WO2004083664A1 - Clutch control device - Google Patents

Clutch control device Download PDF

Info

Publication number
WO2004083664A1
WO2004083664A1 PCT/FR2004/050097 FR2004050097W WO2004083664A1 WO 2004083664 A1 WO2004083664 A1 WO 2004083664A1 FR 2004050097 W FR2004050097 W FR 2004050097W WO 2004083664 A1 WO2004083664 A1 WO 2004083664A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
toothed wheel
actuator
coupling
rotation
Prior art date
Application number
PCT/FR2004/050097
Other languages
French (fr)
Inventor
Gilles Lebas
Original Assignee
Valeo Embrayages
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR0302973 priority Critical
Priority to FR0302973A priority patent/FR2852370B1/en
Application filed by Valeo Embrayages filed Critical Valeo Embrayages
Publication of WO2004083664A1 publication Critical patent/WO2004083664A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches

Abstract

The invention relates to a clutch control device (1), comprising a rotating motor shaft, provided with a threaded section, a clutch actuator (4), mounted in a casing (3), such as to slide relative to the casing and a coupling mechanism (13), for coupling the actuator (4) to the motor shaft, for transformation of the rotation thereof into a translation of the actuator (4). Said coupling mechanism (13) comprises a toothed wheel (14), mounted to rotate about a principal axis (15), fixed with relation to the casing (3) and engaging with the threaded section of the motor shaft. The coupling mechanism (13) comprises a torque limiter (16), connecting the toothed wheel (14) to the actuator (4).

Description

       

   <Desc/Clms Page number 1> 
 



   Dispositif de commande d'embrayage. 



   La présente invention a trait à la commande d'embrayage d'un véhicule. 



   La commande d'embrayage peut tre entièrement mécanique, c'est-à-dire qu'elle est effectuée par l'intermédiaire d'un câble relié à une pédale actionnée au pied par le conducteur du véhicule.   II   peut également s'agir d'une liaison hydraulique. 



   La commande d'embrayage peut également tre assistée, voire totalement pilotée. 



   A cet effet, on équipe le véhicule d'un dispositif de commande électrique ou hydraulique qui est interposé, soit entre la pédale d'actionnement et l'embrayage, soit, dans le cas d'une transmission automatique, en aval d'un dispositif d'asservissement commandant également la boîte de vitesses. 



   L'invention concerne un tel dispositif de commande d'embrayage, qui comporte, d'une part, un arbre moteur tournant muni d'une portion filetée, et d'autre part, dans un carter, un actionneur d'embrayage, monté coulissant par rapport au carter, ainsi qu'un mécanisme de couplage de l'actionneur à l'arbre moteur pour transformer la rotation de celui-ci en translation de l'actionneur, ce mécanisme de couplage comportant une roue dentée qui, montée à rotation autour d'un axe principal fixe par rapport au carter, est engrenée par la portion filetée de l'arbre moteur. 



   Un dispositif de ce type est connu de la demande de brevet français publiée sous le numéro FR-2 790 806 au nom de la demanderesse. 



   Ce dispositif a déjà révélé ses qualités. 



   Toutefois, en cas de défaillance de l'embrayage, ayant pour conséquence une élévation ou une irrégularité du couple résistant appliqué au dispositif de commande, il existe un risque d'échauffement du moteur et, plus généralement, d'endommagement du dispositif de commande. 



   L'invention vise notamment à limiter ces risques tout en simplifiant la conception et la fabrication du dispositif de commande. 



   A cet effet, l'invention propose un dispositif de commande du type précité, caractérisé en ce que le mécanisme de couplage comporte un limiteur de couple reliant la roue dentée à l'actionneur. 



   Ainsi, le limiteur couple en rotation la roue dentée à l'actionneur tant que l'effort résistant qu'oppose l'actionneur à la rotation de la roue est inférieur à un seuil prédéterminé. 



   A contrario, le limiteur découple l'actionneur de la roue dentée dès lors que cet effort est supérieur au seuil prédéterminé. Dans ce cas, la roue dentée, entraînée par l'arbre moteur, patine sans entraîner l'actionneur. 

 <Desc/Clms Page number 2> 

 



   En conséquence, la rotation de l'arbre moteur n'étant pas contrariée, les risques de rupture de pièces du dispositif sont faibles, de mme que sont faibles les risques d'échauffement du moteur. 



   Suivant un mode de réalisation, le mécanisme de couplage comporte un maneton monté en rotation autour de l'axe principal, ce maneton étant couplé, d'une part à l'actionneur, et d'autre part à la roue dentée par l'intermédiaire du limiteur de couple. 



   Le limiteur de couple peut comporter une bague de friction interposée entre le maneton et la roue dentée, cette bague de friction présentant par exemple, en section, une forme étoilée. 



   Suivant un mode de réalisation, le maneton est relié à l'actionneur au moyen d'un axe de rotation secondaire, parallèle à l'axe principal et écarté de celui-ci. 



   Le maneton comporte par exemple un manchon cylindrique coaxial à la roue dentée et qui s'étend axialement au moins en partie dans un alésage coaxial ménagé dans celle-ci, le limiteur de couple étant interposé entre ledit manchon et ledit alésage. 



   Quant à la roue dentée, elle peut tre munie d'une chemise cylindrique emmanchée à force dans ledit alésage, le limiteur de couple étant interposé entre le manchon et la chemise. 



   Suivant un mode de réalisation, le mécanisme de couplage est relié à un dispositif de compensation d'efforts propre à assister l'action de l'arbre moteur sur le mécanisme de couplage. 



   Ce dispositif de compensation d'efforts comporte par exemple un ressort de compression intercalé entre le carter d'une part, et le maneton d'autre part, ainsi que, éventuellement, des moyens de guidage du ressort. 



   Ces moyens de guidage comportent par exemple deux pièces complémentaires emboîtables, susceptibles de coulisser l'une par rapport à l'autre pour s'adapter ensemble à la longueur du ressort. 



   Le dispositif de compensation d'efforts est de préférence monté pivotant par rapport au carter, tandis qu'il est monté en rotation sur le maneton du mécanisme de couplage. 



   Suivant un mode de réalisation, le dispositif de commande d'embrayage comporte en outre un dispositif de mesure de l'angle de rotation du mécanisme de couplage. 



   Ce dispositif de mesure comporte par exemple un capteur linéaire comportant un élément fixe par rapport au carter, et un élément mobile monté coulissant par rapport à l'élément fixe et relié au mécanisme de couplage. 

 <Desc/Clms Page number 3> 

 



   En variante, le dispositif de mesure d'angle comporte un capteur rotatif comprenant un élément fixe par rapport au carter, et un élément mobile monté en rotation autour à l'axe principal et placé en regard de l'élément fixe. 



   Cet élément mobile est de préférence monté sur la roue dentée. II s'agit par exemple d'une nervure aimantée, prévue en saillie sur la roue dentée et présentant une hauteur décroissante, tandis que l'élément fixe du capteur comporte une sonde à effet Hall qui placée en regard de la surface supérieure de ladite nervure. 



   Suivant un mode de réalisation, l'actionneur et le mécanisme de couplage du dispositif de commande sont conformés pour pouvoir tre montés dans le carter suivant une direction unique d'assemblage. 



   II en résulte une simplification de l'assemblage du dispositif de commande, ce qui permet d'accroître l'automatisation de sa fabrication. 



   Le dispositif de compensation d'efforts et le capteur peuvent également tre agencés pour pouvoir tre montés dans le carter suivant la mme direction d'assemblage, laquelle est par exemple parallèle à l'axe principal. 



   L'invention sera mieux comprise à la lecture de la description qui va suivre d'un mode de réalisation proposé à titre d'exemple non limitatif, faite en référence aux dessins annexés dans lesquels :   - la   figure 1 est une vue en perspective d'un dispositif de commande d'embrayage ;   - la   figure 2 est une vue en perspective, en arraché partiel, du dispositif de la figure 1, permettant d'en apercevoir divers composants ;   - la   figure 3 est une vue analogue à la figure 2, prise suivant un angle différent ;   - la   figure 4 est une vue en perspective en coupe du dispositif des figures précédentes ; - les figures 5 et 6 sont des vues en perspective partielles du dispositif des figures précédentes ;

     - la   figure 6 est une vue en perspective d'un ensemble de composants du dispositif des figures précédentes ; - les figures 7 à 13 sont des vues en perspective illustrant le montage du dispositif des figures précédentes ;   - la   figure 14 est une vue en perspective en coupe du dispositif monté ;   - la   figure 15 est une vue en perspective d'un dispositif de commande d'embrayage suivant une variante de réalisation ; 

 <Desc/Clms Page number 4> 

 - la figure 16 est une vue de détail en perspective, illustrant certains composants du dispositif de la figure 15 ; - les figures 17 à 20 sont des vues en perspective, suivant différents angles et configurations, d'un dispositif de compensation d'efforts pour un dispositif tel qu'illustré sur les figures précédentes. 



   Sur la figure 1 est représenté un dispositif 1 selon l'invention pour la commande électrique d'un embrayage assisté (ou piloté) d'un véhicule automobile. 



   Ce dispositif 1 comporte un moteur 2 électrique fixé sur un carter 3 dans lequel est monté coulissant un actionneur 4 muni d'une tige 5 reçue en partie dans un boîtier 6 placé à l'intérieur du carter (figure 2). 



   Une unité de pilotage (non représentée) commande le moteur 2 en fonction du rapport de boîte à engager, soit sous l'action du conducteur lorsque la transmission est à commande manuelle, soit en fonction d'un programme préétabli lorsque la transmission est automatique. 



   La tige 5 présente une extrémité intérieure, reçue dans le boîtier 6 et par l'intermédiaire de laquelle la tige 5 est assujettie à ce dernier, ainsi qu'une extrémité extérieure 7 opposée, qui, dépassant du carter 3, est conformée en rotule pour venir en prise avec un levier de commande d'embrayage (non représenté). 



   Le boîtier 6 est muni d'un mécanisme de rattrapage de jeu 8, commandé électriquement, qui agit sur la tige 5 pour lui faire subir un mouvement irréversible de translation au fur et à mesure que s'use la friction de l'embrayage. 



   Ce mécanisme de rattrapage de jeu   8   ne sera pas décrit en détails dans la présente demande ; il suffira de se reporter à la demande précitée FR-2 790 806. 



   La tige 5 dépasse du carter 3 au travers d'un orifice 9 obturé par un joint d'étanchéité à soufflet 10 qui, entourant la tige 5, permet à cette dernière de coulisser de manière étanche tout en lui autorisant un certain débattement angulaire. 



   Le moteur 2 comporte un arbre moteur tournant 11 qui s'étend en partie dans l'espace interne du carter 3 et qui présente une portion filetée 12. 



   Le dispositif de commande 1 comporte en outre un mécanisme de couplage 13 de l'actionneur 4 à l'arbre moteur 11, pour transformer la rotation de celui-ci en translation de l'actionneur 4. 



   Ce mécanisme 13 comporte une roue dentée 14 montée à rotation autour d'un axe 15 dit axe principal, fixe par rapport au carter 3 et perpendiculaire à l'axe de l'arbre moteur   11.   



   La roue dentée 14 est tangente à la portion filetée 12 de l'arbre moteur 11 qui l'engrène à la manière d'un couple roue et vis sans fin. 

 <Desc/Clms Page number 5> 

 



   Le mécanisme de couplage 13 comporte également un limiteur de couple 16 reliant la roue dentée 14 à l'actionneur 4. 



   Ce limiteur 16, qui agit par friction, est agencé pour coupler en rotation la roue dentée 14 et l'actionneur 4 tant que l'effort résistant qu'oppose l'actionneur 4 à la rotation de la roue 14 est inférieur à un seuil prédéterminé, et pour les découpler dès lors que cet effort est supérieur audit seuil prédéterminé. 



   Comme cela est visible sur les figures 5 et 6 notamment, le mécanisme de couplage 13 comporte un maneton 17 monté en rotation autour de l'axe principal 15. 



   Ce maneton 17 est couplé, d'une part à l'actionneur 4 à distance de l'axe principal 15, et d'autre part à la roue dentée 14 par l'intermédiaire du limiteur de couple 16. 



   II est également couplé à un dispositif 18 d'accumulation d'énergie mécanique, agencé pour assister le moteur 2 dans son action sur la roue dentée 14 et pour compenser au moins en partie l'effort qu'oppose en réaction l'actionneur 4 sur la roue 14, comme cela sera expliqué par la suite. 



   Le maneton 17 comporte un manchon 19 cylindrique, coaxial à la roue dentée 14, et qui s'étend axialement au moins en partie dans un alésage   20   coaxial ménagé dans celle-ci, le limiteur de couple 16 comportant quant à lui une bague de friction 21 interposée et montée serrée entre le manchon 19 et l'alésage 20. 



   Comme cela est visible notamment sur la figure 4, le maneton 17 est composé de plusieurs pièces distinctes assemblées, à savoir, outre le manchon 19, un plateau support 22 et un levier coudé 23 parallèles, axialement à distance   l'un   de l'autre, qui s'étendent tous deux radialement par rapport au manchon 19 et sont emmanchés axialement à force sur celui-ci. 



   Plus précisément, le manchon 19 comporte une partie médiane 24 cylindrique prolongée de part et d'autre par deux parties d'extrémité cylindriques dont le diamètre est inférieur à celui de la partie médiane 24, à savoir une partie d'extrémité inférieure 25, introduite dans l'alésage 20 de la roue 14, et une partie d'extrémité supérieure 26 qui, avec la partie médiane 24, s'étend en saillie axiale par rapport à la roue 14 (figure 4). 



   A sa jonction avec les parties d'extrémité inférieure 25 et supérieure 26, la partie médiane 24 forme, respectivement, un épaulement inférieur 27 et un épaulement supérieur 28. 



   Le plateau support 22 et le levier 23 sont tous deux en appui, respectivement, sur l'épaulement inférieur 27 et sur l'épaulement supérieur 28, la partie médiane 24 formant ainsi une entretoise qui maintient entre eux un écart minimum. 

 <Desc/Clms Page number 6> 

 



   Le plateau support 22 présente une forme oblongue et comporte deux bras 29, 30 qui s'étendent radialement à l'opposé   l'un   de l'autre de part et d'autre de l'axe principal 15, le premier 29 s'étendant sensiblement à l'opposé du point de contact entre l'arbre moteur 11 et la roue dentée 14, tandis que le second 30 s'étend du côté de ce point (figure 5). 



   Le levier 23 s'étend globalement d'un côté seulement de l'axe principal 15. Il comporte une portion proximale 31 qui s'étend radialement à l'aplomb du premier bras 29 à partir de l'axe 15, prolongée par une portion distale 32 qui forme avec la portion proximale 31 un angle compris entre   80  et 120 ,   de sorte que le levier 23 présente, en vue de dessus, un profil général en forme de L. 



   Comme cela est visible sur la figure 4, le plateau support 22 et le levier 23 sont reliés par un axe secondaire 33 qui s'étend parallèlement à l'axe principal 15 à distance de celui-ci. 



   L'axe secondaire 33 est monté à rotation par rapport au plateau 22 et au levier 23, ses extrémités étant logées dans deux perçages coaxiaux pratiqués respectivement dans le plateau 22 à l'extrémité de son premier bras 29, et dans le levier 23 à la jonction entre ses portions proximale 31 et distale 32. 



   Comme on peut le voir sur la figure 14, le boîtier 6 de l'actionneur 4 est muni, du côté de l'axe principal, d'un doigt 34 en saillie dont l'extrémité est percée d'un trou que traverse l'axe secondaire 33, de sorte que l'actionneur 4 se trouve couplé en rotation au maneton autour de cet axe 33. 



   Comme nous l'avons vu, le maneton 17 est couplé à un dispositif de compensation d'efforts 18. 



   Ce dispositif 18 comporte un ressort de compression 35 intercalé entre le carter 3 et le levier 23. Plus précisément, le ressort 35 est monté conjointement sur deux guides emboîtables, à savoir, d'une part, un guide proximal 36 qui se trouve du côté du levier 23 sur lequel il est monté en rotation autour d'un axe 38 parallèle à l'axe principal, et traversant un trou pratiqué dans le levier 23 à l'extrémité de la portion distale 32 de ce dernier, et, d'autre part, un guide distal 37 qui se trouve du côté du carter 3 sur lequel il est monté en rotation autour d'un axe 39 également parallèle à l'axe principal 15. 



   Comme cela est visible sur la figure 2, le dispositif de compensation 18 est logé dans un appendice 40 du carter 3, dans lequel il peut débattre angulairement autour de l'axe 39 suivant une ouverture angulaire de quelques degrés-de   2    à   10    par exemple. 

 <Desc/Clms Page number 7> 

 



   Chaque guide 37,38 comporte une platine 41,42 circulaire centrée sur l'axe géométrique du ressort 35, axe qui s'étend dans un plan perpendiculaire à l'axe principal 15. 



   Les platines 41,42 sont prolongées, en direction l'une de l'autre, par des tiges 43,44 complémentaires dont une première 43 présente en section un profil plein en forme de croix dont l'une des branches 43a est plus large que l'autre 43b, et dont la seconde 44, qui présente en section un profil creux, comporte une empreinte 45 complémentaire de la première tige 43, de sorte que les tiges 43 et 44 peuvent tre emboîtées et coulisser l'une dans l'autre parallèlement à l'axe géométrique du ressort 35, tout en conservant leur orientation réciproque. 



   Le ressort 35 est monté conjointement sur les tiges 43,44 et vient à ses deux extrémités en appui contre les platines 41,42 entre lesquelles il se trouve comprimé, les guides 37 et 38 coulissant   l'un   par rapport à l'autre pour s'adapter conjointement à la longueur du ressort   35   lorsque celui-ci se comprime ou, au contraire se détend. 



   La branche 43a la plus large de la première tige 43 présente une largeur légèrement inférieure au diamètre intérieur du ressort 35. Il en va de mme de la dimension de la seconde tige 44, mesurée perpendiculairement à la largeur de la branche 43a. De la sorte, le ressort 35 est toujours guidé de manière précise, sans risque de fléchissement, et ce quelle que soit sa longueur. 



   La rotation de la roue 14 et du maneton 17 est guidée par deux coussinets, à savoir un coussinet inférieur 46 et un coussinet supérieur 47, qui présentent chacun une portion axiale 48 emboîtée sur l'axe principal 15 et interposée entre celui-ci et le manchon 19, prolongée par une collerette 49 en appui, pour le coussinet inférieur 46, sur l'extrémité inférieure 25 du manchon 19 et, pour le coussinet supérieur 47, sur son extrémité supérieure 26. 



   Les coussinets 46 et 47 sont, de préférence, auto-lubrifiants, de sorte à faciliter la rotation du maneton 17 autour de l'axe principal 15. 



   Comme cela est visible sur la figure 4, le coussinet inférieur 46 est directement en appui contre une paroi inférieure 50 du carter 3, dans laquelle est ménagé un logement cylindrique 51 pour une extrémité inférieure 52 de l'axe principal 15. 



   Par contre, le coussinet supérieur 47 est en appui indirect contre une paroi supérieure 53 du carter 3, par l'intermédiaire d'une entretoise 54 dans laquelle vient se loger l'extrémité supérieure 55 de l'axe principal 15. 



   Suivant un mode de réalisation, la roue dentée 14 est réalisée dans un matériau thermoplastique qui, par rapport à l'acier, présente l'avantage de pouvoir tre 

 <Desc/Clms Page number 8> 

 mis en forme aisément et à moindre coût tout en présentant une inertie réduite, ce qui accroît la réactivité du dispositif de commande 1. 



   Dans ce cas, la bague de friction 21 n'est pas en contact direct avec l'alésage 20 pratiqué dans la roue dentée 14, une chemise métallique 56 emmanchée à force dans l'alésage 20 étant interposée entre ce dernier et la bague 21. Cette chemise 56 réduit considérablement l'usure de la roue dentée 14. 



   Quant à la bague de friction 21, elle est réalisée dans un matériau métallique et présente de préférence, en section, un profil étoilé qui lui confère une certaine élasticité radiale (figure 8). La bague 21 est précontrainte avant d'tre montée entre l'axe 15 et la roue 14, de sorte à les coupler en rotation dans des conditions normales d'utilisation, c'est-à-dire tant que l'effort résistant opposé par l'actionneur 4 est inférieur au seuil prédéterminé. 



   Comme cela est visible notamment sur la figure 5, le dispositif de commande 1 est en outre équipé d'un dispositif 57 de mesure de l'angle de rotation de la roue 14. 



   Ce dispositif 57 comporte un capteur linéaire 58 à effet Hall muni d'un boîtier 59 fixé au carter 3 et dans lequel est montée coulissante une tige 60. 



   Cette tige 60 est munie à son extrémité libre d'une fourchette 61 à section en U venant en prise glissante avec un pion 62 qui, à distance de l'axe principal 15 auquel il est parallèle, saille du second bras 30 du plateau support 22. 



   La position de repos du dispositif de commande 1 est illustrée sur la figure 5. 



  Dans cette position, le maneton 17, qui est solidaire en rotation de la roue dentée 14, et le dispositif de compensation 18, sont placés de telle manière que l'axe géométrique du ressort 35 coupe l'axe principal 15. 



   Par conséquent, le couple exercé par le dispositif de compensation 18 sous la poussée du ressort 35 est nul. Le système est donc en équilibre, tant qu'aucune rotation n'est imprimée à la roue dentée 14. 



   Dès lors que, sous la commande de l'unité de pilotage-sous l'action du conducteur ou de manière automatique-l'arbre moteur 11 entraîne en rotation (dans le sens anti-horaire sur la figure 5) la roue dentée 14, celle-ci entraîne à son tour le maneton 17 qui, pivotant autour de l'axe principal 15, écarte   angulairement le   dispositif de compensation 18 de sa position d'équilibre telle que définie ci-dessus. 



   Sous la poussée du ressort 35 exercée sur le levier 23, le dispositif de compensation 18 applique au maneton 17 un couple qui s'ajoute à celui appliqué par l'arbre moteur 11 par l'intermédiaire de la roue dentée 14. 



   La somme de ces couples étant supérieure au couple résistant opposé par l'actionneur 4 sous la poussée des organes élastiques de l'embrayage, le maneton 17 

 <Desc/Clms Page number 9> 

 repousse l'actionneur 4 vers l'extérieur du carter 3 à la manière d'un système bielle- manivelle, le mouvement subi par l'actionneur 4 étant une combinaison d'une translation, et d'une rotation centrée sur le joint d'étanchéité à soufflet 10. 



   La tige 60 du capteur 58, initialement sortie du boîtier 59, est repoussée à l'intérieur de celui-ci sous la poussée du pion 62 qui accompagne la rotation du maneton 17 tout en glissant dans la fourchette 61. 



   La tige 60 est par exemple munie d'une plaque multipolaire magnétique formée d'une pluralité de domaines contigus à direction d'aimantation inversée d'un domaine donné par rapport aux deux domaines qui lui sont contigus, tandis que le capteur 58 est muni d'une sonde à effet Hall qui, placée dans le boîtier 59 au droit de la partie rentrée de la tige 60, détecte les inversions successives de polarité de la plaque multipolaire pour fournir un signal proportionnel au déplacement de la tige 60. 



   Un traitement simple du signal, par exemple au sein de l'unité de pilotage du dispositif de commande 1, permet de mesurer le déplacement angulaire du maneton 17 et de le comparer au déplacement théorique souhaité, en fonction de la rotation de l'arbre moteur 11. 



   Lorsque le déplacement angulaire réel du maneton 17 est égal ou sensiblement égal à son déplacement théorique, cela signifie que le maneton 17 et la roue 14 sont convenablement accouplés, et que le dispositif 1 ne rencontre aucune difficulté pour commander l'embrayage. 



   Lorsque le changement de rapport a été enregistré, le dispositif de commande 1 agit à l'inverse de ce qui vient d'tre décrit, l'arbre moteur 11 entraînant la roue 14 dans le sens opposé (c'est-à-dire dans le sens horaire sur la figure 5) jusqu'à ce que le dispositif 1 se trouve à nouveau dans sa position de repos. 



   Dès lors que la résistance opposée par l'actionneur 4 est supérieure au seuil prédéterminé, c'est-à-dire que le couple résistant appliqué par l'actionneur 4 au maneton 17 est supérieur à la somme des couples appliqués par l'arbre moteur 11 et le dispositif de compensation 18, la bague de friction 21, calibrée en fonction dudit seuil, se désolidarise du maneton 17 ou de la roue 14, de sorte que celle-ci, toujours entraînée par l'arbre moteur 11, se met à patiner sans pouvoir entraîner le maneton 17 dont elle se trouve ainsi découplée. 



   Comme la roue 14 tourne librement malgré le frottement provoqué par la bague de friction 21, le moteur 2 ne subit qu'un échauffement minime, voire mme aucun échauffement. Aucune contrainte n'apparaît dans les pièces du dispositif 1, et notamment dans les pièces composant le mécanisme d'accouplement 13. 



   Il en résulte une fiabilité et une longévité accrue du dispositif de commande 1. 

 <Desc/Clms Page number 10> 

 



   L'unité de pilotage, reliée au dispositif de mesure d'angle 57, est informée par celui-ci que la rotation du maneton 17 est bloquée. Elle peut tre programmée pour commander dans ce cas l'arrt du moteur 2 afin d'éviter toute consommation inutile d'énergie. Elle peut également tre programmée pour avertir le conducteur d'une défaillance du système, par exemple en commandant l'éclairage d'un voyant du tableau de bord du véhicule. 



   L'assemblage du dispositif de commande 1 est effectué comme suit, à partir du carter 3 vide, auquel est seul fixé le moteur 2. 



   On commence par emmancher l'extrémité inférieure 52 de l'axe principal 15 dans le logement cylindrique 51 correspondant ménagé dans la paroi inférieure 50 du carter 3 (figure 7). 



   On forme ensuite un premier sous-ensemble 63 comprenant le coussinet inférieur 46, la roue dentée 14, la chemise 56, la bague de friction 21, le plateau support 22, le manchon 19, l'axe secondaire 33 et le pion 62. Ces pièces sont assemblées suivant une direction unique parallèle à l'axe de la roue dentée 14 (figure 8). 



   La chemise 56 est tout d'abord emmanchée à force dans l'alésage 20 de la roue 14. La bague de friction est ensuite emboîtée dans la chemise 56. Le plateau support 22 est emmanché à force sur la partie d'extrémité inférieure 25 du manchon 19, jusqu'à venir en appui contre l'épaulement inférieur 27. La partie d'extrémité inférieure 25 du manchon 19 est alors introduite dans la bague de friction jusqu'à ce que le plateau support 22 vienne en appui contre la roue dentée 14. L'axe secondaire 33 et le pion 62 sont introduits dans les trous correspondant pratiqués respectivement dans le premier et dans le second bras 29,30 du plateau support 22, le coussinet inférieur 46 étant introduit dans la partie d'extrémité inférieure 25 du manchon 19. 



   Ce sous-ensemble 63 est alors emboîté sur l'axe principal 15 (figure 9). 



   Le capteur 58 est déposé parallèlement à l'axe principal 15 de telle manière que la fourchette 61 vienne s'emboîter sur le pion 62 (figures 9 et 10). 



   L'actionneur 4 également déposé parallèlement à l'axe principal 15, de telle manière que son doigt 34 vienne s'emboîter sur l'axe secondaire 33 (figures 10 et 11), tandis que la tige 5 traverse l'orifice 9 dans lequel disposé le soufflet 10. 



   On forme un deuxième sous-ensemble 64 comprenant le dispositif de compensation 18 et le levier 23 qui lui est fixé à rotation autour de l'axe 38 du guide proximal 36. 



   Ce deuxième sous-ensemble 64 est déposé parallèlement à l'axe principal 15, de telle manière que le levier 23 vienne s'emboîter conjointement sur l'axe principal 15 et sur l'axe secondaire 33 jusqu'à ce que le levier 23 se trouve en appui contre l'épaulement 

 <Desc/Clms Page number 11> 

 supérieur 28, tandis que l'axe de rotation 39 du guide distal 37 vient se loger dans une réserve cylindrique 65 ménagée en creux dans le carter 3 à l'extrémité de son appendice 40 (figures 11 et 12). 



   On introduit alors le coussinet supérieur 47, toujours parallèlement à l'axe principal 15, dans la partie d'extrémité supérieure 26 du manchon 19 (figure 12). Puis on emboîte l'entretoise 54 sur l'extrémité supérieure 55 de l'axe 15. 



   On peut alors refermer le carter 3, dont la paroi supérieure 53 vient s'appliquer contre l'entretoise 54 en assurant le maintien du mécanisme de couplage 13 (figure 14). 



   Le montage qui vient d'tre décrit est particulièrement simple, du fait notamment que les composants internes du dispositif de commande 1 sont montés successivement suivant une direction unique, parallèle en l'occurrence à l'axe principal 15. Ce montage est permis par la configuration et l'agencement des composants, notamment du mécanisme d'actionnement 13, de l'actionneur 4, du dispositif de compensation 18 et du capteur 58. 



   II est ainsi possible d'automatiser, au moins en partie, l'assemblage du dispositif de commande 1. 



   Une variante de réalisation du dispositif 1 de commande d'embrayage est illustrée sur les figures 15 et 16. 



   Les éléments communs au mode de réalisation décrit ci-dessus conservent leurs références numériques, tandis que les références numériques des éléments modifiés sont conservées en étant agrémentées du signe  '  . 



   Cette variante se distingue du mode de réalisation qui vient d'tre décrit essentiellement par la réalisation de la roue dentée 14'et du capteur 58'. 



   Comme cela est visible sur la figure 15, la roue dentée 14'ne forme pas un disque plein comme décrit précédemment, mais elle est ajourée pour former un secteur angulaire centré sur l'axe principal 15, qui s'étend sur une ouverture angulaire de   120    environ autour de l'axe 15. II en résulte un gain substantiel d'espace. 



   Quant au capteur 58', il comporte un boîtier 59'fendu en 66, fixé au boîtier 3 et disposé à l'aplomb de la roue dentée 14', laquelle est munie d'une nervure 67 aimantée qui s'étend suivant un arc de cercle et dont la hauteur est uniformément décroissante. 



   Le capteur 58'comporte une sonde à effet Hall dont la partie sensible se trouve au fond de la fente 66. Le capteur 58'est monté de telle manière qu'il chevauche la nervure 67, la sonde à effet Hall se trouvant ainsi à l'aplomb de la surface supérieure de la nervure 67. 

 <Desc/Clms Page number 12> 

 



   De la sorte, lorsque la roue dentée 14'est entraînée en rotation, le capteur 58' mesure la variation du champ magnétique détecté par la sonde en fonction de la position angulaire de la nervure 67. 



   L'un des avantages de cette structure de capteur 58'est que le boîtier 59'et la nervure 67 sont montées directement sur les parties fonctionnelles fixe (en l'occurrence le boîtier 3) et mobile (la roue dentée 14') du dispositif 1. 



   Comme aucune articulation intermédiaire n'est prévue, susceptible d'introduire un jeu fonctionnel, le capteur 58'permet de mesurer avec une grande précision le déplacement relatif des pièces du dispositif 1, en l'occurrence la roue dentée 14'par rapport au boîtier 3. 



   Pour le reste, la structure générale du dispositif 1 est inchangée. Quant à son montage, il est conforme au procédé décrit plus haut.



   <Desc / Clms Page number 1>
 



   Clutch control device.



   The present invention relates to the clutch control of a vehicle.



   The clutch control can be entirely mechanical, that is to say it is effected by means of a cable connected to a pedal actuated at the foot by the driver of the vehicle. It can also be a hydraulic connection.



   The clutch control can also be assisted, or even fully controlled.



   To this end, the vehicle is fitted with an electrical or hydraulic control device which is interposed either between the actuating pedal and the clutch, or, in the case of an automatic transmission, downstream of a device also controlling the gearbox.



   The invention relates to such a clutch control device, which comprises, on the one hand, a rotating drive shaft provided with a threaded portion, and on the other hand, in a casing, a clutch actuator, mounted sliding relative to the casing, as well as a mechanism for coupling the actuator to the motor shaft to transform the rotation of the latter into translation of the actuator, this coupling mechanism comprising a toothed wheel which, mounted for rotation around a main axis fixed relative to the housing, is meshed by the threaded portion of the motor shaft.



   A device of this type is known from the French patent application published under the number FR-2 790 806 in the name of the applicant.



   This device has already revealed its qualities.



   However, in the event of a clutch failure, resulting in an increase or irregularity in the resistive torque applied to the control device, there is a risk of engine overheating and, more generally, damage to the control device.



   The invention aims in particular to limit these risks while simplifying the design and manufacture of the control device.



   To this end, the invention provides a control device of the aforementioned type, characterized in that the coupling mechanism comprises a torque limiter connecting the toothed wheel to the actuator.



   Thus, the limiter couples the gear wheel in rotation to the actuator as long as the resistant force opposed by the actuator to the rotation of the wheel is less than a predetermined threshold.



   Conversely, the limiter decouples the actuator from the toothed wheel as soon as this force is greater than the predetermined threshold. In this case, the toothed wheel, driven by the motor shaft, slips without driving the actuator.

 <Desc / Clms Page number 2>

 



   Consequently, the rotation of the motor shaft not being impeded, the risks of rupture of parts of the device are low, as are the risks of overheating of the motor.



   According to one embodiment, the coupling mechanism comprises a crank pin mounted in rotation about the main axis, this crank pin being coupled, on the one hand to the actuator, and on the other hand to the toothed wheel via of the torque limiter.



   The torque limiter may include a friction ring interposed between the crankpin and the toothed wheel, this friction ring having, for example, in section, a star shape.



   According to one embodiment, the crankpin is connected to the actuator by means of a secondary axis of rotation, parallel to the main axis and spaced from the latter.



   The crank pin comprises for example a cylindrical sleeve coaxial with the toothed wheel and which extends axially at least partly in a coaxial bore formed therein, the torque limiter being interposed between said sleeve and said bore.



   As for the toothed wheel, it can be provided with a cylindrical jacket force fitted into said bore, the torque limiter being interposed between the sleeve and the jacket.



   According to one embodiment, the coupling mechanism is connected to a force compensation device capable of assisting the action of the motor shaft on the coupling mechanism.



   This force compensation device comprises for example a compression spring interposed between the housing on the one hand, and the crank pin on the other hand, as well as, possibly, means for guiding the spring.



   These guide means comprise for example two nestable complementary parts, capable of sliding relative to each other to adapt together to the length of the spring.



   The force compensation device is preferably pivotally mounted relative to the casing, while it is rotatably mounted on the crankpin of the coupling mechanism.



   According to one embodiment, the clutch control device further comprises a device for measuring the angle of rotation of the coupling mechanism.



   This measuring device comprises for example a linear sensor comprising a fixed element relative to the casing, and a movable element mounted to slide relative to the fixed element and connected to the coupling mechanism.

 <Desc / Clms Page number 3>

 



   As a variant, the angle measuring device comprises a rotary sensor comprising a fixed element relative to the casing, and a mobile element mounted in rotation around the main axis and placed opposite the fixed element.



   This movable element is preferably mounted on the toothed wheel. This is for example a magnetized rib, provided projecting from the toothed wheel and having a decreasing height, while the fixed element of the sensor comprises a Hall effect probe which placed opposite the upper surface of said rib .



   According to one embodiment, the actuator and the coupling mechanism of the control device are shaped so that they can be mounted in the casing in a single direction of assembly.



   This results in a simplification of the assembly of the control device, which makes it possible to increase the automation of its manufacture.



   The force compensation device and the sensor can also be arranged so that they can be mounted in the casing in the same assembly direction, which is for example parallel to the main axis.



   The invention will be better understood on reading the following description of an embodiment proposed by way of nonlimiting example, made with reference to the accompanying drawings in which: - Figure 1 is a perspective view of a clutch control device; - Figure 2 is a perspective view, partially broken away, of the device of Figure 1, to see various components; - Figure 3 is a view similar to Figure 2, taken at a different angle; - Figure 4 is a perspective view in section of the device of the preceding figures; - Figures 5 and 6 are partial perspective views of the device of the preceding figures;

     - Figure 6 is a perspective view of a set of components of the device of the previous figures; - Figures 7 to 13 are perspective views illustrating the mounting of the device of the previous figures; - Figure 14 is a perspective sectional view of the mounted device; - Figure 15 is a perspective view of a clutch control device according to an alternative embodiment;

 <Desc / Clms Page number 4>

 - Figure 16 is a detailed perspective view, illustrating certain components of the device of Figure 15; - Figures 17 to 20 are perspective views, from different angles and configurations, of a force compensation device for a device as illustrated in the previous figures.



   FIG. 1 shows a device 1 according to the invention for the electrical control of an assisted (or controlled) clutch of a motor vehicle.



   This device 1 comprises an electric motor 2 fixed on a casing 3 in which is slidably mounted an actuator 4 provided with a rod 5 partially received in a housing 6 placed inside the casing (FIG. 2).



   A control unit (not shown) controls the engine 2 according to the gearbox ratio to be engaged, either under the action of the driver when the transmission is manually controlled, or according to a preset program when the transmission is automatic.



   The rod 5 has an inner end, received in the housing 6 and by means of which the rod 5 is subject to the latter, as well as an opposite outer end 7, which, projecting from the casing 3, is shaped as a ball joint for engage a clutch control lever (not shown).



   The housing 6 is provided with an electrically controlled backlash mechanism 8 which acts on the rod 5 to make it undergo an irreversible movement of translation as the friction of the clutch wears off.



   This backlash mechanism 8 will not be described in detail in the present application; it will suffice to refer to the aforementioned application FR-2 790 806.



   The rod 5 protrudes from the casing 3 through an orifice 9 closed by a bellows seal 10 which, surrounding the rod 5, allows the latter to slide in leaktight manner while allowing it a certain angular movement.



   The motor 2 comprises a rotating motor shaft 11 which extends partly in the internal space of the casing 3 and which has a threaded portion 12.



   The control device 1 further comprises a coupling mechanism 13 of the actuator 4 to the motor shaft 11, to transform the rotation of the latter into translation of the actuator 4.



   This mechanism 13 comprises a toothed wheel 14 mounted for rotation about an axis 15 called the main axis, fixed relative to the casing 3 and perpendicular to the axis of the motor shaft 11.



   The toothed wheel 14 is tangent to the threaded portion 12 of the motor shaft 11 which meshes it in the manner of a wheel and worm gear pair.

 <Desc / Clms Page number 5>

 



   The coupling mechanism 13 also includes a torque limiter 16 connecting the toothed wheel 14 to the actuator 4.



   This limiter 16, which acts by friction, is arranged to couple the toothed wheel 14 and the actuator 4 in rotation as long as the resistant force opposed by the actuator 4 to the rotation of the wheel 14 is less than a predetermined threshold. , and to decouple them as soon as this force is greater than said predetermined threshold.



   As can be seen in FIGS. 5 and 6 in particular, the coupling mechanism 13 comprises a crank pin 17 mounted in rotation about the main axis 15.



   This crank pin 17 is coupled, on the one hand to the actuator 4 at a distance from the main axis 15, and on the other hand to the toothed wheel 14 via the torque limiter 16.



   It is also coupled to a device 18 for accumulating mechanical energy, arranged to assist the motor 2 in its action on the toothed wheel 14 and to at least partially compensate for the force that the actuator 4 opposes in reaction. the wheel 14, as will be explained later.



   The crank pin 17 comprises a cylindrical sleeve 19, coaxial with the toothed wheel 14, and which extends axially at least in part in a coaxial bore 20 formed therein, the torque limiter 16 comprising meanwhile a friction ring 21 interposed and mounted tightly between the sleeve 19 and the bore 20.



   As can be seen in particular in FIG. 4, the crank pin 17 is composed of several separate parts assembled, namely, in addition to the sleeve 19, a support plate 22 and a bent lever 23 parallel, axially at a distance from each other , which both extend radially with respect to the sleeve 19 and are axially force-fitted thereon.



   More specifically, the sleeve 19 has a cylindrical middle part 24 extended on either side by two cylindrical end parts whose diameter is less than that of the middle part 24, namely a lower end part 25, introduced in the bore 20 of the wheel 14, and an upper end part 26 which, with the middle part 24, extends in axial projection relative to the wheel 14 (FIG. 4).



   At its junction with the lower end 25 and upper end 26, the middle part 24 forms, respectively, a lower shoulder 27 and an upper shoulder 28.



   The support plate 22 and the lever 23 are both supported, respectively, on the lower shoulder 27 and on the upper shoulder 28, the middle part 24 thus forming a spacer which maintains a minimum distance between them.

 <Desc / Clms Page number 6>

 



   The support plate 22 has an oblong shape and comprises two arms 29, 30 which extend radially opposite one another on either side of the main axis 15, the first 29 extending substantially opposite the point of contact between the drive shaft 11 and the toothed wheel 14, while the second 30 extends on the side of this point (Figure 5).



   The lever 23 extends generally on one side only of the main axis 15. It has a proximal portion 31 which extends radially above the first arm 29 from the axis 15, extended by a portion distal 32 which forms with the proximal portion 31 an angle between 80 and 120, so that the lever 23 has, in top view, a general L-shaped profile.



   As can be seen in FIG. 4, the support plate 22 and the lever 23 are connected by a secondary axis 33 which extends parallel to the main axis 15 at a distance from the latter.



   The secondary axis 33 is mounted for rotation relative to the plate 22 and to the lever 23, its ends being housed in two coaxial bores made respectively in the plate 22 at the end of its first arm 29, and in the lever 23 at the junction between its proximal 31 and distal 32 portions.



   As can be seen in FIG. 14, the housing 6 of the actuator 4 is provided, on the side of the main axis, with a projecting finger 34 whose end is pierced with a hole through which the secondary axis 33, so that the actuator 4 is rotatably coupled to the crankpin around this axis 33.



   As we have seen, the crank pin 17 is coupled to a force compensation device 18.



   This device 18 comprises a compression spring 35 interposed between the casing 3 and the lever 23. More specifically, the spring 35 is mounted jointly on two interlocking guides, namely, on the one hand, a proximal guide 36 which is on the side of the lever 23 on which it is rotatably mounted about an axis 38 parallel to the main axis, and passing through a hole made in the lever 23 at the end of the distal portion 32 of the latter, and, on the other part, a distal guide 37 which is located on the side of the casing 3 on which it is mounted in rotation about an axis 39 also parallel to the main axis 15.



   As can be seen in FIG. 2, the compensation device 18 is housed in an appendage 40 of the casing 3, in which it can be angularly debated around the axis 39 according to an angular opening of a few degrees-from 2 to 10 for example .

 <Desc / Clms Page number 7>

 



   Each guide 37, 38 has a circular plate 41, 42 centered on the geometric axis of the spring 35, an axis which extends in a plane perpendicular to the main axis 15.



   The plates 41,42 are extended, in the direction of one another, by complementary rods 43,44 of which a first 43 has in section a solid cross-shaped profile of which one of the branches 43a is wider than the other 43b, and the second 44 of which, which has a hollow section in section, has an imprint 45 complementary to the first rod 43, so that the rods 43 and 44 can be nested and slide one inside the other parallel to the geometric axis of the spring 35, while retaining their mutual orientation.



   The spring 35 is mounted jointly on the rods 43,44 and comes at its two ends to bear against the plates 41,42 between which it is compressed, the guides 37 and 38 sliding relative to each other for s 'Adapt jointly to the length of the spring 35 when it compresses or, on the contrary relaxes.



   The widest branch 43a of the first rod 43 has a width slightly less than the internal diameter of the spring 35. The same goes for the dimension of the second rod 44, measured perpendicular to the width of the branch 43a. In this way, the spring 35 is always guided precisely, without risk of sagging, whatever its length.



   The rotation of the wheel 14 and of the crank pin 17 is guided by two bearings, namely a lower bearing 46 and an upper bearing 47, which each have an axial portion 48 fitted on the main axis 15 and interposed between the latter and the sleeve 19, extended by a flange 49 bearing, for the lower pad 46, on the lower end 25 of the sleeve 19 and, for the upper pad 47, on its upper end 26.



   The pads 46 and 47 are preferably self-lubricating, so as to facilitate the rotation of the crank pin 17 around the main axis 15.



   As can be seen in FIG. 4, the lower pad 46 is directly in abutment against a lower wall 50 of the casing 3, in which is formed a cylindrical housing 51 for a lower end 52 of the main axis 15.



   On the other hand, the upper cushion 47 is in indirect support against an upper wall 53 of the casing 3, by means of a spacer 54 in which the upper end 55 of the main axis 15 is housed.



   According to one embodiment, the toothed wheel 14 is made of a thermoplastic material which, compared to steel, has the advantage of being able to be

 <Desc / Clms Page number 8>

 easily and inexpensively shaped while having reduced inertia, which increases the reactivity of the control device 1.



   In this case, the friction ring 21 is not in direct contact with the bore 20 formed in the toothed wheel 14, a metal jacket 56 force-fitted into the bore 20 being interposed between the latter and the ring 21. This jacket 56 considerably reduces the wear of the toothed wheel 14.



   As for the friction ring 21, it is made of a metallic material and preferably has, in section, a star profile which gives it a certain radial elasticity (FIG. 8). The ring 21 is prestressed before being mounted between the axis 15 and the wheel 14, so as to couple them in rotation under normal conditions of use, that is to say as long as the resistant force opposed by the actuator 4 is below the predetermined threshold.



   As can be seen in particular in FIG. 5, the control device 1 is also equipped with a device 57 for measuring the angle of rotation of the wheel 14.



   This device 57 comprises a linear Hall effect sensor 58 provided with a housing 59 fixed to the casing 3 and in which a rod 60 is slidably mounted.



   This rod 60 is provided at its free end with a U-shaped fork 61 having a sliding engagement with a pin 62 which, at a distance from the main axis 15 to which it is parallel, projects from the second arm 30 of the support plate 22 .



   The rest position of the control device 1 is illustrated in FIG. 5.



  In this position, the crank pin 17, which is integral in rotation with the toothed wheel 14, and the compensation device 18, are placed in such a way that the geometric axis of the spring 35 intersects the main axis 15.



   Consequently, the torque exerted by the compensation device 18 under the thrust of the spring 35 is zero. The system is therefore in equilibrium, as long as no rotation is imparted to the toothed wheel 14.



   Since, under the control of the piloting unit - under the action of the driver or automatically - the motor shaft 11 rotates (counterclockwise in FIG. 5) the toothed wheel 14, this in turn drives the pin 17 which, pivoting about the main axis 15, angularly moves the compensation device 18 from its equilibrium position as defined above.



   Under the thrust of the spring 35 exerted on the lever 23, the compensation device 18 applies to the crank pin 17 a torque which is added to that applied by the motor shaft 11 via the toothed wheel 14.



   The sum of these torques being greater than the resistive torque opposed by the actuator 4 under the thrust of the elastic members of the clutch, the crank pin 17

 <Desc / Clms Page number 9>

 pushes the actuator 4 outwards from the casing 3 in the manner of a connecting rod-crank system, the movement undergone by the actuator 4 being a combination of a translation, and of a rotation centered on the gasket bellows seal 10.



   The rod 60 of the sensor 58, initially taken out of the housing 59, is pushed back inside the latter under the thrust of the pin 62 which accompanies the rotation of the crank pin 17 while sliding in the fork 61.



   The rod 60 is for example provided with a magnetic multipolar plate formed of a plurality of contiguous domains with reverse magnetization direction of a given domain with respect to the two domains which are contiguous to it, while the sensor 58 is provided with a Hall effect probe which, placed in the housing 59 in line with the retracted part of the rod 60, detects the successive reversals of polarity of the multipole plate to provide a signal proportional to the displacement of the rod 60.



   A simple signal processing, for example within the control unit of the control device 1, makes it possible to measure the angular displacement of the crank pin 17 and to compare it with the desired theoretical displacement, as a function of the rotation of the motor shaft 11.



   When the actual angular displacement of the crank pin 17 is equal to or substantially equal to its theoretical displacement, this means that the crank pin 17 and the wheel 14 are suitably coupled, and that the device 1 encounters no difficulty in controlling the clutch.



   When the gear change has been recorded, the control device 1 acts in reverse of what has just been described, the drive shaft 11 driving the wheel 14 in the opposite direction (that is to say in clockwise in Figure 5) until the device 1 is again in its rest position.



   As soon as the resistance opposed by the actuator 4 is greater than the predetermined threshold, that is to say that the resistive torque applied by the actuator 4 to the crank pin 17 is greater than the sum of the torques applied by the motor shaft 11 and the compensating device 18, the friction ring 21, calibrated as a function of said threshold, separates from the crank pin 17 or from the wheel 14, so that the latter, still driven by the motor shaft 11, starts to skate without being able to drive the crank pin 17 from which it is thus decoupled.



   As the wheel 14 rotates freely despite the friction caused by the friction ring 21, the motor 2 undergoes only minimal heating, or even no heating. No constraint appears in the parts of the device 1, and in particular in the parts making up the coupling mechanism 13.



   This results in increased reliability and longevity of the control device 1.

 <Desc / Clms Page number 10>

 



   The control unit, connected to the angle measuring device 57, is informed by the latter that the rotation of the crank pin 17 is blocked. It can be programmed in this case to order the engine 2 to stop in order to avoid any unnecessary consumption of energy. It can also be programmed to warn the driver of a system failure, for example by controlling the lighting of a warning light on the vehicle dashboard.



   The assembly of the control device 1 is carried out as follows, starting from the empty casing 3, to which only the motor 2 is fixed.



   We start by fitting the lower end 52 of the main axis 15 into the corresponding cylindrical housing 51 formed in the lower wall 50 of the casing 3 (FIG. 7).



   A first sub-assembly 63 is then formed comprising the lower bearing 46, the toothed wheel 14, the jacket 56, the friction ring 21, the support plate 22, the sleeve 19, the secondary axis 33 and the pin 62. These parts are assembled in a single direction parallel to the axis of the toothed wheel 14 (Figure 8).



   The jacket 56 is first force-fitted into the bore 20 of the wheel 14. The friction ring is then fitted into the jacket 56. The support plate 22 is force-fitted onto the lower end part 25 of the sleeve 19, until it comes to bear against the lower shoulder 27. The lower end part 25 of the sleeve 19 is then introduced into the friction ring until the support plate 22 comes to bear against the toothed wheel 14. The secondary axis 33 and the pin 62 are introduced into the corresponding holes made respectively in the first and in the second arm 29.30 of the support plate 22, the lower pad 46 being inserted in the lower end part 25 of the sleeve 19.



   This sub-assembly 63 is then fitted onto the main axis 15 (FIG. 9).



   The sensor 58 is placed parallel to the main axis 15 so that the fork 61 comes to fit on the pin 62 (Figures 9 and 10).



   The actuator 4 also deposited parallel to the main axis 15, so that its finger 34 comes to fit on the secondary axis 33 (Figures 10 and 11), while the rod 5 passes through the orifice 9 in which arranged the bellows 10.



   A second sub-assembly 64 is formed comprising the compensation device 18 and the lever 23 which is fixed to it for rotation about the axis 38 of the proximal guide 36.



   This second sub-assembly 64 is deposited parallel to the main axis 15, so that the lever 23 comes to fit together on the main axis 15 and on the secondary axis 33 until the lever 23 is rests against the shoulder

 <Desc / Clms Page number 11>

 upper 28, while the axis of rotation 39 of the distal guide 37 is housed in a cylindrical reserve 65 formed hollow in the casing 3 at the end of its appendage 40 (Figures 11 and 12).



   Then the upper pad 47, still parallel to the main axis 15, is introduced into the upper end part 26 of the sleeve 19 (FIG. 12). Then the spacer 54 is fitted onto the upper end 55 of the axis 15.



   We can then close the casing 3, the upper wall 53 of which is applied against the spacer 54 while ensuring the maintenance of the coupling mechanism 13 (FIG. 14).



   The assembly which has just been described is particularly simple, in particular because the internal components of the control device 1 are successively mounted in a single direction, parallel in this case to the main axis 15. This assembly is enabled by the configuration and arrangement of the components, in particular the actuation mechanism 13, the actuator 4, the compensation device 18 and the sensor 58.



   It is thus possible to automate, at least in part, the assembly of the control device 1.



   An alternative embodiment of the clutch control device 1 is illustrated in FIGS. 15 and 16.



   The elements common to the embodiment described above retain their numerical references, while the numerical references of the modified elements are preserved by being decorated with the sign '.



   This variant differs from the embodiment which has just been described essentially by the production of the toothed wheel 14 ′ and of the sensor 58 ′.



   As can be seen in FIG. 15, the toothed wheel 14 ′ does not form a solid disc as described above, but it is perforated to form an angular sector centered on the main axis 15, which extends over an angular opening of Approximately 120 around the axis 15. This results in a substantial gain in space.



   As for the sensor 58 ′, it comprises a housing 59 ′ split at 66, fixed to the housing 3 and disposed directly above the toothed wheel 14 ′, which is provided with a magnetized rib 67 which extends along an arc of circle and whose height is uniformly decreasing.



   The sensor 58 ′ comprises a Hall effect probe, the sensitive part of which is at the bottom of the slot 66. The sensor 58 is mounted in such a way that it overlaps the rib 67, the Hall effect probe thus being at the plumb with the upper surface of the rib 67.

 <Desc / Clms Page number 12>

 



   In this way, when the toothed wheel 14 is rotated, the sensor 58 'measures the variation of the magnetic field detected by the probe as a function of the angular position of the rib 67.



   One of the advantages of this sensor structure 58 is that the housing 59 ′ and the rib 67 are mounted directly on the fixed (in this case the housing 3) and mobile (the toothed wheel 14 ′) functional parts of the device. 1.



   As no intermediate articulation is provided, capable of introducing a functional clearance, the sensor 58 ′ enables the relative displacement of the parts of the device 1 to be measured with great precision, in this case the toothed wheel 14 ′ relative to the housing 3.



   For the rest, the general structure of the device 1 is unchanged. As for its mounting, it conforms to the method described above.


    

Claims

REVENDICATIONS 1. Dispositif (1) de commande d'embrayage, comportant, d'une part, un arbre moteur (11) tournant muni d'une portion filetée (12), et d'autre part, dans un carter (3), un actionneur (4) d'embrayage, monté coulissant par rapport au carter (3), ainsi qu'un mécanisme (13) de couplage de l'actionneur (4) à l'arbre moteur (11) pour transformer la rotation de celui-ci en translation de l'actionneur (4), ce mécanisme de couplage (13) comportant une roue dentée (14) qui, montée à rotation autour d'un axe principal (15) fixe par rapport au carter (3), est engrenée par la portion filetée (12) de l'arbre moteur (11), dispositif caractérisé en ce que le mécanisme de couplage (13) comporte un limiteur de couple (16) reliant la roue dentée (14) à l'actionneur (4), ainsi qu'un maneton (17) monté en rotation autour de l'axe principal (15)  CLAIMS 1. A clutch control device (1) comprising, on the one hand, a rotating motor shaft (11) provided with a threaded portion (12), and on the other hand, in a casing (3), a clutch actuator (4), slidably mounted relative to the casing (3), as well as a mechanism (13) for coupling the actuator (4) to the motor shaft (11) to transform the rotation of the latter ci in translation of the actuator (4), this coupling mechanism (13) comprising a toothed wheel (14) which, mounted for rotation about a main axis (15) fixed relative to the casing (3), is meshed by the threaded portion (12) of the motor shaft (11), device characterized in that the coupling mechanism (13) comprises a torque limiter (16) connecting the toothed wheel (14) to the actuator (4) , as well as a crankpin (17) rotatably mounted around the main axis (15)
et couplé à l'actionneur (4), ce maneton (17) étant par ailleurs couplé à la roue dentée (14) par l'intermédiaire du limiteur de couple (16).  and coupled to the actuator (4), this crank pin (17) being also coupled to the toothed wheel (14) via the torque limiter (16).
2. Dispositif selon la revendication 1, caractérisé en ce que le limiteur de couple (16) comporte une bague de friction (21) interposée entre le maneton (17) et la roue dentée (14).  2. Device according to claim 1, characterized in that the torque limiter (16) comprises a friction ring (21) interposed between the crankpin (17) and the toothed wheel (14).
3. Dispositif selon la revendication 2, caractérisé en ce que la bague de friction (21) présente en section une forme étoilée.  3. Device according to claim 2, characterized in that the friction ring (21) has in section a star shape.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que le maneton (17) est relié à l'actionneur (4) au moyen d'un axe de rotation secondaire (33), parallèle à l'axe principal (15) et écarté de celui-ci.  4. Device according to one of claims 1 to 3, characterized in that the crank pin (17) is connected to the actuator (4) by means of a secondary axis of rotation (33), parallel to the main axis (15) and removed from it.
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que le maneton (17) comporte un manchon (19) cylindrique coaxial à la roue dentée (14) et qui s'étend axialement au moins en partie dans un alésage (20) coaxial ménagé dans celle-ci, le limiteur de couple (16) étant interposé entre ledit manchon (19) et ledit alésage (20).  5. Device according to one of claims 1 to 4, characterized in that the crank pin (17) comprises a cylindrical sleeve (19) coaxial with the toothed wheel (14) and which extends axially at least partly in a bore (20) coaxial formed therein, the torque limiter (16) being interposed between said sleeve (19) and said bore (20).
6. Dispositif selon la revendication 5, caractérisé en ce que la roue dentée (14) est munie d'une chemise (56) cylindrique emmanchée à force dans ledit alésage (20) et en ce que le limiteur de couple (16) est interposé entre le manchon (19) et la chemise (56).  6. Device according to claim 5, characterized in that the toothed wheel (14) is provided with a cylindrical jacket (56) force-fitted into said bore (20) and in that the torque limiter (16) is interposed between the sleeve (19) and the shirt (56).
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que la roue dentée (14) est réalisée dans une matière plastique.  7. Device according to one of claims 1 to 6, characterized in that the toothed wheel (14) is made of a plastic material.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que le mécanisme de couplage (13) est relié à un dispositif (18) de compensation d'efforts propre à assister l'action de l'arbre moteur (11) sur le mécanisme de couplage (13). <Desc/Clms Page number 14>  8. Device according to one of claims 1 to 7, characterized in that the coupling mechanism (13) is connected to a device (18) of force compensation capable of assisting the action of the motor shaft (11 ) on the coupling mechanism (13).  <Desc / Clms Page number 14>  
9. Dispositif selon les revendications 1 et 8, prises conjointement, caractérisé en ce que le dispositif de compensation d'efforts (18) comporte un ressort (35) de compression intercalé entre le carter (3) d'une part, et le maneton (17) d'autre part.  9. Device according to claims 1 and 8, taken together, characterized in that the force compensation device (18) comprises a compression spring (35) interposed between the casing (3) on the one hand, and the crankpin (17) on the other hand.
10. Dispositif selon la revendication 9, caractérisé en ce que le dispositif de compensation d'efforts (18) comporte des moyens de guidage du ressort (35).  10. Device according to claim 9, characterized in that the force compensation device (18) comprises means for guiding the spring (35).
11. Dispositif selon la revendication 10, caractérisé en ce que les moyens de guidage comportent deux pièces (36,37) complémentaires emboîtables, susceptibles de coulisser l'une par rapport à l'autre pour s'adapter ensemble à la longueur du ressort (35).  11. Device according to claim 10, characterized in that the guide means comprise two complementary parts (36,37) nestable, capable of sliding relative to each other to adapt together to the length of the spring ( 35).
12. Dispositif selon l'une des revendications 8 à 11, caractérisé en ce que le dispositif de compensation d'efforts (18) est monté pivotant par rapport au carter (3).  12. Device according to one of claims 8 to 11, characterized in that the force compensation device (18) is pivotally mounted relative to the casing (3).
13. Dispositif selon l'une des revendications 8 à 12, prise conjointement avec l'une des revendications 5 à 7, caractérisé en ce que le dispositif de compensation d'efforts (18) est monté à rotation sur le maneton (17).  13. Device according to one of claims 8 to 12, taken together with one of claims 5 to 7, characterized in that the force compensation device (18) is rotatably mounted on the crankpin (17).
14. Dispositif selon l'une des revendications 1 à 13, caractérisé en ce qu'il comporte un dispositif (57) de mesure de l'angle de rotation du mécanisme de couplage (13).  14. Device according to one of claims 1 to 13, characterized in that it comprises a device (57) for measuring the angle of rotation of the coupling mechanism (13).
15. Dispositif selon la revendication 14, caractérisé en ce que le dispositif de mesure d'angle (57) comporte un capteur linéaire (58) comprenant un élément (59) fixe par rapport au carter (3), et un élément (60) mobile monté coulissant par rapport à l'élément fixe (59) et relié au mécanisme de couplage (13).  15. Device according to claim 14, characterized in that the angle measuring device (57) comprises a linear sensor (58) comprising an element (59) fixed relative to the casing (3), and an element (60) mobile mounted sliding with respect to the fixed element (59) and connected to the coupling mechanism (13).
16. Dispositif selon la revendication 14, caractérisé en ce que le dispositif de mesure d'angle comporte un capteur rotatif (58') comprenant un élément (59') fixe par rapport au carter (3), et un élément mobile (67) monté en rotation autour à l'axe principal (15), en regard de l'élément fixe (59').  16. Device according to claim 14, characterized in that the angle measuring device comprises a rotary sensor (58 ') comprising an element (59') fixed relative to the casing (3), and a mobile element (67) mounted in rotation around the main axis (15), opposite the fixed element (59 ').
17. Dispositif selon la revendication 16, caractérisé en ce que l'élément mobile (67) est monté sur la roue dentée (14').  17. Device according to claim 16, characterized in that the mobile element (67) is mounted on the toothed wheel (14 ').
18. Dispositif selon la revendication 17, caractérisé en ce que l'élément mobile (67) se présente sous la forme d'une nervure aimantée, prévue en saillie sur la roue dentée (14') et qui présente une hauteur décroissante, et en ce que l'élément fixe (59') du capteur (58') comporte une sonde à effet Hall qui se trouve en regard de la surface supérieure de ladite nervure.  18. Device according to claim 17, characterized in that the mobile element (67) is in the form of a magnetic rib, projecting from the toothed wheel (14 ') and which has a decreasing height, and in that the fixed element (59 ') of the sensor (58') comprises a Hall effect probe which is located opposite the upper surface of said rib.
19. Dispositif (1) selon l'une des revendications 1 à 18, caractérisé en ce que l'actionneur (4) et le mécanisme de couplage (13) sont conformés pour pouvoir tre montés dans le carter (3) suivant une direction unique d'assemblage. <Desc/Clms Page number 15>  19. Device (1) according to one of claims 1 to 18, characterized in that the actuator (4) and the coupling mechanism (13) are shaped to be able to be mounted in the housing (3) in a single direction assembly.  <Desc / Clms Page number 15>  
20. Dispositif (1) selon les revendications 8 et 19, prises conjointement, caractérisé en ce que le dispositif de compensation d'efforts (18) est agencé pour pouvoir tre monté dans le carter (3) suivant ladite direction d'assemblage.  20. Device (1) according to claims 8 and 19, taken together, characterized in that the force compensation device (18) is arranged to be able to be mounted in the casing (3) in said direction of assembly.
21. Dispositif (1) selon la revendication 19 ou 20, prise conjointement avec la revendication 16 ou 17, caractérisé en ce que le capteur (58,58') est agencé pour pouvoir tre monté dans le carter (3) suivant ladite direction d'assemblage.  21. Device (1) according to claim 19 or 20, taken together with claim 16 or 17, characterized in that the sensor (58,58 ') is arranged to be able to be mounted in the casing (3) in said direction d 'assembly.
22. Dispositif (1) selon l'une des revendications 19 à 21, caractérisé en ce que la direction d'assemblage est parallèle à l'axe principal (15).  22. Device (1) according to one of claims 19 to 21, characterized in that the assembly direction is parallel to the main axis (15).
PCT/FR2004/050097 2003-03-11 2004-03-09 Clutch control device WO2004083664A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0302973 2003-03-11
FR0302973A FR2852370B1 (en) 2003-03-11 2003-03-11 Clutch control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE112004000398.9T DE112004000398B4 (en) 2003-03-11 2004-03-09 Clutch Actuator

Publications (1)

Publication Number Publication Date
WO2004083664A1 true WO2004083664A1 (en) 2004-09-30

Family

ID=32893194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050097 WO2004083664A1 (en) 2003-03-11 2004-03-09 Clutch control device

Country Status (3)

Country Link
DE (1) DE112004000398B4 (en)
FR (1) FR2852370B1 (en)
WO (1) WO2004083664A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832559A (en) * 2014-02-11 2015-08-12 Zf腓特烈斯哈芬股份公司 Actuating unit for clutch

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014215324A1 (en) * 2014-08-04 2016-02-04 Zf Friedrichshafen Ag Actuation unit for a clutch and motor vehicle
DE102015212526A1 (en) * 2015-07-03 2017-01-05 Zf Friedrichshafen Ag Actuation unit for a clutch and motor vehicle
DE102015212531A1 (en) * 2015-07-03 2017-01-05 Zf Friedrichshafen Ag Actuating unit, motor vehicle and method for operating an actuating unit
DE102015212527A1 (en) * 2015-07-03 2017-01-05 Zf Friedrichshafen Ag Actuation unit for a clutch and motor vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710365A1 (en) * 1996-05-02 1997-11-13 Mannesmann Sachs Ag Friction clutch with an actuator
WO2000053945A1 (en) * 1999-03-08 2000-09-14 Valeo Control device for coupling means with variable operating force moderation
GB2372305A (en) * 1997-08-06 2002-08-21 Luk Getriebe Systeme Gmbh Clutch operating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008835C2 (en) * 1990-03-20 1992-02-27 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De
DE4134794A1 (en) * 1991-10-22 1993-04-29 Fichtel & Sachs Ag SENSOR FOR AN ACTUATOR, ESPECIALLY IN A VEHICLE
DE19832015B4 (en) * 1997-08-06 2012-11-15 Schaeffler Technologies AG & Co. KG actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710365A1 (en) * 1996-05-02 1997-11-13 Mannesmann Sachs Ag Friction clutch with an actuator
GB2372305A (en) * 1997-08-06 2002-08-21 Luk Getriebe Systeme Gmbh Clutch operating device
WO2000053945A1 (en) * 1999-03-08 2000-09-14 Valeo Control device for coupling means with variable operating force moderation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104832559A (en) * 2014-02-11 2015-08-12 Zf腓特烈斯哈芬股份公司 Actuating unit for clutch

Also Published As

Publication number Publication date
FR2852370B1 (en) 2006-05-26
FR2852370A1 (en) 2004-09-17
DE112004000398B4 (en) 2017-04-06
DE112004000398T5 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
EP0322265B1 (en) Clutch control device, notably for motor vehicles
EP0478427B1 (en) Clutch control device, especially for motor vehicles
EP2336587B1 (en) Wedge actuator for a friction clutch
EP2021647A1 (en) Under travel actuator, particularly for an automobile clutch
EP2482632B1 (en) Gearbox between a primary motor shaft and an output shaft of a self propelled machine.
EP2604879B1 (en) A device for selectively connecting a gearmotor to an aircraft wheel to enable the wheel to be driven selectively by the gearmotor.
FR2724878A1 (en) ACTUATOR COMPRISING A TRANSMISSION, IN PARTICULAR FOR A CLUTCH OF A MOTOR VEHICLE
WO2004083664A1 (en) Clutch control device
EP3239550B1 (en) Assembly for a clutch device, in particular for a motor vehicle
FR2721264A1 (en) Hydraulic cylinder control device controlled by an electric motor, in particular for the clutch of a motor vehicle.
FR2753574A1 (en) TURNING TAPE CONTACTOR, PARTICULARLY FOR MOTOR VEHICLES
EP0220982B1 (en) Clutch release mechanism assembly, especially for an automotive vehicle
EP1412651A1 (en) Clutch sleeve coupling device
FR2673733A1 (en) GEAR LEVER FOR CONTROLLING A CHANGE DEVICE, IN PARTICULAR FOR A MOTOR VEHICLE.
FR2936292A1 (en) TELESCOPIC ACTUATOR WITH MAIN ROD AND AUXILIARY ROD
FR2611837A1 (en) Device for actuating a clutch with control
FR2931797A1 (en) SIMPLIFIED BLADE SETTING CONTROL SYSTEM OF A PROPELLER OF A TURBOMOTEUR FOR AN AIRCRAFT
FR2994238A1 (en) RAMP SYSTEM FOR A DEVICE FOR RETRIEVING A DEFECT OF SPACING DUE TO THE WEAR OF A FRICTION CLUTCH
EP0723065A1 (en) Roller blind equipped with box lead-through
FR2769037A1 (en) LOCKING DEVICE COMPRISING A CAM-CONTROLLED TRANSMISSION FINGER
EP0775798A1 (en) Rotational drive device for the take-up element of a roller shutter
WO2012175861A1 (en) Device for actuating a clutch, in particular for a motor vehicle
EP3523164B1 (en) Toothed wheel for a gear motor of a window wiper
FR2681911A1 (en) Stop (thrust) device for a starter for an internal combustion engine, and method for implementing such a device
EP0520848B1 (en) Dynamometric rod

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase