WO2004086559A1 - Isotropic antenna - Google Patents

Isotropic antenna Download PDF

Info

Publication number
WO2004086559A1
WO2004086559A1 PCT/JP2003/003835 JP0303835W WO2004086559A1 WO 2004086559 A1 WO2004086559 A1 WO 2004086559A1 JP 0303835 W JP0303835 W JP 0303835W WO 2004086559 A1 WO2004086559 A1 WO 2004086559A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
around
bobbin
winding
isotropic antenna
Prior art date
Application number
PCT/JP2003/003835
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Yamamoto
Original Assignee
Digital. Wave Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Digital. Wave Co., Ltd. filed Critical Digital. Wave Co., Ltd.
Priority to AU2003227272A priority Critical patent/AU2003227272A1/en
Priority to PCT/JP2003/003835 priority patent/WO2004086559A1/en
Publication of WO2004086559A1 publication Critical patent/WO2004086559A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • H01Q21/293Combinations of different interacting antenna units for giving a desired directional characteristic one unit or more being an array of identical aerial elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/02Coils wound on non-magnetic supports, e.g. formers
    • H01F2005/027Coils wound on non-magnetic supports, e.g. formers wound on formers for receiving several coils with perpendicular winding axes, e.g. for antennae or inductive power transfer

Definitions

  • the present invention relates to an antenna for use in radio waves such as communication, broadcasting, remote control, and broadcasting reception, and more particularly to an antenna usable in each of ultra-long, long, medium, short, ultra-short, and ultra-short wave bands. It is. Background art
  • a high-frequency current is applied to the antenna to emit a radio wave, and when receiving a radio wave, the high-frequency current obtained from the antenna is used.
  • directional antennas that need to obtain a directional antenna that concentrates the direction of energy action in a certain direction, it is often necessary to radiate radio waves evenly in all directions, except for directional antennas.
  • Each radiation pattern has a considerable deviation, and even when displaying the gain of the antenna, it is usual to display the efficiency in a certain direction.
  • a cross-dipole antenna can achieve quasi-omnidirectionality in a specific two-dimensional plane, but can achieve three-dimensional perfect omnidirectional performance. It is far from realizing.
  • loop antennas have established technology for detecting the direction of arrival of radio waves using this large deviation.
  • gain is also used to indicate the gain of an antenna.
  • an isotropic antenna (as a mathematical concept obtained by replacing the radiation energy of a standard dipole antenna with a true sphere) is used. ISOTROPICANTENNA).
  • ISOTROPICANTENNA an isotropic antenna
  • the antenna In the principle aspect of the antenna, attention is paid only to the wave dynamics side of the electromagnetic wave energy. Assuming that the antenna causes electrical resonance (excitation) by the electromagnetic wave energy, the capacitance and the inductive are made equal to each other. In most cases, a displacement current was generated to exchange high-frequency current and electromagnetic waves. When designing such an antenna, it becomes a linear antenna having a length equivalent to 12 to 1 to 4 with respect to the length of the radio wave, generates a standing wave on the antenna, and has a certain frequency range. There was a fundamental restriction that it could only be used in
  • most antennas that emit (transmit) radio waves can suppress reflected waves only in the range of about 1 to 2% of the center frequency of the antenna.
  • MAGNET I C ANTENNA magnetic field antenna dedicated to contract
  • a magnetic field coil is wound around a magnetic bobbin, and the magnetic field energy is used directly like an electric motor.
  • This technology has been widely used in medium-wave radios. It is very difficult to receive high-frequency TV images from such an antenna because of the magnetic hysteresis, and it is difficult to suppress emitted waves when emitting radio waves. It was not offered.
  • an antenna using a magnetic field method is a promising method for reducing the size of an antenna in terms of antenna design technology.
  • magnetic field antennas generally have a good SZN during reception, but none have omnidirectional performance, and they have not reached practical use in transmission, that is, emission of radio waves. It was an expert's consensus that the electric wire could be used to generate electrical vibration. For this reason, it has been common knowledge that the size of the antenna is at least about 1/4 wavelength horizontally or vertically in order to obtain sufficient gain, at a minimum. Also, for vertical antennas for broadcasting and other purposes, a great deal of effort was required in order to avoid the problem of high launch angles of radio waves and short reach, and to suppress reflected waves. Disclosure of the invention
  • the present invention has been made by paying attention to the above points, and an object thereof is to realize a three-dimensionally complete isotropic antenna on both a horizontal plane and a vertical plane. Another object of the present invention is to provide an antenna that is compact, can be used in a wide band, and can be used not only for receiving broadcasts, but also for broadcasting and communication, and has an excellent ability to emit radio waves. It is.
  • the present invention provides an isotropic antenna having a uniform radiation pattern in all directions, is made of an electrical insulator, and is formed by winding a conductor around three mutually orthogonal axes. It has a winding frame having a winding portion, and is wound in series or in parallel with the base of the winding portion of the winding frame using a conductive wire made of a non-magnetic metal as a core material, and a non-magnetic material is formed on the outer layer of the core material portion.
  • a conductive wire made of a non-magnetic metal as a core material
  • a non-magnetic material is formed on the outer layer of the core material portion.
  • the radiation pattern refers to a pattern in which the radiation directivity is shown in the form of intensity in the direction when the electromagnetic field of the antenna has a specific directional characteristic and is called radiation directivity.
  • the radiation pattern of the electric field in the direction of the antenna element of a small dipole antenna has the shape of a figure eight consisting of two circles. If the directional characteristics are uniform not only in a specific plane but in all directions, The invention calls it isotropic (I SOTRO PIC), and omni-directional (OMNI DI RET IONAL) or non-directional, which indicates that a certain plane has a uniform direction. different.
  • the isotropic antenna according to the present invention has a winding frame having a winding portion of a conductive wire around three axes orthogonal to each other, and a conductive wire made of a nonmagnetic metal is provided around the winding frame.
  • the core material is wound in series or in parallel with the base of the winding part of the bobbin, and the outer layer of the core material is wound with an insulated conductive wire made of a non-magnetic metal.
  • the bobbin can be made of any electrical insulator, but, for example, a plastic material used for electrical products can be suitably used.
  • the base line wound around the base of the winding part of the bobbin shall not generate standing waves.
  • the insulated conductor As for the insulated conductor, three systems are wound to form three systems of coil elements.
  • the Earth is on the Greenwich meridian (about the X axis), on the meridian corresponding to the date change line (about the Y axis), and on the maximum parallel (Z Around the axis) is the winding part of the coil element around three axes orthogonal to each other.
  • An insulated conducting wire made of a nonmagnetic metal such as a light metal such as a stranded wire or a single wire is wound around the wound portion to form an antenna coil composed of three independent coil elements that are orthogonal to each other.
  • Each coil element is connected to each other in series or parallel, and is configured to supply power collectively during transmission and receive power during reception.
  • the depth and width of the winding portion of the coil element should be in the range of 1 to 2 to 16, preferably 1/3 to 1/8 (most preferably 1/4), relative to the diameter of the bobbin.
  • the winding part may be in the form of a groove, in which case, an insulated insulated wire of the outer insulation type is provided in the coil element receiving groove in series or parallel as a base line so as to cover most of the bottom of the coil element receiving groove. Wind as a coil element.
  • the isotropic antenna of the present invention comprising a winding frame and an antenna coil independently wound around three mutually orthogonal axes using insulated conductors, has a part or all of the outer periphery of the antenna body in the case.
  • the case has a cubic shape, a cylindrical shape, a bell-shaped shape whose upper half is spherical, or a spherical shape, and is provided so that at least a part of the coil element of the antenna body is in close contact with the inner surface of the case.
  • it is particularly desirable to use a ball-type case that is in close contact type or a bell shape that is partially in close contact type see Figs. 4 and 6).
  • the intention is to shield the noise at the time of reception, and it has the effect and effect of stably increasing the output at the time of transmission.
  • FIG. 2 is a perspective view for explaining an example of electrical coupling and the overall structure of the antenna according to the present invention.
  • FIG. 3 is a perspective view showing the antenna of the present invention housed in a spherical case and its mounting portion.
  • FIG. 8 is a three-dimensional pattern diagram similar to FIG. 7 in different frequency ranges.
  • FIG. 9 is a graph showing changes in SWR change in the VHF band.
  • 5 is a graph showing a change in impedance change in the VHF band.
  • 5 is a graph showing a change in SWR change in an HF band.
  • 5 is a graph showing a change in impedance dance in the HF band.
  • FIG. 5 is a graph showing a change in electric field strength output when the antenna of the present invention is used as a TV receiving antenna.
  • reference numeral 11 denotes a spherical winding frame made of an electrical insulator
  • 12 denotes a coil winding portion, which is provided in a groove shape around three axes orthogonal to each other on the winding frame. It has a groove with a width and depth of 14 in the frame diameter ratio
  • Reference numeral 13 denotes a base line, which is formed by winding a conductive wire made of a nonmagnetic metal as a core material in series or parallel around the base of the winding part 12.
  • 14 X, 14 Y, and 14 ⁇ are coil elements, and are wound around three mutually orthogonal axes.
  • 15 is a coil element integrated terminal
  • 16 is a coil element lead wire, which is connected to the integrated connection.
  • reference numeral 17 denotes an upper shield case
  • reference numeral 18 denotes a lower shield case, which can accommodate the isotropic antenna body of the present invention together with the upper shield case 17.
  • the outer surface of the antenna element coil element is in close contact with the inner surface of the case.
  • the case may be a bell-shaped shield case 20 in which only the upper part is adhered and the lower part is not adhered as shown in FIG.
  • 21 is a bottom forming material
  • 22 is a plastic insulating duct
  • 23 is an output connector
  • 24 is a bottom mounting member.
  • an integrated terminal 15 for taking out or inputting three high-frequency currents is provided, and the output or input from the coil elements 14 X, 14 ⁇ , 14 ⁇ is integrated there, and from there A pair of coil element leads 16 are led and connected to the integrated connection via the bottom forming material 21.
  • the close contact cases 17 and 18 for accommodating the antenna body of the present invention are hermetically connected by the stopper 25.
  • an output connector 13 is provided in a plastic insulated duct 22 that holds a coil element lead wire 16, and connected to an external cable 19.
  • the current generated in each of the three coil elements follows the vector composition of the radio wave energy arriving from each direction axis, so that the current is three-dimensionally uniform. It becomes a pattern.
  • this antenna is called a three-dimensional isotropic antenna.
  • Figure 7 shows data indicating this. According to this, it can be seen that each pattern demonstrates the three-dimensional omnidirectionality of this antenna. Therefore, when a high-frequency current is applied to this antenna, the radiating center position is radiated from one of the geometrical center points of the antenna, and ghosts are unlikely to occur even when used for TV reception. By emitting radio waves in this way, almost perfect three-dimensional pattern isotropic performance was recognized in the laboratory (Fig. 7 is not in an aluminum case).
  • the isotropic antenna of the present invention allows the spherical insulator to be configured as a planar outer structure in consideration of mass productivity. That is, it is not necessary to fill the inside of the bobbin 11 and the hollow portion may be left (FIG. 1).
  • the radio wave emission capability of this antenna exceeds that of a dipole antenna, and the SWR (STAD NG WAVE RATI 0) degradation range is very wide, and it can be used in multiple bands (Figs. 9 to 12 show the SWR degradation range and measured impedance). Indicated) .
  • the SWR STAD NG WAVE RATI 0
  • Figs. 9 to 12 show the SWR degradation range and measured impedance). Indicated
  • the antenna of the present invention When the antenna of the present invention is used as a radio wave emitting antenna, it is understood from FIGS. 9 and 11 that it is necessary to store the antenna in a light metal shield case.
  • the antenna of the present invention housed in a light metal shield case was actually used in an amateur radio experiment band of 144 MHz, communication was possible even when the antenna of the present invention was placed directly on the ground directly below the high-voltage transmission line.
  • the clarity of transmission / reception and communication was excellent, and the range was extended by more than 40% compared to the dipole antenna.
  • the antenna of the present invention approximated a matched dipole antenna at the time of transmission, and had a radiation impedance of about 70 years as can be read from FIG.
  • FIG. 9 confirmed that the usable frequency range was greatly expanded. Therefore, airborne VHF communication (118 to 136MHz) is possible using this antenna.
  • the antenna of the present invention was tested as an indoor antenna for TV reception, Compared with the dipole antenna that has been widely used as a tenor, the reception current capability and the reception resolution are not inferior to each other as shown in Table 11-1 and Table 1-2, and a slight advantage is confirmed. [Table 11] and [Table 1-2].
  • the antenna of the present invention was used as a TV receiving antenna and tested as an outdoor antenna in comparison with an Ichiya Yagi antenna, there were slight variations depending on the conditions, but in a general electric field area, the Yagiichi Yagi for VHF and UHF was used. As compared with the integrated output of the Uda antenna, it was confirmed that the imaging ability of the antenna of the present invention was almost equal in the VHF band, and considerably superior in the UHF band. [Table 2-1, 2, 2 and 2-3]. To evaluate the suitability of an isotropic antenna as a TV receiving antenna, along the National Highway No. 4 starting from the 5 KM point (in the city area in front of the Ueno Park Science Museum) in the Tokyo area, which is a short distance from Tokyo Tower.
  • NHK method five-element Yagi-Uda antenna
  • the isotropic antenna test model (C) uses the direct and 30 dB VU dual-purpose amplifiers.
  • the antenna of the present invention was mounted on an offshore ship as a UHF mobile communication antenna as an antenna for enhancing downlink communication of a mobile phone in the 80 MHz band, an experiment was conducted, and its arrival range was increased by 1.7 to 2 times. Expanded. In that case, in the waves offshore However, the minimum reception gain was ensured, and no call was interrupted even when the ship was shaking. At this time, an antenna switching device and a low attenuation cable were used.
  • the effective frequency and the frequency range of the antenna of the present invention are mainly defined by the length of the coil used, and the reactance level of the coil at this time is appropriately adjusted by the base line. If a non-magnetic metal is used for the base line, it will be used for UHF and VHF, and if a magnetic metal is used, it will be used for ULF, LF, MF and HF.
  • the use of a light metal base line does not cause magnetic hysteresis and does not cause disturbance (noise mixing) due to the antenna effect.
  • the outer case gives a moderate shielding effect and increases the efficiency by the electrostatic effect.
  • the effect of the outer casing is not only the function of the mouth-pass filter at the time of reception, but also greatly expands the range of reduction of the reflected wave at the time of transmission, and greatly improves the electrical performance.
  • the frequency band in which communication is performed by directly connecting a cable spans a plurality of bands and is wide, so that multi-band communication can be performed with a single antenna. This has been achieved at a level never before achieved by any antenna.
  • the prototype model with a 12 m coil can receive multimedia from 4 MHz to 100 MHz (1 GHz) (Fig. 14, Fig. 15), short-wave radio, short-wave weather fax reception, VHF FM broadcast , VHF, UHF TV reception Terrestrial digital TV broadcasts scheduled to start in the future, NHK comprehensive multiplex teletext, etc. can be received on mobiles and at fixed stations. It also has the same reception capability as a 1 OM full-length dipole antenna on medium-wave radios (confirmed on germanium radios).
  • the antenna of the present invention when the antenna of the present invention emits a radio wave and performs broadcast and relay mutual communication, a matching circuit is not required by a simple design adjustment operation, and stable electric characteristics and reflected wave suppression characteristics are always maintained.
  • the impedance of each axis is 200 ohms, but it becomes about 70 ohms by triaxial coupling, and it is possible to connect directly to a 50 ohm or 75 ohm type cable.
  • the antenna A of the present invention can be mounted or mounted on various devices and devices by various methods.
  • it when it is mounted on an automobile 30, it can be fixed to the roof of the automobile or the back side of the rear trunk by a strong magnet 31 (Fig. 16 (a)). In this case, it may be stored in a bell-shaped case (Fig. 16 (b)) and fixed at the bottom.
  • the antenna A of the present invention is excellent for use on an aircraft. In this case, it is installed on the back of the body 32 (Fig. 17). In addition, it can be placed on a pole like a conventional antenna.
  • the antenna of the present invention has practically perfect three-dimensional isotropy, and its characteristics operate without affecting the level of the tuning state. As a result, the directionality in the receiving state is not recognized at all in voice communication, and But hardly ever. The same applies to the transmission operation. Further, when the antenna body of the present invention is housed in an aluminum case, the integrity of the omnidirectional level is lost, but the deviation which is practically recognized does not occur.
  • the antenna of the present invention has a function of suppressing fogging during short-wave reception (the reason is considered to be that faging is caused by rotation of the polarization plane). Until now, no ghost has been observed, which is a problem with omnidirectional antennas. Also, when mounted on automobiles, motor pikes, etc., there is little mixing of electrical noise due to engine ignition.
  • the antenna of the present invention When the antenna of the present invention is used for communication involving emission of radio waves, location / diversity performance is improved, minimum gain guarantee is always possible, and interruptions and the like are reduced. For example, when used for a mobile phone external antenna, the sound quality becomes clear.
  • the antenna of the present invention is a non-grounded dipole antenna, and has little interference with surrounding objects when emitting radio waves.
  • the antenna of the present invention has good energy efficiency, a large SWR reduction range, and good impedance matching capability.
  • the gain is around +2.5 dB. Slightly superior to dipoles, its three-dimensional omnidirectional performance (isotropic) is superior to any previous antenna.
  • the SWR reduction range of the antenna of the present invention is very wide, and becomes significantly larger when placed in an aluminum contact case, and the effective frequency range is greater than any antenna.
  • Outline Around 6-7% of the center frequency can emit radio waves. Multiple bands can be used.
  • the antenna of the present invention When the antenna of the present invention is simply used as a receiving antenna, a single antenna capable of practically receiving the most efficient frequency in the range of about ⁇ 50 times the frequency, specifically, in the range from the medium wave to the UHF.
  • An ultra-wide band receiving antenna can be realized.
  • the antenna of the present invention operates as a magnetic field antenna that directly converts only a magnetic field component out of radio wave energy into electric energy, and in that case, there is no electrical interference due to a nearby electromagnetic field, so that noise is reduced. Has the effect of doing Therefore, when used as a TV antenna, noise is prevented from being mixed in by opening and closing a nearby electric switch.
  • the antenna of the present invention When the antenna of the present invention is used as a TV receiving antenna, the antenna of the present invention is used in a fixed station such as indoors and outdoors, and exhibits a receiving ability comparable to that of the Yagi-Uda antenna. Also, installation at high altitudes is not required, so antenna installation is easy. It is also useful for the spread of UHF terrestrial digital broadcasting that will be started in the future.
  • the antenna of the present invention when the antenna of the present invention is mounted on an airplane, which is a mobile communication, particularly a three-dimensional high-speed mobile body, and is used for aeronautical radio (FIG. 17), the airframe which has been a constant problem in the past and the communication partner It is possible to greatly reduce the fluctuation of the reception state due to the fluctuation of the relative positional relationship with the reception.
  • the three-dimensional isotropy achieved by the antenna of the present invention solves the problem of a communication antenna of an aircraft that suffers from interference between the airframe and the antenna and fluctuations in communication conditions due to fluctuations in the direction between the airframe and the communication partner. This is a form in which the features of the present invention are maximized, and has high social effectiveness.
  • the capability of digital communication is enhanced by combining the isotropy and the function of increasing the effective bandwidth. Compared to dipole antennas, it is suitable for the transmission and relay of digital communication information that requires a wide range of frequencies in a specific band, such as a spread spectrum method.
  • the antenna of the present invention makes it possible to use radio waves with a long wavelength in a simple and convenient facility, which was very difficult to realize with conventional antennas. For example, it would be possible to replace very long antenna facilities with ultra-small antennas as a means of linking land facilities and submarines using very long waves. To improve the accuracy of underground exploration radars that perform underground exploration using long waves by using the one-point radiation capability of the antenna of the present invention to improve the accuracy of landmine exploration and exploration of underground resources Is possible.
  • long waves and medium waves which have been the mainstays of marine communication means, have used long wires, but these are no longer required, and communication accuracy can be improved.
  • the medium-wave information transmission antenna used on expressways can be accommodated in a spherical space with a diameter of 10 cm or less.
  • the antenna of the present invention it is desired to utilize its three-dimensional isotropy, wideband multiband performance, and miniaturization technology, and to improve broadcasting, relaying, and mobile communication. Therefore, it is possible to achieve further quantitative and qualitative improvements in the radio wave utilization business and transport activities.
  • OVHF is equivalent to Yagi antenna in video capability.
  • the VHF radio wave arrival direction does not match.
  • 3 ⁇ 4 ⁇ method The impact is applied in three directions: forward, side, and reverse by the impact device.
  • the magnitude of the shock is increased to 30, 40, 50, and 100G, and each time the shock is applied, it is disassembled and disconnected. There is no magnetic member.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)

Abstract

An isotropic antenna where the radiation pattern is uniform in all directions. The isotropic antenna comprises a spool (11) of an electric insulator having conductor winding parts around three orthogonal axes. A conductor of nonmagnetic metal is wound, as a core material, around the bottom part at the winding part (12) of the spool in series or parallel. On the outer layer of the core material part, three systems of coil elements (14X, 14Y, 14Z) are formed using an insulated conductor of nonmagnetic metal and the coil elements (14X, 14Y, 14Z) wound independently around three axes are connected in series or parallel for the purpose of reception or transmission.

Description

明細書 等方性アンテナ 技術分野  Description Isotropic antenna Technical field
本発明は、 通信、 放送、 遠隔操作、 放送受信等の電波利用に供するアンテナに 関するもので、 特に超長波、 長波、 中波、 短波、 超短波、 極超短波の各バンドで 使用可能なアンテナに関するものである。 背景技術  The present invention relates to an antenna for use in radio waves such as communication, broadcasting, remote control, and broadcasting reception, and more particularly to an antenna usable in each of ultra-long, long, medium, short, ultra-short, and ultra-short wave bands. It is. Background art
アンテナにより電波を送信するときには、 アンテナに高周波電流を投入して電 波を発射し、 また電波を受信するときにはアンテナで得られる高周波電流を利用 する。 一定の方向にエネルギー作用方向を集中する指向性アンテナを得ることが 特に必要な指向性アンテナを除く と、 多くの場合、 全方向に均等に電波を発射す ることが必要であるが、 電波発射の放射パターンはいずれも相当な偏位があり、 アンテナの利得を表示する場合でも一定の方向性における効率を表示するのが通 例である。  When transmitting radio waves with an antenna, a high-frequency current is applied to the antenna to emit a radio wave, and when receiving a radio wave, the high-frequency current obtained from the antenna is used. Except for directional antennas that need to obtain a directional antenna that concentrates the direction of energy action in a certain direction, it is often necessary to radiate radio waves evenly in all directions, except for directional antennas. Each radiation pattern has a considerable deviation, and even when displaying the gain of the antenna, it is usual to display the efficiency in a certain direction.
また、 例えば標準ダイポールアンテナを使用した通信において、 その偏位を克 服することは解決困難な課題であった。 この課題はいくつかの方法で或る程度解 決する可能性があり、 例えばクロスダイポールアンテナによっても、 2次元的な 特定平面における準全方向性を実現できるが、 3次元的な完全無指向性能を実現 するには遠く及ばない。 逆にループアンテナではこの大きな偏位を利用して電波 の到来方向を探知する技術を確立してきた。  Also, for example, in communication using a standard dipole antenna, overcoming the deviation has been a difficult problem to solve. This problem can be solved to some extent by several methods.For example, a cross-dipole antenna can achieve quasi-omnidirectionality in a specific two-dimensional plane, but can achieve three-dimensional perfect omnidirectional performance. It is far from realizing. Conversely, loop antennas have established technology for detecting the direction of arrival of radio waves using this large deviation.
無線工学の分野においても、 アンテナの利得を表示するために用いられる、 利 得の表示では、 標準ダイポールアンテナの放射エネルギーを真球に置き換えて得 られる数理的計算上の概念として等方性アンテナ ( I S O T R O P I C A N T E N N A ) いう概念規定を前提にしている。 しかし、 これまではそのようなアン テナは技術的には近似的なものですら存在していなかった。  In the field of wireless engineering, gain is also used to indicate the gain of an antenna. In the display of gain, an isotropic antenna (as a mathematical concept obtained by replacing the radiation energy of a standard dipole antenna with a true sphere) is used. ISOTROPICANTENNA). However, until now, such antennas did not even exist in technical terms.
電波利用の分野では例えば、 計測、 通信、 特に移動体通信においてこのような 技術が望まれているにも拘ず、 いままでの等方性アンテナは、 単なる観念上の存 在に止まっており、 機能分類的にそのようなカテゴリーに属するァンテナは実現 していなかったのである。 In the field of radio wave use, for example, measurement and communication, especially mobile communication Despite the desire for technology, conventional isotropic antennas have remained mere ideas, and antennas belonging to such categories in terms of functional classification have not been realized. .
アンテナの原理的な面では、 電磁波エネルギーの波動的側面のみに注目レ、 電 磁波エネルギーによりアンテナに電気的共振 (励振) を起こさせることを前提に して、 容量性と誘導性を互いに等しくさせて変位電流を発生させ、 高周波電流と 電磁波の交換を行うものが大半であった。 このようなアンテナを設計する場合、 電波の波長の長さに対し 1 2 ~ 1ノ4に相当する長さを持つ直線状のアンテナ となり、 アンテナ上に定在波を発生させ、 一定の周波数範囲においてのみ利用で きるものであるという根本制約が課されていた。  In the principle aspect of the antenna, attention is paid only to the wave dynamics side of the electromagnetic wave energy. Assuming that the antenna causes electrical resonance (excitation) by the electromagnetic wave energy, the capacitance and the inductive are made equal to each other. In most cases, a displacement current was generated to exchange high-frequency current and electromagnetic waves. When designing such an antenna, it becomes a linear antenna having a length equivalent to 12 to 1 to 4 with respect to the length of the radio wave, generates a standing wave on the antenna, and has a certain frequency range. There was a fundamental restriction that it could only be used in
特に電波を発射する (送信する) アンテナにおいては、 アンテナの中心周波数 に対して、 おおよそ 1 ~2 %前後の範囲しか反射波を抑制できない事例が大半で あった。  In particular, most antennas that emit (transmit) radio waves can suppress reflected waves only in the range of about 1 to 2% of the center frequency of the antenna.
受信分野のみに範囲を限定すれば、 磁界エネルギーから直接電流を得る所請受 信専用磁界アンテナ (MAGNET I C ANTENNA) の例がある。 この技 術は磁界コイルを磁性体の巻枠に巻き付け、 電動機の如く磁界エネルギーを直接 活用するものあり、 中波ラジオで多用されて来た。 このような形状のアンテナか ら高い周波数の TV映像の受信を行わせることは磁気ヒステリシスの関係で大変 困難であり、 また電波の発射においては発射波の抑制が困難のため、 これまで実 用に供せられることはなかった。  If the scope is limited only to the field of reception, there is an example of a magnetic field antenna dedicated to contract (MAGNET I C ANTENNA) that directly obtains current from magnetic field energy. In this technology, a magnetic field coil is wound around a magnetic bobbin, and the magnetic field energy is used directly like an electric motor. This technology has been widely used in medium-wave radios. It is very difficult to receive high-frequency TV images from such an antenna because of the magnetic hysteresis, and it is difficult to suppress emitted waves when emitting radio waves. It was not offered.
これとは異なり、 Q (電荷) の高い特性を持つ単純なループコイルに対して、 大出力の高周波電流を投入して磁界波動を起こさせ送信させる試みがあるが、 こ の様な MS L (MAGNET I C SMALL L 00 P I C) アンテナにおい ても送信能力は受信時の高い S N性能に比して格段に不足であり、 十分電気的 共振 (励振) を得ている調整したダイポ一ルアンテナに比較して利得、 効率の面 では到底及ばない。 まして、 反射波のコントロールに至っては電気的特性 (イン ピーダンス) の過大性と不安定性から制御が困難であり、 通信用途として実用に 供するには著しい困難を伴うことが予測される。  On the other hand, there is an attempt to transmit a high-frequency high-frequency current to a simple loop coil with a high Q (charge) characteristic to cause a magnetic field wave to be transmitted. MAGNET IC SMALL L 00 PIC) Even in antennas, the transmission capacity is much less than the high SN performance at the time of reception, and compared to a tuned dipole antenna that obtains sufficient electric resonance (excitation). In terms of gain and efficiency, it is far from being possible. Furthermore, it is difficult to control the reflected wave due to the excessiveness and instability of the electrical characteristics (impedance), and it is expected that it will be extremely difficult to put it into practical use as a communication application.
結局、 電磁波エネルギーの磁界的側面を利用した小型のアンテナとしては中波 のラジオ受信にフェライ トに巻いたコイルを利用するアンテナが僅かに存在する だけであつたのである。 After all, a small antenna that uses the magnetic field of electromagnetic wave energy There were only a few antennas that used coils wound on ferrites for radio reception.
一般に磁界的手法によるアンテナは、 アンテナ設計技術上アンテナの大きさを 小さくする有望な方法ではある。 しかし、 一般にこれまで、 磁界アンテナは受信 時の S Z Nが良好であるが、 全方向性能を持つものは無く、 また送信即ち電波の 発射において実用に到達するには至らず、 アンテナと言うものは線状の金属導線 に電気的振動を起こさせて利用するものであるということが専門家の了解事項と なっていた。 そのためアンテナの大きさは、 最小でも、 十分な利得を得るために 水平又は垂直に 1 / 4波長前後の長さを有するということがこれまでの常識であ つた。 また放送用等垂直系アンテナにおいては、 電波の打ち上げ角度が高く到達 距離が出ない等の問題と、 反射波の抑止のために、 多大な努力が必要であった。 発明の開示  Generally, an antenna using a magnetic field method is a promising method for reducing the size of an antenna in terms of antenna design technology. However, magnetic field antennas generally have a good SZN during reception, but none have omnidirectional performance, and they have not reached practical use in transmission, that is, emission of radio waves. It was an expert's consensus that the electric wire could be used to generate electrical vibration. For this reason, it has been common knowledge that the size of the antenna is at least about 1/4 wavelength horizontally or vertically in order to obtain sufficient gain, at a minimum. Also, for vertical antennas for broadcasting and other purposes, a great deal of effort was required in order to avoid the problem of high launch angles of radio waves and short reach, and to suppress reflected waves. Disclosure of the invention
本発明は前記の点に着目してなされたものであり、 その課題は、 水平面、 垂直 面の両面で 3次元的に完全なる等方性アンテナを実現することである。 また本発 明の他の課題は、 小型で、 広い帯域で使用でき、 放送の受信のみならず、 放送や 通信の用途に供し得られる、 電波を発射する能力に優れたアンテナを提供するこ とである。  The present invention has been made by paying attention to the above points, and an object thereof is to realize a three-dimensionally complete isotropic antenna on both a horizontal plane and a vertical plane. Another object of the present invention is to provide an antenna that is compact, can be used in a wide band, and can be used not only for receiving broadcasts, but also for broadcasting and communication, and has an excellent ability to emit radio waves. It is.
前記の課題を解決するため、 本発明は、 放射パターンが全ての方向に対して一 様である等方性アンテナとして、 電気的絶縁体よりなり、 相互に直交する 3軸の 周りに導線の巻回部を有する巻枠を有し、 非磁性体金属よりなる導線を芯材とし て巻枠の巻回部の基底部に直列又は並列に巻き付け、 この芯材部の外層に、 非磁 性体金厲よりなる絶緣導線を用いて、 3系統のコイルエレメン卜を夫々形成し、 3軸の周りに、 全て独立して巻回された上記のコイルエレメントを相互に直列又 は並列に接続し、 受信又は送信に供するという手段を講じたものである。  In order to solve the above-mentioned problems, the present invention provides an isotropic antenna having a uniform radiation pattern in all directions, is made of an electrical insulator, and is formed by winding a conductor around three mutually orthogonal axes. It has a winding frame having a winding portion, and is wound in series or in parallel with the base of the winding portion of the winding frame using a conductive wire made of a non-magnetic metal as a core material, and a non-magnetic material is formed on the outer layer of the core material portion. Using an insulated conductive wire made of metal, three coil elements are formed respectively, and the above-mentioned coil elements that are all independently wound around three axes are connected to each other in series or in parallel, A means for receiving or transmitting is adopted.
ここで放射パターンとは、 アンテナの電磁界が固有の方向特性を持ち、 放射指 向性と呼ばれる場合に、 この放射指向性を、 方向に関する強度の形で図示された ものを指す。 例えば、 微小ダイポ一ルアンテナのアンテナエレメント方向の電界 の放射パターンが、 二つの円からなる 8の字の形を持つことは周知である。 この 方向特性が或る特定の平面のみならず、 全ての方向に対して一様であるものを本 発明では等方性 (I SOTRO P I C) と呼んでおり、 或る特定の平面のみ一様 な方向性を持つものを示す全指向性 (OMNI D I RET I ONAL) 又は無指 向性というのとは異なる。 Here, the radiation pattern refers to a pattern in which the radiation directivity is shown in the form of intensity in the direction when the electromagnetic field of the antenna has a specific directional characteristic and is called radiation directivity. For example, it is well known that the radiation pattern of the electric field in the direction of the antenna element of a small dipole antenna has the shape of a figure eight consisting of two circles. If the directional characteristics are uniform not only in a specific plane but in all directions, The invention calls it isotropic (I SOTRO PIC), and omni-directional (OMNI DI RET IONAL) or non-directional, which indicates that a certain plane has a uniform direction. different.
本発明の等方性アンテナは、 電気的絶縁体よりなり、 相互に直交する 3軸の周 りに導線の巻回部を有する巻枠を有し、 その周りに非磁性体金属よりなる導線を 芯材として巻枠の巻回部の基底部に直列又は並列に巻き付け、 この芯材部の外層 に、 非磁性体金属よりなる絶縁導線を巻回する構成を有する。 巻枠は、 任意の電 気的絶縁体を素材とし得るが、 例えば電気製品に用いられるプラスチック材料は 好適に使用できる。 巻枠の巻回部の基底部に巻き付ける基底線は、 定在波を生じ ないようにする。  The isotropic antenna according to the present invention has a winding frame having a winding portion of a conductive wire around three axes orthogonal to each other, and a conductive wire made of a nonmagnetic metal is provided around the winding frame. The core material is wound in series or in parallel with the base of the winding part of the bobbin, and the outer layer of the core material is wound with an insulated conductive wire made of a non-magnetic metal. The bobbin can be made of any electrical insulator, but, for example, a plastic material used for electrical products can be suitably used. The base line wound around the base of the winding part of the bobbin shall not generate standing waves.
絶縁導線は、 3系統のものを巻回し、 3系統のコイルエレメントを形成する。 言葉を換えて説明すると、 地球の、 グリニッジ子午線上 (X軸周りとする) 、 日 付け変更線に相当する子午線上 (Y軸周りとする) 、 及び赤道線上に相当する最 大緯線上 (Z軸周りとする) が互いに直交する 3軸周りのコイルエレメントの巻 回部となるように構成する。 この巻回部に緩 (よ) り線又は単線等の軽金属など の非磁性体金属よりなる絶縁導線を巻き付け、 互いに直交する、 3系統の独立し たコィルエレメン卜からなるアンテナコイルを形成する。 各コイルエレメントは 相互に直列又は並列に結合し、 送信時には統括的に給電し、 また受信時には供電 を受ける形式である。 コイルエレメントの巻回部の深さ及び幅は、 巻枠の直径に 対する比率が 1ノ 2~1 16、 望ましくは 1/3〜: 1/8 (最も望ましくは 1 /4) の範囲とする。 巻回部は、 溝状になっていても良く、 その場合コイルエレ メント収容溝の底部の大半をカバーするように基底線として直列または並列に、 またコイルエレメント収容溝に外皮絶縁型の絶縁導線をコイルエレメントとして 巻き付ける。  As for the insulated conductor, three systems are wound to form three systems of coil elements. In other words, the Earth is on the Greenwich meridian (about the X axis), on the meridian corresponding to the date change line (about the Y axis), and on the maximum parallel (Z Around the axis) is the winding part of the coil element around three axes orthogonal to each other. An insulated conducting wire made of a nonmagnetic metal such as a light metal such as a stranded wire or a single wire is wound around the wound portion to form an antenna coil composed of three independent coil elements that are orthogonal to each other. Each coil element is connected to each other in series or parallel, and is configured to supply power collectively during transmission and receive power during reception. The depth and width of the winding portion of the coil element should be in the range of 1 to 2 to 16, preferably 1/3 to 1/8 (most preferably 1/4), relative to the diameter of the bobbin. . The winding part may be in the form of a groove, in which case, an insulated insulated wire of the outer insulation type is provided in the coil element receiving groove in series or parallel as a base line so as to cover most of the bottom of the coil element receiving groove. Wind as a coil element.
絶縁導線を用いて、 相互に直交する 3軸の周りに独立して巻回した巻枠とアン テナコイルからなる本発明の等方性アンテナは、 アンテナ本体の外周の一部また は全部をケース内に収容することができる。 ケースは立方体形状、 円筒形、 上半 部が球形の釣鐘形、 或いは球形のような形状を有し、 アンテナ本体のコイルエレ メン卜の少なくとも一部がケース内面に密着するように設けられる。 それらの中 でも、 特に密着型球形又は一部密着型の釣鐘型のケース (図 4、 図 6参照) を用 いることが望ましい。 このケースは受信時のノイズシールドの意図を持ち、 送信 時の出力を安定的に増大させる作用、 効果を有する。 図面の簡単な説明 The isotropic antenna of the present invention, comprising a winding frame and an antenna coil independently wound around three mutually orthogonal axes using insulated conductors, has a part or all of the outer periphery of the antenna body in the case. Can be accommodated. The case has a cubic shape, a cylindrical shape, a bell-shaped shape whose upper half is spherical, or a spherical shape, and is provided so that at least a part of the coil element of the antenna body is in close contact with the inner surface of the case. Among them However, it is particularly desirable to use a ball-type case that is in close contact type or a bell shape that is partially in close contact type (see Figs. 4 and 6). In this case, the intention is to shield the noise at the time of reception, and it has the effect and effect of stably increasing the output at the time of transmission. BRIEF DESCRIPTION OF THE FIGURES
【図 1】  【Figure 1】
(a) 本発明の等方性アンテナに用いる巻枠の正面図。  (a) Front view of a bobbin used for the isotropic antenna of the present invention.
(b) 同じく平面図。  (b) The same top view.
(c) 同じく側面図。  (c) Side view.
【図 2】  【Figure 2】
(a) 巻枠に基底線を巻回した状態を示す平面図。  (a) The top view which shows the state which wound the base line around the winding frame.
( b ) 巻枠に絶縁導線を巻回した本発明の等方性アンテナの例を示す平面図。 (b) The top view which shows the example of the isotropic antenna of this invention which wound the insulated conductor on the winding frame.
(c) 同じく斜視図。 (c) The same perspective view.
【図 3】  [Figure 3]
本発明のアンテナにおける電気的結合と全体的構造の例を説明するための斜視 図。  FIG. 2 is a perspective view for explaining an example of electrical coupling and the overall structure of the antenna according to the present invention.
【図 4】  [Fig. 4]
(a) ケースと結合した本発明のアンテナの例を示す正面図。  (a) A front view showing an example of an antenna of the present invention combined with a case.
(b) 同じく下面図。  (b) Similarly, a bottom view.
【図 5】  [Figure 5]
球状ケースに収めた本発明のアンテナとその取り付け部を示す斜視図。  FIG. 3 is a perspective view showing the antenna of the present invention housed in a spherical case and its mounting portion.
【図 6】  [Fig. 6]
(a) 釣鐘型ケースに収めた本発明のアンテナの側面図。  (a) Side view of the antenna of the present invention housed in a bell-shaped case.
(b) 同じく上面図。  (b) The same top view.
【図 7】  [Fig. 7]
本発明のアンテナの 3次元パターン (放射特性) を示す図。  The figure which shows the three-dimensional pattern (radiation characteristic) of the antenna of this invention.
【図 8】  [Fig. 8]
異なる周波数域における図 7と同様の 3次元パターン図。  FIG. 8 is a three-dimensional pattern diagram similar to FIG. 7 in different frequency ranges.
【図 9】 VH Fバンドにおける SWR変化推移を表わすグラフ。 [Fig. 9] 5 is a graph showing changes in SWR change in the VHF band.
【図 10】  [Figure 10]
VH Fバンドにおけるィンピーダンス変化推移を表すグラフ。  5 is a graph showing a change in impedance change in the VHF band.
【図 1 1】  [Fig. 11]
H Fパンドにおける SWR変化推移を表わすグラフ。  5 is a graph showing a change in SWR change in an HF band.
【図 12】  [Fig.12]
H Fバンドにおけるィンピ一ダンス変化推移を表すグラフ。  5 is a graph showing a change in impedance dance in the HF band.
【図 13】  [Fig.13]
本発明のアンテナを TV受信アンテナとしたときの電界強度出力変化を示すグ ラフ。  5 is a graph showing a change in electric field strength output when the antenna of the present invention is used as a TV receiving antenna.
【図 14】  [Fig.14]
(a) 本発明のアンテナを TV放送受信アンテナとしてその性能をダイポール 系室内アンテナと比較したグラフ。 '  (a) A graph comparing the performance of an antenna of the present invention with a dipole indoor antenna using a TV broadcast receiving antenna. '
(b) 異なる受信位置における図 12 (a) と同様のグラフ。  (b) Graph similar to FIG. 12 (a) at different reception positions.
【図 15】  [Fig.15]
本発明のアンテナ受信能力を示すグラフ (50~100 OMH z範囲周波数別 Graph showing the antenna receiving capability of the present invention (50 to 100 MHZ range by frequency
) 。 ).
【図 16】  [Fig. 16]
(a) 本発明のアンテナを自動車に取り付ける場合の位置と方法を示した図。 (a) The figure which showed the position and method when attaching the antenna of this invention to a motor vehicle.
(b) その要部拡大図。 (b) An enlarged view of the main part.
【図 17】  [Fig.17]
本発明のアンテナを航空機に取り付ける場合の位置と方法を示した図。  The figure which showed the position at the time of attaching the antenna of this invention to an aircraft, and the method.
符号の説明 Explanation of reference numerals
1 1 巻枠  1 1 Reel
12 コイル巻回部  12 Coil winding part
14X、 14Y、 14 Ζ コイルエレメント  14X, 14Y, 14 Ζ Coil element
15 コイルエレメント総合ターミナル  15 Coil element integrated terminal
17 上部シールドケース  17 Upper shield case
18 下部シールドケース 2 0 釣鐘型シ一ルドケース 18 Lower shield case 2 0 Bell-shaped shield case
2 5 止め具 発明を実施するための最良の形態  2 5 Stopper Best mode for carrying out the invention
以下図示の実施形態を参照して本発明をより詳細に説明する。 各図において、 符号 1 1は電気的絶縁体よりなる球状の巻枠、 1 2はコイル巻回部で、 巻枠の梅 互に直交する 3軸の周りに溝状に設けられており、 巻枠直径比 1 4の幅及び深 さを持つ溝を有している。 1 3は基底線で、 非磁性体金属よりなる導線を芯材と して、 卷回部 1 2の基底部に直列又は並列に巻き付けて形成されている。 また、 1 4 X、 1 4 Y、 1 4 Ζはコイルエレメントであり、 相互に直交する Χ Υ Ζ 3軸 周りに巻回されている。 1 5はコイルエレメント統合ターミナル、 1 6はコイル エレメントリード線で、 統合結線に接続されている。  Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments. In each figure, reference numeral 11 denotes a spherical winding frame made of an electrical insulator, and 12 denotes a coil winding portion, which is provided in a groove shape around three axes orthogonal to each other on the winding frame. It has a groove with a width and depth of 14 in the frame diameter ratio. Reference numeral 13 denotes a base line, which is formed by winding a conductive wire made of a nonmagnetic metal as a core material in series or parallel around the base of the winding part 12. 14 X, 14 Y, and 14 で are coil elements, and are wound around three mutually orthogonal axes. 15 is a coil element integrated terminal, and 16 is a coil element lead wire, which is connected to the integrated connection.
図 4、 図 5において 1 7は上部シールドケース、 1 8は下部シールドケースで あり、 上部シールドケース 1 7とともに本発明の等方性アンテナ本体を収容する ことができる。 また収容時は当該アンテナ本体コイルエレメント部分の外面はケ —ス内面に密着した状態にある。  4 and 5, reference numeral 17 denotes an upper shield case, and reference numeral 18 denotes a lower shield case, which can accommodate the isotropic antenna body of the present invention together with the upper shield case 17. When the antenna is housed, the outer surface of the antenna element coil element is in close contact with the inner surface of the case.
ケースは図 6に示すように上部のみ密着させ、 下部を密着させない釣鐘型シ一 ルドケース 2 0でも良い。 なお 2 1は底部形成材、 2 2はプラスチック絶縁ダク ト、 2 3は出力コネクタ一、 2 4は底部取り付け部材を夫々示す。  The case may be a bell-shaped shield case 20 in which only the upper part is adhered and the lower part is not adhered as shown in FIG. In addition, 21 is a bottom forming material, 22 is a plastic insulating duct, 23 is an output connector, and 24 is a bottom mounting member.
アンテナ本体相当部に、 高周波電流 3系統を取り出し又は投入するための統合 ターミナル 1 5を設け、 そこにコイルエレメント 1 4 X、 1 4 Υ、 1 4 Ζからの 出力又は入力を統合し、 そこから 1対のコイルエレメントリード線 1 6を導き、 底部形成材 2 1を介して統合結線へ結線する。 一方、 本発明のアンテナ本体を収 める密着型ケース 1 7、 1 8は止め具 2 5により密閉的に結合される。 また釣鐘 型シールドケース 2 0に置き換える場合でも、 基本的にはコイルエレメントリー ド線 1 6を保持するプラスチック絶縁ダクト 2 2に出力コネクタ一 2 3を設け、 外部のケーブル 1 9に結合する。  In the equivalent part of the antenna body, an integrated terminal 15 for taking out or inputting three high-frequency currents is provided, and the output or input from the coil elements 14 X, 14 Υ, 14 Ζ is integrated there, and from there A pair of coil element leads 16 are led and connected to the integrated connection via the bottom forming material 21. On the other hand, the close contact cases 17 and 18 for accommodating the antenna body of the present invention are hermetically connected by the stopper 25. Also, when replacing with a bell-shaped shield case 20, basically, an output connector 13 is provided in a plastic insulated duct 22 that holds a coil element lead wire 16, and connected to an external cable 19.
本発明のアンテナでは、 3系統の各コイルエレメントにて生じる電流は、 各方 向軸から到来する電波エネルギーのベクトル合成に従うので、 3次元的に等方向 パターンとなる。 これがこのアンテナを 3次元等方性ァンテナと称する所以であ る。 図 7はこのことを示したデータである。 これによると各パターンがこのアン テナの 3次元的無指向性を実証していると見ることができる。 よってこのアンテ ナに高周波電流を投入したときは、 電波放射中心位置がこのァンテナの幾何学的 中心点の 1点から放射されるので、 TV受信に使用してもゴーストを発生しにく い。 このように電波を発射させて実験室内でほぼ完全な 3次元パターンの等方向 性能が認識された (図 7はアルミのケースには入れない状態) 。 In the antenna of the present invention, the current generated in each of the three coil elements follows the vector composition of the radio wave energy arriving from each direction axis, so that the current is three-dimensionally uniform. It becomes a pattern. This is why this antenna is called a three-dimensional isotropic antenna. Figure 7 shows data indicating this. According to this, it can be seen that each pattern demonstrates the three-dimensional omnidirectionality of this antenna. Therefore, when a high-frequency current is applied to this antenna, the radiating center position is radiated from one of the geometrical center points of the antenna, and ghosts are unlikely to occur even when used for TV reception. By emitting radio waves in this way, almost perfect three-dimensional pattern isotropic performance was recognized in the laboratory (Fig. 7 is not in an aluminum case).
また本発明の等方性アンテナでは、 球状絶縁体を量産性を考慮して平面外郭構 造として構成できることが確認されている。 つまり巻枠 1 1の内部には充填する 必要がなく中空部を残したままでも良い (図 1 ) 。  It has also been confirmed that the isotropic antenna of the present invention allows the spherical insulator to be configured as a planar outer structure in consideration of mass productivity. That is, it is not necessary to fill the inside of the bobbin 11 and the hollow portion may be left (FIG. 1).
<通信アンテナとしての実施例 >  <Example as communication antenna>
このアンテナの電波発射能力はダイポ一ルアンテナを上周り、 SWR (STA ND I NG WAVE R A T I 0 ) 低下の範囲は大変広く複数のバンドで使用 できる (図 9〜12では SWRの低下範囲と実測インピーダンスを示した) 。 実 例に従えば直径 75 mmの絶緣球にコイルの長さが 12 m (総計 36 m並列) の ものでは、 HFの 10mバンド、 VHFの 2 mバンドで S W Rが十分低下するこ とが図 9、 図 1 1から分かる。  The radio wave emission capability of this antenna exceeds that of a dipole antenna, and the SWR (STAD NG WAVE RATI 0) degradation range is very wide, and it can be used in multiple bands (Figs. 9 to 12 show the SWR degradation range and measured impedance). Indicated) . According to the actual example, if the coil length is 12 m (36 m in parallel) on a 75 mm diameter insulated sphere, the SWR will be sufficiently reduced in the 10 m band of HF and the 2 m band of VHF. It can be seen from FIG.
本発明のアンテナを電波発射アンテナとして使用する場合は軽金属のシールド ケースに収納することが図 9、 図 1 1により必要であることが分かる。 軽金属の シールドケースに収納した本発明のアンテナで実際に 144MH zのアマチュア 無線実験バンドで使用したところ、 高圧送電線直下に本発明のアンテナを地面に 直接置いた状態でも通信ができ、 ダイポールアンテナより送受信、 通話の明瞭度 は優れており、 到達距離もダイポールアンテナに比して 40 %以上延びていた。 本発明のアンテナは、 送信の際には整合を行ったダイポールアンテナに近似し て、 図 10から読み取れるように放射インピーダンスが約 70才一ムであった。 また放射能力は本発明のアンテナ本体をアルミケースを収めると改善がみられ、 図 9によりその使用可能周波数範囲も大幅に拡大することが確認された。 従って このアンテナを用いて航空 VH F通信 (1 18〜136MHz) が可能である。 本発明のアンテナを TV受信用室内アンテナとして試験したところ、 室内アン テナとして従来多用されてきたダイポールアンテナと比べて受信電流能力、 受信 解像度の面では表 1一 1及び表 1 - 2に示す如く遜色が無いばかりか、 若干の優 勢を確認した。 【表 1一 1】 及び 【表 1— 2】 。 When the antenna of the present invention is used as a radio wave emitting antenna, it is understood from FIGS. 9 and 11 that it is necessary to store the antenna in a light metal shield case. When the antenna of the present invention housed in a light metal shield case was actually used in an amateur radio experiment band of 144 MHz, communication was possible even when the antenna of the present invention was placed directly on the ground directly below the high-voltage transmission line. The clarity of transmission / reception and communication was excellent, and the range was extended by more than 40% compared to the dipole antenna. The antenna of the present invention approximated a matched dipole antenna at the time of transmission, and had a radiation impedance of about 70 years as can be read from FIG. In addition, the radiation performance was improved when the antenna body of the present invention was housed in an aluminum case, and FIG. 9 confirmed that the usable frequency range was greatly expanded. Therefore, airborne VHF communication (118 to 136MHz) is possible using this antenna. When the antenna of the present invention was tested as an indoor antenna for TV reception, Compared with the dipole antenna that has been widely used as a tenor, the reception current capability and the reception resolution are not inferior to each other as shown in Table 11-1 and Table 1-2, and a slight advantage is confirmed. [Table 11] and [Table 1-2].
< TVアンテナとしての実施例 >  <Example as TV antenna>
本発明のアンテナを TV受信用アンテナとし、 屋外アンテナとして八木一宇田 アンテナと対比して試験したところ条件により若干の変動はあるが通常電界地区 では混合器で結ばれた、 VHF、 UHF用八木一宇田アンテナの統合出力に比し て、 本発明のアンテナでは映像能力は、 VH Fバンドではほぼ同等、 UHFパン ドでは相当優勢に立つことが確認された。 【表 2— 1、 2— 2、 2— 3】 。 等方性アンテナの T V受信アンテナとしての適性を評価するため東京地区にお いて東京タワーより近距離の 5 KM地点 (上野公園科学博物館前の市街地) を起 点にして東北東方向国道 4号線沿いに TV受信基材を自動車に積み込み各場所の 平地部分で、 各アンテナ (基準となる 5素子の八木 =宇田型アンテナの場合 (A ) と等方性アンテナの場合 (B) ) を、 各地点で 4 mの低高度と 5 mの中高度の 高さにポールで上げそれぞれ電界強度試験と 1台の TV受信機に接続し、 映像評 価 (減点法 5段階 =NHK方式) を行った。 この際基準となる 5素子の八木 =宇 田型アンテナ (A) は直接増幅を経ず、 等方性アンテナ試験モデル (C) につい ては、 直接及び、 30 dBVU兼用増幅機を使用した状態を記録し、 順に起点の 5 KM地点 (上野公園) 、 中距離の 1 5 KM地点 (竹の塚元淵江公園) 及ぴ遠距 離の 25 KM地点 (埼玉県越谷市白子鳩公圜) 、 同じく 35KM地点として (埼 玉県庄和町水上公園) で各データーを記録し、 全体を集計して図 1 3の結果を得 た。  When the antenna of the present invention was used as a TV receiving antenna and tested as an outdoor antenna in comparison with an Ichiya Yagi antenna, there were slight variations depending on the conditions, but in a general electric field area, the Yagiichi Yagi for VHF and UHF was used. As compared with the integrated output of the Uda antenna, it was confirmed that the imaging ability of the antenna of the present invention was almost equal in the VHF band, and considerably superior in the UHF band. [Table 2-1, 2, 2 and 2-3]. To evaluate the suitability of an isotropic antenna as a TV receiving antenna, along the National Highway No. 4 starting from the 5 KM point (in the city area in front of the Ueno Park Science Museum) in the Tokyo area, which is a short distance from Tokyo Tower. The TV receiving base material is loaded into the car, and each antenna (the standard five-element Yagi = Uda type antenna (A) and isotropic antenna (B)) at each location is Each pole was raised to a low altitude of 4 m and a medium altitude of 5 m, and each was connected to one electric field strength test and one TV receiver for video evaluation (5 points of deduction method = NHK method). At this time, the five-element Yagi-Uda antenna (A), which is the reference, does not undergo direct amplification, and the isotropic antenna test model (C) uses the direct and 30 dB VU dual-purpose amplifiers. 5 KM at the starting point (Ueno Park), 15 KM at the middle distance (Takenotsukamoto Fukue Park) and 25 KM at the long distance (Shiroko Pigeon Park, Koshigaya City, Saitama Prefecture) (Showa-cho Minakami Park, Saitama Prefecture), and recorded the data.
またアンテナを移動体用 TV受信アンテナとして、 海上を移動する船舶に設置 して実際に受信したところ、 20マイル以上の沖合でも明瞭に受信できた。 これ は VHFで八木—宇田アンテナ 5素子相当を上周り、 UHFでは 1 2素子相当の 能力であり、 方向の調整を必要としなかった。  In addition, when the antenna was installed on a ship moving on the sea as a mobile TV receiving antenna and it was actually received, it was clearly received even offshore more than 20 miles. This is more than 5 elements equivalent to Yagi-Uda antenna at VHF, and equivalent to 12 elements at UHF, and did not require direction adjustment.
本発明のアンテナを UHFの移動体通信アンテナとして 80 OMH zバンドの 携帯電話のダウンリンク通信強化用アンテナとして沖合船舶に搭載し実験を試み たところ、 その着信到達距離を 1. 7~2倍に拡大した。 その際沖合の波浪の中 でも最低受信利得を確保し、 船の動揺でも通話が中段することはなかった。 この 際アンテナ切替え機と低減衰ケーブルを使用した。 When the antenna of the present invention was mounted on an offshore ship as a UHF mobile communication antenna as an antenna for enhancing downlink communication of a mobile phone in the 80 MHz band, an experiment was conducted, and its arrival range was increased by 1.7 to 2 times. Expanded. In that case, in the waves offshore However, the minimum reception gain was ensured, and no call was interrupted even when the ship was shaking. At this time, an antenna switching device and a low attenuation cable were used.
本発明のアンテナの有効周波数と周波数範囲は、 使用するコイル長さによって と主して規定され、 この際のコイルのリアクタンスレベルが基底線によって、 適 度に調整される。 基定線に非磁性体金属を使用した場合 UHF、 VHF用途とな り磁性体金属を使用した場合は ULF、 LF、 MF、 HF用途となる。  The effective frequency and the frequency range of the antenna of the present invention are mainly defined by the length of the coil used, and the reactance level of the coil at this time is appropriately adjusted by the base line. If a non-magnetic metal is used for the base line, it will be used for UHF and VHF, and if a magnetic metal is used, it will be used for ULF, LF, MF and HF.
VHF以上の周波数で TV受信で使用する際には、 軽金属の基底線を使用する と、 磁気ヒステリシスが発生することもなく、 また空中線効果による攪乱 (ノィ ズ混入) も起こさない。 また外皮のケースは適度のシールド効果を与え、 静電効 果により効率を高める。 外皮のケースの効果は受信時の口一パス 'フィルターの 作用ばかりでなく、 送信時の反射波の低下範囲を大幅に拡大し、 電気的性能を大 幅に向上させる。  When used for TV reception at frequencies above VHF, the use of a light metal base line does not cause magnetic hysteresis and does not cause disturbance (noise mixing) due to the antenna effect. In addition, the outer case gives a moderate shielding effect and increases the efficiency by the electrostatic effect. The effect of the outer casing is not only the function of the mouth-pass filter at the time of reception, but also greatly expands the range of reduction of the reflected wave at the time of transmission, and greatly improves the electrical performance.
以上のように本発明のアンテナによれば直接ケ一プルを接続して通信を行う周 波数帯域が複数に及び、 また広いのでマルチパンド通信を単一のアンテナで行う ことが十分可能である。 これはこれまでどのアンテナも達成できなかつたレベル で実現された。  As described above, according to the antenna of the present invention, the frequency band in which communication is performed by directly connecting a cable spans a plurality of bands and is wide, so that multi-band communication can be performed with a single antenna. This has been achieved at a level never before achieved by any antenna.
本発明のアンテナにより受信を行う場合に使用できる周波数範囲の具体的事例 を示す。 1 2mコイルを巻いた試作モデルでは 4MH zより 1 00 OMH z ( 1 GH z) までのマルチメディァ受信が可能で (図 14、 図 1 5) 、 短波ラジオ、 短波気象 FAX受信、 VHFの FM放送、 VHF、 U H Fの T V受信今後開始予 定の地上波デジタル TV放送、 NHK総合多重文字放送、 等が移動体上、 固定局 で受信可能である。 また中波のラジオにおいても 1 OM全長のダイポ一ルアンテ ナ並の受信能力を発揮している (ゲルマニウムラジオで確認) 。  A specific example of a frequency range that can be used when receiving with the antenna of the present invention will be described. The prototype model with a 12 m coil can receive multimedia from 4 MHz to 100 MHz (1 GHz) (Fig. 14, Fig. 15), short-wave radio, short-wave weather fax reception, VHF FM broadcast , VHF, UHF TV reception Terrestrial digital TV broadcasts scheduled to start in the future, NHK comprehensive multiplex teletext, etc. can be received on mobiles and at fixed stations. It also has the same reception capability as a 1 OM full-length dipole antenna on medium-wave radios (confirmed on germanium radios).
一方、 本発明のアンテナで電波を発射し、 放送、 中継相互的通信を行う場合に は簡単な設計上の調整操作で整合回路を不要にし、 常時安定した電気特性と反射 波抑圧特性を持つ。 実例を示すと各軸のインピーダンスが 200オームであった ものが、 3軸結合で約 70オームとなり、 50オーム又は 75オーム系のケ一ブ ルに直結して結合が可能である。  On the other hand, when the antenna of the present invention emits a radio wave and performs broadcast and relay mutual communication, a matching circuit is not required by a simple design adjustment operation, and stable electric characteristics and reflected wave suppression characteristics are always maintained. As an example, the impedance of each axis is 200 ohms, but it becomes about 70 ohms by triaxial coupling, and it is possible to connect directly to a 50 ohm or 75 ohm type cable.
本発明のアンテナ Aは各種の方法で様々な装置、 機器に装着ないし搭載するこ とができる。 例えば自動車 3 0に取り付ける場合は強力マグネッ ト 3 1により自 動車の屋根や後部トランクの裏側等に固定することができる (図 1 6 ( a ) ) 。 この場合釣鐘型のケース (図 1 6 ( b ) ) に収納し、 この底部にて固定しても良 い。 また本発明のアンテナ Aは航空機搭載用としても優れている。 この場合、 機 体 3 2の背面上等に設置する (図 1 7 ) 。 さらに従来の空中線のように、 ポール 上に配置する方法も取り得る。 産業上の利用可能性 The antenna A of the present invention can be mounted or mounted on various devices and devices by various methods. Can be. For example, when it is mounted on an automobile 30, it can be fixed to the roof of the automobile or the back side of the rear trunk by a strong magnet 31 (Fig. 16 (a)). In this case, it may be stored in a bell-shaped case (Fig. 16 (b)) and fixed at the bottom. Also, the antenna A of the present invention is excellent for use on an aircraft. In this case, it is installed on the back of the body 32 (Fig. 17). In addition, it can be placed on a pole like a conventional antenna. Industrial applicability
本発明のアンテナは実用上完全な 3次元等方性を有しその特性は同調状態のレ ベルとは影響なく作用し、 その結果受信状態における方向性は音声通信では全く 認められず、 映像受信でもほとんど認められない。 送信動作においても同様であ る。 さらに本発明のアンテナ本体をアルミニウムケースに収納すると無指向レべ ルの完全性は喪失するが実用上認められる偏位は発生しない程度になる。  The antenna of the present invention has practically perfect three-dimensional isotropy, and its characteristics operate without affecting the level of the tuning state. As a result, the directionality in the receiving state is not recognized at all in voice communication, and But hardly ever. The same applies to the transmission operation. Further, when the antenna body of the present invention is housed in an aluminum case, the integrity of the omnidirectional level is lost, but the deviation which is practically recognized does not occur.
本発明のアンテナは短波受信の際フエ一ジングに対する抑止機能があり (理由 はフエ一ジングが偏波面の回転によるものであるためと考えられる。 ) 、 また T V映像ではゴーストの防止能力があり、 これまで全方向アンテナで問題となつた ゴーストの発生が認められない。 また自動車、 モータ一パイク等に搭載したと き、 ェンジンの点火等による電気的ノィズの混入が少ない。  The antenna of the present invention has a function of suppressing fogging during short-wave reception (the reason is considered to be that faging is caused by rotation of the polarization plane). Until now, no ghost has been observed, which is a problem with omnidirectional antennas. Also, when mounted on automobiles, motor pikes, etc., there is little mixing of electrical noise due to engine ignition.
本発明のアンテナは電波の発射を伴う、 通信に用いると、 ロケーション · ダイ バーシティ性能が向上し、 最低利得保証が常時可能になり中断等が減少する。 例 えば携帯電話外部ァンテナに用いると音質が明瞭になる。 本発明のアンテナは非 接地形の双極子アンテナに厲し、 電波発射に当たって周囲の物体との干渉が少な い。  When the antenna of the present invention is used for communication involving emission of radio waves, location / diversity performance is improved, minimum gain guarantee is always possible, and interruptions and the like are reduced. For example, when used for a mobile phone external antenna, the sound quality becomes clear. The antenna of the present invention is a non-grounded dipole antenna, and has little interference with surrounding objects when emitting radio waves.
本発明のアンテナはエネルギー効率も良く、 S W R低下範囲が大きく、 インピ —ダンス整合能力も良好である。 利得は + 2 . 5 d B前後である。 ダイポールよ り若干優勢でその 3次元無指向性能 (等方性) はこれまでのどのアンテナにも勝 る。  The antenna of the present invention has good energy efficiency, a large SWR reduction range, and good impedance matching capability. The gain is around +2.5 dB. Slightly superior to dipoles, its three-dimensional omnidirectional performance (isotropic) is superior to any previous antenna.
本発明のアンテナの S W R低下範囲は大変広く、 アルミニウム密着ケースに入 れて格段に大きくなり、 有効周波数範囲はどのアンテナにも勝るほど大きい。 概 ね中心周波数の 6〜7 %前後が電波発射可能である。 また複数バンドの使用が可 能である。 The SWR reduction range of the antenna of the present invention is very wide, and becomes significantly larger when placed in an aluminum contact case, and the effective frequency range is greater than any antenna. Outline Around 6-7% of the center frequency can emit radio waves. Multiple bands can be used.
本発明のアンテナを単に受信用アンテナとして使用した場合、 最も効率の良い 周波数のプラスマイナス 5 0倍前後の範囲で、 具体的には中波から U H Fまでの 範囲を実用的に受信できる単一の超広帯域受信アンテナが実現できる。  When the antenna of the present invention is simply used as a receiving antenna, a single antenna capable of practically receiving the most efficient frequency in the range of about ± 50 times the frequency, specifically, in the range from the medium wave to the UHF. An ultra-wide band receiving antenna can be realized.
本発明のアンテナは受信動作においては、 電波エネルギーの内、 磁界成分のみ を直接電気エネルギーに変換する磁界アンテナとして動作し、 その際は近傍電磁 界による電気的干渉が起きないためノィズの混入が減少する効果がある。 このた め、 T Vアンテナとして使用したとき、 近くの電気スイッチの開閉によるノイズ の混入が防がれる。  In the receiving operation, the antenna of the present invention operates as a magnetic field antenna that directly converts only a magnetic field component out of radio wave energy into electric energy, and in that case, there is no electrical interference due to a nearby electromagnetic field, so that noise is reduced. Has the effect of doing Therefore, when used as a TV antenna, noise is prevented from being mixed in by opening and closing a nearby electric switch.
本発明のアンテナを T V受信アンテナとして使用する場合、 室内、 屋外等固定 局で使用して八木—宇田アンテナに匹敵する受信能力を発揮する。 また高所設置 が必要ないので、 アンテナ取り付けが容易である。 今後開始される U H F地上デ ジタル放送の普及にも有益である。  When the antenna of the present invention is used as a TV receiving antenna, the antenna of the present invention is used in a fixed station such as indoors and outdoors, and exhibits a receiving ability comparable to that of the Yagi-Uda antenna. Also, installation at high altitudes is not required, so antenna installation is easy. It is also useful for the spread of UHF terrestrial digital broadcasting that will be started in the future.
自動車、 船舶、 航空機等において各種の放送を受信する場合は、 ラジオ、 T V 放送を問わず明瞭な受信が可能であり、 安定した受信状態を保持することができ る。 電波を発射する際には、 電気的共振が十分起きて、 高い利得で電波を全方向 均等に発射する。 このためこれまでの M S Lアンテナのような送信と受信の著し いアンバランスは発生しない。  When receiving various broadcasts on automobiles, ships, aircraft, etc., it is possible to receive clearly regardless of radio or TV broadcasts, and to maintain a stable reception state. When emitting radio waves, electrical resonance occurs sufficiently and the radio waves are emitted uniformly in all directions with a high gain. For this reason, a remarkable imbalance between transmission and reception unlike the conventional MSL antenna does not occur.
本発明のアンテナを特に移動体通信、 なかでも 3次元的高速移動体である航空 機に搭載し航空無線用に使用した場合には (図 1 7 ) 、 従来絶えず問題となった 機体と通信相手との相対的位置関係の変動による受信状態の変動を大幅に軽減す ることができる。 本発明のアンテナの達成した 3次元等方性は、 機体とアンテナ との干渉、 機体と通信相手の方向の変動による通信状態の変動に悩む航空機の通 信アンテナの問題を解決する。 本発明の特徴が最大限発揮される形態であり、 社 会的有効性が高い。  In particular, when the antenna of the present invention is mounted on an airplane, which is a mobile communication, particularly a three-dimensional high-speed mobile body, and is used for aeronautical radio (FIG. 17), the airframe which has been a constant problem in the past and the communication partner It is possible to greatly reduce the fluctuation of the reception state due to the fluctuation of the relative positional relationship with the reception. The three-dimensional isotropy achieved by the antenna of the present invention solves the problem of a communication antenna of an aircraft that suffers from interference between the airframe and the antenna and fluctuations in communication conditions due to fluctuations in the direction between the airframe and the communication partner. This is a form in which the features of the present invention are maximized, and has high social effectiveness.
機体とアンテナ相互の関係でおきるパターンの不良問題は最善に回避される。 機体とアンテナの干渉がなく放射パターンが綺麗に保持され、 方向性がなく機体 の姿勢に拘らず良好な通信ができる。 また通信状態そのものが改善され、 音質の 面で大幅に改善できる。 いわゆる死角をもたないので、 運行の安全という点でも 有利になる。 加えて有効周波数が大きく A T Uを装着する必要がないので、 チヤ ンネルの変更による通話状態の変動が起きない。 また低空での V 0 Rの受信状態 が改善される。 本発明のものは、 航空機の遭難時等、 緊急位置通報が必要な状況 において破壊衝撃に強いとともに位置変動が少なく、 確実に送信を開始できる。 【表 3】 。 表 3は本発明のアンテナ (図 5に示したもの) を用いて行った衝撃試 験の内容を示す。 同表によれば、 本発明のアンテナの強度は 1 0 0 G 3方向の外 力に耐えることが立証されている。 The problem of pattern defects caused by the relationship between the airframe and the antenna is best avoided. There is no interference between the aircraft and the antenna, and the radiation pattern is maintained beautifully, and there is no direction and good communication can be performed regardless of the attitude of the aircraft. Also, the communication status itself has been improved, In terms of performance. Since there is no so-called blind spot, it is also advantageous in terms of operational safety. In addition, since the effective frequency is large and there is no need to attach an ATU, there is no change in the call state due to channel changes. In addition, the reception state of VOR in low altitude is improved. According to the present invention, in a situation where an emergency position report is required, such as in the event of an aircraft distress, the transmission is strong and resistant to destruction impact, and the start of transmission can be reliably started. [Table 3]. Table 3 shows the contents of the impact test performed using the antenna of the present invention (shown in Fig. 5). According to the table, it has been proved that the strength of the antenna of the present invention can withstand an external force in the direction of 100 G3.
有人無人宇宙機器に搭載した場合には、 重量の面で大幅に有利になり、 また宇 宙船内における無線的データ電送区間に使用して電線の重量を軽減する。 宇宙空 間においては特に等方性が重要な局面が多く、 有人無人を問わず宇宙開発機器に とって有用である。  When installed in manned and unmanned space equipment, it will have a significant advantage in terms of weight, and will be used in wireless data transmission sections in spacecraft to reduce the weight of electric wires. In space, isotropy is particularly important in many situations, and it is useful for space development equipment, manned or unmanned.
本発明のアンテナを用いて、 無線 L A N等室内でコンピュータ一情報を伝送す る際には等方性と有効バンド幅の拡大機能が相まってデジタル通信の能力を高め る。 ダイポール系アンテナに比して、 スペクトラム拡散方式等、 特定バンドの広 い周波数での対応が必要なデジ夕ル通信情報の伝送、 中継に適合する。  When transmitting information from a computer in a room such as a wireless LAN using the antenna of the present invention, the capability of digital communication is enhanced by combining the isotropy and the function of increasing the effective bandwidth. Compared to dipole antennas, it is suitable for the transmission and relay of digital communication information that requires a wide range of frequencies in a specific band, such as a spread spectrum method.
本発明のアンテナは、 従来のアンテナでは非常に実現困難であった、 波長の長 い電波利用を簡単且つ軽便な施設で利用することを可能にする。 例えば、 超長波 を利用して陸上施設と潜水艦を結ぶ手段としてこれまで大変長大であったアンテ ナ施設を極小規模のァンテナに置き換えることが可能になると考えられる。 長波 を利用して地中の探査を行う地下探査レーダ一については本発明のアンテナによ る、 1点放射能力を利用してその精度を上げ、 地雷探査、 地下資源の探査の精度 を上げることが可能である。  The antenna of the present invention makes it possible to use radio waves with a long wavelength in a simple and convenient facility, which was very difficult to realize with conventional antennas. For example, it would be possible to replace very long antenna facilities with ultra-small antennas as a means of linking land facilities and submarines using very long waves. To improve the accuracy of underground exploration radars that perform underground exploration using long waves by using the one-point radiation capability of the antenna of the present invention to improve the accuracy of landmine exploration and exploration of underground resources Is possible.
海上の通信手段で主力であった、 長波、 中波利用にあたってこれまでは長いヮ ィヤーが使用されて来たがこれらが不要になり、 通信の精度を上げることが可能 になる。 特に小型軽量であるから、 通信、 放送アンテナの大きさ、 専有空間を大 幅に縮減することが可能になる。 なお、 中波利用事例では高速道路で使用されて きた、 中波の情報伝達用アンテナを 1 0 c m以内の直径の球体空間に収容するこ とが可能である。 以上のように本発明のアンテナによれば、 その 3次元等方性、 広帯域マルチバ ンド性能及び小型化技術の活用が望まれるとともに、 放送、 中継、 移動体通信の 向上を図ることが可能であるから、 電波利用事業、 輸送交通活動の一層の量的、 質的向上を達成できる。 Until now, long waves and medium waves, which have been the mainstays of marine communication means, have used long wires, but these are no longer required, and communication accuracy can be improved. In particular, because they are small and lightweight, it is possible to significantly reduce the size of communication and broadcast antennas and the space occupied by them. In the case of medium-wave use, the medium-wave information transmission antenna used on expressways can be accommodated in a spherical space with a diameter of 10 cm or less. As described above, according to the antenna of the present invention, it is desired to utilize its three-dimensional isotropy, wideband multiband performance, and miniaturization technology, and to improve broadcasting, relaying, and mobile communication. Therefore, it is possible to achieve further quantitative and qualitative improvements in the radio wave utilization business and transport activities.
【表 1— 1】
Figure imgf000017_0001
[Table 1-1]
Figure imgf000017_0001
2 m ά m 4 m 5 m 6 m 了 m 8 m 9 m 10 m 11m 平均 基準測定値 6 9 7 0 6 9 6 4 6 3 6 9 7 0 6 了 6 T 一 基準 2 m ά m 4 m 5 m 6 m end m 8 m 9 m 10 m 11 m average reference measured value 6 9 7 0 6 9 6 4 6 3 6 9 7 0 6 end 6 T 1 reference
1 S 0直結 4 2 4 9 5 1 5 4 5 3 5 了 6 0 6 0 6 0 6 51 S 0 Direct connection 4 2 4 9 5 1 5 4 5 3 5 End 6 0 6 0 6 0 6 5
(指数) 61% 70% 74% 84% 84% 83% 86% 90% 90% —% 83%(Index) 61% 70% 74% 84% 84% 83% 86% 90% 90% —% 83%
1 S 0増幅 5 了 了 4 7 6 8 4 7 8 了 8 8 1 8 5 8 6 6 51 S 0 Amplification 5 End 4 7 6 8 4 7 8 End 8 8 1 8 5 8 6 6 5
(指数) 83% 106% 110% 131% 123% 113% 116% 127% 128% -- % 119%(Index) 83% 106% 110% 131% 123% 113% 116% 127% 128%-% 119%
1 S 0映像 4,3 4,6 4,6 4,7 4,9 3,9 4,6 4,9 4,7 5,0 一1 S 0 Video 4,3 4,6 4,6 4,7 4,9 3,9 4,6 4,9 4,7 5,0 One
(指数) —% 94% 92% 100% 104% 89% 105% 111% 96% --% 99% 八木連結直 一 了 6 了 0 了 0 了 5 了 7 了 4 了 4 了 6 ― ―(Index) —% 94% 92% 100% 104% 89% 105% 111% 96%-% 99% Yagi Consolidated Nao 6 6 0 0 0 5 5 7 4 4 4 6--
(指数) 109% 101¾ 109% 119% 112% 106% 110% ― 110% 八木連結像 一 4,9 5,0 4,7 4,7 4,4 4,4 4,4 4,9 一 ―(Index) 109% 101¾ 109% 119% 112% 106% 110% ― 110% Yagi consolidated image 4,9 5,0 4,7 4,7 4,4 4,4 4,4 4,9 1 ―
(指 a) 一 00 100 100% ■100 100 100% 100% Ou 一 基準 八木単独 一 6 9 6 9 了 0 7 1 了 3 了 1 了 0 了 1 一 一(Finger a) 1 00 100 100% ■ 100 100 100% 100% Ou 1 Standard Yagi alone 1 6 9 6 9 R 0 7 1 R 3 R 1 R 0 R 1
(指数) 一 99% 100% 109% 11 。 106% 101% 104% 106 一 105% 八木単独像 一 5,0 5,0 4,7 4,7 4,4 4,4 4,9 4,9 ― ―(Index) One 99% 100% 109% 11. 106% 101% 104% 106 1 105% Yagi single image 5,0 5,0 4,7 4,7 4,4 4,4 4,9 4,9 ― ―
(指数) 一 102% 100% 100% 100% 100% 100% 100% 100% ― 100% テレポ一 ϋ: 5 9 6 0 6 3 6 7 6 8 6 8 6 了 6 6 6 7 ―(Index) One 102% 100% 100% 100% 100% 100% 100% 100% ― 100% Teleport ϋ: 5 9 6 0 6 3 6 7 6 8 6 8 6 End 6 6 6 7 ―
(指数) 一 86% 91% 131% 108% 99% 96% 99% 100% ― 101% テレボ — ト 像 5,0 5,0 4,7 4,7 4,4 4,4 4,9 4,9 一 ―(Index) 86% 91% 131% 108% 99% 96% 99% 100% ― 101% Teleboats 5,0 5,0 4,7 4,7 4,4 4,4 4,9 4, 9 One ―
(指数) 96% 100% 104% 106% 111% 114% 90% 100% ― 103% 総括 〇 V H Fバン ド平均は中電界である。 (Index) 96% 100% 104% 106% 111% 114% 90% 100% ― 103% Summary 〇 V HF band average is medium electric field.
O V H Fについては映像能力で八木アンテナと同等。  OVHF is equivalent to Yagi antenna in video capability.
〇利得については直接的比較が困難である (増幅すると飽和状態の為) 〇 It is difficult to directly compare gains (because amplification causes saturation)
OH,PAT.関係で I S Oアンテナについては、 5 mで十分動作している 場所 埼玉市秋ケ瀨公園 (荒川河川^) 垂直移動計測事例 (ISO,八木標準) 曰時 2 0 0 3年 1 月 2 4日 (金) 中電界、 U H F近距離 処理: 当日 OH, PAT. Regarding ISO antenna, 5m works well Location Akiga Park, Saitama City (Arakawa River ^) Vertical movement measurement example (ISO, Yagi standard) Time: January 24, 2003 (Friday) Medium electric field, UHF short-distance processing: On the day
3 8ch受信 2 m 3 m 4 m 5 m 6 m 了 m 8 m 9 m 10m 11m 平均 基準測定値 7 4 6 3 6 了 6 7 6 5 5 6 6 6 6 3 6 1 一 基準3 8 channel reception 2 m 3 m 4 m 5 m 6 m end m 8 m 9 m 10 m 11 m average reference measurement value 7 4 6 3 6 end 6 7 6 5 5 6 6 6 6 3 6 1 1 reference
1 S 0直結 6 了 5 2 6 了 6 3 5 7 4 2 5 5 5 0 5 4 ―1 S 0 Direct connection 6 End 5 2 6 End 6 3 5 7 4 2 5 5 5 0 5 4 ―
(指数) 91% 83% 100% 94% 88% 75% 83% 79% 89% 一 86%(Index) 91% 83% 100% 94% 88% 75% 83% 79% 89%-86%
1 S 0増幅 9 4 8 1 9 1 8 6 8 3 7 8 8 2 8 0 了 5 一一 一1 S 0 Amplification 9 4 8 1 9 1 8 6 8 3 7 8 8 2 8 0 End 5 1 1 1 1
(指数) 127% 129% 136% 137% 128% 139% 124% 127% 123% 一 130%(Index) 127% 129% 136% 137% 128% 139% 124% 127% 123% One 130%
1 S 0映像 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 4,0 一1 S 0 Video 5,0 5,0 5,0 5,0 5,0 5,0 5,0 5,0 4,0 One
(指数) 100% 100% 125% 167% 100% 250% 250% 250% 一 155% 八木連結直 一 5 5 5 5 6 9 4 7 5 2 5 1 5 了 4 5 一 一(Index) 100% 100% 125% 167% 100% 250% 250% 250% 1 155% Naoichi Yagi 5 5 5 5 6 9 4 7 5 2 5 1 5 End 4 5 1 1
(指 a) 一 87% 82% 103% 82% 93¾ 77% 90% 74% 86% 八木連結増 ― 8 6 8 4 8 9 8 1 7 9 8 5 8 了 8 4 一 "~ - (Finger a) one 87% 82% 103% 82% 93¾ 77% 90% 74% 86% Yagi consolidated increase ― 8 6 8 4 8 9 8 1 7 9 8 5 8 end 8 4 1 "~-
(指数) 一 137% 125% <J j) 124% 141% 129% 138% 138% 133% 八木連結像 一 5,0 4,0 3,0 5,0 2,0 2,0 2,0 一 (Index) 1 137% 125% <J j) 124% 141% 129% 138% 138% 133% Yagi connected image 5,0 4,0 3,0 5,0 2,0 2,0 2,0
(指数) 一 100% 100% 100% 100% 100% 100% 100% 一 一 基準 (Index) 100% 100% 100% 100% 100% 100% 100%
?レボ — ト 直 6 4 6 3 6 0 6 2 6 4 5 9 5 8 5 了 4 1 一 一? Revo — G 6 4 6 3 6 0 6 2 6 4 5 9 5 8 5 End 4 1
(指数) 95% i00% 89% 93% 98% 105% 88% I 90% 77% ― 93% 総括 OU H Fバン ドでのローカル正常受信状態である。 (Index) 95% i00% 89% 93% 98% 105% 88% I 90% 77%-93% General Local OUHF band local normal reception status.
〇映像能力で八木アンテナに大幅優位確認。  大幅 Confirmed significantly superiority to Yagi antenna for video capabilities.
※土手の地形による影響又は偏波不整合現象か映像再現不能である。 ◦ I S Oアンテナと八木アンテナの電流値がほぼ等しい。  * The image cannot be reproduced because of the influence of the topography of the bank or the polarization mismatching phenomenon. ◦ The current values of the ISO antenna and the Yagi antenna are almost equal.
V H F電波到来方向とが会わない状態である。  The VHF radio wave arrival direction does not match.
O通常電界では圧倒的に画像度優位である。  O In an ordinary electric field, the image quality is overwhelmingly superior.
〇ハイ トパターンでは 1 S 0アンテナで 4 mで必要十分な高さになる。 【表 2 - 1】 で は In the height pattern, the required height is sufficient at 4 m with the 1 S0 antenna. [Table 2-1]
I SOアンテナ関連テクニカルデーター  Technical data related to ISO antenna
VSWRの変化推移デ一夕一 (VHFバンドでの SWR計測結果)  Changes in VSWR change over time (SWR measurement results in VHF band)
〈アルミケースに入れない状態での S WR)  <S WR without aluminum case)
I SOアンテナ関連 (I SO— 75— 12M=コイル 12 M並列巻き) I SO antenna related (I SO— 75— 12M = coil 12M parallel winding)
VSWR IMPEDANCE VSWR IMPEDANCE
133MHz 2. 4 110 ohm 133MHz 2.4 110 ohm
134MHz 1. 7 100 o hm134MHz 1.7 100 o hm
135MHz 1. 6 72 ohm135MHz 1.672 ohm
136MHz 1. 5 60 o hm136MHz 1.5 60 o hm
137MHz 1. 7 52 ohm137MHz 1.72 ohm
138MHz 1. 7 60 ohm138MHz 1.60 ohm
139MHz 1. 8 80 ohm139MHz 1.8 8 ohm
140MHz 1. 9 60 ohm140MHz 1.96 ohm
141MHz 2. 0 90 o hm 141MHz 2.0 90 o hm
【表 2- 2】 [Table 2-2]
〈アルミケースに入れた状態での S WR〉  <S WR in aluminum case>
120. OMHz 8. 0 90 o hm120.OMHz 8.0 90 o hm
130. OMHz ' 8. 0 60 ohm130.OMHz '8.00 ohm
137. 5MH z 2. 2 137.5 MHz 2.2
138. OMH z 2. 0  138. OMH z 2.0
138. 5MHz 1. 7 A I R BAND 138.5 MHz 1.7 AIR BAND
139. OMHz 1. 7 139. OMHz 1.7
139. 5MHz 1. 8  139.5 MHz 1.8
140. OMH z 1. 8 90 o hm 140. OMH z 1.8 90 o hm
140. 5MHz 1. 7 140.5MHz 1.7
141. OMHz 1. 8 75 o hm 141. OMHz 1.87 75 hm
141. 5MHz 1. 6 141.5 MHz 1.6
142. OMHz 1. 6 70 o hm 142. OMHz 1. 6 70 o hm
142. 5MHz 1. 7 142.5MHz 1.7
143. OMHz 1. 8 60 ohm 143. OMHz 1.86 ohm
143. 5 MHz 1. 8 60 o hm143.5 MHz 1.86 ohm
144. OMH z 1. 5 60 ohm144. OMH z 1.5 60 ohm
144. 5MH z 1. 4 70 o hm144.5MH z 1.4 70 o hm
145. OMH z 1. 4 75 ohm145. OMH z 1.4 75 ohm
145. 5MHz 1. 5 80 ohm145.5 MHz 1.5 80 ohm
146. OMHz 1. 7 90 o hm146. OMHz 1. 7 90 o hm
146. 5 MH z 1. 8 90 ohm146.5 MHz 1.8 1.8 90 ohm
147. OMHz 1. 8 90 ohm147. OMHz 1.88 90 ohm
147. 5 MHz 1. 8 147.5 MHz 1.8
148. OMHz 2. 8 95 o hm 148. OMHz 2. 8 95 o hm
148. 5MH z 2. 7 148.5MHz 2.7
149. OMHz 1. 7 95 o hm 149. OMHz 1. 7 95 o hm
150. OMHz 1. 6 70 ohm150.OMHz 1.70 ohm
150. 5MH z 1. 7 150.5 MHz 1.7
151. OMH z 1. 7 60 o hm 151. OMH z 1. 7 60 o hm
151. 5MHz 1. 8 151.5 MHz 1.8
152. OMHz 1. 8 65 o hm 152. OMHz 1. 8 65 o hm
152. 5MHz 1. 6 152.5 MHz 1.6
153. OMHz 1. 5 75 o hm 153. OMHz 1.5 5 o hm
153. 5 MHz 1. 5 153.5 MHz 1.5
154. OMHz 1. 6 100 ohm 154. OMHz 1.6 6 ohm
154. 5MHz 1. 6 154.5 MHz 1.6
155. OMHz 1. 8 120 o m 155. 5MHz 1. 9 155. OMHz 1. 8 120 om 155.5 MHz 1.9
156. OMHz 1. 9 120 o hm  156. OMHz 1. 9 120 o hm
156. 5MHz 1. 9  156.5 5MHz 1.9
157. OMHz 1. 8 110 o hm  157. OMHz 1. 8 110 o hm
157. 5 MHz 1. 6  157.5 MHz 1.6
158. OMHz 1. 5 90 o hm  158. OMHz 1.5 5 ohm
158. 5 MHz 1. 4  158.5 MHz 1.4
159. OMHz 1. 3 80 o hm  159. OMHz 1.3 3 80 o hm
159. 5MHz 1. 4  159.5 MHz 1.4
160. OMHz 1. 4 70 o hm  160. OMHz 1. 4 70 o hm
160. 5MHz 1. 3  160.5 MHz 1.3
161. OMHz 1. 2 70 ohm  161. OMHz 1.2 70 ohm
161. 5MHz 1. 3  161.5 MHz 1.3
162. OMHz 1. 3 80 ohm  162. OMHz 1.3 80 ohm
162. 5MHz 1. 3  162.5 MHz 1.3
163. OMHz 1. 2 90 ohm  163. OMHz 1.2 90 ohm
163. 5MHz 1. 4  163.5 MHz 1.4
164. OMHz 1. 5 90 o hm  164. OMHz 1.5 5 ohm
164. 5 MHz 1. 5  164.5 MHz 1.5
165. OMHz 1. 4 100 ohm  165. OMHz 1.4 4 ohm
165. 5 MHz 1. 4  165.5 MHz 1.4
166. OMHz 1. 5 90 o hm  166. OMHz 1.5 5 ohm
166. 5MHz 1. 5  166.5 MHz 1.5
167. OMHz 1. 5 70 o hm  167. OMHz 1.5 5 ohm
167. 5 MHz 1. 8  167.5 MHz 1.8
168. OMHz 2. 1 55 o m  168. OMHz 2. 1 55 o m
170. OMHz 2. 5 30 ohm 上記のとおり、 138. 5 MHz - 167. 5 MH zの 29 MH z、 中心周波数対比では 15 0MHzを中心として + _10%と驚異的広帯域で SWRが 2. 0以下となった又 1. 5以下範 囲は 144一 164と 2 OMHzもある状態で I MPEDANCEは 70 o hm前後で同調して いる。 なお、 144一 146MHzでアマチュア無線の通信テストを行った。 その結果は良好で 同調特性が優秀であった。 【表 2 - 3】 170. OMHz 2.5 30 ohm As mentioned above, 138.5 MHz-167.5 MHz at 29 MHz, + _10% centered at 150 MHz compared to center frequency, with an incredible wideband SWR of less than 2.0 In addition, the 1.5 and lower ranges are 144-164 and 2 OMHz, and IMPEDANCE is tuned around 70 ohm. An amateur radio communication test was performed at 144-146 MHz. The results were good and the tuning characteristics were excellent. [Table 2-3]
(HFバンドでは次とおり) 10mバンド ケ— -スに入っている時  (For the HF band, as follows) When in the 10m band case
26. 0MHz 2 . 2 75 o hm  26.0MHz 2.2 75 o hm
26. 5MHz 2. 0 80 o hm  26.5MHz 2.0 80 o hm
27. 0 MHz 1. 7 85 o hm 使用 27.0 MHz 1.7 8 ohm used
27. 5MHz 1. 7 75 o hm 可能27.5MHz 1.7 7 ohm possible
28. 0 MHz 1. 6 75 o hm 範囲28.0 MHz 1.6 75 o hm range
28. 5 MHz 1. 3 60 o hm 28.5 MHz 1.3 60 o hm
28. 6 MHz 1. 3  28.6 MHz 1.3
28. 8 MHz 1. 2 最 28.8 MHz 1.2
28. 9 MHz 1. 2 . 適合28. 9 MHz 1.2
29. 0 MHz 1. 2 50 o hm 麵29.0 MHz 1.2 50 o hm
29. 2 MHz 1. 3 29.2 MHz 1.3
29. 5 MHz 1. 7 50 o hm  29.5 MHz 1.7 50 o hm
29. 6 MHz 1. 6  29.6 MHz 1.6
29. 7 MHz 1. 7  29.7 MHz 1.7
29. 9 MHz 2. 2  29.9 MHz 2.2
30. OMHz 2. 4 70 o hm  30. OMHz 2. 4 70 o hm
30. 5 MHz 3. 0 90 o hm  30.5 MHz 3.0 90 o hm
ケース無しの時  When there is no case
24. OMHz 5. 0 180 o hm  24.OMHz 5.0 180 o hm
24, 5 MHz 4. 1 90 o hm  24, 5 MHz 4.1 1 90 hm
25. OMHz 3. 5 80 o hm  25. OMHz 3.5 80 o hm
25. 5 MHz 2. 5 55 o hm  25.5 MHz 2.5 55 o hm
26. OMHz 1. 9 35 o hm  26. OMHz 1.9 35 o hm
26. 5MHz 1. 7 25 o hm  26.5MHz 1.25 25 hm
27. OMHz 2. 0 25 o hm  27. OMHz 2.0 25 o hm
27. 5 MHz 2. 5 30 o hm  27.5 MHz 2.5 30 o hm
28. OMHz 3. 0 55 o hm  28. OMHz 3.0 55 o hm
28. 5MHz 3. 7 80 o hm  28.5MHz 3.7 80 hm
29. OMHz 3. 8 105 o hm  29. OMHz 3.8 105 o hm
29. 5 MHz 4. 8 140 o hm  29.5 MHz 4.8 140 o hm
30. OMHz 4. 9 190 o hm アルミ密着ケースに入れると中心周波数が少し上がり、 又インピーダンスが倍増し、 より適切 になる。 但しコイルの巻き方による個体差もある。 【表 3】 30. OMHz 4.9 190 ohm When placed in an aluminum contact case, the center frequency is slightly increased and the impedance is doubled, making it more appropriate. However, there are individual differences depending on how the coils are wound. [Table 3]
TR— ANT— BOO 1 纖項目 装置名称 I soアンテナ 隱曰当音曙 觀隱 mm X-B022 難日当者 山田 TR— ANT— BOO 1 Fiber item Equipment name I so antenna Oki Odori Tone Akebono mm X-B022 Difficult day person Yamada
1 '纖曰: 2003年 2月 14曰 1 'Fiber says: February 14, 2003
気温: 22°C : 47% 赃 1002hpa  Temperature: 22 ° C: 47% 赃 1002hpa
2. 使用設備 2. Equipment used
衝 矣装置 Autoお ller棚 SER: 05Ό0290-0336  Auto ller shelf SER: 05Ό0290-0336
S M 110規格 (所有離:東京都 r産難術 /  S M 110 standard (ownership: Tokyo
3.試觸所:繊 i r牵難術研麵開麵縫 3.Touching place: Fiber i r
4. 牛: J I S C0912 1984に準ず 4. Cow: According to JIS C0912 1984
5. ¾ ^法:衝»¾装置により、正、横、逆の 3方向に衝撃を加える。 5. ¾ ^ method: The impact is applied in three directions: forward, side, and reverse by the impact device.
衝撃の大きさは、 30、 40、 50、 100Gと大きくして行き、 衝撃を加える毎に分解して断線ゃ磁員の無いことを ¾¾、一方向 終了 ma電して動作を する。  The magnitude of the shock is increased to 30, 40, 50, and 100G, and each time the shock is applied, it is disassembled and disconnected. There is no magnetic member.
6. 判定講:翻、断線の無い事。 6. Judgment course: no breaks.
7. I»結果: 3 | に 100 Gを加えても異常なし。 7. I »result: No abnormalities when adding 100 G to 3 |
8. 判定: 合格 8. Judgment: Pass

Claims

請求の範囲 The scope of the claims
1 . 放射パターンが全ての方向に対して一様である等方性アンテナであって、 電 気的絶縁体よりなり、 相互に直交する 3軸の周りに導線の巻回部を有する巻枠を 有し、 非磁性体金属よりなる導線を芯材として巻枠の巻回部の基底部に直列又は 並列に巻き付け、 この芯材部の外層に、 非磁性体金属よりなる絶縁導線を用いて 、 3系統のコイルエレメン卜を夫々形成し、 3軸の周りに、 全て独立して巻回さ れた上記のコイルエレメントを相互に直列又は並列に接続し、 受信又は送信に供 するように構成されたことを特徴とする等方性アンテナ。  1. An isotropic antenna whose radiation pattern is uniform in all directions, is made of an electrical insulator, and has a winding frame with windings of conductor around three mutually orthogonal axes. Using a conductive wire made of a non-magnetic metal as a core material and winding it in series or parallel around the base of the winding part of the bobbin, using an insulated conductive wire made of a non-magnetic metal as an outer layer of the core material portion, Each of the three coil elements is formed, and the above-mentioned coil elements, all wound independently around three axes, are connected in series or parallel to each other to provide reception or transmission. An isotropic antenna characterized in that:
2 . 芯材として巻枠に巻き付ける導線は、 より線又は単線からなり、 巻枠巻回部 における基底部の全幅にわたっている請求項 1記載の等方性アンテナ。  2. The isotropic antenna according to claim 1, wherein the conductive wire wound around the bobbin as the core material is made of a stranded wire or a single wire, and extends over the entire width of the base portion of the bobbin winding portion.
3 . 巻枠は、 ほぼ球状を有しているとともに、 球の中心を交点とする 3直交軸の 周りの円に相当する、 巻枠の表面に形成された溝状部分をコイルエレメントの巻 回部として有している請求項 1記載の等方性アンテナ。  3. The bobbin has a substantially spherical shape, and a groove-shaped portion formed on the surface of the bobbin, which corresponds to a circle around an orthogonal axis at the intersection of the center of the sphere, is wound around the coil element. 2. The isotropic antenna according to claim 1, wherein the isotropic antenna is provided as a part.
4 . コイルエレメントの巻回部は、 巻枠の直径に対する比率が 1 2〜; 1 / 1 6 の幅を有している請求項 2記載の等方性アンテナ。  4. The isotropic antenna according to claim 2, wherein the winding portion of the coil element has a width relative to the diameter of the winding frame of 12 to 1/16.
5 . コィルエレメン卜の巻回部は、 卷枠の直怪に対する比率が 1 / 2〜1 / 1 6 の深さを有している請求項 2記載の等方性アンテナ。  5. The isotropic antenna according to claim 2, wherein the winding part of the coil element has a depth of 1/2 to 1/16 in a ratio of the winding frame to the straight line.
6 . 電気的絶縁体よりなる巻枠を有し、 非磁性体金属よりなる絶縁導線を用いて 、 巻枠の相互に直交する 3軸の周りに、 3系統のコイルエレメントを夫々形成し 、 3軸の周りに全て独立して巻回された上記のコイルエレメン卜を相互に並列に 接続し、 受信又は送信に供するように構成されたアンテナ本体を非磁性体金属製 のケース内に収納してなる請求項 1記載の等方性アンテナ。  6. Having a bobbin made of an electrical insulator, and using an insulated conducting wire made of a non-magnetic metal, three coil elements are formed around three mutually orthogonal axes of the bobbin, respectively. The above-mentioned coil elements, all wound independently around the axis, are connected in parallel with each other, and the antenna body configured to be used for reception or transmission is housed in a non-magnetic metal case. The isotropic antenna according to claim 1.
7 . 非磁性体金属製のケースは、 アンテナ本体のコイルエレメントの少なく とも 一部がケース内面に密着するように収納されており、 ケースの形状は立方体、 上 半部を球形とした釣鐘形、 或いは球形である請求項 6記載の等方性アンテナ。  7. The non-magnetic metal case is housed so that at least a part of the coil element of the antenna body is in close contact with the inner surface of the case. The shape of the case is a cube, the upper half is a bell-shaped, 7. The isotropic antenna according to claim 6, wherein the antenna is spherical.
PCT/JP2003/003835 2003-03-26 2003-03-26 Isotropic antenna WO2004086559A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003227272A AU2003227272A1 (en) 2003-03-26 2003-03-26 Isotropic antenna
PCT/JP2003/003835 WO2004086559A1 (en) 2003-03-26 2003-03-26 Isotropic antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/003835 WO2004086559A1 (en) 2003-03-26 2003-03-26 Isotropic antenna

Publications (1)

Publication Number Publication Date
WO2004086559A1 true WO2004086559A1 (en) 2004-10-07

Family

ID=33045142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003835 WO2004086559A1 (en) 2003-03-26 2003-03-26 Isotropic antenna

Country Status (2)

Country Link
AU (1) AU2003227272A1 (en)
WO (1) WO2004086559A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2439495B (en) * 2005-05-13 2010-09-22 Charles Machine Works Dipole locator using multiple measurement points
WO2018188878A1 (en) * 2017-04-13 2018-10-18 Siemens Aktiengesellschaft Coil former for producing an eddy current sensor, eddy current sensor and apparatus in order to wind a coil wire onto the coil former for producing such an eddy current sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155207U (en) * 1984-03-23 1985-10-16 渡邉 義雄 indoor tv antenna
JPH0534708U (en) * 1991-10-04 1993-05-07 セイコー電子工業株式会社 Signal input / output device
JP2000196353A (en) * 1998-12-21 2000-07-14 Valeo Securite Habitacle Low frequency communication equipment by electromagnetic coupling
JP2001148608A (en) * 1999-11-19 2001-05-29 Smart Card Technologies:Kk Stereoscopic antenna
JP2001297918A (en) * 2000-04-11 2001-10-26 Mitsubishi Electric Corp Coil antenna and portable communication apparatus
JP2002190705A (en) * 2000-12-21 2002-07-05 Kiyoshi Yamamoto Small antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155207U (en) * 1984-03-23 1985-10-16 渡邉 義雄 indoor tv antenna
JPH0534708U (en) * 1991-10-04 1993-05-07 セイコー電子工業株式会社 Signal input / output device
JP2000196353A (en) * 1998-12-21 2000-07-14 Valeo Securite Habitacle Low frequency communication equipment by electromagnetic coupling
JP2001148608A (en) * 1999-11-19 2001-05-29 Smart Card Technologies:Kk Stereoscopic antenna
JP2001297918A (en) * 2000-04-11 2001-10-26 Mitsubishi Electric Corp Coil antenna and portable communication apparatus
JP2002190705A (en) * 2000-12-21 2002-07-05 Kiyoshi Yamamoto Small antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2439495B (en) * 2005-05-13 2010-09-22 Charles Machine Works Dipole locator using multiple measurement points
WO2018188878A1 (en) * 2017-04-13 2018-10-18 Siemens Aktiengesellschaft Coil former for producing an eddy current sensor, eddy current sensor and apparatus in order to wind a coil wire onto the coil former for producing such an eddy current sensor
KR20190134761A (en) * 2017-04-13 2019-12-04 지멘스 악티엔게젤샤프트 Coil forming machine for manufacturing eddy current sensor, eddy current sensor and apparatus for winding coil wire on coil forming machine for producing such eddy current sensor
RU2729404C1 (en) * 2017-04-13 2020-08-06 Сименс Акциенгезелльшафт Coil main body for making eddy current sensor, eddy current sensor, as well as coil wire coil reeling device on coil main body for making such eddy current sensor
KR102241030B1 (en) * 2017-04-13 2021-04-16 지멘스 악티엔게젤샤프트 A coil forming machine for manufacturing an eddy current sensor, an eddy current sensor, and an apparatus for winding a coil wire on a coil forming machine for manufacturing such an eddy current sensor

Also Published As

Publication number Publication date
AU2003227272A1 (en) 2004-10-18

Similar Documents

Publication Publication Date Title
US6791508B2 (en) Wideband conical spiral antenna
US6023245A (en) Multi-band, multiple purpose antenna particularly useful for operation in cellular and global positioning system modes
US7821463B2 (en) Mobile telephone with broadcast receiving element
KR102279153B1 (en) Shark pin antenna
JP4913900B1 (en) Antenna device
US8493278B2 (en) Antennas and methods to provide adaptable omnidirectional ground nulls
JPH0219006A (en) Construction of antenna for transmitting and receiving circularly polarized electromagnetic wave
US20120081259A1 (en) Inverted-U Crossed-Dipole Satcom Antenna
JPH0514028A (en) Glass antenna for vehicle
US8988303B1 (en) Extended performance SATCOM-ORIAN antenna
US20110298679A1 (en) Compact ultra-wide bandwidth antenna with polarization diversity
US7348933B2 (en) Compact multi-polarized antenna for portable devices
JPH09298413A (en) On-vehicle window glass antenna system
Carr Directional or omnidirectional antenna
JPS6048626A (en) Portable radio equipment
WO2004086559A1 (en) Isotropic antenna
JPH07297617A (en) Glass antenna
Scholz et al. Basic antenna principles for mobile communications
JP4713368B2 (en) Antenna device
Sadiq et al. Null-filled shaped beam horizontally polarized omnidirectional antenna
CN206451815U (en) A kind of boat-carrying communication in moving
CN105337028A (en) Antenna system
US11843184B1 (en) Dual band, singular form factor, transmit and receive GNSS antenna with passively shaped antenna pattern
CN114094321B (en) Antenna device and communication apparatus thereof
JPH0993027A (en) Helical/loop type surface radiation antenna and radio

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase