WO2004083075A1 - Systeme de realisation de vehicules de transport intermodal, route, train, fleuve, mer et ses applications - Google Patents

Systeme de realisation de vehicules de transport intermodal, route, train, fleuve, mer et ses applications Download PDF

Info

Publication number
WO2004083075A1
WO2004083075A1 PCT/FR2003/000671 FR0300671W WO2004083075A1 WO 2004083075 A1 WO2004083075 A1 WO 2004083075A1 FR 0300671 W FR0300671 W FR 0300671W WO 2004083075 A1 WO2004083075 A1 WO 2004083075A1
Authority
WO
WIPO (PCT)
Prior art keywords
vti
wheel
container
wheels
transport vehicle
Prior art date
Application number
PCT/FR2003/000671
Other languages
English (en)
Inventor
André Dejoux
Benoît Labbe
Original Assignee
Dejoux Andre
Labbe Benoit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dejoux Andre, Labbe Benoit filed Critical Dejoux Andre
Priority to PCT/FR2003/000671 priority Critical patent/WO2004083075A1/fr
Priority to AU2003229852A priority patent/AU2003229852A1/en
Publication of WO2004083075A1 publication Critical patent/WO2004083075A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/12Supports
    • B65D90/18Castors, rolls, or the like; e.g. detachable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/01Resilient suspensions for a single wheel the wheel being mounted for sliding movement, e.g. in or on a vertical guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/02Steering linkage; Stub axles or their mountings for pivoted bogies
    • B62D7/04Steering linkage; Stub axles or their mountings for pivoted bogies with more than one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1509Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels with different steering modes, e.g. crab-steering, or steering specially adapted for reversing of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/37Vehicles having steerable wheels mounted on a vertically moving column

Definitions

  • the invention relates to a set of means of construction of intermodal transport vehicles or VTI, able to make them combinable with all other modes of transport to unclog the roads and optimize the general logistics of the transport of goods, combined rail-road-river- sea.
  • NTIs are compatible with the maximum capacity authorized by the Highway Code, compatible with gauge A for rail loading in international transport, on existing wagons and for transport on container ships.
  • Intermodal transport units are already known.
  • UTI containers, swap bodies and semi-trailers suitable (partially) for intermodal transport.
  • Sea container container strong enough to be stacked in a cell ship and gripped from above. It generally meets the standards laid down by the International Organization for Standardization ISO.
  • Swap body Unit designed for the transport of goods, optimally adapted to the dimensions of road vehicles and equipped with gripping elements allowing transfer between modes, usually rail / road.
  • Semi-trailer a vehicle without a motor for transporting goods, intended to be coupled to a motor vehicle in such a way that a substantial part of its weight and of the load is supported by said vehicle. It may be subject to specific adaptations to suit combined transport.
  • the containers do not meet all the needs of shippers (those who entrust others with the care of delivering their goods to a recipient), in particular they are too narrow to accept two standard pallets across their width (the most used in Europe are: 1000mm x 1200mm ISO and 800mm x 1200mm CEN
  • the swap bodies are adapted to be easily transferred between rail and road and vice versa; wider than containers, they are suitable for easy palletizing, but on the other hand , they are more agile and cannot be stacked. ITUs, containers and swap bodies require handling means such as cranes to ensure transhipment between modes in pre and post routing.
  • Three types of road vehicles are currently known for transport of goods:
  • road train motor vehicle with a trailer coupled without an engine.
  • These road vehicles are generally not suitable for intermodal transport. They are limited, in terms of combined accompanied or unaccompanied transport, to modes of transport such as the ferry-boat or the train. Transport on train and ferry boat requires wedging and stowage before departure. The loading and unloading are carried out at the end and their duration is long. The capacity of the ferry boats is limited and it is not easy to unload and load trucks in the middle of the train or among the on-board trucks because all those who are in the way should be taken out.
  • the containers not being motorized, are dependent on the availability of handling equipment and transport vehicles: train and road vehicles.
  • the dependence of modes of transport on each other creates bottlenecks detrimental to the efficiency of current intermodal transport.
  • NTIs which are new loading units which have the advantages of containers, swap bodies and semi-trailers without having the disadvantages, and which are optimized for autonomous transshipments between modes.
  • the VTIs according to the invention are produced in various forms according to their function, starting from the same basic concept constituted by hydraulically motorized wheel pivots, orientable by 180 ° (90 ° to the left or 90 ° to the right), comprising means gas shock absorbers and means for adjusting the height of the position of the wheels until complete retraction.
  • These wheels 1 m in diameter, allow driving at 100 km / hour.
  • Each wheel is autonomous and is powered from a hydraulic power unit driven by a diesel engine.
  • These wheel pivots allow the VTI to have the bottom of their floor at ground clearance, about 300mm. Their curb weight is much lower than that of conventional trucks or semi-trailers.
  • the carrying volume of VTIs is therefore much greater than that of other comparable vehicles, because due to their low floor height they can carry two levels of pallets with a movable intermediate floor.
  • VTIs can fully retract all their wheels and rest on the ground, with a self-supporting hull of sufficient strength, they can be used as motorized containers stackable on 3 or 4 levels. These VTI motorized containers get on and off container ships without assistance from port handling facilities. This total autonomy of the VTI allows very significant time savings in intermodal transport without the intervention of actors outside the combined transport. These VTI containers can be gripped from above, stacked on several levels, like containers, and are suitable for mass river and sea transport. This autonomy of VTIs limits the infrastructure necessary for intermodal transhipment to the strict minimum (parking and a maritime, river or rail quay).
  • the container VTIs are fitted out in double gantry joined by a rigid beam, like log-carrying trucks, their wheel pivots at 180 ° allow them to move laterally compared to containers and lower themselves on them to load them by locking their ISO standard corners on the gantry cranes equipped for this purpose, then hydraulically pull their wheels out to transport them either from a company or from a platform to the nearest station, either from a station at the nearest port to deposit the containers near the cranes which will load them on a container ship, or on low trolleys which can be maneuvered by small tractors.
  • the 20-foot containers can be transported in pairs with VTIs including a gantry trailer also fitted with swivel hydraulic wheels.
  • the VTI pallet trucks with motorized trailer with pivots have a carrying capacity of 34 CEN pallets which can be increased to 72 CEN pallets on two levels.
  • the capacity of a 12.20m (40ft) semi-trailer is 30 CEN pallets.
  • This VTI has a total length of 18m 75 (maximum authorized by the Highway Code).
  • the loading length is 15.60m equivalent to three 20ft containers (3 TEU).
  • a 40 feet ISO standard 1 series container corresponds to 2 TEU / TEU.
  • the simple VTI with 4 axles and 32 tonnes, with 2 levels for the transport of 42 to 43 CEN pallets, with a length of 12m and whose pallet loading length is 20.40m with its 2 levels thanks to its floor at ground clearance.
  • a semi-trailer truck with a floor length of 15.50m - 40 tonnes gross load and 24 tonnes payload has a capacity of 38 CEN pallets, 4 to 5 pallets less than this simple VTI.
  • the VTI container is combined with autonomous loading and unloading means integrated into container ships intended mainly but not exclusively for the transport of VTIs.
  • the container ship VTI can be operated from ports or docks not specialized in container traffic (no cranes, gantries or straddle carriers, forklifts etc.).
  • the VTIs according to the invention get on and off railway wagons on their own, anywhere in the train because all their wheels can rotate 30 to 90 ° depending on the wheel arch.
  • the wagon / load pair (wagon-VTI) to register in the profile of the civil engineering works of the railway lines traversed must respect the space limits corresponding to the template A approved by the UIC (Union Internationale des Chemins de Fer) which is the gauge whose total wagon height + VTI and the width on either side of the central axis of the track are the smallest.
  • UIC Union Internationale des Chemins de Fer
  • the height of the VTI container of 3.05m allows a useful interior height of 2.70m very satisfactory for loaders and greater than that of semi-trailers (2.50m ) and containers (2.30m).
  • the VTI container On these wagons the VTI container is loaded from the side by pivoting all its wheels in the order of 30 ° or 90 ° then by performing a lateral translation at an angle of 30 ° or 90 °. At the end of movement, in the transport position on the wagon, it raises its wheels to rest the underside of the VTI on the wagon floor, on which it can be locked like a container.
  • the container VTIs mount on the wagons by tilting their wheels at 90 °, drop the container (s) and get off the wagon to leave to load other containers or bring back empty containers.
  • Container VTIs have the advantage of not being immobilized on a railway wagon or on a container ship. These are vehicles that operate in noria over short distances between logistics platforms or businesses and stations and between station and port or port and station. They considerably reduce the downtime of containers and allow their use to be extended to many companies.
  • VTI containers are suitable for handling by the various means used on intermodal platforms for transhipment on wagon or on ships: cranes, gantry cranes, straddle carriers etc. with gripping frames with roof locking or telescopic arm for gripping at the base.
  • VTI carrier ships and VTI carrier wagons The economic, ecological and human advantages provided by VTIs and their complementary means (VTI carrier ships and VTI carrier wagons) are as follows: • savings in consumables: lower consumption of fuel, tires, etc.
  • VTIs escape the regulatory constraints linked to road transport (35 hours, driving time, driving bans) and can be operated 24 hours a day and 7 days a week:
  • the pivoting hydraulic wheels apply to the production of all types of transport vehicles with or without a low bed or construction site vehicles.
  • Figure 2 shows, in section in elevation, another example of a wheel pivot at 90 ° to the right and left, without retraction of the wheel;
  • Figure 3 shows a wheel pivot according to Figure 1, rotated 90 °;
  • Figure 4 shows an example of a wheel pivot in top view with the attachment of its hydraulic rotary cylinder ensuring the orientation of the wheel
  • Figure 5 shows an example of attachment of a non-motorized wheel pivot
  • Figures 6 and 7 show, seen in cross section and and in section in elevation, the rotary hydraulic motor mounted on the drive wheel pivots
  • FIGS. 8 to 10 show an example of an articulated container vehicle 2 times twenty feet, seen in elevation, in side view and in top view, produced with motorized wheel pivots with retractable wheel, for intermodal combined transport; • Figure 11 shows, in elevation view, an example of a 40-foot container vehicle;
  • Figures 12, 13 and 14 show, seen in elevation, seen at the end and seen from above, an example of a road vehicle for transporting in particular pallets;
  • Figures 15, 16 and 17 show, seen in elevation, at the end and seen from above, an example of a stackable articulated container vehicle for intermodal combined transport
  • Figures 18, 19, 20 and 21 show, seen in elevation, at the end, in section and seen from above, an example of a stackable articulated container vehicle for intermodal combined transport;
  • Figures 22, 23 and 24 show, seen from above, the location of the drawbar, and its position during steering maneuvers of articulated vehicles and an example of drawbar carriage hydraulically retractable at the end of the turn;
  • Figure 25 shows, in top view, an example of loading and unloading, by their own means, container VTI on a railway wagon;
  • FIG. 26 shows an example of a container vehicle in the process of loading or unloading a container laterally on a low trolley for maneuvering in the factory;
  • Figure 27 shows a factory tractor pulling a container placed on a low maneuvering cart
  • Figure 28 shows a container moved back until penetration of a conveyor belt bringing the packages to be loaded into the container, the tractor advancing or reversing the container on its trolley as needed;
  • FIG. 29 shows the loading onto a semi-trailer truck of containers each placed on a low trolley with special wheels by a container vehicle, by means of a tractor which pushes them on the I-sections constituting the chassis of the truck on which the containers will be fixed by their ISO corners;
  • Figure 30 shows an example of low container carrier trolley in half cross-section;
  • Figures 31, 32 and 33 show, seen in elevation section, in cross section and seen from above, a container ship adapted to allow VTI to enter perpendicularly into it by its own means, as well as the containers placed on a low trolley, on an interior gangway equipped with means for raising to a height relative to the quay, and handling means for stacking it like a container;
  • Figures 34 and 35 show an example of an annular hydraulic cylinder according to the invention for causing the wheels to pivot;
  • Figures 36 and 37 show variants of wheel pivots whose pivot axis is on the side of the wheel.
  • Figure 1 shows, in elevation section an example of a hydraulically powered wheel pivot with total retraction thereof along the entire height of the ground clearance G. It includes the tire 1 on the rim 2 on which is fixed a hydraulic motor 3 with 10-speed rotating casing in both directions of rotation.
  • This hydraulic motor is the subject of a separate invention patent. It is described briefly below.
  • An arm 4 is rigidly fixed to an 8-sided shoulder of the motor and extends at an elbow 5 above the vertical axis of the wheel XX '.
  • the bent top 5 of the arm 4 is extended vertically along the axis XX 'by a tube 6 sliding in an annular hydraulic cylinder 7 with paddles in the bore of which it is keyed.
  • the rigidity of the sliding assembly is obtained d on the one hand by the fixing in the upper part to the chassis of the shouldered rod 9, by a nut and a counter-nut2, and on the other hand by a rigid support 13 secured to the chassis on which the annular cylinder 7 is fixed.
  • This cylinder ring can rotate 360 °, but is preferably limited to 180 °.
  • the underside of the wheel In the retracted position 15, the underside of the wheel is at the level of the underside 16 of the low floor 17 after a stroke C equal to the ground clearance G, ie approximately 300mm.
  • the leveling of the wheel is carried out by an oil pressure passing through the hole 18 to push the arm 4 down or vice versa.
  • an oil pressure is sent, via a solenoid valve in the conduit 19 drilled in the rod 9, ending under the plug 11 in the volume 20.
  • the vertical damping of the wheel is obtained by through at least one accumulator A1, A2 per pivot, for example with nitrogen (FIG. 2).
  • These hydraulic energy accumulators provide start-up assistance and emergency functions when there is no HP in the event of a thermal engine breakdown or hydraulic line rupture.
  • the hydraulic pressure of all the wheel pivots in the same vehicle is measured on a common circuit so as to be equalized.
  • This overall pressure provides the total mass in tonnes of the vehicle, both laden and unladen.
  • This information is displayed on a digital display on the control panel on the dashboard.
  • This information can in the same way be provided by wheel pivot or by axle (on these vehicles there is no longer an axle; the term "axle" means two wheel pivots forming a virtual axle) by isolating it. of the common circuit by solenoid valves. We also act on the height of each pivot relative to the others, in particular to compensate for the wear of certain tires.
  • the flow returned is added to the flow received by the motor whose wheel has better grip, for example at 200 bars, the operating pressure of the engine displacement which receives this additional flow increases to 400 bars, that is to say receives the whole of T'essieu's couple ".
  • the engine torque is thus continuously optimized at each wheel as a function of its grip on the ground, which depends on the state of the road, on rheumatism, on slippery waste (dirt, ice %) and on the condition of the tires and of their different wear.
  • FIG. 2 shows, in section in elevation, another example of a wheel pivot at 90 ° to the right and to the left, without retraction of the wheel. It has the same members as in FIG. 1, but the strokes being reduced to simple wheel damping, the pivot is very compact since it occupies above the wheel only a space of less than 300 min.
  • the tube 6 becomes the 25 and the rod 9 becomes the 26.
  • the other members are identical to those of FIG. 1.
  • the jack 7 is replaced by a keyed sheath fixed on a rigid support such as 13; the tube 6 or 25 slides in the sheath during the damping of the irregularities of the road on which the vehicle is traveling.
  • the pivot is included inside a formwork 28.
  • this pivoting is limited for example to 30 ° on either side of the direction of movement, which reduces the depth of the formwork 28 and frees up more storage space on the floor.
  • FIG. 3 shows a retractable wheel pivot whose wheel is rotated 90 °.
  • the reference numbers are the same as those in FIG. 1.
  • FIG. 4 shows an example of a steerable wheel pivot in top view with the fixing of its rotary hydraulic cylinder 7 on a support 13 laterally integral with the formwork 28. This formwork is reinforced to the right of the pivot fasteners.
  • the pivot axis 30 can be offset towards the outside to reduce the depth of the formwork 28 when the wheel 31 is turned 90 °, which allows room to accommodate more pallets.
  • Figure 5 shows an example of fixing a non-motorized wheel pivot on the rim
  • FIGS 6 and 7 show, seen in cross section and in elevation section, the rotary hydraulic motor mounted on the drive wheel pivots, a brief description of which will better understand the advantage of this new generation of intermodal transport vehicles.
  • this motor has 4 displacements A, B, C, D, equidistant and of a different volume, formed in the stator 40 of outer radius R and inner radius r, a rotor 41 rotates concentrically.
  • stator 40 on bearings 42, 43; a large clearance J between the stator and the rotor makes it possible to absorb internal expansion or overpressure.
  • the rotor has 24 equidistant grooves 44 and oriented radially towards the center, in which 24 valve pallets 45 self-piloted by high pressure HP slide in the active displacements, flanges 46, 47 ensure a tight closure of the displacements. They are assembled by pre-stressed bolts 48.
  • Annular grooves 49, 50 constitute differential pressure chambers 51 in line with the pallet housings 45. These annular chambers 49, 50 are at the pressure Pi of the casing, which is controlled from the central unit hydraulic through an orifice 52. In the absence of HP pressure in line with a displacement, the pallets 45 rise to the bottom of their housing under the action of the pressure Pi always greater than the pressure enough BP.
  • Each displacement at its ends a ramp RI, R2 can be either an entry ramp or an exit ramp according to the direction of rotation.
  • Each of the ramps RI, R2 is provided with a groove RAI, RA2 for supplying HP and evacuating LP to the tank, leading to a pipe 53 for admission or exhaust of the working fluid.
  • the direction of application of the working fluid has been illustrated by arrows F on the pallets 45.
  • the thrust of the HP on each of the active pallets is equal to F bars / cm 2 multiplied by the active surface of the pallet.
  • the operating pressure ranges from 185 to 250 bars with a maximum of 350 bars.
  • Each displacement is delimited by its pre-active pallets located successively upstream and downstream and ensuring its tightness.
  • the pallets become active only when they are fully engaged on the bottom of displacement r.
  • the pallets are T-shaped comprising shoulders 54, 55 cooperating with the annular grooves 49, 50 making them self-piloting by the HP because they are pierced with holes allowing the HP to pass through them and push on the opposite surface 56 larger than the active surface 57, to cause them to descend by pressing on the radius r of the active displacement bottoms.
  • the width of the shoulders 54, 55 defines the contact pressure of the surface 57 of the pallets on the radius r; the pressure Pi acts on the shoulders 54, 55 to maintain the pallets at the bottom of their housing in the absence of HP in the displacement.
  • the pressure Pi is represented by a shading with small points.
  • Side bearings 58, 59 support the lateral forces of the engine.
  • a bearing surface 60 allows the centering of the motor on the shoulder of the wheel rim bearing on a face 61 and the fixing is carried out by means of a set of tapped holes 62.
  • the large tapped hole 63 receives a fixing screw of the pivoting arm centered on an eight-point seat 64.
  • Each engine is equipped with a parking brake FP ensuring positive immobilization of the vehicle by means of a mechanical clutch.
  • FIGS. 8 to 10 show an example of an articulated container vehicle 65, 66 of 2 times twenty feet, seen in elevation, side view and seen from above, produced with 8 motorized wheel pivots with retractable wheel 67, for intermodal combined transport. These wheel pivots are mounted as in FIGS. 1, 3 and 4.
  • Each axle or pair of wheels is mounted on an identical gantry 68.
  • the gantries 68 are secured on a box beam 69.
  • the gantries are provided with corner locks ISO in correspondence with the ISO 70 corners of the 65 containers.
  • the front 72 comprises a cabin 73 as well as the heat engine, the hydraulic power unit, the hydraulic oil tank and the fuel tank.
  • the hydraulic pump of the hydraulic power unit can be a constant flow pump or a variable flow pump driven in rotation from, for example toothed pulleys and a toothed belt, the drive pulley being keyed on the output shaft of the thermal motor.
  • the dashboard of the cabin includes a console with the various hydraulic controls, the console for the various hydraulic functions includes in particular: the retraction of the wheels and their return to the level of the ground clearance; swiveling the wheels 90 ° for lateral loading / unloading of containers on wagon, trolley or any other movement; position control of the articulation axis of the drawbar (s) when cornering; shifting of speeds AV, AR; weight control empty and loaded on digital display.
  • Hydraulic accumulators are arranged in the gantries to accumulate braking energy and that of the suspension provided by the wheel pivots in the form of pressurized oil. When restarting, the accumulators restore the energy stored under braking and on the wheel pivots with each damping. This energy is also used in the event of a break in the supply line of the working fluid or in the event of a breakdown of the internal combustion engine to ensure emergency braking and the operation of the clutch brakes which positively immobilize the vehicle.
  • These container vehicles only do pre-routing and post-routing over short distances. The container loading operation is carried out laterally.
  • a remote control button box for the lateral movement of the vehicle acting on the electro-valves controlling the rotary actuating cylinders of the wheels, on the power supply of the engine displacements in the direction necessary for loading unloading, on the drop to the ground or for picking up or depositing on a low cart or for lifting it after locking on the gantry of the vehicle.
  • the ISO corner locks of container vehicles can each be mounted on an articulated support to facilitate the loading and unloading of containers sideways by increasing the clearance of gantry cranes on each side of the container to be loaded.
  • FIG. 11 shows, seen in elevation, an example of a container vehicle 75 of
  • This vehicle comprises two gantries 76 identical to 4 wheel pivots each of which it is possible to motorize only two wheels per gantry.
  • the gantries are assembled on a beam 77. This vehicle works like that of FIGS. 8, 9 and 10.
  • Figures 12, 13 and 14 show, seen in elevation, seen at the end and seen from above, an example of a road vehicle for transporting in particular pallets.
  • This vehicle can have a total mass of 32 tonnes at maximum load. It comprises four pairs 80 of non-retractable wheel pivots (according to FIG. 2). It may only have four motorized wheels. The eight wheel pivots can be swivel or only the four from the front depending on the maneuvers to be performed. When all the wheels are pivoting, the maneuvers are faster, which saves time.
  • two berths can be provided superimposed above the front axle.
  • This vehicle has a low floor, the underside of which is 300 mm from the ground.
  • This vehicle further comprises a movable floor 83 which can be raised against the ceiling with a cable and pulley winch system. It rests on stops above the wheel formwork.
  • This vehicle is intended to transport pallets over long distances, more than 500 km. Its length is the largest authorized by the highway code, which allows it to transport pallets on two levels.
  • Figures 15, 16 and 17 show, seen in elevation, at the end and seen from above, an example of a stackable articulated container vehicle for intermodal combined transport.
  • This vehicle is equipped with 10 wheel pivots retractable over the entire height of the ground clearance G so that it can reduce its height and load itself on a railway wagon and rest on the wagon floor like a container on which it can be locked by its ISO locking corners 70 arranged at its angles, at a distance corresponding to the location of those of the ISO containers.
  • the structure of this vehicle is rigidly designed so that it can be stacked on conventional or special container ships.
  • axles 85 of which for example only one can be motorized, at the rear it comprises a single axle 86 which may not be motorized; its trailer 87 comprises at the front an axle 88 with two motorized or non-motorized pivots, and at the rear an axle 89 with motorized or not. It is indeed possible to motorize only the rear wheels or the front wheels of the trailer, all the wheels being pivotable at 90 ° to allow it to be loaded onto the railway wagons provided for this purpose.
  • the alignment position of the two articulated elements of the VTI is locked laterally between eu, on each side of these elements, by two bars sliding outlets and hydraulically locked each by two pins, before any manipulation of said vehicle as a container.
  • Figures 18, 19, 20 and 21 show, seen in elevation, in section, at the end and seen from above, an example of stackable container vehicle articulated in three parts 92, 93, 94 of length equal to that of 20 foot containers , for intermodal combined transport.
  • the corners of these three elements are fitted with ISO locking corners.
  • This vehicle is similar to that of FIGS. 15, 16 and 17 with the difference that these three elements can be uncoupled and each treated as a conventional container on ports equipped with container loading cranes on conventional container ships.
  • the two trailers 93, 94 are coupled by means of special drawbars which are described below in FIGS.
  • Figures 22 and 23 show, seen from above, the location of the drawbar, and its position during steering maneuvers of articulated vehicles and an example of drawbar carriage hydraulically retractable at the end of the turn.
  • the conventional triangular drawbar 102, pivoting along the axis AA ' has its free end articulated at 103 on a swivel pivot 104 secured to the top of a means allowing its displacement over a length sufficient to perform the maneuvers ⁇ a large turn.
  • the displacement of this articulation point with respect to the rear of the front element can be carried out in different ways, for example by means of a small carriage 105 provided with 4 rollers 106 moving in a slide 107 pulled or pushed. by the rod 108 of a hydraulic cylinder 109 immobilized either in the extended position in a turn (FIG. 23) or in the retracted position (FIG. 22).
  • This function could also be performed by a slide formed by a rod of cylindrical section on which a sleeve mounted on two ball bushings is made to slide, said sleeve being immobilized in rotation for example by a roller moving in a linear groove.
  • Figure 25 shows, in top view, an example of loading and unloading, by their own means, intermodal transport vehicles on a railway wagon 110 at low height above the rails to allow passage under the overhead lines and in tunnels. Wagons have been shown stopped between two platforms 111 and 112, on which two container vehicles 113, 114, articulated in two parts like those of FIGS. 8, 9 and 10, are immobilized in front of wagon 110, their wheels turned to 90 °.
  • the vehicle 113 is about to get on the wagon to load the containers 115 and 116 and forward them to their place of destination, while the vehicle 114 is about to deposit two other containers which it has just brought. to be transported by train to their destination.
  • This operating mode makes it possible to load and / or unload a train almost simultaneously so as to reduce the loading / unloading time of a complete train to a minimum time which, ultimately, could be that of unloading / loading a wagon if all container vehicles are present at the arrival of the trains and facing their wagon.
  • the time saved becomes extremely important in terms of train rotations and the elimination of waiting times.
  • FIG. 26 shows an example of a container vehicle, for example the front element of FIG. 8, loading or unloading a container laterally on a maneuvering cart in the factory so as to allow companies of all kinds to maneuver themselves their container (s) 120 with their tractor 123, FIG. 27, to bring them to the end of the production line, FIG. 28, load them directly without the need to palletize the packages, using the containers in space mobile storage unit that can be stored in the factory yard.
  • a container vehicle for example the front element of FIG. 8, loading or unloading a container laterally on a maneuvering cart in the factory so as to allow companies of all kinds to maneuver themselves their container (s) 120 with their tractor 123, FIG. 27, to bring them to the end of the production line, FIG. 28, load them directly without the need to palletize the packages, using the containers in space mobile storage unit that can be stored in the factory yard.
  • the tractor 123 can reverse the container until, for example, a conveyor belt 124 enters the interior of the container 120 to reduce the time for handling the packages 125
  • a conveyor belt 124 enters the interior of the container 120 to reduce the time for handling the packages 125
  • a container vehicle to transport it to the next train and an empty container is brought in place of the one who has just been taken into the yard: '.
  • the storage-destocking operations are eliminated and the storage space is returned to manufacturing. It is no longer necessary to use pallets to prepare the loading of conventional trucks. There is no longer any waiting time for loading or unloading thanks to the low trolleys 121.
  • the empty container 120 is deposited in the course of the factory on a low cart 121 and if another container is full the container vehicle will load it laterally on its low cart 121 and go back to loading.
  • the diameter of the wheels may be greater than the ground clearance, since the container floor is located above the frame profiles of its chassis.
  • Containers can also be stored in stations on such trolleys to avoid immobilizing container vehicles in stations awaiting trains. This allows them to continue the shuttle to bring the full containers to the stations.
  • the containers must be able to be loaded onto semi-trailer trucks without the need for powerful cranes which can only be justified from a large number of containers to be handled. This is very rarely the case in factories.
  • FIGS. 29 and 30 illustrate a method of loading a conventional semi-trailer truck currently transporting containers loaded from gantries, by means of low carriages 130, 131 on which containers 120 are placed, from a quay at the height of the trailer floor.
  • the wheels of these carriages have a central portion 132 of a width equal to that of the top of the I-shaped sections 133 of the chassis of the truck on which they roll, shoulders 134, 135 act as lateral guidance of the wheels on the sides of the section. 133; outside these shoulders, a bandage 136, 137 makes it possible to roll on the floor of the factories.
  • These wheels are mounted on pivot 138 to allow the loading maneuvers of the carriages 130, 131.
  • the tractor 123 has set up the first cart 130 with its container 120 and then moves the second cart back 131 until it contacts the first container.
  • the containers are then locked to the chassis by their ISO corners. These corners can for example be mounted on supports articulated to the profiles 133 to make up for the height of the carriage.
  • These semi-trailer trucks can also be fitted with hydraulically powered wheel pivots.
  • Figures 31, 32 and 33 show, seen in section in elevation, in cross section and seen from above, a container ship 140 adapted to allow the VTI containers 141 to penetrate perpendicularly therein by their own means, by mounting on a plate (146) folded down on the quay, articulated on the end of one of the interior gangways (142) of said ships, equipped with means (143) for raising in relation to the quay, in that when it is stopped in a predefined position on said gangway, the VTI retracts all of its wheels to put itself in the gripping state as a container by the appropriate handling means (144, 145) of said vessel, gantry (144) and overhead traveling cranes (145).
  • the means of handling these VTI containers on container ships consist of a set of gantries (144) moving on two longitudinal rails, each corresponding to one of the gateways (142) for entering or leaving VTI containers, said gantry cranes being each equipped with a frame for gripping the VTI containers to stack them on deck.
  • the V, containers are maneuvered by gripping frames moved by several overhead traveling cranes (145) for loading into the hold.
  • the containers brought in by vehicles of the semi-trailer type, are placed on a low trolley loaded in reverse by tractors, on an interior gangway 142 fitted with means 143 for raising to the height of the quay and an articulated platform 146 folded down on the quay, and handling means 144 of the gantry type to stack it on the deck like a container on 3 or 4 levels and in the hold by means of overhead cranes 145 taking the containers directly on the gangway to store them in the hold.
  • the ship 140 has three entry gangways 142, three handling gantries 141 and three overhead traveling cranes 145 considerably reducing the loading or unloading time without waiting time due to its handling autonomy and the fact that the VTI containers are load directly onto the gangways without external intervention, the ship having its own tractors and low carts stored on the gangways during navigation.
  • Figures 34 and 35 show an example of an annular cylinder 7 with pallets according to the invention (shown in place in Figures 1, 2, 4, 36, 37), intended to ensure the orientation of the directional wheels on pivot, motorized or no, retractable or not.
  • This annular cylinder is slidably mounted on the cylinder tube 6 of the retractable wheels, or 25 of the short tube of the non-retractable wheels of the arm 4 of the wheel pivots, by its bore 150.
  • the rotation drive of the tube 6 or 25 is provided by at least one key 151. It consists of a body 152 comprising at least three to four pallets 153, an outer sheath 154 forming with the pallets, volumes in which the oil is circulated under pressure causing the wheels to pivot.
  • the pallets 153 are produced which are independent of the body 152 by each introducing them into a radial groove 162 of the body bosses 163.
  • the contact pressure of the pallets on the bore 161 is provided by a set of preloaded and tared springs 164.
  • This function can also be performed hydraulically by bringing the HP under the pallet by drilling holes leading into the bottom of the grooves 162. improve the sealing of the pallets on their bore, a slot 165 has been machined in the axis of the contact surface and this surface is machined at the radius of the bore 161.
  • the orientation of the wheel, to the right or to the left , is ensured by a pressure P of HP oil coming from an orifice 168 applying to the boss of the pallet and to the corresponding pallet in the direction S required.
  • the BP is evacuated via a second orifice 169.
  • the intake and evacuation circuit closes and the orifices 170 and 171 open and take over up to 90 ° orientation.
  • the cylinder is provided with 4 fixing lugs on a rigid support 13 (fig. 1 and 4). The jack contributes to the rigid holding of the wheel in cooperation with the upper fixing point 12 of the piston rod 19, 26 (fig.l).
  • FIGs 36 and 37 show variants of the wheel pivot of, Figures 1 and 2.
  • FIG. 36 shows a motorized pivot with a non-retractable wheel similar to that of FIG. 2.
  • the arm 175 carrying the wheel is very short, the actuator tube 176 secured to the arm is also very short, as is the rod 177 fixed to the chassis.
  • All the motorized wheel-carrier arms are drilled with HP and BP displacement feed holes. These holes are connected by flexible hydraulic hoses to the supply tubes coming from the hydraulic control unit.
  • the annular cylinder 7 for orienting the wheel is identical to those used for FIGS. 1 and 2. It is also fixed to the chassis. This version is space-saving in height.
  • the floor 17 has been shown at the minimum ground clearance G. We could put the top of the floor slightly above the wheel to have the entire storage area for certain applications.
  • FIG. 37 shows a motorized pivot with retractable wheel similar to that of FIG. 1.
  • the cylinder tube 180 of the arm 181 carrying the motor, sliding in the annular cylinder 7, is of a length allowing the wheel to be fully retracted (stroke G ).
  • the cylinder 7 and the top of the piston rod 182 are fixed to the chassis 183 for rigid retention of the pivot.
  • these wheel pivots may not be motorized and in this case the arms 175 and 181 are fixed to the rim on a plate 36 as in FIG. 5.
  • the pivots with a non-directional wheel do not have an annular jack 7, this is replaced by a sheath keyed onto the jack tube of the arms 175, 181 and fixed on the frame like the jack 7. In this case there is no 'ensures that the damping of the wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Handcart (AREA)

Abstract

Système de réalisation de véhicules et ses applications au transport intermodal VTI (65, 66) combiné rail-route-fleuve-mer, caractérisé en ce que les VTI sont réalisés sous diverses formes selon leur fonction, à partir du même concept de base constitué par des pivots (67) de roue motorisés hydrauliquement, orientables sur 180° (90° à gauche ou 90° à droite), comportant des moyens amortisseurs intégrés à gaz et des moyens de réglage en hauteur de la position des roues, pour certains jusqu’à la rétraction complète, ces roues permettant de rouler à 100 km/heure, en ce que chaque roue est autonome et est alimentée à partir d’une centrale hydraulique entraînée par le moteur thermique du véhicule, en ce que ces pivots de roue sont aménagés pour permettre aux VTI d’avoir le dessous de leur plancher réel ou virtuel au niveau de la garde au sol (G), soit environ 300 mm, en ce que lesdits pivots de roues sont rendus solidaires de la structure desdits véhicules simples ou articulés, porte-conteneur, conteneur motorisé ou transporteurs de palettes ou autres charges.

Description

Système de réalisation de véhicules de transport intermodal, route, train, fleuve, mer et ses applications.
L'invention concerne un ensemble moyens de construction de véhicules de transport intermodal ou VTI, aptes à les rendre combinables avec tous les autres modes de transport pour désengorger les routes et optimiser la logistique générale du transport de marchandises, combiné rail-route-fleuve-mer. Les NTI sont compatibles au maximum de capacité autorisée par le Code de la Route, compatibles au gabarit A de chargement ferroviaire en transport international, sur des wagons existants et au transport sur les navires porte-conteneurs. On connaît déjà des unités de transport intermodal (UTI).UTI: conteneurs, caisses mobiles et semi-remorques convenant (partiellement) au transport intermodal.
Conteneur maritime: conteneur suffisamment solide pour être gerbe dans un navire cellulaire et préhensible par le haut. Il répond généralement aux normes édictées par l'Organisation Internationale de Normalisation ISO. Caisse mobile: Unité conçue pour le transport de marchandises, adaptée, de manière optimale en fonction des dimensions des véhicules routiers et équipés d'éléments de préhension permettant le transbordement entre modes, habituellement rail/route.
Semi-remorque: un véhicule sans moteur de transport de marchandises, destiné à être attelé à un véhicule à moteur de manière telle qu'une partie substantielle de son poids et du chargement est supportée par ledit véhicule. Il peut faire l'objet d'adaptations spécifiques pour convenir au transport combiné.
Les conteneurs ne répondent pas à tous les besoins des chargeurs (celui qui confie à d'autres les soin d'acheminer ses marchandises à un destinataire), en particulier ils sont trop étroits pour accepter sur leur largeur deux palettes normalisées (les plus utilisées en Europe sont : 1000mm x 1200 mm ISO et 800mm x 1200mm CEN. Les caisses mobiles sont adaptées pour être transférées aisément entre le rail et la route et vice versa; plus larges que les conteneurs, elles sont aptes à une palettisation facile, mais en revanche, elles sont plus f agiles et ne sont pas superposables. Les UTI, conteneurs et caisses mobiles nécessitent des moyens de manutention tels que des grues pour assurer le transbordement entre modes en pré et en post acheminement. On connaît actuellement trois types de véhicules routiers pour le transport de marchandises:
• le camion: véhicule à moteur comportant un espace réservé au chargement;
• l'ensemble articulé: véhicule à moteur couplé à une semi-remorque;
• le train routier: véhicule à moteur avec une remorque attelée sans moteur. Ces véhicules routiers ne sont généralement pas adaptés au transport intermodal. Ils sont limités, en matière de transport combiné accompagné ou non accompagné, à des modes de transport tel que le ferry-boat ou le train. Le transport sur train et ferry-boat nécessitent des calages et arrimages avant le départ. Le chargement et le déchargement sont opérés en bout et leur durée est longue. La capacité des ferry-boat est limitée et on ne peut pas facilement décharger et charger des camions en milieu de rame ou parmi les camions embarqués du fait qu'il faudrait sortir tous ceux qui gênent.
Les conteneurs, n'étant pas motorisés, sont dépendants de la disponibilité des engins de manutention et des véhicules de transport: train et véhicules routiers. La dépendance des modes de transport les uns envers les autres crée des goulots d'étranglement nuisibles à l'efficacité du transport intermodal actuel.
Tous ces inconvénients sont levés par les NTI qui sont de nouvelles unités de chargement qui présentent à la fois les avantages des conteneurs, des caisses mobiles et des semi-remorques sans en présenter les inconvénients, et qui sont optimisés pour les transbordements autonomes entre modes.
Les VTI selon l'invention sont réalisés sous diverses formes selon leur fonction, à partir du même concept de base constitué par des pivots de roue motorisés hydrauliquement, orientables sur 180° (90° à gauche ou 90° à droite), comportant des moyens amortisseurs à gaz et des moyens de réglage en hauteur de la position des roues jusqu'à la rétraction complète. Ces roues, de 1 m de diamètre, permettent de rouler à 100 km/heure. Chaque roue est autonome et est alimentée à partir d'une centrale hydraulique entraînée par un moteur diesel. Ces pivots de roue permettent aux VTI d'avoir le dessous de leur plancher au niveau de la garde au sol, soit environ 300mm. Leur poids à vide est très inférieur à celui des camions classiques ou semi- remorque. Le volume d'emport des VTI est donc beaucoup plus important que celui des autres véhicules comparables, car du fait de leur faible hauteur de plancher ils peuvent emporter deux niveaux de palettes avec un plancher intermédiaire mobile.
Du fait que les VTI peuvent rétracter complètement toutes leurs roues et reposer au sol, avec une coque auto-portante de résistance suffisante, ils peuvent être utilisés comme conteneurs motorisés superposables sur 3 ou 4 niveaux. Ces VTI conteneurs motorisés montent et descendent des navires porte-conteneurs sans assistance des moyens de manutention portuaires. Cette autonomie totale des VTI permet des gains de temps très importants dans les transports intermodes sans intervention d'acteurs extérieurs au transport combiné. Ces VTI conteneurs sont préhensibles par le haut, superposables sur plusieurs niveaux, comme les conteneurs, et sont aptes au transport fluvial et maritime de masse. Cette autonomie des VTI limite au strict minimum les infrastructures nécessaires au transbordement intermodal (un parking et un quai maritime, fluvial ou ferroviaire).
Pour le transport de conteneurs de 20 ou 40 pieds, les VTI porte-conteneur sont aménagés en double portique réunis par une poutre rigide, comme des camions porte-grumes, leurs pivots de roue à 180° leurs permettent de se déplacer latéralement par rapport aux conteneurs et de s'abaisser en appui sur eux pour les charger en verrouillant leurs coins standards ISO sur les portiques équipés à cet effet, puis de ressortir hydrauliquement leurs roues pour les transporter soit d'une entreprise ou d'une plate-forme vers la gare la plus proche, soit d'une gare au port le plus proche pour déposer les conteneurs près des grues qui vont les charger sur un navire porte-conteneurs, ou sur des chariots bas qui sont manoeuvrables par de petits tracteurs.
Les conteneurs de 20 pieds peuvent être transportés par deux avec des VTI comportant une remorque à portiques également équipée de roues hydrauliques à pivot.
Les camions VTI porte palettes à remorque motorisée à pivots ont une capacité d'emport de 34 palettes CEN qui peut être porté à 72 palettes CEN sur deux niveaux. La capacité d'une semi-remorque de 12,20m (40 pieds) est de 30 palettes CEN. Ce VTI a une longueur totale de 18m 75 (maximum autorisé par le Code de la Route). La longueur de chargement est de 15,60m équivalente à trois conteneurs de 20 pieds (3 EVP). EVP/TEU-Equivalent vingt pieds: unité de mesure correspondant à un conteneur ISO de 20 pieds de long (6,10m), employée pour estimer des capacités ou des flux de transport. Un conteneur 40 pieds ISO série 1 normalisé correspond à 2 EVP/TEU.
Le VTI simple à 4 essieux et 32 tonnes, à 2 niveaux pour le transport de 42 à 43 palettes CEN, d'une longueur de 12m et dont la longueur de chargement de palettes est de 20,40m avec ses 2 niveaux grâce à son plancher au niveau de la garde au sol. En comparaison, un camion semi-remorque de longueur de plancher 15,50m -PTAC 40 tonnes et charge utile 24 tonnes a une capacité de 38 palettes CEN, soit 4 à 5 palettes de moins que ce VTI simple.
Pour être entièrement intermodal le VTI conteneur est combiné à des moyens de chargement déchargement autonomes intégrés à des navires porte-conteneurs destinés essentiellement mais pas exclusivement au transport des VTI. Ces moyens de manutention intégrés, passerelles pouvant être mises à hauteur du quai, ponts roulants et portiques, permettent de diviser par au moins quatre, le temps de transbordement par les moyens actuels les plus performants équipant les ports spécialisés pour le trafic des conteneurs. Le navire porte-conteneurs VTI peut être exploité à partir de ports ou de quais non spécialisés dans le trafic des conteneurs (ni grues, portiques ou chariots cavaliers, chariots élévateurs etc). Les VTI selon l'invention montent et descendent des wagons de chemin de fer par leurs propres moyens, à n'importe quel endroit de la rame du fait que toutes leurs roues peuvent pivoter de 30 à 90° selon le passage de roue.
Le couple wagon /chargement (wagon- VTI) pour s'inscrire dans le profil des ouvrages d'art des lignes de chemin de fer parcourues doit respecter des limites d'encombrement correspondant au gabarit A agréé UIC (Union Internationale des Chemins de Fer) qui est le gabarit dont la hauteur total wagon + VTI et la largeur de part et d'autre de l'axe central de la voie sont les plus faibles. Sur un wagon d'une hauteur plancher/rail de 0,80m, la hauteur du VTI conteneur de 3,05m autorise une hauteur intérieure utile de 2,70m très satisfaisante pour les chargeurs et supérieure à celle des semi-remorques (2,50m) et des conteneurs (2,30m). Sur ces wagons le VTI conteneur se charge par le côté en pivotant toutes ses roues de l'ordre de 30° ou 90° puis en effectuant une translation latérale selon un angle de 30° ou 90°. En fin de déplacement, à position de transport sur le wagon, il relève ses roues pour reposer le dessous du VTI sur le plancher du wagon, sur lequel il peut être verrouillé comme un conteneur. Les VTI porte- conteneur montent sur les wagons en inclinant leurs roues à 90° , déposent le ou les conteneurs et redescendent du wagon pour repartir charger d'autres conteneurs ou ramènent des conteneurs vides..
Les VTI porte-conteneur présentent l'avantage de ne pas être immobilisés sur un wagon de chemin de fer ou sur un navire porte-conteneur. Ce sont des véhicules qui fonctionnent en noria sur de courtes distances entre plate-formes logistiques ou entreprises et gares et entre gare et port ou port et gare. Ils réduisent considérablement les temps d'immobilisation des conteneurs et permettent d'en étendre l'utilisation à beaucoup d'entreprises..
Par leur structure renforcée, comparable à celle des conteneurs maritimes, les VTI conteneurs sont aptes à la manutention par les divers moyens utilisés sur les plate-formes intermodales pour le transbordement sur wagon ou sur navires: grues, portiques roulants, chariots cavaliers etc. avec des cadres de préhension à verrouillage en toiture ou à bras télescopique pour saisir à la base.
Les avantages économiques, écologiques et humains apportés par les VTI et leurs moyens complémentaires (navires porte- VTI et wagons porte- VTI) sont les suivants: • économie de consommables: moindre consommation de carburant, de pneumatiques, etc.
• économie de moyens techniques: diminution du nombre de véhicules et allongement de leur durée de vie;
• économie de moyens humains: diminution du nombre de conducteurs routiers, meilleures conditions de travail, sécurité, diminution du nombre des accidents; • économie d'infrastructure: libération des axes routiers saturés et meilleure utilisation des voies ferrées en sous capacité; le transport de VTI par voies maritimes ou fluviales ne nécessite que des infrastructures minimales par rapport aux masses transportées et aux distances parcourues; • économie financière: il n'est plus nécessaire de construire de nouveaux axes routiers pour faire face à l'accroissement du trafic quand le transport routier ne paie pas l'utilisation des infrastructures routières au juste prix, ce qui, pour la collectivité, peut être assimilé à une subvention;
• économie de temps: en transport combinés, les VTI échappent aux contraintes réglementaires liées aux transports routiers (35 heures, temps de conduite, interdictions de circuler) et peuvent être exploités 24 heures sur 24 et 7 jours sur 7:
• économie d'espace: les voies ferrées existantes permettent d'assurer le service sur tout le territoire sans créer de nouvelles routes pour répondre à l'accroissement des besoins de transport de marchandises; • économie d'énergie: en terme de masse totale déplacée, l'ensemble routier de 40 tonnes est remplacé par un ensemble ferroviaire de 65 tonnes. La traction d'une tonne ferroviaire est trois fois moins consommatrice en énergie que celle d'une tonne routière. La réduction des besoins en énergie est de 30% pour la partie routière, avec l'adoption de la transmission hydraulique de puissance, et de 50% pour la partie ferroviaire. Le transport par voie fluviale ou maritime accroît encore cette économie d'un facteur 2:
• réduction de la pollution: dans certaines agglomérations et sur certains axes autoroutiers, une amélioration réelle et conséquente de la qualité de l'air ne peut être possible qu'en évitant la saturation de l'espace urbain. Les liaisons multimodales par voie maritime permettent de désengorger et sauvegarder des zones écologiques sensibles gravement menacées par l'accroissement des transports routiers tels que les Pyrénées, les Alpes, la f ontière germano- polonaise tout en réduisant les coûts de transport pour les chargeurs;
• réduction du bruit: nos concitoyens supportent de moins en moins les agressions sonores et les risques induits pour leur santé qui sont générés par les camions sur nos routes, à cet égard un service maritime compétitif grâce à la technologie des VTI apportera une solution appréciée de tous.
Les roues hydrauliques à pivot s'appliquent à la réalisation de tous types de véhicules de transport à plateau surbaissé ou non ou de véhicules de chantier.
Les véhicules VTI selon l'invention sont décrit ci-après dans le texte qui suit en regard des dessins annexés donnés à titre d'exemples non limitatifs, dans lesquels : • la figure 1 montre, en coupe en élévation un exemple de pivot de roue motorisée hydrauliquement à rétraction totale de celle celle-ci suivant toute la hauteur de la garde au sol;
• la figure 2 montre, en coupe en élévation, un autre exemple de pivot de roue à 90° à droite et à gauche, sans rétraction de la roue;
• la figure 3 montre un pivot de roue selon la figure 1, pivoté de 90°;
• la figure 4 montre un exemple de pivot de roue en vue de dessus avec la fixation de son vérin rotatif hydraulique assurant l'orientation de la roue;
• la figure 5 montre un exemple de fixation d'un pivot de roue non motorisé, « les figures 6 et 7 montrent, vu en coupe transversale et et coupe en élévation, le moteur hydraulique rotatif monté sur les pivots de roue motrice;
• les figures 8 à 10, montrent un exemple d'un véhicule articulé porte-conteneurs de 2 fois vingt pieds, vu en élévation, en vue de côté et en vue de dessus, réalisé avec les pivots de roue motorisés à roue rétractable, pour le transport combiné intermodal; • la figure 11, montre, vue en élévation, un exemple de véhicule porte-conteneur de 40 pieds;
• les figures 12, 13 et 14 montrent, vu en élévation, vu en bout et vu de dessus, un exemple de véhicule routier pour le transport notamment de palettes;
• les figures 15, 16 et 17 montrent, vu en élévation , en bout et vu de dessus, un exemple de véhicule conteneur gerbable articulé pour le transport combiné intermodal; • les figures 18, 19, 20 et 21 montrent, vu en élévation , en bout, en coupe et vu de dessus, un exemple de véhicule conteneur gerbable articulé pour le transport combiné intermodal;
• les figures 22, 23 et 24 montrent, vu de dessus, l'emplacement du timon, et sa position au cours de manoeuvres de braquage des véhicules articulés et un exemple de chariot de timon rétractable hydrauliquement en fin de virage; • la figure 25 montre, en vue de dessus, un exemple de chargement et de déchargement, par leur propres moyens, des VTI porte-conteneur sur un wagon de chemin de fer;
• la figure 26 montre un exemple de véhicule porte conteneur en train de charger ou de décharger latéralement un conteneur sur un chariot bas de manoeuvre en usine;
• la figure 27 montre un tracteur d'usine tirant un conteneur posé sur un chariot bas de manoeuvre ;
• la figure 28 montre un conteneur reculé jusqu'à pénétration d'un tapis transporteur amenant les colis à charger dans le conteneur, le tracteur avançant ou reculant le conteneur sur son chariot en fonction des besoins; • la figure 29 montre le chargement sur un camion semi-remorque, de conteneurs posés chacun sur un chariot bas à roues spéciales par un véhicule porte-conteneur, au moyen d'un tracteur qui les pousse sur les profilés en I constituant le châssis du camion sur lequel les conteneurs seront fixés par leurs coins ISO; « la figure 30 montre un exemple de chariot bas porte conteneurs en demi-coupe transversale;
• les figures 31, 32 et 33 montrent, vu en coupe en élévation, en coupe transversale et vu de dessus, un navire porte-conteneur adapté pour permettre aux VTI de pénétrer perpendiculairement dans celui-ci par ses propres moyens, ainsi que les conteneurs posés sur un chariot bas, sur une passerelle intérieure équipée de moyens de mise à hauteur par rapport au quai, et de moyens de manutention pour l'empiler comme un conteneur;
• les figures 34 et 35 montrent un exemple de vérin hydraulique annulaire selon l'invention pour provoquer le pivotement des roues;
• les figures 36 et 37 montrent des variantes de pivots de roue dont l'axe de pivotement se trouve sur le côté de la roue . La figure 1 montre, en coupe en élévation un exemple de pivot de roue motorisée hydrauliquement à rétraction totale de celle celle-ci suivant toute la hauteur de la garde au sol G. Il comporte le pneu 1 sur la jante 2 sur laquelle est fixé un moteur hydraulique 3 à carcasse tournante à 10 vitesses dans les deux sens de rotation. Ce moteur hydraulique fait l'objet d'un brevet d'invention séparé. Il est décrit sommairement plus loin. Un bras 4 est fixé de façon rigide sur un épaulement à 8 pans du moteur et se prolonge en coude 5 au-dessus de l'axe vertical de la roue XX'. Le dessus coudé 5 du bras 4 se prolonge verticalement suivant l'axe XX' par un tube 6 coulissant dans un vérin hydraulique annulaire 7 à palettes dans l'alésage duquel il est claveté. Un piston fixe 8, solidaire d'une tige 9 fixée sur le châssis du véhicule, coulisse dans l'alésage 10 du tube 6 fermé de façon étanche à son extrémité supérieure par un bouchon 11. La rigidité de l'ensemble coulissant est obtenue d'une part par la fixation en partie supérieure sur le châssis de la tige 9 épaulée, par un écrou et un contre écroul2, et d'autre part par un support 13 rigide solidaire du châssis sur lequel est fixé le vérin annulaire 7. Ce vérin annulaire peut pivoter de 360°, mais il est préférablement limité à 180°. En position rétractée 15, le dessous de la roue se trouve au niveau du dessous 16 du plancher bas 17 après une course C égale à la garde au sol G soit environ 300mm. La mise à hauteur de la roue est effectuée par une pression d'huile passant par le trou 18 pour repousser le bras 4 vers le bas ou l'inverse. Pour rétracter la roue on envoie une pression d'huile, par l'intermédiaire d'une électrovanne dans le conduit 19 percé dans la tige 9, aboutissant sous le bouchon 11 dans le volume 20. L'amortissement vertical de la roue est obtenu par l'intermédiaire d'au moins un accumulateur Al, A2 par pivot, par exemple à azote (figure 2). Ces accumulateurs d'énergie hydrauliques assurent l'assistance au démarrage et aux fonctions de secours lors d'absence de HP en cas de panne de moteur thermique ou de rupture de canalisation hydraulique.La pression hydraulique de tous les pivots de roue d'un même véhicule est mesurée sur un circuit commun de façon à être égalisée. Cette pression globale fournit la masse totale en tonnes du véhicule, en charge comme à vide. Cette information figure sur un afficheur numérique du pupitre de commande sur le tableau de bord. Cette information peut de la même façon être fournie par pivot de roue ou par essieu (sur ces véhicules il n'y a plus d'essieu; on désigne par "essieu" deux pivots de roue formant un essieu virtuel) en isolant celui- ci du circuit commun par électrovannes. On agit également sur la hauteur de chaque pivot par rapport aux autres, notamment pour compenser l'usure de certain des pneus. On peut également recueillir ces informations au niveau de l'appui de la tige 9 sur le châssis au moyen de jauges de contrainte en ramenant ces informations sur un schéma qui informe également si une roue se dégonfle. En fonctionnement normal, les moteurs hydrauliques de roues sont alimentés ensemble, mais ils absorbent un débit en fonction de l'adhérence de la roue qu'ils entraînent et selon leurs besoins en virage. Avec les ponts différentiels mécaniques, le pont est bloqué lorsqu'une roue patine. La seconde roue n'a plus de couple parce que le pont tourne sur lui- même, il ne peut plus y avoir de transmission de couple, même si on accélère le moteur thermique. Cette fonction de pont différentiel est assurée entre les deux moteurs hydrauliques de roue d'un "essieu", tant en virage qu'en perte d'adhérence de roues (patinage), en utilisant en compresseur une des cylindrées de chacun des moteurs des roues intérieures au virage pour renvoyer, par une canalisation les reliant et contrôlée par une électrovanne, leur débit sur la même cylindrée de l'autre moteur de chaque "essieu", le débit supplémentaire renvoyé est géré par un microprocesseur qui assure la différence de vitesse entre roues intérieures et roues extérieures au virage en agissant sur les électrovannes de pilotage des cylindrées. Il en est de même en cas de patinage d'une ou de plusieurs roues. Quand une roue patine, l'effort résistant disparaît. Il est contrôlé' par un capteur de pression qui informe le microprocesseur par comparaison avec la seconde roue de l'essieu. Le débit renvoyé s'additionne au débit reçu par le moteur dont la roue a une meilleure adhérence, par exemple à 200 bars, la pression de service de la cylindrée du moteur qui reçoit ce débit supplémentaire passe à 400 bars, c'est à dire reçoit la totalité du couple de T'essieu". On optimise ainsi le couple moteur en permanence à chaque roue en fonction de son adhérence au sol qui dépend de l'état de la route, de rhumidité, de déchets glissants (terre, verglas...) et de l'état des pneumatiques et de leur usure différente.
Un pneu usé voit son diamètre extérieur réduit de 3 à 4 cm soit environ 13 cm par tour, ce qui modifie la vitesse de cette roue par rapport à un pneu neuf. Ainsi les vitesses de rotation des roues s'auto-ajustent en fonction de leur adhérence et de leur usure. La suspension hydraulique des pivots permet de provoquer le "durcissement" de l'amortissement en virages sur les pivots se trouvant à l'extérieur du virage en envoyant une surpression momentanée sur les amortisseurs en cause, contrôlée par les capteurs de pression se trouvant sur chaque pivot en coopération avec le microprocesseur de commande.. la figure 2 montre, en coupe en élévation, un autre exemple de pivot de roue à 90° à droite et à gauche, sans rétraction de la roue. Il comporte les mêmes organes que sur la figure 1, mais les courses étant réduites au simple amortissement de roue, le pivot est très compact puisqu'il n'occupe au dessus de la roue qu'un espace de moins de 300min. Le tube 6 devient le 25 et la tige 9 devient la 26. Les autres organes sont identiques à ceux de la figure 1.
Pour les pivots non directionnels, le vérin 7 est remplacé par un fourreau claveté fixé sur un support rigide tel que le 13; le tube 6 ou 25 coulisse dans le fourreau pendant l'amortissement des irrégularité de la route sur laquelle circule le véhicule. Le pivot est inclus à l'intérieur d'un coffrage 28. Lorsque les roues du véhicule ne nécessitent pas d'être pivotées à 90° pour se déplacer transversalement, on limite ce pivotement par exemple à 30° de part et d'autre du sens de déplacement, ce qui réduit la profondeur du coffrage 28 et libère davantage de place de rangement sur le plancher.
La figure 3 montre un pivot à roue rétractable dont la roue est tournée à 90°. Les numéros de repère sont les mêmes que ceux de la figure 1. La figure 4 montre un exemple de pivot de roue orientable en vue de dessus avec la fixation de son vérin rotatif hydraulique 7 sur un support 13 solidaire latéralement du coffrage 28. Ce coffrage est renforcé au droit des fixation de pivot. L'axe 30 de pivotement peut être décalé vers l'extérieur pour réduire la profondeur du coffrage 28 lorsque la roue 31 est tournée de 90°, ce qui permet de la place pour loger davantage de palettes. La figure 5 montre un exemple de fixation d'un pivot de roue non motorisé sur la jante
35 sur laquelle est montée le pneu 1 d'un diamètre d'environ lmètre. La jante 35 est retournée de 180° par rapport à sa position lorsqu'elle reçoit un moteur hydraulique et le bras 4 est fixé sur une pièce intermédiaire 36 se fixant sur le même épaulement 37 de la jante que le moteur hydraulique. Normalement chaque roue non motorisée devrait être équipée d'un frein. Mais comme les roues motorisées font fonction de frein avec toute la puissance de leur moteur hydraulique,. La capacité de freinage est bien supérieure à ce qu'elle est sur les camions classiques sans avoir besoin d'ajouter des freins classiques sur les roues non motorisées. Le pilotage du freinage des roues s'effectue, sans blocage des roues, au moyen d'une électrovanne de retour au réservoir d'huile hors pression (bâche).
Les figures 6 et 7 montrent, vu en coupe transversale et en coupe eh élévation, le moteur hydraulique rotatif monté sur les pivots de roues motrices, dont une brève description fera mieux comprendre l'intérêt de cette nouvelle génération de véhicules de transport intermodal. Tel qu'il est représenté, ce moteur est à 4 cylindrées A, B, C, D, équidistantes et d'un volume différent, ménagées dans le stator 40 de rayon extérieur R et de rayon intérieur r, un rotor 41 tourne concentriq ement au stator 40 sur des coussinets 42, 43; un jeu important J entre le stator et le rotor permet d'absorber les dilatation ou surpressions internes. Le rotor comporte 24 rainures 44 équidistantes et orientées radialement vers le centre, dans lesquelles coulissent 24 palettes- valves 45 auto -pilotées par la haute pression HP dans les cylindrées actives, des flasques 46, 47 assurent une fermeture étanche des cylindrées. Ils sont assemblés par des boulons précontraints 48. Des rainures annulaires 49, 50 constituent des chambres à pression différentielle 51 au droit des logements des palettes 45. Ces chambres annulaires 49, 50 sont à la pression Pi du carter, laquelle est contrôlée depuis la centrale hydraulique par un orifice 52. En l'absence de pression HP au droit d'une cylindrée, les palettes 45 remontent au fond de leur logement sous l'action de la pression Pi toujours supérieure à la asse pression BP. Chaque cylindrée à ses extrémités une rampe RI, R2 pouvant être soit une rampe d'entrée, soit une rampe de sortie suivant le sens de rotation . Chacune des rampes RI, R2 est munie d'une rainure RAI, RA2 d'alimentation en HP et d'évacuation en BP au réservoir, aboutissant à une canalisation 53 d'admission ou d'échappement du fluide moteur. Le sens d'application du fluide moteur a été illustré par des flèches F sur les palettes 45. La poussée de la HP sur chacune des palettes actives est égale à F bars/cm2 multiplié par la surface active de la palette. La pression de service s'échelonne entre 185 et 250 bars avec un maximum de 350 bars. Chaque cylindrée est délimitée par ses palettes pré-actives se trouvant successivement en amont et en aval et assurant son étanchéité. Les palettes deviennent actives uniquement au moment où elles sont complètement engagées sur le fond de cylindrée r. Les palettes sont en forme de Té comportant des épaulement 54, 55 coopérant avec les rainures annulaires 49, 50 les rendant auto-pilotables par la HP du fait qu'elles sont percées de trous permettant à la HP de les traverser et de pousser sur la surface opposée 56 plus grande que la surface active 57, pour les faire descendre en appui sur le rayon r des fonds de cylindrées actives. La largeur des épaulements 54, 55 définit la pression de contact de la surface 57 des palettes sur le rayon r; la pression Pi agit sur les épaulements 54, 55 pour maintenir les palettes au fond de leur logement en absence de HP dans la cylindrée. La pression Pi est représentée par un ombrage à petits points. Des coussinets latéraux 58, 59 supportent les efforts latéraux du moteur. Une portée 60 permet le centrage du moteur sur l'épaulement de la jante de roue en appui sur une face 61 et la fixation s'effectue au moyen d'un ensemble e trous taraudés 62. Le gros trou taraudé 63 reçoit une vis de fixation du bras pivotant centré sur une portée à huit pans 64. Chaque moteur est équipé d'un frein de parking FP assurant l'immobilisation positive du véhicule au moyen d'un crabotage mécanique.
Les figures 8 à 10, montrent un exemple d'un véhicule articulé porte-conteneurs 65, 66 de 2 fois vingt pieds, vu en élévation, vue de côté et vu de dessus, réalisé avec 8 pivots de roue motorisée à roue rétractable 67, pour le transport combiné intermodal. Ces pivots de roue sont montés comme sur les figures 1, 3 et 4. Chaque essieu ou paire de roue est monté sur un portique identique 68. Les portiques 68 sont solidarisés sur une poutre en caisson 69. Les portiques sont munis de verrous de coins ISO en correspondance avec les coins ISO 70 des conteneurs 65. L'avant 72 comporte une cabine 73 ainsi que le moteur thermique, la centrale hydraulique, le réservoir d'huile hydraulique et le réservoir de carburant. La pompe hydraulique de la centrale hydraulique peut être une pompe à débit constant ou une pompe à débit variable entraînée en rotation à partir, par exemple de poulies crantées et d'une courroie crantée, la poulie motrice étant clavetée sur l'arbre de sortie du moteur thermique. Le tableau de bord de la cabine comporte un pupitre avec les différentes commandes hydrauliques, le pupitre de commande des différentes fonctions hydrauliques comporte notamment: la rétraction des roues et leur retour au niveau de la garde au sol; le pivotement à 90° des roues pour le chargement/déchargement latéral des conteneurs sur wagon, sur chariot ou tout autre déplacement; commande de position de l'axe d'articulation du ou des timons en virage; passage des vitesses AV, AR; contrôle du poids à vide et en charge sur afficheur numérique.
Le débit d'huile alimentant les moteurs hydrauliques de roue est acheminé à ceux-ci au moyen de tuyauteries rigides et flexibles et d'électrovannes de commandes des cylindrées. Des accumulateurs hydrauliques sont disposés dans les portiques pour accumuler l'énergie de freinage et celle de la suspension assurée par les pivots de roue sous forme d'huile sous pression. Aux redémarrages, les accumulateurs restituent l'énergie emmagasinée au freinage et sur les pivots de roue à chaque amortissement. Cette énergie sert également en cas de rupture de conduit d'alimentation du fluide moteur ou en cas de panne du moteur thermique pour assurer le freinage de secours et le fonctionnement des freins de parking à crabotage immobilisant positivement le véhicule. Ces véhicules porte-conteneur font uniquement du préacheminement et du post-acheminement sur de courtes distances. La manoeuvre de chargement des conteneurs s'effectue latéralement. Lorsqu'il se trouve au-dessus d'un conteneur, il rétracte ses roues jusqu'au contact du conteneur, ensuite les coins ISO sont verrouillés et les roues sont ressorties jusqu'à la garde au sol G. Pour décharger les conteneurs, il effectue la manoeuvre inverse, dépose le conteneur au sol puis les coins ISO sont déverrouillés, les roues ressorties et le véhicule est dégagé latéralement. En vue de dessus figure 10, les roues 74 sont représentées pivotées à 90° en position de chargement ou de déchargement. Pour faciliter notamment le chargement des conteneurs, on a prévu une boîte à boutons de commande à distance du déplacement latéral du véhicule, agissant sur les électro vannes de commande des vérins rotatifs d'orientation des roues, sur l'alimentation des cylindrées des moteurs dans le sens nécessaire au chargement déchargement, sur la baisse jusqu'au sol ou pour la prise ou la dépose sur un chariot bas ou pour sa levée après verrouillage sur le portique du véhicule. Les verrous de coins ISO des véhicules porte-conteneurs peuvent être montés chacun sur un support articulé pour faciliter le chargement et le déchargement latéral des conteneurs en augmentant le jeu de passage des portiques de chaque côté du conteneur à charger.
On peut utiliser le camion seul pour transporter un seul conteneur, ou avec sa remorque motorisée selon les besoins. La figure 11, montre, vu en élévation, un exemple de véhicule porte-conteneur 75 de
40 pieds. Ce véhicule comporte deux portiques 76 identiques à 4 pivots de roue chacun dont on peut ne motoriser que deux roues par portique. Les portiques sont assemblés sur une poutre 77. Ce véhicule fonctionne comme celui des figures 8, 9 et 10.
Les figures 12, 13 et 14 montrent, vu en élévation, vu en bout et vu de dessus, un exemple de véhicule routier pour le transport notamment de palettes. Ce véhicule peut avoir une masse totale de 32 tonnes en charge maximale. Il comporte quatre paires 80 de pivots de roues non rétractables (selon la figure 2). Il peut ne comporter que quatre roues motorisées. Les huit pivots de roues peuvent être pivotants ou seulement les quatre de l'avant selon les manoeuvres à effectuer. Lorsque toutes les roues sont pivotantes, les manoeuvres sont plus rapides ce qui représente un gain de temps.. A l'arrière de la cabine 72 on peut prévoir deux couchettes superposées au dessus de l'essieu avant. Ce véhicule comporte un plancher bas dont le dessous est à 300 mm du sol. Il comporte en outre un plancher mobile 83 que l'on peut remonter contre le plafond avec un système de treuil câbles et poulies. Il repose sur des butées au dessus des coffrages de roues. Ce véhicule est destiné à transporter des palettes sur de longues distances, plus de 500 km. Sa longueur est la plus grande autorisée par le code de la route, ce qui lui permet de transporter des palettes sur deux niveaux.
Les figures 15, 16 et 17 montrent, vu en élévation , en bout et vu de dessus, un exemple de véhicule conteneur articulé gerbable pour le transport combiné intermodal. Ce véhicule est équipé de 10 pivots de roue rétractables sur toute la hauteur de la garde au sol G de façon à pouvoir réduire sa hauteur et se charger lui-même sur un wagon de chemin de fer et se reposer sur le plancher du wagon comme un conteneur sur lequel il peut être verrouillé par ses coins ISO de verrouillage 70 disposés à ses angles, à une distance correspondant à l'emplacement de ceux des conteneurs ISO. La structure de ce véhicule est conçue de façon rigide pour qu'il puisse être gerbe sur des navires porte-conteneur classiques ou spéciaux. Il comporte à l'avant deux essieux 85 dont par exemple un seul peut être motorisé, à l'arrière il comporte un seul essieu 86 qui peut ne pas être motorisé; sa remorque 87 comporte à l'avant un essieu 88 à deux pivots motorisés ou non, et à l'arrière un essieu 89 motorisé ou non. On peut en effet ne motoriser que les roues arrières ou les roues avant de la remorque, toutes les roues étant pivotantes à 90° pour permettre son chargement sur les wagons de chemin de fer prévus à cet effet. Il peut également se charger lui-même par ses propres moyens sur des navires porte- conteneurs prévus à cet effet, la position d'alignement des deux éléments articulés du VTI est verrouillée latéralement entre eu , de chaque côté de ces éléments, par deux barres coulissantes sorties et verrouillées hydrauliquement chacune par deux broches, avant toute manipulation dudit véhicule en tant que conteneur.
Les figures 18, 19, 20 et 21 montrent, vu en élévation , en coupe, en bout et vu de dessus, un exemple de véhicule conteneur gerbable articulé en trois parties 92, 93, 94 de longueur égale à celle des conteneurs de 20 pieds, pour le transport combiné intermodal. Les angles de ces trois éléments sont équipés de coins de verrouillage ISO. Ce véhicule est analogue à celui des figures 15, 16 et 17 à la différence que ces trois éléments peuvent être désaccouplés et traités chacun comme un conteneur classique sur les ports équipés de grues de chargement de conteneur sur les navires porte-conteneurs classiques. Les deux remorques 93, 94 sont accouplées au moyen de timons spéciaux qui sont décrit plus loin sur les figures 22 à 24, ces timons permettent de réduire à 0,20 m l'espace entre les éléments articulés des véhicules selon l'invention pour ne pas dépasser les longueurs permises par le code de la route en ligne droite. La position d'alignement des deux structures du VTI est verrouillée latéralement entre eux par deux barres coulissantes sorties et verrouillées hydrauliquement chacune par deux broches, avant toute préhension dudit véhicule en tant que conteneur.
Les figures 22 et 23 montrent, vu de dessus, l'emplacement du timon, et sa position au cours de manoeuvres de braquage des véhicules articulés et un exemple de chariot de timon rétractable hydrauliquement en fin de virage. Pour les virages courts nécessitant un braquage important des roues, il est nécessaire de disposer d'une espace plus important entre les éléments articulés 100, 101. Le timon triangulaire classique 102, pivotant selon l'axe AA' a son extrémité libre articulée en 103 sur un pivot à rotule 104 solidaire du dessus d'un moyen permettant son déplacement sur une longueur suffisante pour effectuer les manoeuvres ςn virage important. On peut prévoir la position de l'articulation 103 jusqu'à permettre à l'élément avant de virer à 90° par rapport au suivant. Le déplacement de ce point d'articulation par rapport à l'arrière de l'élément avant peut être effectué de différentes façons, par exemple au moyen d'un petit chariot 105 muni de 4 roulettes 106 se déplaçant dans une glissière 107 tiré ou poussé par la tige 108 d'un vérin hydraulique 109 immobilisée soit en position sortie en virage (figure 23) soit en position rentrée (figure 22). On pourrait également assurer cette fonction par une glissière constituée par une tige de section cylindrique sur laquelle on fait coulisser un fourreau monté sur deux douilles à billes, ledit fourreau étant immobilisé en rotation par exemple par un galet se déplaçant dans une rainure linéaire.
La figure 25 montre, en vue de dessus, un exemple de chargement et de déchargement, par leur propres moyens, des véhicules de transport intermodal sur un wagon de chemin de fer 110 à faible hauteur au-dessus des rails pour permettre le passage sous les caténaires et dans les tunnels. On a représenté des wagons arrêtés entre deux quais 111 et 112, sur lesquels deux véhicules porte-conteneurs 113, 114, articulés en deux parties comme ceux des figures 8, 9 et 10, sont immobilisés au droit du wagon 110, leurs roues tournées à 90°. Le véhicule 113 s'apprête à monter sur le wagon pour charger les conteneurs 115 et 116 et les acheminer sur leur lieu de destination, cependant que le véhicule 114 s'apprête à déposer lui-même deux autres conteneurs qu'il vient d'amener pour qu'ils soient transportés par le train à leur destination. Ce mode opératoire permet de charger et/ou de décharger presque simultanément un train de façon à réduire la durée de chargement/déchargement d'un train complet à un temps minimal qui, à la limite pourrait être celui de déchargement/chargement d'un wagon si tous les véhicules porte-conteneurs sont présents à l'arrivée des trains et face à leur wagon. Le gain de temps devient extrêmement important au niveau des rotations de trains et de la disparition des délais d'attente.
La figure 26 montre un exemple de véhicule porte conteneur, par exemple l'élément avant de la figure 8, en train de charger ou de décharger latéralement un conteneur sur un chariot de manoeuvre en usine de façon à permettre aux entreprises de toute nature de manoeuvrer elles-mêmes leur(s) conteneur(s) 120 avec leur tracteur 123, figure 27, pour les amener en bout de chaîne de fabrication, figure 28, les charger directement sans avoir besoin de palettetiser les colis, en utilisant les conteneurs en espace mobile de stockage pouvant être entreposés dans la cour de l'usine. Le tracteur 123 peut reculer le conteneur jusqu'à faire pénétrer par exemple un transporteur à bande 124 à l'intérieur du conteneur 120 pour réduire le temps de manoeuvre des colis 125 Dès qu'un conteneur est plein, il est amené dans la cours de l'usine pour être enlevé ensuite par un véhicule porte-conteneur pour l'acheminer au prochain train et un conteneur vide est amené à la place de celui qui vient d'être emmené dans la cour:'. Les opérations de stockage-destockage sont supprimées et l'espace de stockage est rendu à la fabrication. Il n'est plus nécessaire d'utiliser de palettes pour préparer le chargement des camions classiques. Il n'y a plus de temps d'attente pour le chargement ou le déchargement grâce aux chariots bas 121. Avec des roues pivotant à 90°, on peut pousser latéralement le chariot en position sous le conteneur, sinon c'est le véhicule porte-conteneur qui se déplace latéralement pour venir au-dessus du ou des chariots déposer son ou ses conteneurs. Ces chariots de manoeuvre de ces conteneurs sont légèrement plus courts que les conteneurs, le plateau de ces chariots est à une hauteur telle que lorsque le véhicule porte conteneur a déposé un conteneur sur celui-ci, lorsqu'il ramène ses roues à la position de route, il subsiste un jeu suffisant sous le portique pour que le véhicule puisse se dégager latéralement sans frotter sur le conteneur. La hauteur du plateau du chariot est inférieure d'environ 20mm par rapport au dessous du conteneur pour les chariots qui sont glissés latéralement sous le conteneur à recevoir.
Le conteneur vide 120 est déposé dans la cours de l'usine sur un chariot bas 121 et si un autre conteneur est plein le véhicule porte-conteneur va le charger latéralement sur son chariot bas 121 et repart en charge. Dans le cas où les conteneurs sont déposés sur les chariots. Le diamètre des roues peut être plus important que la garde au sol, car le plancher du conteneur se trouve au dessus des profilés d'encadrement de son châssis. On peut par exemple utiliser des roues d'un diamètre de 360 à 370mm. Ces roues sont montées pivotantes pour permettre les manoeuvres diverses nécessaires au déplacement des conteneurs dans les usines. On peut de la même façon stocker des conteneurs dans les gares sur de tels chariots pour éviter d'immobiliser les véhicules porte-conteneurs dans les gares en attente des trains. Cela permet à ceux-ci de continuer la navette pour amener les conteneurs pleins aux gares.
Pour que le système de véhicules selon l'invention soit entièrement intermodal, les conteneurs doivent pouvoir être chargés sur des camions semi-remorque sans avoir besoin de puissantes grues qui ne se justifient qu'à partir d'un nombre important de conteneur à manipuler. C'est très rarement le cas dans les usines.
Les figures 29 et 30 illustrent un mode de chargement d'un camion semi-remorque classique transportant actuellement des conteneurs chargés à partir de portiques, au moyen de chariots bas 130, 131 sur lesquels sont posés des conteneurs 120, à partir d'un quai à la hauteur du plancher de la remorque. Les roues de ces chariots comportent une partie centrale 132 d'une largeur égale à celle du dessus des profilés 133 en I du châssis du camion sur lesquels elles roulent, des épaulements 134, 135 font fonction de guidage latéral des roues sur les côtés du profilé 133; à l'extérieur de ces épaulements, un bandage 136, 137 permet de rouler sur le sol des usines. Ces roues sont montées sur pivot 138 pour permettre les manoeuvres de chargement des chariots 130, 131. Le tracteur 123 a mis en place le premier chariot 130 avec son conteneur 120 et recule ensuite le second chariot 131 jusqu'au contact du premier conteneur. Les conteneurs sont ensuite verrouillés sur le châssis par leurs coins ISO. Ces coins peuvent par exemple être montés sur des supports articulés aux profilés 133 pour rattraper la hauteur du chariot. Ces camions semi-remorque peuvent également être équipés de pivots de roue motorisés hydrauliquement.
Les figures 31, 32 et 33 montrent, vu en coupe en élévation, en coupe transversale et vu de dessus, un navire porte-conteneurs 140 adapté pour permettre aux VTI conteneurs 141 de pénétrer perpendiculairement dans celui-ci par leurs propres moyens, en montant sur un plateau (146) rabattu sur le quai, articulé sur l'extrémité d'une des passerelles intérieure (142) desdits navires, équipée de moyens (143) de mise à hauteur par rapport au quai, en ce que lorsqu'il est arrêté en position prédéfinie sur ladite passerelle, le VTI rétracte toutes ses roues pour se mettre en état de préhension comme conteneur par les moyens de manutention adaptés (144, 145) dudit navire, portique (144) et ponts roulants (145). Les moyens de manutention de ces VTI conteneurs sur les navires porte-conteneurs sont constitués par un ensemble de portiques (144) se déplaçant sur deux rails longitudinaux, correspondant chacun à une des passerelles (142) d'entrée ou de sortie des VTI conteneurs, lesdits portiques étant équipés chacun d'un cadre de préhension des VTI conteneurs pour les empiler sur le pont. Au niveau des passerelles (142) , les VΗ conteneurs sont manœuvres par des cadres de préhension mus par plusieurs ponts roulants (145) pour le chargement dans la soute. Les conteneurs, amenés par des véhicules du type semi-remorque, sont posés sur un chariot bas chargés en marche arrière par des tracteurs, sur une passerelle intérieure 142 équipée de moyens 143 de mise à hauteur par rapport au quai et d'un plateau articulé 146 rabattu sur le quai, et de moyens de manutention 144 du genre portique pour l'empiler sur le pont comme un conteneur sur 3 ou 4 niveaux et dans la soute au moyen de ponts roulants 145 prenant directement les conteneurs sur la passerelle pour les ranger dans la soute. Le navire 140 comporte trois passerelles 142 d'entrée, trois portiques de manutention 141 et trois ponts roulants 145 réduisant considérablement le temps de chargement ou de déchargement sans délai d'attente du fait de son autonomie de manutention et du fait que les VTI conteneurs se chargent directement sur les passerelles sans intervention extérieures, le navire possédant ses propres tracteurs et chariots bas stockés sur les passerelles pendant la navigation.
Les figures 34 et 35 montrent un exemple de vérin annulaire 7 à palettes selon l'invention (montré en place sur les figures 1, 2, 4, 36, 37), destiné à assurer l'orientation des roues directionnelles sur pivot, motorisées ou non, rétractables ou non. Ce vérin annulaire est monté coulissant sur le tube vérin 6 des roues rétractables, ou 25 du tube court des roues non rétractables du bras 4 des pivots de roue, par son alésage 150. L'entraînement en rotation du tube 6 ou 25 est assuré par au moins une clavette 151. Il est constitué d'un corps 152 comportant au moins trois à quatre palettes 153, un fourreau extérieur 154 formant avec les palettes, des volumes dans lesquels on fait circuler l'huile sous pression provoquant le pivotement des roues. Ces volumes sont délimités latéralement d'une part par un épaulement interne 155 tournant sur une portée 156 du corps 152, et d'autre part par un flasque 157 de fermeture tournant sur une portée 158 du corps, l'étanchéité étant assurée par des joints annulaires 159. L'épaulement 155 et le flasque 157 portent sur les extrémités latérales des palettes. Le flasque 157 est fixé sur le fourreau au moyen d'une couronne de vis. Une rondelle 160 permet d'ajuster le jeu minimal avec les palettes. Pour assurer une bonne étanchéité entre l'extrémité des palettes 153 et l'alésage 161 du fourreau, on a réalisé les palettes 153 indépendantes du corps 152 en les introduisant chacune dans une rainure radiale 162 des bossages 163 du corps. La pression de contact des palettes sur l'alésage 161 est assurée par un ensemble de ressorts précontraints et tarés 164. On peut également assurer cette fonction hydrauliquement en amenant la HP sous la palette en perçant des trous aboutissant dans le fond des rainures 162. Pour améliorer l'étanchéité des palettes sur leur alésage, on a usiné une fente 165 dans l'axe de la surface de contact et cette surface est usinée au rayon de l'alésage 161. L'orientation de la roue, à droite ou à gauche, est assurée par une pression P d'huile HP provenant d'un orifice 168 s'appliquant sur le bossage de la palette et sur la palette correspondante dans le sens S demandé. L'évacuation de la BP s'effectuant par un second orifice 169. Lorsque la palette s'approche du second orifice 169, le circuit d'admission et d'évacuation se ferment et les orifices 170 et 171 s'ouvrent et prennent le relais jusqu'à l'orientation à 90°. Le vérin est muni de 4 pattes de fixation sur un support rigide 13 (fig. 1 et 4). Le vérin contribue au maintien rigide de la roue en coopération avec le point de fixation supérieur 12 de la tige de piston 19, 26 (fig.l).
Les figures 36 et 37 montrent des variantes de pivot de roue des, figures 1 et 2. On a conservé le même dispositif de pivot, donc les mêmes numéros de repères des pièces, par contre on a changé le point de pivotement qui ne se trouve plus à la verticale de l'axe de la roue et au-dessus de celle-ci, mais sur le côté.
La figure 36 montre un pivot motorisé à roue non rétractable analogue à celui de la figure 2. Le bras 175 portant la roue est très court, le tube vérin 176 solidaire du bras est également très court ainsi que la tige 177 fixée sur le châssis. Tous les bras porte-roue motorisée sont percés de trous de passage de la HP et de la BP d'alimentation des cylindrées. Ces trous sont reliés par des tuyaux hydrauliques flexibles aux tubes d'alimentations venant de la centrale hydraulique de commande. Le vérin annulaire 7 d'orientation de la roue est identique à ceux utilisés pour les figures 1 et 2. II est également fixé sur le châssis. Cette version est peu encombrante en hauteur. Le plancher 17 a été représenté au niveau de la garde minimale G au sol. On pourrait mettre le dessus du plancher légèrement au dessus de la roue pour disposer de la totalité de la surface de rangement pour certaines applications. La figure 37 montre un pivot motorisé à roue rétractable analogue à celui de la figure 1. Le tube vérin 180 du bras 181 portant le moteur, coulissant dans le vérin annulaire 7, est d'une longueur permettant de rétracter totalement la roue (course G). Le vérin 7 et le haut de la tige de piston 182 sont fixés sur le châssis 183 pour le maintien rigide du pivot. Comme pour les versions des figures 1 et 2, ces pivots de roue peuvent ne pas être motorisés et dans ce cas les bras 175 et 181 sont fixés sur la jante sur une plaque 36 comme sur la figure 5. De même les pivots à roue non directionnelle n'ont pas de vérin annulaire 7, celui-ci est remplacé par un fourreau claveté sur le tube vérin des bras 175, 181 et fixé sur le châssis comme le vérin 7. Dans ce cas il n'assure que l'amortissement de la roue.

Claims

REVENDICATIONS:
1) Véhicule de transport intermodal VTI, caractérisé en ce qu'il comporte des pivots de roue motorisés hydrauliquement, orientables sur 180° (90° à gauche ou 90° à droite), comprenant des moyens amortisseurs intégrés à gaz, des moyens de réglage en hauteur de la position des roues, et des moteurs de roues (permettant de rouler à 100 km/heure) ; chaque pivot de roue étant autonome et alimentée à partir d'une centrale hydraulique entraînée par le moteur thermique du véhicule ; ces pivots de roue étant aménagés pour permettre aux VTI d'avoir le dessous de leur plancher au niveau de la garde au sol (G), soit environ 300mm ; ledit véhicule pouvant être articulé et utilisé en porte-conteneur, conteneur motorisé, transporteurs de palettes ou autres charges.
2) Véhicule de transport intermodal VTI selon la revendication 1, caractérisé en ce que les pivots de roues motorisés hydrauliquement sont chacun entièrement rétractable hydrauliquement de façon à ce que le plancher dudit véhicule puisse être amené en appui au sol, ou sur un wagon de chemin de fer ou en superposition sur plusieurs niveau en tant que véhicule conteneur gerbe sur d'autres véhicules conteneurs identiques articulés ou non.
3) Véhicule de transport intermodal VTI selon la revendication 2, caractérisé en ce que ledit véhicule portant les pivots de roue est aménagé en porte-conteneur avec ou sans remorque, comprenant deux portiques (68) solidarisés sur une poutre en caisson (69) ; les portiques (68) étant munis de verrous de coins ISO en correspondance avec les coins ISO (70) des conteneurs (65); le conteneur (65) étant chargé latéralement en baissant les portiques jusqu'au contact du ou des conteneurs qui sont ensuite verrouillés par leurs pièces de coin ISO (70) entre les portiques.
4) Véhicule de transport intermodal VTI , selon la revendication 2, caractérisé en ce que ledit véhicule, portant les pivots de roues motorisées, est aménagé en conteneur seul ou à remorques articulées, comprenant un châssis rigide permettant son gerbage, équipé à l'avant de deux essieux (85) et à l'arrière d'un seul essieu (86), sa remorque (87) comporte à l'avant un essieu (88) à deux pivots motorisés ou non, et à l'arrière un essieu (89) motorisé ou non, toutes les roues étant pivotantes à 90° pour permettre son chargement/déchargement sur les wagons de chemin de fer ; ledit véhicule étant muni, à ses angles, de pièces de coin ISO (70), à une distance correspondant à l'emplacement de ceux des conteneurs ISO pour sa manutention et son verrouillage comme un simple conteneur gerbable sur les navires porte-conteneurs et sur le plancher des wagons de chemin de fer. 5) Véhicule de transport intermodal VTI selon les revendications 2 et 4, caractérisé en ce qu'il comporte un plancher mobile (83) que l'on peut remonter contre le plafond avec un système de treuil, câbles et poulies, et reposant sur des butées au dessus des coffrages de roues.
6) Véhicule de transport intermodal VTI selon les revendications 3, 4 et 5, caractérisé en ce que l'élément avant (72) comporte une cabine (73), et est aménagé pour recevoir un moteur thermique entramant la pompe d'une centrale hydraulique d'alimentation des moteurs de roue, le réservoir hydrauliqque et le réservoir de carburant.
7) Véhicule de transport intermodal VTI selon les revendications 3, 4 et 5, caractérisé en ce que le timon d'articulation des remorques des VΗ est constitué d'une partie triangulaire (102) articulée horizontalement selon l'axe XX' à la remorque et dont rextrémité libre (103) est articulée sur un pivot à rotule (104) solidaire du dessus d'un moyen de déplacement à guidage linéaire à glissière (107) tiré ou poussé par la tige (108) d'un vérin hydraulique (109) immobilisée soit en position sortie en virage, soit en position rentrée.
8) Véhicule de transport intermodal VTI selon la revendication 4, caractérisé en ce que la position d'alignement des remorques du VTI conteneur est verrouillée latéralement entre eux par deux barres coulissantes sorties et verrouillées hydrauliquement chacune par deux broches, avant toute manipulation dudit véhicule en tant que conteneur.
9) Véhicule de transport intermodal VTI selon les revendications 4 et 8, caractérisé en ce que le VTI conteneur seul ou à remorques pénètre par ses propres moyens dans les navires porte-conteneurs (140), en montant sur un plateau (146) rabattu sur le quai, articulé sur l'extrémité d'une des passerelles intérieure (142) desdits navires, équipée de moyens (143) de mise à hauteur par rapport au quai, en ce que lorsqu'il est arrêté en position prédéfinie sur ladite passerelle, le VTI rétracte toutes ses roues pour se mettre en état de préhension comme conteneur par les moyens de manutention adaptés (144, 145) dudit navire, portique (144) et ponts roulants (145).
10) Véhicule de transport intermodal VTI selon les revendications 4, 8 et 9, caractérisé en ce que les moyens de manutention des VTI conteneur sur les navires porte-conteneurs sont constitués par un ensemble de portiques (144) se déplaçant sur deux rails longitudinaux, correspondant chacun à une des passerelles (142) d'entrée ou de sortie des VTI conteneurs, lesdits portiques étant équipés chacun d'un cadre de préhension des VTI conteneurs pour les empiler sur le pont, en ce que, au niveau des passerelles (142) , les VTI conteneurs sont manœuvres par des cadres de préhension mus par plusieurs ponts roulants (145) pour le chargement dans la soute. 11) Véhicule de transport intermodal VTI selon la revendication 2, caractérisé en ce que le véhicule VTI routier portant les moyens de motorisation à pivots orientables à roues motorisés hydrauliquement est aménagé en camion routier porte-palettes sur deux niveaux au moyen d'un plancher mobile (83), à deux ou trois essieux, pouvant se charger lui-même sur un wagon de chemin de fer en rétractant ses roues.
12) Véhicule de transport intermodal VTI selon les revendications 2 et 11, caractérisé en ce que le VTI routier à remorque portant les moyens de motorisation à pivots orientables motorisés hydrauliquement est aménagée en camion routier porte-palettes sur deux niveaux, à deux ou trois essieux pouvant se charger lui-même sur un wagon de chemin de fer grâce à ses roues orientables à 90° et rétractables.
13) Véhicule de transport intermodal VTI selon les revendications 2, 11 et 12 caractérisé en ce que le VTI routier comprend quatre paires (80) de pivots de roues non rétractables dont une partie seulement est motorisée hydrauliquement, un plancher bas (17) dont le dessous (16) est au niveau de la garde au sol (G), en ce qu'il comporte une cabine (73) et un plancher mobile (83).
14) Véhicule de transport intermodal VTI selon la revendication 3, caractérisé en ce que les véhicules porte-conteneurs déposent les conteneurs vides ou plein en usine et dans les gares et ports sur des chariots bas (121, 131) de manoeuvre de ces conteneurs légèrement plus courts que les conteneurs, en ce que le plateau de ces chariots est à une hauteur telle que lorsque le véhicule porte conteneur a déposé un conteneur sur celui-ci, lorsqu'il ramène ses roues à la position de route, il subsiste un jeu suffisant sous le portique pour que le véhicule puisse se dégager latéralement sans frotter sur le conteneur.
15) Véhicule de transport intermodal VTI selon la revendication 14, caractérisé en ce que les chariot bas (131) de chargement/déchargement de conteneurs sur camion semi- remorque, comporte des roues dont la partie centrale métallique est prévue pour rouler sur le dessus des profilés enl ou autres (133) du châssis de ces camions et se guider latéralement contre les bords parallèles de ces profilés, grâce à deux épaulements (134, 135), des bandages (136, 137) d'un diamètre plus important sont disposés de chaque côté de la partie centrale (132) de la roue pour rouler sur le sol, en ce que ces roues sont montées pivotantes pour permettre les manoeuvres diverses des conteneurs. 16) Véhicule de transport intermodal VTI selon l'une des revendications 4 et 5, caractérisé en ce que les véhicules conteneurs équipés de roues rétractables orientables à 90°, se charges eux-mêmes sur des wagons (110) de chemin de fer de longueur adaptée, rétractent leurs roue et reposent sur leur plancher équipé pour verrouiller leurs coins ISO en les immobilisant sur celui-ci.
17) Véhicule de transport intermodal VTI selon la revendication 3, caractérisé en ce que les véhicules porte-conteneurs équipés de roues rétractables orientables à 90°, montent eux- mêmes sur des wagons (110) de chemin de fer de longueur adaptée en orientant leurs roues à 90°, rétractent leurs roue et déposent sur le plancher du wagon ou enlèvent un ou deux conteneurs, en ce que ces wagons sont équipés pour verrouiller les coins ISO des conteneurs en les immobilisant sur leur plancher.
18) Véhicule de transport intermodal VTI selon l'une des revendications 3, 4, 6, 11, 12, 13, caractérisé en ce que le contrôle du poids à vide et en charge desdits véhicules est effectué par la mesure de la pression hydraulique régnant dans le circuit d'équilibrage de la charge, en ce que cette mesure en tonnes est également effectuée au niveau de chaque "essieu" et de chaque pivot de roue.
19) Système de réalisation de véhicules de transport intermodal VTI selon la revendication 18, caractérisé en ce que l'équilibrage de la charge sur l'ensemble des pivots de • roue est obtenu en mettant l'ensemble des pivots sur un circuit hydraulique commun à même pression et en agissant sur la hauteur de chaque pivot par rapport aux autres.
20) Véhicule de transport intermodal VTI selon l'une des revendications 3, 4, 6, 11, 12, 13, caractérisé en ce que le pilotage du freinage sans blocage de roue est effectué au moyen d'une électrovanne de retour au réservoir d'huile hors pression.
21) Véhicule de transport intermodal VTI selon les revendications 1 et 2, caractérisé en ce que chaque moteur de roue est équipé d'un frein de parking à crabotage (65).
22) Véhicule de transport intermodal VTI selon la revendication 3, caractérisé en ce que les systèmes de verrouillage des pièces de coin ISO des véhicules porte-conteneurs sont montés chacun sur un support articulé pour faciliter le chargement et le déchargement latéral des conteneurs. 23) Véhicule de transport intermodal VTI selon l'une des revendications 2, 3, 4, 6, 11,
12, 13, caractérisé en ce que la fonction du pont différentiel est assurée entre les deux moteurs hydrauliques de roue d'un "essieu", tant en virage qu'en perte d'adhérence de roues, en utilisant en compresseur une des cylindrées de chacun des moteurs des roues intérieures au virage pour renvoyer leur débit sur la même cylindrée de l'autre moteur de chaque "essieu", en ce que le débit supplémentaire renvoyé est géré par un microprocesseur qui assure la différence de vitesse entre roues intérieures et roues extérieures au virage en agissant sur les électrovannes de pilotage des cylindrées.
24) Véhicule de transport intermodal VTI selon l'une des revendications 2, 3, 4, 6, 11, 12, 13, caractérisé en ce qu'il comporte, au niveau de chaque pivot de roue motorisée, au moins un accumulateur d'énergie hydrauliques accumulée au freinage et à chaque amortissement, pour l'assistance au démarrage et aux fonctions de secours lors d'absence de HP en cas de panne de moteur thermique ou de rupture de canalisation hydraulique.
25) Véhicule de transport intermodal VTI selon l'une des revendications 2, 3, 4, 6, 11, 12, 13, caractérisé en ce que le pupitre de commande des différentes fonctions hydrauliques comporte notamment: la rétraction des roues et leur retour au niveau de la garde au sol; le pivotement à 90° des roues pour le chargement/déchargement latéral des conteneurs sur wagon, sur chariot ou tout autre déplacement; commande de position de l'axe d'articulation du eu des timons en virage; passage des vitesses AV, AR; contrôle du poids à vide et en charge sur afficheur numérique.
26) Véhicule de transport intermodal VTI selon les revendications 3 et 14, caractérisé en ce qu'il comporte une boîte à boutons de commande à distance du déplacement latéral pour le chargement/déchargement des conteneurs, agissant sur les électrovannes de commande des vérins rotatifs d'orientation des roues, sur l'alimentation des cylindrées des moteurs dans le sens. nécessaire au chargement déchargement, sur la baisse jusqu'au sol ou sur un chariot du conteneur ou sa levée après verrouillage sur le portique du véhicule.
27) Véhicule de transport intermodal VTI selon l'une des revendications 2, 3, 4, 6,11 à 13, 19, caractérisé en ce que la suspension hydraulique des pivots est agencée pour provoquer le "durcissement" de l'amortissement en virages sur les pivots se trouvant à l'extérieur du virage en envoyant une surpression momentanée sur les amortisseurs en cause, contrôlée par les capteurs de pression se trouvant sur chaque pivot en coopération avec le microprocesseur de commande.
28) Véhicule de transport intermodal VTI selon la revendication 2, caractérisé en ce que les pivots de roues sont constitués d'un bras porte-roue (4, 175, 181) prolongé par un tube vérin (6, 25, 176, 180) coopérant avec un piston fixe (8) solidaire d'une tige (9, 26, 177, 182) dont rextrémité supérieure est fixée sur le châssis du véhicule, en ce que le tube vérin est fermé par un bouchon (11) traversé par la tige de piston, en ce que le tube vérin est centré et maintenu dans un vérin annulaire 7 rendu solidaire du châssis, sur lequel il est claveté pour les pivots directionnels, et claveté coulissant dans un fourreau solidaire du châssis pour les pivots non directionnels, en ce que le bras support de roue est fixé sur une portée à huit pans du moteur hydraulique (3) fixé lui-même sur un épaulement (37) de la jante, en ce que le bras porte roue est percé de trous de passage de la HP et de la BP aux cylindrées et de l'arrivé au tube vérin (18). 29) Véhicule de transport intermodal VTI selon les revendications 2 et 28, caractérisé en ce que le bras support de roue (4) est coudé au dessus de la roue l'axe de pivotement XX' de la roue étant disposé au-dessus de l'axe vertical de la roue.
30) Véhicule de transport intermodal VTI selon la revendication 2, 28, caractérisé en ce que le bras support de roue (175, 181) est prolongé par le tube vérin (176, 180) disposé verticalement sur le côté de la roue.
31) Véhicule de transport intermodal VTI selon l'une des revendication 2, 29, 30, caractérisé en ce que pour les roues non motorisées, le bras support du pivot est fixé sur la jante 35 retournée de 180° par rapport à sa position lorsqu'elle reçoit un moteur hydraulique, en ce que le bras support de roue est fixé sur la portée à huit pans d'une pièce intermédiaire (36) se fixant sur le même épaulement (37) de la jante que le moteur hydraulique.
32) Véhicule de transport intermodal VTI selon l'une des revendications 2 et, 28, 29, 3C, 31, caractérisé en ce que les roues motorisées ou non, directrices ou non, sont rendues rétractables en donnant une course C au piston (8) égale à la garde au sol (G).
33) Véhicule de transport intermodal VTI selon les revendications 2, 28 à 32, caractérisé en ce que l'orientation des pivots de roues directionnelles est obtenue au moyen d'un ' vérin annulaire (7) monté coulissant sur le tube vérin des bras porte-roues rétractables ou non, par son alésage (150) sur lequel il est claveté, en ce qu'il est constitué d'un corps (152) comportant au moins trois à quatre palettes (153), un fourreau extérieur (154) fermé par un flasque, tournant sur des portées du corps, formant avec les palettes, des volumes dans lesquels on fait circuler l'huile sous pression provoquant le pivotement des roues, les palettes (153) coulissent chacune dans une rainure radiale (162) de bossages (163) du corps, en ce que la pression de contact des palettes sur l'alésage (161) est assurée par un moyen de poussée qui les plaquent contre l'alésage, on a usiné une fente (165) dans l'axe de la surface de contact et cette surface est usinée au rayon de l'alésage (161), en ce que des orifices (168, 169 et 170,171) envoient la HP sur la palette active et évacuent BP, en ce que le vérin est muni de 4 pattes de fixation sur un support rigide solidaire du châssis du véhicule.
PCT/FR2003/000671 2003-03-03 2003-03-03 Systeme de realisation de vehicules de transport intermodal, route, train, fleuve, mer et ses applications WO2004083075A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/FR2003/000671 WO2004083075A1 (fr) 2003-03-03 2003-03-03 Systeme de realisation de vehicules de transport intermodal, route, train, fleuve, mer et ses applications
AU2003229852A AU2003229852A1 (en) 2003-03-03 2003-03-03 System for creating intermodal road, rail, river, sea transport vehicles and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2003/000671 WO2004083075A1 (fr) 2003-03-03 2003-03-03 Systeme de realisation de vehicules de transport intermodal, route, train, fleuve, mer et ses applications

Publications (1)

Publication Number Publication Date
WO2004083075A1 true WO2004083075A1 (fr) 2004-09-30

Family

ID=33017150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000671 WO2004083075A1 (fr) 2003-03-03 2003-03-03 Systeme de realisation de vehicules de transport intermodal, route, train, fleuve, mer et ses applications

Country Status (2)

Country Link
AU (1) AU2003229852A1 (fr)
WO (1) WO2004083075A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111620A1 (fr) * 2005-04-15 2006-10-26 Dejoux Andre Conteneurs speciaux a roues leurs camions de transport et leurs applications
FR2957220A1 (fr) * 2010-03-15 2011-09-16 Bouhours Et Cie Tracteur enjambeur

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1039936B (de) * 1949-10-19 1958-09-25 Max Fielitz Fahrbarer Transportbehaelter mit zwei in der Naehe der Mitten der beiden Laengsseiten angeordneten heb- und senkbaren, hinter der Behaelter- wandung liegenden Raedern
CH392289A (de) * 1960-12-22 1965-05-15 Frech Hoch Ag E Fahrzeug
US4599030A (en) * 1985-04-01 1986-07-08 The United States Of America As Represented By The Secretary Of The Navy Marginal terrain straddle-lift container handler
US5050897A (en) * 1987-07-06 1991-09-24 Stroemberg Gunnar Arrangement for a closeable cargo holder of the container type
WO2001023241A2 (fr) * 1999-09-29 2001-04-05 Ingemar Bjurenvall Vehicule
WO2001053141A1 (fr) * 2000-01-20 2001-07-26 Kress Corporation Camion-benne tout terrain
US6311795B1 (en) * 2000-05-02 2001-11-06 Case Corporation Work vehicle steering and suspension system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1039936B (de) * 1949-10-19 1958-09-25 Max Fielitz Fahrbarer Transportbehaelter mit zwei in der Naehe der Mitten der beiden Laengsseiten angeordneten heb- und senkbaren, hinter der Behaelter- wandung liegenden Raedern
CH392289A (de) * 1960-12-22 1965-05-15 Frech Hoch Ag E Fahrzeug
US4599030A (en) * 1985-04-01 1986-07-08 The United States Of America As Represented By The Secretary Of The Navy Marginal terrain straddle-lift container handler
US5050897A (en) * 1987-07-06 1991-09-24 Stroemberg Gunnar Arrangement for a closeable cargo holder of the container type
WO2001023241A2 (fr) * 1999-09-29 2001-04-05 Ingemar Bjurenvall Vehicule
WO2001053141A1 (fr) * 2000-01-20 2001-07-26 Kress Corporation Camion-benne tout terrain
US6311795B1 (en) * 2000-05-02 2001-11-06 Case Corporation Work vehicle steering and suspension system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111620A1 (fr) * 2005-04-15 2006-10-26 Dejoux Andre Conteneurs speciaux a roues leurs camions de transport et leurs applications
FR2957220A1 (fr) * 2010-03-15 2011-09-16 Bouhours Et Cie Tracteur enjambeur
WO2011114016A1 (fr) * 2010-03-15 2011-09-22 Bouhours Et Cie Sarl Tracteur enjambeur

Also Published As

Publication number Publication date
AU2003229852A1 (en) 2004-10-11

Similar Documents

Publication Publication Date Title
EP3512748B1 (fr) Systeme enterre de distribution de marchandises en milieu urbain
US7811044B2 (en) Apparatus for lifting, handling and transporting a container
EP1292476B1 (fr) Systeme de transport et de chargement/dechargement des wagons en oblique dans une gare ferroviaire de transport combine rail/route et son procede de mise en oeuvre
EP2151373B1 (fr) Ensemble routier
CN1013846B (zh) 提升及运输设备
WO2012014150A1 (fr) Système universel de chargement / déchargement et de transport ferroviaire de semi-remorques routières
KR100899274B1 (ko) 반궤도식 작업차
EP1349763B1 (fr) Unite ferroviaire a structure porteuse pivotante pour le transport combine rail/route soit d'une semi-remorque soit de deux vehicules a moteur
WO2006111620A1 (fr) Conteneurs speciaux a roues leurs camions de transport et leurs applications
EP1874584B1 (fr) Wagon pour le transport de vehicules routiers a plans porteurs mobiles entre une position de transport et une position de circulation inter-wagon et train constitue de tels wagons
EP0440571A1 (fr) Ensemble unitaire de manoeuvre d'essieu pour le train arrière d'un véhicule routier ou d'une remorque
WO2004083075A1 (fr) Systeme de realisation de vehicules de transport intermodal, route, train, fleuve, mer et ses applications
FR2836654A1 (fr) Systeme de realisation de vehicules de transport intermodal, route, train, fleuve, mer et ses applications
EP1326770B1 (fr) Base de soutien en pivotement pour la structure porteuse pivotante d'un wagon de transport combine rail/route
BE1012968A3 (fr) Semi-remorque polyvalente permettant le transport de voitures ou de fret par route et/ou par rail.
EP0905001A1 (fr) Système pour le transport, chargement et déchargement sur wagons de véhicules routiers, containers ou autres marchandises et wagons adaptés
CN103687773A (zh) 用于轨道运输物品的系统、方法和铁路车厢
FR2868743A1 (fr) Conteneurs speciaux a roues, leurs camions de transport et leurs applications
FR2836882A1 (fr) Systeme pour le transport de vehicules routiers sur trains constitue de materiel roulant et dispositifs de manutention specialises
EP3357784B1 (fr) Wagon et son procédé de chargement/déchargement
FR2978434A1 (fr) Ensemble a benne et vehicule motorise pour le transport propre de dechets
RU2657627C2 (ru) Вагон в.в. бодрова для подвижных тяжелых негабаритных грузов
FR2693966A1 (fr) Transports combinés rail-route: Poste d'embarquement d'un véhicule routier sur un wagon de chemin de fer par approche latérale de ce wagon.
FR2863226A1 (fr) Systeme de manutention de plates-formes mobiles de wagons de chemin de fer pour le chargement et le dechargement de camions ou de remorques routieres
BE565327A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN HU IN JP KR MA MX NO PL RO RU US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP