WO2004085982A1 - Method for determining the torque of a motor - Google Patents

Method for determining the torque of a motor Download PDF

Info

Publication number
WO2004085982A1
WO2004085982A1 PCT/EP2004/001729 EP2004001729W WO2004085982A1 WO 2004085982 A1 WO2004085982 A1 WO 2004085982A1 EP 2004001729 W EP2004001729 W EP 2004001729W WO 2004085982 A1 WO2004085982 A1 WO 2004085982A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
torque
acceleration
sensors
determined
Prior art date
Application number
PCT/EP2004/001729
Other languages
German (de)
French (fr)
Inventor
Ingo Behr
Roland Fischer
Klaus Hoffmann
Christian JÄGER
Alexander Leu
Stefan Scheuermann
Reinhard Seyer
Ulrich-P. Thiesen
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2004085982A1 publication Critical patent/WO2004085982A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/26Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining the characteristic of torque in relation to revolutions per unit of time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • G01M15/046Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring revolutions

Definitions

  • the invention relates to a method for determining the torque of an engine, in particular an internal combustion engine, in which sensors are assigned to the engine in order to determine movements of the engine block.
  • Such a method is known from DE 39 39 927 AI, where two force measuring devices are arranged between a bracket fixed to the vehicle and the engine block and are coupled via a measuring signal processing device.
  • the measurement signal processing device is dimensioned such that when only a vertically acting mass acceleration force occurs on the force measuring devices as a time-varying force and the force measurement signals obtained from the measurement signal processing device are the same in magnitude and sign, the difference between the two force measurement signals is evaluated as a torque signal ,
  • the torque can be measured unaffected by mass acceleration forces.
  • the evaluation device itself is complex.
  • the present invention has for its object to provide a method of the type mentioned, with which the torque of an engine can be continuously determined in the simplest possible way.
  • the invention proposes starting from the Newton "see equation
  • Torque moment of inertia * angular acceleration
  • acceleration sensors as sensors for measuring the angular acceleration of the engine block and to empirically determine specific values for the engine type, in which the respective moment of inertia is recorded as a function of the speed.
  • the moment of inertia is understood to be a quantity that is contained in measured empirical curves as a speed-dependent factor between angular acceleration and torque.
  • the difference between the maxima and minima of the acceleration curve can be used as the value for the angular acceleration.
  • the angular acceleration can be determined from the difference between the signals from two acceleration sensors which are mounted symmetrically above and below the crankshaft.
  • La shows the empirically determined course of the difference between the maxima and minima of the acceleration curves of a specific six-cylinder engine as a function of torque, at a speed of 1000 rpm
  • 1b shows the empirically determined representation of the dependency of the engine order responsible for the gas forces of the same engine at the same speed of 1000 rpm
  • FIG. 4 is a schematic representation of the arrangement of two acceleration sensors on an engine block of an engine installed in a vehicle in order to keep the measurement of the angular acceleration free from acceleration forces which are caused by the vehicle movement and not by the engine torque.
  • the curve in the diagrams Fig. La to 3b is empirical, e.g. before installing the engine in a vehicle.
  • a six-cylinder engine of a certain type was measured at different speeds in a test rig.
  • the result at a speed of 1000 revolutions per minute is recorded in FIGS. 1a and 1b.
  • Fig. La shows the torque curve as a function of the difference between the maxima and minima of the determined acceleration curves. These in turn have been determined with the aid of acceleration sensors attached to the engine block.
  • FIGS. 1 a and 3 b can still be recorded and stored in the factory for the selected engine type, the difference between the maxima and minima in the acceleration curve, which is referred to as spreading for the sake of simplicity, and the corresponding torque during the measurement process was given accordingly, namely in Fig. La at a speed of 1000 revolutions per minute.
  • Fig. Lb shows the dependence of the torque on the amplitude of the engine order relevant for the gas forces from the frequency analysis. In the four-stroke internal combustion engine in particular, this engine order results from half the number of cylinders. In the six-cylinder engine used for the measurement in the exemplary embodiment, the third engine order is therefore plotted in FIG. 1b.
  • Fig. 2a is for the measured speed of 1500 revolutions per minute and for the measured engine type with a "spread", that is, with a difference between the maxima and minima of 60 volts - the sensor signal is displayed in volts - an engine torque of 75 NM determines what is indicated by the dashed lines.
  • a similar procedure can be followed at other speeds.
  • Torque moment of inertia * angular acceleration
  • the angular acceleration can be determined directly from the acceleration of the engine block, the lever arm of the acceleration sensors - see FIG. 4 - having to be known, for example by empirical determination, e.g. on a test bench.
  • acceleration sensors are inexpensive for reasons of cost. Namely, they can be made from silicon in a similar way to semiconductor types. For each engine type that has been measured once, for which characteristic maps in the manner of FIGS. 1 a to 3 b are available, the determination of the acceleration values is then sufficient during operation, so that the respective torque can be concluded very quickly and very easily. This eliminates the need for time-consuming maps in the aforementioned manner.
  • FIG. 4 shows an advantageous method for measuring while driving.
  • two acceleration sensors 2 and 3 are attached to the engine block 1, in such a way that they are symmetrical at a distance d above and below the curve.
  • beiwelle 4 are attached.
  • the engine block 1 is otherwise mounted in the chassis 6 of a vehicle via bearing flanges 5.
  • the torque signal can be amplified by the arrangement of the acceleration sensors 2 and 3, as is shown by the arrows 7 and 8. Accelerations due to the chassis movement, such as occur during driving operation, can ideally be eliminated, as arrows 9 show, since these acceleration forces on both sensors are of the same magnitude.
  • the first, second, third, etc. engine order denotes the single, double, triple or multiple of the crankshaft speed.
  • a crankshaft stroke is noticeable with every crankshaft revolution, it appears with the frequency of the first engine order.
  • the four cylinders In the case of a four-stroke engine, the four cylinders generally fire at even crankshaft intervals. Each cylinder therefore appears with its explosive force every two crankshaft revolutions, so four cylinders appear with their gas force every two crankshaft revolutions.
  • the gas force signal thus follows the second engine order.
  • the gas force follows the third engine order and this is plotted in FIGS. 1b, 2b and 3b in the form of the amplitude of the frequency analysis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a method for determining the torque of an internal combustion engine. According to said method, sensors are allocated to the motor block and the torque is determined from the equation: torque = moment of inertia * angular acceleration. Acceleration sensors (2, 3) are used to measure the angular acceleration of the motor block (1) and empirically determined values are defined for the respective motor type, the respective moment of inertia being recorded in relation to the speed in said values. The torque can then be easily determined during operation from the curves and functions that have been measured and stored accordingly.

Description

Verfahren zur Bestimmung des Drehmomentes eines Motors Method for determining the torque of an engine
Die Erfindung betrifft ein Verfahren zur Bestimmung des Drehmoments eines Motors, insbesondere eines Verbrennungsmotors, bei dem Sensoren dem Motor zugeordnet werden, um Bewegungen des Motorblocks festzustellen.The invention relates to a method for determining the torque of an engine, in particular an internal combustion engine, in which sensors are assigned to the engine in order to determine movements of the engine block.
Ein solches Verfahren ist aus der DE 39 39 927 AI bekannt, wobei dort zwei Kraftmesseinrichtungen zwischen einer fahrzeugfesten Halterung und dem Motorblock angeordnet und über eine Messsignalverarbeitungseinrichtung gekoppelt werden. Die Messsignalverarbeitungseinrichtung ist dabei so dimensioniert, dass dann, wenn an den Kraftmesseinrichtungen als zeitlich veränderliche Kraft nur eine senkrecht wirkende Massenbeschleunigungskraft auftritt und die von der Messsignal- verarbeitungseinrichtung gewonnenen Kraftmesssignale nach Betrag und Vorzeichen gleich sind, die Differenz zwischen den beiden Kraftmesssignalen als Drehmomentsignal ausgewertet wird. Bei diesem Verfahren kann das Drehmoment unbeeinflusst von Massebeschleunigungskräften gemessen werden. Die Auswertungseinrichtung selbst allerdings ist aufwendig.Such a method is known from DE 39 39 927 AI, where two force measuring devices are arranged between a bracket fixed to the vehicle and the engine block and are coupled via a measuring signal processing device. The measurement signal processing device is dimensioned such that when only a vertically acting mass acceleration force occurs on the force measuring devices as a time-varying force and the force measurement signals obtained from the measurement signal processing device are the same in magnitude and sign, the difference between the two force measurement signals is evaluated as a torque signal , With this method, the torque can be measured unaffected by mass acceleration forces. However, the evaluation device itself is complex.
Andere Einrichtungen (US-A 38 00 599) benutzen, um Stoßerscheinungen beim Motorlauf zu unterbinden, zur Feststellung der Motorblockbewegung Geschwindigkeitssensoren oder Lineartransformatoren, die über einen Hebel am Motor befestigt werden, um die Empfindlichkeit zu erhöhen. Da dort eine Abweichung vom Rundlauf des Motors möglichst verhindert werden soll, der sich durch hohe Schwingungsamplituden äußert, ist eine solche Anordnung sinnvoll, für die Bestimmung des Drehmomentes allerdings ist eine solche Anordnung nicht geeignet.Use other devices (US-A 38 00 599) to prevent shock phenomena when the engine is running, to determine the engine block movement, speed sensors or linear transformers which are attached to the engine via a lever to increase the sensitivity. Since there should be a deviation from the concentricity of the motor as possible, which is expressed by high vibration amplitudes such an arrangement makes sense, but such an arrangement is not suitable for determining the torque.
Aus der US-A 45 13 721 ist schließlich bekannt, zur Steuerung des Kraftstoffverbrauches auch die Drehmomentschwankungen ü- ber einen Drehmomentsensor zu erfassen, dessen Signale auf eine elektrische Steuerungseinrichtung gegeben werden, welche die Brennstoffeinspritzung steuert, und zwar so, dass Unterschiede im Verbrennungsverlauf des Motors so gering als möglich gehalten werden.Finally, it is known from US-A 45 13 721 to detect the torque fluctuations via a torque sensor for controlling the fuel consumption, the signals of which are transmitted to an electrical control device which controls the fuel injection, in such a way that differences in the course of combustion of the Motors are kept as low as possible.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, mit dem auf möglichst einfache Weise laufend das Drehmoment eines Motors bestimmt werden kann.The present invention has for its object to provide a method of the type mentioned, with which the torque of an engine can be continuously determined in the simplest possible way.
Die Erfindung schlägt dabei ausgehend von der Newton "sehen GleichungThe invention proposes starting from the Newton "see equation
Drehmoment = Trägheitsmoment * WinkelbeschleunigungTorque = moment of inertia * angular acceleration
vor als Sensoren Beschleunigungssensoren zur Messung der Winkelbeschleunigung des Motorblocks zu verwenden und empirisch bestimmte Werte für den Motortyp festzulegen, in denen drehzahlabhängig das jeweilige Trägheitsmoment erfasst ist. Dabei wird unter Trägheitsmoment eine Größe verstanden, die in gemessenen empirischen Kurven als drehzahlabhängiger Faktor zwischen Winkelbeschleunigung und Drehmoment enthalten ist. Durch dieses Verfahren kann man dann in einfacher Weise lediglich durch Messung der Winkelbeschleunigung das zeitabhängige Drehmoment aus der Beschleunigung des Motorblocks bestimmen und das statische Motordrehmoment aus den empirisch bestimmten Werten ableiten, die in Form von Tabellen oder Kurvenscharen, besonders vorteilhaft aber auch in Form einer empirisch bestimmten mathematischen Funktion festgelegt sind und abgerufen werden können. In Weiterbildung der Erfindung kann dabei als Wert für die Winkelbeschleunigung die Differenz der Maxima und Minima des Beschleunigungsverlaufes verwendet werden. Es ist aber auch möglich, als Maß für die Winkelbeschleunigung die Amplitude der Frequenzanalyse der für die Gaskräfte maßgeblichen Motorordnung vorzusehen.before to use acceleration sensors as sensors for measuring the angular acceleration of the engine block and to empirically determine specific values for the engine type, in which the respective moment of inertia is recorded as a function of the speed. The moment of inertia is understood to be a quantity that is contained in measured empirical curves as a speed-dependent factor between angular acceleration and torque. Through this method, one can then determine the time-dependent torque from the acceleration of the engine block in a simple manner simply by measuring the angular acceleration and derive the static engine torque from the empirically determined values, which in the form of tables or groups of curves, particularly advantageously but also in the form of an empirical one certain mathematical function are defined and can be called up. In a further development of the invention, the difference between the maxima and minima of the acceleration curve can be used as the value for the angular acceleration. However, it is also possible to provide the amplitude of the frequency analysis of the engine order relevant for the gas forces as a measure of the angular acceleration.
In vorteilhafter Ausgestaltung des Verfahrens nach der Erfindung kann die Winkelbeschleunigung aus der Differenz der Signale von zwei Beschleunigungssensoren bestimmt werden, die symmetrisch ober- und unterhalb der Kurbelwelle angebracht sind. Bei einer solchen Anordnung kann sich im günstigsten Fall eine Verstärkung des Drehschwingungssignals um den Faktor 2 und eine Abschwächung des Beitrages der Chassisbeschleunigung im günstigsten Fall auf null ergeben.In an advantageous embodiment of the method according to the invention, the angular acceleration can be determined from the difference between the signals from two acceleration sensors which are mounted symmetrically above and below the crankshaft. With such an arrangement, an amplification of the torsional vibration signal by a factor of 2 and, in the best case, a reduction of the contribution of the chassis acceleration to zero can result in the best case.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispieles beschrieben.The invention is described below using an exemplary embodiment.
Dabei zeigen:Show:
Fig. la den empirisch ermittelten Verlauf der Differenz der Maxima und Minima der Beschleunigungskurven eines bestimmten Sechszylindermotors in Abhängigkeit vom Drehmoment, bei einer Drehzahl von 1000 U/min,La shows the empirically determined course of the difference between the maxima and minima of the acceleration curves of a specific six-cylinder engine as a function of torque, at a speed of 1000 rpm,
Fig. lb die empirische ermittelte Darstellung der Abhängigkeit der für die Gaskräfte desselben Motors verantwortlichen Motorordnung bei der gleichen Drehzahl von 1000 U/min,1b shows the empirically determined representation of the dependency of the engine order responsible for the gas forces of the same engine at the same speed of 1000 rpm,
Fig. 2a und 2b die analoge Darstellung des Verlaufes der Differenz der Maxima und Minima der Beschleunigungskurven bzw. des Verlaufes der Amplituden bei einer Drehzahl desselben Motors bei 1500 U/min, Fig. 3a und 3b den analogen Verlauf der Abhängigkeiten des Drehmomentes bei einer Drehzahl von 2000 U/min bei demselben Motor und2a and 2b, the analog representation of the course of the difference between the maxima and minima of the acceleration curves and the course of the amplitudes at a speed of the same engine at 1500 rpm, 3a and 3b, the analog curve of the dependencies of the torque at a speed of 2000 rpm for the same engine and
Fig. 4 schließlich eine schematische Darstellung der Anordnung von zwei Beschleunigungssensoren an einem Motorblock eines in ein Fahrzeug eingebauten Motors, um die Messung der Winkelbeschleunigung von Beschleunigungskräften freizuhalten, die durch die Fahrzeugbewegung und nicht durch das Motordrehmoment bewirkt sind.4 is a schematic representation of the arrangement of two acceleration sensors on an engine block of an engine installed in a vehicle in order to keep the measurement of the angular acceleration free from acceleration forces which are caused by the vehicle movement and not by the engine torque.
Der Kurvenverlauf in den Diagrammen Fig. la bis 3b ist jeweils empirisch, z.B. vor dem Einbau des Motors in ein Fahrzeug ermittelt worden. Beim Ausführungsbeispiel wurde ein Sechszylindermotor bestimmter Bauart dabei bei verschiedenen Drehzahlen in einem Versuchsstand gemessen. Das Ergebnis bei einer Drehzahl von 1000 Umdrehungen pro Minute ist in den Fig. la und lb aufgezeichnet.The curve in the diagrams Fig. La to 3b is empirical, e.g. before installing the engine in a vehicle. In the exemplary embodiment, a six-cylinder engine of a certain type was measured at different speeds in a test rig. The result at a speed of 1000 revolutions per minute is recorded in FIGS. 1a and 1b.
Fig. la zeigt dabei den Drehmomentverlauf in Abhängigkeit der Differenz der Maxima und Minima der ermittelten Beschleunigungskurven. Diese wiederum sind mit Hilfe von am Motorblock angebrachten Beschleunigungssensoren ermittelt worden.Fig. La shows the torque curve as a function of the difference between the maxima and minima of the determined acceleration curves. These in turn have been determined with the aid of acceleration sensors attached to the engine block.
Die Diagramme und Kurven nach den Fig. la und 3b können für den gewählten Motortyp noch im Werk aufgenommen und abgelegt werden, wobei die der Einfachheit halber als Spreizung bezeichnete Differenz zwischen Maxima und Minima im Beschleunigungsverlauf in Volt angegeben werden und das entsprechende Drehmoment während des Messvorganges entsprechend vorgegeben war, und zwar in Fig. la bei einer Drehzahl von 1000 Umdrehungen pro Minute. Die Fig. lb zeigt die Abhängigkeit des Drehmomentes von der Amplitude der für die Gaskräfte maßgeblichen Motorordnung aus der Frequenzanalyse. Diese Motorordnung ergibt sich insbesondere beim Vier-Takt-Verbrennungsmotor aus der halben Zylinderzahl. Bei dem im Ausführungsbeispiel für die Messung verwendeten Sechszylindermotor ist in Fig. lb daher die dritte Motorordnung aufgetragen.The diagrams and curves according to FIGS. 1 a and 3 b can still be recorded and stored in the factory for the selected engine type, the difference between the maxima and minima in the acceleration curve, which is referred to as spreading for the sake of simplicity, and the corresponding torque during the measurement process was given accordingly, namely in Fig. La at a speed of 1000 revolutions per minute. Fig. Lb shows the dependence of the torque on the amplitude of the engine order relevant for the gas forces from the frequency analysis. In the four-stroke internal combustion engine in particular, this engine order results from half the number of cylinders. In the six-cylinder engine used for the measurement in the exemplary embodiment, the third engine order is therefore plotted in FIG. 1b.
In Fig. 2a ist für die gemessene Drehzahl von 1500 Umdrehungen pro Minute und für den gemessenen Motortyp bei einer „Spreizung", d.h. also, bei einer Differenz der Maxima und Minima von 60 Volt - das Sensorsignal wird in Volt angezeigt - ein Motordrehmoment von 75 NM ermittelt, was durch die gestrichelten Linien angedeutet ist. In ähnlicher Weise kann bei anderen Drehzahlen verfahren werden. Bei der Bestimmung der Kurven nach den Fig. la bis 3b wird davon ausgegangen, dass für das zeitabhängige Drehmoment die Newton "sehe GleichungIn Fig. 2a is for the measured speed of 1500 revolutions per minute and for the measured engine type with a "spread", that is, with a difference between the maxima and minima of 60 volts - the sensor signal is displayed in volts - an engine torque of 75 NM determines what is indicated by the dashed lines. A similar procedure can be followed at other speeds. When determining the curves according to FIGS. 1a to 3b, it is assumed that the Newton "see equation for the time-dependent torque
Drehmoment = Trägheitsmoment * WinkelbeschleunigungTorque = moment of inertia * angular acceleration
gilt. Die Winkelbeschleunigung lässt sich, wie vorher angedeutet, direkt aus der Beschleunigung des Motorblocks bestimmen, wobei der Hebelarm der Beschleunigungssensoren - siehe Fig. 4 - bekannt sein muss, beispielsweise durch empirische Ermittlung z.B. an einem Prüfstand.applies. As previously indicated, the angular acceleration can be determined directly from the acceleration of the engine block, the lever arm of the acceleration sensors - see FIG. 4 - having to be known, for example by empirical determination, e.g. on a test bench.
Liegen diese Messergebnisse vor, und zwar für verschiedene Drehzahlen, dann lässt sich auch im Betrieb des Motors das jeweils abgegebene Drehmoment durch Messung der Winkelbeschleunigung laufend und einfach ermitteln. Die Fig. 2a, 2b und 3a, 3b zeigen den Drehmomentverlauf bei Drehzahlen von 1500 Umdrehungen pro Minute bzw. bei 2000 Umdrehungen pro Minute. Natürlich werden in der Praxis Messungen auch noch bei anderen Drehzahlen vorgenommen. Jeder Motortyp erhält, so ein Kennfeld aus vielen solchen Kurven bei verschiedenen Drehzahlen. Diese Messung erfordert zwar einen gewissen Aufwand. Sie lässt aber immer noch in einfacherer Weise die nachfolgende Drehmomentbestimmung zu, als dies mit den heute bekannten Methoden der Fall ist. Drehmomentenkennfeider werden in Abhängigkeit von vielen verschiedenen Eingangsparametern, wie beispielsweise Drehzahl, Drosselklappenstellung, Luftdruck, Temperatur usw. erstellt und abgelegt. Diese Kennfelderstellung ist wesentlich aufwendiger.If these measurement results are available, and specifically for different speeds, then the torque output in each case can also be easily and continuously determined by measuring the angular acceleration while the engine is operating. 2a, 2b and 3a, 3b show the torque curve at speeds of 1500 revolutions per minute or at 2000 revolutions per minute. Of course, measurements are also used in practice other speeds made. Each engine type receives a map from many such curves at different speeds. This measurement does require a certain amount of effort. However, it still allows the subsequent torque determination in a simpler manner than is the case with the methods known today. Torque indicators are created and stored depending on many different input parameters, such as speed, throttle valve position, air pressure, temperature, etc. This map creation is much more complex.
Es ist natürlich auch möglich und zweckmäßig, die gemessenen Kurven, wie sie in den Fig. la bis 3b dargestellt sind, in Form einer bestimmten mathematischen Funktion festzuhalten, die dann in relativ einfacher Weise die Bestimmung des Drehmomentes bei Vorlage der von den Beschleunigungssensoren gelieferten Spannungswerte zu ermitteln erlaubt.It is of course also possible and expedient to record the measured curves, as shown in FIGS. 1 a to 3 b, in the form of a specific mathematical function, which then determines the torque in a relatively simple manner when the voltage values supplied by the acceleration sensors are presented allowed to determine.
Die empirische Bestimmung des Drehmomentverlaufes in der dargestellten Weise mit Hilfe von Beschleunigungssensoren weist auch den Vorteil auf, dass Beschleunigungssensoren aus Kostengründen günstig sind. Sie können nämlich ähnlich wie Halbleitertyps aus Silizium hergestellt werden. Für jeden einmal durchgemessenen Motortyp, für den also Kennfelder in der Art der Fig. la bis 3b vorliegen, genügt im Betrieb dann die Ermittlung der Beschleunigungswerte, so dass sehr schnell und sehr einfach auf das jeweilige Drehmoment geschlossen werden kann. Aufwendige Kennfelder in der vorher erwähnten Art werden dadurch überflüssig.The empirical determination of the torque curve in the manner shown with the aid of acceleration sensors also has the advantage that acceleration sensors are inexpensive for reasons of cost. Namely, they can be made from silicon in a similar way to semiconductor types. For each engine type that has been measured once, for which characteristic maps in the manner of FIGS. 1 a to 3 b are available, the determination of the acceleration values is then sufficient during operation, so that the respective torque can be concluded very quickly and very easily. This eliminates the need for time-consuming maps in the aforementioned manner.
Die Fig. 4 zeigt dabei eine vorteilhafte Methode für die Messung im Fahrbetrieb. Hier werden zwei Beschleunigungssensoren 2 und 3 am Motorblock 1 angebracht, und zwar so, dass sie jeweils symmetrisch im Abstand d ober- und unterhalb der Kur- beiwelle 4 angebracht sind. Wie die Fig. 4 zeigt, ist der Motorblock 1 im übrigen über Lagerflansche 5 im Chassis 6 eines Fahrzeugs gelagert. Durch die Anordnung der Beschleunigungssensoren 2 und 3 kann das Momentensignal verstärkt werden, wie durch die Pfeile 7 und 8 zum Ausdruck kommt. Beschleunigungen durch die Chassisbewegung, wie sie im Fahrbetrieb auftreten, können im Idealfall, wie die Pfeile 9 zeigen, eliminiert werden, da diese Beschleunigungskräfte auf beide Sensoren gleich groß sind.4 shows an advantageous method for measuring while driving. Here, two acceleration sensors 2 and 3 are attached to the engine block 1, in such a way that they are symmetrical at a distance d above and below the curve. beiwelle 4 are attached. As shown in FIG. 4, the engine block 1 is otherwise mounted in the chassis 6 of a vehicle via bearing flanges 5. The torque signal can be amplified by the arrangement of the acceleration sensors 2 and 3, as is shown by the arrows 7 and 8. Accelerations due to the chassis movement, such as occur during driving operation, can ideally be eliminated, as arrows 9 show, since these acceleration forces on both sensors are of the same magnitude.
Zur Erläuterung sei noch darauf hingewiesen, dass man mit erster, zweiter, dritter usw. Motorordnung das einfache, zweifache, dreifache oder mehrfache der Kurbelwellendrehzahl bezeichnet. Als Beispiel darf darauf hingewiesen werden, dass ein Schlag der Kurbelwelle sich bei jeder Kurbelwellenumdrehung bemerkbar macht, er erscheint mit der Frequenz der ersten Motorordnung. Bei einem Viertaktmotor zünden die vier Zylinder in der Regel in gleichmäßigen Kurbelwellenabständen. Jeder Zylinder erscheint daher mit seiner Explosionskraft alle zwei Kurbelwellenumdrehungen, vier Zylinder erscheinen also mit ihrer Gaskraft alle zwei Kurbelwellenumdrehungen. Das Gaskraftsignal folgt also der zweiten Motorordnung. Bei einem Sechszylinder folgt die Gaskraft der dritten Motorordnung und diese ist jeweils in den Fig. lb, 2b und 3b in Form der Amplitude der Frequenzanalyse aufgetragen. For the sake of explanation, it should also be pointed out that the first, second, third, etc. engine order denotes the single, double, triple or multiple of the crankshaft speed. As an example, it should be pointed out that a crankshaft stroke is noticeable with every crankshaft revolution, it appears with the frequency of the first engine order. In the case of a four-stroke engine, the four cylinders generally fire at even crankshaft intervals. Each cylinder therefore appears with its explosive force every two crankshaft revolutions, so four cylinders appear with their gas force every two crankshaft revolutions. The gas force signal thus follows the second engine order. In the case of a six-cylinder, the gas force follows the third engine order and this is plotted in FIGS. 1b, 2b and 3b in the form of the amplitude of the frequency analysis.

Claims

Patentansprüche claims
1. Verfahren zur Bestimmung des Drehmoments eines Motors, insbesondere eines Verbrennungsmotors, bei dem Sensoren dem Motor zugeordnet werden, um Bewegungen des Motorblockes festzustellen, d a d u r c h g e k e n n z e i c h n e t , d a s s das Drehmoment aus der Gleichung1. A method for determining the torque of an engine, in particular an internal combustion engine, in which sensors are assigned to the engine in order to determine movements of the engine block, that is, the torque from the equation
Drehmoment = Trägheitsmoment * WinkelbeschleunigungTorque = moment of inertia * angular acceleration
bestimmt wird, als Sensoren Beschleunigungssensoren zur Messung der Winkelbeschleunigung des Motorblockes verwendet werden und dass empirisch bestimmte Werte für den Motortyp festgelegt werden, in denen drehzahlabhängig das jeweilige Trägheitsmoment erfasst ist.It is determined that acceleration sensors are used as sensors for measuring the angular acceleration of the engine block and that empirically determined values for the engine type are determined, in which the respective moment of inertia is recorded as a function of the speed.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s die empirischen Werte in Form von Tabellen oder Kurvenscharen festgelegt werden.2. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t, that the empirical values are defined in the form of tables or sets of curves.
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s die empirischen Werte in Form einer empirisch bestimmten mathematischen Funktion festgelegt werden.3. The method of claim 1, d a d u r c h g e k e n n z e i c h n e t, that the empirical values are determined in the form of an empirically determined mathematical function.
4. Verfahren nach einem der Ansprüche 1 bis 3 d a d u r c h g e k e n n z e i c h n e t , d a s s als Wert für die Winkelbeschleunigung die Differenz der Maxima und Minima des Beschleunigungsverlaufes verwendet wird.4. The method according to any one of claims 1 to 3, characterized in that the difference between the maxima and minima of the acceleration curve is used as the value for the angular acceleration.
5. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , d a s s als Maß für die Winkelbeschleunigung die Amplitude der Frequenzanalyse der für die Gaskräfte maßgeblichen Motorordnung dient .5. The method according to any one of claims 1 to 3, d a d u r c h g e k e n n z e i c h n e t, d a s s serves as a measure of the angular acceleration, the amplitude of the frequency analysis of the engine order relevant for the gas forces.
6. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s die Winkelbeschleunigung aus der Differenz der Signale von zwei Beschleunigungssensoren (2, 3) bestimmt wird, die symmetrisch ober- und unterhalb der Kurbelwelle (4) angebracht sind. 6. The method according to any one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t, d a s s the angular acceleration is determined from the difference of the signals from two acceleration sensors (2, 3) which are mounted symmetrically above and below the crankshaft (4).
PCT/EP2004/001729 2003-03-26 2004-02-21 Method for determining the torque of a motor WO2004085982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003113471 DE10313471A1 (en) 2003-03-26 2003-03-26 Method for determining the torque of an engine
DE10313471.9 2003-03-26

Publications (1)

Publication Number Publication Date
WO2004085982A1 true WO2004085982A1 (en) 2004-10-07

Family

ID=32946171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001729 WO2004085982A1 (en) 2003-03-26 2004-02-21 Method for determining the torque of a motor

Country Status (2)

Country Link
DE (1) DE10313471A1 (en)
WO (1) WO2004085982A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947437A1 (en) 2007-01-17 2008-07-23 Abb Research Ltd. A method of determining torque
CN107340088B (en) * 2017-07-07 2019-08-23 广东工业大学 A kind of crank torque measuring system
GB2595897B (en) 2020-06-10 2022-09-14 Delphi Automotive Systems Lux Method of determining engine torque
CN111721567A (en) * 2020-06-24 2020-09-29 贵州凯敏博机电科技有限公司 Method and system for testing dynamic torque fluctuation of motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587931A (en) * 1978-12-27 1980-07-03 Nippon Soken Inc Method and device for detecting torque of internal combustion engine
DE3009059A1 (en) * 1980-03-08 1981-09-24 Walter Dr.sc.nat. Endingen Rüegg Drive output torque measuring system - uses reaction force acting on stator exerting moment on suspension
DE3843818C1 (en) * 1988-12-24 1990-05-10 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
EP0461373A1 (en) * 1990-06-02 1991-12-18 Mercedes-Benz Ag Method for determining an optimized slip target value for a vehicle
DE19847205A1 (en) * 1998-10-13 2000-04-20 Zf Batavia Llc Determining torque in motor vehicle drive train with automatic gearbox involves approximating torque using state description of single-axis gearbox dynamics in program module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587931A (en) * 1978-12-27 1980-07-03 Nippon Soken Inc Method and device for detecting torque of internal combustion engine
DE3009059A1 (en) * 1980-03-08 1981-09-24 Walter Dr.sc.nat. Endingen Rüegg Drive output torque measuring system - uses reaction force acting on stator exerting moment on suspension
DE3843818C1 (en) * 1988-12-24 1990-05-10 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
EP0461373A1 (en) * 1990-06-02 1991-12-18 Mercedes-Benz Ag Method for determining an optimized slip target value for a vehicle
DE19847205A1 (en) * 1998-10-13 2000-04-20 Zf Batavia Llc Determining torque in motor vehicle drive train with automatic gearbox involves approximating torque using state description of single-axis gearbox dynamics in program module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 0041, no. 38 (P - 029) 27 September 1980 (1980-09-27) *

Also Published As

Publication number Publication date
DE10313471A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
DE3336028C3 (en) Device for influencing control variables of an internal combustion engine
DE19622448B4 (en) Method for detecting misfiring
EP0474652B1 (en) Process for measuring erratic running in an internal combustion engine and application of said process
DE69634187T2 (en) Method and device for detecting misfires
DE102006019317A1 (en) For metering fuel to combustion chambers of an internal combustion engine serving method and control unit
DE102005035408A1 (en) Method for determining cylinder-specific rotational characteristics of a shaft of an internal combustion engine
EP2094960A2 (en) Method and device for controlling the operating mode of an internal combustion engine
EP1818528A2 (en) Method for estimating the amount of injected fuel
EP0763725A2 (en) Procedure for determining the difference between the non-uniform cylinder torques in an internal combustion engine and application of the procedure
WO2001023735A1 (en) Method for detecting combustion misses
DE19941171B4 (en) Method for determining the torque applied by an internal combustion engine
EP0976922B1 (en) Method for torque adjustment
WO2004085982A1 (en) Method for determining the torque of a motor
DE10221337B4 (en) Method and device for correcting an amount of fuel that is supplied to an internal combustion engine
DE102015211178B4 (en) Method for detecting misfiring of an internal combustion engine
EP0818619A2 (en) Method and apparatus for monitoring the state of a variable valve control
AT411713B (en) METHOD AND DEVICE FOR SIMULATING THE DRIVING BEHAVIOR OF VEHICLES
WO2012106737A1 (en) Method and device for simulating a body that is moved in a translational or rotational manner
EP1574835B1 (en) Method and controlling device for speed signal conditioning
DE602004001064T2 (en) A misfire detection method on an internal combustion engine by analyzing the angular acceleration of the drive axle
DE2012117A1 (en) Device for sensing pressure changes or pressure values
EP0754845A1 (en) Method of detection of a failure in the electronic or injection system of a combustion engine
DE102008044305A1 (en) Multi-cylinder internal combustion engine irregular operation detecting method, involves determining corrected values as function of portions proportional to quadrate of rotation of shaft at uncorrected irregular operation values
DE10131179A1 (en) Method for determining the air / fuel ratio in individual cylinders of a multi-cylinder internal combustion engine
DE102004060299A1 (en) Method and arrangement for acquiring characteristic values for displacement or angle sensors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase