WO2004088367A1 - Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display - Google Patents
Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display Download PDFInfo
- Publication number
- WO2004088367A1 WO2004088367A1 PCT/JP2004/003791 JP2004003791W WO2004088367A1 WO 2004088367 A1 WO2004088367 A1 WO 2004088367A1 JP 2004003791 W JP2004003791 W JP 2004003791W WO 2004088367 A1 WO2004088367 A1 WO 2004088367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- film
- plate
- polarizing element
- light
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133536—Reflective polarizers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3016—Polarising elements involving passive liquid crystal elements
Definitions
- the present invention relates to a method for producing a broadband cholesteric liquid crystal film.
- the broadband cholesteric liquid crystal film of the present invention is useful as a circularly polarizing plate (reflective polarizer).
- the present invention relates to a linearly polarizing element, an illuminating device and a liquid crystal display device using the circularly polarizing plate.
- a liquid crystal display has a structure in which liquid crystal is injected between glass plates on which transparent electrodes are formed, and polarizers are arranged before and after the glass plates.
- a polarizer used for such a liquid crystal display is manufactured by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and stretching it in a certain direction.
- the polarizer thus manufactured itself absorbs light that oscillates in one direction, and passes only light that oscillates in the other direction to produce linearly polarized light.
- the efficiency of the polarizer cannot theoretically exceed 50%, which is the biggest factor that lowers the efficiency of liquid crystal displays.
- the liquid crystal display device may destroy the polarizer due to heat generated by the heat conversion of the absorbed light, or may have a negative effect on the liquid crystal layer inside the cell. This causes adverse effects such as deterioration of display quality.
- Cholesteric liquid crystals with a function of separating circularly polarized light have a selective reflection characteristic that reflects only the circularly polarized light whose wavelength is the helical pitch of the liquid crystal, with the direction of rotation of the liquid crystal helix and the direction of circular polarization being the same. There is.
- this selective reflection characteristic only specific circularly polarized light of natural light in a certain wavelength band is transmitted and separated, and the remaining light is reflected and reused, whereby a highly efficient polarizing film can be manufactured.
- the transmitted circularly polarized light is converted into linearly polarized light by passing through a ⁇ / 4 wavelength plate, and the direction of the linearly polarized light is transmitted to the liquid crystal display.
- a liquid crystal display device with high transmittance can be obtained by adjusting the transmission direction of the absorption polarizer used.
- a cholesteric liquid crystal film is used as a linear polarizing element in combination with a four-wavelength plate, there is theoretically no loss of light, so a conventional absorption polarizer that absorbs 50% of light In theory, it is possible to obtain twice the brightness improvement as compared with the case where is used alone.
- the selective reflection characteristic of the cholesteric liquid crystal is limited only to a specific wavelength band, and it has been difficult to perform the power analysis over the entire visible light range.
- the selective reflection wavelength region width ⁇ of the cholesteric liquid crystal is
- n o Refractive index of cholesteric liquid crystal molecules for normal light
- ne Refractive index of cholesteric liquid crystal molecules to extraordinary light
- the width of the selective reflection wavelength region ⁇ ⁇ can be increased by increasing ne ⁇ no, but ne ⁇ is usually 0.3 or less. If this value is increased, other functions (alignment characteristics, liquid crystal temperature, etc.) of the liquid crystal become insufficient, and practical use was difficult. Therefore, in practice, the width of the selective reflection wavelength region was at most about 150 nm. Most of the practically usable cholesteric liquid crystals are only about 30 to 100 nm. Also, the selective reflection center wavelength is
- the pitch is constant, it depends on the average refractive index and pitch length of the liquid crystal molecules. Therefore, in order to improve the power of the entire visible light region, a plurality of layers having different selective reflection center wavelengths are laminated, or the pitch length is continuously changed in the thickness direction to form an existence distribution of the selective reflection center wavelength itself.
- Japanese Unexamined Patent Application Publication No. Hei 6-218184, Japanese Patent No. 3272686, Japanese Unexamined Patent Application Publication No. Hei 11-248943, Japanese Unexamined Patent Application Publication No. See Japanese Patent Publication No. 86953/86.
- this method when the cholesteric liquid crystal composition is cured by exposure to ultraviolet light, the exposure side and the exit side are exposed. By making a difference in light intensity and making a difference in polymerization rate, the composition ratio of liquid crystal compositions having different reaction rates is changed in the thickness direction.
- the method of continuously changing the pitch length as disclosed in Japanese Patent Application Laid-Open No. 6-281814 requires a liquid crystal layer thickness of about 15 to 20 ⁇ m necessary for realizing the function.
- cost was inevitable due to the need for expensive liquid crystals.
- an exposure time of about 1 to 60 minutes was required, and a long production line with an exposure line length of 10 to 60 Om was required to obtain a line speed of 10 mZ. If the line speed is reduced, the line length can be reduced, but a reduction in production speed is inevitable.
- Hei 11-248 943 since the mobility of the substance that changes the pitch is better than the material example used in Japanese Unexamined Patent Publication No. Hei 6 A film can be formed with an exposure amount of about a minute. However, even in this case, a thickness of 15 / m is required.
- Patent No. 3 2 7 2 6 6 8 changes the temperature conditions of the primary exposure and the secondary exposure, and separately provides the time required for the composition ratio to change in the thickness direction, In order to cover substantially the entire visible light region by this method, it is necessary to wait about 120 minutes for mass transfer due to this temperature change.
- a method of continuously changing the pitch length as disclosed in Japanese Patent Application Laid-Open No. 2002-286935 Requires a liquid crystal layer thickness of about 15 to 20 ⁇ m to exhibit its functions, and in addition to the problem of precise coating of the liquid crystal layer, it also requires a large amount of expensive liquid crystal, which saves cost. I wouldn't.
- Japanese Patent Application Laid-Open No. 2002-2866935 when the cholesteric liquid crystal composition is cured by ultraviolet exposure from the side opposite to the substrate (air interface side), the cholesteric liquid crystal composition is inhibited by oxygen.
- the composition ratio change is changed in the thickness direction by making a difference between the exposure intensity on the exposure surface side and the exposure intensity on the emission surface side.
- the transmission is sufficiently flat for the three emission wavelengths of the backlight source, namely, 355 nm, 545 nm, and 615 nm. It is necessary to ensure the reflectivity and Z-reflectance characteristics.
- the bandwidth broadening range obtained by the methods of Examples 1 and 2 described in Japanese Patent Application Laid-Open No. 2002-2866935 is 43.5 nm and 615 nm in each case. It was not enough to cover the bright line spectrum. In such a case, the color tone of the transmitted light is difficult to obtain white and cannot be used for a liquid crystal display device or the like. Disclosure of the invention
- the present applicant has filed a Japanese Patent Application No. 2001-339396.
- the liquid crystal composition applied to the alignment substrate is irradiated with ultraviolet light from the alignment substrate.
- polymerization is started from the surface that is not easily affected by polymerization inhibition due to oxygen in contact with the alignment substrate, and an ultraviolet irradiation intensity distribution is formed in the thickness direction by utilizing absorption by the molar absorption coefficient of the liquid crystal layer.
- the liquid crystal reaction rate gradient and the composition concentration distribution gradient are larger than before by reducing the effective UV radiation on the air surface side, which is greatly affected by oxygen inhibition.
- a wavelength band of about 400 to 70 nm is used. These wavelength bands power the light source spectrum. These provide good circularly polarized light reflection characteristics near normal incidence. On the other hand, at oblique incidence, the wavelength band was not sufficient.
- the selective reflection wavelength at oblique incidence is
- n average refractive index of liquid crystal
- the selective reflection wavelength shifts to a shorter wavelength side when the light is obliquely incident than when it is perpendicularly incident. Therefore, in order to function effectively for oblique incident light, it is necessary to function in a long wavelength region.
- An object of the present invention is to provide a method capable of manufacturing a broadband cholesteric liquid crystal film having a broadband reflection band even in a long wavelength region.
- Another object of the present invention is to provide a circularly polarizing plate using a broadband cholesteric liquid crystal film obtained by the manufacturing method. It is another object of the present invention to provide a linear polarizing element, a lighting device, and a liquid crystal display device using the circular polarizing plate.
- the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that a broadband cholesteric liquid crystal film that can achieve the above object can be obtained by the following manufacturing method, and have completed the present invention. . That is, the present invention is as follows.
- the alignment group UV irradiation from the material side (1) In a state where the liquid crystal mixture is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at an ultraviolet irradiation intensity of 20 to 200 mWZ cm 2 for 0.2 to 5 seconds, the alignment group UV irradiation from the material side (1),
- a method for producing a broadband cholesteric liquid crystal film comprising the step of irradiating ultraviolet rays in the absence of oxygen (4).
- the polymerizable mesogen compound (A) has the following general formula (1):
- a retardation layer (b) with almost zero front phase difference (normal direction) and a phase difference of ⁇ 8 or more with respect to incident light that is incident at an angle of 30 ° or more with respect to the normal direction is arranged.
- a polarizing element wherein the reflective polarizer (a) is the circularly polarizing plate according to the above item 6.
- Retardation layer (b) Force Fixed cholesteric liquid crystal phase having a selective reflection wavelength range other than the visible light range, with fixed planar orientation,
- a straight line characterized in that a ⁇ / 4 plate is laminated on the circularly polarizing plate described in 6 above or the polarizing element described in any of 7 to 9 above, so that linearly polarized light can be obtained by transmission.
- Polarizing element
- the linearly polarizing element according to 10 above obtained by laminating a cholesteric liquid crystal film as a circularly polarizing plate on an e / 4 plate so that the pitch length is continuously narrowed.
- the 3./4 plate is a liquid crystal polymer type retardation plate obtained by applying and fixing a nematic liquid crystal or a smectic liquid crystal.
- a linearly polarizing element characterized in that a ⁇ / 2 plate is further laminated on the ⁇ Z 4 plate of the linearly polarizing element according to any of the above 10 to 14.
- the absorption polarizer whose transmission axis and transmission axis direction of the linear polarizing element according to any of the above 10 to 15 are aligned on the fourth / 4 plate side of the linear polarizing element.
- a linear polarization element features a linear polarization element.
- An illumination device comprising a linear polarizing element.
- a liquid crystal display device comprising a liquid crystal cell on the light emission side of the lighting device according to the above item 17.
- the viewing angle widening liquid crystal display device according to the above item 19, characterized in that a spreading plate having substantially no backscattering or depolarization is used as the viewing angle widening film.
- the ultraviolet irradiation condition is such that the first irradiation intensity> the second irradiation intensity, and the first irradiation time ⁇ the second irradiation time.
- a heating step (3) is provided between the first UV irradiation and the second UV irradiation. Due to the difference in irradiation intensity, the amount of radicals generated by the UV reaction of the photoreaction initiator in the liquid crystal composition per unit time is greatly changed between the first UV irradiation and the second UV irradiation.
- the first UV irradiation a large amount of radicals are instantaneously formed under monomer-rich conditions at the beginning of the reaction, and a large gradient in the thickness direction is formed in the radical existence distribution due to oxygen inhibition and absorption of the liquid crystal composition.
- a polymer / oligomer having an average molecular weight of about 1,000 to 5,000 is formed, and a concentration distribution is formed in the thickness direction.
- the polymerization ratio differs in the thickness direction because the reaction rates of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B) in the liquid crystal composition are different.
- the surface where the polymerizable chiral agent (B) is rich has a short cholesteric pitch and the surface in the opposite direction becomes long.
- a cholesteric liquid crystal film having a broad reflection wavelength as a whole can be obtained.
- the broadband cholesteric liquid crystal film thus obtained functions as a broadband circularly polarizing reflector and has the same optical characteristics as the above-mentioned JP-A-6-218184.
- the thickness can be reduced by reducing the number of layers compared to the conventional manufacturing method, and furthermore, it can be manufactured easily and in a short time, and the cost is reduced by improving the production speed. Is possible.
- the broadband cholesteric liquid crystal film obtained by the production method of the present invention has a wide reflection bandwidth of 200 nm or more in the selective reflection wavelength, and has a broadband reflection bandwidth.
- the reflection bandwidth is preferably at least 300 nm, more preferably at least 400 nm, and further preferably at least 450 nm. Further, it is preferable that the reflection band width of 200 nm or more is provided in a visible light region, particularly in a wavelength region of 400 to 900 nm.
- a circularly polarizing reflector has a wide reflection band even in a long wavelength region in order to obtain a good viewing angle characteristic of a liquid crystal display device.
- the long wavelength end of the selective reflection must reach 800 to 900 nm in order to prevent the transmitted light from being colored in a practical viewing angle range.
- a reflection band is provided even in such a long wavelength region.
- a broadband cholesteric liquid crystal film can be obtained.
- Such a broadband cholesteric liquid crystal film is used not only when it is used as a reflective polarizer for obtaining high luminance but also when it is used for a polarizing element formed in combination with another optical element such as a retardation plate.
- stable optical characteristics for obliquely incident light rays other than the front face are required.
- FIG. 1 is a conceptual view of a viewing angle widening liquid crystal display device using the polarizing element integrated with a polarizing plate of Examples 1 and 3 and Comparative Examples 1 to 3.
- FIG. 2 is a conceptual diagram of a viewing angle widening liquid crystal display device using the polarizing plate integrated polarizing element of the second embodiment.
- FIG. 3 is a diagram illustrating an axis angle of each layer in the polarizing plate integrated polarizing element according to the second embodiment.
- FIG. 4 is a reflection spectrum of the cholesteric liquid crystal finolem produced in Example 1, Comparative Example 1, and Comparative Example 2.
- the broadband cholesteric liquid crystal film of the present invention is obtained by ultraviolet polymerization of a liquid crystal mixture containing a polymerizable mesogen compound (A) and a polymerizable chiral agent (B).
- a polymerizable mesogen compound (A) a compound having at least one polymerizable functional group and having a mesogen group composed of a cyclic unit or the like is preferably used.
- the polymerizable functional group include an acryloyl group, a methacryloyl group, an epoxy group and a butyl ether group. Of these, an acryloyl group and a methacryloyl group are preferable. It is.
- a crosslinked structure can be introduced to improve durability.
- the cyclic unit to be a mesogen group include biphenyl-based, phenylbenzoate-based, phenylsilicone hexane-based, azoxybenzene-based, azomethine-based, azobenzene-based, phenylpyrimidine-based, and diphenyl-based. Ninoleacetylene, diphenylenobenzoate, bicyclohexane, cyclohexylbenzene, terphenyl and the like.
- the terminal of the cyclic unit may have a substituent such as, for example, a cyano group, an alkyl group, an alkoxy group, or a halogen group.
- the mesogen group may be bonded via a spacer that imparts flexibility.
- the spacer include a polymethylene chain and a polymethylene chain. The number of repetitions of the structural unit forming the spacer portion is appropriately determined depending on the chemical structure of the mesogen portion, but the number of recurring units of the polymethylene chain is 0 to 20, preferably 2 to 12, The repeating unit of the methylene chain is from 0 to 10, preferably:! ⁇ 3.
- the molar extinction coefficient of the polymerizable mesogen compound (A) is 0.1 to 500 dm 3 mol-L e na— [ ⁇ 365 5 1101, and 10 to 300 dm 3 mo 1 _1 cm “is 1 ® 3 3 4 nm, with a force one 1 0 0 0 ⁇ 1 0 0 0 0 0 dm 3 mol -1 cm one 1 @ 3 1 4 nm Dearuko and are preferred.
- the molar extinction coefficient Molar absorption coefficient is 0.1 ⁇ 50 dm 3 mol- 1 cm- 1 @ 365 nm, 50 ⁇ 100 000 dm 3 mol -1 cm — '2, 100 000 to 500 000 dm 3 mo 1 1 cm— 1 ® 3 14 nm is more preferred
- the molar extinction coefficient is 0.1 to 10 dm 3 mo 1 _1 cm _ 1 @ 365 nm, 100 0 0 ⁇ 400 m dm 3 mo I- 1 cm-1 1 @ 3 34 nm, 300 0 0 0 ⁇ 400 0 0 dm 3 mo 1 cm "'@ 314 nm is more preferable.
- Molar extinction coefficient is 0.
- the molar extinction coefficient is a value obtained by measuring the spectrophotometric spectrum of each material and measuring the resulting absorbance at 365 nm, 334 nm, and 314 nm.
- the polymerizable mesogen compound (A) having one polymerizable functional group has, for example, the following general formula: (1)
- the polymerizable mesogen compound (A) is not limited to these exemplified compounds.
- Examples of the polymerizable chiral agent (B) include LC756 manufactured by BASF.
- the compounding amount of the polymerizable chiral agent (B) is the same as that of the polymerizable mesogen compound (A).
- the amount is preferably about 1 to 20 parts by weight, more preferably 3 to 7 parts by weight, based on the total of 100 parts by weight of the sex chiral agent (B).
- the helical torsional force (HTP) is controlled by the ratio of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B). By setting the ratio within the above range, the reflection band can be selected so that the reflection spectrum of the obtained cholesteric liquid crystal film can cover a long wavelength range.
- the liquid crystal mixture usually contains a photopolymerization initiator (C).
- a photopolymerization initiator C
- Various photopolymerization initiators (C) can be used without particular limitation.
- irgacure 184, irgacure 907, irgacure 369, and irgacure 651 manufactured by Chipa Specialty Chemicals Co., Ltd. may be mentioned.
- the amount of the photopolymerization initiator is preferably about 0.01 to 10 parts by weight based on 100 parts by weight of the total of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B). 0.05-5 parts by weight is more preferred.
- the mixture can be mixed with an ultraviolet absorber to increase the difference in ultraviolet exposure intensity in the thickness direction.
- an ultraviolet absorber having a large molar extinction coefficient.
- the mixture can be used as a solution.
- Solvents used for preparing the solution are usually chloroform, dichloromethane, dichloromethane, tetrachlorethane, trichloroethylene, tetrachloroethylene, and tetrachloroethylene.
- Halogenated hydrocarbons such as benzene, phenols such as phenol and parachlorophenol, and aromatic hydrocarbons such as benzene, toluene, xylene, methoxybenzene and 1,2-dimethoxybenzene And others, such as acetone, methylethyl ketone, ethyl acetate, tert-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol, monomethylinoleate, diethyleneglycorereginette, Ethylsilenosolve, butyl cellosolve, 2-pyrrolidone, N-Methyl-1-2-pyrrolidone, pyridine, triethylamine, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitril, ptyronitrile, disulfide Carbon, cyclopentanone, cyclohex
- the solvent used is not particularly limited, but methyl ethyl ketone, cyclohexanone, cyclopentanone, and the like are preferred.
- the concentration of the solution cannot be determined unconditionally because it depends on the solubility of the thermopick liquid crystal compound and the final thickness of the target cholesteric liquid crystal film, but it is usually about 3 to 50% by weight. It is preferred that '
- the production of the broadband cholesteric liquid crystal film of the present invention includes a step of applying the liquid crystal mixture to an alignment substrate, and a step of irradiating the liquid crystal mixture with ultraviolet rays and polymerizing and curing.
- the alignment base material As the alignment base material, a conventionally known one can be used.
- a polymer having a photo-crosslinking group such as a rubbing film, obliquely deposited film, or cinnamate diazobenzene, which is formed by forming a thin film made of polyimide or polyvinyl alcohol on a substrate and rubbing it with rayon cloth or the like
- a light directing film or a stretched film obtained by irradiating a polyimide with polarized ultraviolet light is used.
- orientation can be performed by magnetic field, electric field orientation, and shear stress operation.
- the type of the base material is not particularly limited, but a material having a high transmittance is desirable in view of the method of irradiating irradiation light (ultraviolet rays) from the base material side.
- the base material has a transmittance of at least 10%, preferably at least 2%, in the ultraviolet region of from 200 nm to 400 nm, more preferably from 300 nm to 400 nm. It is required to be 0% or more.
- the plastic film has a transmittance of 10% or more, more preferably 20% or more, for ultraviolet light having a wavelength of 365 nm.
- the transmittance is directly measured by U-410 Spectr ⁇ ⁇ hh ⁇ ⁇ ⁇ m te ter manufactured by HITACHI.
- the substrate may be a plastic material such as polyethylene terephthalate, triacetyl cellulose, norbornene resin, polyvinyl alcohol, polyimide, polyarylate, polycarbonate, polysulfone or polyethersulfone.
- a film or a glass plate is used.
- Triacetyl cellulose manufactured by Fudo Photographic Film Co., Ltd., ARTON manufactured by JSR, and ZONEX manufactured by Zeon Corporation can be mentioned.
- a polymer film described in Japanese Patent Application Laid-Open No. 2001-334529 for example, (A) Substituted or unsubstituted side chain
- the resin composition include a thermoplastic resin having an imido group and (B) a thermoplastic resin having a substituted and / or unsubstituted fuunyl and a ditolyl group in a side chain.
- Specific examples of such a film include a resin composition film containing an alternating copolymer of isoptylene and N-methylmaleimide and an acrylonitrile'styrene copolymer.
- As the film a film made of a mixed extruded product of a resin composition or the like can be used.
- the base material may be used while being bonded to the cholesteric liquid crystal layer, or may be peeled off. When using it as it is, use a material whose retardation value is sufficiently small for practical use.
- the base material When the base material is used while being bonded, it is desirable that the base material does not decompose, deteriorate or yellow even when irradiated with ultraviolet rays.
- the desired purpose can be achieved by adding a light stabilizer or the like to the above-mentioned base material.
- the light stabilizer Tinuvin 120 and 144, manufactured by Chipa Specialty Chemicals, etc., are preferably used.
- the wavelength from the exposure light to a wavelength of 300 nm or less, coloring, deterioration, and yellowing can be reduced.
- the coating thickness of the liquid crystal mixture is preferably about 1 to 20 / ⁇ . If the coating thickness is thinner than 1 m, the reflection bandwidth can be secured, but the degree of polarization itself tends to decrease, which is not preferable.
- the coating thickness is preferably 2 / Z1T1 or more, and more preferably 3 / 1m or more. On the other hand, when the coating thickness is larger than 20 / im, no remarkable improvement is seen in both the reflection bandwidth and the degree of polarization, and the cost is simply high, which is not preferable.
- the coating thickness is preferably 15 m or less, more preferably 10 ⁇ or less.
- the mixed solution for example, a roll coating method, a gravure coating method, a spin coating method, a bar coating method, or the like can be adopted.
- the solvent is removed, and a liquid crystal layer is formed on the substrate.
- the conditions for removing the solvent are not particularly limited, and it is sufficient that the solvent can be substantially removed, and the liquid crystal layer does not flow or drop.
- the solvent is removed by drying at room temperature, drying in a drying oven, or heating on a hot plate.
- the liquid crystal layer formed on the alignment base material is brought into a liquid crystal state, and cholesteric alignment is performed.
- heat treatment is performed so that the liquid crystal layer has a liquid crystal temperature range.
- the heat treatment can be performed by the same method as the above-mentioned drying method.
- the heat treatment temperature varies depending on the type of liquid crystal material and alignment substrate, and cannot be unconditionally determined.
- the heat treatment time varies depending on the heat treatment temperature and the type of liquid crystal material or alignment substrate used, but cannot be generally specified, but is usually in the range of 10 seconds to 2 hours, preferably in the range of 20 seconds to 30 minutes. Selected.
- the step of applying to the alignment base material and irradiating the liquid crystal mixture with ultraviolet rays includes the above steps (1) to (4).
- the step (1) in a state where the liquid crystal mixture is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, an ultraviolet irradiation intensity of 20 to 200 mW / cm 2 is used. UV irradiation from the alignment substrate side for ⁇ 5 seconds.
- the liquid crystal mixture is polymerized to form a polymer oligomer having an average molecular weight of about 1,000 to 500,000, and the alignment base material side and its opposite side (the oxygen interface side) In the thickness direction, a difference in the reaction rate due to oxygen inhibition and a difference in the amount of generated radicals due to the absorption of ultraviolet light by the liquid crystal composition occur.
- the temperature at the time of the first ultraviolet irradiation is set to 20 ° C. or higher in order to polymerize and cure the liquid crystal mixture in a favorable alignment state.
- the upper limit of the temperature is not particularly limited, but is preferably 100 ° C. or lower. If the temperature is higher than 100 ° C
- the temperature is preferably from 20 ° C to 50 ° C.
- the first ultraviolet irradiation intensity is 2 0 ⁇ 2 0 0 mW / cm 2, preferably 2 5 ⁇ 2 0 0 mW / cm 2, 4 0 ⁇ : I 5 0 mWZ cm 2 Gayo more preferable. If the UV irradiation intensity is lower than 20 mW / cm 2 , polymerization will not be performed to the extent that a monomer distribution is formed in the thickness direction, so that the band will not be broadened. On the other hand, if the UV irradiation intensity is higher than 200 mW / cm 2 , the polymerization reaction rate becomes higher than the diffusion rate, so that the band cannot be broadened, which is not preferable.
- the first ultraviolet irradiation time in the step (1) is 0.2 to 5 seconds, and preferably 0.3 to 3 seconds. More preferably, it is 0.5 to 1.5 seconds. If the time is shorter than 0.2 seconds, the polymerization is not carried out to such an extent that the monomer is distributed in the thickness direction, so that the band is not broadened. If the time is longer than 5 seconds, the change in the pitch of the cholesteric liquid crystal layer is not a continuous change from large to small from the alignment substrate side to the oxygen interface side, but is a discontinuous change. Discontinuous pitch changes cause severe coloring when viewed from an angle Become.
- the exposure environment for ultraviolet irradiation is performed in a state where the liquid crystal mixture applied to the alignment base material is in contact with a gas containing oxygen.
- the gas containing oxygen contains 0.5% or more of oxygen.
- Such an environment may be any as long as oxygen polymerization inhibition can be used, and can be performed under a general atmospheric atmosphere.
- the oxygen concentration may be increased or decreased in view of the wavelength width for controlling the pitch in the thickness direction and the speed required for polymerization.
- the required amount of the photopolymerization initiator (C) tends to increase.
- the polymerizable mesogen can be used.
- the desired purpose can be achieved with an addition amount of about 1 to 5 parts by weight based on 100 parts by weight of the total of the compound (A) and the polymerizable chiral agent (B).
- the polymer Z oligomer is formed in a weight-average molecular weight of about 1,000 to 5,000.
- the weight average molecular weight of the polymer / oligomers is from 1000 to 3000.
- the weight average molecular weight of the polymer oligomer is a value measured by the GPC method. The weight average molecular weight was calculated using polyethylene oxide as a standard sample.
- Main unit Tosoh's HLC—8 120 GPC
- Power Ram Tosoh's Super AWM- H + S Super AWM—H + Super AW 300 (0 mm each (i> X 15 c ni, total 45 cm), column temperature: 40 ° C, eluent: 10 mM—LiBr / NMP, flow rate: 0.4 ml_min, inlet pressure: 8.5 MPa, sample concentration : 0.1% NMP solution, Detector: Differential refractometer (RI).
- the liquid crystal layer is heated at 70 to 120 ° C. for 2 seconds or more while being in contact with the gas containing oxygen.
- the polymer / oligomer is formed with a concentration gradient in the thickness direction, so that the unpolymerized monomer component formed in the reverse direction remains in the thickness direction.
- the concentration gradient distribution is made uniform in the thickness direction, and this is used to further increase the pitch length.
- the heating temperature is preferably from 70 ° C to 100 ° C. If the temperature is lower than 70 ° C, the diffusion speed is very slow and it takes a long time to broaden the band. Also, it is not preferable because the orientation gradually deteriorates. On the other hand, if the temperature exceeds 120 ° C, the diffusion rate is too far to be controlled.
- the heating time is at least 2 seconds, and further at least 10 seconds. However, since the liquid crystal layer supported on one side of the alignment substrate has an oxygen interface, if the heating time is prolonged, volatilization loss of liquid crystal composition components and photopolymerization initiator, deterioration of the film surface flatness, and adhesion of foreign matter Etc. tend to occur. Practically, the time is preferably 5 minutes or less, and more preferably 2 minutes or less.
- the homogenization step by heating is performed for several seconds to several minutes, and it is not always necessary to perform heating in some places.
- Japanese Patent No. 3,272,668 extending the selective reflection band of the cholesteric liquid crystal to more than twice that of a single pitch requires an annealing time of 4 minutes or more, and the visible light It took about 2 hours of annealing to create a selective reflection band of 300 nm or more covering the optical region.
- the molecular weight of the reactant produced under the same reaction rate condition is low, Spreading speed is ensured.
- the conditions for securing the diffusion rate have been greatly relaxed, and the pitch length has been sufficiently extended even in the short-time heating process in the light.
- the speed of the production line is 10 m / min, patent specification No. 3,272,668 requires an annealing treatment at a place for as long as 120 minutes. Is a process that is virtually impossible inline.
- the present invention can be implemented in a short time as described above, and there are few practical problems.
- the liquid crystal layer is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at a UV irradiation intensity lower than that of the step (1) for 10 seconds or more. Irradiate ultraviolet rays from the alignment substrate side.
- the effective depth of polymerization inhibition by oxygen penetrating from the oxygen interface side can be made deeper than in step (1), and the pitch of the short pitch region on the oxygen interface side can be reduced.
- the length is not substantially changed, and the reaction proceeds only in the long pitch region on the alignment substrate side, thereby further increasing the pitch on the alignment substrate side.
- step (2) the remaining unreacted monomer is homogenized while maintaining the gradient structure of the polymer of the polymer / oligomer, that is, the structure of changing the pitch length, and then the second ultraviolet irradiation in step (3) is performed.
- the residual monomer is polymerized, and a pitch gradient is formed.
- the effective depth of polymerization inhibition due to oxygen penetrating from the oxygen interface side can be made deeper than in step (1), and the pitch length of the short pitch region on the oxygen interface side does not substantially change.
- step (1) Since the increase in the molecular weight and the decrease in the diffusion rate of the liquid crystal composition layer are significantly different from those during the first ultraviolet irradiation in step (1), the amount of radicals generated per unit time is reduced, and the progress rate of polymerization is reduced. This allows for a wider bandwidth.
- the temperature at the time of the irradiation of the second ultraviolet ray is 20 ° C. or more.
- the upper limit of the temperature is not particularly limited, but is preferably 140 ° C. or lower. More preferably, the temperature is from 60 ° C to 140 ° C, more preferably from 80 ° C to 120 ° C. If the temperature is lower than 20 ° C, the diffusion rate of the polymerizable mesogen compound (a) is extremely slow, and it takes a long time to broaden the band. It will take some time.
- Irradiation is performed at a second UV irradiation intensity lower than the first UV irradiation intensity.
- the second UV irradiation intensity is preferably 1 to 50 mW / c in 2 in a range lower than the first UV irradiation intensity.
- the second ultraviolet irradiation time depends on the illuminance, but is generally preferably 10 seconds or more, and more preferably 30 seconds or more.
- the ultraviolet irradiation time is preferably not more than 120 seconds, more preferably not more than 60 seconds from the viewpoint of working time.
- Patent Document 3 272 668 requires a long annealing time, which has a serious problem in practical use.
- the process (3) has a defect such as a discontinuous change in the pitch length in the process (1), it can be made continuous. If the change in pitch length is discontinuous, only specific wavelengths will be cut or the transmittance will be high, resulting in unnecessary characteristics in the selective reflection wavelength band. In such a case, problems such as uneven color tone in the plane or uneven coloring of the color tone occur. Furthermore, as described above, the wavelength characteristic shifts to a short wavelength at oblique incidence, so that when the emission line spectrum of the light source is applied to the extraordinary wavelength region where the transmittance is high or low, the sharp color tone * brightness This will cause a change and significantly degrade the visibility.
- step (3) Since the band broadening process in step (3) is different from the band broadening in step (1) under the condition of ultraviolet irradiation, even if a discontinuity in pitch length change occurs, it differs from the wavelength range formed in step (1). Since they occur in the area, the superposition effect as a whole complements each other's shortcomings, resulting in a continuous change.
- This step (3) If not, for example, in the case of Example 2 of Japanese Patent Application Laid-Open No. 2002-286935, a step occurs in the extended band, but in the present invention, As shown in the figure, it has continuous and smooth characteristics. This is very advantageous in actual use.
- step (3) the broadening of the band by the step (3) enables the broadening of the band as described in the later-described embodiment, and coloring and color omission by oblique incident light due to blue shift occur.
- the viewing angle becomes extremely large, and coloring due to the viewing angle can be significantly reduced.
- step (4) ultraviolet irradiation is performed in the absence of oxygen.
- the third ultraviolet ray irradiation the cholesteric reflection band extended in steps (1) to (3) is cured without deteriorating. As a result, the pitch change structure is fixed without deterioration.
- the absence of oxygen can be, for example, an inert gas atmosphere.
- the inert gas is not particularly limited as long as it does not affect the ultraviolet polymerization of the liquid crystal mixture.
- examples of such an inert gas include nitrogen, argon, helium, neon, xenon, and krypton. Of these, nitrogen is the most versatile and preferred. Further, by bonding a transparent base material to the cholesteric liquid crystal layer, it is possible to eliminate the presence of oxygen.
- the ultraviolet irradiation may be performed from either the alignment substrate side or the applied liquid crystal mixture side.
- the ultraviolet irradiation condition is not particularly limited as long as the liquid crystal mixture is cured. Usually, it is preferable to irradiate at an irradiation intensity of about 40 to 300 mWZ cm 2 for about 1 to 60 seconds.
- the irradiation temperature is about 20 to 100 ° C.
- the crosslink density of the liquid crystal layer is improved.
- the reliability is significantly improved due to the increase in the molecular weight.
- ultraviolet irradiation is performed from the alignment substrate surface side in order to positively utilize oxygen inhibition in the first ultraviolet irradiation in the step (1) and the second ultraviolet irradiation in the step (3). For this reason, it is possible to form a large gradient in the reaction rate in the thickness direction, but the problem is that the polymerization rate on the air interface side is low, and the hardness and strength of the film surface are insufficient, or long-term reliability is a problem. There is a possibility that problems such as lack of sex may occur.
- step (4) third ultraviolet irradiation is performed in an oxygen-free atmosphere to complete polymerization of the remaining monomer, Enhancing film quality.
- the reaction rate of the surface does not improve sufficiently in an air atmosphere (in the presence of oxygen), and it is difficult for the reaction rate to exceed 90%. Therefore, in order to obtain sufficient reliability, it is desired to perform ultraviolet irradiation in the absence of oxygen.
- the direction of the irradiation surface is not particularly limited.
- Irradiation from the liquid crystal layer side is desirable, but the reaction on the surface proceeds sufficiently even under irradiation from the substrate side under a nitrogen atmosphere.
- the cholesteric liquid crystal film obtained in this way peels off from the substrate It may be used without being used, or may be peeled off from the substrate.
- the broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate.
- a linear polarizing element can be obtained by laminating a ⁇ / 4 plate on the circularly polarizing plate. It is preferable that the cholesteric liquid crystal film, which is a circularly polarizing plate, is laminated on the ⁇ / 4 plate so that the pitch length is continuously narrowed.
- a / 4 plate is not particularly limited, but a phase difference is generated by stretching such as polycarbonate, polyethylene terephthalate, polystyrene, polysnoreon, polyvinyl alcohol, polymethyl methacrylate, etc.
- General-purpose transparent resin film Norbornene resin film such as ARTON film manufactured by JSR is suitably used.
- a quarter plate obtained by fixing liquid crystal by fixing a quarter layer may be used. In this case, the thickness of the 4 plate can be significantly reduced.
- the thickness of the ⁇ 4 wave plate is usually preferably from 0.5 to 200 / im, especially: It is preferably up to 100 ⁇ m.
- a retardation plate that functions as a ⁇ / 4 wavelength plate in a wide wavelength range such as a visible light castle is, for example, a retardation layer that functions as a / 4 wavelength plate for light-colored light having a wavelength of 550 nm. It can be obtained by a method in which a phase difference layer exhibiting other phase difference characteristics, for example, a phase difference layer functioning as a two-wavelength plate is superimposed. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or two or more retardation layers. Paste along the transmission axis direction Used together.
- the polarizer is not particularly limited, and various types can be used.
- polarizers include iodine and two-color polarizers, such as hydrophilic polymer films such as polyvinyl alcohol-based films, partially formalized polyvinyl alcohol-based films, and polyethylene / butyl acetate copolymer-based partially saponified films. Uniaxially stretched by adsorbing a dichroic substance such as a chromatic dye; a dehydrated product of polyvinyl alcohol; a dehydrochlorination product of polyvinyl chloride; and a polyene-based oriented film.
- a polarizer made of a polyvinyl alcohol-based film and a dichroic substance such as iodine is preferable.
- the thickness of these polarizers is not particularly limited, but is generally about 5 to 80 ⁇ .
- a polarizer obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching is dyed, for example, by immersing polyvinyl alcohol in an aqueous solution of iodine, and stretching it to 3 to 7 times its original length. Can be made. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. If necessary, the polyvinyl alcohol-based film may be immersed in water and washed with water before dyeing. Polyvinyl alcohol-based film is obtained by washing the polyvinyl alcohol-based film with water.
- Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching.
- the film can be stretched in an aqueous solution of boric acid or calcium iodide or in a water bath.
- the polarizer is usually provided with a transparent protective film on one or both sides and used as a polarizing plate. It is preferable that the transparent protective film is excellent in transparency, mechanical strength, heat stability, moisture shielding property, isotropy and the like.
- Transparent protective films include, for example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, senorellose polymers such as diacetinose / relose, triacetinoresenorelose, etc., and polymers. Examples include films made of transparent polymers such as acrylic polymers such as carbonate polymers and polymethylmethacrylate.
- Styrene polymers such as polystyrene, acrylonitrile and styrene copolymer, polyethylene, polypropylene, polyolefin having cyclic or norbornene structure, and ethylene.
- 'Films made of transparent polymers such as olefin-based polymers such as propylene copolymers, vinyl chloride-based polymers, and amide-based polymers such as vinyl-aromatic polyamides can also be used.
- imid polymer sulfone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, BULL
- a film made of a transparent polymer such as a butyral-based polymer, an arylate-based polymer, a polyoxymethylene-based polymer, an epoxy-based polymer, or a blend of the above polymers is also included.
- those having low optical birefringence are preferably used.
- triacetyl cellulose, polycarbonate, acrylic polymer, cycloolefin resin, polyolefin having a norbornene structure, and the like are preferable.
- a polymer film described in Japanese Patent Application Laid-Open Publication No. 2001-334529 for example, (A) substituted or unsubstituted And (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl in the side chain and a thermoplastic resin having a ditolyl group.
- a film of a resin composition containing an alternating copolymer of isobutylene and N-methylmaleide and an acrylonitrile / styrene copolymer As the film, a film composed of a mixed extruded product of a resin composition or the like can be used.
- a transparent substrate that can be particularly preferably used in view of polarization characteristics and durability is a triacetyl cellulose film whose surface is saponified with alkali or the like.
- the thickness of the transparent protective film can be determined as appropriate, but is generally about 10 to 500 / x m from the viewpoint of workability such as strength and handleability and thinness. In particular, it is preferably from 20 to 300 m, more preferably from 30 to 200 ⁇ .
- a protective film having a retardation value in the thickness direction of the film represented by) of _90 nm to +75 nm is preferably used.
- the polarizing plate caused by the protective film can be used. Coloring (optical coloring) can be almost completely eliminated.
- the thickness direction retardation value (R th) is more preferably 180 nm + 60 nm, particularly preferably 170 nm + 45 nm.
- a transparent protective film made of the same polymer material on both sides may be used, or a transparent protective film made of a different polymer material or the like may be used.
- the surface of the transparent protective film on which the polarizer is not adhered may be subjected to a hard coat layer, an antireflection treatment, a treatment for preventing sticking, and a treatment for diffusion or antiglare.
- the coating treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
- a cured film having an excellent hardness and a sliding property by a suitable ultraviolet curable resin such as an acrylic or silicone resin is used. It can be formed by a method of adding to the surface of the protective film.
- the anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art.
- the anti-stating treatment is performed to prevent adhesion to the adjacent layer.
- the anti-glare treatment is performed to prevent external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate.
- the surface of the transparent protective film is provided with a fine uneven structure by an appropriate method such as a sandblasting method, a roughening method using an embossing method, or a compounding method of transparent fine particles.
- an appropriate method such as a sandblasting method, a roughening method using an embossing method, or a compounding method of transparent fine particles.
- the fine particles to be included in the formation of the surface fine unevenness include silica having an average particle diameter of 0 to 550 ⁇ , alumina, titania, zirconia, tin oxide, indium oxide, and oxidizing power.
- Transparent fine particles such as conductive inorganic fine particles made of antimony oxide or the like, and organic fine particles made of a crosslinked or uncrosslinked polymer or the like are used.
- the amount of fine particles used is generally about 250 parts by weight with respect to 100 parts by weight of the transparent resin forming the fine surface unevenness structure, and Parts are preferred.
- the anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for diffusing light transmitted through the polarizing plate to increase the viewing angle and the like.
- the anti-reflection layer, anti-sticking layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, or separately provided as an optical layer separately from the transparent protective layer. You can also.
- the above-mentioned linear polarizing element may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell.
- the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, but is, for example, based on polymers such as acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyethers, and fluorine and rubber polymers.
- a polymer can be appropriately selected and used.
- those having excellent optical transparency such as an acrylic adhesive, exhibiting appropriate wettability, cohesiveness and adhesive adhesive properties, and having excellent weather resistance and heat resistance are preferably used.
- an adhesive layer with low moisture absorption and excellent heat resistance is preferred.
- the adhesive layer is made of, for example, a natural or synthetic resin, particularly a tackifying resin, a filler, a pigment, a colorant, an antioxidant, and the like made of glass fiber, glass beads, metal powder, and other inorganic powders. May be added to the pressure-sensitive adhesive layer.
- a natural or synthetic resin particularly a tackifying resin, a filler, a pigment, a colorant, an antioxidant, and the like made of glass fiber, glass beads, metal powder, and other inorganic powders. May be added to the pressure-sensitive adhesive layer.
- an adhesive layer containing fine particles and exhibiting light diffusibility may be used.
- the attachment of the adhesive layer may be performed by an appropriate method. For example, about 10 to 40% by weight of an adhesive obtained by dissolving or dispersing a base polymer or a composition thereof in a solvent composed of a single solvent or a mixture of appropriate solvents such as toluene and ethyl acetate.
- An adhesive solution is prepared and applied directly on the polarizer by an appropriate developing method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the method described above, and then the optical element is formed. There is a method to transfer to the top.
- the adhesive layer may be provided as a superimposed layer of different compositions or types of layers.
- the thickness of the pressure-sensitive adhesive layer can be appropriately determined depending on the purpose of use, adhesive strength, and the like, and is generally 1 to 500 / m, preferably 5 to 200 ⁇ m, and more preferably 10 to 1 / m. 0 ⁇ ⁇ ⁇ is preferred.
- a separator is temporarily attached to the exposed surface of the adhesive layer to prevent contamination, etc., until it is practically used, and is covered. This allows the adhesive layer to be used in normal handling conditions. Contact can be prevented.
- the separator may be any suitable thin leaf such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foamed sheet or metal foil, or a laminate thereof. If necessary, use an appropriate material similar to the conventional one, such as one coated with an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide.
- Each layer such as the adhesive layer is treated with an ultraviolet absorber such as a salicylate compound, a benzofurnol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound.
- an ultraviolet absorber such as a salicylate compound, a benzofurnol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound.
- a material having an ultraviolet ray absorbing ability according to such a method may be used.
- the linear polarizing element of the present invention can be preferably used for forming various devices such as a liquid crystal display device.
- the formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, an optical element, and, if necessary, an illumination system and incorporating a drive circuit. There is no particular limitation except that a polarizing element is used, and the conventional method is used.
- the liquid crystal cell any type such as TN type, STN type, and ⁇ type may be used.
- An appropriate liquid crystal display device such as a liquid crystal display device in which the linear polarizing element is arranged on one side or both sides of a liquid crystal cell, or a lighting system using a backlight or a reflector can be formed.
- the linear polarizing element according to the present invention can be installed on one side or both sides of the liquid crystal cell.
- linear polarizing elements are provided on both sides, they may be the same or different.
- appropriate components such as a diffusion plate, an anti-glare layer, an anti-reflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight are appropriately positioned.
- One layer or two or more layers can be arranged in one layer.
- the circular polarizer (reflective polarizer) using the cholesteric liquid crystal film is provided between at least two reflective polarizers (a) in which the wavelength bands of selective reflection of polarized light overlap each other.
- a retardation layer (b) having a front phase difference (normal direction) of almost zero and having a phase difference of / 8 or more with respect to incident light incident at an angle of 30 ° or more with respect to the normal direction is arranged.
- the cholesteric liquid crystal film is Either the maximum pitch or the minimum pitch of the helical twisted molecular structure may be the side of the retardation layer (b), but from the viewpoint (the viewing angle is good, the coloring is small), the reflection polarizer (a) is used.
- the polarizing element system that is, the cholesteric liquid crystal laminate having a wide-band selective reflection function has a circularly-polarized reflection / transmission function in the front direction, and is used in a liquid crystal display device as a wide-band circularly polarizing plate.
- a liquid crystal display device as a wide-band circularly polarizing plate.
- it can be used as a circularly polarizing plate by disposing it on the light source side of a circularly polarized mode liquid crystal cell, for example, a transmissive VA mode liquid crystal cell having multiple domains.
- the phase difference layer (b) has a phase difference of almost zero in the front direction and has a phase difference of ⁇ / 8 or more with respect to incident light at an angle of 30 ° from the normal direction.
- the front phase difference is desirably LZ10 or less because the purpose is to maintain the vertically polarized light.
- the incident light from the oblique direction is appropriately determined by the angle of total reflection so as to be efficiently converted in polarization. For example, 60 to completely reflect at an angle of about 60 ° from the normal. What is necessary is just to determine so that the phase difference when measured at is about ⁇ / 2.
- the transmitted light by the reflective polarizer (a) changes its polarization state due to the C-plate birefringence of the reflective polarizer itself, it is measured at that angle of the normally inserted C-plate.
- the phase difference at this time can be a value smaller than 1/2. Since the phase difference of the C-plate increases monotonically as the incident light is inclined, the effective total reflection occurs when the angle of inclination is 30 ° or more. And L / 8 or more.
- the material of the retardation layer (b) is not particularly limited as long as it has the above-mentioned optical characteristics.
- Columnar orientation of discotic liquid crystal, nematic orientation, negative uniaxial crystal in-plane orientation examples include biaxially oriented polymer films.
- the C plate in which the cholesteric liquid crystal having a selective reflection wavelength other than the visible light region (380 nm to 780 nm) has a fixed planar state is a selective reflection wavelength of the cholesteric liquid crystal. It is desirable that the visible light region has no coloring or the like. Therefore, it is necessary that the selective reflection light is not in the visible region.
- the selective reflection is uniquely determined by the chiral pitch of the cholesteric and the refractive index of the liquid crystal.
- the value of the central wavelength of selective reflection may be in the near-infrared region, but it may be in the ultraviolet region of 35 O nm or less because it is affected by optical rotation and causes a somewhat complicated phenomenon. More desirable.
- the formation of the cholesteric liquid crystal layer is performed in the same manner as the formation of the cholesteric layer in the reflective polarizer described above.
- the C-plate having a fixed homeotropic orbital alignment state is a liquid crystalline thermoplastic resin or a liquid crystal monomer exhibiting nematic liquid crystallinity at a high temperature, and an alignment aid as required, and ionizing radiation such as an electron beam or ultraviolet light.
- Polymerizable liquid crystal polymerized by irradiation or heat, or a mixture thereof is used.
- the liquid crystal properties may be either lyotropic or thermotropic, but from the viewpoint of easy control and easy formation of a monodomain, it is desirable that the liquid crystal be a thermostatically-picking liquid crystal.
- the homeotropic alignment can be obtained, for example, by applying the above-mentioned birefringent material on a film on which a vertical alignment film (such as long-chain alkylsilane) is formed, and developing and fixing a liquid crystal state.
- a C-plate using a discotic liquid crystal as a liquid crystal material, a negative uniaxial compound such as a phthalocyanine compound or a triphenylene compound having an in-plane molecular spread is used. It is a discotic liquid crystal material that has properties and is fixed by developing a nematic phase and a columnar phase. Negative uniaxial inorganic layered compounds are described in detail in, for example, Japanese Patent Application Laid-Open Publication No. Hei 6—8277777.
- C-plates using biaxial orientation of polymer film are a method of biaxially stretching a polymer film having positive refractive index anisotropy, a method of pressing a thermoplastic resin, and a crystal in parallel orientation. It can be obtained by the method of cutting out from the.
- the layers may be stacked only, but it is preferable that the layers be stacked using an adhesive or a pressure-sensitive adhesive from the viewpoint of workability and light use efficiency.
- the adhesive or adhesive is transparent, has no absorption in the visible light range, and the refractive index is as high as the refractive index of each layer. Closer to each other is desirable from the viewpoint of suppressing surface reflection. From this viewpoint, for example, an acrylic adhesive is preferably used.
- a monodomain is separately formed in the form of an alignment film and then sequentially laminated by a method such as transfer to a translucent grave material, or an alignment film is provided for alignment without providing an adhesive layer. It is also possible to form such layers appropriately and to directly form each layer sequentially.
- Particles may be added to each layer and the (viscosity) adhesive layer to adjust the degree of diffusion, if necessary, to provide isotropic scattering, or to use an ultraviolet absorber, an antioxidant, A surfactant or the like can be appropriately added for the purpose of imparting leveling properties.
- the polarizing element (cholesteric liquid crystal laminate) of the present invention has a function of reflecting / transmitting circularly polarized light, it can be used as a linearly polarizing element that converts transmitted light into linearly polarized light by combining four plates. Can be. Examples of the ⁇ / 4 plate include the same as those described above.
- a / 4 plate has a single layer made of a single material that works well only for a specific wavelength, but there is a problem that the function of the / 4 plate is reduced for other wavelengths due to wavelength dispersion characteristics . Therefore, by laminating the ⁇ 2 plate with the specified axis angle, the ⁇ 2 plate can be used as a broadband / 4 plate that functions within a practically acceptable range over the entire visible light range.
- each of the four plates and the two ⁇ plates may be made of the same material, or a combination of materials manufactured using different materials obtained by the same method as the ⁇ plate described above may be used.
- a quarter-wave plate 140 nm
- a ⁇ 2 plate 270 nm
- the transmission polarization axis is 10 degrees with respect to the axis of the ⁇ / plate. Since the bonding angle varies depending on the phase difference value of each phase difference plate, the bonding angle is not limited to the above bonding angle.
- An absorptive polarizer is attached to the transmission axis of the linearly polarizing element so that its transmission axis direction is aligned.
- a diffuse reflection plate below the light guide plate as the light source (on the side opposite to the liquid crystal cell arrangement surface).
- the main component of the light beam reflected by the collimating film is an oblique incident component, which is specularly reflected by the collimating film and returned to the backlight direction.
- the back side reflector has high specularity, the reflection angle is preserved, and Light is lost due to scratches. Therefore, it is desirable to dispose a diffuse reflector in order to increase the diffuse reflection component in the front direction without preserving the reflection angle of the reflected return light beam.
- the diffusion plate used can be obtained by embedding fine particles having different refractive indices in a resin, etc., in addition to the one having the uneven surface shape.
- This diffusion plate may be sandwiched between the collimating film and the pack light, or may be bonded to the collimating film.
- a U-ton ring may occur in the gap between the film surface and the backlight.
- a diffusion plate having surface irregularities on the light plate side surface the generation of Newton rings can be suppressed.
- a layer having both the concavo-convex structure and the light diffusion structure may be formed on the surface of the parallel light conversion film in the present invention.
- the viewing angle expansion in the liquid crystal display device of the present invention is achieved by diffusing the light beams having good display characteristics near the front obtained from the liquid crystal display device combined with the parallelized backlight, so as to be uniform within the entire viewing angle. It is obtained by obtaining good display characteristics.
- a diffusion plate having substantially no back scattering is used as the viewing angle widening film used here.
- the diffusion plate can be provided as a diffusion adhesive.
- the placement location is on the viewing side of the liquid crystal display device, but it can be used either above or below the polarizing plate.
- a film that does not substantially eliminate polarized light is desirable.
- a fine particle-dispersed diffusion plate as disclosed in Japanese Patent Application Laid-Open No. 2000-347706 and Japanese Patent Application Laid-Open No. 2000-34707 is preferably used.
- the viewing angle widening film When the viewing angle widening film is located outside the polarizing plate, the liquid crystal layer and the polarizing plate In the case of a TN liquid crystal cell, it is not particularly necessary to use a viewing angle compensating phase difference plate because the collimated light beam is transmitted. In the case of an STN liquid crystal cell, it is only necessary to use a retardation film in which only the front characteristics are well compensated. In this case, since the viewing angle widening film has an air surface, it is possible to adopt a type using a refraction effect due to the surface shape. When a viewing angle-enhancing film is inserted between the polarizing plate and the liquid crystal layer on the negative side, the light is diffused when the film passes through the polarizing plate.
- the viewing angle characteristics of the polarizer itself must be compensated. In this case, it is necessary to insert a retardation plate for compensating the viewing angle characteristics of the polarizer between the polarizer and the viewing angle widening film. In the case of STN liquid crystal, it is necessary to introduce a retardation plate that compensates for the viewing angle characteristics of the polarizer in addition to the front phase difference compensation of the STN liquid crystal.
- the regular structure is not visually recognized in the plane, and there is no regular modulation in the emitted light. Therefore, it is not necessary to consider the compatibility with the viewing angle expansion film and the arrangement order. Therefore, the viewing angle widening film is not particularly limited as long as it does not cause interference / moire with the pixel black matrix of the liquid crystal display device, and there are a wide range of options.
- the viewing angle widening film has substantially no backscattering and does not eliminate polarization, and is disclosed in Japanese Patent Application Laid-Open Publication No. 2000-34067 and Japanese Patent Publication No.
- it even if it has a regular structure inside, such as a hologram sheet, microprism array, microphone opening lens array, etc., it can be used without forming interference / moire with the pixel black matrix of the liquid crystal display device.
- liquid crystal display device is manufactured by appropriately using various optical layers and the like according to an ordinary method.
- Photopolymerizable mesogen compound (polymerizable nematic liquid crystal monomer, compound 20 in Table 1 above, molar extinction coefficient is 1 dm 3 mo 1 _1 cm “ 1 ® 365 nm, 2 100 dm 3 mo 1 _1 cm “1 ® 3 3 4 nm, 3 6 0 0 0 dm 3 mol one 1 c m- ⁇ S lnm purity> 99% of was used.)
- 9 4.8 parts by weight of a polymerizable chiral agent BASF LC750
- a solvent cyclohexanone
- a coating solution (solid content: 30% by weight) was prepared by adding 3% by weight of a polymerization initiator (Irgacure 907, manufactured by Chipa Specialty Chemicals).
- the coating solution is applied on a stretched polyethylene terephthalate film (oriented substrate) using a wire bar so that the thickness after drying becomes 6 ⁇ m, and the solvent is applied at 100 ° C. Dry for 2 minutes.
- the obtained film was irradiated with a first ultraviolet ray at 50 mW / cm 2 for 1 second in an air atmosphere at 40 ° C. from the alignment substrate side. Thereafter, heating was performed at 90 ° C for 1 minute without irradiation with ultraviolet rays (the selective reflection wavelength band at this time was 420 to 650 nm).
- a negative biaxial retardation plate was transferred onto the upper part of the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector).
- This negative biaxial retardation plate was obtained by the following method. That is, the concentration is 30% by weight in 93 parts by weight of the photopolymerizable nematic liquid crystal monomer (BASF, LC224) and 7 parts by weight of the polymerizable chiral agent (BASF, LC756).
- BASF, LC224 photopolymerizable nematic liquid crystal monomer
- BASF, LC756 the polymerizable chiral agent
- irgacure 907 is used as a photopolymerization initiator for the solid content described above.
- a circularly-polarized light reflecting plate similar to that described above was transferred onto the upper portion using the same translucent adhesive to form a ridge layer, thereby obtaining a solid optical device.
- a linear polarizing element was obtained by adhering a Peno 4 plate (front retardation: 140 II m) obtained by uniaxially stretching the polycarbonate film to the obtained optical element.
- Example 1 a polarizing element; a linear polarizing element obtained by laminating an I-no. 4 plate, and a: ⁇ / 2 plate obtained by uniaxially stretching a polycarbonate film on the A front phase difference of 270 nm) was adhered to obtain a straight line ⁇ ko Hatako.
- a polarizing plate (TEG1465DU, manufactured by Nitto Dye Co., Ltd.) was bonded to the linear polarizing element so that the transmission axis directions were aligned, to obtain a polarizing plate integrated polarizing element.
- the angle between the stretching axis (slow axis) of the ⁇ 4 plate and the ⁇ / 2 plate and the stretching axis (absorption axis) of the polarizing plate was set as shown in FIG.
- PL indicates an absorption-type polarizing plate
- (1 indicates a No. 4 plate (front phase difference I 40 nni)
- C2 indicates a ⁇ / 2 plate (front phase difference 2700 nm).
- the mark indicates the stretching axis (long side direction), where 01 is 17.5 and 02 is 80.
- Example 1 A polycarbonate film was biaxially stretched on the photon obtained in Example 1; a four plate (front retardation: 125 nm, Nz coefficient: 11.0) was adhered. A linear polarization cord was obtained. A polarizing plate (Nitto Denko Corporation, TEG 1 4 6 5 (DU) were bonded together so that the transmission axis directions coincided to obtain a polarizing element integrated with a polarizing plate.
- a coating solution containing the liquid crystal mixture prepared in Example 1 was applied on a stretched polyethylene terephthalate film (alignment substrate) using a wire bar so that the thickness after drying was 6 ⁇ m.
- the solvent was dried at 1000C for 2 minutes.
- the obtained film was irradiated with ultraviolet rays at 50 mW / cm 2 for 10 seconds in an air atmosphere at 40 ° C. from the orientation substrate side. At this time, the selective reflection wavelength band was approximately 420 to 800 nm.
- Fig. 4 shows the reflection spectrum of the broadband cholesteric liquid crystal film.
- a negative biaxial retardation similar to that of Example 1 was applied to the upper part of the obtained broadband cholesteric liquid crystal film (circularly-polarized light reflecting plate) using a translucent adhesive. The board was transferred.
- a circularly-polarized light reflecting plate similar to that described above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element.
- a linear polarizing element was obtained by adhering a four-layer plate (front retardation: 140 nm) obtained by uniaxially stretching the polycarbonate film to the obtained polarizing element.
- a coating liquid containing the liquid crystal mixture prepared in Example 1 was applied on a stretched polyethylene terephthalate film (alignment substrate) using a wire par so as to have a thickness after drying of 6 ⁇ m.
- the solvent was dried at 1000C for 2 minutes.
- the obtained film was irradiated with ultraviolet rays at 50 mW / cm 2 for 1 second in an air atmosphere at 40 ° C. from the orientation substrate side. Thereafter, heating was performed at 90 ° C for 1 minute without irradiation with ultraviolet rays (the selective reflection wavelength band at this time was 420 to 650 nm).
- Example 2 In the same manner as in Example 1, a negative biaxial retardation similar to that of Example 1 was applied to the upper part of the obtained broadband cholesteric liquid crystal film (circularly-polarized light reflecting plate) using a translucent adhesive. The board was transferred.
- a circularly polarized light reflecting plate similar to that described above was transferred and laminated on the upper portion using the same light-transmitting adhesive to obtain a polarizing element.
- a polycarbonate film was uniaxially stretched to the obtained polarizing element.
- An YZ4 plate (front retardation: 140 nm) was adhered to obtain a linear polarizing element.
- a polarizing plate (TEG1465DU, manufactured by Nitto Denko Corporation) was adhered to the linear polarizing element so that the transmission axis directions coincided with each other to obtain a polarizing plate integrated polarizing element.
- the coating liquid containing the liquid crystal mixture prepared in Example 1 was applied on a stretched polyethylene terephthalate film (alignment substrate) using a wire bar so that the thickness after drying was 6 m, and the solvent was applied.
- the obtained film was irradiated with ultraviolet rays at 50 mW / cm 2 for 1 second in an air atmosphere at 40 ° C. from the orientation substrate side. Thereafter, heating was performed at 90 ° C for 1 minute without irradiation with ultraviolet light (the selective reflection wavelength band at this time was 420 to 650 nm).
- Example 2 The same negative biaxial phase as in Example 1 was applied to the top of the obtained broadband cholesteric liquid crystal film (circularly polarized light reflecting plate) in the same manner as in Example 1 using a translucent adhesive. The difference plate was transferred.
- a circularly polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element.
- a polycarbonate film was uniaxially stretched to the obtained polarizing element; a LZ 4 plate (front retardation: 140 nm) was bonded to obtain a linear polarizing element.
- a polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to the linear polarizing element so that the transmission axis directions were aligned, to obtain a polarizing element integrated with the polarizing plate. (Liquid crystal display)
- the polarizing plate integrated with the polarizing plate obtained in each example was used as the lower plate of the TFT-LCD, while an acrylic adhesive (thickness 25 / zm, refractive index 1.47) was used on the upper plate side.
- 20 weight spherical silica particles (refractive index: 1.44, diameter: 4 / m).
- a polarizing plate (TEG1465 DU, manufactured by Nitto Denko Corporation) was laminated using a light-scattering adhesive (haze 80%) embedded in / 0 .
- a cold cathode tube with a diameter of about 3 mm was placed on the side of a light guide having a fine prism structure on the lower surface, and covered with a light source holder made of silver-deposited polyethylene terephthalate film.
- a silver-evaporated polyethylene terephthalate film reflector was arranged on the lower surface of the light guide plate, and a polyethylene terephthalate film having a scattering layer made of styrene beads formed on the surface was arranged on the upper surface of the light guide plate. This was disposed as a light source below the polarizing plate integrated with the polarizing element.
- FIG. 1 shows a case in which the polarizing plate integrated type polarizing elements of Examples 1 and 3 and Comparative Examples 1 to 3 are used
- FIG. 2 shows a case in which the polarizing plate integrated type polarizing element of Example 2 is used.
- PL is an absorption polarizer
- D is a viewing angle widening film (diffusion adhesive)
- LC is a liquid crystal cell
- C 1 is a ⁇ / 4 plate
- C 2 is a ⁇ '2 plate
- ⁇ is Reflective polarizer
- B is retarder
- S is thyroid type light guide plate
- R indicates a diffuse reflection plate.
- X indicates a polarization element
- Y indicates a linear polarization element
- Z indicates a polarization-integrated linear polarization element.
- the broadband cholesteric liquid crystal film (circularly polarizing reflector) and the polarizing plate integrated polarizing element obtained above were evaluated as follows. Table 2 shows the results. Table 2 also shows the conditions of each step in the examples and the comparative examples.
- the reflection spectrum of the broadband cholesteric liquid crystal film is measured with a spectrophotometer (Otsuka Electronics Co., Ltd., Instant Multi-System MC PD 2000), and the selective reflection wavelength band is about half bandwidth. ⁇ was determined. The half bandwidth was defined as the reflection bandwidth at half the maximum reflectance. (Pitch change)
- the polarizing plate integrated polarizing element was placed on a dot-printed backlight with the polarizing plate side facing up, and evaluated with a luminance meter (TOPCON, BM-7).
- the oblique change in color tone of the liquid crystal display device was evaluated by a viewing angle measuring instrument EZ-CONTRAST manufactured by ELDIM, according to the following criteria.
- Color tone change ⁇ Xy at a viewing angle of 60 ° is less than 0.04.
- a cholesteric liquid crystal film having a selective reflection wavelength in a wide band including a long wavelength region is obtained.
- the cholesteric liquid crystal film has high reliability, and a polarizing element using the cholesteric liquid crystal film as a circularly polarizing plate is also excellent in luminance enhancement characteristics.
- the display information in the region where the gradation is not inverted is distributed by light diffusion in the oblique direction.
- a display device can be obtained.
- the broadband cholesteric liquid crystal film obtained by the production method of the present invention is useful as a circularly polarizing plate (reflection type polarizer), and the circularly polarizing plate is used for a linear polarizing element, an illumination device, a liquid crystal display device, and the like. Applicable.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
A process for producing a wideband cholesteric liquid crystal film, comprising the step of coating an alignment substrate with a liquid crystal mixture containing a polymerizable mesogen compound (A) and a polymerizable chiral agent (B) and the step of exposing the liquid crystal mixture to ultraviolet radiation so as to effect polymerization and hardening, wherein the ultraviolet polymerization step comprises the step (1) of exposing the alignment substrate side of the liquid crystal mixture while in contact with an oxygenic gas to ultraviolet radiation at an ultraviolet irradiation intensity of 20 to 200 mW/cm2 at 20°C or higher for 0.2 to 5 sec; the step (2) of heating at 70 to 120°C for 2 sec or longer; the step (3) of exposing the alignment substrate side of the liquid crystal layer to ultraviolet radiation at an ultraviolet irradiation intensity lower than in the step (1) at 20°C or higher for 10 sec or longer; and the step (4) of effecting ultraviolet irradiation in the absence of oxygen. Through this process, there can be obtained a wideband cholesteric liquid crystal film having a wide reflection band in even long wavelength region.
Description
明 細 書 広帯域コレステリ ック液晶フィルムの製造方法、 円偏光板、 直線偏光素子、 照明 装置および液晶表示装置 技術分野 Description Manufacturing method of broadband cholesteric liquid crystal film, circularly polarizing plate, linearly polarizing element, illumination device and liquid crystal display device
本発明は広帯域コレステリ ック液晶フィルムの製造方法に関する。 本発明の広 帯域コレステリ ック液晶フィルムは円偏光板 (反射型偏光子) と して有用である The present invention relates to a method for producing a broadband cholesteric liquid crystal film. The broadband cholesteric liquid crystal film of the present invention is useful as a circularly polarizing plate (reflective polarizer).
。 また本発明は、 当該円偏光板を用いた直線偏光素子、 照明装置および液晶表示 装置に関する。 背景技術 . Further, the present invention relates to a linearly polarizing element, an illuminating device and a liquid crystal display device using the circularly polarizing plate. Background art
一般に、 液晶ディスプレイは、 透明電極を形成したガラス板の間に液晶を注入 し、 上記ガラス板の前後に偏光子を配置した構造を有する。 このよ うな液晶ディ スプレイに用いられる偏光子は、 ポリ ビュルアルコールフィルムにヨ ウ素や二色 性染料などを吸着させ、 これを一定方向に延伸することによ り製造される。 この よ うに製造された偏光子それ自体は一方方向に振動する光を吸収し、 他の一方方 向に振動する光だけを通過させて直線偏光を作る。 そのため、 偏光子の効率は理 論的に 5 0 %を超えることができず、 液晶ディスプレイの効率を低下させる一番 大きい要因となっている。 また、 この吸収光線のため、 液晶表示装置は光源出力 の增大をある程度以上まで行う と吸収光線の熱変換による発熱で偏光子が破壊さ れたり、 またはセル内部の液晶層への熱影響にて表示品位が劣化する等の弊害を 招いていた。 Generally, a liquid crystal display has a structure in which liquid crystal is injected between glass plates on which transparent electrodes are formed, and polarizers are arranged before and after the glass plates. A polarizer used for such a liquid crystal display is manufactured by adsorbing iodine or a dichroic dye on a polyvinyl alcohol film and stretching it in a certain direction. The polarizer thus manufactured itself absorbs light that oscillates in one direction, and passes only light that oscillates in the other direction to produce linearly polarized light. As a result, the efficiency of the polarizer cannot theoretically exceed 50%, which is the biggest factor that lowers the efficiency of liquid crystal displays. Also, due to this absorbed light, if the output of the light source is increased to a certain level or more, the liquid crystal display device may destroy the polarizer due to heat generated by the heat conversion of the absorbed light, or may have a negative effect on the liquid crystal layer inside the cell. This causes adverse effects such as deterioration of display quality.
円偏光分離機能を有するコ レステリ ック液晶は、 液晶の螺旋の回転方向と円偏 光方向とがー致し、 波長が液晶の螺旋ピッチであるよ うな円偏光の光だけを反射 する選択反射特性がある。 この選択反射特性を用いて、 一定した波長帯域の自然 光の特定の円偏光のみを透過分離し、 残り を反射し再利用することによ り髙効率 の偏光膜の製造が可能である。 この時、 透過した円偏光は、 ぇ / 4波長板を通過 することによ り直線偏光に変換され、 この直線偏光の方向を液晶ディスプレイに
用いる吸収型偏光子の透過方向と揃えることで高透過率の液晶表示装置を得るこ とができる。 すなわち、 コレステリ ック液晶フィルムをえノ 4波長板と組み合わ せて直線偏光素子と して用いると理論的に光の損失がないため、 5 0 %の光を吸 収する従来の吸収型偏光子を単独で用いた場合に比べて理論上は 2倍の明るさ向 上を得ることができる。 Cholesteric liquid crystals with a function of separating circularly polarized light have a selective reflection characteristic that reflects only the circularly polarized light whose wavelength is the helical pitch of the liquid crystal, with the direction of rotation of the liquid crystal helix and the direction of circular polarization being the same. There is. By using this selective reflection characteristic, only specific circularly polarized light of natural light in a certain wavelength band is transmitted and separated, and the remaining light is reflected and reused, whereby a highly efficient polarizing film can be manufactured. At this time, the transmitted circularly polarized light is converted into linearly polarized light by passing through a ぇ / 4 wavelength plate, and the direction of the linearly polarized light is transmitted to the liquid crystal display. A liquid crystal display device with high transmittance can be obtained by adjusting the transmission direction of the absorption polarizer used. In other words, when a cholesteric liquid crystal film is used as a linear polarizing element in combination with a four-wavelength plate, there is theoretically no loss of light, so a conventional absorption polarizer that absorbs 50% of light In theory, it is possible to obtain twice the brightness improvement as compared with the case where is used alone.
しかし、 コレステリ ック液晶の選択反射特性は特定の波長帯域のみに限定され 、 可視光線全域の力パーを行うのは困難であった。 コ レステリ ック液晶の選択反 射波長領域巾 Δ λは、 However, the selective reflection characteristic of the cholesteric liquid crystal is limited only to a specific wavelength band, and it has been difficult to perform the power analysis over the entire visible light range. The selective reflection wavelength region width Δλ of the cholesteric liquid crystal is
A λ = 2 λ * (n e — n o ) / ( n e + n o A λ = 2 λ * (ne-no) / (ne + no)
n o : コレステリ ック液晶分子の正常光に対する屈折率 n o: Refractive index of cholesteric liquid crystal molecules for normal light
n e : コレステリ ック液晶分子の異常光に対する屈折率 ne: Refractive index of cholesteric liquid crystal molecules to extraordinary light
λ : 選択反射の中心波長 λ: center wavelength of selective reflection
で表され、 コレステリ ック液晶そのものの分子構造に依存する。 上記式よ り n e - n o を大きくすれば選択反射波長領域巾△ λは広げられるが、 n e - η οは通 常 0. 3以下である。 この値を大きくすると液晶と しての他の機能 (配向特性、 液晶温度など) が不十分となり実用は困難であった。 したがって、 現実には選択 反射波長領域巾 は最も大き く ても 1 5 0 n m程度であった。 コ レステリ ック 液晶と して実用可能なものの多く は 3 0〜 1 0 0 n m程度でしかなかつた。 また、 選択反射中心波長えは、 It depends on the molecular structure of the cholesteric liquid crystal itself. According to the above equation, the width of the selective reflection wavelength region 波長 λ can be increased by increasing ne−no, but ne−ηο is usually 0.3 or less. If this value is increased, other functions (alignment characteristics, liquid crystal temperature, etc.) of the liquid crystal become insufficient, and practical use was difficult. Therefore, in practice, the width of the selective reflection wavelength region was at most about 150 nm. Most of the practically usable cholesteric liquid crystals are only about 30 to 100 nm. Also, the selective reflection center wavelength is
λ = (n e + n o ) P/ 2 λ = (ne + no) P / 2
P : コレステリ ック液晶一回転ねじれに要する螺旋ピッチ長 P: Spiral pitch length required for one turn of cholesteric liquid crystal
で表され、 ピツチ一定であれば液晶分子の平均屈折率と ピッチ長に依存する。 したがって、 可視光全域を力パーするには、 異なる選択反射中心波長を有する 複数層を積層するか、 ピッチ長を厚み方向で連続変化させ選択反射中心波長その ものの存在分布を形成することが行われていた。 If the pitch is constant, it depends on the average refractive index and pitch length of the liquid crystal molecules. Therefore, in order to improve the power of the entire visible light region, a plurality of layers having different selective reflection center wavelengths are laminated, or the pitch length is continuously changed in the thickness direction to form an existence distribution of the selective reflection center wavelength itself. I was
例えば、 厚み方向でピッチ長を連続変化させる手法があげられる。 たとえば、 特開平 6 - 2 8 1 8 1 4号公報、 特許第 3 2 7 2 6 6 8号明細書、 特開平 1 1 一 2 4 8 9 4 3号公報、 特開 2 0 0 2— 2 8 6 9 3 5号公報参照。 この手法はコレ ステリ ック液晶組成物を紫外線露光で硬化させる際に、 露光面側と出射面側の露
光強度に差を付け、 重合速度に差を付けることで、 反応速度の異なる液晶組成物 の組成比変化を厚み方向で設けるという ものである。 For example, there is a method of continuously changing the pitch length in the thickness direction. For example, Japanese Unexamined Patent Application Publication No. Hei 6-218184, Japanese Patent No. 3272686, Japanese Unexamined Patent Application Publication No. Hei 11-248943, Japanese Unexamined Patent Application Publication No. See Japanese Patent Publication No. 86953/86. In this method, when the cholesteric liquid crystal composition is cured by exposure to ultraviolet light, the exposure side and the exit side are exposed. By making a difference in light intensity and making a difference in polymerization rate, the composition ratio of liquid crystal compositions having different reaction rates is changed in the thickness direction.
この手法のポイン トは露光面側と出射面側の露光強度の差を大き く取ることで ある。 そのため、 前述の先行技術の実施例の多く の場合には紫外線吸収剤を液晶 組成物に混合し、 厚み方向で吸収を発生させ、 光路長による露光量の差を増幅す る手法が採られていた。 The point of this method is to take a large difference in exposure intensity between the exposure surface side and the emission surface side. For this reason, in many of the above-mentioned prior art examples, a method is employed in which an ultraviolet absorber is mixed with a liquid crystal composition to cause absorption in a thickness direction to amplify a difference in exposure amount due to an optical path length. Was.
しかし、 特開平 6 — 2 8 1 8 1 4号公報のよ うなピッチ長を連続変化させる手 法では、 機能を発現させるに必要な液晶層厚みが 1 5〜 2 0 μ m程度必要であり 、 液晶層の精密塗工の問題の他に高価な液晶を多く必要とするためにコス トアツ プが避けられなかった。 さらに露光時間は 1〜 6 0分間程度必要と され、 1 0 m Z分のライン速度を得るには露光ライン長が 1 0〜 6 0 O mと長大な製造ライ ン が必要と された。 ライン速度を低下させればライン長は低減できるが生産速度の 低下が避けられない。 However, the method of continuously changing the pitch length as disclosed in Japanese Patent Application Laid-Open No. 6-281814 requires a liquid crystal layer thickness of about 15 to 20 μm necessary for realizing the function. In addition to the problem of precision coating of the liquid crystal layer, cost was inevitable due to the need for expensive liquid crystals. In addition, an exposure time of about 1 to 60 minutes was required, and a long production line with an exposure line length of 10 to 60 Om was required to obtain a line speed of 10 mZ. If the line speed is reduced, the line length can be reduced, but a reduction in production speed is inevitable.
これは特開平 6 - 2 8 1 8 1 4号公報で述べられているとおり、 ピッチ長を厚 み方向で変化させるための厚み方向での紫外線露光強度差と、 それに伴う重合速 度の差による物質移動からなる組成比変化によってコ レステリ ック ピッチをコン トロールする理論上の問題から、 迅速なピッチ変化を形成することが困難なため である。 特開平 6 — 2 8 1 8 1 4号公報では短ピッチ側と長ピッチ側ではピッチ 長が 1 0 0 n m程度も違うので組成比を大きく変える必要があり、 これを実現す るには相当な液晶厚みと微弱な紫外線照射と長大な露光時間が必要である。 特開平 1 1 — 2 4 8 9 4 3号公報ではピッチ変化させる物質の移動性が、 特開 平 6 — 2 8 1 8 1 4号公報で用いられる材料例よ り も良好であるため、 1分間程 度の露光量で成膜可能である。 しかし、 この場合でも 1 5 / mの厚みは必要にな る。 This is due to the difference in UV exposure intensity in the thickness direction to change the pitch length in the thickness direction and the resulting polymerization speed difference, as described in JP-A-6-281814. This is because it is difficult to form a rapid change in pitch due to the theoretical problem of controlling the cholesteric pitch by changing the composition ratio due to mass transfer. In Japanese Patent Laid-Open Publication No. 6-281814, the pitch ratio differs by about 100 nm between the short pitch side and the long pitch side, so that it is necessary to greatly change the composition ratio. Liquid crystal thickness, weak UV irradiation, and long exposure time are required. In Japanese Unexamined Patent Publication No. Hei 11-248 943, since the mobility of the substance that changes the pitch is better than the material example used in Japanese Unexamined Patent Publication No. Hei 6 A film can be formed with an exposure amount of about a minute. However, even in this case, a thickness of 15 / m is required.
特許第 3 2 7 2 6 6 8号明細書では一次露光と二次露光との温度条件を変え、 かつ組成比が厚み方向で変化するに必要な時間を喑所にて別途設けているが、 こ の方法で実質可視光線全域をカバーさせよ う とする と、 この温度変化による物質 移動の待ち時間は 1 2 0分程度は必要である。 Patent No. 3 2 7 2 6 6 8 changes the temperature conditions of the primary exposure and the secondary exposure, and separately provides the time required for the composition ratio to change in the thickness direction, In order to cover substantially the entire visible light region by this method, it is necessary to wait about 120 minutes for mass transfer due to this temperature change.
特開 2 0 0 2 — 2 8 6 9 3 5号公報のよ うなピッチ長を連続変化させる手法で
は機能を発現させるに必要な液晶層厚みが 1 5〜 2 0 μ m程度必要であり、 液晶 層の精密塗工の問題の他に高価な液晶を多く必要とするためにコス トアップが避 けられなかった。 また、 特開 2 0 0 2— 2 8 6 9 3 5号公報ではコレステリ ック 液晶組成物を基材と反対側 (空気界面側) から紫外線露光で硬化させる際に、 酸 素阻害によつて露光面側と出射面側の露光強度に差を付けることで組成比変化を 厚み方向で変化させている。 A method of continuously changing the pitch length as disclosed in Japanese Patent Application Laid-Open No. 2002-286935. Requires a liquid crystal layer thickness of about 15 to 20 μm to exhibit its functions, and in addition to the problem of precise coating of the liquid crystal layer, it also requires a large amount of expensive liquid crystal, which saves cost. I couldn't. In Japanese Patent Application Laid-Open No. 2002-2866935, when the cholesteric liquid crystal composition is cured by ultraviolet exposure from the side opposite to the substrate (air interface side), the cholesteric liquid crystal composition is inhibited by oxygen. The composition ratio change is changed in the thickness direction by making a difference between the exposure intensity on the exposure surface side and the exposure intensity on the emission surface side.
しかし、 特開 2 0 0 2— 2 8 6 9 3 5号公報の実施例 1 における図 4では選択 反射波長が広帯域化しているものの、 透過率カーブの短波長端側 · 長波長側の傾 斜が共に穏やかで実質的に可視光全域のカバーには至っていない。 また当該公報 の実施例 2における図 6は両波長端の傾斜は急峻であるものの帯域そのものは狭 いものであった。 However, in FIG. 4 in Example 1 of Japanese Patent Application Laid-Open No. 2000-286935, although the selective reflection wavelength is broadened, the inclination of the transmittance curve on the short wavelength end side and the long wavelength side is reduced. However, they are both calm and do not cover virtually all visible light. Also, in FIG. 6 in Example 2 of the publication, the slope at both wavelength ends is steep, but the band itself is narrow.
特に液晶表示装置にこの種の偏光素子を用いる場合にはバックライ ト光源の発 光スペク トルである 4 3 5 n m、 5 4 5 n m、 6 1 5 n mの 3波長に対して十分 に平坦な透過率 Z反射率特性を確保する必要がある。 特開 2 0 0 2— 2 8 6 9 3 5号公報に記載の実施例 1、 2の手法によ り得られる広帯域化範囲は、 いずれも の場合も 4 3 5 n m、 6 1 5 n mの輝線スぺク トル'のカバ一には不十分であった 。 このよ うな場合には透過光線の色調が白色を得にく く、 液晶表示装置等の用途 には用いられない。 発明の開示 In particular, when this type of polarizing element is used in a liquid crystal display, the transmission is sufficiently flat for the three emission wavelengths of the backlight source, namely, 355 nm, 545 nm, and 615 nm. It is necessary to ensure the reflectivity and Z-reflectance characteristics. The bandwidth broadening range obtained by the methods of Examples 1 and 2 described in Japanese Patent Application Laid-Open No. 2002-2866935 is 43.5 nm and 615 nm in each case. It was not enough to cover the bright line spectrum. In such a case, the color tone of the transmitted light is difficult to obtain white and cannot be used for a liquid crystal display device or the like. Disclosure of the invention
上記問題に対し、 本出願人は、 特願 2 0 0 1 — 3 3 9 6 3 2号を出願している 。 当該出願では、 配向基材に塗布した液晶組成物を、 配向基材から紫外線照射し ている。 これよ り、 配向基材と接した酸素による重合阻害の影響の受けにく い面 から重合を開始させ、 液晶層のモル吸光計数による吸収を利して厚み方向に紫外 線照射強度分布を形成せしめ、 酸素阻害を大きく受ける空気面側の紫外線実効照 射量を低減せしめることで従来よ り大きな液晶反応速度勾配 · 組成濃度分布勾配 を形成している。 このよ うに露光面側と出射面側の露光強度に差をつけることに よ り、 コ レステリ ック ピッチ長の厚み方向での大きな変化を形成せしめることに 成功した。 当該出願では選択反射波長帯域幅が最大で 2 9 6 n mと広いものが得
られていた。 In response to the above problems, the present applicant has filed a Japanese Patent Application No. 2001-339396. In this application, the liquid crystal composition applied to the alignment substrate is irradiated with ultraviolet light from the alignment substrate. As a result, polymerization is started from the surface that is not easily affected by polymerization inhibition due to oxygen in contact with the alignment substrate, and an ultraviolet irradiation intensity distribution is formed in the thickness direction by utilizing absorption by the molar absorption coefficient of the liquid crystal layer. At the same time, the liquid crystal reaction rate gradient and the composition concentration distribution gradient are larger than before by reducing the effective UV radiation on the air surface side, which is greatly affected by oxygen inhibition. By making a difference between the exposure intensity on the exposure surface side and the exposure intensity on the emission surface side, we succeeded in forming a large change in the cholesteric pitch length in the thickness direction. In this application, a selective reflection wavelength bandwidth as wide as 296 nm was obtained. Had been.
前記出願の場合には、 4 0 0〜 7 0 O n m程度の波長帯域を力パーしている。 これらの波長帯域は、 光源スぺク トルを力パーしている。 これらは垂直入射近傍 に良好な円偏光反射特性が得られる。 一方、 斜め入射時には十分な波長帯域とは いえないものであった。 斜め入射時の選択反射波長えは、 In the case of the above-mentioned application, a wavelength band of about 400 to 70 nm is used. These wavelength bands power the light source spectrum. These provide good circularly polarized light reflection characteristics near normal incidence. On the other hand, at oblique incidence, the wavelength band was not sufficient. The selective reflection wavelength at oblique incidence is
λ = n p c o s i s i n ' ( s ϊ η θ / η)} λ = n p co s i s i in '(s ϊ η θ / η)}
n =液晶の平均屈折率 n = average refractive index of liquid crystal
p = 3 レステリ ックのピッチ長 p = 3 resteric pitch length
Θ =入射角 Θ = angle of incidence
であるため、 斜めに入射すると垂直入射する場合よ り短波長側に選択反射波長が シフ トする。 このため斜め入射光線に対して有効に機能するには長波長域で機能 する必要がある。 As a result, the selective reflection wavelength shifts to a shorter wavelength side when the light is obliquely incident than when it is perpendicularly incident. Therefore, in order to function effectively for oblique incident light, it is necessary to function in a long wavelength region.
本発明は、 長波長域にも広帯域の反射帯域を有する広帯域コレステリ ック液晶 フィルムを製造しうる方法を提供することを目的とする。 An object of the present invention is to provide a method capable of manufacturing a broadband cholesteric liquid crystal film having a broadband reflection band even in a long wavelength region.
また本発明は、 当該製造方法によ り得られた広帯域コ レステリ ック液晶フ ィ ル ムを用いた円偏光板を提供することを目的とする。 さ らには当該円偏光板を用い た直線偏光素子、 照明装置および液晶表示装置を提供するこ とを目的とする。 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、 以下の製造方法に よ り上記目的を達成できる広帯域コレステリ ック液晶フィルムが得られることを 見出し本発明を完成するに至った。 すなわち本発明は、 下記の通りである。 Another object of the present invention is to provide a circularly polarizing plate using a broadband cholesteric liquid crystal film obtained by the manufacturing method. It is another object of the present invention to provide a linear polarizing element, a lighting device, and a liquid crystal display device using the circular polarizing plate. The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that a broadband cholesteric liquid crystal film that can achieve the above object can be obtained by the following manufacturing method, and have completed the present invention. . That is, the present invention is as follows.
1 . 重合性メ ソゲン化合物 ( A) および重合性カイラル剤 (B) を含む液晶混 合物を配向基材に塗布する工程、 および前記液晶混合物に紫外線照射を行い重合 硬化する工程を含む、 反射帯域巾が 2 0 0 n m以上を有する広帯域コ レステリ ッ ク液晶フィ ルムの製造方法であって、 1. a step of applying a liquid crystal mixture containing a polymerizable mesogen compound (A) and a polymerizable chiral agent (B) to an alignment base material, and a step of irradiating the liquid crystal mixture with ultraviolet rays and polymerizing and curing the liquid crystal mixture. A method for producing a broadband cholesteric liquid crystal film having a bandwidth of 200 nm or more,
前記紫外線重合工程が、 The ultraviolet polymerization step,
前記液晶混合物が酸素を含む気体と接触している状態で、 2 0 °C以上の温度下 に、 2 0〜 2 0 0 mWZ c m2の紫外線照射強度で、 0. 2〜 5秒間、 配向基材 側から紫外線照射する工程 ( 1 )、 In a state where the liquid crystal mixture is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at an ultraviolet irradiation intensity of 20 to 200 mWZ cm 2 for 0.2 to 5 seconds, the alignment group UV irradiation from the material side (1),
次いで、 液晶層が、 酸素を含む気体と接触している状態で、 7 0 ~ 1 2 0 °Cで
、 2秒間以上、 加熱する工程 ( 2)、 Next, with the liquid crystal layer in contact with a gas containing oxygen at 70 to 120 ° C. , Heating for more than 2 seconds (2),
次いで、 液晶層が、 酸素を含む気体と接触している状態で、 2 0 °C以上の温度 下に、 工程 ( 1 ) よ り も低い紫外線照射強度で、 1 0秒間以上、 配向基材側から 紫外線照射する工程 ( 3 )、 Next, in a state where the liquid crystal layer is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at a UV irradiation intensity lower than that in the step (1), for 10 seconds or more, the alignment substrate side UV irradiation process (3),
次いで、 酸素不存在下で、 紫外線照射する工程 ( 4 )、 を有するこ とを特徴と する広帯域コレステリ ック液晶フィルムの製造方法。 Next, a method for producing a broadband cholesteric liquid crystal film, comprising the step of irradiating ultraviolet rays in the absence of oxygen (4).
2. コレステリ ック液晶フィルムのピッチ長が、 配向基材側から連続的に狭く なるよ うに変化していることを特徴とする上記 1記載の広帯域コレステリ ック液 晶フィルムの製造方法。 2. The method for producing a broadband cholesteric liquid crystal film as described in 1 above, wherein the pitch length of the cholesteric liquid crystal film is changed so as to continuously narrow from the alignment substrate side.
3. 重合性メ ソゲン化合物 (A) が重合性官能基を 1つ有し、 重合性カイラル 剤 (B) が重合性官能基を 2つ以上有することを特徴とする上記 1 または 2記載 の広帯域コ レステ リ ック液晶フィルムの製造方法。 3. The broadband as described in 1 or 2 above, wherein the polymerizable mesogen compound (A) has one polymerizable functional group, and the polymerizable chiral agent (B) has two or more polymerizable functional groups. A method for manufacturing a cholesteric liquid crystal film.
4. 重合性メ ソゲン化合物 (A) のモル吸光係数が、 重合性メ ソゲン化合物 ( A) のモル吸光係数が、 4. The molar extinction coefficient of the polymerizable mesogen compound (A) is
0. 1〜 5 0 0 d m3m o 1一1 c m—丄@ 3 6 5 n mであり、 0.1 to 500 dm 3 mo 1 1 cm— 丄 @ 365 nm,
1 0〜 3 0 0 0 0 d m 3m o 1 _1<; 111ー1@ 3 3 4 1101でぁり、 力 つ、 1 0~ 3 0 0 0 0 dm 3 mo 1 _1 <; 111 -1 @ 3 3 4 1101 Deari, one force,
1 0 0 0〜 1 0 0 0 0 0 d m3m o 1— 1 c m-1@ 3 1 4 n mであることを特徴と する上記 1〜 3のいずれかに記載の広帯域コ レステリ ック液晶フィルムの製造方 法。 1 0 0 0~ 1 0 0 0 0 0 dm 3 mo 1- 1 cm -1 @ 3 1 4 characterized in that it is a nm according to any one of the above 1 to 3 broadband co Resuteri click crystal film Production method.
5. 重合性メ ソゲン化合物 (A) が、 下記一般式 ( 1 ) : 5. The polymerizable mesogen compound (A) has the following general formula (1):
(式中、 1^〜1 12は同一でも異なっていてもよく、 一 F、 一 H、 一 C H3、 一 C2 Hsまたは一 O C H3を示し、 R13は一 Hまたは一 C H3を示し、 Xtは一般式 ( 2 ) : ― (C H2CH20) a— ( C H2) b- (◦) c―、 を示し、 X2は一 C Nまたは一 Fを示す。 但し、 一般式 ( 2 ) 中の a は 0〜 3の整数、 bは 0〜 1 2の整数、 c は 0または 1であり、 かつ a = l〜 3のときは b = 0、 c = 0であり、 a = 0の
ときは b = l〜 1 2、 c = 0〜 l である。) で表される化合物であることを特徴 とする上記 1〜 4のいずれかに記載の広帯域コ レステ リ ック液晶フィルムの製造 方法。 (Wherein 1 ^ to 1 12 may be the same or different, one F, one H, One CH 3, shows an C 2 H s or a OCH 3, the R 13 an H or a CH 3 X t represents the general formula (2): — (CH 2 CH 20 ) a — (CH 2 ) b- (◦) c —, and X 2 represents one CN or one F. In the formula (2), a is an integer of 0 to 3, b is an integer of 0 to 12, c is 0 or 1, and when a = l to 3, b = 0 and c = 0; a = 0 Then b = l ~ 12 and c = 0 ~ l. 5. The method for producing a broadband cholesteric liquid crystal film according to any one of the above items 1 to 4, wherein the compound is a compound represented by the following formula:
6 . 上記 1〜 5のいずれかに記載の製造方法によ り得られた広帯域コ レステリ ック液晶フィルムを用いた円偏光板。 6. A circularly polarizing plate using the broadband cholesteric liquid crystal film obtained by the production method according to any one of the above 1 to 5.
7. 偏光の選択反射の波長帯域が互いに重なっている少なく と も 2層の反射偏 光子 ( a ) の間に、 7. Between at least two layers of reflective polarizers (a) where the wavelength bands of polarized light selective reflection overlap each other,
正面位相差 (法線方向) がほぼゼロで、 法線方向に対し 3 0 ° 以上傾けて入射 した入射光に対して λ 8以上の位相差を有する位相差層 ( b ) が配置されてい る偏光素子であって、 A retardation layer (b) with almost zero front phase difference (normal direction) and a phase difference of λ 8 or more with respect to incident light that is incident at an angle of 30 ° or more with respect to the normal direction is arranged. A polarizing element,
反射偏光子 ( a ) が、 上記 6記載の円偏光板であることを特徴とする偏光素子 A polarizing element, wherein the reflective polarizer (a) is the circularly polarizing plate according to the above item 6.
8. 少なく と も 2層の反射偏光子 ( a ) の選択反射波長が、 5 5 0 n m± 1 0 n mの波長範囲で互いに重なっていることを特徴とする上記 7記載の偏光素子。 8. The polarizing element according to the above 7, wherein the selective reflection wavelengths of at least two layers of the reflective polarizers (a) overlap each other in a wavelength range of 550 nm ± 10 nm.
9. 位相差層 ( b ) 力 選択反射波長域を可視光領域以外に有するコレステリ ック液晶相のブラナー配向を固定したもの、 9. Retardation layer (b) Force Fixed cholesteric liquid crystal phase having a selective reflection wavelength range other than the visible light range, with fixed planar orientation,
棒状液晶のホメオト口ピック配向状態を固定したもの、 A rod-shaped liquid crystal with a fixed home-mouth pick alignment state,
ディスコチック液晶のネマチック相またはカラムナー相配向状態を固定したも の、 A discotic liquid crystal in which the nematic or columnar phase orientation is fixed,
ポリマ一フィルムを 2軸配向したもの、 または、 Biaxially oriented polymer film, or
負の 1軸性を有する無機層状化合物を面の法線方向に光軸がなるよ うに配向固 定したものであることを特徴とする上記 7または 8記載の偏光素子。 9. The polarizing element according to the above item 7 or 8, wherein an inorganic layered compound having a negative uniaxial property is fixed so as to have an optical axis in a direction normal to the surface.
1 0. 上記 6記載の円偏光板、 または上記 7 ~ 9のいずれかに記載の偏光素子 に、 λ / 4板が積層されており、 透過で直線偏光が得られることを特徴とする直 線偏光素子。 10. A straight line characterized in that a λ / 4 plate is laminated on the circularly polarizing plate described in 6 above or the polarizing element described in any of 7 to 9 above, so that linearly polarized light can be obtained by transmission. Polarizing element.
1 1 . 円偏光板であるコレステリ ック液晶フィルムを、 え / 4板に対し、 ピッ チ長が連続的に狭く なるよ うに積層して得られる上記 1 0記載の直線偏光素子。 11. The linearly polarizing element according to 10 above, obtained by laminating a cholesteric liquid crystal film as a circularly polarizing plate on an e / 4 plate so that the pitch length is continuously narrowed.
1 2. / 4板が、 2軸延伸して斜め入射光線の位相差補正を行い、 視野角改 善した位相差板であることを特徴とする上記 1 0または 1 1記載の直線偏光素子
1 3. / 4板が、 ネマチック液晶またはスメ クチック液晶を塗布、 固定化し て得られる液晶ポリマー型位相差板であることを特徴とする上記 1 0または 1 1 記載の直線偏光素子。 12. The linear polarizing element as described in 10 or 11, wherein the 2./4 plate is a retardation plate whose viewing angle has been improved by biaxially stretching and correcting the phase difference of obliquely incident light. 13. The linear polarizing element as described in 10 or 11, wherein the 3./4 plate is a liquid crystal polymer type retardation plate obtained by applying and fixing a nematic liquid crystal or a smectic liquid crystal.
1 4. λ / 4板が、 面内の主屈折率を n x、 n y、 厚さ方向の主屈折率を n z と したとき、 式 : (n x— n z ) / ( n x - n y ) で定義される N z係数が一 0 1 4. When a λ / 4 plate has a principal refractive index in the plane of nx and ny and a principal refractive index in the thickness direction as nz, it is defined by the formula: (nx—nz) / (nx-ny). N z coefficient is 1 0
. 5 2. 5を満足するものであることを特徴とする上記 1 0〜 1 3のいずれ かに記載の直線偏光素子。 5. The linear polarizing element as described in any one of 10 to 13 above, which satisfies 52.5.
1 5 . 上記 1 0 ~ 1 4のいずれかに記載の直線偏光素子の λ Z 4板に、 さ らに λ / 2板が積層されていることを特徴とする直線偏光素子。 15. A linearly polarizing element characterized in that a λ / 2 plate is further laminated on the λ Z 4 plate of the linearly polarizing element according to any of the above 10 to 14.
1 6 . 上記 1 0〜 1 5のいずれかに記載の直線偏光素子の透過軸と、 透過軸方 向を合わせた吸収型偏光子を、 直線偏光素子のえ / 4板側に積層したことを特徴 とする直線偏光素子。 16. The absorption polarizer whose transmission axis and transmission axis direction of the linear polarizing element according to any of the above 10 to 15 are aligned on the fourth / 4 plate side of the linear polarizing element. Features a linear polarization element.
1 7. 裏面側に反射層を有する面光源の表面側に上記 6記載の円偏光板、 上記 7〜 9のいずれかに記載の偏光素子、 または上記 1 0〜 1 6のいずれかに記載の 直線偏光素子を有することを特徴とする照明装置。 1 7. On the front side of a surface light source having a reflective layer on the back side, the circularly polarizing plate described in 6 above, the polarizing element in any of 7 to 9 above, or the polarizing element in any of 10 to 16 above. An illumination device comprising a linear polarizing element.
1 8 . 上記 1 7記載の照明装置の光出射側に、 液晶セルを有することを特徴と する液晶表示装置。 18. A liquid crystal display device comprising a liquid crystal cell on the light emission side of the lighting device according to the above item 17.
1 9 . 液晶セルに対して、 視認側に、 液晶セルを透過した視認側の光線を拡散 する視野角拡大フィルムを配置してなることを特徴とする上記 1 8記載の視野角 拡大液晶表示装置。 19. The viewing angle widening liquid crystal display device according to the above item 18, wherein a viewing angle widening film for diffusing light on the viewing side transmitted through the liquid crystal cell is arranged on the viewing side with respect to the liquid crystal cell. .
2 0. 視野角拡大フィルムと して、 実質的に後方散乱、 偏光解消を有さない拡 散板を用いたことを特徴とする上記 1 9記載の視野角拡大液晶表示装置。 20. The viewing angle widening liquid crystal display device according to the above item 19, characterized in that a spreading plate having substantially no backscattering or depolarization is used as the viewing angle widening film.
(発明の効果) (The invention's effect)
上記のよ うに、 本発明では、 反射帯域を広帯域化させるために、 液晶混合物が 酸素を含む気体と接触している状態で配向基材側から紫外線照射する紫外線照射 照度 · 照射温度と して、 1回目の露光である工程 ( 1 ) と 2回目の露光であるェ 程 ( 3 ) において、 それぞれ異なる条件を用いている。 これによ り、 重合性の液 晶混合物の反応挙動のよ り緻密な制御を実現でき、 従来に比して、 高効率の生産
速度によ り 、 広帯域コ レステリ ック液晶フィルムが得られる。 As described above, in the present invention, in order to broaden the reflection band, in the state where the liquid crystal mixture is in contact with a gas containing oxygen, ultraviolet irradiation is performed from the alignment substrate side under ultraviolet irradiation. Different conditions are used for the first exposure step (1) and the second exposure step (3). As a result, more precise control of the reaction behavior of the polymerizable liquid crystal mixture can be realized, resulting in more efficient production than before. Depending on the speed, a broadband cholesteric liquid crystal film can be obtained.
すなわち、 紫外線照射条件は 1回目の照射強度 > 2回目の照射強度であり、 か つ 1回目照射時間 < 2回目照射時間である。 また、 1回目の紫外線照射と 2回目 の紫外線照射の間には加熱工程 ( 3 ) を設けている。 照射強度の違いによ り単位 時間あたりの液晶組成物中において光反応開始剤の紫外線反応によって発生する ラジカル量を 1回目の紫外線照射と 2回目の紫外線照射時では大きく変えている 。 1回目の紫外線照射では、 反応初期のモノマーリ ッチな条件で瞬間的に大量の ラジカルを形成し、 酸素阻害と液晶組成物の吸収によ り ラジカル存在分布に厚み 方向の大きな傾斜を形成せしめる。 これによ り平均分子量 1 0 0 0 0〜 5 0 0 0 0 0程度のポリマー/オリ ゴマーが形成され、 しかも厚み方向に濃度分布が形成 される。 また、 この際に、 液晶配合物中の重合性メ ソゲン化合物 (A) と重合性 カイラル剤 (B) の反応速度が異なるために重合比が厚み方向で異なる。 このた め重合性カイラル剤 (B) がリ ッチな面はコ レステリ ック ピッチが短く 、 逆方向 面は長く なる。 これによ り全体と して広帯域な反射波長を有するコレステリ ック 液晶フィルムが得られる。 That is, the ultraviolet irradiation condition is such that the first irradiation intensity> the second irradiation intensity, and the first irradiation time <the second irradiation time. A heating step (3) is provided between the first UV irradiation and the second UV irradiation. Due to the difference in irradiation intensity, the amount of radicals generated by the UV reaction of the photoreaction initiator in the liquid crystal composition per unit time is greatly changed between the first UV irradiation and the second UV irradiation. In the first UV irradiation, a large amount of radicals are instantaneously formed under monomer-rich conditions at the beginning of the reaction, and a large gradient in the thickness direction is formed in the radical existence distribution due to oxygen inhibition and absorption of the liquid crystal composition. As a result, a polymer / oligomer having an average molecular weight of about 1,000 to 5,000 is formed, and a concentration distribution is formed in the thickness direction. At this time, the polymerization ratio differs in the thickness direction because the reaction rates of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B) in the liquid crystal composition are different. For this reason, the surface where the polymerizable chiral agent (B) is rich has a short cholesteric pitch and the surface in the opposite direction becomes long. As a result, a cholesteric liquid crystal film having a broad reflection wavelength as a whole can be obtained.
このよ うにして得られた広帯域コレステリ ック液晶フ ィルムは広帯域円偏光反 射板と して機能し、 前記例示の特開平 6— 2 8 1 8 1 4号等と光学特性的には同 等の性質を有すると と もに、 従来の製造方法に比べて積層枚数の低減によ り厚み を低減でき、 さらには簡単に短時間で製造でき、 生産速度の向上によ り低コス ト 化が可能である。 The broadband cholesteric liquid crystal film thus obtained functions as a broadband circularly polarizing reflector and has the same optical characteristics as the above-mentioned JP-A-6-218184. In addition to these properties, the thickness can be reduced by reducing the number of layers compared to the conventional manufacturing method, and furthermore, it can be manufactured easily and in a short time, and the cost is reduced by improving the production speed. Is possible.
上記本発明の製造方法で得られた広帯域コ レステリ ック液晶フィルムは、 その 選択反射波長の反射帯域巾が 2 0 0 n m以上と広く 、 広帯域の反射帯域巾を有す る。 反射帯域巾は、 3 0 0 n m以上、 さ らには 4 0 0 n m以上、 さ らには 4 5 0 n mであるのが好ましい。 また 2 0 0 n m以上の反射帯域巾は可視光領域、 特に 4 0 0〜 9 0 0 n mの波長領域において有することが好ましい。 The broadband cholesteric liquid crystal film obtained by the production method of the present invention has a wide reflection bandwidth of 200 nm or more in the selective reflection wavelength, and has a broadband reflection bandwidth. The reflection bandwidth is preferably at least 300 nm, more preferably at least 400 nm, and further preferably at least 450 nm. Further, it is preferable that the reflection band width of 200 nm or more is provided in a visible light region, particularly in a wavelength region of 400 to 900 nm.
円偏光反射板が長波長域にも広帯域の反射帯域を有することは、 液晶表示装置 の良好な視野角特性を得るために重要な問題である。 実用的な視野角範囲で透過 光線に着色が見られないためには選択反射の長波長端が 8 0 0〜 9 0 0 n mに達 する必要がある。 本発明の製造方法によれば、 かかる長波長域にも反射帯域を有
する広帯域コレステリ ック液晶フィルムを得ることができる。 かかる広帯域コ レ ステリ ック液晶フィルムは、 単に高輝度を得るための反射偏光子と して用いる場 合だけでなく、 位相差板などの他の光学素子と組み合わせて作成する偏光素子の 場合でも同様に正面以外の斜め入射光線に対する安定した光学特性が求められる 。 図面の簡単な説明 It is an important problem that a circularly polarizing reflector has a wide reflection band even in a long wavelength region in order to obtain a good viewing angle characteristic of a liquid crystal display device. The long wavelength end of the selective reflection must reach 800 to 900 nm in order to prevent the transmitted light from being colored in a practical viewing angle range. According to the manufacturing method of the present invention, a reflection band is provided even in such a long wavelength region. A broadband cholesteric liquid crystal film can be obtained. Such a broadband cholesteric liquid crystal film is used not only when it is used as a reflective polarizer for obtaining high luminance but also when it is used for a polarizing element formed in combination with another optical element such as a retardation plate. Similarly, stable optical characteristics for obliquely incident light rays other than the front face are required. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 実施例 1 、 3、 比較例 1 〜 3の偏光板一体型偏光素子を用いた視野角 拡大液晶表示装置の概念図である。 FIG. 1 is a conceptual view of a viewing angle widening liquid crystal display device using the polarizing element integrated with a polarizing plate of Examples 1 and 3 and Comparative Examples 1 to 3.
図 2は、 実施例 2の偏光板一体型偏光素子を用いた視野角拡大液晶表示装置の 概念図である。 FIG. 2 is a conceptual diagram of a viewing angle widening liquid crystal display device using the polarizing plate integrated polarizing element of the second embodiment.
図 3は、 実施例 2の偏光板一体型偏光素子における各層の軸角度を表す図であ る。 FIG. 3 is a diagram illustrating an axis angle of each layer in the polarizing plate integrated polarizing element according to the second embodiment.
図 4は、 実施例 1、 比較例 1 、 比較例 2で作製したコ レステリ ック液晶フィノレ ムの反射スぺク トルである。 発明を実施するための最良の形態 FIG. 4 is a reflection spectrum of the cholesteric liquid crystal finolem produced in Example 1, Comparative Example 1, and Comparative Example 2. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の広帯域コレステリ ック液晶フィルムは、 重合性メ ソゲン化合物 ( A ) およぴ重合性カイラル剤 (B ) を含む液晶混合物を紫外線重合して得られる。 重合性メ ソゲン化合物 (A ) は、 重合性官能基を少なく と も 1つ有し、 これに 環状単位等からなるメ ソゲン基を有するものが好適に用いられる。 重合性官能基 と しては、 ァク リ ロイル基、 メ タク リ ロイル基、 エポキシ基、 ビュルエーテル基 等があげられるが、 これらのなかでもァク リ ロイル基、 メ タク リ ロイル基が好適 である。 また重合性官能基を 2つ以上有するものを用いることによ り架橋構造を 導入して耐久性を向上させることもできる。 メ ソゲン基となる前記環状単位と し ては、 たとえば、 ビフエニル系、 フエニルベンゾエー ト系、 フエ二ルシク 口へキ サン系、 ァゾキシベンゼン系、 ァゾメチン系、 ァゾベンゼン系、 フエニルピリ ミ ジン系、 ジフエニノレアセチレン系、 ジフエ二ノレべンゾエー ト系、 ビシクロへキサ ン系、 シクロへキシルベンゼン系、 ターフェニル系等があげられる。 なお、 これ
ら環状単位の末端は、 たとえば、 シァノ基、 アルキル基、 アルコキシ基、 ハロゲ ン基等の置換基を有していてもよい。 前記メ ソゲン基は屈曲性を付与するスぺー サ部を介して結合していてもよい。 スぺーサ部と しては、 ポリ メチレン鎖、 ポリ ォキシメチレン鎖等があげられる。 スぺーサ部を形成する構造単位の繰り返し数 は、 メ ソゲン部の化学構造によ り適宜に決定されるがポリ メチレン鎖の繰り返し 単位は 0〜 2 0、 好ましく は 2〜 1 2、 ポリオキシメチレン鎖の繰り返し単位は 0〜: 1 0、 好ましく は:!〜 3である。 The broadband cholesteric liquid crystal film of the present invention is obtained by ultraviolet polymerization of a liquid crystal mixture containing a polymerizable mesogen compound (A) and a polymerizable chiral agent (B). As the polymerizable mesogen compound (A), a compound having at least one polymerizable functional group and having a mesogen group composed of a cyclic unit or the like is preferably used. Examples of the polymerizable functional group include an acryloyl group, a methacryloyl group, an epoxy group and a butyl ether group. Of these, an acryloyl group and a methacryloyl group are preferable. It is. Further, by using a compound having two or more polymerizable functional groups, a crosslinked structure can be introduced to improve durability. Examples of the cyclic unit to be a mesogen group include biphenyl-based, phenylbenzoate-based, phenylsilicone hexane-based, azoxybenzene-based, azomethine-based, azobenzene-based, phenylpyrimidine-based, and diphenyl-based. Ninoleacetylene, diphenylenobenzoate, bicyclohexane, cyclohexylbenzene, terphenyl and the like. Note that this Further, the terminal of the cyclic unit may have a substituent such as, for example, a cyano group, an alkyl group, an alkoxy group, or a halogen group. The mesogen group may be bonded via a spacer that imparts flexibility. Examples of the spacer include a polymethylene chain and a polymethylene chain. The number of repetitions of the structural unit forming the spacer portion is appropriately determined depending on the chemical structure of the mesogen portion, but the number of recurring units of the polymethylene chain is 0 to 20, preferably 2 to 12, The repeating unit of the methylene chain is from 0 to 10, preferably:! ~ 3.
重合性メ ソゲン化合物 (A) のモル吸光係数は、 0. l〜 5 0 0 d m3m o l一 L e na—【© 3 6 5 1101であり、 1 0〜 3 0 0 0 0 d m 3m o 1 _1 c m"1® 3 3 4 n m であり、 力 つ 1 0 0 0〜 1 0 0 0 0 0 d m 3m o l -1c m一1 @ 3 1 4 n mであるこ とが好ましい。 前記モル吸光係数を有するものは紫外線吸収能を有する。 モル吸 光係数は、 0. l〜 5 0 d m3m o l -1c m— 1@ 3 6 5 n mであり、 5 0〜 1 0 0 0 0 d m3m o l -1 c m— '② であり、 1 0 0 0 0〜 5 0 0 0 0 d m3m o 1 一1 c m—1® 3 1 4 n mがよ り好適である。 モル吸光係数は、 0. 〜 1 0 d m3m o 1 _1 c m_1@ 3 6 5 n mであり、 1 0 0 0〜4 0 0 0 d m3m o I—1 c m一1 @ 3 3 4 n mであり、 3 0 0 0 0〜 4 0 0 0 0 d m3m o 1 c m"'@ 3 1 4 n m であるのがよ り好ましい。 モル吸光係数が 0. I d m3m o 1 _1 c m^l® 3 6 5 n m、 1 0 d m3m o 1 _1 c m_1@ 3 3 4 n m、 1 0 0 0 d m3m o 1 -1 c m"1® 3 1 4 n mよ り小さいと十分な重合速度差がつかずに広帯域化し難い。 —方、 5 0 0 d m3m o 1一1 c m— l@ 3 6 5 n m、 3 0 0 0 0 d m3m o 1 —1 c m一1 @ 3 3 4 n m、 1 0 0 0 0 0 d m3m o 1 _1 c m"1® 3 1 4 n mよ り大きいと重合が完全に進 行せずに硬化が終了しない場合がある。 なお、 モル吸光係数は、 各材料の分光光 度スぺク トルを測定し、 得られた 3 6 5 n m、 3 3 4 n m、 3 1 4 n mの吸光度 から測定した値である。
重合性官能基を 1つ有する重合性メ ソゲン化合物 (A) は、 たとえば、 下記一 般式 : ( 1 ) The molar extinction coefficient of the polymerizable mesogen compound (A) is 0.1 to 500 dm 3 mol-L e na— [© 365 5 1101, and 10 to 300 dm 3 mo 1 _1 cm "is 1 ® 3 3 4 nm, with a force one 1 0 0 0~ 1 0 0 0 0 0 dm 3 mol -1 cm one 1 @ 3 1 4 nm Dearuko and are preferred. the molar extinction coefficient Molar absorption coefficient is 0.1 ~ 50 dm 3 mol- 1 cm- 1 @ 365 nm, 50 ~ 100 000 dm 3 mol -1 cm — '②, 100 000 to 500 000 dm 3 mo 1 1 cm— 1 ® 3 14 nm is more preferred The molar extinction coefficient is 0.1 to 10 dm 3 mo 1 _1 cm _ 1 @ 365 nm, 100 0 0 ~ 400 m dm 3 mo I- 1 cm-1 1 @ 3 34 nm, 300 0 0 0 ~ 400 0 0 dm 3 mo 1 cm "'@ 314 nm is more preferable. Molar extinction coefficient is 0. I dm 3 mo 1 _1 cm ^ l® 365 nm, 10 dm 3 mo 1 _1 cm _1 @ 334 nm, 100 dm 3 mo 1 -1 cm " 1 ® If it is smaller than 3 14 nm, there is no sufficient difference in polymerization rate, and it is difficult to broaden the band.—On the other hand, 500 dm 3 mo 1 cm— l @ 365 nm, 300 dm 3 mo 1 — 1 cm 1 @ 3 3 4 nm, 1 0 0 0 0 0 dm 3 mo 1 _1 cm "If it is larger than 1 ® 3 14 nm, polymerization may not proceed completely and curing may not be completed. is there. The molar extinction coefficient is a value obtained by measuring the spectrophotometric spectrum of each material and measuring the resulting absorbance at 365 nm, 334 nm, and 314 nm. The polymerizable mesogen compound (A) having one polymerizable functional group has, for example, the following general formula: (1)
(式中、 !^〜 は同一でも異なっていてもよく 、 一 F、 一 H、 — C H3、 - C 2 H5または一 O C H3を示し、 R 13は一 Hまたは一 C H3を示し、 は一般式 ( 2 )(In the formula,! ^ ~ May be the same or different and represents 1 F, 1 H, —CH 3 , —C 2 H 5 or 1 OCH 3 , R 13 represents 1 H or 1 CH 3 , Is the general formula (2)
: ー ( C H2C H20 ) a- ( C H2) b— (O ) c―、 を示し、 2はー〇 ^^または一 Fを示す。 但し、 一般式 ( 2 ) 中の aは 0 〜 3の整数、 b は 0〜; 1 2の整数、 c は 0または 1であり、 かつ a = l 〜 3のときは b = 0、 c = 0であり、 a = 0の ときは b = l 〜 l 2、 c = 0 〜 lである。) で表される化合物があげられる。 —般式 ( 1 ) で表される重合性メ ソゲン化合物 (A) の具体例を表 1 に挙げる
:-(CH 2 CH 2 0) a- (CH 2 ) b- (O) c-, and 2 represents -〇 ^^ or 1F. However, in the general formula (2), a is an integer of 0 to 3, b is 0 to; 12 is an integer of 2, c is 0 or 1, and when a = l to 3, b = 0 and c = 0, and when a = 0, b = l to l2 and c = 0 to l. ). —Specific examples of the polymerizable mesogen compound (A) represented by the general formula (1) are shown in Table 1.
重合性メ ソゲン化合物 (A) はこれら例示化合物に限定されるものではない。 また、 重合性カイラル剤 ( B ) と しては、 たとえば、 B A S F社製 L C 7 5 6 があげられる。 The polymerizable mesogen compound (A) is not limited to these exemplified compounds. Examples of the polymerizable chiral agent (B) include LC756 manufactured by BASF.
上記重合性カイラル剤 (B) の配合量は、 重合性メ ソゲン化合物 (A) と重合
性カイラル剤 (B ) の合計 1 0 0重量部に対して、 1〜 2 0重量部程度が好まし く、 3〜 7重量部がよ り好適である。 重合性メ ソゲン化合物 (A ) と重合性カイ ラル剤 (B ) の割合によ り螺旋ねじり力 (H T P ) が制御される。 前記割合を前 記範囲内とすることで、 得られるコレステリ ック液晶フィルムの反射スぺク トル が長波長域をカバ一できるよ うに反射帯域を選択することができる。 The compounding amount of the polymerizable chiral agent (B) is the same as that of the polymerizable mesogen compound (A). The amount is preferably about 1 to 20 parts by weight, more preferably 3 to 7 parts by weight, based on the total of 100 parts by weight of the sex chiral agent (B). The helical torsional force (HTP) is controlled by the ratio of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B). By setting the ratio within the above range, the reflection band can be selected so that the reflection spectrum of the obtained cholesteric liquid crystal film can cover a long wavelength range.
また液晶混合物には、 通常、 光重合開始剤 (C ) を含む。 光重合開始剤 (C ) と しては各種のものを特に制限なく使用できる。 例えば、 チパスペシャルティケ ミカルズ社製のィルガキュア 1 8 4、 ィルガキュア 9 0 7、 ィルガキュア 3 6 9 、 ィルガキュア 6 5 1等があげられる。 光重合開始剤の配合量は、 重合性メ ソゲ ン化合物 (A ) と重合性カイラル剤 (B ) の合計 1 0 0重量部に対して、 0 . 0 1〜 1 0重量部程度が好ましく、 0 . 0 5〜 5重量部がよ り好適である。 The liquid crystal mixture usually contains a photopolymerization initiator (C). Various photopolymerization initiators (C) can be used without particular limitation. For example, irgacure 184, irgacure 907, irgacure 369, and irgacure 651 manufactured by Chipa Specialty Chemicals Co., Ltd. may be mentioned. The amount of the photopolymerization initiator is preferably about 0.01 to 10 parts by weight based on 100 parts by weight of the total of the polymerizable mesogen compound (A) and the polymerizable chiral agent (B). 0.05-5 parts by weight is more preferred.
前記混合物には、 得られるコレステリ ック液晶フィルムの帯域幅を広げるため に、 紫外線吸収剤を混入して厚み方向での紫外線露光強度差を大きくすることが できる。 また、 モル吸光係数の大きな光反応開始剤を用いることで同様の効果を 得ることもできる。 In order to widen the bandwidth of the obtained cholesteric liquid crystal film, the mixture can be mixed with an ultraviolet absorber to increase the difference in ultraviolet exposure intensity in the thickness direction. A similar effect can be obtained by using a photoinitiator having a large molar extinction coefficient.
前記混合物は溶液と して用いることができる。 溶液を調製する際に用いられる 溶媒と しては、 通常、 ク ロ 口ホルム、 ジク ロ ロメ タン、 ジク ロ ロェタン、 テ トラ ク ロ 口ェタ ン、 ト リ ク ロ ロエチレン、 テ トラク ロ ロエチレン、 ク ロ 口ベンゼンな どのハロゲン化炭化水素類、 フエノール、 パラク ロ ロ フエノ一ルなどのフエノー ル類、 ベンゼン、 トルエン、 キシレン、 メ トキシベンゼン、 1 , 2—ジメ トキべ ンゼンなどの芳香族炭化水素類、 その他、 アセ トン、 メチルェチルケ トン、 酢酸 ェチル、 t e r t —プチルアルコール、 グリ セ リ ン、 エチレングリ コール、 ト リ エチレングリ コ一ノレ、 エチレンブリ コーノレモノメチノレエーテノレ、 ジエチレングリ コーノレジメ チノレエーテノレ、 ェチルセノレソルブ、 ブチルセルソルブ、 2 — ピロ リ ド ン、 N—メ チル一 2 —ピロ リ ドン、 ピリ ジン、 ト リェチルァミ ン、 テ トラ ヒ ドロ フラン、 ジメチルホルムアミ ド、 ジメチルァセ トアミ ド、 ジメチルスルホキシ ド 、 ァセ トニ ト リル、 プチロニ ト リル、 二硫化炭素、 シク ロペンタノ ン、 シク ロへ キサノンなどを用いることができる。 使用する溶媒と しては、 特に制限されない が、 メチルェチルケ トン、 シク 口へキサノ ン、 シク ロペンタノ ン等が好ま しい。
溶液の濃度は、 サーモ ト口ピック液晶性化合物の溶解性や最終的に目的とするコ レステリ ック液晶フィルムの膜厚に依存するため一概には言えないが、 通常 3〜 5 0重量%程度とするのが好ましい。 ' The mixture can be used as a solution. Solvents used for preparing the solution are usually chloroform, dichloromethane, dichloromethane, tetrachlorethane, trichloroethylene, tetrachloroethylene, and tetrachloroethylene. Halogenated hydrocarbons such as benzene, phenols such as phenol and parachlorophenol, and aromatic hydrocarbons such as benzene, toluene, xylene, methoxybenzene and 1,2-dimethoxybenzene And others, such as acetone, methylethyl ketone, ethyl acetate, tert-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol, monomethylinoleate, diethyleneglycorereginette, Ethylsilenosolve, butyl cellosolve, 2-pyrrolidone, N-Methyl-1-2-pyrrolidone, pyridine, triethylamine, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitril, ptyronitrile, disulfide Carbon, cyclopentanone, cyclohexanone, and the like can be used. The solvent used is not particularly limited, but methyl ethyl ketone, cyclohexanone, cyclopentanone, and the like are preferred. The concentration of the solution cannot be determined unconditionally because it depends on the solubility of the thermopick liquid crystal compound and the final thickness of the target cholesteric liquid crystal film, but it is usually about 3 to 50% by weight. It is preferred that '
本発明の広帯域コ レステリ ック液晶フィルムの製造は、 前記液晶混合物を配向 基材に塗布する工程、 および前記液晶混合物に紫外線照射を行い重合硬化するェ 程を含む。 The production of the broadband cholesteric liquid crystal film of the present invention includes a step of applying the liquid crystal mixture to an alignment substrate, and a step of irradiating the liquid crystal mixture with ultraviolet rays and polymerizing and curing.
配向基材と しては、 従来知られているものを採用できる。 たとえば、 基板上に ポリイ ミ ドゃポリ ビュルアルコール等からなる薄膜を形成して、 それをレーヨ ン 布等でラビング処理したラビング膜、 斜方蒸着膜、 シンナメー トゃァゾベンゼン など光架橋基を有するポリマーあるいはポリイ ミ ドに偏光紫外線を照射した光配 向膜、 延伸フィルムなどが用いられる。 その他、 磁場、 電場配向、 ずり応力操作 によ り配向させること もできる。 As the alignment base material, a conventionally known one can be used. For example, a polymer having a photo-crosslinking group such as a rubbing film, obliquely deposited film, or cinnamate diazobenzene, which is formed by forming a thin film made of polyimide or polyvinyl alcohol on a substrate and rubbing it with rayon cloth or the like Alternatively, a light directing film or a stretched film obtained by irradiating a polyimide with polarized ultraviolet light is used. In addition, orientation can be performed by magnetic field, electric field orientation, and shear stress operation.
基材の種類は特に限定しないが、 基材側から照射線 (紫外線) を照射する手法 上、 透過率の高い素材が望ましい。 たとえば、 基材は、 2 0 0 n m以上 4 0 0 η m以下、 よ り望ま しく は 3 0 0 n m以上 4 0 0 n m以下の紫外域に対して透過率 1 0 %以上、 望ま しく は 2 0 %以上であることが求められる。 具体的には、 波長 3 6 5 n mの紫外光に対する透過率が 1 0 %以上、 さ らには 2 0 %以上のプラス チック フィルムであることが好ましい。 なお、 透過率は、 H I T A C H I製 U— 4 1 0 0 S p e c t r ο ρ h ο t ο m e t e r によ り測定さ ,れる ί直である。 なお、 前記基板と しては、 ポリエチレンテレフタ レー ト、 ト リァセチルセル口 ース、 ノルボルネン樹脂、 ポリ ビュルアルコール、 ポリイ ミ ド、 ポリアリ レー ト 、 ポリ カーボネー ト、 ポリ スルホンやポリ エーテルスルホン等のプラスチック力 らなるフィルムやガラス板が用いられる。 例えば富土写真フィルム社製ト リァセ チルセルロースや J S R製 A R T O N、 日本ゼオン製ゼォネックスなどがあげら れる。 The type of the base material is not particularly limited, but a material having a high transmittance is desirable in view of the method of irradiating irradiation light (ultraviolet rays) from the base material side. For example, the base material has a transmittance of at least 10%, preferably at least 2%, in the ultraviolet region of from 200 nm to 400 nm, more preferably from 300 nm to 400 nm. It is required to be 0% or more. Specifically, it is preferable that the plastic film has a transmittance of 10% or more, more preferably 20% or more, for ultraviolet light having a wavelength of 365 nm. The transmittance is directly measured by U-410 Spectr ο ρ hh ο ο ο m te ter manufactured by HITACHI. The substrate may be a plastic material such as polyethylene terephthalate, triacetyl cellulose, norbornene resin, polyvinyl alcohol, polyimide, polyarylate, polycarbonate, polysulfone or polyethersulfone. A film or a glass plate is used. For example, Triacetyl cellulose manufactured by Fudo Photographic Film Co., Ltd., ARTON manufactured by JSR, and ZONEX manufactured by Zeon Corporation can be mentioned.
また、 特開 2 0 0 1 — 3 4 3 5 2 9号公報 (WO O 1 / 3 7 0 0 7 ) に記載の ポリマーフィルム、 たとえば、 (A) 側鎖に置換おょぴノまたは非置換イ ミ ド基 を有する熱可塑性樹脂と、 (B ) 側鎖に置換および/非置換フユニルならびに二 ト リル基を有する熱可塑性樹脂を含有する樹脂組成物があげられる。 具体例と し
てはィソプチレンと N—メチルマレイ ミ ドからなる交互共重合体とアタ リ ロニ ト リル ' スチレン共重合体とを含有する樹脂組成物のフィルムがあげられる。 フィ ルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。 前記基材はコレステリ ック液晶層と貼り合わせたまま用いても良いし剥離除去 しても良い。 貼り合わせたまま用いる場合には位相差値が実用上十分小さな材質 を用いる。 Further, a polymer film described in Japanese Patent Application Laid-Open No. 2001-334529 (WO 01/37007), for example, (A) Substituted or unsubstituted side chain Examples of the resin composition include a thermoplastic resin having an imido group and (B) a thermoplastic resin having a substituted and / or unsubstituted fuunyl and a ditolyl group in a side chain. Specific examples Examples of such a film include a resin composition film containing an alternating copolymer of isoptylene and N-methylmaleimide and an acrylonitrile'styrene copolymer. As the film, a film made of a mixed extruded product of a resin composition or the like can be used. The base material may be used while being bonded to the cholesteric liquid crystal layer, or may be peeled off. When using it as it is, use a material whose retardation value is sufficiently small for practical use.
基材を貼り合わせたまま用いる場合には、 基材は紫外線が照射されても分解 · 劣化 · 黄変しないものが望ましい。 たとえば、 前述の基材には光安定剤等を配合 することのよ り所用の目的を達成しう る。 光安定剤と しては、 チパスペシャルテ ィケミカルズ社製チヌビン 1 2 0、 同 1 4 4等が好適に用いられる。 露光光線か ら波長 3 0 0 n m以下を力ッ ト しておけば着色 · 劣化 · 黄変を低減することがで さる。 When the base material is used while being bonded, it is desirable that the base material does not decompose, deteriorate or yellow even when irradiated with ultraviolet rays. For example, the desired purpose can be achieved by adding a light stabilizer or the like to the above-mentioned base material. As the light stabilizer, Tinuvin 120 and 144, manufactured by Chipa Specialty Chemicals, etc., are preferably used. By increasing the wavelength from the exposure light to a wavelength of 300 nm or less, coloring, deterioration, and yellowing can be reduced.
前記液晶混合物の塗布厚み (溶液の場合は溶媒乾燥後の塗布厚み) は 1〜2 0 /ζ ηι程度が好ましい。 塗布厚みが 1 mよ り薄い場合は、 反射帯域巾は確保でき るものの偏光度そのものが低下する傾向があり好ま しく ない。 塗布厚みは 2 /Z 1T1 以上、 さ らには 3 /1 m以上であるのが好ましい。 一方、 塗布厚みは 2 0 /i mよ り 厚い場合には反射帯域巾 · 偏光度共に顕著な向上は見られず、 単に高コス ト とな り好ま しく ない。 塗布厚みは 1 5 m以下、 さ らには 1 0 πι以下がよ り好適で ある。 The coating thickness of the liquid crystal mixture (in the case of a solution, the coating thickness after drying the solvent) is preferably about 1 to 20 / ζηι. If the coating thickness is thinner than 1 m, the reflection bandwidth can be secured, but the degree of polarization itself tends to decrease, which is not preferable. The coating thickness is preferably 2 / Z1T1 or more, and more preferably 3 / 1m or more. On the other hand, when the coating thickness is larger than 20 / im, no remarkable improvement is seen in both the reflection bandwidth and the degree of polarization, and the cost is simply high, which is not preferable. The coating thickness is preferably 15 m or less, more preferably 10 πι or less.
配向基材に前記混合溶液を塗工する方法と しては、 例えば、 ロールコー ト法、 グラビアコー ト法、 スピンコー ト法、 バーコ一ト法などを採用することができる 。 混合溶液の塗工後、 溶媒を除去し、 基板上に液晶層を形成させる。 溶媒の除去 条件は、 特に限定されず、 溶媒をおおむね除去でき、 液晶層が流動したり、 流れ 落ちたり さえしなければ良い。 通常、 室温での乾燥、 乾燥炉での乾燥、 ホッ トプ レー ト上での加熱などを利用して溶媒を除去する。 As a method of applying the mixed solution to the alignment substrate, for example, a roll coating method, a gravure coating method, a spin coating method, a bar coating method, or the like can be adopted. After the application of the mixed solution, the solvent is removed, and a liquid crystal layer is formed on the substrate. The conditions for removing the solvent are not particularly limited, and it is sufficient that the solvent can be substantially removed, and the liquid crystal layer does not flow or drop. Usually, the solvent is removed by drying at room temperature, drying in a drying oven, or heating on a hot plate.
次いで、 前記配向基材上に形成された液晶層を液晶状態と し、 コレステリ ック 配向させる。 たとえば、 液晶層が液晶温度範囲になるよ う に熱処理を行う。 熱処 理方法と しては、 上記の乾燥方法と同様の方法で行う ことができる。 熱処理温度 は、 液晶材料や配向基材の種類によ り異なるため一概には言えないが、 通常 6 0
〜 3 0 0 °C、 好ましく は 7 0〜 2 0 0 °Cの範囲において行う。 また熱処理時間は 、 熱処理温度および使用する液晶材料や配向基材の種類によって異なるためー概 には言えないが、 通常 1 0秒間〜 2時間、 好ま しく は 2 0秒間〜 3 0分間の範囲 で選択される。 Next, the liquid crystal layer formed on the alignment base material is brought into a liquid crystal state, and cholesteric alignment is performed. For example, heat treatment is performed so that the liquid crystal layer has a liquid crystal temperature range. The heat treatment can be performed by the same method as the above-mentioned drying method. The heat treatment temperature varies depending on the type of liquid crystal material and alignment substrate, and cannot be unconditionally determined. To 300 ° C., preferably 70 to 200 ° C. The heat treatment time varies depending on the heat treatment temperature and the type of liquid crystal material or alignment substrate used, but cannot be generally specified, but is usually in the range of 10 seconds to 2 hours, preferably in the range of 20 seconds to 30 minutes. Selected.
配向基材に塗布して液晶混合物を紫外線照射する工程は上記工程 ( 1 ) 〜 ( 4 ) を含む。 The step of applying to the alignment base material and irradiating the liquid crystal mixture with ultraviolet rays includes the above steps (1) to (4).
工程 ( 1 ) では、 液晶混合物が酸素を含む気体と接触している状態で、 2 0 °C 以上の温度下に、 2 0〜 2 0 0 mW/ c m2の紫外線照射強度で、 0. 2〜 5秒 間、 配向基材側から紫外線照射する。 これによ り、 液晶混合物を重合して、 平均 分子量 1 0 0 0 0 ~ 5 0 0 0 0 0程度のポリマーノオリ ゴマーを形成する と と も に、 配向基材側とその反対側 (酸素界面側) の厚み方向に、 酸素阻害による反応 速度差と、 液晶組成物の紫外線吸収によるラジカル発生量の差異が生じ、 厚み方 向に、 ポリマーノオリ ゴマーの生成量が連続分布した層を形成させる。 In the step (1), in a state where the liquid crystal mixture is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, an ultraviolet irradiation intensity of 20 to 200 mW / cm 2 is used. UV irradiation from the alignment substrate side for ~ 5 seconds. As a result, the liquid crystal mixture is polymerized to form a polymer oligomer having an average molecular weight of about 1,000 to 500,000, and the alignment base material side and its opposite side (the oxygen interface side) In the thickness direction, a difference in the reaction rate due to oxygen inhibition and a difference in the amount of generated radicals due to the absorption of ultraviolet light by the liquid crystal composition occur.
工程 ( 1 ) における、 第 1紫外線照射時の温度は、 液晶混合物を良好な配向状 態で重合硬化させるため、 2 0 °C以上の温度で行う。 一方、 温度の上限は特に制 限されないが、 1 0 0 °C以下とするのが好適である。 温度が 1 0 0 °cよ り高いと In the step (1), the temperature at the time of the first ultraviolet irradiation is set to 20 ° C. or higher in order to polymerize and cure the liquid crystal mixture in a favorable alignment state. On the other hand, the upper limit of the temperature is not particularly limited, but is preferably 100 ° C. or lower. If the temperature is higher than 100 ° C
、 照射中に拡散が起こってしまい管理が難しく なる場合がある。 これらの点から 前記温度は 2 0 °C〜 5 0 °Cが好適である。 第 1紫外線照射強度は、 2 0〜 2 0 0 mW/ c m2であり、 2 5〜 2 0 0 mW/ c m2が好ましく、 4 0〜: I 5 0 mWZ c m2がよ り好ましい。 紫外線照射強度が 2 0 mW/ c m2よ り低いと、 厚み方向 にモノマー分布が形成されるほどの重合がなされないために広帯域化しなく なる 。 また紫外線照射強度が 2 0 0 mW/ c m2よ り高いと重合反応速度が拡散速度 よ り大きく なるために、 広帯域化しなく なるため好ましく ない。 However, diffusion may occur during irradiation, making management difficult. From these points, the temperature is preferably from 20 ° C to 50 ° C. The first ultraviolet irradiation intensity is 2 0~ 2 0 0 mW / cm 2, preferably 2 5~ 2 0 0 mW / cm 2, 4 0~: I 5 0 mWZ cm 2 Gayo more preferable. If the UV irradiation intensity is lower than 20 mW / cm 2 , polymerization will not be performed to the extent that a monomer distribution is formed in the thickness direction, so that the band will not be broadened. On the other hand, if the UV irradiation intensity is higher than 200 mW / cm 2 , the polymerization reaction rate becomes higher than the diffusion rate, so that the band cannot be broadened, which is not preferable.
工程 ( 1 ) における、 第 1紫外線照射時間は、 0. 2〜 5秒間であり 、 0. 3 〜 3秒間が好適である。 よ り好ましく は 0. 5〜 1 . 5秒間である。 0. 2秒間 よ り短いと、 厚み方向にモノマー分布がつく ほどの重合がなされないために広帯 域化しなく なる。 また 5秒間より長いと、 コ レステリ ック液晶層のピッチ変化が 配向基材側から酸素界面側へと大から小になる連続変化ではなく、 不連続変化と なるため好ま しく ない。 不連続ピッチ変化だと、 斜めから見た時の着色がひどく
なる。 The first ultraviolet irradiation time in the step (1) is 0.2 to 5 seconds, and preferably 0.3 to 3 seconds. More preferably, it is 0.5 to 1.5 seconds. If the time is shorter than 0.2 seconds, the polymerization is not carried out to such an extent that the monomer is distributed in the thickness direction, so that the band is not broadened. If the time is longer than 5 seconds, the change in the pitch of the cholesteric liquid crystal layer is not a continuous change from large to small from the alignment substrate side to the oxygen interface side, but is a discontinuous change. Discontinuous pitch changes cause severe coloring when viewed from an angle Become.
紫外線照射における露光環境は、 配向基材に塗布された液晶混合物が、 酸素を 含む気体と接触している状態で行う。 酸素を含む気体が 0. 5 %以上の酸素を含 んでいることが好ましい。 かかる環境は、 酸素重合阻害を利用できるものであれ ばよく、 一般的な大気雰囲気下で行う ことができる。 また、 厚み方向のピッチ制 御を目的とする波長巾、 重合に必要な速度を鑑み、 酸素濃度を増減させてもよい 。 なお、 大気雰囲気下では光重合開始剤 (C) の必要量が増大する傾向にあるが ィルガキュア 1 8 4、 ィルガキュア 9 0 7 (いずれもチバスペシャルティケミカ ルズ社製) を用いれば、 重合性メ ソゲン化合物 (A) と重合性カイラル剤 (B) の合計 1 0 0重量部に対して、 1〜 5重量部程度の添加量で所用の目的を達成で きる。 The exposure environment for ultraviolet irradiation is performed in a state where the liquid crystal mixture applied to the alignment base material is in contact with a gas containing oxygen. Preferably, the gas containing oxygen contains 0.5% or more of oxygen. Such an environment may be any as long as oxygen polymerization inhibition can be used, and can be performed under a general atmospheric atmosphere. The oxygen concentration may be increased or decreased in view of the wavelength width for controlling the pitch in the thickness direction and the speed required for polymerization. In the atmosphere, the required amount of the photopolymerization initiator (C) tends to increase. However, if irgacure 184 and irgacure 907 (both manufactured by Ciba Specialty Chemicals) are used, the polymerizable mesogen can be used. The desired purpose can be achieved with an addition amount of about 1 to 5 parts by weight based on 100 parts by weight of the total of the compound (A) and the polymerizable chiral agent (B).
なお、 第 1紫外線照射にあたっては、 形成されるポリマー/オリ ゴマーの重量 平均分子量が小さすぎる と拡散速度が高く なりすぎる。 したがって、 制御不能な 拡散速度によって、 ポリマー Zオリ ゴマーの濃度勾配が均一化してしまわないよ うに注意するのがよい。 コレステリ ックピッチ長の液晶層厚み方向での大きな変 化を形成するだけでなく 、 これを維持する必要がある。 前記ポリマー/オリ ゴマ 一が余り にも低分子量では形成した傾斜が維持できず、 分子拡散によつて構造が 消失してしま う。 拡散速度を工業条件的に管理するための条件を満たすには、 重 量平均分子量 1 0 0 0 0〜 5 0 0 0 0 0程度の範囲にポリマー Zォリ ゴマーが形 成される。 ポリマー/オリ ゴマーの重量平均分子量は 1 0 0 0 0 0〜 3 0 0 0 0 0であるのが好ま しい。 なお、 ポリマーノオリ ゴマーの重量平均分子量は、 G P C法によ り測定される値である。 なお、 重量平均分子量は、 ポリエチレンォキサ ィ ドを標準試料に用い算出した。 本体 : 東ソー製の H L C— 8 1 2 0 G P C、 力 ラム : 東ソ一製の S u p e r AWM- H + S u p e r AWM— H+ S u p e r A W 3 0 0 0 (各 6 mm (i> X 1 5 c ni, 計 4 5 c m)、 カラム温度 : 4 0 °C、 溶離 液 : 1 0 mM— L i B r /NMP、 流速 : 0. 4 m l _ m i n、 入口圧 : 8. 5 MP a、 サンプル濃度 : 0. 1 %NMP溶液、 検出器 : 示差屈折計 (R I )、 で ある。 In the irradiation of the first ultraviolet ray, if the weight average molecular weight of the formed polymer / oligomer is too small, the diffusion rate becomes too high. Care should therefore be taken to ensure that uncontrolled diffusion rates do not even out the concentration gradient of the polymer Z oligomer. It is necessary not only to form a large change in the cholesteric pitch length in the liquid crystal layer thickness direction but also to maintain this. If the polymer / oligomer is too low in molecular weight, the formed gradient cannot be maintained, and the structure is lost due to molecular diffusion. In order to satisfy the conditions for controlling the diffusion rate under industrial conditions, the polymer Z oligomer is formed in a weight-average molecular weight of about 1,000 to 5,000. It is preferred that the weight average molecular weight of the polymer / oligomers is from 1000 to 3000. The weight average molecular weight of the polymer oligomer is a value measured by the GPC method. The weight average molecular weight was calculated using polyethylene oxide as a standard sample. Main unit: Tosoh's HLC—8 120 GPC, Power Ram: Tosoh's Super AWM- H + S Super AWM—H + Super AW 300 (0 mm each (i> X 15 c ni, total 45 cm), column temperature: 40 ° C, eluent: 10 mM—LiBr / NMP, flow rate: 0.4 ml_min, inlet pressure: 8.5 MPa, sample concentration : 0.1% NMP solution, Detector: Differential refractometer (RI).
工程 ( 1 ) の第 1紫外線照射で形成された濃度分布をこのまま固定化する場合
には特開 2 0 0 2— 2 8 6 9 3 5号公報等と同水準の反射波長帯域しか得られな レヽ 0 When fixing the concentration distribution formed by the first ultraviolet irradiation in step (1) as it is JP 2 0 0 2 2 8 6 9 3 5 discloses such a Rere reflection wavelength band only such obtained the same level to 0
そこで、 工程 ( 2 ) では、 液晶層が、 酸素を含む気体と接触している状態で、 7 0 - 1 2 0 °Cで、 2秒間以上、 加熱する。 工程 ( 2 ) によ り 、 工程 ( 1 ) にお いて、 ポリマー/オリ ゴマーを厚み方向に濃度傾斜して形成せしめたことによ り 、 逆に形成される未重合モノマー成分の厚み方向の残存濃度傾斜分布を厚み方向 で均一化させ、 これを用いてさ らにピッチ長の拡大を行う。 Therefore, in the step (2), the liquid crystal layer is heated at 70 to 120 ° C. for 2 seconds or more while being in contact with the gas containing oxygen. In the step (2), in the step (1), the polymer / oligomer is formed with a concentration gradient in the thickness direction, so that the unpolymerized monomer component formed in the reverse direction remains in the thickness direction. The concentration gradient distribution is made uniform in the thickness direction, and this is used to further increase the pitch length.
加熱温度は、 7 0 °C〜 1 0 0 °Cであるのが好ましい。 7 0 °C未満であると拡散 速度が非常に遅く広帯域化するのに長時間を要することになる。 また配向性が徐 々に悪く なつてく るため好ま しく ない。 一方、 1 2 0 °Cを超えると拡散速度が遠 すぎて管理が難しい。 加熱時間は、 2秒間以上、 さ らには 1 0秒間以上である。 ただし、 片側の配向基材に支持された液晶層が酸素界面を有するため、 加熱時間 が長く なると、 液晶組成物成分 · 光重合開始剤などの揮発損失や膜表面の平坦性 劣化、 異物の付着などが生じる傾向がある。 実用的には、 5分間以下、 さ らには 2分間以下とするのが好ましい。 The heating temperature is preferably from 70 ° C to 100 ° C. If the temperature is lower than 70 ° C, the diffusion speed is very slow and it takes a long time to broaden the band. Also, it is not preferable because the orientation gradually deteriorates. On the other hand, if the temperature exceeds 120 ° C, the diffusion rate is too far to be controlled. The heating time is at least 2 seconds, and further at least 10 seconds. However, since the liquid crystal layer supported on one side of the alignment substrate has an oxygen interface, if the heating time is prolonged, volatilization loss of liquid crystal composition components and photopolymerization initiator, deterioration of the film surface flatness, and adhesion of foreign matter Etc. tend to occur. Practically, the time is preferably 5 minutes or less, and more preferably 2 minutes or less.
加熱による均一化工程は上記の通り数秒間〜数分間程度であり 、 必ずしも喑所 による加熱である必要はない。 一方、 特許第 3 2 7 2 6 6 8号明細書ではコレス テリ ック液晶の選択反射帯域を単一ピツチ時の 2倍以上に拡張するには 4分間以 上のァニール時間を要し、 可視光域をカバーする 3 0 0 n m以上の選択反射帯域 の作成には 2時間程度のァニールを要した。 As described above, the homogenization step by heating is performed for several seconds to several minutes, and it is not always necessary to perform heating in some places. On the other hand, in the specification of Japanese Patent No. 3,272,668, extending the selective reflection band of the cholesteric liquid crystal to more than twice that of a single pitch requires an annealing time of 4 minutes or more, and the visible light It took about 2 hours of annealing to create a selective reflection band of 300 nm or more covering the optical region.
特許第 3 2 7 2 6 6 8号明細書では拡散によるコ レステリ ック液晶のピッチ長 の拡張に著しく長大な時間が必要であるため液晶層中の分子の拡散速度を維持す る必要がある。 このため加熱中の光照射は極力避けなければ加熱中に光重合が進 行してしまい、 分子量の増大や架橋の進行によ り ピッチ拡張が得られない。 これ は特許第 3 2 7 2 6 6 8号明細書では両面を基板で保持しており酸素阻害を受け ないために第 1紫外線照射時に拡散速度の遅い高分子成分が形成され、 重合度が 低くても分子の運動性が低下しているためであり避けられない欠点である。 これに対して本発明では、 工程 ( 1 ) において酸素阻害による重合度低下を逆 利用しているため同一反応率条件においても生成される反応物の分子量が低く 、
拡散速度が確保されている。 拡散速度の確保条件が大幅に緩和され、 明所での短 時間加熱工程でも十分にピッチ長の拡張がなされている。 これによ り時間の著し い短縮だけでなく、 露光途中のィンラインでの膜質管理 · 検査 · 計測などの点で も著しく優位である。 生産ラインの速度が 1 0 m /分の場合には、 特許第 3 2 7 2 6 6 8号明細書では 1 2 0分間にも及ぶ喑所でのァニール処理が必要であり、 このよ うな処理はインラインでは実質不可能な処理である。 本発明では、 上述の 通り短時間で実施可能であり、 実用上の問題は少ない。 According to the specification of Japanese Patent No. 3,272,668, it is necessary to maintain the diffusion speed of molecules in the liquid crystal layer because a remarkably long time is required to extend the pitch length of the cholesteric liquid crystal by diffusion. . Therefore, unless light irradiation during heating is avoided as much as possible, photopolymerization proceeds during heating, and pitch expansion cannot be obtained due to an increase in molecular weight or progress of crosslinking. This is because, in the specification of Patent No. 3,272,668, a polymer component having a low diffusion rate is formed upon irradiation with the first ultraviolet ray because both sides are held by substrates and is not subject to oxygen inhibition, resulting in a low degree of polymerization. However, this is an inevitable disadvantage because the mobility of the molecule is reduced. On the other hand, in the present invention, since the decrease in the degree of polymerization due to oxygen inhibition is reversely utilized in the step (1), the molecular weight of the reactant produced under the same reaction rate condition is low, Spreading speed is ensured. The conditions for securing the diffusion rate have been greatly relaxed, and the pitch length has been sufficiently extended even in the short-time heating process in the light. As a result, not only is the time significantly shortened, but also the film quality control, inspection, and measurement during in-line exposure are remarkably superior. If the speed of the production line is 10 m / min, patent specification No. 3,272,668 requires an annealing treatment at a place for as long as 120 minutes. Is a process that is virtually impossible inline. The present invention can be implemented in a short time as described above, and there are few practical problems.
次いで、 工程 ( 3 ) では、 液晶層が、 酸素を含む気体と接触している状態で、 2 0 °C以上の温度下に、 工程 ( 1 ) より も低い紫外線照射強度で、 1 0秒間以上 、 配向基材側から紫外線照射する。 かかる工程 ( 3 ) における第 2紫外線照射に よ り、 酸素界面側から浸透する酸素による重合阻害の有効深さを工程 ( 1 ) よ り 深くすることができ、 酸素界面側の短ピッチ領域のピッチ長は実質的に変化させ ず、 配向基材側の長ピッチ領域のみの反応を進行せしめることによ り、 配向基材 側の長ピッチ化をさ らに増大せしめる。 Next, in the step (3), the liquid crystal layer is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at a UV irradiation intensity lower than that of the step (1) for 10 seconds or more. Irradiate ultraviolet rays from the alignment substrate side. By the second ultraviolet irradiation in step (3), the effective depth of polymerization inhibition by oxygen penetrating from the oxygen interface side can be made deeper than in step (1), and the pitch of the short pitch region on the oxygen interface side can be reduced. The length is not substantially changed, and the reaction proceeds only in the long pitch region on the alignment substrate side, thereby further increasing the pitch on the alignment substrate side.
前述のよ うに第 1紫外線照射のみでは広帯城化は不満足である。 そこで、 工程 ( 2 ) で、 ポリマー/オリ ゴマーの重合物の濃度傾斜構造、 すなわちピッチ長の 変化構造を維持したまま残存する未反応モノマーを均一化した後に、 工程 ( 3 ) における第 2紫外線照射によ り、 この残存モノマーを重合し、 さ らにピッチ傾斜 を形成させる。 これによ り、 酸素界面側から浸透する酸素による重合阻害の有効 深さを工程 ( 1 ) よ り深くすることができ、 酸素界面側の短ピッチ領域のピッチ 長は実質的に変化させず、 配向基材側の長ピッチ領域のみ反応を進行せしめるこ とによ り、 配向基材側の長ピッチ化をさ らに増大せしめる。 As mentioned above, broadband castles are not satisfactory with only the first UV irradiation. Therefore, in step (2), the remaining unreacted monomer is homogenized while maintaining the gradient structure of the polymer of the polymer / oligomer, that is, the structure of changing the pitch length, and then the second ultraviolet irradiation in step (3) is performed. As a result, the residual monomer is polymerized, and a pitch gradient is formed. As a result, the effective depth of polymerization inhibition due to oxygen penetrating from the oxygen interface side can be made deeper than in step (1), and the pitch length of the short pitch region on the oxygen interface side does not substantially change. By making the reaction proceed only in the long pitch region on the alignment substrate side, the pitch on the alignment substrate side can be further increased.
液晶組成層の分子量の増大と拡散速度の低下が、 工程 ( 1 ) における第 1紫外 線照射時と大き く異なるため、 単位時間あたり に発生するラジカル量を低減し、 重合の進行速度を低下せしめることでさ らなる広帯域化が可能である。 Since the increase in the molecular weight and the decrease in the diffusion rate of the liquid crystal composition layer are significantly different from those during the first ultraviolet irradiation in step (1), the amount of radicals generated per unit time is reduced, and the progress rate of polymerization is reduced. This allows for a wider bandwidth.
工程 ( 3 ) における、 第 2紫外線照射時の温度は 2 0 °C以上の温度で行う。 温 度の上限は特に制限されないが、 1 4 0 °C以下が好適である。 さらには 6 0 °C〜 1 4 0 °Cが好ま しく、 8 0 °C〜 1 2 0 °Cが好適である。 温度が 2 0 °Cよ り低いと 、 重合性メ ソゲン化合物 ( a ) の拡散速度が非常に遅く 、 広帯域化するのに長時
間を要することになる。 In the step (3), the temperature at the time of the irradiation of the second ultraviolet ray is 20 ° C. or more. The upper limit of the temperature is not particularly limited, but is preferably 140 ° C. or lower. More preferably, the temperature is from 60 ° C to 140 ° C, more preferably from 80 ° C to 120 ° C. If the temperature is lower than 20 ° C, the diffusion rate of the polymerizable mesogen compound (a) is extremely slow, and it takes a long time to broaden the band. It will take some time.
第 2紫外線照射強度は、 第 1紫外線照射強度よ り低い紫外線照射強度で照射す る。 照度を第 1紫外線照射時よ り低くすることで、 酸素阻害深さが第 1紫外線照 射時の酸素阻害深さよ り深く なり、 空気界面側に形成された短波長帯城はほとん ど変化させず、 基材側の長波長帯域を広帯域化できる。 なお、 第 2紫外線照射強 度は、 第 1紫外線照射強度よ り低い範囲で、 1〜 5 0 m W / c in 2であるのが好 ましい。 Irradiation is performed at a second UV irradiation intensity lower than the first UV irradiation intensity. By making the illuminance lower than when irradiating the first ultraviolet ray, the oxygen inhibition depth becomes deeper than the oxygen inhibition depth when irradiating the first ultraviolet ray, and the short-wavelength band formed on the air interface side is almost changed. Instead, the long wavelength band on the substrate side can be broadened. The second UV irradiation intensity is preferably 1 to 50 mW / c in 2 in a range lower than the first UV irradiation intensity.
第 2紫外線照射時間は、 照度によるが、 一般的には 1 0秒間以上、 さ らには 3 0秒間以上が好適である。 なお、 紫外線照射時間は、 作業時間の点から 1 2 0秒 間以下、 さ らには 6 0秒間以下が好適である。 The second ultraviolet irradiation time depends on the illuminance, but is generally preferably 10 seconds or more, and more preferably 30 seconds or more. The ultraviolet irradiation time is preferably not more than 120 seconds, more preferably not more than 60 seconds from the viewpoint of working time.
なお、 比較と して特許第 3 2 7 2 6 6 8号明細書の実施例を参照すると、 特許 第 3 2 7 2 6 6 8号明細書では第 1紫外線照射と第 2紫外線照射の照射強度は同 一である。 この製法では第 2紫外線照射時のピッチ拡張は期待できず、 ァニール 時の拡散に依存せざるを得ない。 したがって、 特許第 3 2 7 2 6 6 8号明細書で は長大なァニール時間を要しており、 実用には大きな問題を有していることが分 かる。 As a comparison, referring to the examples of the specification of Japanese Patent No. 3272680, the irradiation intensity of the first ultraviolet irradiation and the second ultraviolet irradiation is described in the specification of Japanese Patent No. 3272680. Are the same. In this manufacturing method, pitch expansion at the time of the irradiation of the second ultraviolet ray cannot be expected, and it has to rely on diffusion at the time of annealing. Therefore, it is understood that Patent Document 3 272 668 requires a long annealing time, which has a serious problem in practical use.
さ らに、 この工程 ( 3 ) によ り、 工程 ( 1 ) でピッチ長変化が不連続であるな どの欠陥を有していた場合には、 これを連続化するこ ともできる。 ピッチ長変化 が不連続である場合には特定の波長のみがカツ ト されたり、 または透過率が高い 等、 選択反射波長帯域中の不必要な特性を有してしま う。 このよ うな場合、 色調 が面内で不均一となったり、 または色調が偏り着色する等の問題を生じる。 さ ら に前述のよ うに斜め入射時には波長特性が短波長にシフ トすることから、 透過率 が高い/低い異常波長領域に光源の輝線スぺク トルがかかった時に、 急激な色調 *輝度の変化を生じ、 視認性を著しく劣化させる。 このよ うな欠陥は極力排し、 選択反射波長帯域內は反射率/透過率の変化が少なく平坦であることが求められ る。 この工程 ( 3 ) による広帯域化工程は工程 ( 1 ) の広帯域化とは紫外線照射 条件が異なるため、 ピッチ長変化の不連続が仮に生じても工程 ( 1 ) で形成され る波長域とは異なる領域に生じるので、 重ね合わせ効果によ り全体ではお互いの 欠点を補完し合い、 結果と して連続な変化を形成するに至る。 この工程 ( 3 ) を
有さない場合、 例えば、 特開 2 0 0 2 — 2 8 6 9 3 5号公報の実施例 2の場合に は拡張された帯域内に段差が生じているが、 本発明では後述の実施例に示すよ う に連続で滑らかな特性を有する。 これは実際の使用に当たって大いに有利である 前述のよ うに工程 ( 3 ) による広帯域化によ り後述の実施例に示す広帯域化が 可能であり、 斜め入射光線のブルーシフ トによる着色 · 色抜けが生じる視野角度 が極めて大きく なり、 視角による着色は著しく低減せしめることができる。 次いで、 工程 (4 ) では、 酸素不存在下で、 紫外線照射する。 かかる第 3紫外 線照射によ り 、 工程 ( 1 ) 〜 ( 3 ) で拡張されたコレステリ ック反射帯域を劣化 させることなく、 硬化させる。 これによ り、 ピッチ変化構造を劣化させることな く 固定する。 Further, if the process (3) has a defect such as a discontinuous change in the pitch length in the process (1), it can be made continuous. If the change in pitch length is discontinuous, only specific wavelengths will be cut or the transmittance will be high, resulting in unnecessary characteristics in the selective reflection wavelength band. In such a case, problems such as uneven color tone in the plane or uneven coloring of the color tone occur. Furthermore, as described above, the wavelength characteristic shifts to a short wavelength at oblique incidence, so that when the emission line spectrum of the light source is applied to the extraordinary wavelength region where the transmittance is high or low, the sharp color tone * brightness This will cause a change and significantly degrade the visibility. Such defects should be eliminated as much as possible, and the selective reflection wavelength band 內 should be flat with little change in reflectivity / transmittance. Since the band broadening process in step (3) is different from the band broadening in step (1) under the condition of ultraviolet irradiation, even if a discontinuity in pitch length change occurs, it differs from the wavelength range formed in step (1). Since they occur in the area, the superposition effect as a whole complements each other's shortcomings, resulting in a continuous change. This step (3) If not, for example, in the case of Example 2 of Japanese Patent Application Laid-Open No. 2002-286935, a step occurs in the extended band, but in the present invention, As shown in the figure, it has continuous and smooth characteristics. This is very advantageous in actual use. As described above, the broadening of the band by the step (3) enables the broadening of the band as described in the later-described embodiment, and coloring and color omission by oblique incident light due to blue shift occur. The viewing angle becomes extremely large, and coloring due to the viewing angle can be significantly reduced. Next, in step (4), ultraviolet irradiation is performed in the absence of oxygen. By the third ultraviolet ray irradiation, the cholesteric reflection band extended in steps (1) to (3) is cured without deteriorating. As a result, the pitch change structure is fixed without deterioration.
酸素不存在下は、 たとえば不活性ガス雰囲気下とすることができる。 不活性ガ スは、 前記液晶混合物の紫外線重合に影響を及ぼさないものであれば特に制限さ れない。 かかる不活性ガスと しては、 窒素、 アルゴン、 ヘリ ウム、 ネオン、 キセ ノ ン、 ク リプトン等があげられる。 これらのなかでも、 窒素が最も汎用性が高く 好ましい。 また、 コ レステリ ック液晶層に、 透明基材を貼り合わせることによ り 、 酸素不存在下とすること もできる。 The absence of oxygen can be, for example, an inert gas atmosphere. The inert gas is not particularly limited as long as it does not affect the ultraviolet polymerization of the liquid crystal mixture. Examples of such an inert gas include nitrogen, argon, helium, neon, xenon, and krypton. Of these, nitrogen is the most versatile and preferred. Further, by bonding a transparent base material to the cholesteric liquid crystal layer, it is possible to eliminate the presence of oxygen.
工程 ( 4 ) において、 紫外線照射は、 配向基材側、 塗布した液晶混合物の側の いずれの側から行ってもよレ、。 In step (4), the ultraviolet irradiation may be performed from either the alignment substrate side or the applied liquid crystal mixture side.
紫外線照射条件は、 液晶混合物が硬化する条件であれば特に制限されない。 通 常は、 4 0 〜 3 0 0 m W Z c m 2程度の照射強度で、 1 〜 6 0秒間程度照射する のが好ま しい。 照射温度は、 2 0 〜 1 0 0 °C程度である。 The ultraviolet irradiation condition is not particularly limited as long as the liquid crystal mixture is cured. Usually, it is preferable to irradiate at an irradiation intensity of about 40 to 300 mWZ cm 2 for about 1 to 60 seconds. The irradiation temperature is about 20 to 100 ° C.
これによ り液晶層の架橋密度の向上 · 分子量増大によ り信頼性が著しく 向上す る。 本発明では、 工程 ( 1 ) の第 1紫外線照射、 工程 ( 3 ) の第 2紫外線照射で 酸素阻害を積極的に活用するため配向基材面側からの紫外線照射を行っている。 このため反応率に厚み方向に大きな勾配を形成することが可能と しているが、 問 題と して空気界面側の重合率の低さから膜表面の硬度 · 強度の不足、 または長期 の信頼性の不足などの問題が生じるおそれがある。 このため、 工程 ( 4 ) では、 酸素不存在雰囲気下にて第 3紫外線照射を行い、 残存モノマーを重合完結させ、
膜質の強化を行っている。 この場合、 空気雰囲気下 (酸素存在下) では表面の反 応率は十分に向上せず、 反応率が 9 0 %を上回ることは困難である。 したがって 、 十分な信頼性を得るには、 酸素不存在下にて紫外線照射を行う ことが望まれる 。 照射面方向は特に限定される物ではない。 液晶層側からの照射が望ましいが、 窒素雰囲気下では基材側からの照射でも十分に表面の反応は進行するからである こ う して得られるコレステリ ック液晶フィルムは、 基材から剥離することなく 用いられる他、 基材から剥離して用いてもよい。 As a result, the crosslink density of the liquid crystal layer is improved. The reliability is significantly improved due to the increase in the molecular weight. In the present invention, ultraviolet irradiation is performed from the alignment substrate surface side in order to positively utilize oxygen inhibition in the first ultraviolet irradiation in the step (1) and the second ultraviolet irradiation in the step (3). For this reason, it is possible to form a large gradient in the reaction rate in the thickness direction, but the problem is that the polymerization rate on the air interface side is low, and the hardness and strength of the film surface are insufficient, or long-term reliability is a problem. There is a possibility that problems such as lack of sex may occur. For this reason, in step (4), third ultraviolet irradiation is performed in an oxygen-free atmosphere to complete polymerization of the remaining monomer, Enhancing film quality. In this case, the reaction rate of the surface does not improve sufficiently in an air atmosphere (in the presence of oxygen), and it is difficult for the reaction rate to exceed 90%. Therefore, in order to obtain sufficient reliability, it is desired to perform ultraviolet irradiation in the absence of oxygen. The direction of the irradiation surface is not particularly limited. Irradiation from the liquid crystal layer side is desirable, but the reaction on the surface proceeds sufficiently even under irradiation from the substrate side under a nitrogen atmosphere.The cholesteric liquid crystal film obtained in this way peels off from the substrate It may be used without being used, or may be peeled off from the substrate.
本発明の広帯域コレステリ ック液晶フィルムは円偏光板と して用いられる。 円 偏光板には、 λ / 4板を積層して直線偏光素子とすることができる。 円偏光板で あるコ レステリ ック液晶フ ィ ルムは、 λ / 4板に対し、 ピッチ長が連続的に狭く なるよ うに積層するのが好ましい。 The broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate. A linear polarizing element can be obtained by laminating a λ / 4 plate on the circularly polarizing plate. It is preferable that the cholesteric liquid crystal film, which is a circularly polarizing plate, is laminated on the λ / 4 plate so that the pitch length is continuously narrowed.
/ 4板と しては、 特に限定されないがポリカーボネー ト、 ポリエチレンテレ フタ レー ト、 ボリスチ レン、 ポリスノレホン、 ボリ ビニルアルコール、 ボリ メチノレ メタク リ レー ト等のよ うな延伸することで位相差を発生する汎用透明榭脂フィル ムゃ J S R製 A R T O Nフィルムのよ う なノルボルネン系樹脂フィルム等が好適 に用いられる。 さ らに 2軸延伸を行い、 入射角による位相差値変化を補償する位 相差板を用いれば視野角特性を改善できるので好適である。 また樹脂の延伸によ る位相差発現以外の例えば液晶を配向せしめることで得られる /1 / 4層を固定す ることで得られる え / 4板を用いても良い。 この場合、 / 4板の厚みを大幅に 低減できる。 λ 4波長板の厚さは、 通常 0 · 5〜 2 0 0 /i mであることが好ま しく、 特に :!〜 1 0 0 μ mであるこ とが好ましい。 A / 4 plate is not particularly limited, but a phase difference is generated by stretching such as polycarbonate, polyethylene terephthalate, polystyrene, polysnoreon, polyvinyl alcohol, polymethyl methacrylate, etc. General-purpose transparent resin film Norbornene resin film such as ARTON film manufactured by JSR is suitably used. Further, it is preferable to perform biaxial stretching and use a retardation plate that compensates for a change in retardation value due to the incident angle, since the viewing angle characteristics can be improved. Further, other than the expression of the retardation by stretching the resin, for example, a quarter plate obtained by fixing liquid crystal by fixing a quarter layer may be used. In this case, the thickness of the 4 plate can be significantly reduced. The thickness of the λ4 wave plate is usually preferably from 0.5 to 200 / im, especially: It is preferably up to 100 μm.
可視光城等の広い波長範囲で λ / 4波長板と して機能する位相差板は、 例えば 波長 5 5 0 n mの淡色光に対してえ / 4波長板と して機能する位相差層と他の位 相差特性を示す位相差層、 例えば 2波長板と して機能する位相差層とを重畳 する方式などによ り得ることができる。 従って、 偏光板と輝度向上フィルムの間 に配置する位相差板は、 1層又は 2層以上の位相差層からなるものであってよい 前記直線偏光素子の透過軸に、 吸収型偏光子をその透過軸方向を合わせて貼り
合わせて用いられる。 A retardation plate that functions as a λ / 4 wavelength plate in a wide wavelength range such as a visible light castle is, for example, a retardation layer that functions as a / 4 wavelength plate for light-colored light having a wavelength of 550 nm. It can be obtained by a method in which a phase difference layer exhibiting other phase difference characteristics, for example, a phase difference layer functioning as a two-wavelength plate is superimposed. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or two or more retardation layers. Paste along the transmission axis direction Used together.
偏光子は、 特に制限されず、 各種のものを使用できる。 偏光子と しては、 たと えば、 ポリ ビュルアルコール系フィルム、 部分ホルマール化ポリ ビュルアルコー ル系フィルム、 ヱチレン . 酢酸ビュル共重合体系部分ケン化フィルム等の親水性 高分子フィルムに、 ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸し たもの、 ポリ ビュルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等 ポリェン系配向フィルム等があげられる。 これらのなかでもポリ ビュルアルコー ル系フィルムと ヨ ウ素などの二色性物質からなる偏光子が好適である。 これら偏 光子の厚さは特に制限されないが、 一般的に、 5 ~ 8 0 μ πι程度である。 The polarizer is not particularly limited, and various types can be used. Examples of polarizers include iodine and two-color polarizers, such as hydrophilic polymer films such as polyvinyl alcohol-based films, partially formalized polyvinyl alcohol-based films, and polyethylene / butyl acetate copolymer-based partially saponified films. Uniaxially stretched by adsorbing a dichroic substance such as a chromatic dye; a dehydrated product of polyvinyl alcohol; a dehydrochlorination product of polyvinyl chloride; and a polyene-based oriented film. Among these, a polarizer made of a polyvinyl alcohol-based film and a dichroic substance such as iodine is preferable. The thickness of these polarizers is not particularly limited, but is generally about 5 to 80 μπι.
ポリ ビュルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、 た とえば、 ポリ ビニルアルコールをョゥ素の水溶液に浸漬することによって染色し 、 元長の 3〜 7倍に延伸することで作製することができる。 必要に応じてホウ酸 やヨ ウ化カ リ ゥムなどの水溶液に浸漬するこ ともできる。 さ らに必要に応じて染 色の前にポリ ビュルアルコール系フィルムを水に浸漬して水洗してもよい。 ポリ ビュルアルコール系フィルムを水洗するこ とでポリ ビニノレアルコール系フィルム。 表面の汚れやプロ ッキング防止剤を洗浄することができるほかに、 ポリ ビエルァ ルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果 もある。 延伸はヨ ウ素で染色した後に行っても良いし、 染色しながら延伸しても よ し、 また延伸してからヨ ウ素で染色してもよい。 ホウ酸やヨウ化カ リ ウムなど の水溶液中や水浴中でも延伸するこ とができる。 A polarizer obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching is dyed, for example, by immersing polyvinyl alcohol in an aqueous solution of iodine, and stretching it to 3 to 7 times its original length. Can be made. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. If necessary, the polyvinyl alcohol-based film may be immersed in water and washed with water before dyeing. Polyvinyl alcohol-based film is obtained by washing the polyvinyl alcohol-based film with water. In addition to being able to clean surface dirt and anti-blocking agents, it also has the effect of preventing unevenness such as uneven dyeing by swelling the polyvinyl alcohol-based film. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched in an aqueous solution of boric acid or calcium iodide or in a water bath.
前記偏光子は、 通常、 片側または両側に透明保護フィルムが設けられ偏光板と して用いられる。 透明保護フィルムは透明性、 機械的強度、 熱安定性、 水分遮蔽 性、 等方性などに優れるものが好ましい。 透明保護フィルムと しては、 例えばポ リ エチレンテレフタ レー ト、 ポリエチレンナフタ レー ト等のポリエステル系ポリ マー、 ジァセチノレセ /レロ一ス、 ト リ ァセチノレセノレロース等のセノレロース系ポリ マ 一、 ポリ カーボネー ト系ポリ マー、 ポリ メチルメ タタ リ レー ト等のアク リル系ポ リマー等の透明ポリマーからなるフィルムがあげられる。 またポリ スチレン、 ァ ク リ ロニ ト リル . スチレン共重合体等のスチレン系ポリマー、 ポリエチレン、 ポ リ プロ ピレン、 環状ないしノルボルネン構造を有するポリ オレフイ ン、 エチレン
' プロ ピレン共重合体等のォレフィ ン系ポリマー、 塩化ビニル系ポリマー、 ナイ 口ンゃ芳香族ポリアミ ド等のアミ ド系ポリマー等の透明ポリマーからなるフィル ムもあげられる。 さ らにイ ミ ド系ポリマー、 スルホン系ポリマー、 ポリエーテル スルホン系ポリマ一、 ポリエーテルエーテルケ トン系ポリマー、 ポリ フエ二レン スルフィ ド系ポリ マー、 ビニルアルコール系ポリマー、 塩化ビニリデン系ポリマ 一、 ビュルプチラール系ポリマー、 ァリ レー ト系ポリマ一、 ポリオキシメチレン 系ポリマー、 エポキシ系ポリマーや前記ポリマーのブレン ド物等の透明ポリマー からなるフィルムなどもあげられる。 特に光学的に複屈折の少ないものが好適に 用いられる。 偏光板の保護フィルムの観点よ り は、 ト リ ァセチルセルロース、 ポ リカーポネー ト、 アク リル系ポリマー、 シク ロォレフイ ン系樹脂、 ノルボルネン 構造を有するポリオレフイ ンなどが好適である。 The polarizer is usually provided with a transparent protective film on one or both sides and used as a polarizing plate. It is preferable that the transparent protective film is excellent in transparency, mechanical strength, heat stability, moisture shielding property, isotropy and the like. Transparent protective films include, for example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, senorellose polymers such as diacetinose / relose, triacetinoresenorelose, etc., and polymers. Examples include films made of transparent polymers such as acrylic polymers such as carbonate polymers and polymethylmethacrylate. Styrene polymers such as polystyrene, acrylonitrile and styrene copolymer, polyethylene, polypropylene, polyolefin having cyclic or norbornene structure, and ethylene. 'Films made of transparent polymers such as olefin-based polymers such as propylene copolymers, vinyl chloride-based polymers, and amide-based polymers such as vinyl-aromatic polyamides can also be used. Furthermore, imid polymer, sulfone polymer, polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, BULL A film made of a transparent polymer such as a butyral-based polymer, an arylate-based polymer, a polyoxymethylene-based polymer, an epoxy-based polymer, or a blend of the above polymers is also included. In particular, those having low optical birefringence are preferably used. From the viewpoint of the protective film of the polarizing plate, triacetyl cellulose, polycarbonate, acrylic polymer, cycloolefin resin, polyolefin having a norbornene structure, and the like are preferable.
また、 特開 2 0 0 1 — 3 4 3 5 2 9号公報 (W O 0 1 Z 3 7 0 0 7 ) に記載の ポリマーフィルム、 たとえば、 (A) 側鎖に置換およびノまたは非置換イ ミ ド基 を有する熱可塑性樹脂と、 (B) 側鎖に置換および/非置換フエニルならびに二 ト リル基を有する熱可塑性榭脂を含有する樹脂組成物があげられる。 具体例と し てはイ ソブチレンと N—メチルマレイ ミ ドからなる交互共重合体とアタ リ ロニ ト リル · スチレン共重合体とを含有する樹脂組成物のフィルムがあげられる。 フィ ルムは榭脂組成物の混合押出品などからなるフィルムを用いることができる。 偏光特性や耐久性などの点よ り、 特に好ま しく用いることができる透明基板は 、 表面をアルカ リ などでケン化処理した ト リァセチルセルロースフィルムである 。 透明保護フィルムの厚さは、 適宜に決定しう るが、 一般には強度や取扱性等の 作業性、 薄層性などの点よ り 1 0〜 5 0 0 /x m程度である。 特に 2 0〜 3 0 0 mが好ましく、 3 0〜 2 0 0 μ πιがよ り好ましい。 Further, a polymer film described in Japanese Patent Application Laid-Open Publication No. 2001-334529 (WO01Z37007), for example, (A) substituted or unsubstituted And (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl in the side chain and a thermoplastic resin having a ditolyl group. As a specific example, there is a film of a resin composition containing an alternating copolymer of isobutylene and N-methylmaleide and an acrylonitrile / styrene copolymer. As the film, a film composed of a mixed extruded product of a resin composition or the like can be used. A transparent substrate that can be particularly preferably used in view of polarization characteristics and durability is a triacetyl cellulose film whose surface is saponified with alkali or the like. The thickness of the transparent protective film can be determined as appropriate, but is generally about 10 to 500 / x m from the viewpoint of workability such as strength and handleability and thinness. In particular, it is preferably from 20 to 300 m, more preferably from 30 to 200 μπι.
また、 透明保護フィルムは、 できるだけ色付きがないことが好ましい。 したが つて、 R t h = [ ( n x + n y ) / 2 - n z ] · d (ただし、 n x、 n yはフィノレ ム平面内の主屈折率、 n z はフィルム厚方向の屈折率、 dはフィルム厚みである ) で表されるフィルム厚み方向の位相差値が _ 9 0 n m〜+ 7 5 n mである保護 フィルムが好ま しく用いられる。 かかる厚み方向の位相差値 (R t h) がー 9 0 n m〜十 7 5 n mのものを使用することによ り、 保護フイルムに起因する偏光板
の着色 (光学的な着色) をほぼ解消するこ とができる。 厚み方向位相差値 (R t h ) は、 さ らに好ましく は一 8 0 n m + 6 0 n ni、 特に一 7 0 n m + 4 5 n mが好ま しい。 Further, it is preferable that the transparent protective film has as little coloring as possible. Therefore, R th = [(nx + ny) / 2-nz] d (where nx and ny are the main refractive indices in the finolem plane, nz is the refractive index in the film thickness direction, and d is the film thickness. A protective film having a retardation value in the thickness direction of the film represented by) of _90 nm to +75 nm is preferably used. By using such a retardation value (Rth) in the thickness direction of -90 nm to 1775 nm, the polarizing plate caused by the protective film can be used. Coloring (optical coloring) can be almost completely eliminated. The thickness direction retardation value (R th) is more preferably 180 nm + 60 nm, particularly preferably 170 nm + 45 nm.
前記透明保護フィルムは、 表裏で同じポリマー材料からなる透明保護フィルム を用いてもよく、 異なるポリマー材料等からなる透明保護フィルムを用いてもよ い As the transparent protective film, a transparent protective film made of the same polymer material on both sides may be used, or a transparent protective film made of a different polymer material or the like may be used.
前記透明保護フィルムの偏光子を接着させない面には、 ハー ドコー ト層や反射 防止処理、 ステイ ツキング防止や、 拡散ないしアンチグレアを目的と した処理を 施したものであってもよい。 The surface of the transparent protective film on which the polarizer is not adhered may be subjected to a hard coat layer, an antireflection treatment, a treatment for preventing sticking, and a treatment for diffusion or antiglare.
ドコー ト処理は偏光板表面の傷付き防止などを目的に施されるものであり 、 例えばアク リル系、 シリ コーン系などの適宜な紫外線硬化型樹脂による硬度や 滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて 形成することができる。 反射防止処理は偏光板表面での外光の反射防止を目的に 施されるものであり、 従来に準じた反射防止膜などの形成によ り達成することが できる。 また、 ステイ ツキング防止処理は隣接層との密着防止を目的に施される またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、 例えばサン ドプラス ト方式 やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式 にて透明保護フィルムの表面に微細凹凸構造を付与することによ り形成するこ と ができる。 前記表面微細凹凸構造の形成に含有させる微粒子と しては、 例えば平 均粒径が 0 - 5 5 0 μ πιのシリ カ、 アルミナ、 チタニア、 ジルコユア、 酸化錫 、 酸化ィンジゥム、 酸化力 ドミ ゥム、 酸化アンチモン等からなる導電性のこ とも ある無機系微粒子、 架橋又は未架橋のポリマー等からなる有機系微粒子などの透 明微粒子が用いられる。 表面微細 DA凸構造を形成する場合、 微粒子の使用量は、 表面微細凹凸構造を形成する透明樹脂 1 0 0重量部に対して一般的に 2 5 0重 量部程度であり、 5 2 5重量部が好ましい。 アンチグレア層は、 偏光板透過光 を拡散して視角などを拡大するための拡散層 (視角拡大機能など) を兼ねるもの であってもよい。
なお、 前記反射防止層、 ステイ ツキング防止層、 拡散層やアンチグレア層等は 、 透明保護フィルムそのものに設けることができるほか、 別途光学層と して透明 保護層とは別体のものと して設けること もできる。 The coating treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. For example, a cured film having an excellent hardness and a sliding property by a suitable ultraviolet curable resin such as an acrylic or silicone resin is used. It can be formed by a method of adding to the surface of the protective film. The anti-reflection treatment is performed for the purpose of preventing reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art. The anti-stating treatment is performed to prevent adhesion to the adjacent layer. The anti-glare treatment is performed to prevent external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate. The surface of the transparent protective film is provided with a fine uneven structure by an appropriate method such as a sandblasting method, a roughening method using an embossing method, or a compounding method of transparent fine particles. Can be formed. Examples of the fine particles to be included in the formation of the surface fine unevenness include silica having an average particle diameter of 0 to 550 μπι, alumina, titania, zirconia, tin oxide, indium oxide, and oxidizing power. Transparent fine particles such as conductive inorganic fine particles made of antimony oxide or the like, and organic fine particles made of a crosslinked or uncrosslinked polymer or the like are used. In the case of forming a surface fine DA convex structure, the amount of fine particles used is generally about 250 parts by weight with respect to 100 parts by weight of the transparent resin forming the fine surface unevenness structure, and Parts are preferred. The anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for diffusing light transmitted through the polarizing plate to increase the viewing angle and the like. The anti-reflection layer, anti-sticking layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, or separately provided as an optical layer separately from the transparent protective layer. You can also.
前述した直線偏光素子には、 液晶セル等の他部材と接着するための粘着層を設 けるこ ともできる。 粘着層を形成する粘着剤は特に制限されないが、 例えばァク リル系重合体、 シリ コーン系ポリマー、 ポリエステル、 ポリ ウ レタン、 ポリ アミ ド、 ポリエーテル、 フッ素系やゴム系などのポリマ一をベースポリマーとするも のを適宜に選択して用いることができる。 特に、 アク リル系粘着剤の如く光学的 透明性に優れ、 適度な濡れ性と凝集性と接着性の粘着特性を示して、 耐候性ゃ耐 熱性などに優れるものが好ましく用いう る。 The above-mentioned linear polarizing element may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell. The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, but is, for example, based on polymers such as acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyethers, and fluorine and rubber polymers. A polymer can be appropriately selected and used. In particular, those having excellent optical transparency such as an acrylic adhesive, exhibiting appropriate wettability, cohesiveness and adhesive adhesive properties, and having excellent weather resistance and heat resistance are preferably used.
また上記に加えて、 吸湿による発泡現象や剥がれ現象の防止、 熱膨張差等によ る光学特性の低下や液晶セルの反り防止、 ひいては高品質で耐久性に優れる液晶 表示装置の形成性などの点よ り、 吸湿率が低く て耐熱性に優れる粘着層が好まし い In addition to the above, it is also necessary to prevent foaming and peeling phenomena due to moisture absorption, prevent optical characteristics from deteriorating due to differences in thermal expansion, prevent liquid crystal cells from warping, and form the liquid crystal display device with high quality and excellent durability. Therefore, an adhesive layer with low moisture absorption and excellent heat resistance is preferred.
粘着層は、 例えば天然物や合成物の樹脂類、 特に、 粘着性付与樹脂や、 ガラス 繊維、 ガラスビーズ、 金属粉、 その他の無機粉末等からなる充填剤や顔料、 着色 剤、 酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。 また微粒子を含有して光拡散性を示す粘着層などであってもよい。 The adhesive layer is made of, for example, a natural or synthetic resin, particularly a tackifying resin, a filler, a pigment, a colorant, an antioxidant, and the like made of glass fiber, glass beads, metal powder, and other inorganic powders. May be added to the pressure-sensitive adhesive layer. In addition, an adhesive layer containing fine particles and exhibiting light diffusibility may be used.
粘着層の付設は、 適宜な方式で行いう る。 その例と しては、 例えば トルエンや 酢酸ェチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーま たはその組成物を溶解又は分散させた 1 0〜 4 0重量%程度の粘着剤溶液を調製 し、 それを流延方式や塗工方式等の適宜な展開方式で前記偏光子上に直接付設す る方式、 あるいは前記に準じセパレータ上に粘着層を形成してそれを光学素子上 に移着する方式などがあげられる。 粘着層は、 各層で異なる組成又は種類等のも のの重畳層と して設けることもできる。 粘着層の厚さは、 使用目的や接着力など に応じて適宜に決定でき、 一般には 1〜 5 0 0 / mであり、 5〜 2 0 0 μ mが好 ま しく 、 特に 1 0〜 1 0 Ο μ πιが好ま しい。 The attachment of the adhesive layer may be performed by an appropriate method. For example, about 10 to 40% by weight of an adhesive obtained by dissolving or dispersing a base polymer or a composition thereof in a solvent composed of a single solvent or a mixture of appropriate solvents such as toluene and ethyl acetate. An adhesive solution is prepared and applied directly on the polarizer by an appropriate developing method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the method described above, and then the optical element is formed. There is a method to transfer to the top. The adhesive layer may be provided as a superimposed layer of different compositions or types of layers. The thickness of the pressure-sensitive adhesive layer can be appropriately determined depending on the purpose of use, adhesive strength, and the like, and is generally 1 to 500 / m, preferably 5 to 200 μm, and more preferably 10 to 1 / m. 0 Ο μ πι is preferred.
粘着層の露出面に対しては、 実用に供するまでの間、 その汚染防止等を目的に セパレータが仮着されてカバ一される。 これによ り、 通例の取扱状態で粘着層に
接触することを防止できる。 セパレータと しては、 上記厚さ条件を除き、 例えば プラスチックフィルム、 ゴムシー ト、 紙、 布、 不織布、 ネッ ト、 発泡シー トや金 属箔、 それらのラミネー ト体等の適宜な薄葉体を、 必要に応じシリ コーン系や長 鎖アルキル系、 フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したも のなどの、 従来に準じた適宜なものを用いう る。 A separator is temporarily attached to the exposed surface of the adhesive layer to prevent contamination, etc., until it is practically used, and is covered. This allows the adhesive layer to be used in normal handling conditions. Contact can be prevented. Except for the above thickness conditions, the separator may be any suitable thin leaf such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foamed sheet or metal foil, or a laminate thereof. If necessary, use an appropriate material similar to the conventional one, such as one coated with an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide.
なお、 粘着層などの各層には、 例えばサリチル酸エステル系化合物やべンゾフ 工ノール系化合物、 ベンゾ ト リァゾール系化合物やシァノアタ リ レー ト系化合物 、 二ッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式によ り紫外 線吸収能をもたせたものなどであってもよい。 Each layer such as the adhesive layer is treated with an ultraviolet absorber such as a salicylate compound, a benzofurnol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound. For example, a material having an ultraviolet ray absorbing ability according to such a method may be used.
本発明の直線偏光素子は液晶表示装置等の各種装置の形成などに好ま しく用い ることができる。 液晶表示装置の形成は、 従来に準じて行いう る。 すなわち液晶 表示装置は一般に、 液晶セルと光学素子、 及ぴ必要に応じての照明システム等の 構成部品を適宜に組立てて駆動回路を組込むことなどによ り形成されるが、 本発 明の直線偏光素子を用いる点を除いて特に限定はなく、 従来に準じう る。 液晶セ ルについても、 例えば T N型や S T N型、 π型などの任意なタイプのものを用い う る。 The linear polarizing element of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, an optical element, and, if necessary, an illumination system and incorporating a drive circuit. There is no particular limitation except that a polarizing element is used, and the conventional method is used. As for the liquid crystal cell, any type such as TN type, STN type, and π type may be used.
液晶セルの片側又は両側に前記直線偏光素子を配置した液晶表示装置や、 照明 システムにバック ライ トあるいは反射板を用いたものなどの適宜な液晶表示装置 を形成するこ とができる。 その場合、 本発明による直線偏光素子は液晶セルの片 側又は両側に設置することができる。 両側に直線偏光素子を設ける場合、 それら は同じものであってもよいし、 異なるものであってもよい。 さ らに、 液晶表示装 置の形成に際しては、 例えば拡散板、 アンチグレア層、 反射防止膜、 保護板、 プ リ ズムァレイ、 レンズァレイ シー ト、 光拡散板、 バックライ トなどの適宜な部品 を適宜な位置に 1層又は 2層以上配置するこ とができる。 An appropriate liquid crystal display device such as a liquid crystal display device in which the linear polarizing element is arranged on one side or both sides of a liquid crystal cell, or a lighting system using a backlight or a reflector can be formed. In that case, the linear polarizing element according to the present invention can be installed on one side or both sides of the liquid crystal cell. When linear polarizing elements are provided on both sides, they may be the same or different. In addition, when forming a liquid crystal display device, appropriate components such as a diffusion plate, an anti-glare layer, an anti-reflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight are appropriately positioned. One layer or two or more layers can be arranged in one layer.
また前記コ レステリ ック液晶フィルムを用いた円偏光板 (反射偏光子) は、 偏 光の選択反射の波長帯域が互いに重なっている少なく と も 2層の反射偏光子 ( a ) の間に、 正面位相差 (法線方向) がほぼゼロで、 法線方向に対し 3 0 ° 以上傾 けて入射した入射光に対してえ / 8以上の位相差を有する位相差層 ( b ) が配置 された偏光素子システムに用いられる。 なお、 コ レステリ ック液晶フィルムは、
螺旋状ねじれ分子構造の最大ピッチと最小ピツチのいずれの側が位相差層 ( b ) の側であってもよいが、 視角 (視角がよい、 色付きが小さい) 点から、 反射偏光 子 (a) を (最大ピッチ/最小ピッチ) と表示すれば、 最大ピッチ/最小ピッチ ノ位相差層 ( b ) Z最大ピッチノ最小ピッチのよ うに配置するのが好ま しい。 ま た、 λノ 4板を組み合わせる場合には、 反射偏光子 (a) の最小ピッチ側が; IZ 4板側になるよ う に配置するのが好ましい。 Further, the circular polarizer (reflective polarizer) using the cholesteric liquid crystal film is provided between at least two reflective polarizers (a) in which the wavelength bands of selective reflection of polarized light overlap each other. A retardation layer (b) having a front phase difference (normal direction) of almost zero and having a phase difference of / 8 or more with respect to incident light incident at an angle of 30 ° or more with respect to the normal direction is arranged. Used in polarizing element systems. The cholesteric liquid crystal film is Either the maximum pitch or the minimum pitch of the helical twisted molecular structure may be the side of the retardation layer (b), but from the viewpoint (the viewing angle is good, the coloring is small), the reflection polarizer (a) is used. If it is displayed as (maximum pitch / minimum pitch), it is preferable to arrange them in such a way that the maximum pitch / minimum pitch phase difference layer (b) Z maximum pitch / min pitch When four λ-plates are combined, it is preferable to arrange the reflective polarizer (a) so that the minimum pitch side is the IZ-four plate side.
前記偏光素子システム、 すなわち、 広帯域選択反射機能を有するコ レステリ ッ ク液晶積層体は、 正面方向は円偏光反射/透過機能を有し、 これを広帯域円偏光 板と して液晶表示装置に用いることができる。 この場合には円偏光モー ドの液晶 セル、 例えばマルチ ドメインを有する透過型 V Aモー ド液晶セルの光源側に配置 することで円偏光板と して用いることができる。 The polarizing element system, that is, the cholesteric liquid crystal laminate having a wide-band selective reflection function has a circularly-polarized reflection / transmission function in the front direction, and is used in a liquid crystal display device as a wide-band circularly polarizing plate. Can be. In this case, it can be used as a circularly polarizing plate by disposing it on the light source side of a circularly polarized mode liquid crystal cell, for example, a transmissive VA mode liquid crystal cell having multiple domains.
位相差層 ( b ) は、 正面方向の位相差がほぼゼロであり、 法線方向から 3 0° の角度の入射光に対して λ / 8以上の位相差を有するものである。 正面位相差は 垂直入射された偏光が保持される目的であるので、 LZ1 0以下であるこ とが望 ましい。 The phase difference layer (b) has a phase difference of almost zero in the front direction and has a phase difference of λ / 8 or more with respect to incident light at an angle of 30 ° from the normal direction. The front phase difference is desirably LZ10 or less because the purpose is to maintain the vertically polarized light.
斜め方向からの入射光に対しては効率的に偏光変換されるべく全反射させる角 度などによって適宜決定される。 例えば、 法線からのなす角 6 0° 程度で完全に 全反射させるには 6 0。 で測定したときの位相差が λ / 2程度になるよ うに決定 すればよい。 ただし、 反射偏光子 ( a ) による透過光は、 反射偏光子自身の Cプ レー ト的な複屈折性によっても偏光状態が変化しているため、 通常挿入される C プレー トのその角度で測定したときの位相差は; 1 / 2 よ り も小さな値でよい。 C プレー トの位相差は入射光が傾く ほど単調に増加するため、 効果的な全反射を 3 0° 以上のある角度傾斜した時に起こさせる目安と して 3 0° の角度の入射光に 対して; L/ 8以上有すればよい。 The incident light from the oblique direction is appropriately determined by the angle of total reflection so as to be efficiently converted in polarization. For example, 60 to completely reflect at an angle of about 60 ° from the normal. What is necessary is just to determine so that the phase difference when measured at is about λ / 2. However, since the transmitted light by the reflective polarizer (a) changes its polarization state due to the C-plate birefringence of the reflective polarizer itself, it is measured at that angle of the normally inserted C-plate. The phase difference at this time can be a value smaller than 1/2. Since the phase difference of the C-plate increases monotonically as the incident light is inclined, the effective total reflection occurs when the angle of inclination is 30 ° or more. And L / 8 or more.
位相差層 ( b ) の材質は上記のよ うな光学特性を有するものであれば、 特に制 限はない。 例えば、 可視光領域 ( 3 8 0 n m〜 7 8 0 n m) 以外に選択反射波長 を有するコ レステリ ック液晶のブラナー配向状態を固定したものや、 棒状液晶の ホメオト口 ピック配向状態を固定したもの、 ディスコチック液晶のカラムナー配 向ゃネマチック配向を利用したもの、 負の 1軸性結晶を面内に配向させたもの、
2軸性配向したポリマーフィルムなどがあげられる。 The material of the retardation layer (b) is not particularly limited as long as it has the above-mentioned optical characteristics. For example, a fixed cholesteric liquid crystal having a selective reflection wavelength outside the visible light region (380 nm to 780 nm), or a fixed liquid crystal with a homeotropic aperture of a rod-shaped liquid crystal Columnar orientation of discotic liquid crystal, nematic orientation, negative uniaxial crystal in-plane orientation, Examples include biaxially oriented polymer films.
本発明において、 可視光領域 ( 3 8 0 n m〜 7 8 0 n m ) 以外に選択反射波長 を有するコレステリ ック液晶のブラナー配向状態を固定した Cプレー トは、 コレ ステリ ック液晶の選択反射波長と しては、 可視光領域に色付きなどがないことが 望ましい。 そのため、 選択反射光が可視領域にない必要がある。 選択反射はコ レ ステリ ックのカイラルピッチと液晶の屈折率によって一義的に決定される。 選択 反射の中心波長の値は近赤外領域にあっても良いが、 旋光の影響などを受けるた め、 やや複雑な現象が発生するため、 3 5 O n m以下の紫外部にあることがよ り 望ましい。 コレステリ ック液晶層の形成については、 前記した反射偏光子におけ るコレステリ ック層形成と同様に行われる。 In the present invention, the C plate in which the cholesteric liquid crystal having a selective reflection wavelength other than the visible light region (380 nm to 780 nm) has a fixed planar state is a selective reflection wavelength of the cholesteric liquid crystal. It is desirable that the visible light region has no coloring or the like. Therefore, it is necessary that the selective reflection light is not in the visible region. The selective reflection is uniquely determined by the chiral pitch of the cholesteric and the refractive index of the liquid crystal. The value of the central wavelength of selective reflection may be in the near-infrared region, but it may be in the ultraviolet region of 35 O nm or less because it is affected by optical rotation and causes a somewhat complicated phenomenon. More desirable. The formation of the cholesteric liquid crystal layer is performed in the same manner as the formation of the cholesteric layer in the reflective polarizer described above.
本発明における、 ホメオト口ピック配向状態を固定した Cプレー トは、 高温で ネマチック液晶性を示す液晶性熱可塑樹脂または液晶モノマーと必要に応じての 配向助剤を電子線や紫外線などの電離放射線照射や熱によ り重合せしめた重合性 液晶、 またはそれらの混合物が用いられる。 液晶性はリ オトロピックでもサーモ トロ ピック性のいずれでもよいが、 制御の簡便性やモノ ドメイ ンの形成しやすさ の観点よ り、 サーモ ト口ピック性の液晶であることが望ましい。 ホメオ トロ ピッ ク配向は、 例えば、 垂直配向膜 (長鎖アルキルシランなど) を形成した膜上に前 記複屈折材料を塗設し、 液晶状態を発現させ固定することによって得られる。 ディスコティ ック液晶を用いた Cプレー ト と しては、 液晶材料と して面内に分 子の広がり を有したフタ口シァニン類や ト リ フエ二レン類化合物のごと く負の 1 軸性を有するディスコティ ック液晶材料を、 ネマチック相やカラムナー相を発現 させて固定したものである。 負の 1軸性無機層状化合物と しては、 たとえば、 特 開平 6 — 8 2 7 7 7号公報などに詳しい。 In the present invention, the C-plate having a fixed homeotropic orbital alignment state is a liquid crystalline thermoplastic resin or a liquid crystal monomer exhibiting nematic liquid crystallinity at a high temperature, and an alignment aid as required, and ionizing radiation such as an electron beam or ultraviolet light. Polymerizable liquid crystal polymerized by irradiation or heat, or a mixture thereof is used. The liquid crystal properties may be either lyotropic or thermotropic, but from the viewpoint of easy control and easy formation of a monodomain, it is desirable that the liquid crystal be a thermostatically-picking liquid crystal. The homeotropic alignment can be obtained, for example, by applying the above-mentioned birefringent material on a film on which a vertical alignment film (such as long-chain alkylsilane) is formed, and developing and fixing a liquid crystal state. As a C-plate using a discotic liquid crystal, as a liquid crystal material, a negative uniaxial compound such as a phthalocyanine compound or a triphenylene compound having an in-plane molecular spread is used. It is a discotic liquid crystal material that has properties and is fixed by developing a nematic phase and a columnar phase. Negative uniaxial inorganic layered compounds are described in detail in, for example, Japanese Patent Application Laid-Open Publication No. Hei 6—8277777.
ポリマーフィルムの 2軸性配向を利用した Cプレー トは、 正の屈折率異方性を 有する高分子フィルムをパランス良く 2軸延伸する方法、 熱可塑樹脂をプレスす る方法、 平行配向した結晶体から切り出す方法などによ り得られる。 C-plates using biaxial orientation of polymer film are a method of biaxially stretching a polymer film having positive refractive index anisotropy, a method of pressing a thermoplastic resin, and a crystal in parallel orientation. It can be obtained by the method of cutting out from the.
各層の積層は、 重ね置いただけでも良いが、 作業性や、 光の利用効率の観点よ り各層を接着剤や粘着剤を用いて積層することが望ましい。 その場合、 接着剤ま たは粘着剤は透明で、 可視光域に吸収を有さず、 屈折率は、 各層の屈折率と可及
的に近いことが表面反射の抑制の観点よ り望ましい。 かかる観点よ り、 例えば、 アク リル系粘着剤などが好ましく用いう る。 各層は、 それぞれ別途配向膜状など でモノ ドメイ ンを形成し、 透光性墓材へ転写などの方法によって順次積層してい く方法や、 接着層などを設けず、 配向のために、 配向膜などを適宜形成し、 各層 を順次直接形成して行く ことも可能である。 The layers may be stacked only, but it is preferable that the layers be stacked using an adhesive or a pressure-sensitive adhesive from the viewpoint of workability and light use efficiency. In that case, the adhesive or adhesive is transparent, has no absorption in the visible light range, and the refractive index is as high as the refractive index of each layer. Closer to each other is desirable from the viewpoint of suppressing surface reflection. From this viewpoint, for example, an acrylic adhesive is preferably used. For each layer, a monodomain is separately formed in the form of an alignment film and then sequentially laminated by a method such as transfer to a translucent grave material, or an alignment film is provided for alignment without providing an adhesive layer. It is also possible to form such layers appropriately and to directly form each layer sequentially.
各層および (粘) 接着層には、 必要に応じて拡散度合い調整用に更に粒子を添 加して等方的な散乱性を付与することや、 紫外線吸収剤、 酸化防止剤、 製膜時の レべリ ング性付与の目的で界面活性剤などを適宜に添加することができる。 本発明の偏光素子 (コレステリ ック液晶積層体) は、 円偏光反射/透過機能を 有するが、 これにえ 4板を組み合わせることで透過光線を直線偏光へ変換する 直線偏光素子と して用いることができる。 λ / 4板と しては、 前記同様のものを 例示できる。 Particles may be added to each layer and the (viscosity) adhesive layer to adjust the degree of diffusion, if necessary, to provide isotropic scattering, or to use an ultraviolet absorber, an antioxidant, A surfactant or the like can be appropriately added for the purpose of imparting leveling properties. Although the polarizing element (cholesteric liquid crystal laminate) of the present invention has a function of reflecting / transmitting circularly polarized light, it can be used as a linearly polarizing element that converts transmitted light into linearly polarized light by combining four plates. Can be. Examples of the λ / 4 plate include the same as those described above.
え / 4板は単一材料による単層では特定の波長に対してのみ良好に機能するが 、 その他の波長に対しては波長分散特性上、 / 4板と して機能が低下する問題 がある。 そこで、 λ 2板と軸角度を規定して積層すれば可視光全域で実用上差 し支えない程度の範囲で機能する広帯域 / 4板と して用いることができる。 こ の場合の各え / 4板、 λノ 2板は同一材料でも良いし上記記述の λ Ζ 4板と同様 の手法で得られる別個の材料によつて作製した物を組み合わせても良い。 For example, a / 4 plate has a single layer made of a single material that works well only for a specific wavelength, but there is a problem that the function of the / 4 plate is reduced for other wavelengths due to wavelength dispersion characteristics . Therefore, by laminating the λ2 plate with the specified axis angle, the λ2 plate can be used as a broadband / 4 plate that functions within a practically acceptable range over the entire visible light range. In this case, each of the four plates and the two λ plates may be made of the same material, or a combination of materials manufactured using different materials obtained by the same method as the λΖ plate described above may be used.
例えば、 広帯域円偏光板にえ / 4板 ( 1 4 0 n m ) を積層し、 この軸角度に対 して 1 7 . 5度で λ Ζ 2板 ( 2 7 0 n m ) を配置する。 この場合の透過偏光軸は λ / 板の軸に対して 1 0度となる。 この貼り合わせ角度は各位相差板の位相差 値によ り変動するので上記の貼り合わせ角度に限定するものではない。 For example, a quarter-wave plate (140 nm) is laminated on a broadband circularly polarizing plate, and a λΖ2 plate (270 nm) is arranged at 17.5 degrees with respect to this axis angle. In this case, the transmission polarization axis is 10 degrees with respect to the axis of the λ / plate. Since the bonding angle varies depending on the phase difference value of each phase difference plate, the bonding angle is not limited to the above bonding angle.
前記直線偏光素子の透過軸に、 吸収型偏光子をその透過軸方向を合わせて貼り 合わせて用いられる。 An absorptive polarizer is attached to the transmission axis of the linearly polarizing element so that its transmission axis direction is aligned.
(拡散反射板の配置) (Arrangement of diffuse reflector)
光源たる導光板の下側 (液晶セルの配置面とは反対側) には拡散反射板の配置 が望ましい。 平行光化フィルムにて反射される光線の主成分は斜め入射成分であ り 、 平行光化フィルムにて正反射されてバックライ ト方向へ戻される。 ここで背 面側の反射板が正反射性が高い場合には反射角度が保存され、 正面方向に出射で
きずに損失光となる。 従って反射戻り光線の反射角度を保存せず、 正面方向へ散 乱反射成分を増大させるため拡散反射板の配置が望ましい。 It is desirable to arrange a diffuse reflection plate below the light guide plate as the light source (on the side opposite to the liquid crystal cell arrangement surface). The main component of the light beam reflected by the collimating film is an oblique incident component, which is specularly reflected by the collimating film and returned to the backlight direction. Here, when the back side reflector has high specularity, the reflection angle is preserved, and Light is lost due to scratches. Therefore, it is desirable to dispose a diffuse reflector in order to increase the diffuse reflection component in the front direction without preserving the reflection angle of the reflected return light beam.
(拡散板の配置) (Arrangement of diffusion plate)
本発明における平行光化フィルムとバックライ ト光源の間には適当な拡散板を 設置することも望ましい。 斜め入射し、 反射された光線をバックライ ト導光体近 傍にて散乱させ、 その一部を垂直入射方向へ散乱せしめることで光の再利用効率 が高まるためである。 It is also desirable to provide a suitable diffuser between the collimating film and the backlight light source in the present invention. This is because the light reuse efficiency is increased by scattering the light beam obliquely incident and reflected near the backlight light guide and scattering a part of the light beam in the vertical incidence direction.
用いられる拡散板は表面凹凸形状による物の他、 屈折率が異なる微粒子を樹脂 中に包埋する等の方法で得られる。 この拡散板は平行光化フィルムとパックライ ト間に挟み込んでも良いし、 平行光化フィルムに貼り合わせてもよい。 The diffusion plate used can be obtained by embedding fine particles having different refractive indices in a resin, etc., in addition to the one having the uneven surface shape. This diffusion plate may be sandwiched between the collimating film and the pack light, or may be bonded to the collimating film.
平行光化フィルムを貼り合わせた液晶セルをバックライ ト と近接して配置する 場合、 フィルム表面とバックライ トの隙間で-ユー トンリ ングが生じる恐れがあ るが、 本発明における平行光化フィルムの導光板側表面に表面凹凸を有する拡散 板を配置することによってニュートンリ ングの発生を抑制することができる。 ま た、 本発明における平行光化フィルムの表面そのものに凹凸構造と光拡散構造を 兼ねた層を形成しても良い。 If the liquid crystal cell with the collimated film attached is placed in close proximity to the backlight, a U-ton ring may occur in the gap between the film surface and the backlight. By arranging a diffusion plate having surface irregularities on the light plate side surface, the generation of Newton rings can be suppressed. Further, a layer having both the concavo-convex structure and the light diffusion structure may be formed on the surface of the parallel light conversion film in the present invention.
(視野角拡大フィルムの配置) (Placement of viewing angle expansion film)
本発明の液晶表示装置における視野角拡大は、 平行光化されたバックライ ト と 組み合わされた、 液晶表示装置から得られる正面近傍の良好な表示特性の光線を 拡散し、 全視野角内で均一で良好な表示特性を得ることによって得られる。 ここで用いられる視野角拡大フィルムは実質的に後方散乱を有さない拡散板が 用いられる。 拡散板は、 拡散粘着材と して設けることができる。 配置場所は液晶 表示装置の視認側であるが偏光板の上下いずれでも使用可能である。 ただし画素 のにじみ等の影響やわずかに残る後方散乱によるコン トラス ト低下を防止するた めに偏光板〜液晶セル間など、 可能な限りセルに近い層に設けることが望ましい 。 またこの場合には実質的に偏光を解消しないフィルムが望ましい。 例えば特開 2 0 0 0— 3 4 7 0 0 6号公報、 特開 2 0 0 0— 3 4 7 0 0 7号公報に開示され ているよ うな微粒子分散型拡散板が好適に用いられる。 The viewing angle expansion in the liquid crystal display device of the present invention is achieved by diffusing the light beams having good display characteristics near the front obtained from the liquid crystal display device combined with the parallelized backlight, so as to be uniform within the entire viewing angle. It is obtained by obtaining good display characteristics. As the viewing angle widening film used here, a diffusion plate having substantially no back scattering is used. The diffusion plate can be provided as a diffusion adhesive. The placement location is on the viewing side of the liquid crystal display device, but it can be used either above or below the polarizing plate. However, in order to prevent the effects of pixel bleeding and the like, and a decrease in contrast due to slightly remaining back scattering, it is desirable to provide the layer as close to the cell as possible, such as between the polarizing plate and the liquid crystal cell. In this case, a film that does not substantially eliminate polarized light is desirable. For example, a fine particle-dispersed diffusion plate as disclosed in Japanese Patent Application Laid-Open No. 2000-347706 and Japanese Patent Application Laid-Open No. 2000-34707 is preferably used.
偏光板よ り外側に視野角拡大フィルムを位置する場合には液晶層一偏光板まで
平行光化された光線が透過するので T N液晶セルの場合は特に視野角捕償位相差 板を用いなく ともよい。 S T N液晶セルの場合には正面特性のみ良好に補償した 位相差フィルムを用いるだけでよい。 この場合には視野角拡大フィルムが空気表 面を有するので表面形状による屈折効果によるタイプの採用も可能である。 —方で偏光板と液晶層間に視野角拡大ブイルムを挿入する場合には偏光板を透 過する段階では拡散光線となっている。 T N液晶の場合、 偏光子そのものの視野 角特性は補償する必要がある。 この場合には偏光子の視野角特性を補償する位相 差板を偏光子と視野角拡大フィルムの間に揷入する必要がある。 S T N液晶の場 合には S T N液晶の正面位相差捕償に加えて偏光子の視野角特性を補償する位相 差板を揷入する必要がある。 When the viewing angle widening film is located outside the polarizing plate, the liquid crystal layer and the polarizing plate In the case of a TN liquid crystal cell, it is not particularly necessary to use a viewing angle compensating phase difference plate because the collimated light beam is transmitted. In the case of an STN liquid crystal cell, it is only necessary to use a retardation film in which only the front characteristics are well compensated. In this case, since the viewing angle widening film has an air surface, it is possible to adopt a type using a refraction effect due to the surface shape. When a viewing angle-enhancing film is inserted between the polarizing plate and the liquid crystal layer on the negative side, the light is diffused when the film passes through the polarizing plate. In the case of TN liquid crystal, the viewing angle characteristics of the polarizer itself must be compensated. In this case, it is necessary to insert a retardation plate for compensating the viewing angle characteristics of the polarizer between the polarizer and the viewing angle widening film. In the case of STN liquid crystal, it is necessary to introduce a retardation plate that compensates for the viewing angle characteristics of the polarizer in addition to the front phase difference compensation of the STN liquid crystal.
従来から存在するマイク 口 レンズアレイフィルムやホログラムフィルムのよ う に、 内部に規則性構造体を有する視野角拡大フィルムの場合、 液晶表示装置のプ ラックマ ト リ クスゃ従来のバックライ トの平行光化システムが有するマイク ロ レ ンズアレイ /プリズムアレイ /ルーバー/マイ ク ロ ミ ラーアレイ等の微細構造と 干渉しモア レを生じやすかつた。 しかし本発明における平行光化フィルムは面内 に規則性構造が視認されず、 出射光線に規則性変調が無いので視野角拡大フィル ムとの相性や配置順序を考慮する必要はない。 従って視野角拡大フィルムは液晶 表示装置の画素ブラックマ ト リ クスと干渉/モアレを発生しなければ特に制限は なく選択肢は広い。 In the case of a film with a wide viewing angle that has a regular structure inside, such as a microphone array lens array film or hologram film that has existed in the past, the liquid crystal display device's platform matrix ゃ parallel light from the conventional backlight It interfered with the microstructures of the system such as micro lens array / prism array / louver / micro mirror array, and easily caused moire. However, in the collimating film of the present invention, the regular structure is not visually recognized in the plane, and there is no regular modulation in the emitted light. Therefore, it is not necessary to consider the compatibility with the viewing angle expansion film and the arrangement order. Therefore, the viewing angle widening film is not particularly limited as long as it does not cause interference / moire with the pixel black matrix of the liquid crystal display device, and there are a wide range of options.
本発明においては視野角拡大フィルムと して実質的に後方散乱を有さない、 偏 光を解消しない、 特開 2 0 0 0— 3 4 7 0 0 6号公報、 特開 2 0 0 0— 3 4 7 0 0 7号公報に記載されているよ うな光散乱板で、 ヘイズ 8 0 %〜 9 0 %の物が好 適に用いられる。 その他、 ホログラムシー ト、 マイクロプリズムアレイ、 マイク 口 レンズァレイ等、 内部に規則性構造を有していても液晶表示装置の画素ブラッ クマ ト リ クスと干渉/モアレを形成しなければ使用可能である。 In the present invention, the viewing angle widening film has substantially no backscattering and does not eliminate polarization, and is disclosed in Japanese Patent Application Laid-Open Publication No. 2000-34067 and Japanese Patent Publication No. A light-scattering plate as described in JP-A-347077, which has a haze of 80% to 90%, is suitably used. In addition, even if it has a regular structure inside, such as a hologram sheet, microprism array, microphone opening lens array, etc., it can be used without forming interference / moire with the pixel black matrix of the liquid crystal display device.
なお、 液晶表示装置には、 常法に従って、 各種の光学層等が適宜に用いられて 作製される。
実施例 In addition, the liquid crystal display device is manufactured by appropriately using various optical layers and the like according to an ordinary method. Example
以下、 実施例、 比較例をあげて本発明を説明するが、 本発明はこれらの実施例 に限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
実施例 1 Example 1
光重合性メ ソゲン化合物 (重合性ネマチック液晶モノマ一, 上記表 1の化合物 2 0 , モル吸光係数は、 1 d m3m o 1 _1 c m"1® 3 6 5 n m、 2 1 0 0 d m3m o 1 _1 c m"1® 3 3 4 n m, 3 6 0 0 0 d m3m o l 一1 c m-^ S l n m 純度 > 9 9 %のものを用いた。) 9 4. 8重量部および重合性カイラル剤 (B A S F 社製 L C 7 5 6 ) 5. 2重量部おょぴ溶媒 (シクロへキサノ ン) を選択反射中心 波長が 5 5 0 n mとなるよ う調整配合した溶液に、 その固形分に対し、 光重合開 始剤 (チパスペシャルティケミカルズ社製, ィルガキュア 9 0 7 ) を 3重量%添 加した塗工液 (固形分含有量 3 0重量%) を調製した。 当該塗工液を、 延伸ポリ エチレンテレフタ レー トフィルム (配向基材) 上にワイヤーバーを用いて乾燥後 の厚みで 6 μ mとなるよ う に塗設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得ら れた膜に、 配向基材側から 4 0 °Cの空気雰囲気下で第 1紫外線照射を 5 0 mW/ c m2で、 1秒間行った。 その後、 紫外線照射なしの状態で、 9 0°Cで 1分間加 熱した (このときの選択反射波長帯域は 4 2 0〜 6 5 0 n mであった)。 次に、 第 2紫外線照射を 9 0 °Cの空気雰囲気下で、 5 mW/ c m2で、 6 0秒間行った (このと きの選択反射波長帯域が 4 2 0〜 9 0 0 n mであった)。 次いで、 5 0 °Cの窒素雰囲気下で配向基材側から第 3紫外線照射を 8 0 mW/ c m2で、 3 0 秒間行い、 選択波長が 4 2 0〜 9 0 0 n mの広帯域コ レステリ ック液晶フィルム を得た。 広帯域コレステリ ック液晶フィルムの反射スぺク トルを図 4に示す。 得られた広帯域コ レステ リ ック液晶フィルム (円偏光反射板) の上部へ、 透光 性の接着剤を用いて、 負の 2軸性位相差板を転写した。 この負の 2軸性位相差板 は、 下記方法によ り得た。 すなわち、 光重合性ネマチック液晶モノマー (B A S F社製, L C 2 4 2 ) 9 3重量部、 重合性カイラル剤 (B A S F社製 L C 7 5 6 ) 7重量部に 3 0重量%濃度となるよ う に溶媒と してシク ロへキサノンを加え、 また選択反射中心波長が 3 5 0 n mとなるよ う調整配合した後、 前述の固形分に 対して光重合開始剤と してィルガキュア 9 0 7を 5重量%添加した塗工液を調製
し、 上記溶液を、 延伸ポリエチレンテレフタレ一ト甚材にワイヤ一パーを用いて 乾燥後の厚みで 4 / mとなるように塗設し、 溶媒を 1 0 0 、 2分間で乾燥した 。 その後、 一度この液晶モノマーの等方性転移温度まで温度を上げた後、 徐々に 冷却して、 均一な配向状態を有した層を形成した。 得られた眉に、 5 0 mW/ C m 5秒間行い配向状態を固定することで得た。 この負の 2軸性位相差板の位 相差を測定したところ 5 5 0 n mの波長の光に対して正面方向では 2 ri m、 3 0 ° 傾斜させて測定したときの位相差は 1 2 0 liraであった。 なお、 位相差の測定 は、 〇 j i S c e n t i f i c I n s t r um e n t s社製の K〇 B R A— 2 1 AD Hにより行つ こ Photopolymerizable mesogen compound (polymerizable nematic liquid crystal monomer, compound 20 in Table 1 above, molar extinction coefficient is 1 dm 3 mo 1 _1 cm " 1 ® 365 nm, 2 100 dm 3 mo 1 _1 cm "1 ® 3 3 4 nm, 3 6 0 0 0 dm 3 mol one 1 c m- ^ S lnm purity> 99% of was used.) 9 4.8 parts by weight of a polymerizable chiral agent ( BASF LC750) 5.2 parts by weight of a solvent (cyclohexanone) adjusted to have a selective reflection center wavelength of 550 nm A coating solution (solid content: 30% by weight) was prepared by adding 3% by weight of a polymerization initiator (Irgacure 907, manufactured by Chipa Specialty Chemicals). The coating solution is applied on a stretched polyethylene terephthalate film (oriented substrate) using a wire bar so that the thickness after drying becomes 6 μm, and the solvent is applied at 100 ° C. Dry for 2 minutes. The obtained film was irradiated with a first ultraviolet ray at 50 mW / cm 2 for 1 second in an air atmosphere at 40 ° C. from the alignment substrate side. Thereafter, heating was performed at 90 ° C for 1 minute without irradiation with ultraviolet rays (the selective reflection wavelength band at this time was 420 to 650 nm). Then, in an air atmosphere of the second ultraviolet irradiation of 9 0 ° C, at 5 mW / cm 2, for 6 0 seconds (met this and Kino selective reflection wavelength band 4 2 0 to 9 0 0 nm T). Then, at 5 0 ° 8 a third ultraviolet radiation from the alignment substrate side under a nitrogen atmosphere at C 0 mW / cm 2, 3 performs 0 seconds, broadband co Resuteri Tsu selected wavelength is 4 2 0 to 9 0 0 nm A liquid crystal film was obtained. Figure 4 shows the reflection spectrum of the broadband cholesteric liquid crystal film. Using a translucent adhesive, a negative biaxial retardation plate was transferred onto the upper part of the obtained broadband cholesteric liquid crystal film (circularly polarizing reflector). This negative biaxial retardation plate was obtained by the following method. That is, the concentration is 30% by weight in 93 parts by weight of the photopolymerizable nematic liquid crystal monomer (BASF, LC224) and 7 parts by weight of the polymerizable chiral agent (BASF, LC756). After adding cyclohexanone as a solvent and adjusting the blend so that the central wavelength of selective reflection becomes 350 nm, irgacure 907 is used as a photopolymerization initiator for the solid content described above. Prepare coating liquid with weight% added Then, the above solution was applied to a stretched polyethylene terephthalate material using a wireper so that the thickness after drying was 4 / m, and the solvent was dried for 100 minutes for 100 minutes. Thereafter, the temperature was once raised to the isotropic transition temperature of the liquid crystal monomer, and then gradually cooled to form a layer having a uniform alignment state. To the resulting eyebrows, it was obtained by fixing 5 0 mW / C m 5 seconds performs alignment state. When the phase difference of this negative biaxial retardation plate was measured, the phase difference when the light with a wavelength of 550 nm was measured at an angle of 2 rim in the front direction and at an angle of 30 ° was 12 0 It was lira. The measurement of the phase difference is performed using K〇 BRA—21 ADH manufactured by jiji S centific Instruments.
さらにこの上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板を 転写して稜層し、 倔光素子を得た。 得られた懾光素子に、 ポリカーボネートフィ ルムを一軸延伸して得られたぇノ4板 (正面位相差 1 4 0 II m) を接着して直線 偏光素子を得た。 この直線偏光素子に、 偏光板 (日束電工社製, T E G 1 4 6 5 DU) を透過軸方向が一致するように貼り合わせ、 偏光板一体型僞光素子を得た 0 Further, a circularly-polarized light reflecting plate similar to that described above was transferred onto the upper portion using the same translucent adhesive to form a ridge layer, thereby obtaining a solid optical device. A linear polarizing element was obtained by adhering a Peno 4 plate (front retardation: 140 II m) obtained by uniaxially stretching the polycarbonate film to the obtained optical element. This linearly polarizing element, a polarizing plate (day bundle Denko Co., TEG 1 4 6 5 DU) bonded to the transmission axis direction coincides, to obtain a polarizing plate integrated僞光element 0
実施例 2 Example 2
実施例 1において、 偏光素子に; Iノ 4板を積眉して得られた直線偏光素子に、 さらに、 その: ノ 4¾上に、 ポリカーボネートフィルムを一軸延伸して得られた λ/ 2板 (正面位相差 2 7 0 n m) を接着して直線镉光秦子を得た。 この直線偏 光素子に、 偏光板 (日東 ¾ェ社製, T E G 1 4 6 5 DU) を透過軸方向が一致す るように貼り合わせ、 偏光板一体型偏光素子を得た。 これらの 層は、 λΖ4板 、 λ / 2板の延伸軸 (遅相軸) と偏光板の延伸軸 (吸収軸) の角度が、 図 3に示 すように行った。 図 3において、 P Lは吸収型偏光板、 ( 1は ノ4板 (正面位 相差 I 4 0 nni)、 C 2は λ/ 2板 (正面位相差 2 7 0 n m), を示す。 P Lの矢 印は延伸軸 (長辺方向) を示す、 0 1は 1 7. 5。 、 0 2は 8 0。 である。 In Example 1, a polarizing element; a linear polarizing element obtained by laminating an I-no. 4 plate, and a: λ / 2 plate obtained by uniaxially stretching a polycarbonate film on the A front phase difference of 270 nm) was adhered to obtain a straight line 镉 ko Hatako. A polarizing plate (TEG1465DU, manufactured by Nitto Dye Co., Ltd.) was bonded to the linear polarizing element so that the transmission axis directions were aligned, to obtain a polarizing plate integrated polarizing element. In these layers, the angle between the stretching axis (slow axis) of the λΖ4 plate and the λ / 2 plate and the stretching axis (absorption axis) of the polarizing plate was set as shown in FIG. In Fig. 3, PL indicates an absorption-type polarizing plate, (1 indicates a No. 4 plate (front phase difference I 40 nni), and C2 indicates a λ / 2 plate (front phase difference 2700 nm). The mark indicates the stretching axis (long side direction), where 01 is 17.5 and 02 is 80.
実施例 3 Example 3
実施例 1で得られた镉光柰子に、 ポリカーボネートフイルムを二軸延伸して得 られた; ノ 4板 (正面位相差 1 2 5 n m, N z係数が一 1. 0) を接着して直線 偏光索子を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5
D U) を透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏光素子を得た 比較例 1 A polycarbonate film was biaxially stretched on the photon obtained in Example 1; a four plate (front retardation: 125 nm, Nz coefficient: 11.0) was adhered. A linear polarization cord was obtained. A polarizing plate (Nitto Denko Corporation, TEG 1 4 6 5 (DU) were bonded together so that the transmission axis directions coincided to obtain a polarizing element integrated with a polarizing plate.Comparative Example 1
実施例 1 で調製した液晶混合物を含有する塗工液を、 延伸ポリエチレンテレフ タレー トフィルム (配向基材) 上にワイヤーバーを用いて乾燥後の厚みで 6 μ m となるよ う に塗設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得られた膜に、 配向 基材側から 4 0 °Cの空気雰囲気下で紫外線照射を 5 0 mW/ c m2で、 1 0秒間 行った。 このときの選択反射波長帯域ほ 4 2 0〜 8 0 0 n mであった。 次いで、 5 0 °Cの窒素雰囲気下で配向基材側から紫外線照射を 8 0 mW/ c m2で、 3 0 秒間行い、 選択波長が 4 2 0〜 8 0 0 n mの広帯域コレステリ ック液晶フィルム を得た。 広帯域コ レステリ ック液晶フィルムの反射スぺク トルを図 4に示す。 実施例 1 と同様にして、 得られた広帯域コレステリ ック液晶フィルム (円偏光 反射板) の上部へ、 透光性の接着剤を用いて、 実施例 1 と同様の負の 2軸性位相 差板を転写した。 A coating solution containing the liquid crystal mixture prepared in Example 1 was applied on a stretched polyethylene terephthalate film (alignment substrate) using a wire bar so that the thickness after drying was 6 μm. The solvent was dried at 1000C for 2 minutes. The obtained film was irradiated with ultraviolet rays at 50 mW / cm 2 for 10 seconds in an air atmosphere at 40 ° C. from the orientation substrate side. At this time, the selective reflection wavelength band was approximately 420 to 800 nm. Then, 5 0 ° UV irradiation to 8 0 mW / cm 2 from the alignment substrate side under a nitrogen atmosphere for C, 3 do 0 seconds, broadband cholesteric click liquid crystal film of the selected wavelengths 4 2 0 to 8 0 0 nm Got. Fig. 4 shows the reflection spectrum of the broadband cholesteric liquid crystal film. In the same manner as in Example 1, a negative biaxial retardation similar to that of Example 1 was applied to the upper part of the obtained broadband cholesteric liquid crystal film (circularly-polarized light reflecting plate) using a translucent adhesive. The board was transferred.
さらにこの上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板を 転写して積層し、 偏光素子を得た。 得られた偏光素子に、 ポリ カーボネー トフィ ルムを一軸延伸して得られたえノ 4板 (正面位相差 1 4 0 n m) を接着して直線 偏光素子を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5 DU) を透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏光素子を得た 0 Further, a circularly-polarized light reflecting plate similar to that described above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element. A linear polarizing element was obtained by adhering a four-layer plate (front retardation: 140 nm) obtained by uniaxially stretching the polycarbonate film to the obtained polarizing element. This linearly polarizing element, a polarizing plate (manufactured by Nitto Denko Corporation, TEG 1 4 6 5 DU) bonded to the earthenware pots by the transmission axis direction coincides, to obtain a polarizing plate integrated polarizing element 0
比較例 2 Comparative Example 2
実施例 1で調製した液晶混合物を含有する塗工液を、 延伸ポリエチレンテレフ タ レー トフィルム (配向基材) 上にワイヤーパーを用いて乾燥後の厚みで 6 μ m となるよ うに塗設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得られた膜に、 配向 基材側から 4 0 °Cの空気雰囲気下で紫外線照射を 5 0 mW/ c m2で、 1秒間行 つた。 その後、 紫外線照射なしの状態で、 9 0 °Cで 1分間加熱した (このときの 選択反射波長帯域は 4 2 0〜 6 5 0 n mであった)。 次いで、 5 0°Cの窒素雰囲 気下で配向基材側から紫外線照射を 8 0 mW/ c m2で、 3 0秒間行い、 選択波 長が 4 2 0〜6 5 0 n mの広帯域コ レステ リ ック液晶フィルムを得た。 広帯域コ
レステリ ック液晶フィルムの反射スぺク トルを図 4に示す。 A coating liquid containing the liquid crystal mixture prepared in Example 1 was applied on a stretched polyethylene terephthalate film (alignment substrate) using a wire par so as to have a thickness after drying of 6 μm. The solvent was dried at 1000C for 2 minutes. The obtained film was irradiated with ultraviolet rays at 50 mW / cm 2 for 1 second in an air atmosphere at 40 ° C. from the orientation substrate side. Thereafter, heating was performed at 90 ° C for 1 minute without irradiation with ultraviolet rays (the selective reflection wavelength band at this time was 420 to 650 nm). Then, at 5 0 ° C 8 0 ultraviolet radiation from the alignment substrate side under nitrogen Kiri囲vapor of mW / cm 2, 3 performs 0 seconds, broadband co Leste selection wave length of 4 2 0~6 5 0 nm A liquid crystal film was obtained. Wideband Fig. 4 shows the reflection spectrum of the resteric liquid crystal film.
実施例 1 と同様にして、 得られた広帯域コレステリ ック液晶フィルム (円偏光 反射板) の上部へ、 透光性の接着剤を用いて、 実施例 1 と同様の負の 2軸性位相 差板を転写した。 In the same manner as in Example 1, a negative biaxial retardation similar to that of Example 1 was applied to the upper part of the obtained broadband cholesteric liquid crystal film (circularly-polarized light reflecting plate) using a translucent adhesive. The board was transferred.
さ らに、 この上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板 を転写して積層し、 偏光素子を得た。 得られた偏光素子に、 ポリカーボネー トフ イルムを一軸延伸して得られた; I Z 4板 (正面位相差 1 4 0 n m) を接着して直 線偏光素子を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5 DU) を透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏光素子を得 た。 Further, a circularly polarized light reflecting plate similar to that described above was transferred and laminated on the upper portion using the same light-transmitting adhesive to obtain a polarizing element. A polycarbonate film was uniaxially stretched to the obtained polarizing element. An YZ4 plate (front retardation: 140 nm) was adhered to obtain a linear polarizing element. A polarizing plate (TEG1465DU, manufactured by Nitto Denko Corporation) was adhered to the linear polarizing element so that the transmission axis directions coincided with each other to obtain a polarizing plate integrated polarizing element.
比較例 3 Comparative Example 3
実施例 1で調製した液晶混合物を含有する塗工液を、 延伸ポリエチレンテレフ タ レー トフィルム (配向基材) 上にワイヤーバーを用いて乾燥後の厚みで 6 m となるよ うに塗設し、 溶媒を 1 0 0 °Cで 2分間乾燥させた。 得られた膜に、 配向 基材側から 4 0 °Cの空気雰囲気下で紫外線照射を 5 0 mW/ c m2で、 1秒間行 つた。 その後、 紫外線照射なしの状態で、 9 0 °Cで 1分間加熱した (このと きの 選択反射波長帯域は 4 2 0〜 6 5 0 n mであった)。 次に、 紫外線照射を 9 0 °C の空気雰囲気下で、 5 mWZ c m2で、 6 0秒間行つた (このときの選択反射波 長帯城が 4 2 0〜 9 0 0 n mであつた)。 The coating liquid containing the liquid crystal mixture prepared in Example 1 was applied on a stretched polyethylene terephthalate film (alignment substrate) using a wire bar so that the thickness after drying was 6 m, and the solvent was applied. Was dried at 100 ° C. for 2 minutes. The obtained film was irradiated with ultraviolet rays at 50 mW / cm 2 for 1 second in an air atmosphere at 40 ° C. from the orientation substrate side. Thereafter, heating was performed at 90 ° C for 1 minute without irradiation with ultraviolet light (the selective reflection wavelength band at this time was 420 to 650 nm). Then, in an air atmosphere of the ultraviolet irradiation 9 0 ° C, in 5 mWZ cm 2, 6 0 seconds KoTsuta (selective reflection wave Nagataijo at this time Atsuta at 4 2 0~ 9 0 0 nm) .
実施例 1 と同様にして、 得られた広帯域コ レステリ ック液晶フィルム (円偏光 反射板) の上部へ、 透光性の接着剤を用いて、 実施例 1 と同様の負の 2軸性位相 差板を転写した。 The same negative biaxial phase as in Example 1 was applied to the top of the obtained broadband cholesteric liquid crystal film (circularly polarized light reflecting plate) in the same manner as in Example 1 using a translucent adhesive. The difference plate was transferred.
さらに、 この上部に同じく透光性の接着剤を用いて、 上記同様の円偏光反射板 を転写して積層し、 偏光素子を得た。 得られた偏光素子に、 ポリカーボネー トフ イルムを一軸延伸して得られた; L Z 4板 (正面位相差 1 4 0 n m) を接着して直 線偏光素子を得た。 この直線偏光素子に、 偏光板 (日東電工社製, T E G 1 4 6 5 D U) を透過軸方向が一致するよ うに貼り合わせ、 偏光板一体型偏光素子を得 た。
(液晶表示装置) Further, a circularly polarized light reflecting plate similar to the above was transferred and laminated on the upper portion using the same translucent adhesive to obtain a polarizing element. A polycarbonate film was uniaxially stretched to the obtained polarizing element; a LZ 4 plate (front retardation: 140 nm) was bonded to obtain a linear polarizing element. A polarizing plate (manufactured by Nitto Denko Corporation, TEG1465DU) was attached to the linear polarizing element so that the transmission axis directions were aligned, to obtain a polarizing element integrated with the polarizing plate. (Liquid crystal display)
各例で得られた偏光板一体型偏光素子を T F T - L C Dの下板と して用い、 一 方、 上板側にはアク リル系粘着材 (厚み 2 5 /z m, 屈折率 1. 4 7 ) 中に球状シ リ カ粒子 (屈折率 1 . 4 4 , 直径 4 / m) を 2 0重量。 /0包埋した光散乱性粘着材 (ヘイズ 8 0 %) を用いて偏光板 (日東電工社製, T E G 1 4 6 5 DU) を積層 した。 The polarizing plate integrated with the polarizing plate obtained in each example was used as the lower plate of the TFT-LCD, while an acrylic adhesive (thickness 25 / zm, refractive index 1.47) was used on the upper plate side. ) 20 weight spherical silica particles (refractive index: 1.44, diameter: 4 / m). A polarizing plate (TEG1465 DU, manufactured by Nitto Denko Corporation) was laminated using a light-scattering adhesive (haze 80%) embedded in / 0 .
また、 下面に微細プリ ズム構造を有した導光体の側面に直径約 3 mmの冷陰極 管を配置し、 銀蒸着ポリ エチレンテレフタ レー トフイルムから成る光源ホルダで カバーした。 導光板の下面には銀蒸着ポリエチレンテレフタ レー トフィルム反射 板を配置し、 導光板上面にはスチレンビーズから成る散乱層を表面に形成したポ リエチレンテレフタ レー トフィルムを配置した。 これを、 光源と して、 偏光板一 体型偏光素子の下側に配置した。 In addition, a cold cathode tube with a diameter of about 3 mm was placed on the side of a light guide having a fine prism structure on the lower surface, and covered with a light source holder made of silver-deposited polyethylene terephthalate film. A silver-evaporated polyethylene terephthalate film reflector was arranged on the lower surface of the light guide plate, and a polyethylene terephthalate film having a scattering layer made of styrene beads formed on the surface was arranged on the upper surface of the light guide plate. This was disposed as a light source below the polarizing plate integrated with the polarizing element.
実施例 1、 3、 比較例 1〜 3の偏光板一体型偏光素子を用いた場合が図 1であ り、 実施例 2の偏光板一体型偏光素子を用いた場合が図 2である。 FIG. 1 shows a case in which the polarizing plate integrated type polarizing elements of Examples 1 and 3 and Comparative Examples 1 to 3 are used, and FIG. 2 shows a case in which the polarizing plate integrated type polarizing element of Example 2 is used.
図 1、 図 2において、 P Lは吸収型偏光板、 Dは視野角拡大フィルム (拡散粘 着材)、 L Cは液晶セル、 C 1 は λ /4板、 C 2は λ ' 2板、 Αは反射偏光子 ( a ) : 円偏光板、 Bは位相差板 ( b ) : C—プレー ト、 Sはサイ ドライ ト型導光板 In FIGS. 1 and 2, PL is an absorption polarizer, D is a viewing angle widening film (diffusion adhesive), LC is a liquid crystal cell, C 1 is a λ / 4 plate, C 2 is a λ'2 plate, and Α is Reflective polarizer (a): Circular polarizer, B is retarder (b): C-plate, S is thyroid type light guide plate
、 Rは拡散反射板を示す。 また Xは偏光素子、 Yは直線偏光素子、 Zは偏光一体 型直線偏光素子を示す。 , R indicates a diffuse reflection plate. X indicates a polarization element, Y indicates a linear polarization element, and Z indicates a polarization-integrated linear polarization element.
<評価方法 > <Evaluation method>
上記で得られた広帯域コ レステリ ック液晶フィルム (円偏光反射板)、 偏光板 一体型偏光素子について下記評価を行った。 結果を表 2に示す。 なお、 実施例お ょぴ比較例の各工程の条件も表 2に示す。 The broadband cholesteric liquid crystal film (circularly polarizing reflector) and the polarizing plate integrated polarizing element obtained above were evaluated as follows. Table 2 shows the results. Table 2 also shows the conditions of each step in the examples and the comparative examples.
(選択反射波長帯域および帯域巾 (Δ )) (Selective reflection wavelength band and bandwidth (Δ))
広帯域コ レステ リ ック液晶フィルムの反射スぺク トルを分光光度計 (大塚電子 株式会社製, 瞬間マルチシステム MC P D 2 0 0 0 ) にて測定し、 選択反射波長 帯域おょぴ半値巾△ λを求めた。 半値巾 は、 最大反射率の半分の反射率にお ける反射帯域巾と した。
(ピッチ変化) The reflection spectrum of the broadband cholesteric liquid crystal film is measured with a spectrophotometer (Otsuka Electronics Co., Ltd., Instant Multi-System MC PD 2000), and the selective reflection wavelength band is about half bandwidth. λ was determined. The half bandwidth was defined as the reflection bandwidth at half the maximum reflectance. (Pitch change)
広帯域コレステリ ック液晶フィルムの紫外線照射面近傍 (紫外線照射面から 1 m下層) と、 空気界面近傍 (空気界面から 1 μ m下層) およびその中間のピッ チ長を断面 T EM写真によ り測定した。 Cross-sectional TEM images of the broadband cholesteric liquid crystal film near the UV-irradiated surface (1 m below the UV-irradiated surface), near the air interface (1 μm below the air interface), and the pitch in between did.
(信頼性) (reliability)
広帯域コレステリ ック液晶フィルムを、 8 0 °C、 および 6 0 °Cで 9 0 %RHの 信頼性試験にそれぞれ 5 0 0時間投入したときに、 表面に粉状物質の析出が認め られるか否かを評価した。 When a broadband cholesteric liquid crystal film was put into a reliability test of 90% RH at 80 ° C and 60 ° C for 500 hours each, whether or not powdery substances were observed on the surface Was evaluated.
〇 : 析出物なし。 〇: No precipitate.
X : 析出物あり。 X: There is a precipitate.
(正面輝度) (Front brightness)
偏光板一体型偏光素子の偏光板側が上になるよ うに ドッ ト印刷型バックライ ト 上に配置して輝度計 (T O P C ON製, BM— 7 ) によ り評価した。 The polarizing plate integrated polarizing element was placed on a dot-printed backlight with the polarizing plate side facing up, and evaluated with a luminance meter (TOPCON, BM-7).
(斜めの色調変化) (Slanted color change)
液晶表示装置の斜めの色調変化を、 E L D I M社製視野角測定器 E Z— C O N T RA S Tによ り下記基準で評価した。 The oblique change in color tone of the liquid crystal display device was evaluated by a viewing angle measuring instrument EZ-CONTRAST manufactured by ELDIM, according to the following criteria.
Δ X y = ( ( x o- X!) 2+ ( y 0- Y i) 2) 。·5 Δ X y = ((x o- X!) 2 + (y 0- Y i) 2). · 5
正面色度 ( x。, y 0)、 斜め。 ± 6 0° からの色度 ( Xい y!) Front chromaticity (x., Y 0), diagonal. Chromaticity from ± 60 ° (X or y!)
良好 : 視野角 6 0° における色調変化 Δ X yが 0. 0 4未満。 Good: Color tone change ΔXy at a viewing angle of 60 ° is less than 0.04.
不良 : 視野角 6 0° における色調変化 Δ X yが 0. 0 4以上。
Poor: Color tone change ΔXy at a viewing angle of 60 ° is 0.04 or more.
表 2 Table 2
実施例では、 長波長域を含む広帯域に選択反射波長を有するコ レステリ ック液 晶フィルムが得られている。 当該コ レステリ ック液晶フィルムは、 信頼性が高く また、 これを円偏光板と して用いた偏光素子は輝度向上特性にも優れている。 ま た、 当該偏光素子を用いた液晶表示装置は、 諧調反転しない領域の表示情報を斜 め方向に光拡散で振り分けたため、 斜め方向からの色調変化や諧調反転が生じに くい視野角の広い液晶表示装置を得ることができる。
産業上の利用可能性 In the examples, a cholesteric liquid crystal film having a selective reflection wavelength in a wide band including a long wavelength region is obtained. The cholesteric liquid crystal film has high reliability, and a polarizing element using the cholesteric liquid crystal film as a circularly polarizing plate is also excellent in luminance enhancement characteristics. In addition, in the liquid crystal display device using the polarizing element, the display information in the region where the gradation is not inverted is distributed by light diffusion in the oblique direction. A display device can be obtained. Industrial applicability
本発明の製造方法によ り得られる広帯域コレステリ ック液晶フィルムは円偏光 板 (反射型偏光子) と して有用であり、 当該円偏光板は直線偏光素子、 照明装置 および液晶表示装置等に適用できる。
The broadband cholesteric liquid crystal film obtained by the production method of the present invention is useful as a circularly polarizing plate (reflection type polarizer), and the circularly polarizing plate is used for a linear polarizing element, an illumination device, a liquid crystal display device, and the like. Applicable.
Claims
1 . 重合性メ ソゲン化合物 (A) および重合性カイラル剤 (B) を含む液晶混 合物を配向基材に塗布する工程、 および前記液晶混合物に紫外線照射を行い重合 硬化する工程を含む、 反射帯域巾が 2 0 0 n m以上を有する広帯域コレステリ ッ ク液晶フィルムの製造方法であって、 1. a step of applying a liquid crystal mixture containing a polymerizable mesogen compound (A) and a polymerizable chiral agent (B) to an alignment substrate, and a step of irradiating the liquid crystal mixture with ultraviolet rays to polymerize and cure. A method for producing a broadband cholesteric liquid crystal film having a bandwidth of 200 nm or more,
前記紫外線重合工程が、 The ultraviolet polymerization step,
前記液晶混合物が酸素を含む気体と接触している状態で、 2 0 °C以上の温度下 に、 2 0〜 2 0 0 mW/ c m2の紫外線照射強度で、 0. 2〜 5秒間、 配向基材 側から紫外線照射する工程 ( 1 )、 In a state where the liquid crystal mixture is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at an ultraviolet irradiation intensity of 20 to 200 mW / cm 2 , the alignment is performed for 0.2 to 5 seconds. UV irradiation from the substrate side (1),
次いで、 液晶層が、 酸素を含む気体と接触している状態で、 7 0〜 1 2 0 °Cで 、 2秒間以上、 加熱する工程 ( 2 )、 Next, in a state where the liquid crystal layer is in contact with a gas containing oxygen, a step of heating at 70 to 120 ° C. for 2 seconds or more (2),
次いで、 液晶層が、 酸素を含む気体と接触している状態で、 2 0 °C以上の温度 下に、 工程 ( 1 ) よ り も低い紫外線照射強度で、 1 0秒間以上、 配向基材側から 紫外線照射する工程 ( 3 )、 Next, in a state where the liquid crystal layer is in contact with a gas containing oxygen, at a temperature of 20 ° C. or more, at a UV irradiation intensity lower than that in the step (1), for 10 seconds or more, the alignment substrate side UV irradiation process (3),
次いで、 酸素不存在下で、 紫外線照射する工程 ( 4 )、 を有するこ とを特徴と する広帯域コレステリ ック液晶フィルムの製造方法。 Next, a method for producing a broadband cholesteric liquid crystal film, comprising the step of irradiating ultraviolet rays in the absence of oxygen (4).
2. コ レステリ ック液晶フィルムのピッチ長が、 配向墓材側から連続的に狭く なるよ うに変化していることを特徴とする請求の範囲第 1項に記載の広帯城コ レ ステリ ック液晶フィルムの製造方法。 2. The broadband castle collesteric according to claim 1, wherein the pitch length of the colesteric liquid crystal film changes so as to be continuously narrower from the side of the oriented grave material. Manufacturing method of liquid crystal film.
3. 重合性メ ソゲン化合物 (A) が重合性官能基を 1つ有し、 重合性カイラル 剤 (B) が重合性官能基を 2つ以上有することを特徴とする請求の範囲第 1項ま たは第 2項に記載の広帯域コ レステリ ック液晶フィルムの製造方法。 3. The polymerizable mesogen compound (A) has one polymerizable functional group, and the polymerizable chiral agent (B) has two or more polymerizable functional groups. Or the method for producing a broadband cholesteric liquid crystal film according to item 2.
4. 重合性メ ソゲン化合物 ( A) のモル吸光係数が、 4. The molar extinction coefficient of the polymerizable mesogen compound (A) is
0. :!〜 S O O d mSm o l ^c m— Β δ δ η πιであり、 0.:! ~ S O O d mSm o l ^ c m— Β δ δ η πι,
1 0〜 3 0 0 0 0 d m3m o 1 _1 c m_1@ 3 3 4 n mであり、 力 つ、 10 ~ 3 0 0 0 0 dm 3 mo 1 _1 cm _1 @ 3 3 4 nm
1 0 0 0〜 1 0 0 0 0 0 d m3m o 1 _1 c m"1® 3 1 4 n mであることを特徴と する請求の範囲第 1項〜第 3項のいずれかに記載の広帯域コ レステリ ック液晶フ イルムの製造方法。
The broadband cholesterol according to any one of claims 1 to 3, characterized in that the diameter is 1 000 to 100 000 dm 3 mo 1 _1 cm " 1 3 14 nm. Manufacturing method of liquid crystal film.
5. 重合性メ ソゲン化合物 (A) が、 下記一般式 ( 1 ) : 5. The polymerizable mesogen compound (A) has the following general formula (1):
(式中、 !^〜尺 は同一でも異なっていてもよく 、 一 F、 一 H、 一 C H3、 一 C2 H5または一 O C H3を示し、 R 13は一 Hまたは一 C H3を示し、 は一般式 ( 2 ) : - (C H2C H20) a— ( C H2) b— (〇) c一、 を示し、 X2は一 C Nまたは一 Fを示す。 但し、 一般式 ( 2 ) 中の a は 0〜 3の整数、 bは 0〜 1 2の整数、 c は 0または 1であり、 かつ a = l〜 3のときは b = 0、 c = 0であり、 a = 0の ときは b = l〜 1 2、 c = 0〜 lである。) で表される化合物であること を特徴 とする請求の範囲第 1項〜第 4項のいずれかに記載の広帯域コ レステリ ック液晶 フィルムの製造方法。 (In the formula,! ^ ~ Scales may be the same or different, and represent 1 F, 1 H, 1 CH 3 , 1 C 2 H 5 or 1 OCH 3 , and R 13 represents 1 H or 1 CH 3 , Represents the general formula (2):-(CH 2 CH 2 0) a — (CH 2 ) b — (〇) c- , X 2 represents one CN or one F. However, the general formula (2) A) is an integer from 0 to 3, b is an integer from 0 to 12, c is 0 or 1, and when a = l to 3, b = 0, c = 0, and a = 0 Wherein b = l to 12 and c = 0 to l.) A broadband cholesterol according to any one of claims 1 to 4, characterized in that: Manufacturing method of backlit liquid crystal film.
6. 請求の範囲第 1項〜第 5項のいずれかに記載の製造方法によ り得られた広 帯域コレステリ ッ ク液晶フィルムを用いた円偏光板。 6. A circularly polarizing plate using a broadband cholesteric liquid crystal film obtained by the production method according to any one of claims 1 to 5.
7. 偏光の選択反射の波長帯域が互いに重なっている少なく とも 2層の反射偏 光子 ( a ) の間に、 7. Between at least two layers of reflective polarizers (a) where the selective reflection wavelength bands of polarized light overlap each other.
正面位相差 (法線方向) がほぼゼロで、 法線方向に対し 3 0° 以上傾けて入射 した入射光に対して λ / 8以上の位相差を有する位相差層 ( b ) が配置されてい る偏光素子であって、 A retardation layer (b) having a front phase difference (normal direction) of almost zero and having a phase difference of λ / 8 or more with respect to incident light incident at an angle of 30 ° or more with respect to the normal direction is provided. A polarizing element,
反射偏光子 ( a ) 、 請求の範囲第 6項に記載の円偏光板であることを特徴と する偏光素子。 A polarizing element, characterized in that the reflective polarizer (a) is the circularly polarizing plate according to claim 6.
8. 少なく と も 2層の反射偏光子 ( a ) の選択反射波長が、 5 5 0 n m± 1 0 n mの波長範囲で互いに重なっていることを特徴とする請求の範囲第 7項に記載 の偏光素子。 8. The method according to claim 7, wherein the selective reflection wavelengths of at least two reflective polarizers (a) overlap each other in a wavelength range of 550 nm ± 10 nm. Polarizing element.
9. 位相差層 (b) 力 選択反射波長域を可視光領域以外に有するコレステリ ック液晶相のブラナー配向を固定したもの、 9. Retardation layer (b) Force Fixed cholesteric liquid crystal phase having a selective reflection wavelength range other than the visible light range, with fixed Blanar orientation,
棒状液晶のホメオト口ピック配向状態を固定したもの、 A rod-shaped liquid crystal with a fixed home-mouth pick alignment state,
ディスコチック液晶のネマチック相またはカラムナー相配向状態を固定したも
の、 The alignment state of the nematic or columnar phase of discotic liquid crystal is fixed. of,
ポリマーフィルムを 2軸配向したもの、 または、 Biaxially oriented polymer film, or
負の 1軸性を有する無機層状化合物を面の法線方向に光軸がなるよ うに配向固 定したものであることを特徴とする請求の範囲第 7項または第 8項に記載の偏光 素子。 9. The polarizing element according to claim 7, wherein an inorganic layered compound having a negative uniaxial property is fixed so as to have an optical axis in a direction normal to the surface. .
1 0 . 請求の範囲第 6項に記載の円偏光板、 または請求の範囲第 7項〜第 9項 のいずれかに記載の偏光素子に、 λ / 4板が積層されており、 透過で直線偏光が 得られることを特徴とする直線偏光素子。 10. A λ / 4 plate is laminated on the circularly polarizing plate according to claim 6 or the polarizing element according to any one of claims 7 to 9, and the transmission is linear. A linearly polarizing element, which can obtain polarized light.
1 1 . 円偏光板であるコ レステリ ック液晶フィルムを、 λ Ζ 4板に対し、 ピッ チ長が連続的に狭く なるよ うに積層して得られる請求の範囲第 1 0項に記載の直 線偏光素子。 11. The straight line according to claim 10, which is obtained by laminating a cholesteric liquid crystal film, which is a circularly polarizing plate, on a λΖ4 plate so that the pitch length is continuously narrowed. Linear polarizing element.
1 2 . 板が、 2軸延伸して斜め入射光線の位相差捕正を行い、 視野角改 善した位相差板であることを特徴とする請求の範囲第 1 0項または第 1 1項に記 載の直線偏光素子。 12. The plate according to claim 10 or 11, wherein the plate is a retardation plate having an improved viewing angle by biaxially stretching and performing phase difference correction of obliquely incident light beams. The linear polarizing element described.
1 3 . え / 4板が、 ネマチック液晶またはスメ クチック液晶を塗布、 固定化し て得られる液晶ポリマー型位相差板であることを特徴とする請求の範囲第 1 0項 または第 1 1項に記載の直線偏光素子。 13. The f / 4 plate is a liquid crystal polymer type retardation plate obtained by applying and fixing a nematic liquid crystal or a smectic liquid crystal, according to claim 10 or 11, wherein Linear polarizing element.
1 4 . λ 4板が、 面内の主屈折率を η X、 n y、 厚さ方向の主屈折率を n z と したとき、 式 : ( n x— n z ) / ( n X - n y ) で定義される N z係数が一 0 . 5 2 . 5 を満足するものであることを特徴とする請求の範囲第 1 0項〜第 14. Λ 4 plate is defined by the formula: (nx— nz) / (n X-ny), where η X and ny are the in-plane principal refractive index and nz is the principal refractive index in the thickness direction. Wherein the Nz coefficient satisfies 0.5.2.5.
1 3項のいずれかに記載の直線偏光素子。 13. The linear polarizing element according to any one of the above items 13.
1 5 . 請求の範囲第 1 0項〜第 1 4項のいずれかに記載の直線偏光素子の / 4板に、 さ らに λ Ζ 2板が積層されていることを特徴とする直線偏光素子。 15. A linearly polarizing element, characterized in that a λΖ2 plate is further laminated on a / 4 plate of the linearly polarizing element according to any one of claims 10 to 14. .
1 6 . 請求の範囲第 1 0項〜第 1 5項のいずれかに記載の直線偏光素子の透過 軸と、 透過軸方向を合わせた吸収型偏光子を、 直線偏光素子のえ / 4板側に積層 したこ とを特徴とする直線偏光素子。 16. An absorption polarizer whose transmission axis and transmission axis direction of the linear polarizing element according to any one of claims 10 to 15 are aligned with each other, and the fourth polarizing plate side of the linear polarizing element. A linear polarizing element characterized by being laminated on a substrate.
1 7 . 裏面側に反射層を有する面光源の表面側に請求の範囲第 6項に記載の円 偏光板、 請求の範囲第 7項〜第 9項のいずれかに記載の偏光素子、 または請求の 範囲第 1 0項〜第 1 6項のいずれかに記載の直線偏光素子を有することを特徴と
する照明装置。 17. The circularly polarizing plate according to claim 6 on the front side of a surface light source having a reflective layer on the back side, the polarizing element according to any one of claims 7 to 9, or the claim. Characterized by having the linear polarizing element according to any one of Items 10 to 16 Lighting equipment.
1 8 . 請求の範囲第 1 7項に記載の照明装置の光出射側に、 液晶セルを有する ことを特徴とする液晶表示装置。 18. A liquid crystal display device having a liquid crystal cell on the light emission side of the lighting device according to claim 17.
1 9 . 液晶セルに対して、 視認側に、 液晶セルを透過した視認側の光線を拡散 する視野角拡大フィルムを配置してなることを特徴とする請求の範囲第 1 8項に 記載の視野角拡大液晶表示装置。 19. The viewing field according to claim 18, wherein a viewing angle magnifying film for diffusing the light beam on the viewing side transmitted through the liquid crystal cell is disposed on the viewing side with respect to the liquid crystal cell. Angle enlarged liquid crystal display.
2 0 . 視野角拡大フィルムと して、 実質的に後方散乱、 偏光解消を有さない拡 散板を用いたことを特徴とする請求の範囲第 1 9項に記載の視野角拡大液晶表示 装置。
20. The viewing angle widening liquid crystal display device according to claim 19, wherein a spreading plate having substantially no backscattering and no depolarization is used as the viewing angle widening film. .
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003093963 | 2003-03-31 | ||
JP2003-093963 | 2003-03-31 | ||
JP2003-390276 | 2003-11-20 | ||
JP2003390276A JP4293888B2 (en) | 2003-03-31 | 2003-11-20 | Broadband cholesteric liquid crystal film manufacturing method, circularly polarizing plate, linearly polarizing element, illumination device, and liquid crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004088367A1 true WO2004088367A1 (en) | 2004-10-14 |
Family
ID=33134313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/003791 WO2004088367A1 (en) | 2003-03-31 | 2004-03-19 | Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4293888B2 (en) |
TW (1) | TWI383181B (en) |
WO (1) | WO2004088367A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102749669A (en) * | 2012-06-20 | 2012-10-24 | 京东方科技集团股份有限公司 | Reflecting polaroid, method for producing same and liquid crystal display device |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4931167B2 (en) * | 2004-06-14 | 2012-05-16 | 日東電工株式会社 | Colored reflective material, colored reflective filler and applications using these |
JP2006282579A (en) * | 2005-03-31 | 2006-10-19 | Nippon Oil Corp | Liquid crystalline (meth)acrylic compound having alkoxynaphthyl group and polymer thereof |
JP4826182B2 (en) * | 2005-09-12 | 2011-11-30 | 日本ゼオン株式会社 | Coating film forming device |
JP5025121B2 (en) * | 2005-11-14 | 2012-09-12 | 日本ゼオン株式会社 | Circularly polarized light separating sheet, method for producing the same, and liquid crystal display device using the same |
JP5151228B2 (en) * | 2007-02-13 | 2013-02-27 | 日本ゼオン株式会社 | Method for producing circularly polarized light separating sheet and liquid crystal display device using circularly polarized light separating sheet produced by the method |
JP2008249825A (en) * | 2007-03-29 | 2008-10-16 | Nippon Zeon Co Ltd | Cholesteric liquid crystal composition, circularly polarized light separation sheet and manufacturing method |
JP5195765B2 (en) * | 2007-12-26 | 2013-05-15 | 日本ゼオン株式会社 | Backlight device and liquid crystal display device |
JP2009192983A (en) * | 2008-02-18 | 2009-08-27 | Nippon Zeon Co Ltd | Selective reflection element and liquid crystal display device |
JP5529600B2 (en) * | 2009-03-23 | 2014-06-25 | 日東電工株式会社 | Composite polarizing plate and liquid crystal display device |
WO2011013492A1 (en) * | 2009-07-29 | 2011-02-03 | 日本ゼオン株式会社 | Brightness-improving film, composite polarizer, and liquid-crystal display device |
JP5801815B2 (en) * | 2009-10-24 | 2015-10-28 | スリーエム イノベイティブ プロパティズ カンパニー | Method for producing slanted nanovoided articles |
TWI467299B (en) * | 2012-03-30 | 2015-01-01 | Chunghwa Picture Tubes Ltd | Polarizing layer of liquid crystal panel and manufacturing method for the same |
CN103309074B (en) | 2013-05-24 | 2016-02-24 | 京东方科技集团股份有限公司 | A kind of preparation method of PDLC liquid crystal panel |
JP2015079255A (en) * | 2014-11-11 | 2015-04-23 | 大日本印刷株式会社 | Optical film, transfer body for optical film, and image display device |
JP2017068111A (en) * | 2015-09-30 | 2017-04-06 | 富士フイルム株式会社 | Polarizing plate and liquid crystal display |
WO2019093446A1 (en) * | 2017-11-08 | 2019-05-16 | 富士フイルム株式会社 | Optical laminate film, and organic electroluminescent display device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06281814A (en) * | 1993-01-11 | 1994-10-07 | Philips Electron Nv | Cholesteric polarizer and manufacture thereof |
JPH1180733A (en) * | 1997-06-19 | 1999-03-26 | Consortium Elektrochem Ind Gmbh | Expansion of cholesteric reflection zone of photopolymerizable cholesteric liquid crystal, and optical element produced thereby |
JP2002286935A (en) * | 2001-03-28 | 2002-10-03 | Dainippon Printing Co Ltd | Circularly polarized light controlling optical element and method for manufacturing the same |
JP2002308832A (en) * | 2001-04-12 | 2002-10-23 | Nitto Denko Corp | Polymerizable liquid crystal compound and optical film |
JP2004029743A (en) * | 2002-04-23 | 2004-01-29 | Nitto Denko Corp | Polarizing element, polarizing light source and picture display device using them |
-
2003
- 2003-11-20 JP JP2003390276A patent/JP4293888B2/en not_active Expired - Fee Related
-
2004
- 2004-03-19 WO PCT/JP2004/003791 patent/WO2004088367A1/en active Application Filing
- 2004-03-24 TW TW93107991A patent/TWI383181B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06281814A (en) * | 1993-01-11 | 1994-10-07 | Philips Electron Nv | Cholesteric polarizer and manufacture thereof |
JPH1180733A (en) * | 1997-06-19 | 1999-03-26 | Consortium Elektrochem Ind Gmbh | Expansion of cholesteric reflection zone of photopolymerizable cholesteric liquid crystal, and optical element produced thereby |
JP2002286935A (en) * | 2001-03-28 | 2002-10-03 | Dainippon Printing Co Ltd | Circularly polarized light controlling optical element and method for manufacturing the same |
JP2002308832A (en) * | 2001-04-12 | 2002-10-23 | Nitto Denko Corp | Polymerizable liquid crystal compound and optical film |
JP2004029743A (en) * | 2002-04-23 | 2004-01-29 | Nitto Denko Corp | Polarizing element, polarizing light source and picture display device using them |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102749669A (en) * | 2012-06-20 | 2012-10-24 | 京东方科技集团股份有限公司 | Reflecting polaroid, method for producing same and liquid crystal display device |
WO2013189147A1 (en) * | 2012-06-20 | 2013-12-27 | 京东方科技集团股份有限公司 | Reflective polarizer, method for producing same and liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JP2004318066A (en) | 2004-11-11 |
TWI383181B (en) | 2013-01-21 |
JP4293888B2 (en) | 2009-07-08 |
TW200502595A (en) | 2005-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4008358B2 (en) | Method for producing broadband cholesteric liquid crystal film | |
JP4233379B2 (en) | Cholesteric liquid crystal film, method for producing the same, circularly polarized reflective film, and dual wavelength reflective film | |
US7393570B2 (en) | Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illiminator, and liquid-crystal display | |
JP4247894B2 (en) | Optical element, condensing backlight system, and liquid crystal display device | |
WO2004088367A1 (en) | Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display | |
JP4416119B2 (en) | Method for producing broadband cholesteric liquid crystal film | |
WO2016043219A1 (en) | Optical film, illuminaction device, and image display device | |
JP4293882B2 (en) | Broadband cholesteric liquid crystal film manufacturing method, circularly polarizing plate, linearly polarizing element, illumination device, and liquid crystal display device | |
JP4008417B2 (en) | Broadband cholesteric liquid crystal film, manufacturing method thereof, circularly polarizing plate, linear polarizer, illumination device, and liquid crystal display device | |
JP2004302075A (en) | Method for manufacturing wideband cholesteric liquid crystal film, circularly polarizing plate, linearly polarizing element, lighting device and liquid crystal display | |
JP2006133385A (en) | Light collimating system, condensing backlight system, and liquid crystal display apparatus | |
KR100910954B1 (en) | Optical element, condensing backlight system and liquid crystal display unit | |
JP4133839B2 (en) | Method for producing broadband cholesteric liquid crystal film | |
JP2005308988A (en) | Circularly polarized reflection polarizing plate, optical element, convergent back light system, and liquid crystal display apparatus | |
JP2005258192A (en) | Manufacturing method of wide-band cholesteric liquid crystal film | |
JP2006098946A (en) | Optical element, polarizing element, lighting device, and liquid crystal display | |
JP2006024519A (en) | Direct backlight and liquid crystal display device | |
JP2004317651A (en) | Method for manufacturing liquid crystal film, liquid crystal film, optical film, lighting device, and liquid crystal display device | |
WO2004063780A1 (en) | Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display | |
JP2004219559A (en) | Polarizing element and liquid crystal display device | |
JP2005351956A (en) | Optical device, condensing backlight system, and liquid crystal display device | |
JP2004219522A (en) | Wide band cholesteric liquid crystal film, its manufacture method, circularly polarizing plate, linear polarizer, illuminator and liquid crystal display device | |
JP4397757B2 (en) | Optical element, condensing backlight system, and liquid crystal display device | |
JP2004219540A (en) | Wide band cholesteric liquid crystal film, its manufacture method, circularly polarizing plate, linear polarizer, illuminator and liquid crystal display device | |
JP2005128214A (en) | Optical element, condensing backlight system, and liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |