WO2004086008A1 - Method for measuring pore size of porous filter material - Google Patents

Method for measuring pore size of porous filter material Download PDF

Info

Publication number
WO2004086008A1
WO2004086008A1 PCT/JP2004/003102 JP2004003102W WO2004086008A1 WO 2004086008 A1 WO2004086008 A1 WO 2004086008A1 JP 2004003102 W JP2004003102 W JP 2004003102W WO 2004086008 A1 WO2004086008 A1 WO 2004086008A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
gas
pressure
gas flow
pore size
Prior art date
Application number
PCT/JP2004/003102
Other languages
French (fr)
Japanese (ja)
Inventor
Tomonori Takahashi
Original Assignee
Ngk Insulators Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators Ltd. filed Critical Ngk Insulators Ltd.
Publication of WO2004086008A1 publication Critical patent/WO2004086008A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters

Definitions

  • the present invention provides a method for evaluating a filter related to the average pore diameter by applying a so-called bubble point method. More specifically, the present invention provides a pore size measurement method capable of evaluating a filter body related to an average pore size that is useful for practical use in a filter body in which pores of a ceramic body or the like are three-dimensionally complicated. . Background art
  • Evaluation of the average pore diameter of various filtration media is essential as evaluation of the basic performance, and various evaluation methods such as a bubble point method, a mercury method, and a bacterial filtration method have been conventionally performed. Above all, the bubble point method is widely used for quality control of various types of filtration media because of relatively simple measurement.
  • the measurement of the average pore diameter in this method is performed by: Using the assumption that the ratio of the amount of gas permeated through the body equals the ratio of the amount of permeated gas permeating through pores larger than the pore diameter corresponding to the gas pressure at each stage, with respect to the permeated gas permeating through all pores. (“ANUAL BOOK ⁇ F AMER I CAN STANDARDS” vo l. 1 1.01, AMER I CAN SOC I ETY FOR TEST I NG AND MATER I AL
  • a filter body not filled with the test liquid hereinafter referred to as “dry filter body” and a filter body filled with the test liquid (hereinafter referred to as “wet filter body”) are included.
  • dry filter body a filter body not filled with the test liquid
  • wet filter body a filter body filled with the test liquid
  • Each filter is placed on a holder with each end sealed, and a pressurized gas is supplied to one surface of each filter, and the pressure of the pressurized gas is increased step by step.
  • the amount of gas passing through each filter is detected, and the ratio of the gas flow rate passing through the wet filter to the gas flow rate passing through the dry filter (wet filter Z dry filter) corresponds to the gas pressure corresponding to 1Z2.
  • the pore diameter is regarded as the average pore diameter (MFPD), and is determined from the following equation (1).
  • MFPD is the average pore diameter ( ⁇ m)
  • 0 is the contact angle (°) of the test liquid filled in the pores of the filter with the material constituting the filter
  • is the filtration Surface tension (NZm) of the test liquid filled in the pores of the body
  • B is a constant number of cavities (0.715) or 1
  • P is the gas passing through the wet filter relative to the gas flow through the dry filter
  • MPa gas pressure
  • 0 may usually approximate 0 degree.
  • the gas-liquid interface waits until the gas-liquid interface has sufficiently developed to the pore openings of the filter.
  • the gas flow path of the wet filter through which the gas passes is part of the gas through the dry filter. It is based on the assumption that it is the same as the transmission path.
  • the present invention has been made in view of the above-described problems, and can accurately and highly accurately measure an average pore diameter of a filter having three-dimensionally intricate pores. It is an object of the present invention to provide a method for measuring the pore size of a filter, which enables quality evaluation reflecting the performance of the filter. As a result of earnest studies to solve the above-mentioned problems, the present inventor has obtained the following knowledge regarding the point that an appropriate evaluation result could not be obtained by the conventional method.
  • the fluid to be filtered in the ordinary filtration flows in a distribution determined by the connection of the pores.
  • Fig. 6 (b) when the gas is passed through the wet filter sequentially from low pressure, the gas starts to permeate preferentially to large pores, which is different from normal filtration.
  • the fluid flow path of the filter is formed by the combination of a plurality of pores and is three-dimensionally complicated and intricate. However, it is easy to follow the path of gas permeation of the dry filter and a path that is significantly different from ordinary filtration.
  • gas permeation depends on one path determined by the gas flow rate.
  • the portion of the gas that enters through a certain pore always permeates through a particular path.
  • the gas pressure is maintained until the so-called saturation
  • the gas circulates largely, and the path through which the gas passes through the reference dry filter is different from the path through which the gas permeates through the wet filter. For this reason, in the conventional method, there is a difference in the actual evaluation target from the reference dry filter, which is a factor that further reduces the accuracy of the evaluation result.
  • the present invention provides a dry filter in a dry state, and a wet filter in which pores of the dry filter are filled with a test liquid, supplying a pressurized gas to each filter, The pressure is increased stepwise, the gas flow permeating through each filter is detected at each gas pressure step, and then the average pore diameter is calculated based on the following equation (1). If the fluid passage time (S) determined by the following formula (2) is less than 3 seconds, then (S) seconds to 30 seconds.
  • the fluid passage time (S) is 3 seconds or more
  • the present invention provides a method for measuring the pore diameter of a body.
  • MFPD is the average pore diameter ( ⁇ m)
  • 0 is the contact angle (°) of the test liquid filled in the pores of the filter with the material constituting the filter
  • a is the contact angle of the filter.
  • B is the capillary constant (0 ⁇ 15) or 1
  • P is the permeability of the wet filter to the gas flow through the dry filter.
  • the gas pressure (MPa) at which the gas flow ratio (wet filter / dry filter) becomes 12 is shown.
  • X is the thickness (m) of the filter in the filtration direction
  • J is the linear velocity (mZs) of the fluid to be filtered in practical use
  • Vs is the viscosity of the test liquid ( P a ⁇ s)
  • Vr is the viscosity (P a ⁇ s) of the fluid to be filtered.
  • the ratio of the gas flow rate passing through the wet filter to the gas flow rate passing through the dry filter is 15 to 1/2. It is preferably carried out in the range, more preferably in all gas pressure stages in this range.
  • the holding time of each gas pressure step in the range where the gas flow rate ratio is 15 to 1/2 is the average of the gas pressure steps in the range where the gas flow rate ratio is 1/5 to 12.
  • the holding time is preferably within 10% of the soil, and more preferably the holding time in the range where the gas flow rate ratio is 1Z5 to 1Z2 is 1 second to 1 minute.
  • the pressure value for increasing the pressure from one gas pressure step to the next gas pressure step is determined by a membrane when the fluid to be filtered is permeated at the linear velocity (J) of the fluid to be filtered in practical use. It is preferable that the pressure increase value is larger than the differential pressure, and each pressure increase value from one gas pressure step to the next gas pressure step in a range where the gas flow rate ratio is 1 to 5 to 1 Z 2 is It is further preferable that the average flow rate is within 20% of the soil in the range where the gas flow rate ratio is 1Z5 to 1/2. Further, it is preferable that each boosted value in the range where the ratio of the gas flow rates is 1Z5 to 12 is 0.01 to 0.04 MPa.
  • FIG. 1 is an explanatory diagram schematically showing the configuration of an apparatus for implementing the evaluation method of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a state in which a filter is installed on a holder in one example of the evaluation method of the present invention.
  • FIG. 3 is a graph showing the relationship between the gas flow rate and the gas pressure detected in each filter (dry filter, wet filter).
  • FIG. 4 is a graph showing the relationship between the average pore diameter and the gas pressure retention time obtained in each of the examples and comparative examples.
  • FIG. 5 is a graph showing the distribution of the average pore diameter when 22 samples were measured by the methods of Example 1 and Comparative Example 8.
  • Figs. 6 (a) and 6 (b) are explanatory diagrams schematically showing the presence of pores in a ceramic filter
  • Fig. 6 (a) is a schematic diagram of the flow of the fluid to be filtered in practical use
  • Fig. 6 (b) schematically shows the gas flow in the conventional measurement method.
  • FIG. 1 shows the flow of a measuring device that is usually used in the evaluation method of the present invention, and includes a pressurized gas supply source 11 and a pressure of a gas introduced from the pressurized gas supply source 11. Control, a pressure sensor 16 for measuring the pressure set by the relevant regulator 12, a holder 10 for installing the filter 2, and a gas flow supplied to the filter. And a flow meter 14 for measurement.
  • FIG. 2 is a cross-sectional view showing a state where the filter body 2 is installed in the holder 10.
  • Fig. 3 is a graph showing the relationship between the permeated gas flow rate and the gas pressure detected in each filter (dry filter and wet filter).
  • H in the graph indicates the permeate gas of the wet filter. It indicates the gas pressure at which the flow rate is 1 Z 2 with respect to the permeate gas flow rate of the dry filter.
  • the seal member 3 is a combination of a polymer such as epoxy or a glaze and a packing, a ring or the like. After measuring the gas permeation amount, install the wet filter 2 in which the pores of the same dry filter 2 are filled with the test liquid with the ends thereof similarly sealed in the holder 10 and measure the gas permeation amount. I do.
  • the filter 2 to be evaluated in the present invention is not particularly limited except that it is a porous body.
  • the filter 2 can be applied to various filter such as filter paper, an organic resin filter, and a ceramic filter.
  • the evaluation method of the present invention It can be particularly preferably applied to a filter body in which pores are complicated and complicated, and in this regard, application to a ceramics filter is preferable.
  • the present invention can also be applied to a ceramics filter in which one or more filtration membranes having different pore diameters are laminated on a porous base material.
  • a plate-shaped filter is shown in FIG. 2, a filter, such as a tube or a monolith, can be measured by preparing a holder.
  • test liquid 4 to be filled in the pores of the dry filter 2 examples include high-purity water, denatured alcohol, and mineral oil as described in D1129 and D1193 of ASTM F316-86. , 1,1,2-trichloro-1,2,2-toluolate, or a fluorine-based inert liquid (trade name: Florinato FC-140, a fluorine-based inert liquid manufactured by SLEM) is preferred.
  • examples of the fluid to be filtered that is to be filtered in actual use include water and petroleum.
  • a stepwise pressurized gas is supplied to one surface of the dry filter and the wet filter, and at this time, in the measurement of the permeated gas of the wet filter, each gas pressure step is measured. If the passage time (S) of the fluid to be filtered determined by the equation (2) is less than 3 seconds, (S) seconds to 30 seconds, and if the passage time (S) of the fluid to be filtered is 3 seconds or more, (S) After holding the wet filter at a constant pressure for a holding time of S) seconds to (SX 10) seconds, the pressure is increased to the next gas pressure stage.
  • the pore diameter can be measured accurately by setting the retention time to 10 times or less the passage time (S) of the fluid to be filtered. However, when (S) is shorter than 3 seconds, (S) Even if the retention time is 30 seconds or less even if the retention time exceeds 10 times, the pore size can be measured with good delicateness.
  • (S) obtained from Expression (2) depends on the linear velocity (J) of the fluid to be filtered in practical use, but (J) is usually used when designing a filtering device using the filtering body. It is set to a known value when the filter is manufactured considering its design. In addition, (J) may be set to have a predetermined width. In that case, (S) also has a predetermined width. In such a case, the above (S) is not more than 3 seconds. ) Max A value of 3 seconds or more and (S) less than 3 seconds means that the maximum value of (S) is less than 3 seconds. Then, the upper limit of the retention time is more likely to be higher when the maximum value is closer to the maximum value of (S), and is preferably 10 times or less, and more preferably 2 times or less, the maximum value of (S). '
  • the holding time is too short, the gas flow rate that should be detected in the pressurization stage is not detected, such as when the gas-liquid interface is moving in a long flow path. Will be smaller than the evaluation result. Therefore, the holding time must be longer than the value of (S). If (S) has a predetermined width, (S) here also means the maximum value. Further, if the holding time is too short, operability and responsiveness of the device will become problematic.
  • the retention time is longer than (S) and as short as possible therein, so that the filtration target fluid to be actually filtered is a filter.
  • the gas pressure is maintained for a time close to the time when the gas passes through. For this reason, the path of the gas in the wet filter is similar to the path through which the fluid to be filtered respectively passes, and the evaluation can sufficiently reflect the performance of the filter in actual use. Since the fluid to be filtered and the test liquid have different viscosities due to differences in viscosity, the time required to pass through the membrane and the time required for gas pressure discharge are different. Is corrected.
  • the gas pressure holding time in each gas pressure stage may be set to a range outside the above setting up to the gas pressure stage where the ratio of the gas flow rates is 1 to 5.
  • the gas pressure holding time in each gas pressure stage should be as small as possible in order to perform accurate and precise evaluation. It is preferable to make them even.
  • the holding time at each gas pressure stage in the range where the ratio of the gas flow rate is 1/5 to 1/2 is set (the wet filter Z and the dry filter) in the range where the ratio is 1/5 to 1/2. It is preferable that the average gas pressure holding time in the entire gas pressure stage be within 10% of soil.
  • the pressure increase value from one gas pressure stage to the next gas pressure stage is larger than the Sarian differential pressure when the fluid to be filtered is permeated at the linear velocity (J) in practical use. Closer is preferred.
  • the pressure is 1 to 10 times the transmembrane pressure. If the pressure increase value is too small, the gas-liquid interface does not move within the holding time, and if it is too large, the resolution of the pore diameter is lost. When there is a range in the transmembrane pressure, it is preferable that the transmembrane pressure is larger than the maximum transmembrane pressure.
  • the pressure increase value is controlled as described above at the gas pressure stage in the range where the gas flow rate ratio is 1/5 to 1/2, and further at all gas pressure stages in this range. Is preferred.
  • the respective boosted values should be as evenly as possible. Is preferred.
  • each boosted value in this range be within ⁇ 20% of the average boosted value in all gas pressure stages in this range.
  • the range in which the pressure holding time and the pressure increase width are managed is preferably from a lower pressure stage when the pore size distribution is wide.
  • the pressure increase value with respect to the previous gas pressure stage in each gas pressure stage, and each gas pressure holding time in each gas pressure stage are as described above, accurate and high accuracy can be obtained, An evaluation reflecting actual performance can be performed, but the average pore diameter is 0.05 to 2 microns, the thickness is 10 to 300 microns, If the flow rate of the filtration fluid is 11 O mZ days, and if the filter body is made of ceramics, considering the performance of the measuring device, the pressure increase value of each gas pressure step with respect to the previous gas pressure step is set to 0.01.
  • the gas pressure holding time in each gas pressure step can be selected from the range of 1 second to 1 minute. When measuring the dry filter, the pressure increase should be longer than the operation time of the device and the holding time longer than the response time. Good.
  • the pressurized gas used in the present invention is preferably, for example, an inert gas such as air, argon, or nitrogen, and is difficult to dissolve in a test liquid, taking into account evaluation conditions, detection means, cost, and the like. What is necessary is just to select suitably.
  • the permeated gas flow rate of each filter body is detected at each gas pressure stage, and the average pore diameter is determined based on equation (1).
  • the gas flow rate detected increases almost in proportion to the pressure increase of the pressurized gas because there is no pressurized gas in the pores. Medium and solid lines).
  • the test fluid to be pressed by the pressurized gas is present in the pores, and until the pressure of the pressurized gas overcomes the resistive force due to the surface tension of the test liquid, the gas is released.
  • One-liquid interface does not move.
  • the flow rate of the permeated gas starts to increase,
  • the gas flow overlaps with the permeated gas flow rate-gas pressure line in the dry filter (shown by the dotted line in the figure).
  • the permeated gas flow rate detected at each gas pressure from the time when the permeated gas flow rate starts to increase to the time when the permeated gas flow rate in the dry filter finally overlaps with the straight line of the gas pressure is determined by a series of gas passages. It changes depending on the pore size distribution of the pores.
  • the gas pressure H at which the flow rate of the permeated gas in the wet filter is 1 to 2 with respect to the flow rate of the permeate gas in the dry filter is determined. / 2), and the pore diameter corresponding to the gas pressure H is defined as the average pore diameter based on the equation (1).
  • the filter body was evaluated using the following sample, test liquid, and fluid to be filtered.
  • test liquid dry filter
  • test liquid dry filter
  • pressurized air was supplied to the pressurized gas supply side.
  • the pressure was increased by 0.017-0.02 IMP a every 30 seconds, and the gas flow rate was measured.
  • the sample was immersed in the test liquid, and the pores in the sample were completely filled with the test liquid.
  • a sample (wet filter) completely filled with the test liquid was placed in a holder of a pore diameter evaluation apparatus with its ends similarly sealed.
  • pressurized air was supplied to the pressurized gas supply side.
  • the gas pressure was maintained at each gas pressure level for 1 second, 2 seconds, 4 to 16 seconds, 9 to 11 seconds, 18 to 22 seconds, 25 to 30 seconds
  • the gas pressure was maintained at each gas pressure stage for 55-65 seconds, 290-310 seconds, 470-490 seconds, 590-610 seconds, and 0.017-0.02 IMP a each.
  • the pressure was increased and the gas flow was measured. From the gas pressure at which the gas flow rate of the wet filter was equal to the gas flow rate of the dry filter, the average pore diameter of each sample was determined based on equation (1).
  • the shorter the retention time the smaller the measurement result of the average pore diameter. If the retention time is longer than S, even if the connection path of the pore through which a part of the fluid to be filtered permeates in practical use is long, the gas permeates through the path even in a wet filter, and is evaluated. If the retention time is closer to S, an excessively long path through which the gas that permeates the dry filter and the part of the fluid to be filtered in practical use cannot permeate is less likely to be included in the evaluation, resulting in an accurate evaluation. . (Examples 7-28, Comparative Examples 5-26)
  • Example 16 The average pore diameter of 22 different samples was determined assuming that the gas pressure holding time in the gas permeation measurement of the wet filter of Example 16 was 911 seconds, and this was set as Example 7-28.
  • the average pore diameter was in the range of 0.13 to 0.15 ⁇ 1 (standard deviation 007).
  • Comparative Example 6-27 in which the gas pressure is maintained until the so-called gas saturation state is reached, and then the pressure is increased, the holding time at each gas pressure stage varies from 30 seconds to 20 minutes, and the average pore diameter Varied from 0.16 to 0.21 m (standard deviation: 0.011), and the average pore diameter was larger than the retention time of about 10 minutes shown in Fig. 4.
  • the present invention it is possible to accurately and accurately evaluate the average pore diameter of a filter having three-dimensionally intricate pores, and furthermore, to perform filtration during actual use. It is possible to provide a method for evaluating a filtration body capable of quality evaluation reflecting the performance of the body.

Abstract

A method for measuring the pore size of a porous filtering material in which pressurized gas is supplied to a dry filtering material and a wet filtering material where the pores are filled with a test liquid, pressure of the pressurized gas is boosted stepwise, flow rate of gas permeating each filtering material is detected at each stage of gas pressure, and then mean pore size is determined based on a mathematical expression (MFPD=(4BϜCOSθ)/P). This method includes a step for boosting a pressure to the next gas pressure stage after holding the wet porous material under a constant pressure for (S)-30 sec when the passing time (S) of a filtrate determined by a mathematical expression (S=(X/J)×Vs/Vr) is shorter than 3 sec, or for (S)-(S×10) sec if the passing time (S) of the filtrate is equal to or longer than 3 sec, where X is the thickness (m) of the filtering material, J is the line speed (m/s) of the filtrate during actual use, Vs is the viscosity (Pas) of the test liquid, and Vr is the viscosity (Pas) of the filtrate. According to the method, mean pore size can be measured with high accuracy for a filtering material having three-dimensionally complicated pores and the quality can be evaluated while reflecting the performance of the filtering material during use.

Description

明 細 書  Specification
多孔質濾過体の細孔径測定方法 技術分野  Method of measuring pore size of porous filter
本発明は、 いわゆるバブルボイント法を応用した平均細孔径に関連する濾過体 の評価方法を提供するものである。 より詳しくは、 セラミックス体等の細孔が 3 次元的に入り組んでいる濾過体において、 実用上有益な平均細孔径に関連する濾 過体の評価が可能な細孔径測定方法を提供するものである。 背景技術  The present invention provides a method for evaluating a filter related to the average pore diameter by applying a so-called bubble point method. More specifically, the present invention provides a pore size measurement method capable of evaluating a filter body related to an average pore size that is useful for practical use in a filter body in which pores of a ceramic body or the like are three-dimensionally complicated. . Background art
各種濾過体の平均細孔径評価は、 その基本性能の評価として必須であり、 従来 より、 バブルポイント法、 水銀法、 細菌濾過法等の各種評価方法が行われている 。 中でも、 バブルポイント法は、 測定が比較的簡易であることから、 各種濾過体 の品質管理等において広く用いられている。  Evaluation of the average pore diameter of various filtration media is essential as evaluation of the basic performance, and various evaluation methods such as a bubble point method, a mercury method, and a bacterial filtration method have been conventionally performed. Above all, the bubble point method is widely used for quality control of various types of filtration media because of relatively simple measurement.
ところで、 当該バブルポイント法は AS TM F 316— 86に記載されてい るが、 各細孔に試験用液体を充填させた濾過体を加圧ガス流路に設置した際、 濾 過体の一の面で濾過体の各細孔中に充填された試験用液体にかかる加圧ガスの圧 力が、 濾過体の各細孔に充填させた試験用液体の表面張力による抵抗力を超えた 際に、 ガス一液界面が濾過体の細孔開口部まで進展してガスが透過することを利 用するものである。 そして、 この方法における平均細孔径の計測は、 上記加圧ガ スを段階的に昇圧した際に、 試験用液体を充填させない濾過体の透過ガス量に対 する、 試験用液体を充填させた濾過体の透過ガス量の割合が、 全細孔を透過する 透過流量に対する、 各段階のガス圧に対応する細孔径以上の細孔を透過する透過 流量の割合に一致する、 と言う仮定を用いている ( 「ANUAL BOOK 〇 F AMER I CAN STANDARDS」 vo l . 1 1. 01、 AMER I CAN SOC I ETY FOR TEST I NG AND MATER I AL  By the way, the bubble point method is described in ASTM F 316-86. However, when a filter in which each pore is filled with a test liquid is installed in a pressurized gas flow path, one of the filters becomes one. When the pressure of the pressurized gas applied to the test liquid filled in each pore of the filter on the surface exceeds the resistance due to the surface tension of the test liquid filled in each pore of the filter, The gas-liquid interface utilizes the fact that the gas-liquid interface extends to the opening of the pores of the filter to allow gas permeation. The measurement of the average pore diameter in this method is performed by: Using the assumption that the ratio of the amount of gas permeated through the body equals the ratio of the amount of permeated gas permeating through pores larger than the pore diameter corresponding to the gas pressure at each stage, with respect to the permeated gas permeating through all pores. (“ANUAL BOOK 〇 F AMER I CAN STANDARDS” vo l. 1 1.01, AMER I CAN SOC I ETY FOR TEST I NG AND MATER I AL
S発行参照) 。 See S issue).
具体的には、 試験用液体を充填させない濾過体 (以下 「乾性濾過体」 という。 ) と、 試験用液体を充填させた濾過体 (以下 「湿性濾過体」 という。 ) とを、 そ れぞれ各端部をシールした状態でホルダ一に設置し、 各濾過体の一の面に、 加圧 ガスを供給し、 加圧ガスの圧力を段階的に昇圧させ、 各ガス圧段階で各濾過体を 透過するガス量を検出し、 乾性濾過体を透過するガス流量に対する湿性濾過体を 透過するガス流量の比 (湿性濾過体 Z乾性濾過体) が 1Z2となるガス圧に対応 する細孔径を平均細孔径 (MFPD) とみなし、 下記数式 (1) から求める。 Specifically, a filter body not filled with the test liquid (hereinafter referred to as “dry filter body”) and a filter body filled with the test liquid (hereinafter referred to as “wet filter body”) are included. Each filter is placed on a holder with each end sealed, and a pressurized gas is supplied to one surface of each filter, and the pressure of the pressurized gas is increased step by step. The amount of gas passing through each filter is detected, and the ratio of the gas flow rate passing through the wet filter to the gas flow rate passing through the dry filter (wet filter Z dry filter) corresponds to the gas pressure corresponding to 1Z2. The pore diameter is regarded as the average pore diameter (MFPD), and is determined from the following equation (1).
MFPD = 4Br COS Θ/Ρ (1)  MFPD = 4Br COS Θ / Ρ (1)
「上記数式 (1) 中、 MFPDは平均細孔径 (^m) 、 0は濾過体の細孔に充填 させた試験用液体の、 濾過体を構成する材料に対する接触角 (° ) 、 τは濾過体 の細孔に充填させた試験液体の表面張力 (NZm) 、 Bはキヤビラリ一定数 (0 . 71 5) 又は 1、 Pは乾性濾過体を透過するガス流量に対する湿性濾過体を透 過するガス流量の比 (湿性濾過体ノ乾性濾過体) が 1/2になるガス圧力 (MP a) を示す。 0は通常 0度と近似しても良い。 」  "In the above formula (1), MFPD is the average pore diameter (^ m), 0 is the contact angle (°) of the test liquid filled in the pores of the filter with the material constituting the filter, and τ is the filtration Surface tension (NZm) of the test liquid filled in the pores of the body, B is a constant number of cavities (0.715) or 1, P is the gas passing through the wet filter relative to the gas flow through the dry filter Indicates the gas pressure (MPa) at which the flow rate ratio (wet filter / dry filter) becomes 1/2. 0 may usually approximate 0 degree. "
従来、 この方法による平均細孔径の評価方法としては、 各ガス圧段階において 、 一定時間のガス流量の変化量が特定数値以下となるまで、 供給する気体のガス 圧を保持し、 その後、 次のガス圧段階まで昇圧する工程を段階的に繰り返す方法 が行われている。 この従来の方法は、 一定時間のガス流量の変化量が特定数値以 下となった状態を、 ガス流量が飽和した状態とみなし、 飽和するまでガス圧を保 持することで、 各ガス圧力でガス一液界面が濾過体の細孔開口部まで充分進展す るのを待つもので、 ガスを透過させている湿性濾過体のガスの流通の経路が、 乾 性濾過体でガスの一部が透過する経路と同じであると言う仮定に基づく。  Conventionally, as a method for evaluating the average pore diameter by this method, in each gas pressure stage, the gas pressure of the supplied gas is held until the amount of change in the gas flow rate for a certain period of time becomes a specific value or less, and then the following There is a method in which the step of increasing the pressure to the gas pressure step is repeated stepwise. According to this conventional method, a state in which the amount of change in the gas flow rate for a certain period of time is equal to or less than a specific value is regarded as a state in which the gas flow rate is saturated, and the gas pressure is maintained until the gas flow is saturated. The gas-liquid interface waits until the gas-liquid interface has sufficiently developed to the pore openings of the filter.The gas flow path of the wet filter through which the gas passes is part of the gas through the dry filter. It is based on the assumption that it is the same as the transmission path.
しかし、 この従来の評価方法は、 実際に評価対象となる濾過体の特性を全く考 慮していなかつたため、 実際の製品に対する評価方法としては、 必ずしも充分な ものではなかった。 発明の開示  However, this conventional evaluation method was not always sufficient as an evaluation method for an actual product because it did not take into account the characteristics of the filter to be actually evaluated. Disclosure of the invention
本発明は、 上述の問題に鑑みなされたもので、 3次元的に入り組んだ細孔を有 する濾過体について、 平均細孔径の測定を、 正確且つ高精度で行うことができ、 しかも実使用時の濾過体の性能を反映した品質評価が可能な濾過体の細孔径測定 方法を提供することを目的とする。 本発明者は、 上述の課題を解決するべく鋭意研究した結果、 従来の方法で適切 な評価結果が得られなかつた点に関し、 以下の知見を得た。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and can accurately and highly accurately measure an average pore diameter of a filter having three-dimensionally intricate pores. It is an object of the present invention to provide a method for measuring the pore size of a filter, which enables quality evaluation reflecting the performance of the filter. As a result of earnest studies to solve the above-mentioned problems, the present inventor has obtained the following knowledge regarding the point that an appropriate evaluation result could not be obtained by the conventional method.
即ち、 図 6 ( a ) に示すように、 実際に評価対象となる濾過体では、 通常の濾 過における被濾過流体は、 細孔のつながりにより決まった分布で流通する。 これ に対し、 図 6 ( b ) に示すように、 湿性濾過体にガスを低圧から順次流通させる 場合には、 大きい細孔を優先してガスが透過しはじめるため、 通常の濾過とは異 なる経路をたどる。 殊に多孔質セラミックスにあっては、 濾過体の流体流路が、 複数の細孔の結合によって形成され、 3次元的に複雑に入り組んで存在するため 、 湿性濾過体の部分的なガス透過は、 乾性濾過体のガス透過の部分や、 通常の濾 過とは大きく異なる経路をたどり易い。  That is, as shown in FIG. 6 (a), in the filter to be actually evaluated, the fluid to be filtered in the ordinary filtration flows in a distribution determined by the connection of the pores. On the other hand, as shown in Fig. 6 (b), when the gas is passed through the wet filter sequentially from low pressure, the gas starts to permeate preferentially to large pores, which is different from normal filtration. Follow the route. In particular, in the case of porous ceramics, the fluid flow path of the filter is formed by the combination of a plurality of pores and is three-dimensionally complicated and intricate. However, it is easy to follow the path of gas permeation of the dry filter and a path that is significantly different from ordinary filtration.
しかし、 従来の評価方法では、 乾性濾過体のガス透過や、 実用時の被濾過流体 の流路に対して、 湿性濾過体の部分的なガス透過が、 このように極めて様々な流 路を経ることが、 評価結果に大きな影響を与える点について全く考慮されていな かったため、 正確性及び奢度の点で充分なものではなく、 また、 各製品の実使用 時の性能を評価する上でも充分なものでもないことがわかった。 更に、 以下に示 す知見を得た。  However, according to the conventional evaluation method, gas permeation of the dry filter and partial gas permeation of the wet filter with respect to the flow path of the fluid to be filtered in practical use pass through such various flow paths. Was not taken into consideration at all in that it had a significant effect on the evaluation results, and was not sufficient in terms of accuracy and delicateness, and was also sufficient in evaluating the performance of each product in actual use. It turned out to be nothing. In addition, the following findings were obtained.
① 従来の評価方法では、 ある圧力における一定時間での湿性濾過体のガス流 量の変化量が特定数値以下となることで、 いわゆるガス飽和状態とみなすことか ら、 長い流路でガス一液界面が移動中にも拘らず、 いわゆるガス透過の飽和とみ なされる場合がある。 このため、 当該長い流路による透過ガスは、 本来のガス圧 段階以降のガス圧段階で検出され、 これが誤差要因となっていた。  (1) In the conventional evaluation method, since the change in the gas flow rate of the wet filter at a certain pressure for a certain period of time is less than a specific value, it is regarded as a so-called gas saturation state. Even when the interface is moving, it may be considered as so-called saturation of gas permeation. For this reason, the permeated gas through the long flow path is detected in a gas pressure stage after the original gas pressure stage, and this is an error factor.
② 従来の評価方法で、 いわゆる飽和までガス圧を保持する場合、 上記①から 明らかなように、 各ガス圧力段階での積み重ねによってガス一液界面が進展する 。 このため、 従来の方法では、 各ガス圧段階の制御機器や測定機器の精度不足に よる評価結果への影響が、 積み重なって増幅され、 これが評価結果の正確性、 及 び精度をより低減させる要因となっていた。  (2) In the conventional evaluation method, when the gas pressure is maintained until the so-called saturation, as is clear from (1) above, the gas-liquid interface develops by stacking at each gas pressure stage. For this reason, in the conventional method, the influence on the evaluation results due to the lack of accuracy of the control equipment and measurement equipment at each gas pressure stage is accumulated and amplified, and this is a factor that further reduces the accuracy and accuracy of the evaluation results. It was.
③ 乾性濾過体では、 ガス透過はガス流速などによって決まるひとつの経路に よる。 ある細孔から入ったガスの部分は常に特定の経路を通って透過する。 従来 の評価方法における湿性濾過体の測定では、 いわゆる飽和までガス圧を保持する が、 保持時間が長くなる場合、 ガスが大きく回り込むなどして、 基準となる乾性 濾過体におけるガスの部分が透過する経路と、 湿性濾過体でガスが透過する経路 が異なってしまう。 このため、 従来の方法では、 基準となる乾性濾過体との実質 的評価対象に差を生じ、 これが評価結果の正確性をより低減する要因となってい た。 ③ In a dry filter, gas permeation depends on one path determined by the gas flow rate. The portion of the gas that enters through a certain pore always permeates through a particular path. In the measurement of wet filter media in the conventional evaluation method, the gas pressure is maintained until the so-called saturation However, when the holding time is long, the gas circulates largely, and the path through which the gas passes through the reference dry filter is different from the path through which the gas permeates through the wet filter. For this reason, in the conventional method, there is a difference in the actual evaluation target from the reference dry filter, which is a factor that further reduces the accuracy of the evaluation result.
④ 実使用時において、 乾性濾過体のガスが通過する場合と同じように、 ある 細孔から入った被濾過流体の部分は特定の経路を通って透過する。 このため、 従 来の方法では、 実使用時の濾過体を透過する被濾過流体の経路と湿性濾過体を透 過するガスの経路が異なり、 この点においても、 実質的評価対象について差を生 じ、 これが、 濾過体の実使用時の性能を充分に反映しない要因となっていた。 本発明者は、 以上の知見に基づき、 更に検討を重ねたところ、 濾過体の一の面 に供給する気体のガス圧を、 各ガス圧段階で、 実際に濾過対象となる被濾過流体 が濾過体を通過する時間を基準として、 これに対する所定比率の保持時間でガス 圧を保持して次のガス圧段階に移行させたところ、 正確且つ高精度で実用上有用 な平均細孔径の評価が可能となることを見出し、 本発明を完成するに至つた。 即ち、 本発明は、 乾燥状態の乾性濾過体、 及び該乾性濾過体の細孔を試験用液 体で充填した湿性濾過体について、 各濾過体に、 加圧ガスを供給し、 加圧ガスの 圧力を段階的に昇圧させ、 各ガス圧段階で該各濾過体を透過するガス流量を検出 し、 次いで、 下記数式 (1) に基づき平均細孔径を求める多孔質濾過体の細孔径 測定方法であって、 下記数式 (2) により求められる被濾過流体通過時間 (S) が 3秒未満の場合には (S) 秒〜 30秒、 被濾過流体通過時間 (S) が 3秒以上 の場合には (S) 秒〜 (SX 1 0) 秒の保持時間、 一定圧力で湿性濾過体を保持 した後、 次のガス圧段階に昇圧させる保持一昇圧工程を含むことを特徴とする多 孔質濾過体の細孔径測定方法を提供するものである。  に お い て In actual use, the part of the fluid to be filtered that enters through a certain pore permeates through a specific path, in the same way as when the gas of the dry filter passes. For this reason, in the conventional method, the path of the fluid to be filtered that passes through the filter in actual use and the path of the gas that passes through the wet filter are different. In this regard, there is a difference between the substantial evaluation targets. This was a factor that did not sufficiently reflect the performance of the filter body during actual use. The present inventor made further studies based on the above findings, and found that the gas pressure of the gas supplied to one surface of the filter body was changed at each gas pressure stage so that the fluid to be filtered was actually filtered. When the gas pressure is maintained at a predetermined ratio of holding time based on the time required to pass through the body and the gas pressure is shifted to the next gas pressure stage, it is possible to accurately and accurately evaluate the practically useful average pore diameter And completed the present invention. That is, the present invention provides a dry filter in a dry state, and a wet filter in which pores of the dry filter are filled with a test liquid, supplying a pressurized gas to each filter, The pressure is increased stepwise, the gas flow permeating through each filter is detected at each gas pressure step, and then the average pore diameter is calculated based on the following equation (1). If the fluid passage time (S) determined by the following formula (2) is less than 3 seconds, then (S) seconds to 30 seconds. If the fluid passage time (S) is 3 seconds or more, Is a porous filtration characterized by including a holding-pressure increasing step of holding the wet filter at a constant pressure for a holding time of (S) seconds to (SX 10) seconds and then increasing the pressure to the next gas pressure stage. The present invention provides a method for measuring the pore diameter of a body.
MFPD- (4Br COS Θ) /Ρ (1)  MFPD- (4Br COS Θ) / Ρ (1)
「上記数式 (1) 中、 MFPDは平均細孔径 (^m) 、 0は濾過体の細孔に充填 させた試験液体の濾過体を構成する材料に対する接触角 (° ) 、 ァは濾過体の細 孔に充填させた試験液体の表面張力 (NZm) 、 Bはキヤピラリー定数 (0. Ί 1 5) 又は 1、 Pは乾性濾過体を透過するガス流量に対する湿性濾過体を透過す るガス流量の比 (湿性濾過体/乾性濾過体) が 1 2になるガス圧力 (MP a) を示す。 」 “In the above formula (1), MFPD is the average pore diameter (^ m), 0 is the contact angle (°) of the test liquid filled in the pores of the filter with the material constituting the filter, and a is the contact angle of the filter. The surface tension (NZm) of the test liquid filled in the pores, B is the capillary constant (0 Ί 15) or 1, P is the permeability of the wet filter to the gas flow through the dry filter. The gas pressure (MPa) at which the gas flow ratio (wet filter / dry filter) becomes 12 is shown. "
S= (X/ J) XV s/V r (2)  S = (X / J) XV s / V r (2)
「上記数式 (2) 中、 Xは濾過体の濾過方向における厚さ (m) であり、 Jは実 用時の被濾過流体の線速度 (mZs) であり、 Vsは試験用液体の粘度 (P a · s) であり、 Vrは被濾過流体の粘度 (P a · s) である。 」  "In the above formula (2), X is the thickness (m) of the filter in the filtration direction, J is the linear velocity (mZs) of the fluid to be filtered in practical use, and Vs is the viscosity of the test liquid ( P a · s) and Vr is the viscosity (P a · s) of the fluid to be filtered. ”
本発明において、 前記保持一昇圧工程を、 乾性濾過体を透過するガス流量に対 する湿性濾過体を透過するガス流量の比 (湿性濾過体 Z乾性濾過体) が 1 5〜 1/2となる範囲において行うことが好ましく、 この範囲の全ガス圧段階におい て行うことが更に好ましい。 また、 前記ガス流量の比が 1 5〜 1/2となる範 囲における各ガス圧段階の保持時間を、 前記ガス流量の比が 1 / 5〜 1 2とな る範囲におけるガス圧段階の平均保持時間の土 10%以内とすることが好ましく 、 前記ガス流量の比が 1 Z 5〜 1 Z 2となる範囲における各保持時間を 1秒〜 1 分とすることが更に好ましい。 また、 前記保持—昇圧工程において、 一のガス圧 段階から次のガス圧段階に昇圧させる昇圧値を、 実用時の被濾過流体の線速度 ( J) で被濾過流体を透過させたときの膜差圧より大きな昇圧値とすることが好ま しく、 前記ガス流量の比が 1ノ 5〜 1 Z 2となる範囲における一のガス圧段階か ら次のガス圧段階に昇圧する各昇圧値を、 前記ガス流量の比が 1 Z 5〜 1 / 2と なる範囲における平均昇圧値の土 20%以内とすることが更に好ましい。 また、 前記ガス流量の比が 1Z5〜 1 2となる範囲における各昇圧値を 0. 01〜0 . 04 MP aとすることが好ましい。 図面の簡単な説明  In the present invention, in the holding-pressurizing step, the ratio of the gas flow rate passing through the wet filter to the gas flow rate passing through the dry filter (wet filter Z dry filter) is 15 to 1/2. It is preferably carried out in the range, more preferably in all gas pressure stages in this range. The holding time of each gas pressure step in the range where the gas flow rate ratio is 15 to 1/2 is the average of the gas pressure steps in the range where the gas flow rate ratio is 1/5 to 12. The holding time is preferably within 10% of the soil, and more preferably the holding time in the range where the gas flow rate ratio is 1Z5 to 1Z2 is 1 second to 1 minute. Further, in the holding-pressurizing step, the pressure value for increasing the pressure from one gas pressure step to the next gas pressure step is determined by a membrane when the fluid to be filtered is permeated at the linear velocity (J) of the fluid to be filtered in practical use. It is preferable that the pressure increase value is larger than the differential pressure, and each pressure increase value from one gas pressure step to the next gas pressure step in a range where the gas flow rate ratio is 1 to 5 to 1 Z 2 is It is further preferable that the average flow rate is within 20% of the soil in the range where the gas flow rate ratio is 1Z5 to 1/2. Further, it is preferable that each boosted value in the range where the ratio of the gas flow rates is 1Z5 to 12 is 0.01 to 0.04 MPa. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の評価方法を実施するための装置の構成を、 模式的に示す説明 図である。  FIG. 1 is an explanatory diagram schematically showing the configuration of an apparatus for implementing the evaluation method of the present invention.
図 2は、 本発明の評価方法の一例において、 ホルダーに濾過体が設置されてい る状態を模式的に示す断面図である。  FIG. 2 is a cross-sectional view schematically showing a state in which a filter is installed on a holder in one example of the evaluation method of the present invention.
図 3は、 各濾過体 (乾性濾過体、 湿性濾過体) において検出されるガスの流量 とガス圧との関係を示すグラフである。 図 4は、 各実施例及び各比較例において求められた平均細孔径とガス圧保持時 間との関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the gas flow rate and the gas pressure detected in each filter (dry filter, wet filter). FIG. 4 is a graph showing the relationship between the average pore diameter and the gas pressure retention time obtained in each of the examples and comparative examples.
図 5は、 実施例 1及び比較例 8の方法で 2 2個の資料を測定した際の平均細孔 径の分布を示すグラフである。  FIG. 5 is a graph showing the distribution of the average pore diameter when 22 samples were measured by the methods of Example 1 and Comparative Example 8.
図 6 ( a ) 、 (b ) は、 セラミックス製の濾過体における細孔の存在状態を模 式的に示す説明図であり、 図 6 ( a ) は更に実用時における被濾過流体の流れを 模式的に示し、 図 6 ( b ) は更に従来の測定法におけるガスの流れを模式的に示 す。 発明を実施するための最良の形態  Figs. 6 (a) and 6 (b) are explanatory diagrams schematically showing the presence of pores in a ceramic filter, and Fig. 6 (a) is a schematic diagram of the flow of the fluid to be filtered in practical use. Fig. 6 (b) schematically shows the gas flow in the conventional measurement method. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態の一例を、 図面に基づいて各工程毎に具体的に説明 する。 なお、 図 1は本発明の評価方法に、 通常用いられる測定装置のフローを示 すものであり、 加圧ガス供給源 1 1と、 当該加圧ガス供給源 1 1から導入される ガスの圧力を制御するレギユレ一夕 1 2と、 当該レギユレ一夕 1 2で設定された 圧力を測定する圧力センサ 1 6と、 濾過体 2を設置するホルダー 1 0と、 濾過体 に供給されるガス流量を測定する流量計 1 4とを備えている。 また、 図 2は、 濾 過体 2が、 ホルダー 1 0に設置されている状態を示す断面図である。 また、 図 3 は、 各濾過体 (乾性濾過体、 湿性濾過体) において検出される透過ガスの流量と ガス圧との関係を示すグラフであり、 グラフ中の Hは、 湿性濾過体の透過ガス流 量が乾性濾過体の透過ガス流量に対して 1 Z 2となるガス圧を示すものである。 本発明の平均細孔径評価方法は、 まず、 図 1及び図 2に示すように、 乾燥状態 の乾性濾過体 2を、 ホルダ一 1 0にその端部を、 シール部材 3を用いて、 シール した状態で設置する。 シール部材 3はエポキシなどのポリマー、 あるいはグレー ズなどと、 パッキン、 〇リングなどとを組み合わせて用いる。 ガス透過量測定後 、 同じ乾性滤過体 2の細孔を試験用液体で充填した湿性濾過体 2を、 ホルダー 1 0にその端部を同様にシールした状態で設置し、 ガス透過量を測定する。  Hereinafter, an example of an embodiment of the present invention will be specifically described for each process based on the drawings. FIG. 1 shows the flow of a measuring device that is usually used in the evaluation method of the present invention, and includes a pressurized gas supply source 11 and a pressure of a gas introduced from the pressurized gas supply source 11. Control, a pressure sensor 16 for measuring the pressure set by the relevant regulator 12, a holder 10 for installing the filter 2, and a gas flow supplied to the filter. And a flow meter 14 for measurement. FIG. 2 is a cross-sectional view showing a state where the filter body 2 is installed in the holder 10. Fig. 3 is a graph showing the relationship between the permeated gas flow rate and the gas pressure detected in each filter (dry filter and wet filter). H in the graph indicates the permeate gas of the wet filter. It indicates the gas pressure at which the flow rate is 1 Z 2 with respect to the permeate gas flow rate of the dry filter. In the average pore diameter evaluation method of the present invention, first, as shown in FIGS. 1 and 2, a dry filter body 2 in a dry state was sealed in a holder 10 using a sealing member 3. Install in the state. The seal member 3 is a combination of a polymer such as epoxy or a glaze and a packing, a ring or the like. After measuring the gas permeation amount, install the wet filter 2 in which the pores of the same dry filter 2 are filled with the test liquid with the ends thereof similarly sealed in the holder 10 and measure the gas permeation amount. I do.
本発明の評価対象たる濾過体 2としては、 多孔質体であることの他特に制限は なく、 例えば、 濾紙、 有機樹脂性のフィルター、 セラミックスフィルタ一等各種 濾過体に適用することができる。 もっとも、 本発明の評価方法は、 前述したよう に細孔が複雑に入り組んでいる濾過体に特に好ましく適用することができ、 この 点から、 セラミックスフィルターへの適用が好ましい。 また、 多孔質の基材上に 、 細孔径と異なる 1層以上の濾過膜を積層したセラミックスフィルターへの適用 もできる。 更に、 図 2には板状の濾過体を示したが、 ホルダーを用意することで チューブ、 モノリス等の形状の濾過体も測定できる。 The filter 2 to be evaluated in the present invention is not particularly limited except that it is a porous body. For example, the filter 2 can be applied to various filter such as filter paper, an organic resin filter, and a ceramic filter. However, the evaluation method of the present invention It can be particularly preferably applied to a filter body in which pores are complicated and complicated, and in this regard, application to a ceramics filter is preferable. Further, the present invention can also be applied to a ceramics filter in which one or more filtration membranes having different pore diameters are laminated on a porous base material. Furthermore, although a plate-shaped filter is shown in FIG. 2, a filter, such as a tube or a monolith, can be measured by preparing a holder.
本発明において、 乾性濾過体 2の細孔に充填させる試験用液体 4としては、 例 えば、 ASTM F 316— 86の D 1129及び D 1193に記載するような 高純度の水、 変性アルコール、 ミネラルオイル、 1, 1, 2—トリクロロー 1, 2, 2—トルォレート、 あるいはフッ素系不活性液体 (商品名:フロリナ一ト F C一 40、 スリーェム社製フッ素系不活性液体) 等が好ましい。  In the present invention, examples of the test liquid 4 to be filled in the pores of the dry filter 2 include high-purity water, denatured alcohol, and mineral oil as described in D1129 and D1193 of ASTM F316-86. , 1,1,2-trichloro-1,2,2-toluolate, or a fluorine-based inert liquid (trade name: Florinato FC-140, a fluorine-based inert liquid manufactured by SLEM) is preferred.
また、 実際の使用において濾過対象となる被濾過流体としては、 例えば、 水、 石油などを挙げることができる。  In addition, examples of the fluid to be filtered that is to be filtered in actual use include water and petroleum.
次に、 本発明においては、 乾性濾過体、 湿性濾過体の一の面に段階的に昇圧し た加圧ガスを供給するが、 その際、 湿性濾過体の透過ガス測定において、 各ガス 圧段階で、 数式 (2) により求められる被濾過流体通過時間 (S) が 3秒未満の 場合には (S) 秒〜 30秒、 被濾過流体通過時間 (S) が 3秒以上の場合には ( S) 秒〜 (SX 10) 秒の保持時間、 一定圧力で湿性濾過体を保持した後、 次の ガス圧段階に昇圧させる。 各ガス圧段階において、 保持時間をなるベく短くする ことにより、 試験対象たる乾性濾過体及び湿性濾過体間において、 ガスが透過す るそれぞれの経路がより近似することとなるからである。 このため、 正確且つ高 精度の評価が可能となる。 なお、 被濾過流体通過時間 (S) の 10倍以下の保持 時間とすることにより、 精度良く細孔径を測定することができるが、 (S) が 3 秒未満と短い場合には、 (S) の 10倍を超えても保持時間が 30秒以下であれ ば丰奢度良く細孔径を測定することができる。  Next, in the present invention, a stepwise pressurized gas is supplied to one surface of the dry filter and the wet filter, and at this time, in the measurement of the permeated gas of the wet filter, each gas pressure step is measured. If the passage time (S) of the fluid to be filtered determined by the equation (2) is less than 3 seconds, (S) seconds to 30 seconds, and if the passage time (S) of the fluid to be filtered is 3 seconds or more, (S) After holding the wet filter at a constant pressure for a holding time of S) seconds to (SX 10) seconds, the pressure is increased to the next gas pressure stage. This is because, by shortening the holding time at each gas pressure stage, the gas permeation path between the dry filter and the wet filter to be tested becomes more similar. For this reason, accurate and highly accurate evaluation is possible. The pore diameter can be measured accurately by setting the retention time to 10 times or less the passage time (S) of the fluid to be filtered. However, when (S) is shorter than 3 seconds, (S) Even if the retention time is 30 seconds or less even if the retention time exceeds 10 times, the pore size can be measured with good delicateness.
ここで数式 (2) より求められる (S) は、 実用時の被濾過流体の線速度 (J ) に依存するが、 (J) は通常、 該濾過体を用いた濾過装置の設計を行う際に設 定され、 その設計を考慮して濾過体が製造された時点で既知の値となっている。 また、 (J) は、 所定の幅をもって設定される場合もあり、 その際 (S) も所定 の幅を持つこととなるが、 その場合は、 上記 (S) が 3秒以上とは (S) の最大 値が 3秒以上、 (S ) が 3秒未満とは (S ) の最大値が 3秒未満を意味する。 そ して'、 保持時間の上限は、 (S ) の最大値に近い方がより精度が出やすく、 (S ) の最大値の 1 0倍以下、 更に 2倍以下であることが好ましい。 ' Here, (S) obtained from Expression (2) depends on the linear velocity (J) of the fluid to be filtered in practical use, but (J) is usually used when designing a filtering device using the filtering body. It is set to a known value when the filter is manufactured considering its design. In addition, (J) may be set to have a predetermined width. In that case, (S) also has a predetermined width. In such a case, the above (S) is not more than 3 seconds. ) Max A value of 3 seconds or more and (S) less than 3 seconds means that the maximum value of (S) is less than 3 seconds. Then, the upper limit of the retention time is more likely to be higher when the maximum value is closer to the maximum value of (S), and is preferably 10 times or less, and more preferably 2 times or less, the maximum value of (S). '
また、 保持時間が短すぎる場合は、 長い流路においてガス一液界面が移動中で あるなど、 昇圧段階で検出されるべきガス流量が検出されないため、 得られる平 均細孔径に関する評価が、 本来の評価結果より小さい値となってしまう。 従って 保持時間は、 (S ) の値以上でなくてはならない。 なお、 (S ) が所定の幅を持 つ場合には、 ここでの (S ) も、 最大値を意味する。 また、 保持時間が短すぎる と装置の操作性、 応答性の問題が出るため、 保持時間は 1秒以上、 更には 3秒、 特に 5秒以上であることが好ましい。  If the holding time is too short, the gas flow rate that should be detected in the pressurization stage is not detected, such as when the gas-liquid interface is moving in a long flow path. Will be smaller than the evaluation result. Therefore, the holding time must be longer than the value of (S). If (S) has a predetermined width, (S) here also means the maximum value. Further, if the holding time is too short, operability and responsiveness of the device will become problematic.
即ち、 本発明の好ましい態様においては、 各ガス圧段階において、 保持時間を ( S ) より長いが、 かつ、 その中でなるべく短くすることにより、 実際の濾過対 象である被濾過流体が濾過体を通過する時間に近い時間、 ガスの圧力を保持する こととなる。 このため、 湿性濾過体中のガスの経路が、 被濾過流体の部分がそれ ぞれ通過する経路とも近似し、 濾過体の実使用時の性能を充分に反映した評価が 可能となる。 なお、 被濾過流体と試験用液体とは粘度の違いにより、 それぞれ膜 内の通過時間とガス圧による排出の時間とが異なるため、 (S ) は被濾過流体と 試験用液体との粘度の比で補正したものである。  That is, in a preferred embodiment of the present invention, in each gas pressure stage, the retention time is longer than (S) and as short as possible therein, so that the filtration target fluid to be actually filtered is a filter. The gas pressure is maintained for a time close to the time when the gas passes through. For this reason, the path of the gas in the wet filter is similar to the path through which the fluid to be filtered respectively passes, and the evaluation can sufficiently reflect the performance of the filter in actual use. Since the fluid to be filtered and the test liquid have different viscosities due to differences in viscosity, the time required to pass through the membrane and the time required for gas pressure discharge are different. Is corrected.
本発明においては、 乾性濾過体を透過するガス流量に対する湿性濾過体を透過 するガス流量の比 (湿性濾過体 乾性濾過体) が 1 / 5〜1 / 2となるガス圧段 階において、 上記のような保持時間を設定することが好ましく、 更にこの範囲の 全ガス圧段階において、 上記のような保持時間を設定することが好ましい。 これ は、 ガス流量の比が 1 Z 2となるところで平均粒子径が決定されるため、 この地 点に近いところ、 特に湿性濾過体におけるガス流量が増加しはじめる地点からは 正確な制御を行うことが好ましいからである。 従って、 ガス流量の比が 1ノ 5と なるガス圧段階までは、 各ガス圧段階におけるガス圧保持時間を上記のような設 定から外れる範囲に設定しても良い。  In the present invention, in the gas pressure stage where the ratio of the gas flow rate permeating the wet filter to the gas flow permeating the dry filter (wet filter dry filter) is 1/5 to 1/2, It is preferable to set such a holding time, and it is more preferable to set the holding time as described above in all the gas pressure stages in this range. This is because the average particle size is determined when the gas flow rate ratio is 1 Z2, so accurate control should be performed near this point, especially from the point where the gas flow rate in the wet filter starts to increase. Is preferred. Therefore, the gas pressure holding time in each gas pressure stage may be set to a range outside the above setting up to the gas pressure stage where the ratio of the gas flow rates is 1 to 5.
また、 ガス流量の比が 1 / 5〜 1 / 2の範囲のガス圧段階においては、 正確且 つ精密な評価を行うために各ガス圧段階におけるガス圧保持時間を、 できるだけ 均等にすることが好ましい。 具体的には、 ガス流量の比が 1 / 5〜 1 / 2となる 範囲の各ガス圧段階における保持時間を (湿性濾過体 Z乾性濾過体) 比が 1 / 5 〜 1 / 2となる範囲の全ガス圧段階における平均ガス圧保持時間の土 1 0 %以内 の範囲とすることが好ましい。 In addition, in the gas pressure stage in which the ratio of the gas flow rates is in the range of 1/5 to 1/2, the gas pressure holding time in each gas pressure stage should be as small as possible in order to perform accurate and precise evaluation. It is preferable to make them even. Specifically, the holding time at each gas pressure stage in the range where the ratio of the gas flow rate is 1/5 to 1/2 is set (the wet filter Z and the dry filter) in the range where the ratio is 1/5 to 1/2. It is preferable that the average gas pressure holding time in the entire gas pressure stage be within 10% of soil.
本発明においては、 一のガス圧段階から次のガス圧段階への各昇圧値は、 実用 時の線速度 ( J ) で被濾過流体を透過させたときの S奠差圧より大きく、 これに近 い方が好ましい。 好ましくは膜差圧の 1— 1 0倍が良い。 昇圧値が小さすぎると 、 保持時間内にガス一液界面が移動しきらず、 大きすぎると細孔径の分解能がな くなるからである。 なお、 膜差圧に範囲がある場合には、 最大の膜差圧より大き いことが好ましい。  In the present invention, the pressure increase value from one gas pressure stage to the next gas pressure stage is larger than the Sarian differential pressure when the fluid to be filtered is permeated at the linear velocity (J) in practical use. Closer is preferred. Preferably, the pressure is 1 to 10 times the transmembrane pressure. If the pressure increase value is too small, the gas-liquid interface does not move within the holding time, and if it is too large, the resolution of the pore diameter is lost. When there is a range in the transmembrane pressure, it is preferable that the transmembrane pressure is larger than the maximum transmembrane pressure.
また、 上述と同様の理由から、 ガス流量の比が 1 / 5〜 1 / 2となる範囲にお けるガス圧段階で、 更にはこの範囲における全ガス圧段階で昇圧値を上記のよう に制御することが好ましい。  Further, for the same reason as described above, the pressure increase value is controlled as described above at the gas pressure stage in the range where the gas flow rate ratio is 1/5 to 1/2, and further at all gas pressure stages in this range. Is preferred.
また、 本発明においては、 ガス流量の比が 1 Z 5〜 1 / 2となる範囲の各ガス 圧段階においては、 正確且つ精密な評価を行うために、 当該各昇圧値についても 、 できるだけ均等にすることが好ましい。  In addition, in the present invention, in each gas pressure stage in a range where the gas flow rate ratio is 1Z5 to 1/2, in order to perform accurate and precise evaluation, the respective boosted values should be as evenly as possible. Is preferred.
具体的には、 この範囲における各昇圧値を、 この範囲の全ガス圧段階における 平均昇圧値の ± 2 0 %以内の範囲とすることが好ましい。 また、 各圧力保持時間 、 昇圧幅を管理する範囲は、 細孔径分布が広い場合には、 更に低い圧力段階から 行った方が好ましい。 . なお、 本発明においては、 各ガス圧段階における前ガス圧段階に対する各昇圧 値、 及び各ガス圧段階における各ガス圧保持時間を上記のようにすれば、 正確且 つ高精度であるとともに、 実際の性能を反映した評価を行うことができるが、 充 分大きい細孔の基材表面に、 平均細孔径 0 . 0 5— 2ミクロン、 厚さ 1 0— 3 0 0ミクロン、 実用時の被濾過流体の流速が 1一 1 O mZ日のセラミックス製の濾 過体であれば、 測定装置の能力を考慮して、 各ガス圧段階における前ガス圧段階 に対する各昇圧値を、 0 . 0 1〜0 . 0 4 M P aの範囲、 前記各ガス圧段階にお ける各ガス圧保持時間を、 1秒〜 1分の範囲から選択することができる。 乾性濾 過体を測定する場合の昇圧は、 装置の操作時間 ·応答時間以上の保持時間であれ ば良い。 Specifically, it is preferable that each boosted value in this range be within ± 20% of the average boosted value in all gas pressure stages in this range. Further, the range in which the pressure holding time and the pressure increase width are managed is preferably from a lower pressure stage when the pore size distribution is wide. In addition, in the present invention, when the pressure increase value with respect to the previous gas pressure stage in each gas pressure stage, and each gas pressure holding time in each gas pressure stage are as described above, accurate and high accuracy can be obtained, An evaluation reflecting actual performance can be performed, but the average pore diameter is 0.05 to 2 microns, the thickness is 10 to 300 microns, If the flow rate of the filtration fluid is 11 O mZ days, and if the filter body is made of ceramics, considering the performance of the measuring device, the pressure increase value of each gas pressure step with respect to the previous gas pressure step is set to 0.01. The gas pressure holding time in each gas pressure step can be selected from the range of 1 second to 1 minute. When measuring the dry filter, the pressure increase should be longer than the operation time of the device and the holding time longer than the response time. Good.
また、 本発明において用いられる加圧ガスは、 例えば、 空気、 アルゴン、 窒素 等の不活性ガスが好ましく、 試験用液体へ溶解しにくいこと、 評価条件、 検出手 段、 コスト等を考慮して、 適宜選択すれば良い。  Further, the pressurized gas used in the present invention is preferably, for example, an inert gas such as air, argon, or nitrogen, and is difficult to dissolve in a test liquid, taking into account evaluation conditions, detection means, cost, and the like. What is necessary is just to select suitably.
次に、 本発明においては、 各ガス圧段階で各濾過体の透過ガス流量を検出し、 数式 (1 ) に基づき平均細孔径を求める。 図 3に示すように、 乾性濾過体では、 細孔中に加圧ガスの押圧対象が存しないことから、 加圧ガスの圧力上昇にほぼ比 例して検出されるガス流量が増大する (図中、 実線で示す) 。 一方、 湿性濾過体 では、 細孔中に加圧ガスの押圧対象である試験流体が存在しており、 加圧ガスの 圧力が、 当該試験液体の表面張力による抵钪力に打ち勝つまでは、 ガス一液界面 が移動しない。 従って、 加圧初期段階では、 加圧ガスの圧力が上昇しても、 透過 ガスが検出されず、 加圧ガスの圧力が、 ある一定の圧力に達すると透過ガス流量 が増大しはじめ、 最終的には乾性濾過体における透過ガス流量一ガス圧直線と重 なる (図中、 点線で示す) 。 そして、 この透過ガス流量が増大しはじめてから最 終的に乾性濾過体における透過ガス流量一ガス圧直線と重なるまでに各ガス圧で 検出される透過ガス流量は、 ガスの通路となる一連の各細孔の孔径分布に依存し て変化する。 湿性濾過体における透過ガス流量が、 乾性濾過体における透過ガス 流量に対して 1ノ 2となるガス圧 Hを求め (図面中 1点鎖線は、 乾性濾過体の各 ガス圧における透過ガス流量を 1 / 2とした線を示す) 、 数式 (1 ) に基づき当 該ガス圧 Hに相当する細孔径を平均細孔径とする。  Next, in the present invention, the permeated gas flow rate of each filter body is detected at each gas pressure stage, and the average pore diameter is determined based on equation (1). As shown in Fig. 3, in a dry filter, the gas flow rate detected increases almost in proportion to the pressure increase of the pressurized gas because there is no pressurized gas in the pores. Medium and solid lines). On the other hand, in a wet filter, the test fluid to be pressed by the pressurized gas is present in the pores, and until the pressure of the pressurized gas overcomes the resistive force due to the surface tension of the test liquid, the gas is released. One-liquid interface does not move. Therefore, in the initial stage of pressurization, even if the pressure of the pressurized gas increases, no permeated gas is detected, and when the pressure of the pressurized gas reaches a certain pressure, the flow rate of the permeated gas starts to increase, In the figure, the gas flow overlaps with the permeated gas flow rate-gas pressure line in the dry filter (shown by the dotted line in the figure). Then, the permeated gas flow rate detected at each gas pressure from the time when the permeated gas flow rate starts to increase to the time when the permeated gas flow rate in the dry filter finally overlaps with the straight line of the gas pressure is determined by a series of gas passages. It changes depending on the pore size distribution of the pores. The gas pressure H at which the flow rate of the permeated gas in the wet filter is 1 to 2 with respect to the flow rate of the permeate gas in the dry filter is determined. / 2), and the pore diameter corresponding to the gas pressure H is defined as the average pore diameter based on the equation (1).
以下、 本発明を実施例により具体的に説明するが、 本発明はこれら実施例によ つて何ら限定されるものではない。 なお、 各実施例及び比較例においては、 以下 に記載する試料、 試験用液体及び被濾過流体を用いて濾過体の評価を行った。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. In each of the examples and comparative examples, the filter body was evaluated using the following sample, test liquid, and fluid to be filtered.
(試料) (Sample)
平均細孔径約 1 0 // m、 直径 3 0 mm、 厚さ 3 mmの円盤状のアルミナ製基材 に、 平均細孔径約 l ^ mu 厚さ 2 0 0 i mのアルミナ製中間層、 及び平均粒径 0 . 5ミクロンのチタニアの等方的な粒子よりなる厚さ 1 5 mのチタニア濾過層 を、 順に製膜、 焼成したセラミックス製の濾過体を試料とした。  A disk-shaped alumina substrate with an average pore diameter of about 10 // m, a diameter of 30 mm, and a thickness of 3 mm, an alumina intermediate layer with an average pore diameter of about l ^ mu and a thickness of 200 im, and an average A 15 m-thick titania filtration layer composed of isotropic particles of titania having a particle diameter of 0.5 μm was formed into a film, and the ceramic filter was fired in this order.
(評価の際の基準とする被濾過流体) 被濾過流体は水 (粘度: 1 X 10-6m s ) で、 浄水等の実用条件は 1一 5 m/日であり、 そのときの膜差圧は、 0. 0026— 0. 0128MP aとなる 。 適する昇圧幅は 0. 0128MP a以上となる。 (Fluid to be filtered as a standard for evaluation) Be filtered fluid water (viscosity: 1 X 10- 6 ms), the practical conditions of water purification etc. is 1 one 5 m / day, membranes differential pressure at that time becomes 0. 0026- 0. 0128MP a . A suitable boosting width is 0.0128 MPa or more.
(試験用流体)  (Test fluid)
フロリナ一卜 (粘度: 2. 2X 10— 6m2/ s、 表面張力: 16 dyn eZc m) を用いた。 従って、 数式 (2) より求められる被濾過流体通過時間 (S) は 、 0. 6— 2. 9秒である。 好ましい保持時間は 30秒以下である。 Florina one Bok (viscosity: 2. 2X 10- 6 m 2 / s, the surface tension: 16 dyn eZc m) was used. Accordingly, the passage time (S) of the fluid to be filtered obtained from the equation (2) is 0.6-2.9 seconds. The preferred holding time is 30 seconds or less.
(実施例 1〜6、 比較例;!〜 4)  (Examples 1 to 6, Comparative Examples;! To 4)
試験用液体を充填しない試料 (乾性濾過体) を細孔径評価装置のホルダーに端 部をグレーズと Oリングとでシールした状態で、 加圧ガス供給側にチタニア層が あるように、 設置した。 次いで、 加圧ガス供給側に、 加圧空気を供給した。 25 一 30秒毎に 0. 017— 0. 02 IMP aずつ昇圧し、 ガス流量を測定した。 次に、 上記試験用液体中に、 上記試料を浸し、 試料中の細孔に試験用液体を完 全に充填した。 次いで、 試験用液体を完全に充填した試料 (湿性濾過体) を、 細 孔径評価装置のホルダーに、 端部を同様にシールした状態で設置した。  A sample not filled with the test liquid (dry filter) was placed in a holder of a pore size evaluation device with its end sealed with a glaze and an O-ring, with a titania layer on the pressurized gas supply side. Next, pressurized air was supplied to the pressurized gas supply side. The pressure was increased by 0.017-0.02 IMP a every 30 seconds, and the gas flow rate was measured. Next, the sample was immersed in the test liquid, and the pores in the sample were completely filled with the test liquid. Next, a sample (wet filter) completely filled with the test liquid was placed in a holder of a pore diameter evaluation apparatus with its ends similarly sealed.
次いで、 加圧ガス供給側に加圧空気を供給した。 この際、 実施例 1〜6は、 各 ガス圧段階で、 それぞれ 1秒間、 2秒間、 4一 6秒間、 9一 11秒間、 18— 2 2秒間、 25— 30秒間、 ガス圧を保持し、 比較例 1〜4は、 各ガス圧段階で、 それぞれ 55 - 65秒間、 290— 310秒間、 470— 490秒間、 590— 610秒間、 ガス圧を保持し、 0. 017— 0. 02 IMP aずつ昇圧し、 ガス 流量を測定した。 湿性濾過体のガス流量が、 乾性濾過体のガス流量のュ 2とな るガス圧から、 数式 (1) に基づき、 各試料の平均細孔径を求めた。  Then, pressurized air was supplied to the pressurized gas supply side. At this time, in Examples 1 to 6, the gas pressure was maintained at each gas pressure level for 1 second, 2 seconds, 4 to 16 seconds, 9 to 11 seconds, 18 to 22 seconds, 25 to 30 seconds, In Comparative Examples 1-4, the gas pressure was maintained at each gas pressure stage for 55-65 seconds, 290-310 seconds, 470-490 seconds, 590-610 seconds, and 0.017-0.02 IMP a each. The pressure was increased and the gas flow was measured. From the gas pressure at which the gas flow rate of the wet filter was equal to the gas flow rate of the dry filter, the average pore diameter of each sample was determined based on equation (1).
(評価)  (Evaluation)
図 4に示すように、 保持時間が短い方が平均細孔径の測定結果が小さい。 保持 時間が Sより長ければ、 実用時の被濾過流体のある部分が透過する細孔のつなが りの経路が長くても、 湿性濾過体においてもその経路をガスが透過し、 評価され 、 また、 保持時間が Sに近い方がより、 乾性濾過体を透過するガスや実用時の被 濾過流体のある部分が、 透過し得ない過剰に長い経路は評価に含まれにくく、 正 確な評価となる。 (実施例 7— 28、 比較例 5— 26) As shown in FIG. 4, the shorter the retention time, the smaller the measurement result of the average pore diameter. If the retention time is longer than S, even if the connection path of the pore through which a part of the fluid to be filtered permeates in practical use is long, the gas permeates through the path even in a wet filter, and is evaluated. If the retention time is closer to S, an excessively long path through which the gas that permeates the dry filter and the part of the fluid to be filtered in practical use cannot permeate is less likely to be included in the evaluation, resulting in an accurate evaluation. . (Examples 7-28, Comparative Examples 5-26)
実施例 1と同じ濾過膜試料の湿性濾過体のガス透過測定において、 供給した空 気のガス圧を、 30秒間で透過ガス流量の変化が 12mLZ分以下となることで 飽和として、 それまで保持した後、 次のガス圧工程まで昇圧したこと以外は、 実 施例 1と同様にして、 22個の異なる試料の平均細孔径を求め、 比較例 5— 26 とした。 平均細孔に相当する圧力は 0. 35MP aで、 乾性濾過体のガス透過量 は約 1000 OmL/分であった。 実施例 1一 6の湿性濾過体のガス透過測定に おけるガス圧保持時間を 9一 11秒間として、 22個の異なる試料の平均細孔径 を求め、 実施例 7— 28とした。  In the gas permeation measurement of the wet filter of the same filtration membrane sample as in Example 1, the gas pressure of the supplied air was maintained as saturated when the change in the permeated gas flow rate became 12 mLZ minutes or less in 30 seconds, and was maintained until that time. Thereafter, the average pore diameter of 22 different samples was determined in the same manner as in Example 1 except that the pressure was increased to the next gas pressure step, and Comparative Examples 5 to 26 were obtained. The pressure corresponding to the average pore was 0.35 MPa, and the gas permeation amount of the dry filter was about 1000 OmL / min. Example 16 The average pore diameter of 22 different samples was determined assuming that the gas pressure holding time in the gas permeation measurement of the wet filter of Example 16 was 911 seconds, and this was set as Example 7-28.
(評価)  (Evaluation)
図 5に示すように、 本発明の実施例 6— 27では、 平均細孔径が 0. 13〜 0 . 15 Π1 (標準偏差 007) の範囲となった。 これに対して、 いわゆるガ ス飽和状態となる時点までガス圧を保持した後、 昇圧する比較例 6— 27では、 各ガス圧段階での保持時間が 30秒一 20分までばらつき、 平均細孔径が 0. 1 6〜0. 21 m (標準偏差 0. 01 1) とばらつき、 図 4に示した約 10分の 保持時間よりも更に大きい平均細孔径となった。 産業上の利用可能性  As shown in FIG. 5, in Examples 6 to 27 of the present invention, the average pore diameter was in the range of 0.13 to 0.15Π1 (standard deviation 007). On the other hand, in Comparative Example 6-27, in which the gas pressure is maintained until the so-called gas saturation state is reached, and then the pressure is increased, the holding time at each gas pressure stage varies from 30 seconds to 20 minutes, and the average pore diameter Varied from 0.16 to 0.21 m (standard deviation: 0.011), and the average pore diameter was larger than the retention time of about 10 minutes shown in Fig. 4. Industrial applicability
以上説明したように、 本発明によれば、 3次元的に入り組んだ細孔を有する濾 過体について、 平均細孔径に関する評価を、 正確且つ高精度で行うことができ、 しかも実使用時の濾過体の性能を反映した品質評価が可能な濾過体の評価方法を 提供することができる。  As described above, according to the present invention, it is possible to accurately and accurately evaluate the average pore diameter of a filter having three-dimensionally intricate pores, and furthermore, to perform filtration during actual use. It is possible to provide a method for evaluating a filtration body capable of quality evaluation reflecting the performance of the body.

Claims

請 求 の 範 囲 The scope of the claims
1. 乾燥状態の乾性濾過体、 及び該乾性濾過体の細孔を試験用液体で充填した 湿性濾過体について、 各濾過体に、 加圧ガスを供給し、 加圧ガスの圧力を段階的 に昇圧させ、 各ガス圧段階で該各濾過体を透過するガス流量を検出し、  1. For a dry filter in a dry state, and a wet filter in which pores of the dry filter are filled with a test liquid, pressurized gas is supplied to each filter, and the pressure of the pressurized gas is gradually increased. Pressurized, and at each gas pressure stage, detect the gas flow through each said filter,
次いで、 下記数式 (1) に基づき平均細孔径を求める多孔質濾過体の細孔径測 定方法であって、  Next, there is provided a method for measuring the pore size of a porous filtration body for obtaining an average pore size based on the following formula (1),
下記数式 (2) により求められる被濾過流体通過時間 (S) が 3秒未満の場合 には (S) 秒〜 30秒、 被濾過流体通過時間 (S) が 3秒以上の場合には (S) 秒〜 (SX 10) 秒の保持時間、 一定圧力で湿性濾過体を保持した後、 次のガス 圧段階に昇圧させる保持一昇圧工程を含むことを特徴とする多孔質濾過体の細孔 径測定方法。  (S) seconds to 30 seconds when the passage time (S) of the fluid to be filtered obtained by the following formula (2) is less than 3 seconds, and (S) when the passage time (S) of the fluid to be filtered is 3 seconds or more. ) Seconds to (SX 10) seconds, holding the wet filter at a constant pressure, and then increasing the pressure to the next gas pressure stage. Measuring method.
MFPD- (4Bァ COS ZP (1)  MFPD- (4B COS ZP (1)
「上記数式 (1) 中、 MFPDは平均細孔径 ( zm) 、 0は濾過体の細孔に充填 させた試験液体の濾過体を構成する材料に対する接触角 (° ) 、 rは濾過体の細 孔に充填させた試験液体の表面張力 (N/m) 、 Bはキヤビラリ一定数 (0. 7 1 5) 又は 1、 Pは乾性濾過体を透過するガス流量に対する湿性濾過体を透過す るガス流量の比 (湿性濾過体/乾性濾過体) が 1Z2になるガス圧力 (MP a) を示す。 」  “In the above formula (1), MFPD is the average pore diameter (zm), 0 is the contact angle (°) of the test liquid filled in the pores of the filter with the material constituting the filter, and r is the fineness of the filter. The surface tension (N / m) of the test liquid filled in the holes, B is a fixed number of cavities (0.715) or 1, P is the gas permeating the wet filter relative to the gas flow permeating the dry filter. Indicates the gas pressure (MPa) at which the flow ratio (wet filter / dry filter) is 1Z2. "
S= (X I) XVs/Vr (2)  S = (X I) XVs / Vr (2)
「上記数式 (2) 中、 Xは濾過体の濾過方向における厚さ (m) であり、 Jは実 用時の被濾過流体の線速度 (m/s) であり、 V sは試験用液体の粘度 (P a · s) であり、 Vrは被濾過流体の粘度 (P a · s) である。 」  “In the above formula (2), X is the thickness (m) of the filter in the filtration direction, J is the linear velocity of the fluid to be filtered (m / s) in practical use, and V s is the test liquid. And Vr is the viscosity of the fluid to be filtered (P a · s). ”
2. 前記保持一昇圧工程を、 乾性濾過体を透過するガス流量に対する湿性濾過 体を透過するガス流量の比 (湿性濾過体 Z乾性濾過体) が 1 / 5〜 1 Z 2となる 範囲において行う請求項 1に記載の多孔質濾過体の細孔径測定方法。  2. The holding and pressurizing step is performed in a range where the ratio of the gas flow rate passing through the wet filter to the gas flow rate passing through the dry filter (wet filter Z dry filter) is 1/5 to 1 Z 2. 2. The method for measuring the pore size of a porous filter according to claim 1.
3. 前記保持一昇圧工程を、 前記ガス流量の比 (湿性濾過体/乾性濾過体) が 1ノ 5〜 1 / 2となる範囲の全ガス圧段階において行う請求項 2に記載の多孔質 濾過体の細孔径測定方法。  3. The porous filtration according to claim 2, wherein the holding and pressurizing step is performed in a total gas pressure stage in which a ratio of the gas flow rate (wet filter / dry filter) is 1 to 5 to 1/2. A method for measuring the pore size of a body.
4. 前記ガス流量の比が 1/5~ 1/2となる範囲における各ガス圧段階の保 持時間を、 前記ガス流量の比が 1 / 5〜; L Z 2となる範囲におけるガス圧段階の 平均保持時間の土 1 0 %以内とする請求項 1〜 3の何れか 1項に記載の多孔質濾 過体の細孔径測定方法。 4. Maintain each gas pressure step within the range of the gas flow rate ratio of 1/5 to 1/2. The porosity according to any one of claims 1 to 3, wherein the holding time is within 10% of the average holding time of the gas pressure step in a range where the ratio of the gas flow rate is 1/5 to LZ2. A method for measuring the pore size of a filtered material.
5 . 前記ガス流量の比が 1 Z 5〜 1 / 2となる範囲における各保持時間を 1秒 〜 1分とする請求項 4に記載の多孔質濾過体の細孔径測定方法。  5. The method for measuring the pore size of a porous filter according to claim 4, wherein each retention time in a range where the ratio of the gas flow rates is 1Z5 to 1/2 is 1 second to 1 minute.
6 . 前記保持一昇圧工程において、 一のガス圧段階から次のガス圧段階に昇圧 させる昇圧値を、 実用時の被濾過流体の線速度 ( J ) で被濾過流体を透過させた ときの膜差圧より大きな昇圧値とする請求項 1〜 5の何れか 1項に記載の多孔質 濾過体の細孔径測定方法。  6. The membrane when the fluid to be filtered is permeated at the linear velocity (J) of the fluid to be filtered in practical use at the linear pressure (J) of the fluid to be filtered in the holding and boosting step. The method for measuring the pore size of a porous filtration body according to any one of claims 1 to 5, wherein the pressure increase value is larger than the differential pressure.
7 . 前記ガス流量の比が 1ノ 5〜: L Z 2となる範囲における一のガス圧段階か ら次のガス圧段階に昇圧する各昇圧値を、 前記ガス流量の比が 1 Z 5〜1 Z 2と なる範囲における平均昇圧値の土 2 0 %以内とする請求項 6に記載の多孔質濾過 体の細孔径測定方法。  7. Each pressure increase value from one gas pressure stage to the next gas pressure stage in a range where the ratio of the gas flow rate is 1 to 5: LZ2 is 1 Z 5 to 1 7. The method for measuring the pore size of a porous filtration body according to claim 6, wherein the soil is within 20% of the average pressurization value in the range of Z2.
8 . 前記ガス流量の比が 1 Z 5〜 1 / 2となる範囲における各昇圧値を 0. 0 1〜 0. 0 4 M P aとする請求項 7に記載の多孔質濾過体の細孔径測定方法。  8. The pore diameter measurement of the porous filter according to claim 7, wherein each pressure increase value in a range where the ratio of the gas flow rates is 1 Z 5 to 1/2 is 0.01 to 0.04 MPa. Method.
PCT/JP2004/003102 2003-03-24 2004-03-10 Method for measuring pore size of porous filter material WO2004086008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003080107A JP3845067B2 (en) 2003-03-24 2003-03-24 Method for measuring pore size of porous filter
JP2003-080107 2003-03-24

Publications (1)

Publication Number Publication Date
WO2004086008A1 true WO2004086008A1 (en) 2004-10-07

Family

ID=33094861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003102 WO2004086008A1 (en) 2003-03-24 2004-03-10 Method for measuring pore size of porous filter material

Country Status (2)

Country Link
JP (1) JP3845067B2 (en)
WO (1) WO2004086008A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968430A (en) * 2010-09-29 2011-02-09 西安航天华威化工生物工程有限公司 Device and method for measuring maximum aperture of filter element by dry method
US8749783B2 (en) 2010-10-01 2014-06-10 Dow Global Technologies Llc System and method for analyzing pore sizes of substrates
CN111013395A (en) * 2020-03-01 2020-04-17 贝士德仪器科技(北京)有限公司 Filter membrane front end pressure control method and filter membrane aperture testing device
CN111678852A (en) * 2020-05-11 2020-09-18 首钢集团有限公司 Refractory material air hole connectivity experiment mold and method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845004B2 (en) * 2005-07-14 2011-12-28 財団法人電力中央研究所 Method for measuring pore size distribution
JP5811761B2 (en) * 2011-10-18 2015-11-11 富士通株式会社 Porous material evaluation method and porous material evaluation apparatus
CN110430935B (en) * 2017-03-30 2022-04-29 日本碍子株式会社 Method for inspecting separation membrane structure, method for manufacturing separation membrane module, and method for manufacturing separation membrane structure
KR101952432B1 (en) * 2017-08-30 2019-02-26 주식회사 이덕아이앤씨 Apparatus for measuring pore diameter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058530A (en) * 1983-09-09 1985-04-04 Fujisawa Pharmaceut Co Ltd Method and apparatus for testing membrane filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058530A (en) * 1983-09-09 1985-04-04 Fujisawa Pharmaceut Co Ltd Method and apparatus for testing membrane filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"JIS K3832 seimitsu rokamaku element oyobi module no bubble point shinken hoho", 1 October 1990 (1990-10-01), XP002904445 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968430A (en) * 2010-09-29 2011-02-09 西安航天华威化工生物工程有限公司 Device and method for measuring maximum aperture of filter element by dry method
US8749783B2 (en) 2010-10-01 2014-06-10 Dow Global Technologies Llc System and method for analyzing pore sizes of substrates
CN111013395A (en) * 2020-03-01 2020-04-17 贝士德仪器科技(北京)有限公司 Filter membrane front end pressure control method and filter membrane aperture testing device
CN111678852A (en) * 2020-05-11 2020-09-18 首钢集团有限公司 Refractory material air hole connectivity experiment mold and method

Also Published As

Publication number Publication date
JP2004286635A (en) 2004-10-14
JP3845067B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
AU732511B2 (en) Predicting logarithmic reduction values
Capannelli et al. Ultrafiltration membranes—characterization methods
Jena et al. Advances in pore structure evaluation by porometry
JP6238899B2 (en) Defect detection method and repair method for monolithic separation membrane structure, and monolithic separation membrane structure
JP2000510766A (en) Methods and equipment for in situ testing of membrane integrity.
JP2013505824A (en) Integrity test method for porous filters
JP2002537105A (en) Method and apparatus for evaluating membranes
Alhadidi et al. Effect of testing conditions and filtration mechanisms on SDI
WO2004086008A1 (en) Method for measuring pore size of porous filter material
JP6873248B2 (en) Porous material mixed gas integrity test without access to permeation side
JPH03110445A (en) Completeness testing method
JP7140798B2 (en) Enhanced stability filter integrity test
US9072996B2 (en) Method and apparatus for carrying out integrity tests of a non-wetted filter element
Tanis-Kanbur et al. Membrane characterization via evapoporometry (EP) and liquid-liquid displacement porosimetry (LLDP) techniques
US5616828A (en) Apparatus and method for testing hydrophobic filters
Koklu et al. Pressure-driven water flow through hydrophilic alumina nanomembranes
Reichelt Bubble point measurements on large areas of microporous membranes
CN110430935B (en) Method for inspecting separation membrane structure, method for manufacturing separation membrane module, and method for manufacturing separation membrane structure
SE504779C2 (en) Sampling device with membrane and membrane holder
JP2007237073A (en) Flaw detection method of separation membrane
Clausi et al. Characterization of substructure resistance in asymmetric gas separation membranes
JP7452893B2 (en) Method and system for filter device integrity testing
MIKULÁŠEK et al. Characterization of ceramic tubular membranes by active pore-size distribution
Chu et al. Silicon-micromachined direct-pore filters for ultrafiltration
JP6645773B2 (en) Pore diameter evaluation device and pore diameter evaluation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase