WO2004083497A1 - Process for producing fluoride single crystal and wavelength transforming device - Google Patents

Process for producing fluoride single crystal and wavelength transforming device Download PDF

Info

Publication number
WO2004083497A1
WO2004083497A1 PCT/JP2004/003762 JP2004003762W WO2004083497A1 WO 2004083497 A1 WO2004083497 A1 WO 2004083497A1 JP 2004003762 W JP2004003762 W JP 2004003762W WO 2004083497 A1 WO2004083497 A1 WO 2004083497A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
fluoride
crystal
producing
gas
Prior art date
Application number
PCT/JP2004/003762
Other languages
French (fr)
Japanese (ja)
Inventor
Takayo Ogawa
Satoshi Wada
Kiyoshi Shimamura
Noboru Ichinose
Nao Kurimura
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Priority to JP2005503764A priority Critical patent/JPWO2004083497A1/en
Publication of WO2004083497A1 publication Critical patent/WO2004083497A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/12Halides

Definitions

  • the present invention relates to a method for producing a single crystal of fluoride by a Czochralski method (hereinafter referred to as “Cz method” as appropriate) and a wavelength conversion element comprising a single crystal of fluoride. .
  • single crystal fluoride materials have high transmissivity, and have been greatly expected as lasers and optical materials, particularly lasers and optical materials in the ultraviolet region.
  • the raw materials are refined and refined, and the crystals are grown.
  • researchers have been aware that the process must be performed in the toxic gas HF (hydrofluoric acid), and researchers have been relatively reluctant to manufacture fluoride single crystals. There have been few detailed reports on the growth of single crystal halides.
  • L i N b 0 3 E pin Takisharu growth and ultra-precision machining technology using waveguide S HG device refer to Kawaguchi Ryusei Ho force M) wavelength using such quasi phase matching the conversion element, L i N b 0 3 or L i T a 0 3 such as ferroelectric oxide crystals have been known mainly.
  • these L i N b Omicron 3 or L i T a ⁇ 3 such ferroelectric oxide crystals have a wavelength 3 0 0 nm absorption edge in the vicinity, the wavelength range is the wavelength 3 0 that can be applied as the wavelength conversion element
  • the wavelength conversion is limited to 0 nm or more, and wavelength conversion using quasi-phase matching cannot be performed in the deep ultraviolet region with a wavelength of 300 nm or less or the vacuum ultraviolet region with a wavelength of 200 nm or less.
  • CLBO crystals have been energetically studied as wavelength conversion devices to shorten the wavelength of all-solid-state coherent light sources. That is, since the CLBO crystal has large birefringence, it is possible to perform wavelength conversion by phase matching using this birefringence, and to shorten the wavelength.
  • the wavelength was limited to 195 nm due to its refractive index dispersion. That is, in the prior art, there is no light source capable of easily and stably generating deep ultraviolet light having a wavelength of 300 nm or less or vacuum ultraviolet light having a wavelength of 200 nm or less, and a proposal for such a light source is strongly desired. Had been rare.
  • the present invention has been made in view of the above-mentioned demands for the conventional technology, and has as its object the purpose of the present invention is to use ultraviolet light having a short wavelength and high spatial resolution, in particular, a deep ultraviolet light having a wavelength of 300 nm or less.
  • a method for producing a single crystal of fluoride according to the present invention is a method for producing a single crystal of fluoride, which is produced by growing a crystal by the Tyzo-Kralski method. Further, as the atmosphere gas during crystal growth, any one of CF 4 gas, Ar gas, a mixed gas of Ar gas and CF 4 gas, or N 2 gas is used. Further, the method for producing a single crystal of fluoride according to the present invention is a method for producing a single crystal of fluoride produced by growing a crystal by the Czochralski method, wherein the inside of the furnace is set to a high vacuum before the start of crystal growth. It is.
  • a method of manufacturing a fluoride single crystal according to the present invention is obtained as is 1 0- 3 torr or more.
  • the method for producing a single crystal of fluoride according to the present invention is a method for producing a single crystal of fluoride produced by growing a crystal by the Cjochralski method.
  • a heating source and a heat insulating material composed of graphite are used.
  • the method for producing a single crystal of fluoride according to the present invention is a method for producing a single crystal of fluoride produced by growing a crystal by the Cjochralski method.
  • the growth conditions were a crystal rotation speed of 5 rpm to 25 rpm, a crystal pulling rate of 0.1 mmZh to 5 mmZh, and vacuum is not less 1 0- 3 torr or more, but the growth atmosphere was CF 4, a r gas, a r gas and CF 4 mixed gas or N 2 gas with the gas-les, such that if the deviation is there.
  • the method for producing a single crystal of fluoride according to the present invention is described in the method for producing a single crystal of fluoride produced by growing a crystal by the Tyochralski method.
  • a method of manufacturing a fluoride single crystal according to the present invention in Monore ratio and Ba F 2 and Mg F 2 as a raw material "1: 1" used in a proportion of, so as to produce a B aMgF 4 as fluoride single crystal It was made.
  • the wavelength conversion element according to the present invention is a wavelength conversion element made of a fluoride single crystal that has a predetermined transmittance, undergoes polarization inversion, and converts the wavelength by quasi-phase age.
  • the wavelength conversion element according to the present invention which was one of the fluoride single crystal B aMgF 4, B a S r F 4, B a S r F 4, B a Z nF 4 or B aMn F 4 is there.
  • a wavelength conversion element according to the present invention is one wherein the above-mentioned fluoride single crystal is produced by the method for producing a fluoride single crystal according to the present invention.
  • the above-mentioned fluoride single crystal is BaMg F 4 produced by the method for producing a fluoride single crystal according to the present invention.
  • the wavelength conversion element according to the present invention achieves a quasi-phase matching by forming a periodic structure of polarization by reversing the polarization of the fluoride single crystal produced by the method for producing a single crystal fluoride according to the present invention. is there.
  • the wavelength conversion element according to the present invention the wavelength 1 / zm at which the most stable light source can be obtained
  • the laser light of solid-state lasers and near-infrared semiconductor lasers can be wavelength-converted by quasi-phase matching to generate deep ultraviolet light with a wavelength of 300 nm or less and vacuum ultraviolet light with a wavelength of 200 nm or less. it can.
  • a deep ultraviolet region having a wavelength of 300 nm or less or a vacuum ultraviolet region having a wavelength of 200 nm or less was obtained by using a quasi-phase matching method. It can be generated by wavelength conversion, and an all-solid-state coherent light source can be achieved.
  • FIG. 1 is a schematic diagram of a manufacturing apparatus for performing a method for manufacturing a single crystal of fluoride according to an example of an embodiment of the present invention.
  • Figure 2 is a graph showing transmittance measurement results of the produced B a M g F 4 single crystal by the present invention.
  • FIG. 3 is a graph showing an example in which no polarization inversion has occurred in the crystal.
  • Figure 4 is a graph showing experimental results relating to the polarization inversion produced by the present invention B a M g F 4 single crystals.
  • Figure 5 is a schematic illustration of use les were ultraviolet light source as a wavelength conversion element manufactured B a M g F 4 single crystal by the present invention. Explanation of reference numerals
  • FIG. 1 shows a schematic diagram of a manufacturing apparatus for performing a method for manufacturing a fluoride single crystal according to an example of an embodiment of the present invention.
  • reference numeral 10 denotes a furnace (Cz furnace) by the Tiyo-Kranoreskey method.
  • the Cz furnace 10 includes a vacuum chamber 12, a heater 14 including a heating source and a heat insulating material disposed in the vacuum chamber 12, a crucible 16 heated by the heater 14,
  • the lower end 18a has a shaft 18 which can fix the seed crystal and pull it upward while rotating.
  • a computer 20 is connected to the Cz furnace 10 and various controls including temperature control of the heater 14 are performed by the computer 20, such as a rotation speed and a lifting speed of the shaft 18. The control of the crystal growth conditions is performed.
  • a vacuum pump 22 composed of a rotary pump, a diffusion pump, and the like is connected to the CZ furnace 10, and the inside of the vacuum chamber 12 is maintained at a desired vacuum degree by the vacuum pump 22. You.
  • a gas cleaner 24 filled with NaOH is connected to the vacuum pump 22, and the gas exhausted from the vacuum pump 22 by the gas cleaner 24 (as described later)
  • CF 4 gas is introduced into the C z furnace 10 as an atmosphere gas at the time of crystal growth by the C z method.
  • the heater 14 is made of high-purity graphite, and the crucible 16 is made of platinum. Further, the heater 14 is heated by a high-frequency fe-heating method.
  • the degree of vacuum in the Cz furnace 10 before the start of crystal growth is set at 10 to 5 torr.
  • CF 4 gas (purity: 4N (99.99%)) is introduced into the Cz furnace 10 in order to grow a BaMg F 4 single crystal in a CF 4 atmosphere. .
  • B a F 2 and with Mg F 2 Toomo Le ratio as a raw material in the crucible 16 "1: 1" placed at the rate of heating by the heater 14 (heating ag: 900 ° C) and To dissolve.
  • a seed crystal is fixed to the lower end 18 a of the shaft 18.
  • the shaft 18 is inserted into the crucible 16 from the upper part of the crucible 16, and the seed crystal fixed to the lower end part 18 a of the shaft 18 is brought into contact with the liquid surface in which B a F 2 and M g F 2 are dissolved, A single crystal 30 of BaMg F 4 is formed by gradually pulling up while rotating the shaft 18.
  • the method for producing a fluoride single crystal according to the present invention in order to suppress the generation of a cloudy substance due to the reaction of a small amount of water in the Cz furnace 10 and the raw material with the powder raw material, the method becomes a source of water and oxygen.
  • the heater 14, which constitutes the heat source and the heat insulator is made of high-purity graphite.
  • CF 4 gas of high purity for example, 4N (99.955) purity was used.
  • the B AMG F 4 single crystal was cut to "16 mm (vertical) X 32 mm (lateral) X 2. 5 mm (thickness)", using what was mirror polished as a sample was subjected to transmission measurements.
  • Fig. 2 shows the results of the transmittance measurement. As shown in Fig. 2, the transmittance was high at about 200% at a wavelength of 200 ⁇ m and about 50% at a wavelength of 140 nm, even in the deep ultraviolet region. However, in this transmittance measurement, loss due to reflection from the crystal surface is not taken into account.
  • the crystal acts as a capacitor when a voltage is applied to the crystal, and a current flows only when the voltage changes.
  • the graph shown in Fig. 3 shows an example in which no polarization inversion occurs in the crystal, and as the voltage applied to the crystal increases, When the current force S is generated and the voltage for imprinting tf on the crystal becomes steady, the current stops flowing (see the two peaks in the graph in Fig. 1).
  • the graph shown in Fig. 4 shows the experimental results of the sample described above. It can be seen that the decrease of the value occurs exponentially little by little. The inversion of the polarization can be confirmed by;? In the tail of this current change. That is, the present invention according to the fluoride single crystals have been B a M g F 4 single crystal produced by the method is to create a periodic structure of polarization to form a polarization inversion, to achieve quasi phase matching Can be Accordingly, B a M g F 4 single crystal, it is possible to constitute a wavelength conversion element performs wavelength conversion by quasi phase matching using the polarization inversion. Next, an ultraviolet light source using the above-described sample as a wavelength conversion element will be described with reference to FIG.
  • Fig. 5 is a schematic diagram illustrating the structure of this ultraviolet light source.
  • KTP crystal 102 which is a non-linear crystal as a wavelength conversion element that enters and converts it to its second harmonic (wavelength 471 nm), and laser light (wavelength 471 ⁇ m) emitted from KTP crystal 102
  • the KTP crystal 104 which is a non-linear crystal as a wavelength conversion element that converts the laser light of 942 nm wavelength emitted from the sapphire laser 100 into a third harmonic (wavelength 314 nm),
  • the laser beam (wavelength 314 nm) emitted from the crystal 104 is incident and a second harmonic (wavelength 157 nm) with a wavelength of 314 nm is emitted.
  • It is configured to include a B AMG F 4 single crystal 106 as a wavelength conversion element for converting the wavelength 157 nm).
  • the BaMg F 4 single crystal 106 is manufactured by the method for manufacturing a single crystal fluoride according to the present invention as described above.
  • the laser light having a wavelength of 942 nm emitted from the titanium sapphire laser 100 is doubled by the wavelength conversion using the KTP crystal 102.
  • the wavelength conversion using the KTP crystal 102 is doubled by the wavelength conversion using the KTP crystal 102.
  • the wavelength 471 nm in the same manner to the incident laser light of the resulting wavelength 314 nm is converted to the third harmonic at a wavelength conversion using a KTP crystal 102 to B a M g F 4 single crystal 10 6
  • an all-solid-state deep ultraviolet laser with a wavelength of 157 nm has been realized.
  • the single crystal of fluoride produced according to the present invention has a high transmittance even in the deep ultraviolet region of about 80 ° at a wavelength of 180 nm and about 50% at a wavelength of 140 nm, and is easily and reversibly polarized.
  • a wavelength conversion element capable of performing wavelength conversion by quasi-phase matching in a wavelength region of a wavelength of 300 nm or less can be configured.
  • the example of producing the B aMgF 4 as fluoride single crystals showed a example in which the wavelength conversion element by B a M g F 4, limited to these Of course, it is not something that can be done.
  • the wavelength conversion element is, for example, Ba Sr F 4 , Ba ZnF 4 or Ba It can be constituted by M n F 4.
  • the crystal rotation speed (the rotation speed of the shaft 18) was set to 10 rpm, but it is needless to say that the present invention is not limited to this. That is, the crystal rotation speed (the rotation speed of the shaft 18) may be appropriately set, for example, between 5 rpm and 25 rpm.
  • the crystal pulling speed (the pulling speed of the shaft 18) is lmm / h, but it is needless to say that the present invention is not limited to these.
  • the crystal pulling speed (shaft 18 pulling speed) is, for example, 0.1 ImmZl! It may be set appropriately between 5 mm / h and 5 mm / h.
  • the same four gases are used.
  • the crystal was grown in four atmospheres, it is a matter of course that the present invention is not limited to these. That is, as the atmosphere gas, for example, Ar gas, a mixed gas of Ar gas and CF 4 gas (mixing ratio: “1: 1” in molecular weight) or N 2 gas can be appropriately selected.
  • the purity of the above-mentioned various atmosphere gases is not limited to 4N (99.99%).
  • the purity of the atmosphere gas may be appropriately set, for example, between 3N (99.9%) and 9N (9.99.9999999%).
  • the heater 14 is heated by the high-frequency heating method. However, it is needless to say that the heater 14 is heated by the resistance heating method. Good.
  • the present invention Since the present invention is configured as described above, it can easily and stably generate ultraviolet light having a short wavelength and high spatial performance, in particular, deep ultraviolet light having a wavelength of 300 nm or less and vacuum ultraviolet light having a wavelength of 200 nm or less.
  • the present invention has an excellent effect that a method of manufacturing a fluoride single crystal and a wavelength conversion element that can be used to construct a light source capable of performing the method can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A process for producing a fluoride single crystal, which fluoride single crystal is employable as a constituent of a light source capable of easily and stably generating ultraviolet rays of short wave and high spatial resolution, especially deep-ultraviolet of 300 nm or less wavelength and vacuum ultraviolet of 200 nm or less wavelength; and a wavelength transforming device. In particular, a process for producing a fluoride single crystal through crystal growth according to the Czochralski method, which process comprises using any of CF4 gas, Ar gas, a mixture of CF4 gas and Ar gas and N2 gas as an ambient gas during crystal growth. Pseudo phase matching is brought about by polarization inversion.

Description

フッ化物単結晶の製造方法および波長変換素子 Method for producing single crystal fluoride and wavelength conversion element
技術分野 本亮明は、 フッ化物単結晶の製造方法および波長変換素子に関し、 さらに詳細 系田 Technical Field Ryoaki Motoaki is related to a method for producing a single crystal of fluoride and a wavelength conversion element.
には、 チヨクラノレスキー法 (Cz o c h r a l s k i Me t h o d :なお、 以 下においては、 「Cz法」 と適宜に称する。 ) によるフッ化物単結晶の製造方法 およびフッ化物単結晶よりなる波長変換素子に関する。 The present invention relates to a method for producing a single crystal of fluoride by a Czochralski method (hereinafter referred to as “Cz method” as appropriate) and a wavelength conversion element comprising a single crystal of fluoride. .
背景技術 近年におけるナノサイエンスの発展や半導体微細化技術の進展に伴い、 波長が 短く空間 军能が高い紫外線を発生することのできる光源の開発が強く望まれて レ、る。 こうした背景のもとに、 フッ化物単結晶材料は高い透過性を有するため、 レー ザ一や光学材料、 特に、 紫外領域でのレーザーや光学材料として大いに期待され ていた。 しかしながら、レーザーや光学材料として用いることが可能なフッ化物単結晶、 即ち、 高品質で光散乱体のないフッ化物単結晶を製造することは、 これまで極め て困難であると認識されてきた。 さらに、 フッ化物単結晶の結晶成長の際には、 原料の純化'精製や結晶の育成 を有毒ガスである H F (フッ化水素酸) 中で行わなければばならないといった認 識があったため、 研究者の間ではフッ化物単結晶の製造はこれまで比較的敬遠さ れ続け、 その結果、 フッ化物単結晶成長に関する詳細な報告はほとんどなされて いなかった。 BACKGROUND ART With the development of nanoscience and semiconductor miniaturization technology in recent years, there is a strong demand for the development of a light source capable of generating ultraviolet light having a short wavelength and high spatial efficiency. Against this background, single crystal fluoride materials have high transmissivity, and have been greatly expected as lasers and optical materials, particularly lasers and optical materials in the ultraviolet region. However, it has been recognized that it has been extremely difficult to produce a fluoride single crystal that can be used as a laser or an optical material, that is, a high-quality fluoride single crystal without a light scatterer. In addition, during the growth of single crystal fluorides, the raw materials are refined and refined, and the crystals are grown. Researchers have been aware that the process must be performed in the toxic gas HF (hydrofluoric acid), and researchers have been relatively reluctant to manufacture fluoride single crystals. There have been few detailed reports on the growth of single crystal halides.
また、 通常のバルタの結晶では、 位相整合条件が満たされないため、 波長変換 素子には利用されていなかった。 ところで、 従来より、 波長変換の手法として、 分極反転を利用した疑似位相整 合という手法が知られている。 この疑似位相整合は、 結晶の分極を反転すること により分極の周期構造をつくることによって達成される (例えば、 「レーザー研 究、 第 2 8卷 9号、 ; ρ 6 0 0〜6 0 3 ( 2 0 0 0年) 『; L i N b 03ェピ タキシャル成長と超精密加工技術による導波路型 S HGデバイス』 川口竜生ほ 力 M を参照する。 ) 。 こうした疑似位相整合を用いた波長変換素子としては、 L i N b 03や L i T a 03など強誘電体酸化物結晶が主に知られている。 In addition, ordinary Balta crystals did not satisfy the phase matching conditions, and were not used for wavelength conversion devices. By the way, a technique called quasi-phase matching using polarization reversal has been conventionally known as a wavelength conversion technique. This quasi-phase matching is achieved by creating a periodic structure of the polarization by inverting the polarization of the crystal (for example, “Laser Research, Vol. 28, No. 9; ρ600-603 ( 2 0 0 0 years).. "; L i N b 0 3 E pin Takisharu growth and ultra-precision machining technology using waveguide S HG device" refer to Kawaguchi Ryusei Ho force M) wavelength using such quasi phase matching the conversion element, L i N b 0 3 or L i T a 0 3 such as ferroelectric oxide crystals have been known mainly.
しかしながら、 これら L i N b Ο 3や L i T a Ο 3など強誘電体酸化物結晶は、 波長 3 0 0 n m近辺に吸収端を有するため、 波長変換素子として適用できる波長 範囲は波長 3 0 0 n m以上に限定されており、 波長 3 0 0 n m以下の深紫外域や 波長 2 0 0 n m以下の真空紫外域では擬似位相整合を用いた波長変換を行うこと ができないという問題点があつた。 また、 近年においては、 全固体化されたコヒーレント光源の短波長化のため、 波長変換素子として C L B O結晶が精力的に研究されてきた。 即ち、 C L B O結 晶は大きな複屈折性を有しているので、 この複屈折を利用した位相整合による波 長変換が可能であり、 短波長化を図ろうとするものである。 However, these L i N b Omicron 3 or L i T a Ο 3 such ferroelectric oxide crystals have a wavelength 3 0 0 nm absorption edge in the vicinity, the wavelength range is the wavelength 3 0 that can be applied as the wavelength conversion element The wavelength conversion is limited to 0 nm or more, and wavelength conversion using quasi-phase matching cannot be performed in the deep ultraviolet region with a wavelength of 300 nm or less or the vacuum ultraviolet region with a wavelength of 200 nm or less. . In recent years, CLBO crystals have been energetically studied as wavelength conversion devices to shorten the wavelength of all-solid-state coherent light sources. That is, since the CLBO crystal has large birefringence, it is possible to perform wavelength conversion by phase matching using this birefringence, and to shorten the wavelength.
しかしながら、 C L B O結晶の複屈折性を利用した位相整合による波長変換で は、 その屈折率分散から波長 1 9 5 n mまでが短波長化の限界となっていたとい う問題点があった。 即ち、 従来の技術においては、 波長 3 0 0 n m以下の深紫外線や波長 2 0 0 n m以下の真空紫外線を容易かつ安定して発生することのできる光源がなく、 こう した光源の提案が強く望まれていた。 本発明は、 上記したような従来の技術に対する要望に鑑みてなされたものであ り、 その目的とするところは、 波長が短く空間分解能が高い紫外線、 特に、 波長 3 0 0 n m以下の深紫外 #泉や波長 2 0 0 n m以下の真空紫外線を容易かつ安定し て発生することのできる光源を構成するために用いることを可能にしたフッ化物 単結晶の製造方法および波長変換素子を提供しようとするものである。 発明の開示  However, in wavelength conversion by phase matching utilizing the birefringence of the CLBO crystal, there was a problem that the wavelength was limited to 195 nm due to its refractive index dispersion. That is, in the prior art, there is no light source capable of easily and stably generating deep ultraviolet light having a wavelength of 300 nm or less or vacuum ultraviolet light having a wavelength of 200 nm or less, and a proposal for such a light source is strongly desired. Had been rare. The present invention has been made in view of the above-mentioned demands for the conventional technology, and has as its object the purpose of the present invention is to use ultraviolet light having a short wavelength and high spatial resolution, in particular, a deep ultraviolet light having a wavelength of 300 nm or less. #Provide a method for manufacturing a fluoride single crystal and a wavelength conversion element that can be used to construct a light source that can easily and stably generate vacuum ultraviolet light with a wavelength of 200 nm or less and a spring. To do. Disclosure of the invention
上記目的を達成するために、 本発明によるフッ化物単結晶の製造方法は、 チヨ クラルスキー法により結晶成長させて製造するフッ化物単結晶の製造方法におい て、 結晶成長の際の雰囲気ガスとして、 C F 4ガス、 A rガス、 A rガスと C F 4 ガスとの混合ガスまたは N 2ガスの 、ずれかを用いるようにしたものである。 また、 本発明によるフッ化物単結晶の製造方法は、 チヨクラルスキー法により 結晶成長させて製造するフッ化物単結晶の製造方法において、 結晶成長開始前に 炉内を高真空にするようにしたものである。 In order to achieve the above object, a method for producing a single crystal of fluoride according to the present invention is a method for producing a single crystal of fluoride, which is produced by growing a crystal by the Tyzo-Kralski method. Further, as the atmosphere gas during crystal growth, any one of CF 4 gas, Ar gas, a mixed gas of Ar gas and CF 4 gas, or N 2 gas is used. Further, the method for producing a single crystal of fluoride according to the present invention is a method for producing a single crystal of fluoride produced by growing a crystal by the Czochralski method, wherein the inside of the furnace is set to a high vacuum before the start of crystal growth. It is.
また、 本発明によるフッ化物単結晶の製造方法は、 結晶成長開始前の炉内の真 空度を、 1 0— 3 t o r r以上であるようにしたものである。 A method of manufacturing a fluoride single crystal according to the present invention, the vacuum degree in the furnace prior to crystal growth start, is obtained as is 1 0- 3 torr or more.
また、 本発明によるフッ化物単結晶の製造方法は、 チヨクラルスキー法により 結晶成長させて製造するフッ化物単結晶の製造方法において、 チヨクラルスキー 法における力 [I 、および保温材として、 高純度グラフアイトにより構成された加 熱源および保温材を用いるようにしたものである。  Further, the method for producing a single crystal of fluoride according to the present invention is a method for producing a single crystal of fluoride produced by growing a crystal by the Cjochralski method. A heating source and a heat insulating material composed of graphite are used.
また、 本発明によるフッ化物単結晶の製造方法は、 チヨクラルスキー法により 結晶成長させて製造するフッ化物単結晶の製造方法において、 チヨクラルスキー 法における加»、および保温材として、 高純度グラフアイトにより構成された加 熱源および保温材を用い、 育成条件が、 結晶回転数が 5 r p m〜2 5 r p mであ り、 結晶の引き上げ速度が 0 . l mmZh〜5 mmZhであり、 成長開始前の真 空度が 1 0— 3 t o r r以上であり、 成長雰囲気が C F 4、 A rガス、 A rガスと C F 4ガスとの混合ガスまたは N 2ガスのレ、ずれかであるようにしたものである。 また、 本発、明によるフッ化物単結晶の製造方法は、 チヨクラルスキー法により 結晶成長させて製造するフッ化物単結晶の製造方法において、 チヨクラルスキー 法における加 および保温材として、 高純度グラフアイトにより構成された加 熱源および保温材を用い、 育成条件が、 結晶回転数が 10 r pmであり、 結晶の 引き上げ速度が 1 mm/ hであり、成長開始前の真空度が 10- 5 t o r rであり、 成長雰囲気が CF4であるようにしたものである。 In addition, the method for producing a single crystal of fluoride according to the present invention is a method for producing a single crystal of fluoride produced by growing a crystal by the Cjochralski method. Using a heating source and a heat insulating material composed of alite, the growth conditions were a crystal rotation speed of 5 rpm to 25 rpm, a crystal pulling rate of 0.1 mmZh to 5 mmZh, and vacuum is not less 1 0- 3 torr or more, but the growth atmosphere was CF 4, a r gas, a r gas and CF 4 mixed gas or N 2 gas with the gas-les, such that if the deviation is there. The method for producing a single crystal of fluoride according to the present invention is described in the method for producing a single crystal of fluoride produced by growing a crystal by the Tyochralski method. A service composed of ait Heat source and with a heat insulating material, growing conditions, the crystal rotation speed is 10 r pm, pulling rate of the crystal is the 1 mm / h, the degree of vacuum prior to growth initiation is 10- 5 torr, the growth atmosphere it is obtained as is CF 4.
また、 本発明によるフッ化物単結晶の製造方法は、 原料として Ba F2と Mg F 2とをモノレ比で 「1 : 1」 の割合で用い、 フッ化物単結晶として B aMgF4を 製造するようにしたものである。 A method of manufacturing a fluoride single crystal according to the present invention, in Monore ratio and Ba F 2 and Mg F 2 as a raw material "1: 1" used in a proportion of, so as to produce a B aMgF 4 as fluoride single crystal It was made.
また、 本楽明による波長変換素子は、 所定の透過度を有するとともに分極反転 し、 疑似位相齢により波長変換するフッ化物単結晶よりなる波長変換素子であ る。  Further, the wavelength conversion element according to the present invention is a wavelength conversion element made of a fluoride single crystal that has a predetermined transmittance, undergoes polarization inversion, and converts the wavelength by quasi-phase age.
また、 本発明による波長変換素子は、 上記フッ化物単結晶を B aMgF4、 B a S r F4、 B a S r F4、 B a Z nF4または B aMn F4のいずれかとしたもの である。 The wavelength conversion element according to the present invention, which was one of the fluoride single crystal B aMgF 4, B a S r F 4, B a S r F 4, B a Z nF 4 or B aMn F 4 is there.
また、 本発明による波長変換素子は、 上記フッ化物単結晶を本発明によるフッ 化物単結晶の製造方法により製造するものである。  Further, a wavelength conversion element according to the present invention is one wherein the above-mentioned fluoride single crystal is produced by the method for producing a fluoride single crystal according to the present invention.
また、 本発明による波長変換素子は、 上記フッ化物単結晶を本発明によるフッ 化物単結晶の製造方法により製造された B aMg F4としたものである。 Further, in the wavelength conversion element according to the present invention, the above-mentioned fluoride single crystal is BaMg F 4 produced by the method for producing a fluoride single crystal according to the present invention.
また、 本発明による波長変換素子は、 本発明によるフッ化物単結晶の製造方法 により製造されたフッ化物単結晶の分極を反転することによって分極の周期構造 をつくり、 疑似位相整合を達成したものである。 本発明による波長変換素子を用いて、 最も安定した光源が得られる波長 1 /zm の固体レーザーや近赤外線の半導体レーザーのレーザー光を疑似位相整合の手法 で波長変換して、 波長 3 0 0 n m以下の深紫外線、 さらには波長 2 0 0 n m以下 の真空紫外線を発生することができる。 Further, the wavelength conversion element according to the present invention achieves a quasi-phase matching by forming a periodic structure of polarization by reversing the polarization of the fluoride single crystal produced by the method for producing a single crystal fluoride according to the present invention. is there. Using the wavelength conversion element according to the present invention, the wavelength 1 / zm at which the most stable light source can be obtained The laser light of solid-state lasers and near-infrared semiconductor lasers can be wavelength-converted by quasi-phase matching to generate deep ultraviolet light with a wavelength of 300 nm or less and vacuum ultraviolet light with a wavelength of 200 nm or less. it can.
即ち、 本発明によれば、 これまで使用することができなかった波長 3 0 0 n m 以下の深紫外領域や波長 2 0 0 n m以下の真空紫外領域光を、 疑似位相整合の手 法を用いた波長変換により発生させることが可能となり、 全固体化されたコヒ一 レント光源を達成することができるようになる。 図面の簡単な説明  In other words, according to the present invention, a deep ultraviolet region having a wavelength of 300 nm or less or a vacuum ultraviolet region having a wavelength of 200 nm or less, which could not be used until now, was obtained by using a quasi-phase matching method. It can be generated by wavelength conversion, and an all-solid-state coherent light source can be achieved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例によるフッ化物単結晶の製造方法を実施す るための製造装置の模式図である。  FIG. 1 is a schematic diagram of a manufacturing apparatus for performing a method for manufacturing a single crystal of fluoride according to an example of an embodiment of the present invention.
図 2は、 本発明により製造された B a M g F 4単結晶の透過率測 果を示す グラフである。 Figure 2 is a graph showing transmittance measurement results of the produced B a M g F 4 single crystal by the present invention.
図 3は、 結晶に分極反転が起こっていない場合の例を示すグラフである。 図 4は、 本発明により製造された B a M g F 4単結晶の分極反転に関する実験 結果を示すグラフである。 FIG. 3 is a graph showing an example in which no polarization inversion has occurred in the crystal. Figure 4 is a graph showing experimental results relating to the polarization inversion produced by the present invention B a M g F 4 single crystals.
図 5は、 本発明により製造された B a M g F 4単結晶を波長変換素子として用 レ、た紫外光源の概略構成説明図である。 符号の説明 Figure 5 is a schematic illustration of use les were ultraviolet light source as a wavelength conversion element manufactured B a M g F 4 single crystal by the present invention. Explanation of reference numerals
1 0 チヨクラルスキ^ "法による炉 (C z炉) 12 1 0 Furnace using the Czochralski ^ method (Cz furnace) 12
14 ヒーター  14 Heater
16 坩堝  16 crucible
18 シャフト  18 shaft
18 a 下端部  18a lower end
20 コンピューター  20 Computer
22 真空ポンプ  22 Vacuum pump
24 ガス .タリーナー  24 gas .taliner
30 B aMg F4の単結晶 Single crystal of 30 B aMg F 4
100 チタンサフアイァレーザー  100 titanium sapphire laser
102 KTP結晶  102 KTP crystal
104 KTP結晶  104 KTP crystal
106 B aMgF4単結晶 発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION 106 B aMgF 4 Single Crystal
以下、 添付の図面を参照しながら、 本発明によるフッ化物単結晶の製造方法お よび波長変換素子の実施の形態の一例を詳細に説明する。 まず、 図 1には、 本発明の実施の形態の一例によるフッ化物単結晶の製造方法 を実施するための製造装置の模式図が示されている。  Hereinafter, an example of an embodiment of a method for producing a fluoride single crystal and a wavelength conversion element according to the present invention will be described in detail with reference to the accompanying drawings. First, FIG. 1 shows a schematic diagram of a manufacturing apparatus for performing a method for manufacturing a fluoride single crystal according to an example of an embodiment of the present invention.
即ち、 本発明によるフッ化物単結晶の製造方法においては、 C z法を用いてフ ッ化物単結晶の製造するものであるが、 図 1において、 符号 1 0はチヨクラノレス キー法による炉 (C z炉) を示している。 That is, in the method for producing a single crystal of fluoride according to the present invention, the fluorine In FIG. 1, reference numeral 10 denotes a furnace (Cz furnace) by the Tiyo-Kranoreskey method.
この C z炉 1 0は、 真空チヤンバー 1 2と、 真空チヤンバー 1 2内に配設され た加熱源および保温材より構成されるヒーター 1 4と、 ヒーター 1 4によって加 熱される坩堝 1 6と、 下端部 1 8 aに種結晶を固定するととも回転しながら上方 に引き上げ可能なシャフト 1 8とを有している。  The Cz furnace 10 includes a vacuum chamber 12, a heater 14 including a heating source and a heat insulating material disposed in the vacuum chamber 12, a crucible 16 heated by the heater 14, The lower end 18a has a shaft 18 which can fix the seed crystal and pull it upward while rotating.
また、 この C z炉 1 0にはコンピューター 2 0が接続されており、 このコンビ ユーター 2 0によりヒーター 1 4の温度制御を含む各種の制御、 例えば、 シャフ ト 1 8の回転数や引き上げ速度などの結晶の育成条件の制御などが行われる。 さらに、 C Z炉 1 0にはロータリー■ポンプや拡散ポンプなどから構成される 真空ポンプ 2 2が接続されており、 この真空ポンプ 2 2により真空チャンバ一 1 2内が所望の真空度に維持される。 Further, a computer 20 is connected to the Cz furnace 10 and various controls including temperature control of the heater 14 are performed by the computer 20, such as a rotation speed and a lifting speed of the shaft 18. The control of the crystal growth conditions is performed. Further, a vacuum pump 22 composed of a rotary pump, a diffusion pump, and the like is connected to the CZ furnace 10, and the inside of the vacuum chamber 12 is maintained at a desired vacuum degree by the vacuum pump 22. You.
また、 真空ポンプ 2 2には N a OHを充填したガス■クリーナー 2 4が接続さ れており、 ガス ·クリーナー 2 4により真空ポンプ 2 2から排気されるガス (後 述するように、 この実施の形態にいては、 C z法による結晶成長の際の雰囲気ガ スとして、 C F 4ガスが C z炉 1 0内に導入される。 ) を無害化している。 ここで、 ヒーター 1 4は高純度グラフアイトにより構成されており、 坩堝 1 6 は白金により構成されている。 また、 ヒーター 1 4は、 高周 fe¾熱方式により加 熱されるものとする。 以上の構成において、 上記した図 1に示す製造装置を用いて、 本発明によるフ ッ化物単結晶の製造方法によりフッ化物単結晶として B aMg F4を製造する場 合について説明する。 Further, a gas cleaner 24 filled with NaOH is connected to the vacuum pump 22, and the gas exhausted from the vacuum pump 22 by the gas cleaner 24 (as described later) In the embodiment, CF 4 gas is introduced into the C z furnace 10 as an atmosphere gas at the time of crystal growth by the C z method. Here, the heater 14 is made of high-purity graphite, and the crucible 16 is made of platinum. Further, the heater 14 is heated by a high-frequency fe-heating method. In the above configuration, a case where BaMgF 4 is produced as a fluoride single crystal by the method for producing a fluoride single crystal according to the present invention using the production apparatus shown in FIG. 1 will be described.
この実施の形態においては、 C z炉 10内の結晶成長開始前の真空度は 10一5 t o r rに設定されている。 また、 この実施の形態においては、 CF4雰囲気で B aMg F4単結晶を結晶成長させるため、 C z炉 10内には CF4ガス (純度: 4N (99. 99%) ) が導入される。 In this embodiment, the degree of vacuum in the Cz furnace 10 before the start of crystal growth is set at 10 to 5 torr. In this embodiment, CF 4 gas (purity: 4N (99.99%)) is introduced into the Cz furnace 10 in order to grow a BaMg F 4 single crystal in a CF 4 atmosphere. .
こうした条件下において、坩堝 16の中に原料となる B a F 2と Mg F 2とをモ ル比で「1 : 1」 の割合でいれ、 ヒーター 14により加熱(加熱 ag: 900°C) して溶解させる。 なお、 シャフト 18の下端部 18 aには、 種結晶を固定してお <。 In these conditions, B a F 2 and with Mg F 2 Toomo Le ratio as a raw material in the crucible 16 "1: 1" placed at the rate of heating by the heater 14 (heating ag: 900 ° C) and To dissolve. A seed crystal is fixed to the lower end 18 a of the shaft 18.
それから、 坩堝 16の上部よりシャフト 18を坩堝 16内に挿入に、 シャフト 18の下端部 18 aに固定された種結晶を B a F 2と M g F 2とが溶解した液面 に接触させ、シャフト 18を回転させながら徐々に引き上げていくことによって、 B aMg F4の単結晶 30を形成する。 Then, the shaft 18 is inserted into the crucible 16 from the upper part of the crucible 16, and the seed crystal fixed to the lower end part 18 a of the shaft 18 is brought into contact with the liquid surface in which B a F 2 and M g F 2 are dissolved, A single crystal 30 of BaMg F 4 is formed by gradually pulling up while rotating the shaft 18.
この実施の形態における B aMg F4単結晶の育成条件をまとめると、 以下の 通りである。 To summarize the growth conditions of B AMG F 4 single crystal in this embodiment, is as follows.
•結晶回転数 (シャフト 18の回転数) 10 r pm  • Crystal rotation speed (shaft 18 rotation speed) 10 rpm
■結晶の引き上げ速度 (シャフ卜 18の引き上げ速度) lmm/h  ■ Crystal pulling speed (shaft 18 pulling speed) lmm / h
·成長開始前の真空度 10— 5 t o r r And growth before the start of the degree of vacuum of 10- 5 torr
'成長雰囲気 C F 4 ここで、 本発明によるフッ化物単結晶の製造方法においては、 C z炉 10内や 原料中の微量な水分と粉末原料の反応による白濁物質発生を抑制するため、 水分 ならびに酸素の発生源となる物質を Cz炉 10内から一切排^る目的で、 カロ熱 源および保温材を構成するヒーター 14を高純度グラフアイトで構成することと した。 '' Growth atmosphere CF 4 Here, in the method for producing a fluoride single crystal according to the present invention, in order to suppress the generation of a cloudy substance due to the reaction of a small amount of water in the Cz furnace 10 and the raw material with the powder raw material, the method becomes a source of water and oxygen. In order to remove any substances from the Cz furnace 10, the heater 14, which constitutes the heat source and the heat insulator, is made of high-purity graphite.
また、 水分除去の効率化を図るために、 例えば、 10— 5 t o r rという高真空 度で結晶成長を行った。 In order to improve the efficiency of water removal, for example, it was grown in a high vacuum of 10- 5 torr.
さらに、 結晶成長させる際の雰囲気ガスとしては、 高純度、 例えば、 純度 4N (99. 995) の CF4ガスを用いることとした。 Further, as the atmosphere gas for crystal growth, CF 4 gas of high purity, for example, 4N (99.955) purity was used.
以上のような育成条件により結晶成長を行つたところ、フッ化物単結晶として、 白濁物質の付着ゃクラックならびにィンクルージョンなどのない直径約 20 mm、 長さ約 8 Ommの透明な B aMg F4単結晶を作成することができた。 When the crystal was grown under the growth conditions as described above, a transparent BaMg F 4 with a diameter of about 20 mm and a length of about 8 Omm free from the adhesion of cloudy substances and cracks and inclusions was obtained as a fluoride single crystal. A single crystal could be produced.
この B aMg F4単結晶を 「16mm (縦) X 32mm (横) X 2. 5mm (厚 さ) 」 に切断し、 鏡面研磨を行ったものをサンプルとして用いて、 透過率測定を 行った。 The B AMG F 4 single crystal was cut to "16 mm (vertical) X 32 mm (lateral) X 2. 5 mm (thickness)", using what was mirror polished as a sample was subjected to transmission measurements.
図 2には、 透過率測定の結果が示されており、 図 2に示すように波長 200η mで約 80%、 波長 140 nmで約 50 %と深紫外域においても高い透過率を示 した。 ただし、 この透過率測定においては、 結晶表面による反射によるロスは考 慮されていない。  Fig. 2 shows the results of the transmittance measurement. As shown in Fig. 2, the transmittance was high at about 200% at a wavelength of 200 ηm and about 50% at a wavelength of 140 nm, even in the deep ultraviolet region. However, in this transmittance measurement, loss due to reflection from the crystal surface is not taken into account.
即ち、 結晶成長段階で水分を除去することにより、 紫外線や真空紫外線に対し て透明な材料を製造することができた。 次に、 上記したサンプノレを用いて、 このサンプルにおける分極反転を確認する ための実験を行った。 In other words, by removing water during the crystal growth stage, And a transparent material could be produced. Next, an experiment for confirming the polarization reversal in this sample was performed using the above-described sample.
この分極反転を確認するための実験は、 サンプルの両面に電圧をかけ、 その際 のサンプル内を流れる電流を観察することにより行った。  An experiment to confirm this polarization inversion was performed by applying a voltage to both surfaces of the sample and observing the current flowing through the sample at that time.
ここで、 結晶に分極反転が起こっていない場合には、 結晶に電圧を印加したと きに、 結晶がコンデンサーの役割を果たし、 電圧が変ィ匕するときにだけ電流が流 れることになる。  Here, when no polarization reversal occurs in the crystal, the crystal acts as a capacitor when a voltage is applied to the crystal, and a current flows only when the voltage changes.
一方、 結晶に分極反転が起こっている場合には、 結晶に印加する電圧を一定に してからも、 ィオンの移動により電流が流れることになる。  On the other hand, when polarization reversal occurs in the crystal, current flows due to the movement of ions even after the voltage applied to the crystal is kept constant.
図 3に示すグラフ (横軸は時間であり、 縦軸は電流である。 ) は、 結晶に分極 反転が起こっていない場合の例を示すものであり、 結晶に印加する電圧の増加に あわせて電流力 S発生し、 結晶に印力 tfする電圧が定常になった時点で電流が流れな くなつている (図 1のグラフ中の 2本のピーク参照) 。  The graph shown in Fig. 3 (where the horizontal axis is time and the vertical axis is current) shows an example in which no polarization inversion occurs in the crystal, and as the voltage applied to the crystal increases, When the current force S is generated and the voltage for imprinting tf on the crystal becomes steady, the current stops flowing (see the two peaks in the graph in Fig. 1).
一方、 図 4に示すグラフ (横軸は時間であり、 縦軸は電流である。 ) は、 上記 したサンプルの実験結果を示すものであり、 サンプルに印加する ¾Ξを定常にし たときに、 電流の減少が指数関数的に少しずつ起こっていることがわかる。 この 電流変化のテール部分の;? により、 分極の反転を確認することができる。 即ち、 本発明によるフッ化物単結晶の製造方法により製造された B a M g F 4 単結晶は、 分極反転を形成して分極の周期構造をつくり、 疑似位相整合を達成す ることができる。 従って、 B a M g F 4単結晶により、 分極反転を利用した疑似 位相整合による波長変換を行う波長変換素子を構成することができる。 次に、 図 5を参照しながら、 上記したサンプルを波長変換素子として用いた紫 外光源を説明する。 On the other hand, the graph shown in Fig. 4 (the horizontal axis is time and the vertical axis is current) shows the experimental results of the sample described above. It can be seen that the decrease of the value occurs exponentially little by little. The inversion of the polarization can be confirmed by;? In the tail of this current change. That is, the present invention according to the fluoride single crystals have been B a M g F 4 single crystal produced by the method is to create a periodic structure of polarization to form a polarization inversion, to achieve quasi phase matching Can be Accordingly, B a M g F 4 single crystal, it is possible to constitute a wavelength conversion element performs wavelength conversion by quasi phase matching using the polarization inversion. Next, an ultraviolet light source using the above-described sample as a wavelength conversion element will be described with reference to FIG.
図 5はこの紫外光源の概略構成説明図であり、 波長 942 n mのレーザー光を 発生する固体レーザーとしてのチタンサファイアレーザー 100と、 チタンサフ アイァレーザー 100力 ら出射された波長 942 nmのレーザー光を入射してそ の 2倍波 (波長 471 nm) に変換する波長変換素子としての非線形結晶たる K TP結晶 102と、 KTP結晶 102から出射されたレーザー光 (波長 471 η m) を入射してチタンサファイアレーザー 100から出射された波長 942 nm のレーザー光を 3倍波 (波長 314n m) に変換する波長変換素子としての非線 形結晶たる KTP結晶 104と、 丁?結晶104から出射されたレーザー光 (波 長 314nm) を入射して波長 314 nmの 2倍波 (波長 157nm) 、 即ち、 チタンサファイアレーザー 100から出射された波長 942 nmのレーザー光を 6倍波 (波長 157 nm) に変換する波長変換素子としての B aMg F4単結晶 106とを有して構成されている。 Fig. 5 is a schematic diagram illustrating the structure of this ultraviolet light source. KTP crystal 102, which is a non-linear crystal as a wavelength conversion element that enters and converts it to its second harmonic (wavelength 471 nm), and laser light (wavelength 471 ηm) emitted from KTP crystal 102 The KTP crystal 104, which is a non-linear crystal as a wavelength conversion element that converts the laser light of 942 nm wavelength emitted from the sapphire laser 100 into a third harmonic (wavelength 314 nm), The laser beam (wavelength 314 nm) emitted from the crystal 104 is incident and a second harmonic (wavelength 157 nm) with a wavelength of 314 nm is emitted. It is configured to include a B AMG F 4 single crystal 106 as a wavelength conversion element for converting the wavelength 157 nm).
ここで、 B aMg F4単結晶 106は、 上記したように本発明によるフッ化物 単結晶の製造方法により製造されたものである。 Here, the BaMg F 4 single crystal 106 is manufactured by the method for manufacturing a single crystal fluoride according to the present invention as described above.
即ち、 この紫外光源においては、 チタンサファイアレーザー 100から出射さ れた波長 942 nmのレーザー光を KT P結晶 102を用いた波長変換で 2倍波 の波長 471 nmに変換し、 同様にして KTP結晶 102を用いた波長変換で 3 倍波に変換して得られた波長 314 n mのレーザー光を B a M g F 4単結晶 10 6に入射して波長変換することにより、 波長 157 n mの全固体深紫外レーザー を実現している。 即ち、本発明により製造されたフッ化物単結晶は、波長 180 nmで約 80 °ん 波長 140 nmで約 50%と深紫外域においても高い透過率を備え、 力つ、 容易 に分極反転するので、 これらフッ化物単結晶を波長変換素子として利用すること により、 波長 300 nm以下の波長領域で擬似位相整合による波長変換を可能と する波長変換素子を構成することができる。 In other words, in this ultraviolet light source, the laser light having a wavelength of 942 nm emitted from the titanium sapphire laser 100 is doubled by the wavelength conversion using the KTP crystal 102. Of converting the wavelength 471 nm, in the same manner to the incident laser light of the resulting wavelength 314 nm is converted to the third harmonic at a wavelength conversion using a KTP crystal 102 to B a M g F 4 single crystal 10 6 By converting the wavelength, an all-solid-state deep ultraviolet laser with a wavelength of 157 nm has been realized. That is, the single crystal of fluoride produced according to the present invention has a high transmittance even in the deep ultraviolet region of about 80 ° at a wavelength of 180 nm and about 50% at a wavelength of 140 nm, and is easily and reversibly polarized. By using these fluoride single crystals as a wavelength conversion element, a wavelength conversion element capable of performing wavelength conversion by quasi-phase matching in a wavelength region of a wavelength of 300 nm or less can be configured.
これにより、 波長 300 nm以下の光を発生することのできる全固体のコヒー レント光源を実現することができるようになる。 なお、 上記した実施の形態は、 以下に説明する (1) 乃至 (7) に示すように 変形してもよい。  As a result, it becomes possible to realize an all-solid coherent light source capable of generating light with a wavelength of 300 nm or less. The above-described embodiment may be modified as shown in (1) to (7) described below.
( 1 ) 上記した実施の形態においては、 フッ化物単結晶として B aMgF4を 製造する例と、 波長変換素子を B a M g F 4により構成した例とを示したが、 こ れらに限られるものではないことは勿論である。 (1) In the above-described embodiments, the example of producing the B aMgF 4 as fluoride single crystals showed a example in which the wavelength conversion element by B a M g F 4, limited to these Of course, it is not something that can be done.
即ち、原料を適宜に変更することにより、本発明によりフッ化物単結晶として、 例えば、 B a S r F4、 B a Z n F 4あるいは B a Mn F4などを製造することが でき、 また、 波長変換素子を、 例えば、 Ba Sr F4、 Ba ZnF4あるいは B a M n F 4により構成することができる。 That is, by changing the raw material appropriately, as the fluoride single crystal according to the present invention, for example, B a S r F 4, B a Z n F 4 or B a Mn F 4 can be produced like, also The wavelength conversion element is, for example, Ba Sr F 4 , Ba ZnF 4 or Ba It can be constituted by M n F 4.
(2) 上記した実施の形態においては、 結晶回転数 (シャフト 18の回転数) を 10 r pmとしたが、 これらに限られるものではないことは勿論である。 即ち、 結晶回転数 (シャフト 18の回転数) は、 例えば、 5 r pm〜25 r p mの間で適宜に設定するようにしてもよい。  (2) In the above embodiment, the crystal rotation speed (the rotation speed of the shaft 18) was set to 10 rpm, but it is needless to say that the present invention is not limited to this. That is, the crystal rotation speed (the rotation speed of the shaft 18) may be appropriately set, for example, between 5 rpm and 25 rpm.
(3) 上記した実施の形態においては、 結晶の引き上げ速度 (シャフト 18の 引き上げ速度) を lmm/hとしたが、 これらに限られるものではないことは勿 (3) In the embodiment described above, the crystal pulling speed (the pulling speed of the shaft 18) is lmm / h, but it is needless to say that the present invention is not limited to these.
RRB める。 RRB
即ち、 結晶の引き上げ速度 (シャフト 18の引き上げ速度) は、 例えば、 0. ImmZl!〜 5mm/hの間で適宜に設定するようにしてもよい。  That is, the crystal pulling speed (shaft 18 pulling speed) is, for example, 0.1 ImmZl! It may be set appropriately between 5 mm / h and 5 mm / h.
(4) 上記した実施の形態においては、 じ 4ガスを用ぃて〇?4雰囲気で結晶 成長させるようにしたが、 これらに限られるものではないことは勿論である。 即ち、 雰囲気ガスとしては、 例えば、 Arガス、 Arガスと CF4ガスとの混 合ガス (混合比:分子量で 「1 : 1」 ) あるいは N2ガスなど適宜に選択するこ とができる。 (4) In the embodiment described above, the same four gases are used. Although the crystal was grown in four atmospheres, it is a matter of course that the present invention is not limited to these. That is, as the atmosphere gas, for example, Ar gas, a mixed gas of Ar gas and CF 4 gas (mixing ratio: “1: 1” in molecular weight) or N 2 gas can be appropriately selected.
また、 上記した各種の雰囲気ガスの純度は、 純度 4N (99. 99%) に限ら れるものではないことは勿論である。  Also, the purity of the above-mentioned various atmosphere gases is not limited to 4N (99.99%).
即ち、雰囲気ガスの純度としては、例えば、純度 3N (99. 9%)〜9N (9 9. 9999999%) の間で適宜に設定するようにしてもよい。  That is, the purity of the atmosphere gas may be appropriately set, for example, between 3N (99.9%) and 9N (9.99.9999999%).
(5) 上記した実施の形態においては、 成長開始前の真空度を 10_5 t o 1- r に設定したが、 これらに限られるものではないことは勿論であり、 例えば、 10 一3 t o r r以上、好ましくは、 10一3 t o r r~ l。一11 t o r rとしてもよい。(5) In the above-described embodiment has been set degree of vacuum before the growth starts 10_ 5-to 1-r, it is of course not limited to these, for example, 10 One 3 torr or more, preferably, 10 one 3 torr ~ l. It may be 11 torr.
(6) 上記した実施の形態においては、 ヒーター 14を高周波加熱方式で加熱 するようにしたが、 これらに限られるものではないことは勿論であり、 例えば、 抵抗加熱方式で加熱するようにしてもよい。 (6) In the above-described embodiment, the heater 14 is heated by the high-frequency heating method. However, it is needless to say that the heater 14 is heated by the resistance heating method. Good.
(7)上記した実施の形態ならびに上記した (1)乃至(6) に示す変形例は、 適宜に組み合わせて用いるようにしてもよい。 産業上の利用可能性  (7) The above embodiments and the modifications shown in (1) to (6) above may be used in appropriate combination. Industrial applicability
本発明は、 以上説明したように構成されているので、 波長が短く空間 军能が 高い紫外線、 特に、 波長 300 nm以下の深紫外線や波長 200 nm以下の真空 紫外線を容易かつ安定して発生することのできる光源を構成するために用いるこ とを可能にしたフッ化物単結晶の製造方法および波長変換素子を することが できるという優れた効果を奏する。  Since the present invention is configured as described above, it can easily and stably generate ultraviolet light having a short wavelength and high spatial performance, in particular, deep ultraviolet light having a wavelength of 300 nm or less and vacuum ultraviolet light having a wavelength of 200 nm or less. The present invention has an excellent effect that a method of manufacturing a fluoride single crystal and a wavelength conversion element that can be used to construct a light source capable of performing the method can be used.

Claims

請 求 の 範 囲 The scope of the claims
1. チヨクラルスキー法により結晶成長させて製造するフッ化物単結晶の製造方 法において、 1. In a method for producing a single crystal of fluoride produced by growing a crystal by the Chiyoklarski method,
結晶成長の際の雰囲気ガスとして、 CF4ガス、 Arガス、 Arガスと CF4ガ スとの混合ガスまたは N 2ガスのいずれかを用いる Either CF 4 gas, Ar gas, a mixed gas of Ar gas and CF 4 gas, or N 2 gas is used as the atmosphere gas for crystal growth
フッ化物単結晶の製造方法。  A method for producing a fluoride single crystal.
2. チヨクラルスキー法により結晶成長させて製造するフッ化物単結晶の製造方 法において、 2. In a method for producing a fluoride single crystal produced by growing a crystal by the Chiyoklarski method,
結晶成長開始前に炉内を高真空にする  High vacuum inside furnace before crystal growth starts
フッ化物単結晶の製造方法。  A method for producing a fluoride single crystal.
3. 請求項 2に記載のフッ化物単結晶の製造方法において、 3. In the method for producing a fluoride single crystal according to claim 2,
結晶成長開始前の炉内の真空度は、 10 3 t o r r以上である The degree of vacuum in the furnace before starting crystal growth is 10 3 torr or more
フッ化物単結晶の製造方法。  A method for producing a fluoride single crystal.
4. チヨクラルスキー法により結晶成長させて製造するフッ化物単結晶の製造方 法において、 4. In a method for producing a single crystal of fluoride produced by growing a crystal by the Czochralski method,
チヨクラルスキー法における加 i«および保温材として、 高純度グラフアイト により構成された加熱源および保温材を用レヽる フッ化物単結晶の製造方法。 Heat source and heat insulator composed of high-purity graphite are used as heat and heat insulator in the Chiyoklarski method. A method for producing a fluoride single crystal.
5 . チヨクラルスキー法により結晶成長させて製造するフッ化物単結晶の製造方 法において、 5. In a method for producing a single crystal of fluoride produced by growing a crystal by the Czochralski method,
チヨクラルスキー法における加熱源およぴ保温材として、 高純度ダラファイト により構成された加熱源および保温材を用い、  As the heating source and heat insulating material in the Chiyoklarsky method, a heating source and heat insulating material composed of high-purity dalaphite were used.
育成条件が、  The growth conditions are
結晶回転数が 5 r p n!〜 2 5 r p mであり、  The crystal rotation speed is 5 r pn! ~ 25 rpm,
結晶の引き上げ速度が 0 . 1 mmZ h〜 5 mm/ hであり、  The crystal pulling speed is 0.1 mmZh to 5 mm / h,
成長開始前の真空度が 1 0— 3 t o r r以上であり、 The degree of vacuum before the start of the growth is not less 1 0- 3 torr or more,
成長雰囲気が C F 4、 A rガス、 A rガスと C F 4ガスとの混合ガスまたは N 2ガスのいずれかである The growth atmosphere is CF 4 , Ar gas, a mixed gas of Ar gas and CF 4 gas, or N 2 gas
フッ化物単結晶の製造方法。  A method for producing a fluoride single crystal.
6 . チヨクラルスキー法により結晶成長させて製造するフッ化物単結晶の製造方 法において、 6. In a method for producing a single crystal of fluoride produced by growing a crystal by the Czochralski method,
チヨクラルスキー法における力 ί«および保温材として、 高純度グラフアイト により構成された力 U熱源および保温材を用い、  As the power and heat insulator in the Chiyoklarski method, a heat source composed of high-purity graphite and a heat insulator are used.
育成条件が、  The growth conditions are
結晶回転数が 1 0 r p mであり、  The crystal rotation speed is 10 rpm,
結晶の引き上げ速度が 1 mmZhであり、 成長開始前の真空度が 10— 5 t o r rであり、 The crystal pulling speed is 1 mmZh, The degree of vacuum before the start of the growth is 10- 5 torr,
成長雰囲気が C F 4である Growth atmosphere at the CF 4
フッ化物単結晶の製造方法。  A method for producing a fluoride single crystal.
7. 請求項 6に記載のフッ化物単結晶の製造方法において、 7. The method for producing a fluoride single crystal according to claim 6,
原料として Ba F2と MgF2とをモル比で 「1 : 1」 の割合で用い、 フッ化物 単結晶として B aMg F4を製造する And Ba F 2 and MgF 2 in a molar ratio as the starting material: used in a proportion of "1 1", to produce the B AMG F 4 as fluoride single crystal
フッ化物単結晶の製造方法。  A method for producing a fluoride single crystal.
8. 所定の透過度を有するとともに分極反転し、 疑似位相整合により波長変換す るフッ化物単結晶よりなる 8. It is made of a single crystal of fluoride that has a predetermined transmittance, is polarization-inverted, and performs wavelength conversion by quasi-phase matching.
波長変換素子。  Wavelength conversion element.
9. 請求項 8に記載の波長変換素子において、 9. The wavelength conversion element according to claim 8,
前記フッ化物単結晶は、 B aMgF4、 B a S r F4、 B a S r F4、 B a Z n F4または B aMnF4のいずれかである The fluoride single crystal, is either B aMgF 4, B a S r F 4, B a S r F 4, B a Z n F 4 or B aMnF 4
波長変換素子。  Wavelength conversion element.
10. 請求項 9に記載の波長変換素子において、 10. The wavelength conversion element according to claim 9,
前記フッ化物単結晶は、 請求項 1、 請求項 2、 請求項 3、 請求項 4、 請求項 5 または請求項 6のいずれか 1項に記載のフッ化物単結晶の製造方法により製造さ れたものである The single crystal fluoride is manufactured by the method for manufacturing a single crystal fluoride according to any one of claims 1, 2, 3, 4, 5, and 6. Was
波長変換素子。  Wavelength conversion element.
1 1 . 請求項 8に記載の波長変換素子において、 11. The wavelength conversion element according to claim 8,
前記フッ化物単結晶は、 請求項 7に記載のフッ化物単結晶の製造方法により製 造された B a M g F 4である The fluoride single crystal is a B a M g F 4 A manufactured by the manufacturing method of the fluoride single crystal according to claim 7
波長変換素子。  Wavelength conversion element.
1 2 . 請求項 1、 請求項 2、 請求項 3、 請求項 4、 請求項 5、 請求項 6または請 求項 7のいずれか 1項に記載のフッ化物単結晶の製造方法により製造されたフッ 化物単結晶の分極を反転することによつて分極の周期構造をつくり、 疑似位相整 合を達成した 1 2. It is manufactured by the method for manufacturing a single crystal fluoride according to any one of claims 1, 2, 3, 4, 5, 6, or 7. A quasi-phase matching was achieved by creating a periodic structure of polarization by reversing the polarization of a fluoride single crystal.
波長変換素子。  Wavelength conversion element.
PCT/JP2004/003762 2003-03-20 2004-03-19 Process for producing fluoride single crystal and wavelength transforming device WO2004083497A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005503764A JPWO2004083497A1 (en) 2003-03-20 2004-03-19 Fluoride single crystal manufacturing method and wavelength conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-078999 2003-03-20
JP2003078999 2003-03-20

Publications (1)

Publication Number Publication Date
WO2004083497A1 true WO2004083497A1 (en) 2004-09-30

Family

ID=33027994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003762 WO2004083497A1 (en) 2003-03-20 2004-03-19 Process for producing fluoride single crystal and wavelength transforming device

Country Status (2)

Country Link
JP (1) JPWO2004083497A1 (en)
WO (1) WO2004083497A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069706A1 (en) * 2007-11-27 2009-06-04 Hitachi Chemical Company, Ltd. Optical material, wavelength conversion element, single crystal of ferroelectric fluoride, and process for producing single crystal of ferroelectric fluoride
JP2009280459A (en) * 2008-05-23 2009-12-03 Hitachi Chem Co Ltd Ferroelectric fluoride crystal
DE112008003392T5 (en) 2007-12-12 2010-10-14 National Institute For Materials Science, Tsukuba The wavelength conversion element
CN105568379A (en) * 2014-10-13 2016-05-11 中国科学院上海硅酸盐研究所 Technology for BaMgF4 monocrystal growth by temperature gradient method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351697A (en) * 1999-06-14 2000-12-19 Univ Tohoku Barium lithium fluoride single crystal and its production
JP2000351696A (en) * 1999-06-14 2000-12-19 Univ Tohoku Production of fluoride bulk single crystal
JP2002060299A (en) * 2000-08-14 2002-02-26 Tokin Corp Lithium calcium aluminum fluoride single crystal and method of producing the same
JP2003112998A (en) * 2001-09-28 2003-04-18 Furuya Kinzoku:Kk Crucible for manufacturing single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351697A (en) * 1999-06-14 2000-12-19 Univ Tohoku Barium lithium fluoride single crystal and its production
JP2000351696A (en) * 1999-06-14 2000-12-19 Univ Tohoku Production of fluoride bulk single crystal
JP2002060299A (en) * 2000-08-14 2002-02-26 Tokin Corp Lithium calcium aluminum fluoride single crystal and method of producing the same
JP2003112998A (en) * 2001-09-28 2003-04-18 Furuya Kinzoku:Kk Crucible for manufacturing single crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KODAMA N. ET AL: "Optical and structural studies on BaMgF4:Ce<3+> crystals", J. OF CRYSTAL GROWTH, vol. 229, 2001, pages 492 - 496, XP004251114 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069706A1 (en) * 2007-11-27 2009-06-04 Hitachi Chemical Company, Ltd. Optical material, wavelength conversion element, single crystal of ferroelectric fluoride, and process for producing single crystal of ferroelectric fluoride
JPWO2009069706A1 (en) * 2007-11-27 2011-04-14 日立化成工業株式会社 Optical material, wavelength conversion element, ferroelectric fluoride single crystal, and method for producing ferroelectric fluoride single crystal
DE112008003392T5 (en) 2007-12-12 2010-10-14 National Institute For Materials Science, Tsukuba The wavelength conversion element
US8472106B2 (en) 2007-12-12 2013-06-25 National Institute For Materials Science Wavelength conversion element
JP2009280459A (en) * 2008-05-23 2009-12-03 Hitachi Chem Co Ltd Ferroelectric fluoride crystal
CN105568379A (en) * 2014-10-13 2016-05-11 中国科学院上海硅酸盐研究所 Technology for BaMgF4 monocrystal growth by temperature gradient method

Also Published As

Publication number Publication date
JPWO2004083497A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
Komatsu et al. Growth and ultraviolet application of Li 2 B 4 O 7 crystals: Generation of the fourth and fifth harmonics of Nd: Y 3 Al 5 O 12 lasers
JP4911494B2 (en) Wavelength conversion optical element, method for manufacturing wavelength conversion optical element, wavelength conversion apparatus, ultraviolet laser irradiation apparatus, and laser processing apparatus
Shimamura et al. Growth of Ce-doped LiCaAlF6 and LiSrAlF6 single crystals by the Czochralski technique under CF4 atmosphere
Singh et al. Far-infrared conversion materials: Gallium selenide for far-infrared conversion applications
US10274673B2 (en) Method and apparatus for producing crystalline cladding and crystalline core optical fibers
Ye et al. Recent advances in crystal growth in China: Laser, nonlinear optical, and ferroelectric crystals
Shimamura et al. Crystal growth of fluorides for optical applications
JPH07112086B2 (en) Upconversion laser pumped by a single wavelength infrared laser source.
US20060001948A1 (en) Wavelength converting devices
Bensalah et al. Growth of Tm, Ho-codoped YLiF4 and LuLiF4 single crystals for eye-safe lasers
WO2004083497A1 (en) Process for producing fluoride single crystal and wavelength transforming device
TW476018B (en) Wave length changing crystal and method for generating a laser light, and a laser generating device
WO1996026464A1 (en) Non-linear crystals and uses thereof
JPH11335199A (en) Production of single crystal membrane
CN108493769A (en) A kind of microplate ridge waveguide laser, tunable laser and preparation method thereof
Ranieri et al. Crystal growth of Ce: LiLuF4 for optical applications
JP4729698B2 (en) Lithium tantalate single crystal and its optical functional device
JP2005272219A (en) Nonlinear optical crystal, its producing method and wavelength conversion element
CN102086529A (en) Czochralski preparation method of erbium and ytterbium double-doped potassium tantalate niobate lithium monocrystal
JP2565964B2 (en) Optical medium for nonlinear optical devices
JP4039942B2 (en) Method for producing fluoride crystals
JPH0792514A (en) Wavelength conversion solid-state laser element
JPH09197455A (en) Nonlinear optical element
JP4617461B2 (en) Manufacturing method of quasi phase matching crystal
JP2000098434A (en) Production of beta-barium borate crystal element, beta- barium borate crystal element and far uv laser light generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503764

Country of ref document: JP

122 Ep: pct application non-entry in european phase