FIG. 13, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the wafer of the lot. Then, in step 303, using the exposure apparatus of this embodiment, the pattern image on the mask (reticle) is sequentially exposed to each shot area on the wafer of the lot through the projection optical system. Transcribed.
その後、 ステップ 3 0 4において、 その 1ロットのゥェ八上のフォトレジスト の現像が行われた後、 ステップ 3 0 5において、 その 1ロットのウェハ上でレジ ストパターンをマスクとしてエッチングを行うことによって、 マスク上のパター ンに対応する回路パターンが、 各ウェハ上の各ショット領域に形成される。 その 後、 更に上のレイヤの回路パターンの形成等を行うことによって、 半導体素子等 のデバイスが製造される。 上述の半導体デバイス製造方法によれば、 極めて微細 な回路パターンを有する半導体デバイスをスループット良く得ることができる。 産業上の利用の可能性  Then, in step 304, the photoresist on the lot in the lot is developed, and in step 305, etching is performed on the wafer in the lot using the resist pattern as a mask. Thereby, a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer. Thereafter, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput. Industrial potential
以上説明したように、 本発明の光源ユニットは、 E U V光を供給するための光 源本体と、 貫通孔を有する第 1反射鏡と、 光源本体と第 1反射鏡との間の光路中 に配置されて貫通孔を有する第 2反射鏡とを備えている。 その結果、 発光点の周 りの構造物が障害になることなく、 D P P光源本体からの D P P発散光を、 光量 損失を良好に抑えて所望の光強度分布で所定の集光点へ集光させることができる。 したがって、 本発明の露光装置および露光方法では、 光量損失を良好に抑えて 所望の光強度分布で D P P発散光を集光させることのできる光源ュニットから供 給される E U V光を用いて、 マスクパターンを感光性基板上に忠実に且つ高スル —プットで転写することができ、 ひいては高精度なマイクロデバイスを高スル一 プットで製造することができる。  As described above, the light source unit of the present invention is arranged in a light source body for supplying EUV light, a first reflecting mirror having a through hole, and an optical path between the light source body and the first reflecting mirror. And a second reflecting mirror having a through hole. As a result, the DPP divergent light from the DPP light source body is condensed to a predetermined light condensing point with a desired light intensity distribution while suppressing the loss of light amount without causing any obstacles around the light emitting point be able to. Therefore, in the exposure apparatus and the exposure method of the present invention, the mask pattern is formed by using EUV light supplied from a light source unit capable of condensing DPP divergent light with a desired light intensity distribution while favorably suppressing a light amount loss. Can be faithfully transferred onto a photosensitive substrate with high throughput, and a high-precision microdevice can be manufactured with high throughput.

Claims

請 求 の 範 囲 The scope of the claims
1 . 標的材料をプラズマ化し、 該プラズマから E UV光を放出する光源本体と、 貫通孔を有する第 1反射鏡と、 前記光源本体と前記第 1反射鏡との間の光路中に 配置されて貫通孔を有する第 2反射鏡とを備え、 1. A target material is turned into plasma, a light source body that emits EUV light from the plasma, a first reflector having a through-hole, and arranged in an optical path between the light source body and the first reflector. A second reflector having a through hole,
前記 E U V光を、 前記第 2反射鏡の貫通孔、 前記第 1反射鏡の反射面、 前記第 2反射鏡の反射面、 および前記第 1反射鏡の貫通孔を介して、 所定の位置に集光 することを特徴とする光源ュニッ卜。  The EUV light is collected at a predetermined position through the through hole of the second reflecting mirror, the reflecting surface of the first reflecting mirror, the reflecting surface of the second reflecting mirror, and the through hole of the first reflecting mirror. A light source unit that emits light.
2 . 請求の範囲第 1項に記載の光源ュニッ卜において、 2. In the light source unit according to claim 1,
前記第 1反射鏡は、 凹面状の反射面を有することを特徴とする光源ュニット。  The light source unit, wherein the first reflecting mirror has a concave reflecting surface.
3 . 請求の範囲第 2項に記載の光源ユニットにおいて、 3. In the light source unit according to claim 2,
前記第 2反射鏡は、 凸面状の反射面を有することを特徴とする光源ュニット。  The light source unit, wherein the second reflecting mirror has a convex reflecting surface.
4 . 請求の範囲第 2項に記載の光源ユニットにおいて、 4. In the light source unit according to claim 2,
前記第 2反射鏡は、 平面状の反射面を有することを特徴とする光源ュニット。  The light source unit, wherein the second reflecting mirror has a flat reflecting surface.
5 . 請求の範囲第 2項に記載の光源ュニットにおいて、 5. In the light source unit according to claim 2,
前記第 2反射鏡は、 凹面状の反射面を有することを特徴とする光源ュニット。  The light source unit, wherein the second reflecting mirror has a concave reflecting surface.
6 . 請求の範囲第 1項乃至第 5項のいずれか 1項に記載の光源ュニットにおい て、 6. The light source unit according to any one of claims 1 to 5,
前記貫通孔は、 前記第 1反射鏡の中央および前記第 2反射鏡の中央にそれぞれ 形成されていることを特徴とする光源ュニット。  The light source unit, wherein the through hole is formed at a center of the first reflecting mirror and at a center of the second reflecting mirror, respectively.
7 . 請求の範囲第 1項乃至第 6項のいずれか 1項に記載の光源ュニットにおい て、 前記第 1反射鏡の本体および前記第 2反射鏡の本体は、 シリコン、 アルミニゥ ム、 または銅により形成されていることを特徴とする光源ュニット。 7. The light source unit according to any one of claims 1 to 6, wherein: The light source unit, wherein the main body of the first reflecting mirror and the main body of the second reflecting mirror are formed of silicon, aluminum, or copper.
8 . 請求の範囲第 1項乃至第 7項のいずれか 1項に記載の光源ュニットにおい て、 8. The light source unit according to any one of claims 1 to 7,
前記第 1反射鏡および前記第 2反射鏡を冷却するための冷却機構をさらに備え ていることを特徴とする光源ュニット。  A light source unit further comprising a cooling mechanism for cooling the first reflecting mirror and the second reflecting mirror.
9 . 請求の範囲第 1項乃至第 8項のいずれか 1項に記載の光源ュニットにおい て、 9. In the light source unit according to any one of claims 1 to 8,
前記第 1反射鏡および前記第 2反射鏡は交換可能に構成されていることを特徴 とする光源ュニット。  The light source unit, wherein the first reflecting mirror and the second reflecting mirror are exchangeable.
1 0 . 請求の範囲第 1項乃至第 9項のいずれか 1項に記載の光源ユニットにお いて、 10. The light source unit according to any one of claims 1 to 9, wherein
前記第 1反射鏡の反射面の位置および前記第 2反射鏡の反射面の位置を計測す るための位置計測手段をさらに備えていることを特徴とする光源ュニット。  A light source unit further comprising a position measuring means for measuring a position of a reflecting surface of the first reflecting mirror and a position of a reflecting surface of the second reflecting mirror.
1 1 . 請求の範囲第 1項乃至第 1 0項のいずれか 1項に記載の光源ユニットに おいて、 11. The light source unit according to any one of claims 1 to 10, wherein:
前記光源本体から放出されるデブリを前記第 1反射鏡と前記第 2反射鏡との間 の光路中において除去するためのデブリ除去機構をさらに備えていることを特徵 とする光源ュニット。  A light source unit, further comprising: a debris removing mechanism for removing debris emitted from the light source body in an optical path between the first reflecting mirror and the second reflecting mirror.
1 2 . 標的材料をプラズマ化し、 該プラズマから E U V光を放出する光源本体 と、 貫通孔を有する第 1反射鏡と、 前記光源本体と前記第 1反射鏡との間の光路 中に配置された第 2反射鏡とを備え、 12. A light source body that converts the target material into plasma and emits EUV light from the plasma, a first reflector having a through-hole, and is disposed in an optical path between the light source body and the first reflector. With a second reflector,
前記光源本体から放出されるデブリを前記第 1反射鏡と前記第 2反射鏡との間 の光路中において除去するためのデブリ除去機構をさらに備え、 Debris emitted from the light source body is interposed between the first reflecting mirror and the second reflecting mirror. Further comprising a debris removal mechanism for removal in the optical path of
前記 E U V光を、 前記第 1反射鏡の反射面、 前記第 2反射鏡の反射面、 および 前記第 1反射鏡の貫通孔を介して、 所定の位置に集光することを特徴とする光源 ュニット。  A light source unit that focuses the EUV light at a predetermined position via a reflecting surface of the first reflecting mirror, a reflecting surface of the second reflecting mirror, and a through hole of the first reflecting mirror. .
1 3 . 請求の範囲第 1 1項または第 1 2項に記載の光源ユニットにおいて、 前記デブリ除去機構は、 前記第 1反射鏡と前記第 2反射鏡との間の空間を包囲 するためのケーシングを有することを特徴とする光源ュニット。 13. The light source unit according to claim 11 or 12, wherein the debris removing mechanism includes a casing for surrounding a space between the first reflecting mirror and the second reflecting mirror. A light source unit comprising:
1 4 . 請求の範囲第 1 3項に記載の光源ュニットにおいて、 14. The light source unit according to claim 13, wherein:
前記空間には所定ガスが導入されていることを特徴とする光源ュニット。  A light source unit, wherein a predetermined gas is introduced into the space.
1 5 . 請求の範囲第 1 4項に記載の光源ュニットにおいて、 15. The light source unit according to claim 14, wherein:
前記所定ガスは., ヘリウム、 アルゴン、 ネオン、 キセノン、 クリプトン、 窒素、 酸素またはオゾンであることを特徴とする光源ュニット。  The light source unit, wherein the predetermined gas is helium, argon, neon, xenon, krypton, nitrogen, oxygen or ozone.
1 6 . 請求の範囲第 1 1項乃至第 1 5項のいずれか 1項に記載の光源ユニット において、 16. The light source unit according to any one of claims 11 to 15, wherein
前記デブリ除去機構は、 光軸を中心として放射状に延びる断面を有する複数の プレート部材を備えていることを特徴とする光源ュニット。  The light source unit according to claim 1, wherein the debris removing mechanism includes a plurality of plate members having a cross section extending radially around an optical axis.
1 7 . 請求の範囲第 1 2項乃至第 1 6項のいずれか 1項に記載の光源ュニッ卜 において、 17. The light source unit according to any one of claims 12 to 16, wherein
前記複数のプレート部材および前記ケ一シングは、 冷却可能に構成されている ことを特徴とする光源ュニット。  The light source unit, wherein the plurality of plate members and the casing are configured to be coolable.
1 8 . 請求の範囲第 1 6項または第 1 7項に記載の光源ュニットにおいて、 前記複数のプレート部材と前記ケーシングとの間には所定の電圧が印加されて いることを特徴とする光源ュニット。 18. The light source unit according to claim 16 or 17, wherein a predetermined voltage is applied between the plurality of plate members and the casing. A light source unit.
1 9 . 請求の範囲第 1 6項乃至第 1 8項のいずれか 1項に記載の光源ユニット において、 19. The light source unit according to any one of claims 16 to 18, wherein
前記複数のプレート部材は、 前記光軸を中心として回転可能に構成されている ことを特徵とする光源ュニット。  The light source unit, wherein the plurality of plate members are configured to be rotatable about the optical axis.
2 0 . 請求の範囲第 1項乃至第 1 9項のいずれか 1項に記載の光源ュニットと、 該光源ュニットからの E U V光を被照射面へ導くための導光光学系とを備えてい ることを特徴とする照明光学装置。 20. The light source unit according to any one of claims 1 to 19, and a light guide optical system for guiding EUV light from the light source unit to a surface to be irradiated. An illumination optical device, comprising:
2 1 . 所定のパターンが形成された反射型のマスクを照明するための請求の範 囲第 2 0項に記載の照明光学装置と、 前記マスクのパターン像を感光性基板上に 形成するための投影光学系とを備えていることを特徴とする露光装置。 21. An illumination optical device according to claim 20 for illuminating a reflective mask on which a predetermined pattern is formed, and an illumination optical device for forming a pattern image of the mask on a photosensitive substrate. An exposure apparatus comprising a projection optical system.
2 2 . 請求の範囲第 2 1項に記載の露光装置において、 22. In the exposure apparatus according to claim 21,
前記投影光学系に対して前記マスクおよび前記感光性基板を所定方向に沿って 相対移動させて前記マスクのパターンを前記感光性基板上へ投影露光することを 特徴とする露光装置。  An exposure apparatus, wherein the mask and the photosensitive substrate are relatively moved with respect to the projection optical system along a predetermined direction to project and expose a pattern of the mask onto the photosensitive substrate.
2 3 . 請求の範囲第 2 0項に記載の照明光学装置を用いて所定のパターンが形 成された反射型のマスクを照明する照明工程と、 投影光学系を介して前記マスク のパターンを前記感光性基板上へ投影露光する露光工程とを含むことを特徴とす る露光方法。 23. An illuminating step of illuminating a reflective mask on which a predetermined pattern has been formed using the illumination optical device according to claim 20; and the patterning of the mask through a projection optical system. An exposure step of projecting and exposing on a photosensitive substrate.
2 4 . 請求の範囲第 2 3項に記載の露光方法において、 24. In the exposure method according to claim 23,
前記露光工程では、 前記投影光学系に対して前記マスクおよび感光性基板を所 定方向に沿って相対移動させて前記マスクのパターンを前記感光性基板上へ投影 露光することを特徴とする露光方法。 In the exposing step, the mask and the photosensitive substrate are moved relative to the projection optical system along a predetermined direction to project the pattern of the mask onto the photosensitive substrate. An exposing method characterized by exposing.
PCT/JP2004/005096 2003-04-09 2004-04-08 Light source unit, illumination optical system, exposure apparatus and exposure method WO2004090957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003105117A JP4340851B2 (en) 2003-04-09 2003-04-09 Light source unit, illumination optical device, exposure apparatus, and exposure method
JP2003-105117 2003-04-09

Publications (1)

Publication Number Publication Date
WO2004090957A1 true WO2004090957A1 (en) 2004-10-21

Family

ID=33156871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005096 WO2004090957A1 (en) 2003-04-09 2004-04-08 Light source unit, illumination optical system, exposure apparatus and exposure method

Country Status (2)

Country Link
JP (1) JP4340851B2 (en)
WO (1) WO2004090957A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI237733B (en) * 2003-06-27 2005-08-11 Asml Netherlands Bv Laser produced plasma radiation system with foil trap
US20060138349A1 (en) * 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7193229B2 (en) * 2004-12-28 2007-03-20 Asml Netherlands B.V. Lithographic apparatus, illumination system and method for mitigating debris particles
SG123767A1 (en) * 2004-12-28 2006-07-26 Asml Netherlands Bv Lithographic apparatus, illumination system and filter system
TWI451125B (en) * 2005-09-13 2014-09-01 Zeiss Carl Smt Gmbh Microlithography projection optical system, microlithographic tool comprising such an optical system, method for microlithographic production of microstructured components using such a microlithographic tool, microstructured component being produced by s
US20070115443A1 (en) * 2005-11-23 2007-05-24 Asml Netherlands B.V. Radiation system and lithographic apparatus
US7465943B2 (en) * 2005-12-08 2008-12-16 Asml Netherlands B.V. Controlling the flow through the collector during cleaning
JP2007163610A (en) * 2005-12-09 2007-06-28 Canon Inc Multilayer film mirror, and optical system having multilayer film mirror
FR2899698A1 (en) * 2006-04-07 2007-10-12 Sagem Defense Securite DEVICE FOR COLLECTING ELECTROMAGNETIC RADIATION FLUX IN EXTREME ULTRAVIOLET
US7442948B2 (en) * 2006-05-15 2008-10-28 Asml Netherlands B.V. Contamination barrier and lithographic apparatus
EP1950594A1 (en) * 2007-01-17 2008-07-30 Carl Zeiss SMT AG Imaging optical system, projection illumination unit for microlithography with such an optical system, method for manufacturing a microstructured component with such a projection illumination unit, microstructured component produced by the manufacturing method and use of such an optical system
JP5001055B2 (en) * 2007-04-20 2012-08-15 株式会社小松製作所 Extreme ultraviolet light source device
JP5108367B2 (en) * 2007-04-27 2012-12-26 ギガフォトン株式会社 Extreme ultraviolet light source device
US7839482B2 (en) * 2007-05-21 2010-11-23 Asml Netherlands B.V. Assembly comprising a radiation source, a reflector and a contaminant barrier
US8436328B2 (en) * 2008-12-16 2013-05-07 Gigaphoton Inc. Extreme ultraviolet light source apparatus
KR102277452B1 (en) 2010-04-02 2021-07-14 가부시키가이샤 니콘 Illumination optical system, exposure method and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057298A (en) * 1999-08-18 2001-02-27 Nikon Corp X-ray generator, and projection exposure device having the same and exposing method
JP2002008891A (en) * 2000-06-22 2002-01-11 Nikon Corp Electromagnetic wave generating device, semiconductor manufacturing device using the same, and semiconductor device manufacturing method
JP2002313598A (en) * 2001-01-10 2002-10-25 Nikon Corp Debris eliminator, light source and exposure device
JP2003022950A (en) * 2001-07-05 2003-01-24 Canon Inc Debris remover for x-ray light source and aligner comprising it
JP2003031483A (en) * 2001-07-18 2003-01-31 Matsushita Electric Ind Co Ltd Soft x-ray reduction projection aligner, soft x-ray reduction projection exposure method, and pattern formation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057298A (en) * 1999-08-18 2001-02-27 Nikon Corp X-ray generator, and projection exposure device having the same and exposing method
JP2002008891A (en) * 2000-06-22 2002-01-11 Nikon Corp Electromagnetic wave generating device, semiconductor manufacturing device using the same, and semiconductor device manufacturing method
JP2002313598A (en) * 2001-01-10 2002-10-25 Nikon Corp Debris eliminator, light source and exposure device
JP2003022950A (en) * 2001-07-05 2003-01-24 Canon Inc Debris remover for x-ray light source and aligner comprising it
JP2003031483A (en) * 2001-07-18 2003-01-31 Matsushita Electric Ind Co Ltd Soft x-ray reduction projection aligner, soft x-ray reduction projection exposure method, and pattern formation method

Also Published As

Publication number Publication date
JP4340851B2 (en) 2009-10-07
JP2004311814A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP3828889B2 (en) Contamination barrier with stretchable membrane
TWI237741B (en) Extreme ultraviolet radiation transparent structure in a vacuum chamber wall, e.g. for use in a lithographic projection apparatus
JP4105616B2 (en) Lithographic projection apparatus and reflector assembly for the apparatus
JP5553833B2 (en) Radiation source and lithographic apparatus
JP3696163B2 (en) Lithographic projection apparatus, element manufacturing method, and element manufactured thereby
US7057190B2 (en) Lithographic projection apparatus, particle barrier for use therein, integrated structure manufacturing method, and device manufactured thereby
JP4799620B2 (en) Radiation system and lithographic apparatus
KR101958857B1 (en) Radiation source
JP4340851B2 (en) Light source unit, illumination optical device, exposure apparatus, and exposure method
JP4446996B2 (en) Radiation system and lithographic apparatus
JP2000058443A (en) Lithographic projection apparatus and manufacture of device
JP3662574B2 (en) Lithographic projection apparatus and reflector assembly for use in said apparatus
KR20110015660A (en) Radiation system, radiation collector, radiation beam conditioning system, spectral purity filter for a radiation system and method of forming a spectral purity filter
WO2005096680A1 (en) Light source unit, illumination optical device and exposing method
JP4725814B2 (en) Light source unit, illumination optical device, exposure apparatus, and exposure method
NL2009352A (en) Radiation source.
EP2199857B1 (en) Radiation source, lithographic apparatus and device manufacturing method
JP2005332923A (en) Euv exposure device
JP4695122B2 (en) Lithographic apparatus
JP2005294608A (en) Electric discharge light source unit, lighting optical device, aligner, and exposure method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase