WO2004079681A1 - Monitor unit - Google Patents

Monitor unit Download PDF

Info

Publication number
WO2004079681A1
WO2004079681A1 PCT/JP2004/001969 JP2004001969W WO2004079681A1 WO 2004079681 A1 WO2004079681 A1 WO 2004079681A1 JP 2004001969 W JP2004001969 W JP 2004001969W WO 2004079681 A1 WO2004079681 A1 WO 2004079681A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
image
amount
change
energy amount
Prior art date
Application number
PCT/JP2004/001969
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Hamada
Original Assignee
Quality Labs. Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quality Labs. Corporation filed Critical Quality Labs. Corporation
Priority to JP2005503004A priority Critical patent/JPWO2004079681A1/en
Priority to US10/499,806 priority patent/US20050078179A1/en
Publication of WO2004079681A1 publication Critical patent/WO2004079681A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19602Image analysis to detect motion of the intruder, e.g. by frame subtraction
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19602Image analysis to detect motion of the intruder, e.g. by frame subtraction
    • G08B13/1961Movement detection not involving frame subtraction, e.g. motion detection on the basis of luminance changes in the image

Definitions

  • the present invention relates to a monitoring device, and more particularly to a monitoring device having a sensor close to the function of the human eye.
  • BACKGROUND ART In recent years, monitoring devices have been placed on factory lines to check for defective products, and have been placed in stores and dwellings, and have been used in a wide range of fields such as security applications.
  • an object is usually imaged using an imaging element such as a CCD, and image recognition is performed based on the obtained image signal to determine whether or not there is an abnormality.
  • image recognition in a conventional monitoring apparatus based on an image signal obtained from an image sensor captures a time-series change of a subject to be monitored, for example, a past image and a current image are matched.
  • Japanese Patent Application Laid-Open No. 2000-3141679 discloses that a background image is obtained by capturing a monitoring image at a plurality of timings. By registering the image and comparing it with the current image, it is possible to avoid determining that an abnormality has occurred even if, for example, the illumination of the background flickers.
  • adding a watermark means replacing the original video signal with another signal, and the larger the amount, the more the original video may be damaged. Also, by applying a process such as repetitive compression, analog conversion, or format conversion to a video signal containing a watermark, the watermark may be damaged and may not function as an identification signal. In particular, when watermarks are added to a video signal, there is a problem that the watermark cannot be differentiated from the still image watermark, and that the watermark technology is not always effective. Disclosure of the invention The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a monitoring device having a sensor that more closely resembles the characteristics of human eyes. Another object of the present invention is to provide a monitoring device that can determine whether another image or video has been copied without damaging the original image or video signal.
  • the monitoring device of the present invention includes a visual sensor for recognizing a subject and converting it into an energy amount;
  • Analyzing means for monitoring the amount of energy from the visual sensor and issuing an alarm when a temporal change in the amount of energy exceeds a threshold value a visual sensor that recognizes a subject and converts the energy into an amount of energy, monitors the amount of energy from the visual sensor, and issues an alarm based on a temporal change in the amount of energy and a threshold. Since it has an analysis means for issuing a warning, a small change in the subject can be overlooked, and an alarm can be issued by capturing only a large change. Further, it is preferable that the visual sensor obtains an energy amount for each divided region (for example, macro block) obtained by dividing the subject image.
  • the monitoring device of the present invention is a computing unit that computes an energy amount of a predetermined region in digital data corresponding to an original image, and computes an energy amount of a predetermined region in digital data corresponding to an image to be compared.
  • the monitoring device of the present invention By comparing the two energy amounts calculated by the calculating means, it is characterized by having a judging means for judging whether or not the comparison target image is formed based on the original image. And According to the monitoring device of the present invention, by comparing the two energy amounts calculated by the calculation means, it is determined whether or not the comparison target image is formed based on the original image. Since it is characterized by having means, there is no need to put a watermark or the like into the digital data constituting the original image, and the original image is not damaged. In addition, since the characteristic of the amount of energy does not change much by processing such as compression of digital data, the correlation with the original image can be determined even if the comparative image is highly processed. I can clarify. BRIEF DESCRIPTION OF THE DRAWINGS FIG.
  • FIG. 1 is a schematic configuration diagram of a monitoring device according to a first embodiment.
  • FIG. 2 is a diagram schematically showing a screen imaged by the image sensor 2.
  • FIG. 3 is a diagram schematically showing an energy amount of each block.
  • FIG. 4 is a diagram showing a temporal change of the energy amount.
  • FIG. 5 is a schematic configuration diagram of a monitoring device according to the second embodiment.
  • FIG. 6 is a diagram showing the change over time in the amount of energy.
  • a subject image is formed on a light receiving surface of an image sensor (CCD or the like) 2 by an optical system 1 and converted into an electric signal.
  • the electric signal is input to the CPU 3 and analyzed.
  • a visual sensor is configured by the image sensor 2 and the CPU 3.
  • FIG. 2 is a diagram schematically showing a screen imaged by the image sensor 2.
  • Mo pixels are arranged in the horizontal direction and No pixels are arranged in the vertical direction.
  • This screen is divided into I macroblocks.
  • the macroblocks may have different sizes from each other or may overlap each other.
  • the energy amount P of the small block SB is expressed by the following equation 1.
  • S (x, y) is each sample value (pixel value) in the small block SB.
  • the energy amount P i of the macro block i is an average value of the small blocks included in the macro block i. .
  • the energy amount P0 of the screen is the average value of the small blocks included in the screen P (see Fig. 3).
  • the CPU 3 obtains each energy amount Pi for an image obtained from the image pickup device 2 by performing image pickup at regular time intervals, and stores it in the built-in memory.
  • the energy amount of the macroblock i at the time t is P i (1, t)
  • the energy amount of the macroblock i at the time (t + T) is P i (1, t + T)
  • Comparing the energy amount P i (1, t) with P i (1, t + T) shows the change in the energy amount when the time T has elapsed from the time t. From the state of this change, the state of the subject can be monitored.
  • the monitoring targets are classified into four states: "stationary”, “gentle change”, “severe change", and "periodic change".
  • Figure 4 shows an example of plotting the energy amount P i of the macroblock i on the vertical axis.
  • the range of 1 corresponds to “stationary”
  • the range of 2 corresponds to “gentle change”
  • the range of 3 corresponds to “severe change”
  • the range of 4 corresponds to “period”. Change ".
  • Stationary corresponds to an unmanned state before the store is opened
  • gentle change is a state in which the customer is doing normal shopping after the store is opened.
  • a “violent change” corresponds to a situation in which a burglary or the like has invaded and the people in the store have rapidly moved.
  • Illumination II and hazard lamps of vehicles correspond to the “periodic change” in 2. Therefore, the change amount of the energy amount P i corresponding to 3 in FIG. 4 is stored as a threshold value, and the CPU 3 analyzes the electric signal output from the image sensor 2 based on the electric signal. If the alarm is exceeded automatically, an unmanned surveillance system with the same function as human eyes will be constructed.
  • the change of the energy amount P i is performed in a plurality of macroblocks i, even if one macroblock i outputs a change pattern of the energy amount Pi corresponding to 3, the other macroblocks i If the change pattern of the energy amount P i corresponding to 2 is shown, it is possible not to issue an alarm. At this time, if the image around the cash register is included in a specific macroblock i, the energy amount Pi of that macroblock is weighted, and if it is comprehensively determined from the energy amounts Pi of other macroblocks i, A more precise alarm can be issued. The manner in which the monitoring targets are classified is described below.
  • the macroblock i It is determined that the monitoring target included in is stopped. More specifically, the change in the energy amount of the included small blocks is
  • the thresholds Th 1 and Th 2 can be determined by experiments and the like.
  • the energy amount of macroblock i is used. More specifically, the change in the energy amount P i of the macroblock i is
  • the threshold value Th3 can be determined by experiments or the like.
  • IPiilt Pi (l ? T) »Pi (l 9 tl)
  • Td t t-td
  • Th d Th d
  • FIG. 5 is a schematic configuration diagram of a monitoring device according to the second embodiment.
  • FIG. 5 is a schematic configuration diagram of a monitoring device according to the second embodiment.
  • a first arithmetic unit 11 receives an original video signal via an interface (not shown).
  • the second arithmetic unit 12 receives the comparison target video signal via an interface (not shown).
  • Arithmetic units (arithmetic means) 11 and 12 extract specific blocks at the same position (the whole screen may be used), and repeatedly calculate the energy amount in them at the same time interval according to the above equation (1).
  • the arithmetic devices 11 and 12 input the obtained operation results to the determination device (determination means) 13.
  • the determination device 13 compares the energy amount PA (i, t) of the original video signal with the energy amount PB (i, t) of the comparison target video signal.
  • the determination device 13 calculates the difference between the energy amount PA (i, t) of the original video signal and the energy amount PB (i, t) of the video signal to be compared at each time, and calculates the difference.
  • the sum ⁇ is obtained by the following equation (5).
  • the determination device 13 determines that the original video signal and the video signal to be compared completely match (Perfect matc), that is, determines that they are the same video signal.
  • the video signal to be compared with the original video signal eg, graph ⁇ in FIG. 6) (Eg, graph B in FIG. 6) substantially match (neighly match), and it is determined that some processing has been performed on the original video signal.
  • the comparison target video signal eg, graph C in FIG. 6
  • the original video signal eg, graph A in FIG. 6
  • the user can recognize the determination result of the determination 13 by looking at the monitor 14.
  • the monitoring device of the present invention for example, even if the video signal recorded on a DVD or the like has been processed with respect to the original video signal, the difference in the amount of energy is compared with the threshold ⁇ , The relevance to the original video signal can be objectively derived, thereby providing one criterion of whether or not it was illegally copied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Burglar Alarm Systems (AREA)
  • Image Analysis (AREA)

Abstract

When the energy amount of a macro-block i at time t is Pi(l, t), the energy amount of the macro-block i at time (t+T) is represented as Pi(l, t+T). When energy amounts Pi(l, t) and Pi(l, t+T) are compared with each other, a change in energy amount during time T elapsed after time t is found. The condition of a subject can be monitored from this changed condition.

Description

明細書  Specification
監視装置 技術分野 本発明は、監視装置に関し、特に人間の目の機能に近いセンサを有する 監視装置に関する。 背景技術 近年において、監視装置は、工場のラインに配置されて不良品チェック に用いられたり、店舗 ·住居に配置されてセキュリティ用途など幅広い分 野で利用されている。 ここで、 従来の監視装置では、 通常 C C Dなどの撮 像素子を用いて被写体を撮像し、得られた画像信号に基づいて画像認識を 行って異常があるか否かを判定している。 しかるに、従来の監視装置における撮像素子から得られた画像信号に基 づく画像認識は、監視対象となる被写体の時系列的な変化をとらえ、例え ば過去の画像と現在の画像とがー致するか否か判定するものであり、一致 しない場合に警報を出すなどの処置を執っている。 ところが、無人の倉庫 などはともかくとして、街中などに撮像素子を設置した場合、過去の画像 と現在の画像とが完全に一致する場合はほとんどないため、得られた画像 信号から異常か否かを判定することが困難であった。 このような問題に対して、特開 2 0 0 0 - 3 4 1 6 7 9号公報において は、監視画像を複数のタイミングで撮像することにより背景画像を取得し て登録し、それと現在の画像とを比較することで、例えば背景に存在する イルミネーションの点滅などが行われた場合でも、それを異常と判断する ことを回避している。 しかるに、イルミネーションは固定され、その点滅は定期的に行われる ものであるため、それを背景画像として登録することは容易である。 とこ ろが、雑踏などのように、刻一刻と被写体が変わるため二度と同じ光景に 遭遇することがないような状況では、上述の技術を用いて背景画像を登録 できたとしても、 それを用いて異常か否かを判断することは困難である。 一方、 人間の目は、 例えば雑踏などをぼんやり眺めていても、 大きな変化 がなければそれをバックグラウンドノイズとして見逃すことができるが、 例えば奇妙な格好をした人が通り過ぎると、直ちにそれを認識し注目でき るという特性を有している。 又、違法なコピーを防止するために、映像信号に、商標などのすかし a t e r m a r k i n g ) を入れる技術が知られている。 しかるに、 すか しを入れるということは、本来あるべき映像信号を他の信号に置き換える ということであり、その量が多いほどオリジナル映像を損なう恐れがある。 又、 すかしを入れた映像信号に、 繰り返しの圧縮、 アナログ変換、 フォー マツト変換等の処理を加えることで、すかしが破損し、識別信号として機 能しなくなる恐れもある。 特に、 動画信号にすがしを入れる場合には、 静 止画のすかしと差別化ができず、すかし技術は常に有効ではないという問 題がある。 発明の開示 本発明は、 このような従来の問題を解決するためになされたもので、 よ り人間の目の特性に近似したセンサを備えた監視装置を提供することを 目的とする。 本発明の別な目的は、オリジナルの画像信号もしくは映像信号を毀損す ることなく、他の画像もしくは映像がコピーされたものかどうか判定でき る監視装置を提供することを目的とする。 本発明の監視装置は、被写体を認識してエネルギー量に変換する視覚セ ンサと、 TECHNICAL FIELD The present invention relates to a monitoring device, and more particularly to a monitoring device having a sensor close to the function of the human eye. BACKGROUND ART In recent years, monitoring devices have been placed on factory lines to check for defective products, and have been placed in stores and dwellings, and have been used in a wide range of fields such as security applications. Here, in the conventional monitoring apparatus, an object is usually imaged using an imaging element such as a CCD, and image recognition is performed based on the obtained image signal to determine whether or not there is an abnormality. However, image recognition in a conventional monitoring apparatus based on an image signal obtained from an image sensor captures a time-series change of a subject to be monitored, for example, a past image and a current image are matched. It is to judge whether or not it is, and if it does not match, it takes measures such as issuing an alarm. However, aside from an unmanned warehouse, if an image sensor is installed in a city or the like, the past image and the current image rarely coincide completely, so it is difficult to determine whether there is an abnormality from the obtained image signal. It was difficult to judge. To cope with such a problem, Japanese Patent Application Laid-Open No. 2000-3141679 discloses that a background image is obtained by capturing a monitoring image at a plurality of timings. By registering the image and comparing it with the current image, it is possible to avoid determining that an abnormality has occurred even if, for example, the illumination of the background flickers. However, since the illumination is fixed and blinks periodically, it is easy to register it as a background image. However, in a situation such as a busy street where the subject changes every moment and the same scene is never encountered again, even if the background image can be registered using the above-mentioned technology, It is difficult to determine whether there is an abnormality. On the other hand, human eyes can overlook the crowd, for example, but can not miss it as background noise if there is no major change, but for example, when a strangely dressed person passes by, it immediately recognizes it. It has the characteristic of being noticeable. In addition, a technique is known in which a watermark such as a trademark is included in a video signal in order to prevent illegal copying. However, adding a watermark means replacing the original video signal with another signal, and the larger the amount, the more the original video may be damaged. Also, by applying a process such as repetitive compression, analog conversion, or format conversion to a video signal containing a watermark, the watermark may be damaged and may not function as an identification signal. In particular, when watermarks are added to a video signal, there is a problem that the watermark cannot be differentiated from the still image watermark, and that the watermark technology is not always effective. Disclosure of the invention The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a monitoring device having a sensor that more closely resembles the characteristics of human eyes. Another object of the present invention is to provide a monitoring device that can determine whether another image or video has been copied without damaging the original image or video signal. The monitoring device of the present invention includes a visual sensor for recognizing a subject and converting it into an energy amount;
前記視覚センサからのエネルギー量を監視し、前記エネルギー量の経時 変化が閾値を越えた場合に警報を発する解析手段とを有することを特徴 とする。 本発明の監視装置によれば、被写体を認識してエネルギー量に変換する 視覚センサと、前記視覚センサからのエネルギ.一量を監視し、前記エネル ギー量の経時変化と閾値とに基づいて警報を発する解析手段とを有する ので、被写体の小さな変化は見逃し、大きな変化のみをとらえて警報を発 することができる。 更に、 前記視覚センサは、 被写体像を分割した分割領域(例えばマクロ ブロック) ごとにエネルギー量を求めると好ましい。 本発明の監視装置は、オリジナルイメージに対応するデジタルデータに おける所定領域のエネルギー量を演算し、且つ比較対象イメージに対応す るデジタルデータにおける所定領域のエネルギー量を演算する演算手段 と、 Analyzing means for monitoring the amount of energy from the visual sensor and issuing an alarm when a temporal change in the amount of energy exceeds a threshold value. According to the monitoring device of the present invention, a visual sensor that recognizes a subject and converts the energy into an amount of energy, monitors the amount of energy from the visual sensor, and issues an alarm based on a temporal change in the amount of energy and a threshold. Since it has an analysis means for issuing a warning, a small change in the subject can be overlooked, and an alarm can be issued by capturing only a large change. Further, it is preferable that the visual sensor obtains an energy amount for each divided region (for example, macro block) obtained by dividing the subject image. The monitoring device of the present invention is a computing unit that computes an energy amount of a predetermined region in digital data corresponding to an original image, and computes an energy amount of a predetermined region in digital data corresponding to an image to be compared. When,
前記演算手段により演算された 2つのエネルギー量を比較することに よって..前記比較対象ィメ一ジが前記オリジナルイメージに基づいて形成 されたものか否かを判定する判定手段を有することを特徴とする。 本発明の監視装置によれば、前記演算手段により演算された 2つのエネ ルギー量を比較することによって、前記比較対象イメージが前記オリジナ ルイメージに基づいて形成されたものか否かを判定する判定手段を有す ることを特徴とするので、前記オリジナルイメージを構成するデジタルデ 一夕にすかしなどを入れる必要がなく、オリジナルイメージを損なうこと がない。 又、 エネルギー量の特性は、 デジタルデ一夕の圧縮等の処理によ つてはあまり変化しないので、前記比較対照イメージが高度に処理された ものであっても、前記オリジナルイメージとの相関関係を明らかにできる。 図面の簡単な説明 図 1は、 第 1の実施の形態にかかる監視装置の概略構成図である。 図 2は、 撮像素子 2によって撮像された画面を模式的に示す図である。 図 3は、 各ブロックのエネルギー量を模式的に示す図である。 図 4は、 エネルギー量の時間的変化を示す図である。 図 5は、 第 2の実施の形態にかかる監視装置の概略構成図である。 図 6は、 エネルギー量の時間的変化を比較して示す図である, 発明を実施するための最良の形態 本発明の第 1の実施の形態を、 図面を参照しながら説明する。 図 1は、 第 1の実施の形態にかかる監視装置の概略構成図である。 図 1において、 光学系 1により被写体像が撮像素子 (CCD等) 2の受光面に結像され、 ここで電気信号に変換される。かかる電気信号は、 CPU 3に入力され解 析される。解析手段である CPU3は、 所定の条件下で警報装置(モニタ やスピーカ等) 4を駆動して警報を発令させる。 尚、 撮像素子 2と CPU 3とで視覚センサを構成する。 By comparing the two energy amounts calculated by the calculating means, it is characterized by having a judging means for judging whether or not the comparison target image is formed based on the original image. And According to the monitoring device of the present invention, by comparing the two energy amounts calculated by the calculation means, it is determined whether or not the comparison target image is formed based on the original image. Since it is characterized by having means, there is no need to put a watermark or the like into the digital data constituting the original image, and the original image is not damaged. In addition, since the characteristic of the amount of energy does not change much by processing such as compression of digital data, the correlation with the original image can be determined even if the comparative image is highly processed. I can clarify. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a monitoring device according to a first embodiment. FIG. 2 is a diagram schematically showing a screen imaged by the image sensor 2. As shown in FIG. FIG. 3 is a diagram schematically showing an energy amount of each block. FIG. 4 is a diagram showing a temporal change of the energy amount. FIG. 5 is a schematic configuration diagram of a monitoring device according to the second embodiment. FIG. 6 is a diagram showing the change over time in the amount of energy. BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of the monitoring device according to the first embodiment. In FIG. 1, a subject image is formed on a light receiving surface of an image sensor (CCD or the like) 2 by an optical system 1 and converted into an electric signal. The electric signal is input to the CPU 3 and analyzed. The CPU 3, which is an analysis means, drives an alarm device (monitor, speaker, etc.) 4 under a predetermined condition to issue an alarm. Note that a visual sensor is configured by the image sensor 2 and the CPU 3.
CPU 3の具体的な解析内容を説明する。図 2は、撮像素子 2によって 撮像された画面を模式的に示す図である。図 2に示す画面には、横方向に Mo個の画素、縦方向 No個の画素が並んでいる。 この画面を I個のマク ロブロックで分割する。マクロブロックによる分割の仕方としては、マク ロブロック同士が互いにその大きさが異なっても良く、互いに重なりあつ ても良い。但し、 縦 X横 =n Xm画素サイズの小ブロックで、 均等に分割 される。すなわち、 a iと b iを整数とすると M i = a i m, N i = b i n ( i = 0, · · ·, I) となる。 この時、 もともとの画面も小ブロック で均等に分割されることが必要である。 ここで、 小ブロック S Bのエネルギー量 Pは、 以下の式 1で表される。Specific analysis contents of the CPU 3 will be described. FIG. 2 is a diagram schematically showing a screen imaged by the image sensor 2. As shown in FIG. In the screen shown in FIG. 2, Mo pixels are arranged in the horizontal direction and No pixels are arranged in the vertical direction. This screen is divided into I macroblocks. As a method of dividing by macroblocks, the macroblocks may have different sizes from each other or may overlap each other. However, it is equally divided into small blocks of vertical X horizontal = n Xm pixel size. That is, when a i and b i are integers, M i = a i m, N i = b i n (i = 0, ···, I). At this time, it is necessary that the original screen is equally divided into small blocks. Here, the energy amount P of the small block SB is expressed by the following equation 1.
【式 1】 [Equation 1]
Figure imgf000008_0001
ただし、 S (x、 y) は小ブロック S B内の各サンプル値 (画素値) であ る 又、マクロブロック iのエネルギー量 P iは、そのマクロブロック iに 含まれる小ブロックの平均値とする。画面のエネルギー量 P 0は、その画 面 Pに含まれる小ブロックの平均値とする (図 3参照) 。 次に、 各エネルギー量 P iの経時変化を監視する。 より具体的には、 C P U 3は、一定時間ごとに撮像を行うことで撮像素子 2から得られた画像 について各エネルギー量 P iを求め、 内蔵メモリに記憶する。 ここで、例えば時刻 tにおけるのマクロブロック iのエネルギー量を P i ( 1、 t) とすると、 時刻 ( t +T) におけるマクロブロック iのエネ ルギー量は、 P i ( 1、 t +T) と表せる。 エネルギー量 P i ( 1、 t ) と、 P i ( 1、 t +T) とを比較すれば、 時刻 tから時間 Tだけ経過した ときのエネルギー量の変化がわかる。 この変化の状態から、被写体の状態 を監視することができる。 ここでは、監視対象を、 「静止」、 「穏やかな変化」、 「激しい変化」、 「周期的な変化」 の 4つの状態に分類して監視するとする。 横軸に時間、 縦軸にマクロブロック iのエネルギー量 P iをプロットした例を図 4に 示す。 ここでは、 図 4のグラフにおいて、 ①の範囲が 「静止」 に相当し、 ②の範囲が「穏やかな変化」に相当し、③の範囲が「激しい変化」相当し、 ④の範囲が 「周期的な変化」 に相当する。 これは、 例えば商品販売店の監 視装置に本発明を適用した場合、 「静止」 は開店前の無人状態に相当し、 「穏やかな変化」は開店後に顧客が通常の買い物をしている状態に相当し、 「激しい変化」は強盗などが侵入し店内の人間に急速な動きが生じた状態 に相当する。また、イルミネ一ションゃ、車のハザードランプ等は④の「周 期的な変化」 に相当する。従って、 図 4で③に対応するエネルギー量 P i の変化量を閾値として記憶し、撮像素子 2から出力された電気信号に基づ いて C P U 3が解析を行った結果、その変化量が閾値を超えた場合、 自動 的に警報を発するようにすれば、人間の目と同様な機能を有する無人監視 システムが構築されることとなる。 尚、 エネルギー量 P iの変化は、複数箇所のマクロブロック iにおいて 行われるので、一つのマクロブロック iが③に対応するエネルギー量 P i の変化パターンを出力したとしても、他のマクロブロック iは②に対応す るエネルギー量 P iの変化パターンを示している場合、警報を発しないよ うにもできる。 このとき、 レジ周囲の画像を特定のマクロブロック i内に 含む場合、そのマクロブロックのエネルギー量 P iに重み付けして、他の マクロブロック iのエネルギー量 P iとから総合的に判断すれば、より精 度良く警報を発することもできる。 以下に、 監視対象を分類する態様について述べる。
Figure imgf000008_0001
Here, S (x, y) is each sample value (pixel value) in the small block SB. The energy amount P i of the macro block i is an average value of the small blocks included in the macro block i. . The energy amount P0 of the screen is the average value of the small blocks included in the screen P (see Fig. 3). Next, the change with time of each energy amount P i is monitored. More specifically, the CPU 3 obtains each energy amount Pi for an image obtained from the image pickup device 2 by performing image pickup at regular time intervals, and stores it in the built-in memory. Here, for example, assuming that the energy amount of the macroblock i at the time t is P i (1, t), the energy amount of the macroblock i at the time (t + T) is P i (1, t + T) Can be expressed as Comparing the energy amount P i (1, t) with P i (1, t + T) shows the change in the energy amount when the time T has elapsed from the time t. From the state of this change, the state of the subject can be monitored. Here, it is assumed that the monitoring targets are classified into four states: "stationary", "gentle change", "severe change", and "periodic change". Time on the horizontal axis, Figure 4 shows an example of plotting the energy amount P i of the macroblock i on the vertical axis. Here, in the graph of Fig. 4, the range of ① corresponds to “stationary”, the range of ② corresponds to “gentle change”, the range of ③ corresponds to “severe change”, and the range of ④ corresponds to “period”. Change ". This means that, for example, when the present invention is applied to a monitoring device of a merchandise store, “stationary” corresponds to an unmanned state before the store is opened, and “gentle change” is a state in which the customer is doing normal shopping after the store is opened. A “violent change” corresponds to a situation in which a burglary or the like has invaded and the people in the store have rapidly moved. Illumination II and hazard lamps of vehicles correspond to the “periodic change” in ②. Therefore, the change amount of the energy amount P i corresponding to ③ in FIG. 4 is stored as a threshold value, and the CPU 3 analyzes the electric signal output from the image sensor 2 based on the electric signal. If the alarm is exceeded automatically, an unmanned surveillance system with the same function as human eyes will be constructed. Since the change of the energy amount P i is performed in a plurality of macroblocks i, even if one macroblock i outputs a change pattern of the energy amount Pi corresponding to ③, the other macroblocks i If the change pattern of the energy amount P i corresponding to ② is shown, it is possible not to issue an alarm. At this time, if the image around the cash register is included in a specific macroblock i, the energy amount Pi of that macroblock is weighted, and if it is comprehensively determined from the energy amounts Pi of other macroblocks i, A more precise alarm can be issued. The manner in which the monitoring targets are classified is described below.
① 静止 ① Stationary
一定時間 Tにおいて、以下の条件が成立することで、マクロブロック i に含まれる監視対象が静止していると判断する。 より具体的には、含まれ る小ブロックのエネルギー量の変化を、 At a certain time T, the following conditions are satisfied, so that the macroblock i It is determined that the monitoring target included in is stopped. More specifically, the change in the energy amount of the included small blocks is
△ P ( l、 t) = | P ( l、 t) — P ( l、 t - 1) I  △ P (l, t) = | P (l, t) — P (l, t-1) I
として求めたとき、マクロブロック iに含まれる全ての小プロックに対し., I Δ P ( K t ) I ≤Th 1 , for all t = 1 , · · · · τ , I Δ P (K t) I ≤Th 1, for all t = 1, ···· τ
且つ And
【式 2】 ΔΡ (l,t)≤Th2  [Equation 2] ΔΡ (l, t) ≤ Th2
t=t  t = t
が成立した場合、マクロブロック iに含まれる監視対象が静止していると 判断する。 閾値 Th l、 Th 2は実験等により定めうる。 Is satisfied, it is determined that the monitoring target included in the macroblock i is stationary. The thresholds Th 1 and Th 2 can be determined by experiments and the like.
② 穏やかな変化 ② gentle change
一定時間 Tにおいて、静止条件が不成立となれば、監視対象が穏やかに 変化していると判断する。ここではマクロブロック iのエネルギー量を用 いる。 より具体的には、 マクロブロック iのエネルギー量 P iの変化を、 If the stationary condition is not satisfied during the fixed time T, it is determined that the monitoring target is changing gently. Here, the energy amount of macroblock i is used. More specifically, the change in the energy amount P i of the macroblock i is
△ P i ( 1、 t ) = I P i ( 1、 t) 一 P i ( 1、 t— 1) I △ P i (1, t) = I P i (1, t) one P i (1, t— 1) I
として求めたときに、 When asked for
【式 3】 ΔΡ1 (l,t)>Th3  (Equation 3) ΔΡ1 (l, t)> Th3
t=t  t = t
が成立した場合、監視対象が穏やかに変化していると判断する。閾値 Th 3は実験等により定めうる。 Is satisfied, it is determined that the monitoring target is changing gently. The threshold value Th3 can be determined by experiments or the like.
激しい変化 Rapid change
定時間 Tにおいて、以下の条件を満たす場合、監視対象が激しく変化 していると判断する。 ここでは、マクロブロック iのエネルギー る。 時刻 tにおけるマクロブロック iのエネルギー密度 dP i If the following conditions are satisfied at the fixed time T, the monitoring target changes drastically Judge that you are. Here, the energy of the macroblock i. Energy density dP i of macroblock i at time t
を以下の式で定義する。 Is defined by the following equation.
【式 4】  [Equation 4]
1 1
IPiilt = Pi(l?t)» Pi(l9t-l) IPiilt = Pi (l ? T) »Pi (l 9 tl)
Td t=t-td ここで、 dP i ( 1、 t) ≥Th dのとき、 監視対象が激しく変化してい ると判断する。 閾値 Th dは実験等により定めうる。  Td t = t-td Here, when dP i (1, t) ≥ Th d, it is determined that the monitoring target is changing drastically. The threshold value Th d can be determined by experiments or the like.
④ 周期的変化 ④ Periodic change
マクロブロック iのエネルギー量 P iに対してフーリエ変換処理を行 い、特定の周波数にパルス上のエネルギーの偏りが認められる場合、周期 的な変化であると、 判断する。 本発明は上記実施の形態に限定して解釈されるべきではなく、 適宜変 更'改良が可能であることはもちろんである。例えば、 本発明の監視装置 は、防犯用の監視装置以外に、病院で患者の様子を監視するのに用いたり、 車両に搭載して外の交通状態を監視することで、交通事故を未然に回避で きるようになる。 本発明の第 2の実施の形態を、 図面を参照しながら説明する。 図 5は、 第 2の実施の形態にかかる監視装置の概略構成図である。 図 5において、 第 1の演算装置 1 1は不図示のィンタフェースを介してオリジナル映像 信号を入力する。一方、第 2の演算装置 12は不図示のインタフェースを 介して比較対象映像信号を入力する。 演算装置 (演算手段) 1 1, 12は、 同じ位置の特定ブロック (全画面 でも良い) を抽出し、 その中でのエネルギー量を 上記式 1により同じ時 間間隔で繰り返し計算する。 その後、 演算装置 1 1, 1 2は、 得られた演 算結果を判定装置 (判定手段) 13に入力する。 判定装置 13は、オリジナル映像信号のエネルギー量 PA( i、 t)と、 比較対象映像信号のエネルギー量 P B ( i、 t ) とを比較する。 エネルギ —量を縦軸に、時間軸を横軸にとったとき、演算されたエネルギー量を時 間ごとにプロットしてゆくと、例えば図 6に示すようなグラフが得られる。 ここで、 判定装置 1 3は、 それぞれの時間ごとに、 オリジナル映像信号 のエネルギー量 P A ( i、 t) と、 比較対象映像信号のエネルギー量 P B ( i、 t) との差分を求め、 それを合計した値 Δを以下の式 5で求める。 Fourier transform processing is performed on the energy amount P i of the macroblock i. If a specific frequency has a bias in the energy on the pulse, it is determined that the change is a periodic change. The present invention should not be construed as being limited to the above embodiment, and it is needless to say that the present invention can be appropriately modified and improved. For example, the monitoring device of the present invention can be used to monitor the state of a patient in a hospital in addition to a monitoring device for crime prevention, or can be mounted on a vehicle to monitor the outside traffic conditions to prevent traffic accidents. You can avoid it. A second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a schematic configuration diagram of a monitoring device according to the second embodiment. In FIG. 5, a first arithmetic unit 11 receives an original video signal via an interface (not shown). On the other hand, the second arithmetic unit 12 receives the comparison target video signal via an interface (not shown). Arithmetic units (arithmetic means) 11 and 12 extract specific blocks at the same position (the whole screen may be used), and repeatedly calculate the energy amount in them at the same time interval according to the above equation (1). After that, the arithmetic devices 11 and 12 input the obtained operation results to the determination device (determination means) 13. The determination device 13 compares the energy amount PA (i, t) of the original video signal with the energy amount PB (i, t) of the comparison target video signal. When the energy amount is plotted on the vertical axis and the time axis is plotted on the horizontal axis, the calculated energy amount is plotted with respect to time to obtain a graph as shown in FIG. 6, for example. Here, the determination device 13 calculates the difference between the energy amount PA (i, t) of the original video signal and the energy amount PB (i, t) of the video signal to be compared at each time, and calculates the difference. The sum Δ is obtained by the following equation (5).
【式 5】 [Equation 5]
1 τ 1 τ
Δ = -TjT ∑ l PA(i, t)- PB(i,t)|/W( PA,PB) Δ = -TjT ∑ l PA (i, t)-P B (i, t) | / W (PA, P B )
1 t=l 尚、 Wは重み付け関数であり、 例えば W (PA、 PB) = 1 0 g 10 (P A+PB) を用いることができる。 ここで、判定装置 1 3は、 Δ=0であれば、 オリジナル映像信号と比較 対象映像信号とが完全一致 (P e r f e c t ma t c ) し、 すなわち 同じ映像信号であると判定する。 一方、 0<Δ<ΤΗ (閾値) であれば、 オリジナル映像信号(例えば図 6のグラフ Α) に対して比較対象映像信号 (例えば図 6のグラフ B) は略一致 (Ne a r l y ma t c h) し、 ォ リジナル映像信号に対して何らかの処理を施されたものと判定する。更に、 TH (閾値) <△であれば、オリジナル映像信号(例えば図 6のグラフ A) に対して比較対象映像信号 (例えば図 6のグラフ C) は不一致 (No t ma t e 1Ί)であり、オリジナル映像信号とは無関係であると判定できる。 かかる判定結果は、判定装置 13からモニタ 14に入力されるので、ユー ザ一は、 モニタ 14を見ることで、 判定 1 3の判定結果を認識できる。 本発明の監視装置によれば、 例えば DVD等に記録された映像信号が、 オリジナル映像信号に対して処理を施されたものであっても、エネルギー 量の差分を閾値 Δと比較することで、オリジナル映像信号との関連性を客 観的に導くことができ、それにより違法にコピーされたものであるかどう かの一つの判断基準を提供できる。 1 t = l Note that W is a weighting function, and for example, W (PA, PB) = 10 g 10 (PA + PB) can be used. Here, if Δ = 0, the determination device 13 determines that the original video signal and the video signal to be compared completely match (Perfect matc), that is, determines that they are the same video signal. On the other hand, if 0 <Δ <ΤΗ (threshold), the video signal to be compared with the original video signal (eg, graph の in FIG. 6) (Eg, graph B in FIG. 6) substantially match (neighly match), and it is determined that some processing has been performed on the original video signal. Further, if TH (threshold value) <△, the comparison target video signal (eg, graph C in FIG. 6) does not match the original video signal (eg, graph A in FIG. 6) (No t mate 1Ί), It can be determined that it is unrelated to the original video signal. Since such a determination result is input from the determination device 13 to the monitor 14, the user can recognize the determination result of the determination 13 by looking at the monitor 14. According to the monitoring device of the present invention, for example, even if the video signal recorded on a DVD or the like has been processed with respect to the original video signal, the difference in the amount of energy is compared with the threshold Δ, The relevance to the original video signal can be objectively derived, thereby providing one criterion of whether or not it was illegally copied.

Claims

請求の範囲 The scope of the claims
1 . 被写体を認識してエネルギー量に変換する視覚センサと、 前記視覚センサからのエネルギー量を監視し、前記エネルギー量の経時 変化と閾値とに基づいて警報を発する解析手段とを有することを特徴と する監視装置。 1. A visual sensor for recognizing a subject and converting the energy into an amount of energy, and analyzing means for monitoring the amount of energy from the visual sensor and issuing an alarm based on a temporal change of the amount of energy and a threshold value. Monitoring device.
2 . 前記視覚センサは、被写体像を分割した分割領域ごとにエネルギー 量を求めることを特徴とする請求項 1に記載の監視装置。 2. The monitoring device according to claim 1, wherein the visual sensor calculates an energy amount for each divided region obtained by dividing the subject image.
3 .オリジナルイメージに対応するデジタルデータにおける所定領域の エネルギー量を演算し、且つ比較対象イメージに対応するデジタルデータ における所定領域のエネルギー量を演算する演算手段と、 3. computing means for calculating the amount of energy in a predetermined area in the digital data corresponding to the original image and calculating the amount of energy in a predetermined area in the digital data corresponding to the image to be compared;
前記演算手段により演算された 2つのエネルギー量を比較することに よって、前記比較対象ィメージが前記ォリジナルイメージに基づいて形成 されたものか否かを判定する判定手段を有することを特徴とする監視装 置。  A monitoring unit that determines whether the comparison target image is formed based on the original image by comparing the two energy amounts calculated by the calculation unit. Equipment.
PCT/JP2004/001969 1999-10-08 2004-02-20 Monitor unit WO2004079681A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005503004A JPWO2004079681A1 (en) 2003-03-07 2004-02-20 Monitoring device
US10/499,806 US20050078179A1 (en) 1999-10-08 2004-02-20 Modulate aptamer and method for detecting target protein by using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003061085 2003-03-07
JP2003-61085 2003-03-07

Publications (1)

Publication Number Publication Date
WO2004079681A1 true WO2004079681A1 (en) 2004-09-16

Family

ID=32958950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001969 WO2004079681A1 (en) 1999-10-08 2004-02-20 Monitor unit

Country Status (2)

Country Link
JP (1) JPWO2004079681A1 (en)
WO (1) WO2004079681A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002466A1 (en) * 2004-06-30 2006-01-12 Vfs Technologies Limited Image processing apparatus and method
US8295541B2 (en) 2004-06-30 2012-10-23 Vision Fire & Security Pty Ltd System and method for detecting a change in an object scene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160632A (en) * 1996-10-04 1998-06-19 Advantest Corp Image processing method
JP2001251607A (en) * 2000-03-06 2001-09-14 Matsushita Electric Ind Co Ltd Image monitor system and image monitor method
JP2001285787A (en) * 2000-03-31 2001-10-12 Nec Corp Video recording method, system therefor and recording medium therefor
JP2001325672A (en) * 2000-05-16 2001-11-22 Mega Chips Corp Invader monitoring system
JP2002218443A (en) * 2000-10-31 2002-08-02 Hitachi Kokusai Electric Inc Intruding object detecting method for automatically determining threshold for intruding object detection and intruding object monitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160632A (en) * 1996-10-04 1998-06-19 Advantest Corp Image processing method
JP2001251607A (en) * 2000-03-06 2001-09-14 Matsushita Electric Ind Co Ltd Image monitor system and image monitor method
JP2001285787A (en) * 2000-03-31 2001-10-12 Nec Corp Video recording method, system therefor and recording medium therefor
JP2001325672A (en) * 2000-05-16 2001-11-22 Mega Chips Corp Invader monitoring system
JP2002218443A (en) * 2000-10-31 2002-08-02 Hitachi Kokusai Electric Inc Intruding object detecting method for automatically determining threshold for intruding object detection and intruding object monitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002466A1 (en) * 2004-06-30 2006-01-12 Vfs Technologies Limited Image processing apparatus and method
US8295541B2 (en) 2004-06-30 2012-10-23 Vision Fire & Security Pty Ltd System and method for detecting a change in an object scene

Also Published As

Publication number Publication date
JPWO2004079681A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US20050078179A1 (en) Modulate aptamer and method for detecting target protein by using the same
KR101793636B1 (en) Image processing system
US6081606A (en) Apparatus and a method for detecting motion within an image sequence
KR101935399B1 (en) Wide Area Multi-Object Monitoring System Based on Deep Neural Network Algorithm
EP2283472B1 (en) A system and method for electronic surveillance
US20060170769A1 (en) Human and object recognition in digital video
US9761248B2 (en) Action analysis device, action analysis method, and action analysis program
WO2009049314A2 (en) Video processing system employing behavior subtraction between reference and observed video image sequences
JP2010136032A (en) Video monitoring system
JP2007066124A (en) Method and device for generating background image and image monitoring system
US8294765B2 (en) Video image monitoring system
EP2000998B1 (en) Flame detecting method and device
Willems et al. How to detect human fall in video? An overview
CN110677619A (en) Intelligent monitoring video processing method
KR20110079939A (en) Image sensing agent and security system of usn complex type
KR101581162B1 (en) Automatic detection method, apparatus and system of flame, smoke and object movement based on real time images
KR20060003321A (en) The method or device for the object recognition in the security system
KR20100077662A (en) Inteligent video surveillance system and method thereof
KR100513739B1 (en) Motion detecting device using face characteristics and monitoring system adapting it
JP2009506468A (en) Improved event detection
WO2004079681A1 (en) Monitor unit
KR101300130B1 (en) System and method for detecting smoke using surveillance camera
JPH0955932A (en) Method for detecting abnormality of abnormality monitor device
US20220392225A1 (en) Concept for Detecting an Anomaly in Input Data
KR101669885B1 (en) method of detecting pedestrian collision and IoT apparatus thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10499806

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503004

Country of ref document: JP

122 Ep: pct application non-entry in european phase