WO2004078980A1 - Nucleic acid and method of examining canceration using the nucleic acid - Google Patents

Nucleic acid and method of examining canceration using the nucleic acid Download PDF

Info

Publication number
WO2004078980A1
WO2004078980A1 PCT/JP2004/002925 JP2004002925W WO2004078980A1 WO 2004078980 A1 WO2004078980 A1 WO 2004078980A1 JP 2004002925 W JP2004002925 W JP 2004002925W WO 2004078980 A1 WO2004078980 A1 WO 2004078980A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
seq
amino acid
sequence
biological sample
Prior art date
Application number
PCT/JP2004/002925
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Narimatsu
Akira Togayachi
Hiromichi Sawaki
Toru Hiruma
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Fujirebio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Fujirebio Inc. filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2004078980A1 publication Critical patent/WO2004078980A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • the present invention relates to a novel nucleic acid, a nucleic acid for canceration assay, a method for assaying canceration of a biological sample based on a difference in the expression level of the nucleic acid in a biological sample, and a novel glycosyltransferase and a novel method.
  • the present invention relates to a nucleic acid encoding the same.
  • N-acetyl-D-galactosamine residues (hereinafter also referred to as “GalNAc”) and D-glucuronic acid (hereinafter also referred to as “GulUA”) in sugars are glycosylated in the extracellular matrix. It is a component of Saminodalican. Therefore, enzymes that transfer sugar residues (for example, see Non-Patent Document 1) are extremely important tools for analyzing the functions of sugar chains that work in various tissues in a living body.
  • Non-Patent Documents 2 to 4 disclose the mechanism of canceration, and the mechanism of canceration may be related to the expression level of specific genes. It has been debated.
  • a cancer diagnostic assay an assay for a cancer marker in a body fluid, identification of a gene product or the like which is an indicator of canceration, and the like have already been performed.
  • cancer markers include probes and antibodies that detect or quantify such gene products.
  • nucleic acid identification can be performed on a DNA microarray, or it can be quantified by amplifying it in a small amount by PCR.
  • a first object of the present invention is to provide a cancer marker nucleic acid or polypeptide whose expression level changes significantly with canceration, or a nucleic acid or antibody for canceration assay targeting the same, and
  • An object of the present invention is to provide a canceration assay method and the like using them.
  • a second object of the present invention is to provide a novel polypeptide derived from human having glycosyltransferase activity, a nucleic acid encoding the same, and the discovery of a polypeptide that is noted as an indicator of canceration.
  • An object of the present invention is to provide a transformant for expressing a nucleic acid, a method for producing the enzyme protein using the transformant, and the like.
  • FIG. 1 shows each amino acid sequence aligned between the L4 protein of the present invention and chondroitin synthase.
  • the present invention relates to a nucleic acid that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto.
  • nucleic acid of the present invention is a nucleic acid consisting of at least a dozen or more consecutive nucleotide sequences in the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto, preferably SEQ ID NO:
  • a nucleic acid comprising the nucleotide sequence described in 1 or a nucleotide sequence complementary thereto.
  • the nucleic acids of the invention can be probes or primers.
  • An example of a suitable primer of the present invention is a primer consisting of the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5 or a nucleotide sequence complementary thereto.
  • the nucleic acid of the present invention can be a cancer marker.
  • the present invention also relates to a method of assaying a biological sample for canceration. That is, the canceration assay method according to the present invention comprises:
  • step (a) whether the measured value of the biological sample is 1 Z2 or less as compared with the measured value of a healthy biological sample And determining whether or not.
  • any one of the nucleic acids is used as a labeled probe, and the labeled probe is a stringent probe.
  • the labeled probe is a stringent probe.
  • a nucleic acid amplification treatment is performed on the nucleic acid contained in the biological sample using any of the primers, And measuring the amount of the nucleic acid amplified by the primer.
  • Another embodiment of the canceration assay method of the present invention is a method for assaying the effectiveness of a treatment for cancer therapy, which comprises using any one of the nucleic acids described above for an organism that has been treated for cancer therapy. Measuring the level of transcription for the nucleic acid in the sample, and determining whether the measured value is significantly lower than before or without the treatment.
  • the typical biological sample is a colon-derived sample.
  • a novel polypeptide having a glycosyltransferase activity, a novel nucleic acid encoding the same, and the like are provided based on the discovery of the nucleic acid.
  • the L4 protein is presumed to be a glycosyltransferase because it has a transmembrane region and a predetermined motif sequence on the N-terminal side, which is a characteristic of glycosyltransferase in its amino acid sequence.
  • Providing such novel enzyme proteins contributes to satisfying these diverse needs in the art.
  • the present invention relates to a nucleic acid encoding a polypeptide having glycosyltransferase activity, comprising the following nucleotide sequences (a) to (d):
  • the present invention also relates to a nucleic acid having any one of the above.
  • nucleic acid encoding the polypeptide of the present invention is a nucleic acid encoding a polypeptide having glycosyltransferase activity, wherein the amino acid sequence of the following (a) to (d): (a) SEQ ID NO: 3 full-length amino acid sequences;
  • nucleic acid (d) the amino acid sequence of SEQ ID NO: 3 as set forth in amino acid numbers 51-349;
  • One preferred embodiment is a nucleic acid encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 3.
  • a preferred type of nucleic acid is DNA.
  • the present invention also relates to a vector containing any of the above nucleic acids, and a transformant containing the vector.
  • polypeptide of the present invention is a polypeptide having glycosyltransferase activity, and has the following amino acid sequence (a) to (d):
  • a polypeptide having the formula: One preferred embodiment is a polypeptide comprising the amino acid sequence of SEQ ID NO: 3.
  • the present invention provides an antibody against the polypeptide.
  • a nucleic acid having the nucleotide sequence of SEQ ID NO: 1 is significantly reduced in cancerous tissues. Therefore, a nucleic acid having the nucleotide sequence of SEQ ID NO: 1 or a sequence complementary thereto is attracting attention as a cancer marker useful for cancer diagnosis in a biological sample containing a transcript.
  • a cancer marker nucleic acid capable of hybridizing to a nucleic acid defined by the nucleotide sequence of SEQ ID NO: 1 under stringent conditions.
  • a cancer marker nucleic acid is a primer or a probe targeting the nucleic acid in a biological sample and having a base sequence selected from the base sequence of SEQ ID NO: 1.
  • the nucleotide sequence of SEQ ID NO: 1 is derived from mRNA encoding a structural gene, and includes the entire open reading frame (0RF) of the gene. Is found to be the full length of SEQ ID NO: 1 or most of it.
  • the primer or probe according to the present invention has SEQ ID NO: 1 It can be a nucleic acid having a desired partial sequence selected from the following base sequences and thus being able to specifically hybridize to the selected base sequence in the nucleic acid.
  • a typical primer or probe is a natural DNA fragment derived from a nucleic acid having the nucleotide sequence of SEQ ID NO: 1, a DNA fragment synthesized to have the nucleotide sequence of SEQ ID NO: 1, or a complementary strand thereof.
  • the target nucleic acid in a biological sample can be detected and / or quantified using a primer or a probe as described above, as described later. Since the sequence on the genome can also be a target, the nucleic acid of the present invention may be used as an antisense primer for medical research or gene therapy.
  • a preferred embodiment of the nucleic acid of the present invention is a probe targeting a nucleic acid having the nucleotide sequence of SEQ ID NO: 1 or a complementary strand thereof.
  • the probe according to the present invention has at least ten or more nucleotides selected from the nucleotide sequence of SEQ ID NO: 1, preferably at least 15 nucleotides, preferably at least 17 nucleotides, more preferably at least 20 nucleotides or a complementary strand thereof, Alternatively, it includes the full length of the 0RF region (base numbers 1 to 1047), that is, cDNA of 1407 bases or its complementary strand.
  • nucleic acid of the present invention can specifically hybridize to the target nucleic acid under stringent conditions as long as it has more than ten bases, especially as many as 15 bases. It is. That is, a person skilled in the art can select an appropriate partial sequence of at least 15 to 20 nucleotides from the nucleotide sequence of SEQ ID NO: 1 according to various known strategies for designing oligonucleotide probes.
  • amino acid sequence information of SEQ ID NO: 3 is useful for selecting a unique sequence that is deemed appropriate as a probe.
  • a probe as a reagent or a diagnostic agent for medical research is generally difficult to handle with a large molecular weight, and from this viewpoint, the probe of the present invention for medical research is represented by SEQ ID NO: 1. 50 to 500 bases, more preferably 60 to 300 bases selected from the base sequence of
  • Stringent conditions described herein are defined as moderate or high stringency. Hybridizing under stringent conditions. Specifically, moderate stringent conditions can be easily determined by those skilled in the art, for example, based on the length of the DNA. The basic conditions are set forth in Sambrook et al., Molecular Cloning: A Laboratory Manual W> Edition, Vol. 1, ⁇ . 42-7, 45 Cold Spring Harbor Laboratory Press, 2001, and for ditrocellulose filters.
  • Highly stringent conditions can also be readily determined by those skilled in the art, for example, based on the length of the DNA.
  • such conditions include hybridization and Z or washing at higher temperatures and lower Z or salt concentrations than moderately stringent conditions, e.g., hybridization conditions as described above, and approximately 68 ° C, defined as 0.2 X SSC, with 0.1% SDS wash.
  • moderately stringent conditions e.g., hybridization conditions as described above, and approximately 68 ° C, defined as 0.2 X SSC, with 0.1% SDS wash.
  • temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the probe.
  • those skilled in the art can select based on the common general knowledge of various probe design methods and hybridization conditions known in the art, and empirical rules that can be obtained through commonly used experimental means. Moderate or moderately stringent conditions appropriate for the probe used can be easily found and implemented.
  • the relatively short oligonucleotide probe may have one or several nucleotides of the nucleotide sequence of SEQ ID NO: 1 or its complementary nucleotide sequence. Even if there is a mismatch of one or two bases, especially one or two bases, it can function as a probe.
  • the relatively long cDNA probe functions as a probe even if there is a mismatch of 50% or less, preferably 20% or less with the nucleotide sequence of SEQ ID NO: 1 or its complementary nucleotide sequence. obtain.
  • the probe of the present invention designed as described above is labeled with a fluorescent label, a radioactive label, a biotin label, or the like in order to detect or confirm a hybrid with the target sequence.
  • a fluorescent label e.g., a fluorescent label, a radioactive label, a biotin label, or the like
  • a biotin label e.g., a biotin label, or the like
  • the labeled probe of the present invention can be used for confirming or quantifying a PCR amplification product of the cancer marker nucleic acid.
  • a probe that targets a base sequence in a region located between a pair of primer sequences used for the PCR is an oligonucleotide consisting of the nucleotide sequence of SEQ ID NO: 6 (corresponding to the complementary strand of nucleotides 244-274 in SEQ ID NO: 1) (see Example 2). ).
  • the probe of the present invention may be incorporated in a diagnostic DNA probe kit or the like, or may be fixed on a chip such as a DNA microarray.
  • nucleic acid of the present invention is an oligonucleotide primer.
  • two regions may be selected from the ⁇ RF region of the base sequence of SEQ ID NO: 1 so as to satisfy the following conditions.
  • each region is several tens of bases or more, particularly 15 or more bases, preferably 17 or more bases, more preferably 20 or more bases, and 50 or less bases;
  • the primer of the present invention preferably has a sequence completely complementary to the partial sequence in the ORF region of SEQ ID NO: 1, but may have a mismatch of 1 or 2 bases.
  • Examples of the pair of primers according to the present invention include an oligonucleotide consisting of the base sequence of SEQ ID NO: 4 (corresponding to base numbers 194-213 in SEQ ID NO: 1), and a base sequence of SEQ ID NO: 5 (sequence (Corresponding to the complementary strand of base Nos. 3225-344 in No. 1).
  • the above-mentioned probe that can be used for confirming or quantifying the amplification product thereby is, for example, a labeled oligonucleotide probe consisting of the base sequence of SEQ ID NO: 6 described above.
  • the expression level of L4 nucleic acid in a biological sample in which cancer is caused that is, the transcription level of the gene from the genome to mRNA is significantly lower than that of the healthy biological sample.
  • a method for assaying canceration using the transcription level of the nucleic acid in a biological sample as an index is provided. That is, since the nucleotide sequence information of the nucleic acid was disclosed in the present specification, those skilled in the art can appropriately prepare probes or primers based on the present disclosure as described in detail above, whereby the nucleic acid Transcript levels can be detected and examined.
  • a transcript extracted from a biological sample or a nucleic acid library derived therefrom is used as a test sample to measure the amount of the nucleic acid using the probe or primer of the present invention. And determining whether the measured value is significantly below the value for the control healthy biological sample.
  • the biological sample is determined to be cancerous or highly malignant.
  • the value for a healthy biological sample serving as a control may be a measured value for a non-cancerous site in the same tissue of the same patient, or may be a known value obtained from a healthy biological sample.
  • a value generalized based on the above data, for example, an average normal value may be used.
  • transcript level to be determined to be in a cancerous state is a measurement value of 1/2 or less of a healthy sample, about 80% is obtained. Determined to be positive. If the condition is set at 3-5 (0.6 times) or less, a positive rate of 100% can be achieved. Therefore, according to this assay method, a method including determining whether the measured value of a test sample is 1/2 or less of a healthy sample, preferably 3Z5 or less, etc. Is provided.
  • the above-mentioned difference that is determined to be positive is set to be larger, or the purpose is to comprehensively detect a test sample having a sign or possibility of canceration.
  • the criterion can be arbitrarily set according to the purpose.
  • Embodiments of the canceration assay according to the present invention include, for example, a Southern blot, a Northern blot, a dot blot, and a co-needle knee hybridization method using a probe obtained from the nucleic acid of the present invention. Methods using various hybridization assays well known to those skilled in the art are included. If further amplification or quantification of the detection signal is required, an assay that combines them with an immunoassay may be used.
  • a test nucleic acid or an amplified product thereof extracted from a biological sample is immobilized, hybridized with a labeled probe under stringent conditions, washed, and bound to a solid phase. The labeled label is measured.
  • Extraction and purification of the transcript from the biological sample can be performed by applying any method known to those skilled in the art. ⁇
  • a preferred embodiment of the canceration assay according to the present invention also includes an assay using a nucleic acid amplification reaction performed using a primer selected from the nucleotide sequence of the nucleic acid of the present invention.
  • nucleic acid amplification reactions include, for example, the polymerase chain reaction (PCR) [Saiki RK, et al., Science, 230, 1350-1354 (1985)], the Lighes chain reaction (LCR) [Wu D. ⁇ ⁇ , et al. al., Genomics, 4, 560-569 (1989); Barringer KJ, et al., Gene, 89, 117-122 (1990); Barany F., Proc. Natl. Acad. Sci.
  • PCR polymerase chain reaction
  • LCR Lighes chain reaction
  • nucleic acid sequence-based amplification (Nucleic Acid Sequence Based Amplification: NASBA) reaction described in European Patent No. 0525882, which is a competitive amplification of a target nucleic acid and a mutant sequence, can also be used.
  • NASBA Nucleic Acid Sequence Based Amplification
  • This is a PCR method.
  • a nucleic acid amplification method itself such as PCR is well known in the art, and a reagent kit and an apparatus therefor are commercially available, so that it can be easily performed.
  • Specific embodiments of the assay method of the present invention utilizing a nucleic acid amplification reaction are as follows.
  • the target nucleic acid in the transcript to be assayed is amplified by PCR using a pair of primers located at both ends of a predetermined region selected from the base sequence.
  • a predetermined region selected from the base sequence if even a small amount of the nucleic acid is present in the sample, it becomes ⁇ ⁇ ⁇ and the nucleic acid region between the primer pairs is replicated and amplified one after another.
  • the type III nucleic acid is amplified to a desired concentration. Under the same amplification reaction conditions, an amplification product proportional to the amount of the target nucleic acid present in the sample can be obtained.
  • nucleic acid in a healthy tissue can be measured in the same manner. The measured value of the nucleic acid amount is compared to test for the presence or degree of canceration as described above.
  • nucleic acid of a gene that is widely and commonly present in the same tissue such as nucleic acid encoding dariceraldehyde-3-phosphate dehydrogenase (GAPDH) or i3-actin, is used as a control to eliminate individual differences. Good.
  • the nucleic acid sample to be subjected to the PCR method may be an entire mRNA extracted from a biological sample such as a test tissue or a cell, or an entire cDNA reverse-transcribed from the mRNA.
  • a biological sample such as a test tissue or a cell
  • an entire cDNA reverse-transcribed from the mRNA may be employed.
  • the NASBA method 3SR method, TMA method
  • the NASBA method itself is well known and a kit therefor is commercially available, it can be easily carried out using the primer pair of the present invention.
  • Detection or quantification of the above amplification products can be performed by electrophoresis of the reaction solution after amplification and staining the bands with ethidium bromide, etc., or immobilization of the amplification products after electrophoresis on a solid phase such as a nylon membrane. It can be carried out by hybridizing a labeled probe that specifically hybridizes with the test nucleic acid (for example, the labeled probe of SEQ ID NO: 6), washing, and detecting the label.
  • a labeled probe that specifically hybridizes with the test nucleic acid (for example, the labeled probe of SEQ ID NO: 6), washing, and detecting the label.
  • Suitable PCR methods for this assay include quantitative PCR, particularly RT-PCR for kinetic analysis and quantitative real-time PCR. Especially mRNA
  • the quantitative real-time RT-PCR method for libraries is suitable from the viewpoint that the measurement target can be directly purified from a biological sample and directly reflects the transcription level.
  • the quantification is not limited to the quantitative PCR method, and other known DNA quantification methods such as Northern blot, dot blot, and DNA microarray using the above-described probe can be applied to the PCR product.
  • kits for quantitative RT-PCR are also commercially available, and can be easily performed. Furthermore, it is also possible to semiquantify the target nucleic acid based on the intensity of the electrophoresis band.
  • Another form of the canceration assay according to the present invention includes an assay for judging the effect of a treatment intended for a cancer curing effect.
  • the test object includes, for example, in vitro cancer cells and cancer tissues derived from a cancer patient or an animal model for experimental carcinogenesis.
  • Such treatments include all treatments such as administration of anticancer drugs and radiation therapy.
  • the transcript level of a target nucleic acid in a biological sample before or after treatment is compared with that of the biological sample to which the treatment has been applied, and the treatment does not cause cancer. It will be possible to determine what effect it has on malignancy.
  • the treatment is effective as a cancer treatment if the transcription level is increased due to the treatment, or if the decrease in the transcription level is significantly suppressed even in a situation where it increases with canceration. Can be evaluated. Variation in transcription levels after treatment may be followed over time after treatment, as well as in comparison to untreated tissue.
  • the cancer therapeutic effect assay according to the present invention includes, for example, whether or not the anticancer drug candidate substance is effective on cancerous tissue, whether or not resistance has been formed to the anticancer drug being administered to the cancer patient, and whether or not the experimental model animal has a lesion. Judgment as to whether it is effective for an organization or the like is included.
  • the test tissues of the experimental model animals include not only in vitro but also in vivo or ex vivo samples.
  • the term "measured value of transcription level” or "expression level” of a nucleic acid refers to the amount of the nucleic acid present in a certain amount of a transcript derived from a biological sample, that is, the concentration of the nucleic acid. Is shown.
  • the assay of the present invention makes it possible to compare the measured values. When nucleic acids are amplified by PCR or the like for quantification, or when signals from probe labels are amplified, relative comparison of the amplified values is possible. It is. Therefore, the "measured value of nucleic acid” can be grasped as the amount after amplification or the signal level after amplification.
  • target nucleic acid or “the relevant nucleic acid” includes not only in vivo or in vitro but also all types of nucleic acids obtained by converting mRNA into type II.
  • base sequence includes its complementary sequence unless otherwise specified.
  • biological sample refers to an organ, a tissue and a cell, and an organ, a tissue and a cell derived from an experimental animal, but is preferably a tissue, and specifically, an esophagus, a stomach, and the like.
  • tissue and specifically, an esophagus, a stomach, and the like.
  • examples include the kidney, liver, kidney, duodenum, small intestine, large intestine, rectum, and colon. The large intestine, the rectum and the colon are preferred, and the colon is more preferred. Also,
  • the term “measurement” or “assay” includes any of detection, amplification, quantification, and semi-quantitation.
  • the assay method according to the present invention relates to an assay for canceration of a biological sample as described above, and can be applied to cancer diagnosis and treatment in medical treatment.
  • the term “assay for canceration” includes an assay for whether a biological sample is carcinogenic and an assay for whether the malignancy is high.
  • the term “cancer” typically includes malignant tumors in general and disease states caused by the malignant tumors.
  • the assay according to the present invention is not particularly limited, but includes esophageal cancer, stomach cancer, spleen cancer, liver cancer, kidney cancer, duodenal cancer, small intestine cancer, large intestine cancer, rectal cancer, and colon cancer.
  • they are colorectal cancer, rectal cancer, and colon cancer, and are preferably used for colorectal cancer assay.
  • nucleic Acid of the Present Invention Coding Polypeptide Having Glycosyltransferase Activity The nucleic acid of the present invention can be prepared, for example, by the following method.
  • nucleic acid amplification reaction Using a part of the base sequence shown in SEQ ID NO: 1, hybridization and nucleic acid amplification reaction were carried out from the cDNA library using a basic method of genetic engineering such as nucleic acid amplification reaction according to a conventional method.
  • the L4 nucleic acids of the invention can be cloned. For example, if the sequences of SEQ ID NOs: 4 and 5 are used as primers, A DNA fragment of about lkbp is obtained as a product. This can be isolated, for example, by agarose gel electrophoresis to separate DNA fragments by molecular weight and sieving, and cut out a specific band. Details of the nucleic acid amplification reaction are as described above.
  • the present inventors expressed the L4 protein encoded by the L4 nucleic acid isolated as described above, isolated and purified the L4 protein, and confirmed that it had biological activity.
  • the present invention provides nucleic acids encoding novel full length polypeptides or fragments thereof.
  • the nucleic acids of the present invention have the same amino acids that degenerate to the amino acid sequence of the L4 protein. Includes a finite number of any nucleic acid that can encode the sequence. Therefore, the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto is one embodiment of the nucleic acid encoding the polypeptide having the biological activity.
  • the nucleic acids of the present invention also include both single-stranded and double-stranded DNA, and their RNA complements.
  • DNA includes, for example, naturally occurring DNA, recombinant DNA, chemically bonded DNA, DNA amplified by PCR, and combinations thereof. However, DNA is preferable from the viewpoint that it is stable at the time of preparing a vector or a transformant.
  • the isolated L4 nucleic acid is predicted to have a hydrophobic transmembrane domain at its end according to its deduced amino acid sequence (SEQ ID NO: 3). By preparing a region of a nucleotide sequence encoding a peptide, the nucleic acid encoding a solubilized form of the polypeptide can also be obtained.
  • the present inventors have found that, for example, by expressing a nucleic acid consisting of the nucleotide sequence of base numbers 73 to 107 in SEQ ID NO: 1, the 25th, 36th, or 51 A soluble protein having the N-terminal of each amino acid was produced (see Example 3).
  • a nucleic acid consisting of the nucleotide sequence of base numbers 73 to 107 in SEQ ID NO: 1
  • the 25th, 36th, or 51 A soluble protein having the N-terminal of each amino acid was produced (see Example 3).
  • incomplete length nucleic acids encoding polypeptides having the biological activity of the L4 protein are also within the scope of the invention.
  • nucleic acid equivalent to the sequence of SEQ ID NO: 1 by preparing a nucleic acid having a nucleotide sequence homologous to the nucleotide sequence of SEQ ID NO: 1.
  • SEQ ID NO: 1 the SEQ ID NO:
  • the nucleic acid sequence is found to be the most homologous It has 18% identity to the nucleic acid sequence of the highest known chondroitin synthase (Non-Patent Document 1).
  • the novel nucleic acid sequence encoding the homologous protein of the present invention is typically the entire base sequence in SEQ ID NO: 1, preferably base numbers 73 to 107, 106 to 107. Or more than 18% identity, more preferably at least 20% identity, to a partial nucleotide sequence consisting of the nucleotide sequences of 151 to 10047, or a nucleotide sequence complementary thereto. Preferably, it can be defined as having at least 30% identity.
  • the above percent identity used to define homologous nucleic acids can be determined by visual inspection and mathematical calculation.
  • identity percent identity of two nucleic acid sequences is described in Devereux et al., Nucl. Acids Res. 12: 387, 1984, and the GAP computer program available from the University of Wisconsin Genetics Computer Group (UWGCG). It can be determined by comparing sequence information using version 6.0.
  • Preferred default parameters for the GAP program include: (1) a single 'unary' comparison matrix for nucleotides (including values of 1 for identical and 0 for non-identical), and Schwartz and Dayhoff III: Modification, Atlas of Protein weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res.
  • nucleic acids homologous as the structural gene of the present invention typically include the full-length nucleotide sequence in SEQ ID NO: 1, preferably nucleotides 73 to 107, 106 to 107, Or a polypeptide that hybridizes under stringent conditions to nucleotides consisting of the respective partial nucleotide sequences of 151 to 1074 or nucleotide sequences complementary thereto and encodes a polypeptide having L4 protein activity. Nucleic acids are also included. The stringent conditions used for defining such homologous nucleic acids are as described above.
  • L4 nucleic acid of the present invention By using the L4 nucleic acid of the present invention as described above, medical research or gene therapy can be performed. Not only can it produce probes and antisense primers for therapeutic purposes, but also can express the desired L4 enzyme protein.
  • a recombinant vector comprising an L4 nucleic acid.
  • Methods for incorporating a DNA fragment of the nucleic acid into a vector such as a plasmid are described in, for example, Sambrook, J. et al., Molecular Straining, A Laboratory Manual (3rd edition), Cold spring Harbor Laboratory, 1.1 (2001). The methods described above are exemplified. For convenience, a commercially available ligation kit (for example, Takara Shuzo) may be used.
  • the recombinant vector (for example, recombinant plasmid) obtained as described above is introduced into a host cell (for example, Escherichia coli DH5a, TBI, LE392, or XL-LE392 or XL-lBlue).
  • a host cell for example, Escherichia coli DH5a, TBI, LE392, or XL-LE392 or XL-lBlue.
  • Methods for introducing a plasmid into a host cell include the calcium chloride method or the calcium chloride method described in Sambrook, J. et al., Molecular Cloning, A Laboratory Manual (3rd edition), Cold spring Harbor Laboratory, 16.1 (2001). Examples include the rubidium chloride method, the electoral portation method, the electoral injection method, a method using a chemical treatment such as PEG, and a method using a gene gun.
  • a usable vector can be simply prepared by ligating a desired gene to a recombination vector (for example, plasmid DNA or the like) available in the art by a conventional method.
  • a recombination vector for example, plasmid DNA or the like
  • Specific examples of the vector used include, but are not limited to, plasmids derived from Escherichia coli such as pD0NR201, pBluescript, pUC18, pUC19, and pBR322.
  • Those skilled in the art can appropriately select the restriction end so as to be compatible with the expression vector.
  • Those skilled in the art can appropriately select an expression vector suitable for the host cell in which the enzyme of the present invention is to be expressed, and the gene is involved in gene expression so that the nucleic acid can be expressed in the target host cell. It is preferable that regions (promoter region, enhancer region, operator region, etc.) are appropriately arranged and constructed so that the nucleic acid is appropriately expressed.
  • the type of expression vector is not particularly limited as long as it has a function of expressing a desired gene and producing a desired protein in various prokaryotic and eukaryotic or eukaryotic host cells.
  • Examples of the expression vector for E. coli include, but are not limited to, pQE-30, pQE-60, pMAL-C2, pMAL_p2, and pSE420.
  • Examples of yeast expression vectors include pYES2 (Saccharomyces), pPIC3.5K, pPIC9K, and pA0815.
  • a Gateway system (Invitrogen) which does not require restriction and ligation may be used.
  • the Gateway system is a system that uses site-specific recombination that enables cloning while maintaining the orientation of the PCR product and that enables subcloning into an expression vector in which a DNA fragment has been appropriately modified.
  • an entry clone was created from the PCR product and the donor vector using BP clonase, a site-specific recombination enzyme, and then recombined with this clone and another recombination enzyme, LR clonase.
  • BP clonase a site-specific recombination enzyme
  • LR clonase another recombination enzyme
  • a transformant for producing the polypeptide of the present invention By incorporating the expression vector containing the L4 nucleic acid of the present invention into a host cell, a transformant for producing the polypeptide of the present invention can be obtained.
  • the host cell for obtaining the transformant may be generally a eukaryotic cell (eg, a mammalian cell, a yeast, an insect cell) or a prokaryotic cell (eg, Escherichia coli, Bacillus subtilis).
  • cultured cells derived from human eg, HeLa, 293T, SH—SY5Y) ⁇ mouse (eg, Neuro2a, NIH3T3) and the like may be used. All of these host cells are known and are commercially available (eg, Dainippon Pharmaceutical Co., Ltd.) or available from public research institutions (eg, RIKEN Cellbank).
  • embryos, organs, tissues or non-human individuals can be used.
  • the L4 nucleic acid of the present invention can express an enzyme protein having a property close to that of a natural biomolecule (for example, a sugar chain added form) by using a eukaryotic cell as a host cell.
  • a eukaryotic cell particularly mammalian cells, as host cells.
  • Specific mammalian cells include those derived from mouse, African frog, rat, hamster, monkey or human. And a cultured cell line established from those cells.
  • Escherichia coli, yeast or insect cells as host cells include, for example, Escherichia coli (DH5a, M15, JM109, BL21, etc.), yeast (INVScl (Saccharomyces), GS115, KM71 (Pichia), etc.) And insect cells (Sf21, BmN4, silkworm larvae, etc.) and the like.
  • an expression vector can be prepared by linking at least a promoter, an initiation codon, a gene encoding a desired protein, a termination codon, and a terminator region to an appropriate replicable unit in a continuous and circular manner. It can.
  • an appropriate DNA fragment for example, a linker, another restriction enzyme site, etc.
  • a conventional method such as digestion with a restriction enzyme or ligation using T4 DNA ligase.
  • an expression vector When a bacterium, particularly Escherichia coli, is used as a host cell, an expression vector generally comprises at least a promoter / operator region, an initiation codon, a gene encoding a desired protein, a stop codon, a terminator, and a replicable unit.
  • the expression vector When yeast, plant cells, animal cells, or insect cells are used as host cells, the expression vector generally includes at least a promoter, initiation codon, a gene encoding a desired protein, a stop codon, and a terminator. Is preferred. Further, it may appropriately contain a DNA encoding a signal peptide, an enhancer sequence, 5 ′ and 3 ′ untranslated regions of a desired gene, a selectable marker region or a replicable unit.
  • a replicable unit refers to DNA capable of replicating its entire DNA sequence in a host cell, and is composed of natural plasmids, artificially modified plasmids (prepared from natural plasmids). Plasmid) and synthetic plasmid. Suitable plasmids include the plasmid pQE30, pET or pCAL or an artificially modified product thereof (a DNA fragment obtained by treating pQE30, pET or pCAL with an appropriate restriction enzyme) in E. coli. In yeast, plasmid pYES2 or pPIC9K is used, and in insect cells, plasmid pBacPA 8/9 is used.
  • a preferred initiation codon of the vector of the present invention is methionine codon (ATG).
  • examples of the stop codon include common stop codons (eg, TAG, TGA, TAA, etc.).
  • enhancer array, terminator As the sequence, for example, those commonly used by those skilled in the art such as those derived from SV40 can be used.
  • selection marker a commonly used marker can be used by a conventional method. Examples thereof include tetracycline, ampicillin, or an antibiotic resistance gene such as dynammycin or neomycin, hygromycin, or spectinomycin.
  • Introduction (also referred to as transformation or transfection) of the expression vector according to the present invention into a host cell can be performed using a conventionally known method.
  • bacteria E. coli, Bacillus subtilis, etc.
  • Cohen et al. Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)
  • the protoplast method [Mol. Gen. Genet., 168, 111] (1979)] ⁇ ⁇ ⁇ ⁇
  • According to the competency method [J. Mol. Biol., 56, 209 (1971)]
  • Saccharomyces cerevisiae for example, the method of Hinnen et al. [Proc. Natl. Acad. Sci.
  • the amino acid sequence of SEQ ID NO: 3 was estimated based on the nucleotide sequence of SEQ ID NO: 1 (see SEQ ID NO: 2), and the deduced amino acid sequence of the L4 protein was It has a certain homology with the amino acid sequence.
  • homology is found with the amino acid sequence near the N-terminal of known chondroitin synthase (hChSy). It has been reported that this chondroitin synthase has both jS 1,3GluUA transfer activity and ⁇ 1, GalNAc transfer activity (Non-Patent Document 1).
  • FIG. 1 shows an alignment near the N-terminal side between the L4 protein and the amino acid sequence of the chondroitin synthase.
  • L4 protein like chondroitin synthase, has a hydrophobic transmembrane domain at the N-terminal and a DXD motif. Have. Since these are characteristics widely observed in glycosyltransferases, it was concluded that the amino acid sequence of the L4 protein was that of a polypeptide having glycosyltransferase activity.
  • the L4 protein can be expressed by incorporating the L4 nucleic acid having the nucleic acid sequence of SEQ ID NO: 1 into an expression vector, as exemplified in the Examples below, and thus has a glycosyltransferase activity. It can be isolated and purified as an enzyme protein.
  • a typical embodiment of the protein of the present invention is an isolated glycosyltransferase protein consisting of the deduced amino acid sequence of SEQ ID NO: 3.
  • Examples of the donor substrate of the L4 enzyme protein include sugar nucleotides having a sugar to be transferred, such as a form of peridine diphosphate-sugar such as UDP-GalNAc or UDP_GluUA, adenosine diphosphate monosaccharide, guanosine It may be diphosphate monosaccharide or cytidine diphosphate monosaccharide.
  • sugar nucleotides having a sugar to be transferred such as a form of peridine diphosphate-sugar such as UDP-GalNAc or UDP_GluUA, adenosine diphosphate monosaccharide, guanosine It may be diphosphate monosaccharide or cytidine diphosphate monosaccharide.
  • the acceptor substrate for the L4 enzyme protein may include, for example, a sulfated daricosaminodalican composed of GalNAc or GluUA, but may include other glycoproteins, glycolipids, oligosaccharides, or polysaccharides. Is also good.
  • the L4 enzyme protein of the present invention is useful for sugar chain synthesis or modification in mucopolysaccharide, glycoprotein, glycolipid, oligosaccharide, polysaccharide and the like.
  • amino acid sequence of SEQ ID NO: 3 representative of the primary structure of the L4 enzyme protein in the present specification allows production by a well-known genetic engineering technique in the art based on the amino acid sequence. All the proteins obtained (hereinafter also referred to as “mutated proteins” or “modified proteins”) are provided.
  • the protein of the present invention is not limited to the protein consisting of the amino acid sequence of SEQ ID NO: 3 deduced from the nucleotide sequence of the cloned nucleic acid according to the common general knowledge in the art, and is described below.
  • a protein consisting of an incomplete-length polypeptide in which the amino acid sequence at the N-terminal or the like is partially deleted, or a protein homologous to the amino acid sequence It is also intended to include proteins having properties.
  • the enzyme protein of the present invention may preferably have an amino acid sequence from amino acid number 25 to SEQ ID NO: 3 in SEQ ID NO: 3 as obtained in Examples described later.
  • a protein having a physiological activity such as an enzyme
  • one or more amino acids in the amino acid sequence are substituted or deleted, and one or more amino acids are substituted in the amino acid sequence.
  • the physiological activity can be maintained even when a plurality of amino acids are inserted or added.
  • one of the naturally-occurring proteins may be one of them due to differences in the varieties of the species producing them, mutations in genes due to differences in ecotype, or the presence of similar isozymes. It is also known that there exists a mutant protein having a plurality of amino acid mutations.
  • one or more amino acids are substituted or deleted in the amino acid sequence shown in SEQ ID NO: 1, or one or more amino acids are added to the amino acid sequence.
  • Mutant proteins having an inserted or added amino acid sequence and having the above-mentioned glycosyltransferase activity under predetermined enzyme reaction conditions are also included.
  • the amino acid sequence shown in SEQ ID NO: 1 or one or several amino acids in the sequence are substituted or deleted, or one or several amino acids are inserted or added in the amino acid sequence. Those having the defined amino acid sequence are particularly preferred.
  • “plurality” is preferably 1 to 200, more preferably 1 to 100, still more preferably 1 to 50, and most preferably 1 to 20.
  • the number of amino acids that can be substituted is preferably 1 to 10 so that the activity of the original protein is maintained. It is.
  • the modified proteins of the present invention include modified proteins obtained by substitution of amino acids having similar properties. That is, in general, substitution of amino acids having similar properties (for example, substitution of one hydrophobic amino acid with another hydrophobic amino acid, substitution of one hydrophilic amino acid with another hydrophilic amino acid, and one acidic amino acid with another acidic amino acid) Amino acid substitution or substitution of one basic amino acid with another basic amino acid) to produce a recombinant protein having a desired mutation.
  • substitution of amino acids having similar properties for example, substitution of one hydrophobic amino acid with another hydrophobic amino acid, substitution of one hydrophilic amino acid with another hydrophilic amino acid, and one acidic amino acid with another acidic amino acid
  • Amino acid substitution or substitution of one basic amino acid with another basic amino acid to produce a recombinant protein having a desired mutation.
  • the methods are well known to those skilled in the art, and the modified protein thus obtained often has properties similar to the original protein. From this viewpoint, the modified protein in which such amino acid substitution is performed can be included
  • the modified protein of the present invention is a glycoprotein having a sugar chain bound to the polypeptide as long as it has the amino acid sequence as described above and has an intrinsic enzyme activity for the target enzyme. You may.
  • the amino acid sequence described in SEQ ID NO: 3 of the present invention was identified by GENET YX (Genetics). It has 18% identity to a known homologous chondroitin synthase (Non-Patent Document 1). From this viewpoint, the novel amino acid sequence as the homologous protein of the present invention has an identity of more than 18%, more preferably at least 20%, particularly preferably at least 20%, to the amino acid sequence shown in SEQ ID NO: 1. Defined to have 30% identity.
  • GENET YX is a genetic information processing software for nucleic acid analysis and protein analysis, and is capable of normal signal homology analysis and multi-alignment analysis, as well as signal peptide prediction, promoter site prediction, and secondary structure prediction. is there.
  • the homology analysis program used in this specification is based on the L1pman-Pear'son method (Lipman, D.J. & Pearson, WR, which is frequently used as a high-speed and high-sensitivity method). Science, 277, 1435—144 1 (1 98 5)).
  • the percent identity may be determined, for example, by the BLAST program described in Altschul et al. (Nucl. Acids. Res., 25.
  • an antibody against the isolated protein of the present invention can be prepared by administering the isolated protein to an animal as an immunogen as described below.
  • the enzyme can be measured and quantified by immunoassay using such an antibody. Therefore, the present invention is also useful for producing such an immunogen.
  • the protein of the present invention also includes polypeptide fragments, mutants, fusion proteins and the like of the protein, which contain an antigenic determinant or an epitope for inducing antibody formation.
  • the protein of the present invention can be isolated and purified by the following methods.
  • L4 protein of the present invention can also be expressed (produced), for example, by culturing a transformant containing an expression vector into which the L4 nucleic acid of the present invention has been incorporated in a nutrient medium.
  • the nutrient medium for the transformant preferably contains a carbon source, an inorganic nitrogen source or an organic nitrogen source necessary for the growth of the host cell (transformant).
  • the carbon source include glucose, dextran, soluble starch, sucrose, methanol and the like.
  • the inorganic or organic nitrogen source include ammonium salts, nitrates, amino acids, corn chip liquor, peptone, casein, meat extract, soybean meal, potato extract and the like.
  • other nutrients eg, inorganic salts (eg, sodium chloride, calcium chloride, sodium dihydrogen phosphate, magnesium chloride), vitamins, antibiotics (eg, tetracycline, neomycin, ampicillin, kanamycin, etc.)
  • the culturing is performed by a method known in the art. Culture conditions, for example, temperature, pH of the medium, and culture time are appropriately selected so that the protein of the present invention is produced in large quantities.
  • the protein of the present invention can be obtained from the culture or grown product as described below. That is, when the target protein accumulates in the host cell, The host cells are collected by an operation such as centrifugation or filtration, and the host cells are collected in an appropriate buffer (for example, Tris buffer, phosphate buffer, HEPES buffer, MES buffer, etc. at a concentration of about 100 to 100 mM). (The pH varies depending on the buffer used, but the pH is preferably in the range of 5.0 to 9.0.) After the cells are suspended, the cells are disrupted by a method suitable for the host cells to be used, and the host is centrifuged. Get the contents of the cells.
  • an appropriate buffer for example, Tris buffer, phosphate buffer, HEPES buffer, MES buffer, etc. at a concentration of about 100 to 100 mM.
  • the pH varies depending on the buffer used, but the pH is preferably in the range of 5.0 to 9.0.
  • the host cell and the medium are separated by operations such as centrifugation and filtration to obtain a culture filtrate.
  • the host cell disruption solution or the culture filtrate can be used for isolation and purification of the protein as it is or after ammonium sulfate precipitation and dialysis.
  • Methods for isolating and purifying the target protein include the following methods. That is, when a tag such as 6X histidine, GST, or maltose binding protein is attached to the protein, a method using affinity chromatography that is generally suitable for each tag can be used. On the other hand, when the protein according to the present invention is produced without such a tag, for example, a method by ion exchange chromatography can be mentioned. In addition, a method combining gel filtration, hydrophobic chromatography, isoelectric focusing, or the like may be used.
  • an expression vector that facilitates isolation and purification.
  • isolation and purification are easy if an expression vector is constructed so as to express in the form of a fusion protein of a polypeptide having enzyme activity and a labeled peptide, and the enzyme protein is prepared by genetic engineering.
  • the above-mentioned discriminating peptide include, when the enzyme of the present invention is prepared by genetic recombination, expression of the discriminating peptide and a polypeptide having an enzymatic activity as a fusion protein, whereby the transformant is obtained. It is a peptide having a function of facilitating secretion / separation / purification or detection of the enzyme of the present invention from a grown product.
  • discriminating peptides include, for example, signal peptides (15-30 amino acids present at the N-terminus of many proteins and functioning in cells for protein selection in the intracellular membrane permeation mechanism). Peptides consisting of residues: for example, 0mpA, 0mpT, Dsb, etc., protein kinase, protein A (constituting components of S.
  • aureus cell wall Protein with a molecular weight of about 42,000 per minute), daltathione S-transferase, His tag (a sequence in which 6 to 10 histidine residues are arranged), myc tag (a 13 amino acid sequence derived from the cMyc protein), FLAG peptide ( Analytical marker consisting of 8 amino acid residues), T7 tag (composed of the first 11 amino acid residues of genelO protein), S tag (composed of 15 amino acid residues derived from Tengen RNaseA), HSV tag, pelB (E.
  • coli Outer membrane protein pelB 22 amino acid sequence), HA tag (consisting of 10 amino acid residues derived from hemadaltun), Trx tag (thioredoxin sequence), CBP tag (calmodulin binding peptide), CBD tag (cellulose binding) Domain), CBR tag (collagen binding domain), j3 -lac / blu (jS lactamase), iS-gal galactosidase), luc (lucifera one), HP-Thio (His-patch Redoxin), HSP (heat shock peptide), Lny (laminin ⁇ peptide), Fn (fibronectin partial peptide), GFP (green fluorescent peptide), YFP (yellow fluorescent peptide), CFP (cyan fluorescent peptide), BFP (blue Peptides such as fluorescent peptide), DsRed, DsRed2 (red fluorescent peptide), MBP (maltose binding peptide), LacZ (latatose operator), IgG (i
  • signal peptide protein kinase, protein A, glutathione S-transferase, His tag, myc tag, FLAG peptide, T7 tag, S tag, HSV tag, pelB or HA tag force
  • FLAG peptide is highly antigenic and provides a peptide to which a specific monoclonal antibody reversibly binds, allowing for rapid access and easy purification of the expressed recombinant protein.
  • the murine hybrid dorma referred to as 4E11
  • 4E11 has been disclosed in the presence of certain divalent metal cations, as described in US Pat. No. 5,011,912, which is incorporated herein by reference. Produces a monoclonal antibody that binds to the FLAG peptide.
  • the 4E11 hybridoma cell line has been deposited with the American Type 'Collection' under the accession number HB 9259.
  • pFLAG-CMV-1 As a basic vector that can be expressed in mammalian cells and can obtain the enzyme protein of the present invention as a fusion protein with the above-mentioned FLAG peptide, for example, pFLAG-CMV-1 (Sigma) is available.
  • vectors that can be expressed in insect cells include, but are not limited to, pFBIF (a vector in which a region encoding a FLAG peptide is incorporated into pFastBac (Invitrogen): see Examples described later). .
  • pFBIF a vector in which a region encoding a FLAG peptide is incorporated into pFastBac (Invitrogen): see Examples described later).
  • pFBIF a vector in which a region encoding a FLAG peptide is incorporated into pFastBac (Invitrogen): see Examples described later.
  • Those skilled in the art can select an appropriate basic vector based on
  • the present invention provides antibodies that are immunoreactive with the L4 protein. Such antibodies can specifically bind to the enzyme protein via the antigen-binding site of the antibody (as opposed to non-specific binding). Specifically, a polypeptide having the amino acid sequence of SEQ ID NO: 3 or a fragment thereof, a mutant protein thereof or a fusion protein thereof is used as an immunogen for producing an antibody which is immunoreactive with each. It is possible.
  • proteins, fragments, mutants, fusion proteins and the like contain antigenic determinants or epitopes that elicit antibody formation, but these antigenic determinants or epitopes may be linear or higher order.
  • the structure may be used.
  • the antigenic determinant or epitope can be identified by any method known in the art. Therefore, the present invention also relates to the antigenic epitope of the L4 enzyme protein. Such epitopes are useful for generating antibodies, particularly monoclonal antibodies, as described in more detail below.
  • the epitopes of the invention can be used in Atsey and as research reagents for purifying antibodies that specifically bind from substances such as polyclonal serum or supernatants from cultured hybridomas. Such epitopes or variants thereof can be produced using techniques known in the art, such as solid phase synthesis, chemical or enzymatic cleavage of proteins, or using recombinant DNA techniques. Antibodies of all aspects are induced by the proteins of the present invention. The protein As long as all or part of the polypeptide or epitope is isolated, both polyclonal antibodies and monoclonal antibodies can be prepared using conventional techniques. See, for example, Kennet et al. (Supervised), Monoclonal Antibodies, Hybridomas-'A New Dimensions in Biological Analyzes, Plenum Press, New York, 1980.
  • hybridoma cell line that produces a monoclonal antibody specific to the L4 enzyme protein.
  • hybridomas can be produced and identified by conventional techniques.
  • One method for producing such a hybridoma cell line is to immunize an animal with the enzyme protein of the present invention, collect spleen cells from the immunized animal, fuse the spleen cells with a myeloma cell line, Thereby producing hybridoma cells and identifying a hybridoma cell line that produces a monoclonal antibody that binds to the enzyme.
  • Monoclonal antibodies can be recovered by conventional techniques.
  • the monoclonal antibodies of the present invention include chimeric antibodies, for example, humanized forms of murine monoclonal antibodies. Such humanized antibodies have the advantage of being administered to humans to reduce immunogenicity.
  • an antigen-binding fragment of the above antibody there is also provided an antigen-binding fragment of the above antibody.
  • antigen-binding fragments that can be produced by conventional techniques include, but are not limited to, £ 113 and (ab ') 2 fragments.
  • Antibody fragments and derivatives that can be produced by genetic engineering techniques are also provided.
  • the antibody of the present invention can be used in an assay for detecting the presence of the L4 enzyme protein of the present invention or a polypeptide fragment thereof both in vitro and in vivo.
  • the antibodies of the present invention can also be used for purifying L4 enzyme proteins or polypeptide fragments thereof by immunoaffinity chromatography.
  • the antibodies of the present invention may be provided as blocking antibodies capable of blocking the binding of the glycosyltransferase protein to a binding partner, eg, a receptor substrate, and such binding may result in the biological activity of the enzyme. Can be inhibited.
  • blocking antibodies can express receptor substrates and inhibit the binding of the protein to certain cells. Identification can be made using any suitable Atsey method, such as testing antibodies for force.
  • Blocking antibodies can also be identified in assays relating to their ability to inhibit the biological effects resulting from the enzyme protein binding to the binding partner of the target cell. Such antibodies can be used in in vitro methods or administered in vivo to inhibit a biological activity mediated by the entity that produced the antibody. Thus, according to the present invention, there can be provided an antibody for treating a disorder caused or exacerbated by a direct or indirect interaction between an L4 enzyme protein and a binding partner. Such therapy will involve administering to the mammal an in vivo amount of a blocking antibody effective to inhibit the binding partner-mediated biological activity. Generally, monoclonal antibodies are preferred for use in such therapies, and in one embodiment, antigen-binding antibody fragments are used.
  • L4 The open reading frame (0RF) predicted from the nucleic acid sequence of L4 is 1047 bp (SEQ ID NOS: 1 and 2) and 349 residues in amino acid sequence (SEQ ID NOs: 2 and 3).
  • L4 The open reading frame predicted from the nucleic acid sequence of L4 is 1047 bp (SEQ ID NOS: 1 and 2) and 349 residues in amino acid sequence (SEQ ID NOs: 2 and 3).
  • the expression level of the L4 gene was compared between human colorectal cancer tissue and normal colorectal cancer tissue of the same patient.
  • the quantitative real-time PCR method is a method of combining a fluorescently labeled probe in addition to a sense primer and an antisense primer in PCR.
  • the fluorescent label on the probe comes off and shows fluorescence. Since this fluorescence intensity increases in correlation with the amplification of the target gene, L4 nucleic acid is quantified using this as an index.
  • RNA from normal colon cancer tissue of the same patient as human colon cancer tissue was extracted with the RNeasy Mini Kit (Qiagen) and oligo (dT) using Super-Script First-Strand Synthesis System (Invitrogen) Single-stranded DNA was obtained by the method.
  • Table 1 The results (Table 1) revealed that the amount of L4 nucleic acid expressed in colon cancerous tissues (ie, the transcription level in cancerous tissues) was significantly lower than that in normal tissues. Also, when compared by patient, the expression level of normal tissues was lower than that of normal tissues in the cancerous tissues of all patients, and the degree of the decrease was about 1 Z10 or less, which was 1/1/1 compared to the average value. 5 In addition, for example, if the expression level is reduced to one half of that in normal tissues, the positive rate is 83%.
  • L4 was expressed in mammalian cells by the following method. That is, the L4 gene was incorporated into pENTR (manufactured by Invitrogen) of the pENTR / D-TOPO Cloning Kit (manufactured by Invitrogen), and the mammalian cell expression vector pcDNA3.2-DEST (Invitrogen) and pFLAG -0RF of the relevant gene was introduced into CMV3 (manufactured by SIGMA).
  • a PCR reaction was performed using a primer 5 (L4_fullNkoz: SEQ ID NO: 7) and a 3 ′ primer (L4-fullC: SEQ ID NO: 8).
  • L4_fullNkoz SEQ ID NO: 7
  • L4-fullC SEQ ID NO: 8
  • the PCR method was carried out under the conditions of 98 ° C for 10 seconds, 54 ° C for 30 seconds, and 72 ° C for 2 minutes 30 times.
  • the PCR product was purified by MiniElute PCR Purification Kit (manufactured by QIAGEN) and isolated by a conventional method.
  • This PCR product was incorporated into pENTR / D (manufactured by Invitrogen) by a T0P0 isomerase reaction to prepare an “entry clone”.
  • the reaction was performed by incubating the desired purified DNA fragment solution 21, pENTR / D-TOP0 solution 0.51 (70 ng), and reaction buffer 0.5 ⁇ l at 25 ° C for 5 minutes. Thereafter, 2 ⁇ l of the reaction solution was mixed with 100/1 of a competent cell (Escherichia coli 0-10, manufactured by Invitrogen), and after heat shock, inoculated on an LB plate containing kanamycin and cultured. The next day, a colony was picked, and an E. coli clone retaining the target DNA fragment was confirmed by direct PCR. To further ensure the DNA sequence by sequencing, the plasmid DNA (pENTR-L4A) was extracted and purified.
  • the above-mentioned entry clone has attL which is a recombination site when lambda phage is cut out of E. coli on both sides of the insertion site, and LR clonase (lambda phage recombinant enzymes Int, IHF, Xis By mixing the mixture with a destination vector, the insertion site is transferred to the destination vector, and an expression clone is produced.
  • the specific steps are as follows.
  • pcDNA3.2-DEST solution 1 ⁇ l of the entry clone plasmid solution and 1 ⁇ l of pcDNA3.2-DEST solution (75 ng), 2 ⁇ l of LR reaction buffer, 4 ⁇ l of TE, and 2 ⁇ l of LR clonase mix for 1 hour at 25 ° C, add proteinase K solution, incubate at 37 ° C for 10 minutes to terminate the reaction.
  • This recombination reaction produces pcDNA3.2-L4A).
  • pcDNA3.2 inserts the target gene under the control of the CMV promoter and expresses the inserted gene in mammalian cells.
  • p FLAG-CMVS plasmid vector expresses a transgene by a CMV promoter that works in mammalian cells, and adds a FLAG peptide sequence (SEQ ID NO: 9) to the N-terminal part of the inserted gene product for purification.
  • This is a plasmid vector. Since the L4 gene product is expected to be a membrane-bound protein with a hydrophobic region near the N-terminus, a soluble enzyme protein excluding the water-soluble region was used to facilitate purification of the enzyme protein.
  • the gene is modified to express it, incorporated into the expression plasmid vector PFLAG-CMV3, transfected into mammalian cells, and expressed to obtain a soluble enzyme protein.
  • the removal of the gene region encoding the hydrophobic region of the gene product was carried out by amplifying by PCR the partial sequence with a total chain length of 0RF obtained by entry and cloning.
  • the three types of 5'-terminal primers are lysine codons 1 to 73 and 106 aspartic acid codon of cDNA, respectively. Amplify the cDNA partial sequence encoding a peptide having an isoleucine codon at position 151 N-terminal.
  • a sequence derived from a plasmid vector (XBM13R; SEQ ID NO: 13) contained in the entry clone pENTR-L4A plasmid was used.
  • the PCR method was performed under the conditions of repeating 94 ° C for 30 seconds, 54 ° C for 30 seconds, and 72 ° C for 1 minute 20 times.
  • the amplification product was purified using MiniElute PCR Purification Kit (QIAGEN).
  • MiniElute PCR Purification Kit QIAGEN
  • the above-mentioned modified gene was incorporated into the expression vector using restriction enzyme recognition sequences set at both ends of the PCR primer. Purification
  • the PCR product was digested with the restriction enzymes Kpnl and Xbal at 37 ° C for 2 hours, and then purified using the MiniElute PCR Purification Kit.
  • the pFLAG-CMV3 plasmid vector was digested with Kpnl / Xbal and purified.
  • the ligation of the plasmid vector and the insertion gene was performed using a ligation kit ver. 1 (TAKARA).
  • TAKARA ligation kit ver. 1
  • the reaction was performed at C for 30 minutes. Thereafter, the reaction solution 2 mu 1 Combi competent cells were mixed with (shed E. coli DH5, Invitrogen) 100 il, after Hitosho click method, was inoculated and cultured in LB play Bok containing ampicillin phosphorus. The next day, a colony was picked and an E. coli clone retaining the target DNA fragment was confirmed by direct PCR. After confirming the DNA sequence by sequencing for further assurance, three plasmid DNAs (pFLAG-L4, pFLAG_L4M, and pFLAG-L4N) were extracted and purified
  • this plasmid was introduced into cultured mammalian cells Cosl and 293T. That is, 4 ⁇ 10 6 Cosl cells or 293T cells were placed in a 150 mm Petri dish in 20 ml of DMEM medium (manufactured by Gibco Co., Ltd., Low's glucose medium was used for Cosl cells, and Hydalcos medium was used for 293T cells. 10% inactivated bovine serum was used), and the cells were cultured for 1 ⁇ .
  • DMEM medium manufactured by Gibco Co., Ltd., Low's glucose medium was used for Cosl cells, and Hydalcos medium was used for 293T cells. 10% inactivated bovine serum was used
  • 0pti_MEM manufactured by Gibco, 10 ml
  • 0pti_MEM manufactured by Gibco, 10 ml
  • the cells were collected by a conventional method using trypsin, and the cells and the culture supernatant were frozen and preserved, and used for enzyme activity measurement.
  • NaN 3 (0.05%), NaCl (150 mM), CaCl 2 (2 mM), anti-Ml resin (Sigma) (100 ⁇ 1) are mixed with 10 ml of FLAG-L4 supernatant of the above mammalian cell culture supernatant And stirred overnight at 4 ° C. The next day, centrifuge (3000 rpm, 5 minutes, 4 ° C), collect the pellet, add 9001 of 2 raM CaCl 2 ⁇ TBS, centrifuge again (2000 rpm, 5 minutes, 4 ° C), and remove the pellet to 200 ⁇ l. Was suspended in 1 mM CaCL ⁇ TBS to prepare a sample for activity measurement (L4 enzyme solution).
  • the introduction of the L4 gene causes a change in the sugar chain structure in the cells or in the cell surface.
  • the L4 gene product can be identified and the enzyme activity can be estimated.
  • a conventional method known in the art can be used. For example, by incorporating a donor substrate group or an acceptor substrate group involved in glycosaminodalican synthesis into a reaction system using the L4 enzyme solution prepared as described in Example 3 above.
  • the substrate specificity can be screened, and by comparing the reaction results when the type of buffer used, pH conditions, and the type of coexisting metal ions, etc., are compared, the optimal buffer and optimal pH can be determined. , Required metal ions, etc. can also be specified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

A nucleic acid for examining canceration which is hybridizable with the base sequence represented by SEQ ID NO:1 or a base sequence complementary thereto under stringent conditions. A method of examining canceration which typically comprises: (a) using a nucleic acid hybridizable with the base sequence represented by SEQ ID NO:1 or a base sequence complementary thereto under stringent conditions and measuring the transcriptional level of the nucleic acid in a biological sample; and (b) judging whether or not the transcriptional level of the nucleic acid in the biological sample is significantly lower than that of a normal biological sample employed as a control.

Description

明細書 .  Specification .
核酸及ぴ該核酸を用いた癌化検定方法  Nucleic acid and canceration assay method using the nucleic acid
技術分野  Technical field
本発明は、 新規な核酸、 癌化検定用の該核酸、 及び生物試料中の該核酸の発現 量が異なることに基づく該生物試料の癌化を検定する方法、 並びに新規な糖転移 酵素及ぴこれをコードする核酸等に関する。  The present invention relates to a novel nucleic acid, a nucleic acid for canceration assay, a method for assaying canceration of a biological sample based on a difference in the expression level of the nucleic acid in a biological sample, and a novel glycosyltransferase and a novel method. The present invention relates to a nucleic acid encoding the same.
背景技術  Background art
近年、 生体内での糖鎖や複合糖質の働きが注目されている。 例えば、 軟骨、 血 管壁、 腱などの結合組織に含まれるムコ多糖、 血液型を決定する糖タンパク質、 また神経系の働きに関与している糖脂質が知られている。 それらの糖鎖を合成す る働きのある酵素を同定することは、 様々な糖鎖やそれらの分布等によりもたら される生理活性を解析する上で極めて重要な手がかりとなる。  In recent years, the functions of sugar chains and complex carbohydrates in vivo have been attracting attention. For example, mucopolysaccharides contained in connective tissues such as cartilage, blood vessel walls and tendons, glycoproteins determining blood types, and glycolipids involved in the functioning of the nervous system are known. Identifying enzymes that function to synthesize these sugar chains is a very important clue in analyzing the physiological activities brought about by various sugar chains and their distribution.
例えば、 糖の中で N—ァセチルー D—ガラクトサミン残基 (以下 「GalNAc」 と も記述する) や D—グルクロン酸 (以下 「GulUA」 とも記述する) 等は、 細胞外マ トリックス等を構成するグリコサミノダリカンの構成成分である。 従って、 それ ら糖残基を転移する酵素 (例えば、 非特許文献 1参照) は、 生体内の様々な組織 で働く糖鎖の働きを解析する上で極めて重要なツールとなる。  For example, N-acetyl-D-galactosamine residues (hereinafter also referred to as “GalNAc”) and D-glucuronic acid (hereinafter also referred to as “GulUA”) in sugars are glycosylated in the extracellular matrix. It is a component of Saminodalican. Therefore, enzymes that transfer sugar residues (for example, see Non-Patent Document 1) are extremely important tools for analyzing the functions of sugar chains that work in various tissues in a living body.
ところで、 糖鎖合成は癌化において非常に良く変化することが知られており、 癌の転移や悪性度と相関することが知られている (非特許文献 2〜4 )。 また、各 種組織における発現プロファイル等の解析など、 今日盛んなそれらの網羅的研究 は、 癌化メカニズムの解明にも向けられており、 癌化のメカニズムが特定遺伝子 の発現量と関与し得ることはたびたぴ議論されてきた。 癌診断検定法として、 体 液中癌マーカー等の検定、 その他の癌化の指標となる遺伝子産物等の同定などが 既に行われていることは周知のとおりである。 例えば、 癌マーカーには、 そのよ うな遺伝子産物を検出ないし定量するプローブや抗体等が含まれる。  By the way, sugar chain synthesis is known to change very well in canceration, and is known to correlate with cancer metastasis and malignancy (Non-Patent Documents 2 to 4). In addition, comprehensive research such as these, such as the analysis of expression profiles in various tissues, is also actively aimed at elucidating the mechanism of canceration, and the mechanism of canceration may be related to the expression level of specific genes. It has been debated. As is well known, as a cancer diagnostic assay, an assay for a cancer marker in a body fluid, identification of a gene product or the like which is an indicator of canceration, and the like have already been performed. For example, cancer markers include probes and antibodies that detect or quantify such gene products.
非特許文献 1 Non-patent document 1
Kitagawa H. et al. , J. Biol. Chem. 2001, Oct 19 ; 276 (42): 38721-6 非特許文献 2  Kitagawa H. et al., J. Biol. Chem. 2001, Oct 19; 276 (42): 38721-6 Non-Patent Document 2
Kobata A. , Eur. J. Biochem. 15, 209 (2) , 483 - 501, 1992 非特許文献 3 Kobata A., Eur. J. Biochem. 15, 209 (2), 483-501, 1992 Non-patent document 3
Santer U. V. et al., Cancer Res. , Sep, 44 (9), 3730—5, 1984.  Santer U. V. et al., Cancer Res., Sep, 44 (9), 3730-5, 1984.
非特許文献 4 Non-patent document 4
Tani guchi N., Biochim. Biophys. Acta. , 1455 (2-3) , 287-300, 1999 既述のように生体内での糖鎖の働きが注目されているが、 生体内での糖鎖合成 の解析は十分に進んでいるとは言えない。 糖鎖合成のメカニズム、 生体内での糖 合成の局在が十分に解析されていないことも一因である。 糖鎖合成のメカニズム を解析するに当たっては、 糖鎖合成酵素、 特に糖転移酵素を解析し、 その酵素を 使ってどの様な糖鎖が生成されるのかを分析する必要がある。 そのために新たな 糖転移酵素を見つけだし、 その機能を解析することについての要請も高まってい る。  Taniguchi N., Biochim. Biophys. Acta., 1455 (2-3), 287-300, 1999 As mentioned above, the function of sugar chains in vivo has attracted attention. The analysis of synthesis is not sufficiently advanced. One reason is that the mechanism of sugar chain synthesis and the localization of sugar synthesis in vivo have not been sufficiently analyzed. In analyzing the mechanism of sugar chain synthesis, it is necessary to analyze sugar chain synthases, especially glycosyltransferases, and analyze what kind of sugar chains are produced using the enzymes. There is a growing demand for finding new glycosyltransferases and analyzing their functions.
他方、 糖鎖合成は癌化に伴って変化する場合があることから、 そのような糖鎖 合成に関与する酵素の同定は癌診断に有用な指標を提供すると期待される。 特に そのような酵素のアミノ酸配列又はこれをコードする核酸を指標とすることで、 その具体的な機能解明に先駆けて癌マーカーを提供することは可能である。 例え ば、 核酸の同定は、 DNAマイクロアレイ上で行うこともできるし、 微量でもそれ を PCRで増幅して定量することも可能である。  On the other hand, since sugar chain synthesis may change with canceration, identification of such enzymes involved in sugar chain synthesis is expected to provide useful indicators for cancer diagnosis. In particular, by using the amino acid sequence of such an enzyme or a nucleic acid encoding the same as an index, it is possible to provide a cancer marker prior to elucidation of its specific function. For example, nucleic acid identification can be performed on a DNA microarray, or it can be quantified by amplifying it in a small amount by PCR.
上述の課題に鑑み、 本発明の第 1の目的は、 癌化に伴ってその発現量が有意に 変化する癌マーカー核酸又はポリぺプチドを標的とした癌化検定用の核酸又は抗 体、 及びそれらを用いた癌化検定法等を提供することにある。  In view of the above-mentioned problems, a first object of the present invention is to provide a cancer marker nucleic acid or polypeptide whose expression level changes significantly with canceration, or a nucleic acid or antibody for canceration assay targeting the same, and An object of the present invention is to provide a canceration assay method and the like using them.
本発明の第 2の目的は、 癌化の指標として注目されるポリぺプチドの発見に伴 レ、、糖転移活性を有するヒ ト由来の新規なポリぺプチド、これをコードする核酸、 及び該核酸を発現するための形質転換体、 並びにこれを使用した当該酵素タンパ ク質の製造方法等を提供することにある。  A second object of the present invention is to provide a novel polypeptide derived from human having glycosyltransferase activity, a nucleic acid encoding the same, and the discovery of a polypeptide that is noted as an indicator of canceration. An object of the present invention is to provide a transformant for expressing a nucleic acid, a method for producing the enzyme protein using the transformant, and the like.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の L4タンパク質と、 コンドロイチン合成酵素との間でァライメ ントさせた各ァミノ酸配列を示す。  FIG. 1 shows each amino acid sequence aligned between the L4 protein of the present invention and chondroitin synthase.
発明の要旨  Summary of the invention
本発明者等は、 糖転移活性を有する新規な酵素タンパク質を見出すため、 各種 配列をクエリーとして見出される様々な核酸配列につレ、て鋭意研究を行つてきた。 その研究成果の一つとして、 新規な構造遺伝子をコードする核酸配列をクロー二 ングすることに成功し、 その塩基配列 (配列番号 1 ) 及び推測アミノ酸配列 (配 列番号 3 ) を決定し、 L4と命名した。 以下では、 配列番号 1の塩基配列に関する 核酸は 「し 4遺伝子」 又は 「L4核酸」 等とも記述し、 また配列番号 3のアミノ酸 配列に関するポリペプチドを「L 4タンパク質」又は「L4酵素」等とも記述する。 そして、 上記 L4に関し詳細な検討を重ねた結果、 L 4核酸の発現量が癌化した 組織において健常組織よりも有意に低いこと、 さらには当該核酸によりコードさ れるポリぺプチドが糖転移活性を有することを突き止め、 本発明を完成した。 すなわち、 本発明は、 配列番号 1に記載の塩基配列又はそれに相補的な塩基配 列にストリンジェントな条件下でハイブリダイズする核酸に関する。 In order to find a novel enzyme protein having glycosyltransferase activity, the present inventors We have been conducting intensive research on various nucleic acid sequences found as sequences using queries. As one of the research results, we succeeded in cloning a nucleic acid sequence encoding a novel structural gene, and determined its nucleotide sequence (SEQ ID NO: 1) and deduced amino acid sequence (SEQ ID NO: 3). It was named. In the following, the nucleic acid relating to the nucleotide sequence of SEQ ID NO: 1 is also described as "Shi 4 gene" or "L4 nucleic acid", etc. Describe. As a result of detailed studies on L4, it was found that the expression level of L4 nucleic acid is significantly lower in cancerous tissues than in healthy tissues, and that the polypeptide encoded by the nucleic acid has a glycosyltransferase activity. The present invention has been completed. That is, the present invention relates to a nucleic acid that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto.
また本発明の核酸は、 配列番号 1に記載の塩基配列中の少なくとも十数個の連 続する塩基配列又はそれに相補的な塩基配列からなる核酸、 好ましくは配列番号 Further, the nucleic acid of the present invention is a nucleic acid consisting of at least a dozen or more consecutive nucleotide sequences in the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto, preferably SEQ ID NO:
1に記載の塩基配列又はそれに相補的な塩基配列からなる核酸である。 特に本発 明の核酸は、 プローブまたはプライマーであり得る。 本発明の好適なプライマー の例は、 配列番号 4又は配列番号 5に記載の塩基配列又はそれに相捕的な塩基配 列からなるプライマーである。このように本発明の核酸は癌マーカーであり得る。 また本発明は、 生物試料の癌化を検定する方法にも関する。 すなわち、 本発明 による癌化検定方法は、 A nucleic acid comprising the nucleotide sequence described in 1 or a nucleotide sequence complementary thereto. In particular, the nucleic acids of the invention can be probes or primers. An example of a suitable primer of the present invention is a primer consisting of the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5 or a nucleotide sequence complementary thereto. Thus, the nucleic acid of the present invention can be a cancer marker. The present invention also relates to a method of assaying a biological sample for canceration. That is, the canceration assay method according to the present invention comprises:
( a ) 請求項 1〜6のいずれか 1項に記載の核酸を使用して、 生物試料におけ る該核酸についての転写レベルを測定し;そして  (a) using the nucleic acid according to any one of claims 1 to 6, measuring a transcription level of the nucleic acid in a biological sample; and
( b ) 該測定値が、 健常生物試料についての測定値と比較して有意に下回るか 否かを判断すること ;  (b) determining whether the measured value is significantly lower than the measured value for a healthy biological sample;
を含む。 including.
本発明の癌化検定法の一態様は、 前記 ( a ) の工程において、 該生物試料につ いての測定値が、 健常生物試料についての測定値と比較して 1 Z 2以下であるか 否かを判断することを含む。  In one embodiment of the canceration assay method of the present invention, in the step (a), whether the measured value of the biological sample is 1 Z2 or less as compared with the measured value of a healthy biological sample And determining whether or not.
本発明の癌化検定法の他の一態様は、 前記 (a ) の工程において、 前記いずれ かの核酸を標識プローブとして使用し、 該標識プローブをストリンジェントなハ ィブリダイゼーション条件下で生物試料に接触させ、 そこでハイブリダイズした 該標識プローブからのシグナルに基づいて前記転写レベルを測定することを含む。 本発明の癌化検定法のまた別の一態様は、 前記 (a ) の工程において、 前記い ずれかのプライマーを使用して生物試料に含まれる核酸にっレ、て核酸増幅処理を 行い、 そして、 該プライマーで増幅された核酸の量を測定することを含む。 In another embodiment of the canceration assay method of the present invention, in the step (a), any one of the nucleic acids is used as a labeled probe, and the labeled probe is a stringent probe. Contacting the sample with a biological sample under hybridization conditions, and measuring the transcription level based on the signal from the labeled probe hybridized there. In another embodiment of the canceration assay method of the present invention, in the step (a), a nucleic acid amplification treatment is performed on the nucleic acid contained in the biological sample using any of the primers, And measuring the amount of the nucleic acid amplified by the primer.
本発明の癌化検定法の他の一態様は、 癌治療に関する処置の有効性を検定する 方法であって、 上記いずれかの核酸を使用して、 癌治療のための処置が施された 生物試料における該核酸についての転写レベルを測定し、 該測定値がその処置前 又は未処置の場合と比較して有意に下回るか否かを判断することを含む。  Another embodiment of the canceration assay method of the present invention is a method for assaying the effectiveness of a treatment for cancer therapy, which comprises using any one of the nucleic acids described above for an organism that has been treated for cancer therapy. Measuring the level of transcription for the nucleic acid in the sample, and determining whether the measured value is significantly lower than before or without the treatment.
本発明の癌化検定法において、典型的な前記生物試料は大腸由来の試料である。 本発明の他の側面において、 上記核酸の発見に基づき、 糖転移活性を有する新 規なポリぺプチド及ぴそれをコードする新規な核酸等が提供される。  In the canceration assay of the present invention, the typical biological sample is a colon-derived sample. In another aspect of the present invention, a novel polypeptide having a glycosyltransferase activity, a novel nucleic acid encoding the same, and the like are provided based on the discovery of the nucleic acid.
本発明者等の検討によれば、当該 L4タンパク質は、そのアミノ酸配列おいて糖 転移酵素の特徴である N末側に膜貫通領域と所定のモチーフ配列を有するので、 糖転移酵素であると推定された。 このような新規な酵素タンパク質を提供するこ とは、 当該技術分野におけるこれらの多様な必要性を満たすのに貢献する。  According to the studies by the present inventors, the L4 protein is presumed to be a glycosyltransferase because it has a transmembrane region and a predetermined motif sequence on the N-terminal side, which is a characteristic of glycosyltransferase in its amino acid sequence. Was done. Providing such novel enzyme proteins contributes to satisfying these diverse needs in the art.
すなわち、 本発明は、 糖転移活性を有するポリペプチドをコードする核酸であ つて、 下記 (a ) 〜 (d ) の塩基配列:  That is, the present invention relates to a nucleic acid encoding a polypeptide having glycosyltransferase activity, comprising the following nucleotide sequences (a) to (d):
( a ) 配列番号 1の全長の塩基配列;  (a) the full-length nucleotide sequence of SEQ ID NO: 1;
( b ) 配列番号 1の塩基番号 7 3〜 1 0 4 7に記載の塩基配列;  (b) the nucleotide sequence of SEQ ID NO: 1 at nucleotide numbers 73 to 107;
( c ) 配列番号 1の塩基番号 1 0 6〜 1 0 4 7に記載の塩基配列;又は  (c) the base sequence according to base numbers 106 to 107 of SEQ ID NO: 1; or
( d ) 配列番号 1の塩基番号 1 5 1〜 1 0 4 7に記載の塩基配列;  (d) the nucleotide sequence of SEQ ID NO: 1 as represented by nucleotide numbers 151 to 107;
のいずれか 1つを有する核酸にも関する。 The present invention also relates to a nucleic acid having any one of the above.
また本発明のポリべプチドをコ一ドする核酸の一態様は、 糖転移活性を有する ポリペプチドをコードする核酸であって、 下記 (a ) 〜 (d ) のアミノ酸配列: ( a ) 配列番号 3の全長のァミノ酸配列;  One embodiment of the nucleic acid encoding the polypeptide of the present invention is a nucleic acid encoding a polypeptide having glycosyltransferase activity, wherein the amino acid sequence of the following (a) to (d): (a) SEQ ID NO: 3 full-length amino acid sequences;
( b ) 配列番号 3のァミノ酸番号 2 5〜 3 4 9に記載のァミノ酸配列;  (b) the amino acid sequence of SEQ ID NO: 3 as defined in amino acid numbers 25-349;
( c ) 配列番号 3のァミノ酸番号 3 6〜 3 4 9に記載のアミノ酸配列;又は (c) the amino acid sequence of amino acid number 36-349 of SEQ ID NO: 3; or
( d ) 配列番号 3のァミノ酸番号 5 1〜 3 4 9に記載のァミノ酸配列; のいずれか 1つを有するポリペプチドをコードする核酸である。 またその好まし い一態様は、 配列番号 3のアミノ酸配列からなるポリぺプチドをコ一ドする核酸 である。 それらの好ましいタイプの核酸は DNAである。 (d) the amino acid sequence of SEQ ID NO: 3 as set forth in amino acid numbers 51-349; A nucleic acid encoding a polypeptide having any one of the above. One preferred embodiment is a nucleic acid encoding a polypeptide consisting of the amino acid sequence of SEQ ID NO: 3. A preferred type of nucleic acid is DNA.
また本発明は、 上記いずれかの核酸を含むベクター、 及び該ベクターを含む形 質転換体にも関する。  The present invention also relates to a vector containing any of the above nucleic acids, and a transformant containing the vector.
また本発明のポリペプチドは、 糖転移活性を有するポリペプチドであって、 下 記 (a ) 〜 (d ) のアミノ酸配列:  The polypeptide of the present invention is a polypeptide having glycosyltransferase activity, and has the following amino acid sequence (a) to (d):
( a ) 配列番号 3の全長のァミノ酸配列;  (a) the full-length amino acid sequence of SEQ ID NO: 3;
( b ) 配列番号 3のァミノ酸番号 2 5〜 3 4 9に記載のアミノ酸配列;  (b) the amino acid sequence of amino acid number 25-349 of SEQ ID NO: 3;
( c ) 配列番号 3のァミノ酸番号 3 6〜 3 4 9に記載のアミノ酸配列;又は ( d ) 配列番号 3のァミノ酸番号 5 1〜 3 4 9に記載のアミノ酸配列; のいずれか 1つを有するポリペプチドに関する。 またその好ましい一態様は、 配 列番号 3のァミノ酸配列からなるポリぺプチドである。  (c) the amino acid sequence of amino acid numbers 36 to 349 of SEQ ID NO: 3; or (d) the amino acid sequence of amino acid numbers 51 to 349 of SEQ ID NO: 3. A polypeptide having the formula: One preferred embodiment is a polypeptide comprising the amino acid sequence of SEQ ID NO: 3.
さらに本発明は、 上記ポリべプチドに対する抗体を提供する。  Further, the present invention provides an antibody against the polypeptide.
発明の詳細な記载  Detailed description of the invention
以下、 本発明を発明の実施の形態により詳説する。  Hereinafter, the present invention will be described in detail by embodiments of the present invention.
( 1 ) 癌化を検定するための本発明の核酸  (1) Nucleic acid of the present invention for assaying for canceration
上述のように本発明者らは、 配列番号 1に記載の塩基配列を有する核酸の発現 量が癌化組織において有意に低下していることを発見した。 したがって、 配列番 号 1の塩基配列又はそれの相補的配列を有する核酸は、 転写産物を含む生物試料 を対象とした癌診断に有用な癌マーカーとして着目される。 この観点から、 配列 番号 1に記載の塩基配列により定義される核酸にストリンジヱントな条件下でハ ィプリダイズし得る癌マーカ一核酸が提供される。  As described above, the present inventors have found that the expression level of a nucleic acid having the nucleotide sequence of SEQ ID NO: 1 is significantly reduced in cancerous tissues. Therefore, a nucleic acid having the nucleotide sequence of SEQ ID NO: 1 or a sequence complementary thereto is attracting attention as a cancer marker useful for cancer diagnosis in a biological sample containing a transcript. In this respect, there is provided a cancer marker nucleic acid capable of hybridizing to a nucleic acid defined by the nucleotide sequence of SEQ ID NO: 1 under stringent conditions.
そのような癌マーカー核酸の一態様は、 生物試料中の当該核酸を標的とし、 配 列番号 1の塩基配列から選ばれる塩基配列を有するプライマ一又はプローブであ る。特に配列番号 1の塩基配列は構造遺伝子をコードする mRNA由来のもので、当 該遗伝子のオープンリ一ディングフレーム (0RF) 全域を含むことから、 通常、 生 物試料由来の転写産物中には、 配列番号 1の全長ないしそれに近い大部分長が見 出される。 この観点から、 本発明によるプライマー又はプローブは、 配列番号 1 の塩基配列から選択される所望の部分配列を有し、 そのようにして当該核酸中の 当該選択された塩基配列に特異的にハイブリダィズできる核酸であることができ る。 One embodiment of such a cancer marker nucleic acid is a primer or a probe targeting the nucleic acid in a biological sample and having a base sequence selected from the base sequence of SEQ ID NO: 1. In particular, the nucleotide sequence of SEQ ID NO: 1 is derived from mRNA encoding a structural gene, and includes the entire open reading frame (0RF) of the gene. Is found to be the full length of SEQ ID NO: 1 or most of it. From this point of view, the primer or probe according to the present invention has SEQ ID NO: 1 It can be a nucleic acid having a desired partial sequence selected from the following base sequences and thus being able to specifically hybridize to the selected base sequence in the nucleic acid.
典型的なプライマー又はプローブには、 配列番号 1の塩基配列を有する核酸に 由来する天然の D N Aフラグメント、 配列番号 1の塩基配列を有するように合成 された D N Aフラグメント、 又はそれらの相補鎖である。  A typical primer or probe is a natural DNA fragment derived from a nucleic acid having the nucleotide sequence of SEQ ID NO: 1, a DNA fragment synthesized to have the nucleotide sequence of SEQ ID NO: 1, or a complementary strand thereof.
また、 上記のようなプライマー又はプローブを用いて、 後述のように生物試料 中の該標的核酸を検出し及び/又は定量することができる。 またゲノム上の配列 も標的となり得るので、 本発明の核酸は、 医学研究用又は遺伝子治療用のアンチ センスプライマーとして使用してもよい。  In addition, the target nucleic acid in a biological sample can be detected and / or quantified using a primer or a probe as described above, as described later. Since the sequence on the genome can also be a target, the nucleic acid of the present invention may be used as an antisense primer for medical research or gene therapy.
本発明のプローブ Probe of the present invention
本発明の核酸の好ましい態様は、 配列番号 1の塩基配列を有する核酸又はその 相補鎖を標的としたプローブである。 本発明によるプローブには、 配列番号 1の 塩基配列から選ばれる少なくとも十数個、 好ましくは 1 5塩基以上、 好ましくは 1 7塩基以上、 より好ましくは 2 0塩基以上のオリゴヌクレオチド若しくはその 相補鎖、 或いは、 その 0RF領域 (塩基番号 1〜1 0 4 7 ) の全長、 すなわち 1 0 4 7塩基の cDNA若しくはその相補鎖が含まれる。  A preferred embodiment of the nucleic acid of the present invention is a probe targeting a nucleic acid having the nucleotide sequence of SEQ ID NO: 1 or a complementary strand thereof. The probe according to the present invention has at least ten or more nucleotides selected from the nucleotide sequence of SEQ ID NO: 1, preferably at least 15 nucleotides, preferably at least 17 nucleotides, more preferably at least 20 nucleotides or a complementary strand thereof, Alternatively, it includes the full length of the 0RF region (base numbers 1 to 1047), that is, cDNA of 1407 bases or its complementary strand.
オリゴヌクレオチドプローブである場合、 本発明の核酸は、 十数塩基、 特に 1 5塩基もの塩基数さえあれば、 ストリンジェントな条件下で当該標的核酸に対し 特異的にハイブリダィズし得ると理解されるべきである。 すなわち、 当業者は、 オリゴヌクレオチドプローブ設計に関する公知の各種ストラテジ一に従い、 配列 番号 1の塩基配列から適切な少なくとも 1 5塩基ないし 2 0塩基の部分配列を選 択することができる。 また、 配列番号 3のアミノ酸配列情報は、 プローブとして 適切と思われるユニークな配列を選定するのに役立つ。  In the case of an oligonucleotide probe, it should be understood that the nucleic acid of the present invention can specifically hybridize to the target nucleic acid under stringent conditions as long as it has more than ten bases, especially as many as 15 bases. It is. That is, a person skilled in the art can select an appropriate partial sequence of at least 15 to 20 nucleotides from the nucleotide sequence of SEQ ID NO: 1 according to various known strategies for designing oligonucleotide probes. In addition, the amino acid sequence information of SEQ ID NO: 3 is useful for selecting a unique sequence that is deemed appropriate as a probe.
また、 cDNAプローブである場合、 例えば、 一般に医学研究用の試薬又は診断薬 としてのプローブは、 大きい分子量のものは取り扱い難いので、 この見地から、 医学研究用の本発明のプローブは、 配列番号 1の塩基配列から選ばれる 5 0〜5 0 0塩基、 より好ましくは 6 0〜 3 0 0塩基が例示される。  In the case of a cDNA probe, for example, a probe as a reagent or a diagnostic agent for medical research is generally difficult to handle with a large molecular weight, and from this viewpoint, the probe of the present invention for medical research is represented by SEQ ID NO: 1. 50 to 500 bases, more preferably 60 to 300 bases selected from the base sequence of
本明細書に記載されるストリンジェントな条件下とは、 中程度又は高程度なス トリンジェントな条件下でハイブリダィズすることを意味する。 具体的には、 中 程度のストリンジヱン卜な条件は、 例えば、 DNA の長さに基づき、 一般の技術を 有する当業者によって、 容易に決定することが可能である。 基本的な条件は、 Sambrookら、 Mol ecular Cl oning: A Laboratory Manual W> 版、 Vol . 1、 ι . 42-7, 45 Co l d Spring Harbor Laboratory Press, 2001 に示され、 そして二トロセルロー スフィルターに関し、 5 X SSC、 0. 5% SDS、 1. 0 mM EDTA (pH8. 0)の前洗浄溶液、 約 40— 50°Cでの、 約 50%ホルムアミ ド、 2 X SSC— 6 X SSC (又は約 42°Cでの約 50%ホ ノレムアミ ド中の、 スターク溶液 (Stark ' s solut i on) などの他の同様のハイブリ ダイゼーション溶液)のハイブリダイゼーション条件、および約 60°C、 0, 5 X SSC、 0. 1 % SDS の洗浄条件の使用が含まれる。 高ストリンジヱントな条件もまた、 例 えば DNAの長さに基づき、 当業者によって、 容易に決定することが可能である。 一般的に、 こうした条件は、 中程度にストリンジェントな条件よりも高い温度及 ぴ Z又は低い塩濃度でのハイブリダィゼーション及び Z又は洗浄を含み、 例えば 上記のようなハイブリダイゼーション条件、及びおよそ 68°C、 0. 2 X SSC、 0. 1% SDS の洗浄を伴うと定義される。 当業者は、 温度おょぴ洗浄溶液塩濃度は、 プローブ の長さ等の要因に従って、必要に応じて調整可能であることを認識するであろう。 上記のように当業者であれば、 当該技術分野において公知の各種プローブ設計 法及びハイブリダィゼーション条件に関する技術常識、 並びに通常用いられる実 験手段を通じて得られるであろう経験則を基に、 選択されたプローブに適切な中 程度又は高程度にストリンジェントな条件を容易に見つけ出し、 実施することが できる。 Stringent conditions described herein are defined as moderate or high stringency. Hybridizing under stringent conditions. Specifically, moderate stringent conditions can be easily determined by those skilled in the art, for example, based on the length of the DNA. The basic conditions are set forth in Sambrook et al., Molecular Cloning: A Laboratory Manual W> Edition, Vol. 1, ι. 42-7, 45 Cold Spring Harbor Laboratory Press, 2001, and for ditrocellulose filters. 5X SSC, 0.5% SDS, pre-wash solution of 1.0 mM EDTA (pH 8.0), about 50% formamide at about 40-50 ° C, 2X SSC-6X SSC (or Hybridization conditions for other similar hybridization solutions, such as Stark's solution, in about 50% honoleamide at about 42 ° C, and at about 60 ° C, 0,5 X SSC, including the use of 0.1% SDS wash conditions. Highly stringent conditions can also be readily determined by those skilled in the art, for example, based on the length of the DNA. In general, such conditions include hybridization and Z or washing at higher temperatures and lower Z or salt concentrations than moderately stringent conditions, e.g., hybridization conditions as described above, and approximately 68 ° C, defined as 0.2 X SSC, with 0.1% SDS wash. One skilled in the art will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the probe. As described above, those skilled in the art can select based on the common general knowledge of various probe design methods and hybridization conditions known in the art, and empirical rules that can be obtained through commonly used experimental means. Moderate or moderately stringent conditions appropriate for the probe used can be easily found and implemented.
また、 選択される塩基長及ぴ採用されるハイブリダィズ条件等に依存するが、 比較的短鎖のオリゴヌクレオチドプローブは、 配列番号 1の塩基配列又はその相 補的な塩基配列と 1又は数個の塩基、 特に 1又は 2塩基程度の不一致があっても プローブとしての機能を果たし得る。 また、 比較的長鎖の c D N Aプローブは、 配列番号 1の塩基配列又はその相補的な塩基配列と 5 0 %以下、 好ましくは 2 0 %以下の不一致があっても、 プローブとしての機能を果たし得る。  In addition, depending on the selected base length and the hybridization conditions to be employed, the relatively short oligonucleotide probe may have one or several nucleotides of the nucleotide sequence of SEQ ID NO: 1 or its complementary nucleotide sequence. Even if there is a mismatch of one or two bases, especially one or two bases, it can function as a probe. In addition, the relatively long cDNA probe functions as a probe even if there is a mismatch of 50% or less, preferably 20% or less with the nucleotide sequence of SEQ ID NO: 1 or its complementary nucleotide sequence. obtain.
上記のようにして設計される本発明のプローブは、 標的配列とのハイプリッド を検出または確認するために、 蛍光標識、 放射標識、 ピオチン標識等の標識を付 した標識プローブとして使用することができる。 The probe of the present invention designed as described above is labeled with a fluorescent label, a radioactive label, a biotin label, or the like in order to detect or confirm a hybrid with the target sequence. Can be used as a labeled probe.
例えば、 本発明の標識プローブは、 当該癌マーカー核酸の PCR増幅産物を確認 又は定量するために使用することができる。 その場合、 その P C Rに使用される 一対のプライマ一配列の間に位置する領域の塩基配列を標的としたプローブを使 用するとよい。 そのようなプローブの一例は、 配列番号 6に記載の塩基配列 (配 列番号 1中の塩基番号 2 4 4 - 2 7 4の相補鎖に相当する) からなるオリゴヌク レオチドである (実施例 2参照)。 本発明のプローブは、診断用 D N Aプローブキ ット等に組み込まれてもよいし、 D N Aマイクロアレイ等のチップ上に固定され てもよい。  For example, the labeled probe of the present invention can be used for confirming or quantifying a PCR amplification product of the cancer marker nucleic acid. In this case, it is preferable to use a probe that targets a base sequence in a region located between a pair of primer sequences used for the PCR. One example of such a probe is an oligonucleotide consisting of the nucleotide sequence of SEQ ID NO: 6 (corresponding to the complementary strand of nucleotides 244-274 in SEQ ID NO: 1) (see Example 2). ). The probe of the present invention may be incorporated in a diagnostic DNA probe kit or the like, or may be fixed on a chip such as a DNA microarray.
本発明のプライマー Primer of the present invention
本発明の核酸の好ましい他の態様はオリゴヌクレオチドプライマーである。 本 発明によるオリゴヌクレオチドプライマ一の製造に当たっては、 配列番号 1の塩 基配列の〇R F領域から以下の条件を満たすように 2つの領域を選択するとよい。  Another preferred embodiment of the nucleic acid of the present invention is an oligonucleotide primer. In producing the oligonucleotide primer according to the present invention, two regions may be selected from the ΔRF region of the base sequence of SEQ ID NO: 1 so as to satisfy the following conditions.
1 ) 各領域の長さが数十塩基以上、 特に 1 5塩基以上、 好ましくは 1 7塩基以 上、 より好ましくは 2 0塩基以上であり、 且つ 5 0塩基以下であること ; さらに 1) the length of each region is several tens of bases or more, particularly 15 or more bases, preferably 17 or more bases, more preferably 20 or more bases, and 50 or less bases;
2 ) 各領域中の G + Cの割合が 4 0〜 7 0 %であること ; 2) The ratio of G + C in each region is 40 to 70%;
実際には、 上記のように選択された 2つの領域と同じ塩基配列若しくはそれら に相補的な塩基配列を有する一本鎖 DNAとして製造してもよいし、 それら塩基配 列に対する結合特異性を失わないように修飾した一本鎖 DNAを製造してもよい。 本発明のプライマーは、 配列番号 1の O R F領域中の部分配列と完全に相補的な 配列を有することが好ましいが、 1または 2塩基の不一致があっても差し支えな レ、。  In practice, it may be produced as a single-stranded DNA having the same nucleotide sequence as the two regions selected as described above or a nucleotide sequence complementary thereto, or may lose the binding specificity to these nucleotide sequences. A modified single-stranded DNA may be produced. The primer of the present invention preferably has a sequence completely complementary to the partial sequence in the ORF region of SEQ ID NO: 1, but may have a mismatch of 1 or 2 bases.
本発明による一対のプライマーの例は、 配列番号 4の塩基配列 (配列番号 1中 の塩基番号 1 9 4— 2 1 3に相当する) からなるオリゴヌクレオチド、 及ぴ配列 番号 5の塩基配列(配列番号 1中の塩基番号 3 2 5 - 3 4 4の相補鎖に相当する) からなるオリゴヌクレオチドである。 なお、 それによる増幅産物を確認又は定量 するために使用できる上述のプローブは、 例えば、 既述の配列番号 6の塩基配列 からなる標識されたオリゴヌクレオチドプローブである。  Examples of the pair of primers according to the present invention include an oligonucleotide consisting of the base sequence of SEQ ID NO: 4 (corresponding to base numbers 194-213 in SEQ ID NO: 1), and a base sequence of SEQ ID NO: 5 (sequence (Corresponding to the complementary strand of base Nos. 3225-344 in No. 1). The above-mentioned probe that can be used for confirming or quantifying the amplification product thereby is, for example, a labeled oligonucleotide probe consisting of the base sequence of SEQ ID NO: 6 described above.
( 2 ) 本発明による癌化検定方法 既述したように、 癌化が引き起こされている生物試料中での L4核酸の発現量、 すなわち当該遺伝子のゲノムから mRNAへの転写レベルは、 その健常生物試料よ りも有意に低下していることが見出された。 この観点から、 生物試料中の当該核 酸の転写レベルを指標とした癌化の検定方法が提供される。 すなわち、 本明細書 において当該核酸の塩基配列情報が開示されたため、 既に詳細に説明したように 本開示に基づいて当業者は適宜にプローブ又はプライマーを作製することができ、 それによつて当該核酸の転写レベルを検出し、 検討することができる。 (2) Canceration assay method according to the present invention As described above, the expression level of L4 nucleic acid in a biological sample in which cancer is caused, that is, the transcription level of the gene from the genome to mRNA is significantly lower than that of the healthy biological sample. Was found. From this viewpoint, a method for assaying canceration using the transcription level of the nucleic acid in a biological sample as an index is provided. That is, since the nucleotide sequence information of the nucleic acid was disclosed in the present specification, those skilled in the art can appropriately prepare probes or primers based on the present disclosure as described in detail above, whereby the nucleic acid Transcript levels can be detected and examined.
本発明による癌化検定方法の具体的態様は、 生物試料から抽出された転写産物 又はそれに由来する核酸ライブラリーを被検試料として、 本発明のプローブ又は プライマーを用いて当該核酸の量を測定し、 そして、 その測定値が対照の健常生 物試料に関する値と比較して有意に下回るか否かを判断することを含む。 ここで 被検生物試料の値が健常生物試料の値を有意に下回る場合に、 例えば、 その生物 試料は癌化している或いは悪性度が高いと判断される。  In a specific embodiment of the canceration assay method according to the present invention, a transcript extracted from a biological sample or a nucleic acid library derived therefrom is used as a test sample to measure the amount of the nucleic acid using the probe or primer of the present invention. And determining whether the measured value is significantly below the value for the control healthy biological sample. Here, when the value of the test biological sample is significantly lower than the value of the healthy biological sample, for example, the biological sample is determined to be cancerous or highly malignant.
本発明による癌化検定法において、 対照となる健常生物試料についての値は、 同一患者の同一組織における未癌化部位についての測定値を利用してもよいし、 健常生物試料から得られた既知のデータ等を基に一般化された値、 例えば平均的 正常値を利用してもよい。  In the canceration assay according to the present invention, the value for a healthy biological sample serving as a control may be a measured value for a non-cancerous site in the same tissue of the same patient, or may be a known value obtained from a healthy biological sample. A value generalized based on the above data, for example, an average normal value may be used.
本検定法において、 被検試料についての測定値が健常試料と比較して有意に下 回る又は低いか否かは、 その検定に必要とされる精度 (陽性率) や判定すべき悪 性度に従つて設定される基準で判断されることができる。  In this assay, whether the measured value of a test sample is significantly lower or lower than that of a healthy sample depends on the precision (positive rate) required for the test and the degree of aggression to be judged. Accordingly, the judgment can be made based on criteria set.
例えば、 本発明者等による検定例 (実施例 2 ) によれば、 癌化状態であると判 断されるべき転写レベルを健常試料の 1 / 2以下の測定値とすれば約 8 0 %が陽 性と判定される。 また、 その条件を 3ノ5 ( 0 . 6倍) 以下とすれば 1 0 0 %の 陽性率を達成する。 したがって、 本検定法によれば、 被検試料についての測定値 が健常試料の 1 / 2以下であるか否か、 好ましくは 3 Z 5以下であるか否かを判 定することを含む方法等が提供される。  For example, according to an assay example (Example 2) by the present inventors, if the transcript level to be determined to be in a cancerous state is a measurement value of 1/2 or less of a healthy sample, about 80% is obtained. Determined to be positive. If the condition is set at 3-5 (0.6 times) or less, a positive rate of 100% can be achieved. Therefore, according to this assay method, a method including determining whether the measured value of a test sample is 1/2 or less of a healthy sample, preferably 3Z5 or less, etc. Is provided.
また例えば、 悪性度の高い組織の検出を目的として、 陽性とされる上記差違を 更に大きく設定したり、 或いは癌化の兆候ないし可能性がある被検試料を網羅的 に検出することを目的として、陽性とされる上記差違を更に小さく設定するなど、 目的に応じて任意に判定基準を設定することができる。 Further, for example, for the purpose of detecting a tissue with a high degree of malignancy, the above-mentioned difference that is determined to be positive is set to be larger, or the purpose is to comprehensively detect a test sample having a sign or possibility of canceration. , Such as setting the difference that is considered positive to be smaller, The criterion can be arbitrarily set according to the purpose.
ハイブリダイゼーション検定法 Hybridization assay
本発明による癌化検定法の態様には、 例えば、 本発明の核酸から得られるプロ ーブを使用したサザンブロット、 ノーザンブロッ卜、 ドットブロット、 又はコ口 ニーハイブリダィゼーション法等のような当業者に周知である各種ハイブリダィ ゼーシヨン検定を用いた方法が含まれる。 さらに検出シグナルの増幅や定量が必 要とされる場合、 それらを免疫学的検定法と組み合わせた検定法を使用してもよ レ、。  Embodiments of the canceration assay according to the present invention include, for example, a Southern blot, a Northern blot, a dot blot, and a co-needle knee hybridization method using a probe obtained from the nucleic acid of the present invention. Methods using various hybridization assays well known to those skilled in the art are included. If further amplification or quantification of the detection signal is required, an assay that combines them with an immunoassay may be used.
典型的なハイブリダィゼーション検定法によれば、 生物試料から抽出された検 核酸またはその増幅物が固相化され、 標識プローブとストリンジェントな条件下 でハイブリダィズさせ、 洗浄後、 固相に結合された標識が測定される。  According to a typical hybridization assay, a test nucleic acid or an amplified product thereof extracted from a biological sample is immobilized, hybridized with a labeled probe under stringent conditions, washed, and bound to a solid phase. The labeled label is measured.
生物試料からの転写産物の抽出及び精製は、 当業者に知られているあらゆる方 法を適用して行われ得る。 ·  Extraction and purification of the transcript from the biological sample can be performed by applying any method known to those skilled in the art. ·
核酸増幅による検定法 Assay by nucleic acid amplification
本発明による癌化検定法の好ましい態様には、 本発明の核酸の塩基配列から選 択されるプライマーを用いて行われる核酸増幅反応を利用した検定法も含まれる。 ここで、 核酸増幅反応は、 例えば、 ポリメラーゼ連鎖反応 (PCR) [Saiki R. K. , et al. , Science, 230, 1350-1354 (1985) ]、 ライゲース連鎖反応 (LCR) [Wu D. Υ·, et al., Genomics, 4, 560-569 (1989); Barringer K. J., et al. , Gene, 89, 117-122 (1990); Barany F. , Proc. Natl. Acad. Sci. USA, 88, 189-193 (1991) ] 及び転写に基づく増幅 [Kwoh D. Y., et al. , Proc. Natl. Acad. Sci. USA, 86, 1173-1177 (1989) ] 等の温度循環を必要とする反応、 並びに鎖置換反応 (SDA) [Walker G. T., et al., Proc. Natl. Acad. Sci. USA, 89, 392-396 (1992); Walker G. T., et al. , Nuc. Acids Res. , 20, 1691 - 1696 (1992) ]、 自己保持配列複製 (3SR) [Guatelli J. C., Proc. Natl. Acad. Sci. USA, 87, 1874 - 1878 (1990) ] およ び Q jS レプリカーゼシステム [リザイルディら、 BioTechnology 6, p. 1197- 1202 (1988) ] 等の恒温反応を含む。 また、 欧州特許第 0525882号に記載されている標 的核酸と変異配列の競合増幅による核酸配列に基づく増幅 (Nucleic Acid Sequence Based Ampl ification : NASBA) 反応等も利用可能である。 好ましくは PCR法である。一般に、 PCRのような核酸増幅法自体は、 当該技術分野において周 知であり、 そのための試薬キットおよび装置も市販されているので容易に行うこ とができる。 A preferred embodiment of the canceration assay according to the present invention also includes an assay using a nucleic acid amplification reaction performed using a primer selected from the nucleotide sequence of the nucleic acid of the present invention. Here, nucleic acid amplification reactions include, for example, the polymerase chain reaction (PCR) [Saiki RK, et al., Science, 230, 1350-1354 (1985)], the Lighes chain reaction (LCR) [Wu D. Υ ·, et al. al., Genomics, 4, 560-569 (1989); Barringer KJ, et al., Gene, 89, 117-122 (1990); Barany F., Proc. Natl. Acad. Sci. USA, 88, 189-. 193 (1991)] and transcription-based amplification [Kwoh DY, et al., Proc. Natl. Acad. Sci. USA, 86, 1173-1177 (1989)], etc., and strand displacement. Reaction (SDA) [Walker GT, et al., Proc. Natl. Acad. Sci. USA, 89, 392-396 (1992); Walker GT, et al., Nuc. Acids Res., 20, 1691-1696 ( 1992)], self-retaining sequence replication (3SR) [Guatelli JC, Proc. Natl. Acad. Sci. USA, 87, 1874-1878 (1990)], and the QjS replicase system [Resirdi et al., BioTechnology 6, p. 1197-1202 (1988)]. Further, a nucleic acid sequence-based amplification (Nucleic Acid Sequence Based Amplification: NASBA) reaction described in European Patent No. 0525882, which is a competitive amplification of a target nucleic acid and a mutant sequence, can also be used. Preferably This is a PCR method. Generally, a nucleic acid amplification method itself such as PCR is well known in the art, and a reagent kit and an apparatus therefor are commercially available, so that it can be easily performed.
核酸増幅反応を利用した本発明の検定法の具体的態様は以下の通りである。 検定すべき転写産物中の当該標的核酸は、 その塩基配列から選ばれる所定領域 の両端に位置する一対のプライマーを使用した PCRにより増幅される。 この工程 において、 検体中に当該核酸が僅かでも存在すると、 それらが錶型となりプライ マー対間の核酸領域が次々と複製され増幅される。 PCR での所定サイクル数の繰 り返しによって、 铸型とされた核酸は、 所望の濃度まで増幅される。 同じ増幅反 応条件であれば、検体中に存在する標的核酸の量に比例した増幅産物が得られる。 そして、 当該増幅領域を標的とする上記プローブ等を使用して増幅産物が目的の 核酸であるか確認すると共にそれを定量することができる。 また、 健常組織中の 当該核酸も同様にして測定される得る。 その核酸量についての測定値は、 上述し たように癌化の有無ないし程度を検定するために対比される。 なお、 同一組織等 に広く一般的に存在する遺伝子の核酸、 例えばダリセルアルデヒドー 3リン酸ー 脱水素酵素 (GAPDH)、 i3—ァクチンをコードする核酸を対照として利用し、 個体 差を除去するとよい。  Specific embodiments of the assay method of the present invention utilizing a nucleic acid amplification reaction are as follows. The target nucleic acid in the transcript to be assayed is amplified by PCR using a pair of primers located at both ends of a predetermined region selected from the base sequence. In this step, if even a small amount of the nucleic acid is present in the sample, it becomes と な り and the nucleic acid region between the primer pairs is replicated and amplified one after another. By repeating a predetermined number of cycles in the PCR, the type III nucleic acid is amplified to a desired concentration. Under the same amplification reaction conditions, an amplification product proportional to the amount of the target nucleic acid present in the sample can be obtained. Then, it is possible to confirm whether the amplification product is the target nucleic acid and quantify it by using the above-mentioned probe or the like targeting the amplification region. In addition, the nucleic acid in a healthy tissue can be measured in the same manner. The measured value of the nucleic acid amount is compared to test for the presence or degree of canceration as described above. It should be noted that nucleic acid of a gene that is widely and commonly present in the same tissue, such as nucleic acid encoding dariceraldehyde-3-phosphate dehydrogenase (GAPDH) or i3-actin, is used as a control to eliminate individual differences. Good.
PCR法に供される核酸試料は、 被検組織又は細胞などの生物試料から抽出され た mRNA総体でも、 mRNAから逆転写した c DNA総体でもよい。 mRNAを增幅する 場合には、 既述のプライマー対を用いた NASBA法(3SR法、 TMA法)を採用してもよ い。 NASBA法自体は周知であり、 且つそのためのキットも市販されているので、 本 発明のプライマー対を用いて容易に実施することができる。  The nucleic acid sample to be subjected to the PCR method may be an entire mRNA extracted from a biological sample such as a test tissue or a cell, or an entire cDNA reverse-transcribed from the mRNA. When increasing the mRNA, the NASBA method (3SR method, TMA method) using the above-described primer pair may be employed. Since the NASBA method itself is well known and a kit therefor is commercially available, it can be easily carried out using the primer pair of the present invention.
上記増幅産物の検出又は定量は、 増幅後の反応溶液を電気泳動し、 バンドをェ チジゥムプロミ ド等で染色する方法や、 電気泳動後の増幅産物をナイ口ン膜等の 固相に不動化し、被検核酸と特異的にハイブリダイズする標識プローブ(例えば、 配列番号 6に記載の標識プローブ) をハイブリダィズさせ、 洗浄後、 該標識を検 出することにより行うことができる。  Detection or quantification of the above amplification products can be performed by electrophoresis of the reaction solution after amplification and staining the bands with ethidium bromide, etc., or immobilization of the amplification products after electrophoresis on a solid phase such as a nylon membrane. It can be carried out by hybridizing a labeled probe that specifically hybridizes with the test nucleic acid (for example, the labeled probe of SEQ ID NO: 6), washing, and detecting the label.
また、 本検定法に好適な PCR法としては、 定量的 PCR法、 特にキネティックス 分析のための RT- PCR法、 定量的リアルタイム PCR法が挙げられる。 特に mRNAラ イブラリ一を対象とする定量的リァノレタイム RT - PCR法は、測定対象が生物試料か ら直接に精製でき且つ転写レベルを直接反映しているという観点から好適である, 但し、本検定法における核酸の定量は、定量的 PCR法に限定されるものではなく、 PCR産物に対して、上述のプローブを用いたノーザンブロット、 ドットブロット、 D N Aマイクロアレイのような公知の他の D N A定量法を適用し得る。 Suitable PCR methods for this assay include quantitative PCR, particularly RT-PCR for kinetic analysis and quantitative real-time PCR. Especially mRNA The quantitative real-time RT-PCR method for libraries is suitable from the viewpoint that the measurement target can be directly purified from a biological sample and directly reflects the transcription level. The quantification is not limited to the quantitative PCR method, and other known DNA quantification methods such as Northern blot, dot blot, and DNA microarray using the above-described probe can be applied to the PCR product.
また、クェンチヤ一蛍光色素とレポーター蛍光色素を用いた定量的 RT - PCRを行 うことにより、 検体中の標的核酸の量を定量することも可能である。 特に定量的 RT-PCR用のキットも市販されているので、 容易に行うことができる。 さらに、 電 気泳動バンドの強度に基づいて標的核酸を半定量することも可能である。  It is also possible to quantify the amount of target nucleic acid in a sample by performing quantitative RT-PCR using quencher-fluorescent dye and reporter fluorescent dye. In particular, kits for quantitative RT-PCR are also commercially available, and can be easily performed. Furthermore, it is also possible to semiquantify the target nucleic acid based on the intensity of the electrophoresis band.
癌治療効果に関する検定方法 Test method for cancer treatment effect
本発明による癌化検定法の他の形態として、 癌治癒効果を意図した処置の効果 を判断するための検定が挙げられる。 その検定対象には、 例えば、 癌患者又は発 癌実験モデル動物由来の in vitro癌細胞や癌組織が含まれる。またそのような処 置には、 抗癌剤の投与、 放射線治療等のあらゆる処置が含まれる。  Another form of the canceration assay according to the present invention includes an assay for judging the effect of a treatment intended for a cancer curing effect. The test object includes, for example, in vitro cancer cells and cancer tissues derived from a cancer patient or an animal model for experimental carcinogenesis. Such treatments include all treatments such as administration of anticancer drugs and radiation therapy.
本発明による癌治療効果についての検定法によれば、 処置前又は未処置の生物 試料中の標的核酸の転写レベルを当該処置が施された当該生物試料のそれと比較 して当該処置が癌化ないし悪性度に関して如何なる影響を与えるかについて判断 が可能となる。 当該処置に起因して転写レベルが上昇するか、 又はそれが癌化に 伴い上昇する情況でさえその転写レベルの低下が有意に抑制されるなら、 当該処 置はその癌処置法として有効であると評価できる。 処置後における転写レベルの 変動については、 未処置組織との比較だけでなく、 その処置後において経時的に 追跡してもよい。  According to the assay for cancer therapeutic effect according to the present invention, the transcript level of a target nucleic acid in a biological sample before or after treatment is compared with that of the biological sample to which the treatment has been applied, and the treatment does not cause cancer. It will be possible to determine what effect it has on malignancy. The treatment is effective as a cancer treatment if the transcription level is increased due to the treatment, or if the decrease in the transcription level is significantly suppressed even in a situation where it increases with canceration. Can be evaluated. Variation in transcription levels after treatment may be followed over time after treatment, as well as in comparison to untreated tissue.
本発明による癌治療効果検定には、 例えば、 癌化組織に抗癌剤候補物質が効く か否か、 癌患者に投与中の抗癌剤に対して耐性が形成されているか否か、 実験モ デル動物の病変組織等に効くか否か等の判断が含まれる。 実験モデル動物の被検 組織は、 in vitroに限らず in vivo 又は ex vivo試料も含まれる。  The cancer therapeutic effect assay according to the present invention includes, for example, whether or not the anticancer drug candidate substance is effective on cancerous tissue, whether or not resistance has been formed to the anticancer drug being administered to the cancer patient, and whether or not the experimental model animal has a lesion. Judgment as to whether it is effective for an organization or the like is included. The test tissues of the experimental model animals include not only in vitro but also in vivo or ex vivo samples.
本明細書において、 核酸についての 「転写レベルの測定値」 又は 「発現量」 と いうときは、 一定量の生物試料由来の転写産物中に存在する当該核酸の量、 すな わち当該核酸濃度を示す。 また本発明の検定法は、 それらの測定値を比較するこ とに依拠するのであるから、 核酸が定量のために PCR等によって増幅されたり、 プ口ーブ標識からのシグナルが増幅された場合にも、 それら増幅された値につい て相対的な対比が可能である。 したがって、 「核酸についての測定値」 とは増幅後 の量又は増幅後のシグナルレベルとして把握されることもできる。 In this specification, the term "measured value of transcription level" or "expression level" of a nucleic acid refers to the amount of the nucleic acid present in a certain amount of a transcript derived from a biological sample, that is, the concentration of the nucleic acid. Is shown. In addition, the assay of the present invention makes it possible to compare the measured values. When nucleic acids are amplified by PCR or the like for quantification, or when signals from probe labels are amplified, relative comparison of the amplified values is possible. It is. Therefore, the "measured value of nucleic acid" can be grasped as the amount after amplification or the signal level after amplification.
本明細書において 「標的核酸」 又は 「当該核酸」 というときは、 in vivo 又は in vitroのいずれかを問わず、 mRNAはもちろんのこと、 mRNAを铸型にして得 られるあらゆるタィプの核酸が含まれる。 なお本明細書において 「塩基配列」 と レ、うときは、 特に断らない限り、 その相補的配列も包含する。  As used herein, the term "target nucleic acid" or "the relevant nucleic acid" includes not only in vivo or in vitro but also all types of nucleic acids obtained by converting mRNA into type II. . In this specification, the term “base sequence” includes its complementary sequence unless otherwise specified.
本明細書において、 「生物試料」 というときは、器官、組織及ぴ細胞、 並びに実 験動物由来の器官、 組織及び細胞等を示すが、 好ましくは組織であり、 具体的に は、 食道、 胃、 腾臓、 肝臓、 腎臓、 十二指腸、 小腸、 大腸、 直腸、 結腸が例示さ れる。 好ましくは大腸、 直腸、 及び結腸であり、 より好ましくは大腸である。 ま た、  In the present specification, the term "biological sample" refers to an organ, a tissue and a cell, and an organ, a tissue and a cell derived from an experimental animal, but is preferably a tissue, and specifically, an esophagus, a stomach, and the like. Examples include the kidney, liver, kidney, duodenum, small intestine, large intestine, rectum, and colon. The large intestine, the rectum and the colon are preferred, and the colon is more preferred. Also,
本明細書において 「測定」 又は 「検定」 という用語には、 検出、 増幅、 定量、 および半定量のいずれもが包含される。特に本発明による検定法は、上記の通り、 生物試料の癌化の検定に関するものであり、 医療における癌の診断、 治療等に応 用することができる。 ここで 「癌化の検定」 という用語には、 生物試料が発癌し ているか否かについての検定のほか、 悪性度が高いか否かについての検定も含ま れる。本明細書において「癌」 という用語には、典型的には悪性腫瘍全般を含み、 該悪性腫瘍による疾病状態を含む。 従って、 本発明による検定法は、 特に限定さ れるわけではないが、 食道癌、 胃癌、 瞎臓癌、 肝臓癌、 腎臓癌、 十二指腸癌、 小 腸癌、 大腸癌、 直腸癌、 及び結腸癌、 好ましくは大腸癌、 直腸癌、 及び結腸癌で あり、 好ましくは大腸癌の検定に使用される。  As used herein, the term “measurement” or “assay” includes any of detection, amplification, quantification, and semi-quantitation. In particular, the assay method according to the present invention relates to an assay for canceration of a biological sample as described above, and can be applied to cancer diagnosis and treatment in medical treatment. Here, the term “assay for canceration” includes an assay for whether a biological sample is carcinogenic and an assay for whether the malignancy is high. As used herein, the term "cancer" typically includes malignant tumors in general and disease states caused by the malignant tumors. Therefore, the assay according to the present invention is not particularly limited, but includes esophageal cancer, stomach cancer, spleen cancer, liver cancer, kidney cancer, duodenal cancer, small intestine cancer, large intestine cancer, rectal cancer, and colon cancer. Preferably, they are colorectal cancer, rectal cancer, and colon cancer, and are preferably used for colorectal cancer assay.
( 3 ) 糖転移酵素活性を有するポリべプチドをコ一ドする本発明の核酸 本発明の核酸は、 例えば以下の方法により調製することができる。  (3) Nucleic Acid of the Present Invention Coding Polypeptide Having Glycosyltransferase Activity The nucleic acid of the present invention can be prepared, for example, by the following method.
配列番号 1に記載の塩基配列の一部を利用してハイブリダイゼーションゃ核酸 増幅反応等の遺伝子工学の基本的手法を用いて cDNA ライブラリーから常法に従 つて核酸増幅反応を行い、これにより本発明の L4核酸をクロー-ングすることが できる。 例えば、 配列番号 4及び 5の配列をプライマーとして使用すれば、 PCR 産物として約 lkbpの DNA断片が得られる。これを例えばァガロースゲル電気泳動 にかけて分子量で DNA断片を篩い分ける方法で分離し、 特定のバンドを切り出す ことにより単離することができる。核酸増幅反応の詳細は、上述した通りである。 本発明者等は、 上述のようにして単離した L4核酸にコードされている L4タン パク質を発現させ、 これを単離及び精製し、 さらにそれが生物活性を有すること を確認した。 この見地から、 本発明により、 新規なポリペプチド全長またはその 断片をコードする核酸が提供される。 Using a part of the base sequence shown in SEQ ID NO: 1, hybridization and nucleic acid amplification reaction were carried out from the cDNA library using a basic method of genetic engineering such as nucleic acid amplification reaction according to a conventional method. The L4 nucleic acids of the invention can be cloned. For example, if the sequences of SEQ ID NOs: 4 and 5 are used as primers, A DNA fragment of about lkbp is obtained as a product. This can be isolated, for example, by agarose gel electrophoresis to separate DNA fragments by molecular weight and sieving, and cut out a specific band. Details of the nucleic acid amplification reaction are as described above. The present inventors expressed the L4 protein encoded by the L4 nucleic acid isolated as described above, isolated and purified the L4 protein, and confirmed that it had biological activity. In this regard, the present invention provides nucleic acids encoding novel full length polypeptides or fragments thereof.
第 1に、 生物活性を有する単離ボリヌクレオチドのァミノ酸配列が特定された という事実に着目すれば、本発明の核酸には、当該 L4タンパク質のァミノ酸配列 へ縮重するような同一のアミノ酸配列をコードし得る、 有限数のあらゆる核酸が 含まれる。 したがって、 配列番号 1の塩基配列又はそれに相補的な塩基配列は、 当該生物活性を有するポリべプチドをコ一ドする核酸の一態様である。  First, focusing on the fact that the amino acid sequence of the isolated polynucleotide having biological activity has been identified, the nucleic acids of the present invention have the same amino acids that degenerate to the amino acid sequence of the L4 protein. Includes a finite number of any nucleic acid that can encode the sequence. Therefore, the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto is one embodiment of the nucleic acid encoding the polypeptide having the biological activity.
また本発明の核酸には、 一本鎖及ぴニ本鎖型両方の DNA、 及びその RNA相補体 も含まれる。 DNAには、例えば、天然由来の DNA、組換え DNA、化学結合した DNA、 PCRによって増幅された DNA、及びそれらの組み合わせが含まれる。 但し、ベクタ 一や形質転換体の調製時に安定であるとの観点から、 DNAであることが好ましい。 第 2に、単離された L4核酸は、その推測ァミノ酸配列(配列番号 3 )によると、 末端に疎水性膜貫通領域を有すると予測されるので、 この膜貫通領域を有しな ぃポリぺプチドをコ一ドする塩基配列の領域を調製することにより、 可溶化形態 のポリべプチドをコ一ドする当該核酸も得ることができる。実際に本発明者等は、 例えば、 配列番号 1における塩基番号 7 3〜 1 0 4 7の塩基配列からなる核酸を 発現させることにより、 それぞれ配列番号 3における 2 5番目、 3 6番目又は 5 1番目の各アミノ酸を N末端とする可溶性タンパク質を産生させた (実施例 3参 照)。 このように、 L4 タンパク質の生物活性を有するポリべプチドをコ一ドする 不完全長の核酸も本発明の範囲に包含されている。  The nucleic acids of the present invention also include both single-stranded and double-stranded DNA, and their RNA complements. DNA includes, for example, naturally occurring DNA, recombinant DNA, chemically bonded DNA, DNA amplified by PCR, and combinations thereof. However, DNA is preferable from the viewpoint that it is stable at the time of preparing a vector or a transformant. Second, the isolated L4 nucleic acid is predicted to have a hydrophobic transmembrane domain at its end according to its deduced amino acid sequence (SEQ ID NO: 3). By preparing a region of a nucleotide sequence encoding a peptide, the nucleic acid encoding a solubilized form of the polypeptide can also be obtained. In fact, the present inventors have found that, for example, by expressing a nucleic acid consisting of the nucleotide sequence of base numbers 73 to 107 in SEQ ID NO: 1, the 25th, 36th, or 51 A soluble protein having the N-terminal of each amino acid was produced (see Example 3). Thus, incomplete length nucleic acids encoding polypeptides having the biological activity of the L4 protein are also within the scope of the invention.
第 3に、 当業者であれば、 配列番号 1の塩基配列と相同な塩基配列を有する核 酸を調製することにより、 配列番号 1の配列と同等に有用な核酸を取得できる。 本発明のそのような相同な核酸の範囲を特定するに当たり、 本発明の配列番号 Third, those skilled in the art can obtain a nucleic acid equivalent to the sequence of SEQ ID NO: 1 by preparing a nucleic acid having a nucleotide sequence homologous to the nucleotide sequence of SEQ ID NO: 1. In identifying the scope of such homologous nucleic acids of the invention, the SEQ ID NO:
1に記載の核酸配列について同一性検索を行うと、 当該核酸配列は、 最もホモ口 ジ一の高い公知のコンドロイチン合成酵素 (上記非特許文献 1 ) の核酸配列と 1 8%の同一性を有する。 この観点から、 本発明の相同タンパク質をコードする新 規な核酸配列は、 典型的には配列番号 1中の全塩基配列、 好ましくは塩基番号 7 3〜 1 04 7、 1 0 6〜 1 04 7、 又は 1 5 1〜 1 04 7の各塩基配列からなる 部分塩基配列、 又はそれらに相補的な塩基配列と 1 8%を超える同一性、 より好 ましくは少なくとも 2 0 %の同一性、 特に好ましくは少なくとも 3 0 %の同一性 を有すると定義できる。 When an identity search is performed for the nucleic acid sequence described in 1, the nucleic acid sequence is found to be the most homologous It has 18% identity to the nucleic acid sequence of the highest known chondroitin synthase (Non-Patent Document 1). From this viewpoint, the novel nucleic acid sequence encoding the homologous protein of the present invention is typically the entire base sequence in SEQ ID NO: 1, preferably base numbers 73 to 107, 106 to 107. Or more than 18% identity, more preferably at least 20% identity, to a partial nucleotide sequence consisting of the nucleotide sequences of 151 to 10047, or a nucleotide sequence complementary thereto. Preferably, it can be defined as having at least 30% identity.
相同核酸の定義に使用される上記同一性パーセントは、 視覚的検査および数学 的計算によって決定することが可能である。 あるいは、 2つの核酸配列の同一性 ノ ーセントは、 Devereuxら, Nucl. Acids Res. 12: 387, 1984に記載され、 そし てウィスコンシン大学遺伝学コンピューターグノレープ (UWGCG) より入手可 能な GAPコンピュータープログラム、 バージョン 6.0を用いて、 配列情報を比 較することによって、 決定可能である。 GAPプログラムの好ましいデフォルト パラメーターには: (1) ヌクレオチドに関する単一 (unary) '比較マトリックス (同一に対し 1および非同一に対し 0の値を含む)、並びに Schwartz及び Dayhoff ¾:修, Atlas of Protein sequence and Structure, pp.353 - 358, National Biomedical Research Foundation, 1979 に言己載されるような、 Gribskov 及び Burgess, Nucl. Acids Res. 14: 6745, 1986 の加重比較マトリックス ; (2) 各 ギャップに対する 3.0 のペナルティおよび各ギャップ中の各記号に対しさらに 0.10のペナルティ ;及び (3) 末端ギャップに対するペナルティなし、 が含まれ る。 当業者に用いられる、 配列比較の他のプログラムもまた、 使用可能である。 第 4に、 本発明の構造遺伝子として相同な他の核酸には、 典型的には配列番号 1中の全長塩基配列、 好ましくは塩基番号 7 3〜 1 04 7、 1 0 6〜 1 04 7、 又は 1 5 1〜 1 04 7の各部分塩基配列、 又はそれらに相補的な塩基配列からな るヌクレオチドに対しストリンジェントな条件下でハイブリダイズし、 且つ L4 タンパク質の活性を有するポリペプチドをコードする核酸も含まれる。 なお、 そ れら相同核酸の定義に使用されるストリンジェン卜な条件下とは、 上述した通り である。  The above percent identity used to define homologous nucleic acids can be determined by visual inspection and mathematical calculation. Alternatively, the identity percent identity of two nucleic acid sequences is described in Devereux et al., Nucl. Acids Res. 12: 387, 1984, and the GAP computer program available from the University of Wisconsin Genetics Computer Group (UWGCG). It can be determined by comparing sequence information using version 6.0. Preferred default parameters for the GAP program include: (1) a single 'unary' comparison matrix for nucleotides (including values of 1 for identical and 0 for non-identical), and Schwartz and Dayhoff III: Modification, Atlas of Protein weighted comparison matrix of Gribskov and Burgess, Nucl. Acids Res. 14: 6745, 1986, as described in sequence and Structure, pp. 353-358, National Biomedical Research Foundation, 1979; (2) For each gap 3.0 penalty and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for terminal gaps. Other sequences comparison programs used by those skilled in the art can also be used. Fourth, other nucleic acids homologous as the structural gene of the present invention typically include the full-length nucleotide sequence in SEQ ID NO: 1, preferably nucleotides 73 to 107, 106 to 107, Or a polypeptide that hybridizes under stringent conditions to nucleotides consisting of the respective partial nucleotide sequences of 151 to 1074 or nucleotide sequences complementary thereto and encodes a polypeptide having L4 protein activity. Nucleic acids are also included. The stringent conditions used for defining such homologous nucleic acids are as described above.
上記のように本発明の L4核酸を利用することによつて、医学研究又は遺伝子治 療等の目的でプローブやアンチセンスプライマーを作製するできるだけでなく、 目的の L4酵素タンパク質を発現させることができる、。 By using the L4 nucleic acid of the present invention as described above, medical research or gene therapy can be performed. Not only can it produce probes and antisense primers for therapeutic purposes, but also can express the desired L4 enzyme protein.
( 4 ) 本発明のベクタ一及び形質転換体  (4) Vector and transformant of the present invention
本発明によれば、 L4核酸を含む組換えベクターが提供される。 プラスミ ド等の ベクターに該核酸の DNA断片を組込む方法としては、 例えば、 Sambrook, J.ら, Molecular し丄 oning, A Laboratory Manual (3rd edition) , Cold spring Harbor Laboratory, 1. 1 (2001)に記載の方法などが挙げられる。 簡便には、 市販のライ ゲーシヨンキット (例えば、 宝酒造製等) を用いるとよい。  According to the present invention, there is provided a recombinant vector comprising an L4 nucleic acid. Methods for incorporating a DNA fragment of the nucleic acid into a vector such as a plasmid are described in, for example, Sambrook, J. et al., Molecular Straining, A Laboratory Manual (3rd edition), Cold spring Harbor Laboratory, 1.1 (2001). The methods described above are exemplified. For convenience, a commercially available ligation kit (for example, Takara Shuzo) may be used.
上記のようにして得られた組換えベクター (例えば、 組換えプラスミ ド) は、 宿主細胞 (例えば、 大腸菌 DH5 a、 TBI , LE392、 又は XL- LE392又は XL- lBlue等) に導入される。プラスミ ドを宿主細胞に導入する方法としては、 Sambrook, J.ら, Molecular Cloning, A Laboratory Manual (3rd edition) , Cold spring Harbor Laboratory, 16. 1 (2001)に記載の塩化カルシウム法または塩化カルシウム Z塩化 ルビジウム法、 エレク ト口ポレーシヨン法、 エレク ト口インジェクション法、 P E Gなどの化学的な処理による方法、 遺伝子銃などを用いる方法などが挙げられ る。  The recombinant vector (for example, recombinant plasmid) obtained as described above is introduced into a host cell (for example, Escherichia coli DH5a, TBI, LE392, or XL-LE392 or XL-lBlue). Methods for introducing a plasmid into a host cell include the calcium chloride method or the calcium chloride method described in Sambrook, J. et al., Molecular Cloning, A Laboratory Manual (3rd edition), Cold spring Harbor Laboratory, 16.1 (2001). Examples include the rubidium chloride method, the electoral portation method, the electoral injection method, a method using a chemical treatment such as PEG, and a method using a gene gun.
使用可能なベクターは、 簡単には当業界において入手可能な組換え用ベクター (例えば、 プラスミ ド DNA等) に所望の遺伝子を常法により連結することによつ て調製することができる。 用いられるベクターの具体例としては、 大腸菌由来の プラスミ ドとして、 例えば、 pD0NR201、 pBluescript、 pUC18、 pUC19、 pBR322 等 が例示されるが、 これらに限定されない。  A usable vector can be simply prepared by ligating a desired gene to a recombination vector (for example, plasmid DNA or the like) available in the art by a conventional method. Specific examples of the vector used include, but are not limited to, plasmids derived from Escherichia coli such as pD0NR201, pBluescript, pUC18, pUC19, and pBR322.
当業者であれば、 制限末端は発現ベクターに適合するように適宜選択すること が可能である。 発現ベクターは、 本発明の酵素を発現させたい宿主細胞に適した ものを当業者であれば適宜選択することができ、 上記核酸が目的の宿主細胞中で 発現しうるように遺伝子発現に関与する領域 (プロモータ領域、 ェンハンサー領 域、 オペレーター領域等) が適切に配列されて、 該核酸が適切に発現するように 構築されていることが好ましい。  Those skilled in the art can appropriately select the restriction end so as to be compatible with the expression vector. Those skilled in the art can appropriately select an expression vector suitable for the host cell in which the enzyme of the present invention is to be expressed, and the gene is involved in gene expression so that the nucleic acid can be expressed in the target host cell. It is preferable that regions (promoter region, enhancer region, operator region, etc.) are appropriately arranged and constructed so that the nucleic acid is appropriately expressed.
発現ベクターの種類は、 原核細胞及びノ又は真核細胞の各種の宿主細胞中で所 望の遺伝子を発現し、 所望のタンパク質を生産する機能を有するものであれば特 に限定されないが、例えば、大腸菌用発現ベクターとして、 pQE- 30、pQE - 60、pMAL- C2 pMAL_p2、 pSE420などが好ましく、 酵母用発現ベクターとして pYES2 (サッカロマ イセス属)、 pPIC3.5K、 pPIC9K、 pA0815 (以上ピキア属)、 昆虫用発現ベクターと LT pFastBac, pBacPAK8/9、 pBK283、 pVL1392, pBlueBac4.5など力 S好ましレヽ。 発現ベクターの構築は、 制限処理及び連結作業を必要としない Gatewayシステ ム (インビトロジェン社) を用いるとよい。 Gateway システムとは、 PCR産物 の方向性を維持したままクローニングができ、 また、 DNA断片を適切に改変し た発現ベクターにサブクローニングを可能にした部位特異的な組換えを利用した システムである。 具体的には、 PCR産物と ドナーべクタ一とから部位特異的な 組換え酵素である B Pクロナーゼによってェントリ一クローンを作成し、その後、 このクローンと別の組換え酵素である LRクロナーゼによって組換え可能なデス ティネーションベクターに p CR産物を移入することにより、 発現系に対応した 発現クローンを調製するものである。 最初にェントリークローンを作成すれば、 制限酵素ゃリガーゼで作業する手間の係るサブクローニングステップが不要であ る点を特徴の一つとする。 The type of expression vector is not particularly limited as long as it has a function of expressing a desired gene and producing a desired protein in various prokaryotic and eukaryotic or eukaryotic host cells. Examples of the expression vector for E. coli include, but are not limited to, pQE-30, pQE-60, pMAL-C2, pMAL_p2, and pSE420. Examples of yeast expression vectors include pYES2 (Saccharomyces), pPIC3.5K, pPIC9K, and pA0815. (Above Pichia genus), insect expression vectors and LT pFastBac, pBacPAK8 / 9, pBK283, pVL1392, pBlueBac4.5, and the like. For the construction of the expression vector, a Gateway system (Invitrogen) which does not require restriction and ligation may be used. The Gateway system is a system that uses site-specific recombination that enables cloning while maintaining the orientation of the PCR product and that enables subcloning into an expression vector in which a DNA fragment has been appropriately modified. Specifically, an entry clone was created from the PCR product and the donor vector using BP clonase, a site-specific recombination enzyme, and then recombined with this clone and another recombination enzyme, LR clonase. By transferring the pCR product into a possible destination vector, an expression clone corresponding to the expression system is prepared. One of the features is that if an entry clone is created first, the laborious subcloning step of working with restriction enzyme ゃ ligase is unnecessary.
本発明の L4核酸を含む上記発現ベクターを宿主細胞に組み込めば、本発明のポ リぺプチドを産生するための形質転換体を得ることができる。 形質転換体を得る ための宿主細胞は、 一般に真核細胞 (哺乳類細胞、 酵母、 昆虫細胞等) でもよい し、 原核細胞 (大腸菌、 枯草菌等) でもよい。 また、 ヒ ト (例えば、 He L a、 293T、 SH— SY 5Y)ゝ マウス (例えば、 N e u r o 2 a、 N I H3 T 3) 等由来の培養細胞でもよい。 これら宿主細胞はいずれも公知であり、 市販されて いるか (例えば、 大日本製薬社)、 あるいは公共の研究機関 (例えば、 理研セルバ ンク) より入手可能である。 あるいは、 胚、 器官、 組織若しくは非ヒ ト個体も使 用可能である。  By incorporating the expression vector containing the L4 nucleic acid of the present invention into a host cell, a transformant for producing the polypeptide of the present invention can be obtained. The host cell for obtaining the transformant may be generally a eukaryotic cell (eg, a mammalian cell, a yeast, an insect cell) or a prokaryotic cell (eg, Escherichia coli, Bacillus subtilis). In addition, cultured cells derived from human (eg, HeLa, 293T, SH—SY5Y) ゝ mouse (eg, Neuro2a, NIH3T3) and the like may be used. All of these host cells are known and are commercially available (eg, Dainippon Pharmaceutical Co., Ltd.) or available from public research institutions (eg, RIKEN Cellbank). Alternatively, embryos, organs, tissues or non-human individuals can be used.
ところで、本発明の L4核酸は真核細胞を宿主細胞として用いることより、天然 の生体分子に近い性質を有する酵素タンパク質 (例えば糖鎖が付加された態様な ど) を発現できると考えられる。 この観点から、 宿主細胞として真核細胞、 特に 哺乳類細胞を選択することが好ましい。 具体的な哺乳類細胞としては、 マウス由 来、 アフリカッメガエル由来、 ラット由来、 ハムスター由来、 サル由来またはヒ ト由来の細胞若しくはそれらの細胞から樹立した培養細胞株などが例示される。 また、 宿主細胞としての大腸菌、 酵母又は昆虫細胞は、 具体的には、 大腸菌 (DH5 a、 M15、 JM109、 BL21 等)、 酵母 (INVScl (サッカロマイセス属)、 GS115、 KM71 (以上ピキア属) など)、 昆虫細胞 (Sf21、 BmN4、 カイコ幼虫等) などが例示され る。 By the way, it is considered that the L4 nucleic acid of the present invention can express an enzyme protein having a property close to that of a natural biomolecule (for example, a sugar chain added form) by using a eukaryotic cell as a host cell. From this viewpoint, it is preferable to select eukaryotic cells, particularly mammalian cells, as host cells. Specific mammalian cells include those derived from mouse, African frog, rat, hamster, monkey or human. And a cultured cell line established from those cells. Escherichia coli, yeast or insect cells as host cells include, for example, Escherichia coli (DH5a, M15, JM109, BL21, etc.), yeast (INVScl (Saccharomyces), GS115, KM71 (Pichia), etc.) And insect cells (Sf21, BmN4, silkworm larvae, etc.) and the like.
一般に発現ベクターは、 少なくとも、 プロモーター、 開始コドン、 所望のタン パク質をコードする遺伝子、 終止コドン、 およびターミネータ一領域を連続的か つ環状に適当な複製可能単位に連結することによって調製することができる。 ま たこの際、所望により制限酵素での消化や T4 DNAリガーゼを用いるライゲーショ ン等の常法により適当な DNAフラグメント (例えば、 リンカー、 他の制限酵素部 位など)を用いることができる。宿主細胞として細菌、特に大腸菌を用いる場合、 一般に発現ベクターは、 少なくとも、 プロモーター/オペレーター領域、 開始コ ドン、 所望のタンパク質をコードする遺伝子、 終止コドン、 ターミネータ一およ び複製可能単位から構成される。 宿主細胞として酵母、 植物細胞、 動物細胞また は昆虫細胞を用いる場合、 一般に発現ベクターは、 少なく とも、 プロモーター、 関始コドン、 所望のタンパク質をコードする遺伝子、 終止コドン、 ターミネータ 一を合んでいることが好ましい。 またシグナルペプチドをコードする DNA、 ェン ハンサー配列、 所望の遺伝子の 5 ' 側および 3 ' 側の非翻訳領域、 選択マーカー 領域または複製可能単位などを適宜含んでいてもよい。  In general, an expression vector can be prepared by linking at least a promoter, an initiation codon, a gene encoding a desired protein, a termination codon, and a terminator region to an appropriate replicable unit in a continuous and circular manner. it can. At this time, if necessary, an appropriate DNA fragment (for example, a linker, another restriction enzyme site, etc.) can be used by a conventional method such as digestion with a restriction enzyme or ligation using T4 DNA ligase. When a bacterium, particularly Escherichia coli, is used as a host cell, an expression vector generally comprises at least a promoter / operator region, an initiation codon, a gene encoding a desired protein, a stop codon, a terminator, and a replicable unit. . When yeast, plant cells, animal cells, or insect cells are used as host cells, the expression vector generally includes at least a promoter, initiation codon, a gene encoding a desired protein, a stop codon, and a terminator. Is preferred. Further, it may appropriately contain a DNA encoding a signal peptide, an enhancer sequence, 5 ′ and 3 ′ untranslated regions of a desired gene, a selectable marker region or a replicable unit.
複製可能単位とは、 宿主細胞中でその全 DNA配列を複製することができる能力 をもつ DNAを意味し、 天然のプラスミ ド、 人工的に修飾されたプラスミ ド (天然 のプラスミ ドから調製されたプラスミ ド) および合成プラスミ ド等が含まれる。 好適なプラスミ ドとしては、 E. coliではブラスミ ド pQE30、 pET又は pCAL若し くはそれらの人工的修飾物 (pQE30、 pET又は pCALを適当な制限酵素で処理して 得られる DNAフラグメント) が、 酵母ではプラスミ ド pYES2若しくは pPIC9Kが、 また昆虫細胞ではプラスミ ド pBacPA 8/9等があげられる。  A replicable unit refers to DNA capable of replicating its entire DNA sequence in a host cell, and is composed of natural plasmids, artificially modified plasmids (prepared from natural plasmids). Plasmid) and synthetic plasmid. Suitable plasmids include the plasmid pQE30, pET or pCAL or an artificially modified product thereof (a DNA fragment obtained by treating pQE30, pET or pCAL with an appropriate restriction enzyme) in E. coli. In yeast, plasmid pYES2 or pPIC9K is used, and in insect cells, plasmid pBacPA 8/9 is used.
本発明のベクタ一の好適な開始コドンとしては、 メチォニンコドン (A T G) が例示される。 また、 終止コドンとしては、 常用の終止コドン (例えば、 T A G、 T G A、 T A Aなど) が例示される。 また、 ェンハンサー配列、 ターミネータ一 配列については、 例えば、 それぞれ SV40に由来するもの等、 当業者において 通常使用されるものを用いることができる。 A preferred initiation codon of the vector of the present invention is methionine codon (ATG). Examples of the stop codon include common stop codons (eg, TAG, TGA, TAA, etc.). Also, enhancer array, terminator As the sequence, for example, those commonly used by those skilled in the art such as those derived from SV40 can be used.
選択マーカーとしては、通常使用されるものを常法により用いることができる。 例えばテトラサイク リン、 アンピシリン、 または力ナマイシンもしくはネォマィ シン、 ハイグロマイシンまたはスぺクチノマイシン等の抗生物質耐性遺伝子など が例示される。  As the selection marker, a commonly used marker can be used by a conventional method. Examples thereof include tetracycline, ampicillin, or an antibiotic resistance gene such as dynammycin or neomycin, hygromycin, or spectinomycin.
本発明による発現ベクターの宿主細胞への導入 (形質転換又は形質移入とも称 される) は、従来公知の方法を用いて行うことができる。細菌(E. coli, Bacillus subtilis等) の場合、 例えば Cohen らの方法 [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]、 プロトプラスト法 [Mol. Gen. Genet. , 168, 111 (1979)] ゃコン ピテン卜法 [J. Mol. Biol. , 56, 209 (1971) ]によって、 Saccharomyces cerevisiae の場合は、例えば Hinnenらの方法 [Proc. Natl. Acad. Sci. USA, 75, 1927 (1978)] やリチウム法 [J. B. Bacteriol. , 153, 163 (1983)] によってそれぞれ形質転換 することができる。 植物細胞の場合は、 例えばリーフディスク法 [Science, 227, 129 (1985)]、 エレク トロポレーシヨン法 [Nature, 319, 791 (1986)] によって、 動物細胞の場合は、 例えば Grahamの方法 [Virology, 52, 456 (1973)]、 昆虫細 胞の場合は、 例えば Summerらの方法 [Mol. Cell Biol. , 3, 2156-2165 (1983)] によつてそれぞれ形質転換することができる。  Introduction (also referred to as transformation or transfection) of the expression vector according to the present invention into a host cell can be performed using a conventionally known method. In the case of bacteria (E. coli, Bacillus subtilis, etc.), for example, the method of Cohen et al. [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], the protoplast method [Mol. Gen. Genet., 168, 111] (1979)] に よ っ て According to the competency method [J. Mol. Biol., 56, 209 (1971)], in the case of Saccharomyces cerevisiae, for example, the method of Hinnen et al. [Proc. Natl. Acad. Sci. USA, 75, 1927 (1978)] and the lithium method [JB Bacteriol., 153, 163 (1983)]. In the case of plant cells, for example, by the leaf disk method [Science, 227, 129 (1985)] and by the electroporation method [Nature, 319, 791 (1986)]. In the case of animal cells, for example, the method of Graham [Virology, 52] , 456 (1973)], and insect cells can be transformed by, for example, the method of Summer et al. [Mol. Cell Biol., 3, 2156-2165 (1983)].
( 5) 本発明のタンパク質  (5) The protein of the present invention
本発明者等の検討によると、 配列番号 1の塩基配列に基づき、 配列番号 3のァ ミノ酸配列が推定され (配列番号 2参照)、 その L4タンパク質の推定アミノ酸配 列は、 糖転移酵素のアミノ酸配列と一定のホモロジ一を有している。 例えば、 L4 のアミノ酸配列には、公知のコンドロイチン合成酵素 (hChSy) の N末側寄りのァ ミノ酸配列との間でホモロジ一が見られる。 なお、 このコンドロイチン合成酵素 は、 jS 1, 3GluUA転移活性と β 1, GalNAc転移活性をあわせ持つことが報告されて いる (上記非特許文献 1 )。  According to the studies by the present inventors, the amino acid sequence of SEQ ID NO: 3 was estimated based on the nucleotide sequence of SEQ ID NO: 1 (see SEQ ID NO: 2), and the deduced amino acid sequence of the L4 protein was It has a certain homology with the amino acid sequence. For example, in the amino acid sequence of L4, homology is found with the amino acid sequence near the N-terminal of known chondroitin synthase (hChSy). It has been reported that this chondroitin synthase has both jS 1,3GluUA transfer activity and β1, GalNAc transfer activity (Non-Patent Document 1).
図 1は、 L4タンパク質と前記コンドロイチン合成酵素のァミノ酸配列間の N末 端側寄りでのァライメントを示す。 同図中に示されるように、 L4 タンパク質は、 コンドロイチン合成酵素と同様に N末端側の疎水性膜貫通領域と DXDモチーフを 有する。 これらは糖転移酵素に広く見られる特徴であるから、 L4タンパク質のァ ミノ酸配列は、糖転移活性を有するポリべプチドのものであると結論づけられた。 かく して上記 L4タンパク質は、後述の実施例で例証されるとおり、配列番号 1 の核酸配列を有する L4核酸を発現べクターに組み込み発現させることができ、こ のようにして、 糖転移活性を持つ酵素タンパク質として単離及び精製することが できる。 FIG. 1 shows an alignment near the N-terminal side between the L4 protein and the amino acid sequence of the chondroitin synthase. As shown in the figure, L4 protein, like chondroitin synthase, has a hydrophobic transmembrane domain at the N-terminal and a DXD motif. Have. Since these are characteristics widely observed in glycosyltransferases, it was concluded that the amino acid sequence of the L4 protein was that of a polypeptide having glycosyltransferase activity. Thus, the L4 protein can be expressed by incorporating the L4 nucleic acid having the nucleic acid sequence of SEQ ID NO: 1 into an expression vector, as exemplified in the Examples below, and thus has a glycosyltransferase activity. It can be isolated and purified as an enzyme protein.
第 1に、 上記の見地から、 本発明のタンパク質の典型的な態様は、 配列番号 3 の推定ァミノ酸配列からなる単離された糖転移酵素タンパク質である。  First, in view of the above, a typical embodiment of the protein of the present invention is an isolated glycosyltransferase protein consisting of the deduced amino acid sequence of SEQ ID NO: 3.
供与体基質特異性: Donor substrate specificity:
L4酵素タンパク質の供与体基質としては、転移させる糖を持つ糖ヌクレオチド が挙げられ、例えば UDP— GalNAcや UDP_GluUA等のゥリジン二リン酸ー糖の形態 が挙げられるが、 アデノシン二リン酸一糖、 グアノシン二リン酸一糖、 或いはシ チジン二リン酸一糖などであってもよい。  Examples of the donor substrate of the L4 enzyme protein include sugar nucleotides having a sugar to be transferred, such as a form of peridine diphosphate-sugar such as UDP-GalNAc or UDP_GluUA, adenosine diphosphate monosaccharide, guanosine It may be diphosphate monosaccharide or cytidine diphosphate monosaccharide.
受容体基質特異性: Receptor substrate specificity:
L4酵素タンパク質の受容体基質としては、例えば、 GalNAcや GluUAで構成され る硫酸化ダリコサミノダリカンである可能性を含むが、 その他の糖タンパク質、 糖脂質、 オリゴ糖、 又は多糖等であってもよい。  The acceptor substrate for the L4 enzyme protein may include, for example, a sulfated daricosaminodalican composed of GalNAc or GluUA, but may include other glycoproteins, glycolipids, oligosaccharides, or polysaccharides. Is also good.
上述のように本発明の L4酵素タンパク質は、ムコ多糖、糖タンパク質、糖脂質、 オリゴ糖、 多糖等における糖鎖合成ないし修飾に有用である。  As described above, the L4 enzyme protein of the present invention is useful for sugar chain synthesis or modification in mucopolysaccharide, glycoprotein, glycolipid, oligosaccharide, polysaccharide and the like.
第 2に、 本明細書において L 4酵素タンパク質の 1次構造を代表する配列番号 3のアミノ酸配列が開示されたことで、 当該アミノ酸配列に基づき当該技術分野 の周知の遺伝子工学的手法により産生され得る、あらゆるタンパク質(以下、 「変 異タンパク質」 ないし 「修飾タンパク質」 とも記述する) が提供される。  Second, the disclosure of the amino acid sequence of SEQ ID NO: 3 representative of the primary structure of the L4 enzyme protein in the present specification allows production by a well-known genetic engineering technique in the art based on the amino acid sequence. All the proteins obtained (hereinafter also referred to as “mutated proteins” or “modified proteins”) are provided.
すなわち、 本発明のタンパク質は、 当該技術分野の技術常識によれば、 クロー ニングされた核酸の塩基配列から推定される配列番号 3のアミノ酸配列からなる タンパク質のみに限定されず、 下記で説示されるように、 例えば、 アミノ酸配列 N 末端側等が部分的に欠失した不完全長のボリぺプチドからなるタンパク質、 或 いはそれらァミノ酸配列に相同なタンパク質であって、 当該タンパク質の生来的 な特性を有するタンパク質をも含まれると意図される。 先ず、 本発明の酵素タンパク質は、 好ましくは、 後述の実施例で得られたよう な配列番号 3中のアミノ酸番号 2 5から C末端までのァミノ酸配列等を有するも のであり得る。 That is, the protein of the present invention is not limited to the protein consisting of the amino acid sequence of SEQ ID NO: 3 deduced from the nucleotide sequence of the cloned nucleic acid according to the common general knowledge in the art, and is described below. Thus, for example, a protein consisting of an incomplete-length polypeptide in which the amino acid sequence at the N-terminal or the like is partially deleted, or a protein homologous to the amino acid sequence, It is also intended to include proteins having properties. First, the enzyme protein of the present invention may preferably have an amino acid sequence from amino acid number 25 to SEQ ID NO: 3 in SEQ ID NO: 3 as obtained in Examples described later.
第 3に、 一般に酵素のような生理活性を有するタンパク質においては、 そのァ ミノ酸配列のうち、 1若しくは複数個のアミノ酸が置換し若しくは欠失し、 若し くは該ァミノ酸配列に 1若しくは複数個のァミノ酸が揷入され若しくは付加され た場合であっても、 その生理活性が維持され得ることは周知である。 また、 天然 産のタンパク質の中には、 それを生産する生物種の品種の違いや、 生態型 (e c o t y p e ) の違いによる遺伝子の変異、 あるいはよく似たアイソザィムの存在 等に起因して、 1個〜複数個のアミノ酸変異を有する変異タンパク質が存在する ことも知られている。 この観点から、 本発明のタンパク質には、 配列番号 1に示 されるアミノ酸配列において 1若しくは複数個のアミノ酸が置換し若しくは欠失 し、 若しくは該ァミノ酸配列に 1若しくは複数個のァミノ酸が揷入され若しくは 付加されたアミノ酸配列を有し、 所定の酵素反応条件下で上記糖転移活性を有す る変異タンパク質も含まれる。 さらに、 前記修飾タンパク質としては、 配列番号 1に示されるアミノ酸配列又は該配列において 1若しくは数個のアミノ酸が置換 し若しくは欠失し、 若しくは該アミノ酸配列に 1若しくは数個のアミノ酸が挿入 され若しくは付加されたアミノ酸配列を有するものが特に好ましい。  Third, generally, in a protein having a physiological activity such as an enzyme, one or more amino acids in the amino acid sequence are substituted or deleted, and one or more amino acids are substituted in the amino acid sequence. It is well known that the physiological activity can be maintained even when a plurality of amino acids are inserted or added. In addition, one of the naturally-occurring proteins may be one of them due to differences in the varieties of the species producing them, mutations in genes due to differences in ecotype, or the presence of similar isozymes. It is also known that there exists a mutant protein having a plurality of amino acid mutations. From this viewpoint, in the protein of the present invention, one or more amino acids are substituted or deleted in the amino acid sequence shown in SEQ ID NO: 1, or one or more amino acids are added to the amino acid sequence. Mutant proteins having an inserted or added amino acid sequence and having the above-mentioned glycosyltransferase activity under predetermined enzyme reaction conditions are also included. Further, as the modified protein, the amino acid sequence shown in SEQ ID NO: 1 or one or several amino acids in the sequence are substituted or deleted, or one or several amino acids are inserted or added in the amino acid sequence. Those having the defined amino acid sequence are particularly preferred.
上記において 「複数個」 とは、 好ましくは 1〜2 0 0個、 より好ましくは 1〜 1 0 0個、さらにより好ましくは 1〜5 0個、最も好ましくは 1〜2 0個である。 一般的には、 部位特異的な変異によってアミノ酸が置換された場合に、 元々のタ ンパク質が有する活性は保持される程度に置換が可能なアミノ酸の個数は、 好ま しくは 1〜 1 0個である。  In the above, “plurality” is preferably 1 to 200, more preferably 1 to 100, still more preferably 1 to 50, and most preferably 1 to 20. Generally, when amino acids are substituted by site-specific mutation, the number of amino acids that can be substituted is preferably 1 to 10 so that the activity of the original protein is maintained. It is.
第 4に、 本発明の修飾タンパク質には、 同様の性質を有するアミノ酸同士の置 換で得られる修飾タンパク質が含まれる。 すなわち、 一般に同様の性質を有する アミノ酸同士の置換 (例えば、 ある疎水性アミノ酸から別の疎水性アミノ酸への 置換、 ある親水性アミノ酸から別の親水性アミノ酸への置換、 ある酸性アミノ酸 から別の酸性アミノ酸への置換、 あるいはある塩基性アミノ酸から別の塩基性ァ ミノ酸への置換) を導入して所望の変異を有する組換えタンパク質を作製する手 法は当業者に周知であり、 そのようにして得られた修飾タンパク質は元来のタン パク質と同様の性質を有することが多い。 この観点から、 そのようにアミノ酸置 換された修飾タンパク質も本発明に包含され得る。 Fourth, the modified proteins of the present invention include modified proteins obtained by substitution of amino acids having similar properties. That is, in general, substitution of amino acids having similar properties (for example, substitution of one hydrophobic amino acid with another hydrophobic amino acid, substitution of one hydrophilic amino acid with another hydrophilic amino acid, and one acidic amino acid with another acidic amino acid) Amino acid substitution or substitution of one basic amino acid with another basic amino acid) to produce a recombinant protein having a desired mutation. The methods are well known to those skilled in the art, and the modified protein thus obtained often has properties similar to the original protein. From this viewpoint, the modified protein in which such amino acid substitution is performed can be included in the present invention.
また、 本発明の修飾タンパク質は、 上述した通りのアミノ酸配列を有し且つ目 的酵素に生来的な酵素活性を有するものであれば、 当該ポリべプチドに糖鎖が結 合した糖タンパク質であってもよい。  In addition, the modified protein of the present invention is a glycoprotein having a sugar chain bound to the polypeptide as long as it has the amino acid sequence as described above and has an intrinsic enzyme activity for the target enzyme. You may.
第 5に、 本発明の相同タンパク質の範囲を特定するに当たり、 本発明の配列番 号 3に記載のァミノ酸配列について GENET YX (ゼネティックス社) による 同一性検索を行うと、 該アミノ酸配列は、 最もホモロジ一の高い公知のコンドロ ィチン合成酵素 (上記非特許文献 1) とは 1 8%の同一性を有する。 この観点か ら、 本発明の相同タンパク質として新規なアミノ酸配列は、 配列番号 1に示され るアミノ酸配列と 1 8 %を超える同一性、 より好ましくは少なくとも 20 %の同 一性、 特に好ましくは少なくとも 30%の同一性を有すると定義される。  Fifth, in identifying the range of the homologous protein of the present invention, the amino acid sequence described in SEQ ID NO: 3 of the present invention was identified by GENET YX (Genetics). It has 18% identity to a known homologous chondroitin synthase (Non-Patent Document 1). From this viewpoint, the novel amino acid sequence as the homologous protein of the present invention has an identity of more than 18%, more preferably at least 20%, particularly preferably at least 20%, to the amino acid sequence shown in SEQ ID NO: 1. Defined to have 30% identity.
なお、 前記 GENET YXは、 核酸解析、 タンパク質解析用の遺伝情報処理ソ フトウェアであって、 通常のホモロジ一解析やマルチアラインメント解析の他、 シグナルペプチド予測やプロモーター部位予測、 二次構造予測が可能である。 ま た、 本明細書で用いたホモロジ一解析プログラムは、 高速 ·高感度な方法として 多用されている L 1 p m a n― P e a r's o n法 (L i pma n, D. J . &P e a r s o n, W. R., S c i e n c e, 277, 1435— 144 1 (1 98 5)) を採用している。 本願明細書において、 同一性のパーセントは、 例えば、 A l t s c h u l ら (Nu c l . Ac i d s . R e s ., 25. 3389— 3402 ( 1 9 97)) に記載されている BLASTプログラム、 あるいは P e a r s o n ら (P r o c. Na t l . Ac a d. S c i . USA, 2444— 2448 (1 988))に記載されている FASTAを用レ、て配列情報と比較し決定することが 可能である。 当該プログラムは、 インターネット上で N a t i o n a 1 C e n t e r f o r B i o t e c h n o l o g y I n f o rma t i o n (N C B I )、 あるいは DNA D a t a B a n k o f J a p a n (DDB J) の ウェブサイ トから利用することが可能である。 各プログラムによる同一性検索の 各種条件 (パラメーター) は同サイ トに詳しく記載されており、 一部の設定を適 宜変更することが可能であるが、 検索は通常デフォルト値を用いて行う。 なお、 当業者に用いられる、 配列比較の他のプログラムもまた使用可能である。 GENET YX is a genetic information processing software for nucleic acid analysis and protein analysis, and is capable of normal signal homology analysis and multi-alignment analysis, as well as signal peptide prediction, promoter site prediction, and secondary structure prediction. is there. In addition, the homology analysis program used in this specification is based on the L1pman-Pear'son method (Lipman, D.J. & Pearson, WR, which is frequently used as a high-speed and high-sensitivity method). Science, 277, 1435—144 1 (1 98 5)). As used herein, the percent identity may be determined, for example, by the BLAST program described in Altschul et al. (Nucl. Acids. Res., 25. 3389-3402 (1997)), or Pearson et al. Sci. USA, 2444-2448 (1988)), and can be determined by comparing the sequence information with FASTA. The program can be used on the Internet from the website of Nationa1CenterforBiotechnologyInformation (NCBI) or DNA Data Bank of Japan (DDB J). The various conditions (parameters) for the identity search by each program are described in detail on the same site, and some settings may be applied. Although it is possible to change it, search is usually performed using the default value. It should be noted that other sequence comparison programs used by those skilled in the art can also be used.
第 6に、 本発明の単離されたタンパク質は、 後述のようにこれを免疫原として 動物に投与することによって該タンパク質に対する抗体を作製することができる。 そのような抗体を用いて免疫測定法により当該酵素を測定、 定量することができ る。 従って、 本発明は、 そのような免疫原の作製にも有用である。 この観点から は、 本発明のタンパク質には、 抗体形成を引き出すための抗原決定基又はェピト ープを含む、 該タンパク質のポリぺプチド断片、 変異体、 融合タンパク質なども p¾ o  Sixth, an antibody against the isolated protein of the present invention can be prepared by administering the isolated protein to an animal as an immunogen as described below. The enzyme can be measured and quantified by immunoassay using such an antibody. Therefore, the present invention is also useful for producing such an immunogen. From this point of view, the protein of the present invention also includes polypeptide fragments, mutants, fusion proteins and the like of the protein, which contain an antigenic determinant or an epitope for inducing antibody formation.
( 6 ) 本発明のタンパク質の単離及ぴ精製  (6) Isolation and purification of the protein of the present invention
本発明のタンパク質は、 以下の方法により単離 ·精製することができる。  The protein of the present invention can be isolated and purified by the following methods.
近年、 遺伝子工学的手法として、 形質転換体を培養し生育させて、 その培養物 ないし生育物から目的物質を単離 ·精製する手法が確立されている。 本発明の L4 タンパク質も、.例えば、本発明の L4核酸を組み込んだ発現ベクターを含む形質転 換体を栄養培地で培養することによって発現 (産生) させることができる。  In recent years, as a genetic engineering technique, a technique has been established in which a transformant is cultured and grown, and a target substance is isolated and purified from the culture or grown product. The L4 protein of the present invention can also be expressed (produced), for example, by culturing a transformant containing an expression vector into which the L4 nucleic acid of the present invention has been incorporated in a nutrient medium.
形質転換体の栄養培地としては、 宿主細胞 (形質転換体) の生育に必要な炭素 源、 無機窒素源もしくは有機窒素源を含んでいることが好ましい。 炭素源として は、 たとえばグルコース、 デキストラン、 可溶性デンプン、 ショ糖、 メタノ一ノレ などが、 例示される。 無機窒素源もしくは有機窒素源としては、 例えばアンモニ ゥム塩類、硝酸塩類、 アミノ酸、 コーンスチープ' リカー、ペプトン、 カゼイン、 肉エキス、 大豆粕、 バレイショ抽出液などが例示される。 また、 所望により他の 栄養素 (例えば無機塩 (例えば、 塩化ナトリウム、 塩化カルシウム、 リン酸二水 素ナトリウム、塩化マグネシウム)、 ビタミン類、 抗生物質 (例えばテトラサイク リン、 ネオマイシン、 アンピシリン、 カナマイシン等) など) を含んでいてもよ い。 培養は、 当業界において知られている方法により行われる。 培養条件、 例え ば温度、 培地の p H及び培養時間は、 本発明に係るタンパク質が大量に生産され るように適宜選択される。  The nutrient medium for the transformant preferably contains a carbon source, an inorganic nitrogen source or an organic nitrogen source necessary for the growth of the host cell (transformant). Examples of the carbon source include glucose, dextran, soluble starch, sucrose, methanol and the like. Examples of the inorganic or organic nitrogen source include ammonium salts, nitrates, amino acids, corn chip liquor, peptone, casein, meat extract, soybean meal, potato extract and the like. If desired, other nutrients (eg, inorganic salts (eg, sodium chloride, calcium chloride, sodium dihydrogen phosphate, magnesium chloride), vitamins, antibiotics (eg, tetracycline, neomycin, ampicillin, kanamycin, etc.)) May be included. The culturing is performed by a method known in the art. Culture conditions, for example, temperature, pH of the medium, and culture time are appropriately selected so that the protein of the present invention is produced in large quantities.
本発明のタンパク質は、 上記培養物ないし生育物から以下のようにして取得す ることができる。 すなわち、 目的タンパク質が宿主細胞内に蓄積する場合には、 遠心分離やろ過などの操作により宿主細胞を集め、 これを適当な緩衝液 (例えば 濃度が 1 0〜 1 0 0 mM程度のトリス緩衝液、リン酸緩衝液、 H E P E S緩衝液、 M E S緩衝液などの緩衝液。 p Hは用いる緩衝液によって異なるが、 p H 5 . 0 〜9 . 0の範囲が望ましい) に懸濁した後、 用いる宿主細胞に適した方法で細胞 を破壊し、 遠心分離により宿主細胞の内容物を得る。 一方、 目的タンパク質が宿 主細胞外に分泌される場合には、 遠心分離やろ過などの操作により宿主細胞と培 地を分離し、 培養ろ液を得る。 宿主細胞破壊液、 あるいは培養ろ液はそのまま、 または硫安沈殿と透析を行なつた後に、 そのタンパク質の単離 ·精製に供するこ とができる。 The protein of the present invention can be obtained from the culture or grown product as described below. That is, when the target protein accumulates in the host cell, The host cells are collected by an operation such as centrifugation or filtration, and the host cells are collected in an appropriate buffer (for example, Tris buffer, phosphate buffer, HEPES buffer, MES buffer, etc. at a concentration of about 100 to 100 mM). (The pH varies depending on the buffer used, but the pH is preferably in the range of 5.0 to 9.0.) After the cells are suspended, the cells are disrupted by a method suitable for the host cells to be used, and the host is centrifuged. Get the contents of the cells. On the other hand, when the target protein is secreted outside the host cell, the host cell and the medium are separated by operations such as centrifugation and filtration to obtain a culture filtrate. The host cell disruption solution or the culture filtrate can be used for isolation and purification of the protein as it is or after ammonium sulfate precipitation and dialysis.
目的タンパク質の単離 '精製の方法としては、 以下の方法を挙げることができ る。 すなわち、 当該タンパクに 6 Xヒスチジンや G S T、 マルトース結合タンパ クといったタグを付けている場合には、 一般に用いられるそれぞれのタグに適し たァフィ二ティークロマトダラフィ一による方法を挙げることができる。 一方、 そのようなタグを付けずに本発明に係るタンパク質を生産した場合には、 例えば イオン交換クロマトグラフィーによる方法を挙げることができる。 また、 これに 加えて、 ゲルろ過や疎水性クロマトグラフィー、 等電点クロマトグラフィーなど を組み合わせる方法でもよい。  Methods for isolating and purifying the target protein include the following methods. That is, when a tag such as 6X histidine, GST, or maltose binding protein is attached to the protein, a method using affinity chromatography that is generally suitable for each tag can be used. On the other hand, when the protein according to the present invention is produced without such a tag, for example, a method by ion exchange chromatography can be mentioned. In addition, a method combining gel filtration, hydrophobic chromatography, isoelectric focusing, or the like may be used.
また単離 .精製が容易となるような発現ベクターを構築するとよい。 特に、 酵 素活性を有するポリぺプチドと標識べプチドとの融合タンパク質の形態で発現す るように発現ベクターを構築し、 遺伝子工学的に当該酵素タンパク質を調製すれ ば、 単離 ·精製も容易である。 上記識別ペプチドの例としては、 本発明に係る酵 素を遺伝子組み換えによって調製する際に、 該識別べプチドと酵素活性を有する ポリペプチドとが結合した融合タンパク質として発現させることにより、 形質転 換体の生育物から本発明に係る酵素の分泌 ·分離 ·精製又は検出を容易にするこ とを可能とする機能を有したぺプチドである。  It is also preferable to construct an expression vector that facilitates isolation and purification. In particular, isolation and purification are easy if an expression vector is constructed so as to express in the form of a fusion protein of a polypeptide having enzyme activity and a labeled peptide, and the enzyme protein is prepared by genetic engineering. It is. Examples of the above-mentioned discriminating peptide include, when the enzyme of the present invention is prepared by genetic recombination, expression of the discriminating peptide and a polypeptide having an enzymatic activity as a fusion protein, whereby the transformant is obtained. It is a peptide having a function of facilitating secretion / separation / purification or detection of the enzyme of the present invention from a grown product.
そのような識別ぺプチドとしては、 例えばシグナルぺプチド (多くのタンパク 質の N末端に存在し、 細胞内の膜透過機構においてタンパク質の選別のために細 胞内では機能している 15〜30アミノ酸残基からなるぺプチド:例えば 0mpA、0mpT、 Dsb等)、 プロテインキナーゼ 、 プロテイン A (黄色ブドウ球菌細胞壁の構成成 分で分子量約 42, 000のタンパク質)、 ダルタチオン S転移酵素、 Hisタグ (ヒス チジン残基を 6乃至 10個並べて配した配列)、 mycタグ (cMycタンパク質由来の 1 3アミノ酸配列)、 FLAGペプチド (8アミノ酸残基からなる分析用マーカー)、 T7 タグ (genelO タンパク質の最初の 11 アミノ酸残基からなる)、 S タグ (滕臓 RNaseA由来の 15ァミノ酸残基からなる)、 HSVタグ、 pelB (大腸菌外膜タンパク 質 pelBの 22ァミノ酸配列)、 HAタグ (へマダルチュン由来の 10アミノ酸残基か らなる)、 Trxタグ (チォレドキシン配列)、 CBPタグ (カルモジュリン結合ぺプチ ド)、 CBDタグ(セルロース結合ドメイン)、 CBRタグ(コラーゲン結合ドメイン)、 j3 -lac/blu ( jSラクタマーゼ)、 iS -gal ガラク トシダーゼ)、 luc (ルシフェラ 一ゼ)、 HP-Thio (His - patchチォレドキシン)、 HSP (熱ショックペプチド)、 Ln y (ラミニン γペプチド)、 Fn (フイブロネクチン部分ペプチド)、 GFP (緑色蛍光べ プチド)、 YFP (黄色蛍光ペプチド)、 CFP (シアン蛍光ペプチド)、 BFP (青色蛍光 ぺプチド)、 DsRed、 DsRed2 (赤色蛍光べプチド)、 MBP (マルトース結合べプチド)、 LacZ (ラタトースオペレーター)、 IgG (免疫グロブリン G)、 アビジン、 プロティ ン G等のペプチドが挙げられ、 何れの識別ペプチドであっても使用することが可 能である。 Such discriminating peptides include, for example, signal peptides (15-30 amino acids present at the N-terminus of many proteins and functioning in cells for protein selection in the intracellular membrane permeation mechanism). Peptides consisting of residues: for example, 0mpA, 0mpT, Dsb, etc., protein kinase, protein A (constituting components of S. aureus cell wall) Protein with a molecular weight of about 42,000 per minute), daltathione S-transferase, His tag (a sequence in which 6 to 10 histidine residues are arranged), myc tag (a 13 amino acid sequence derived from the cMyc protein), FLAG peptide ( Analytical marker consisting of 8 amino acid residues), T7 tag (composed of the first 11 amino acid residues of genelO protein), S tag (composed of 15 amino acid residues derived from Tengen RNaseA), HSV tag, pelB (E. coli) Outer membrane protein pelB 22 amino acid sequence), HA tag (consisting of 10 amino acid residues derived from hemadaltun), Trx tag (thioredoxin sequence), CBP tag (calmodulin binding peptide), CBD tag (cellulose binding) Domain), CBR tag (collagen binding domain), j3 -lac / blu (jS lactamase), iS-gal galactosidase), luc (lucifera one), HP-Thio (His-patch Redoxin), HSP (heat shock peptide), Lny (laminin γ peptide), Fn (fibronectin partial peptide), GFP (green fluorescent peptide), YFP (yellow fluorescent peptide), CFP (cyan fluorescent peptide), BFP (blue Peptides such as fluorescent peptide), DsRed, DsRed2 (red fluorescent peptide), MBP (maltose binding peptide), LacZ (latatose operator), IgG (immunoglobulin G), avidin, protein G, etc. It is possible to use even the discriminating peptide of the above.
それらの中でも特にシグナルペプチド、 プロテインキナーゼ 、 プロテイン A、 グルタチオン S転移酵素、 Hisタグ、 mycタグ、 FLAGぺプチド、 T7タグ、 Sタグ、 HSVタグ、 pelB又は HAタグ力 遺伝子工学的手法による本発明に係る酵素の発現、 精製がより容易となることから好ましく、特に FLAGぺプチドとの融合タンパク質 として得るのが、取扱面で極めて優れているため好ましい。上記 FLAGペプチドは 非常に抗原性であり、 そして特異的なモノクローナル抗体が可逆的に結合するェ ピトープを提供し、 発現された組換えタンパク質の迅速なアツセィおよび容易な 精製を可能にする。 4E11 と称されるネズミハイプリ ドーマは、 米国特許第 5, 011, 912 (これを参照することにより本願明細書の開示に組み込む) に記載され るように、 特定の二価金属陽イオンの存在下で、 FLAGぺプチドに結合するモノク ローナル抗体を産生する。 4E11ハイブリ ドーマ細胞株は、寄託番号 HB 9259下に、 ァメ リカン ' タイプ ' 力ノレチヤ一 · コレクション (Ameri can Type Culture Collection)に寄託されている。 FLAGぺプチドに結合するモノクローナル抗体は、 Eastman Kodak Co., Scientific Imaging Systems Division^ コネチカツト州ニ ユーヘブンより入手可能である。 Among them, signal peptide, protein kinase, protein A, glutathione S-transferase, His tag, myc tag, FLAG peptide, T7 tag, S tag, HSV tag, pelB or HA tag force It is preferable because expression and purification of such an enzyme becomes easier, and it is particularly preferable to obtain the enzyme as a fusion protein with FLAG peptide because it is extremely excellent in handling. The FLAG peptide is highly antigenic and provides a peptide to which a specific monoclonal antibody reversibly binds, allowing for rapid access and easy purification of the expressed recombinant protein. The murine hybrid dorma, referred to as 4E11, has been disclosed in the presence of certain divalent metal cations, as described in US Pat. No. 5,011,912, which is incorporated herein by reference. Produces a monoclonal antibody that binds to the FLAG peptide. The 4E11 hybridoma cell line has been deposited with the American Type 'Collection' under the accession number HB 9259. Monoclonal antibodies that bind to FLAG peptide Eastman Kodak Co., Scientific Imaging Systems Division ^ Available from New Haven, CT.
哺乳類細胞で発現可能であって、かつ上述の FLAGぺプチドとの融合タンパク質 として本発明の酵素タンパク質を得ることができる基本ベクターとしては、 例え ば pFLAG - CMV- 1 (シグマ社) がある。 また、 昆虫細胞で発現可能なベクターとし ては、 pFBIF (pFastBac (インビトロジェン社) に FLAGペプチドをコードする領 域を組み込んだベクター :後述の実施例参照) 等が例示されるが、 これらに限定 されない。 当業者であれば、 当該酵素の発現に使用する宿主細胞、 制限酵素、 識 別ぺプチドなどから判断して適当な基本べクターを選択することが可能である。  As a basic vector that can be expressed in mammalian cells and can obtain the enzyme protein of the present invention as a fusion protein with the above-mentioned FLAG peptide, for example, pFLAG-CMV-1 (Sigma) is available. Examples of vectors that can be expressed in insect cells include, but are not limited to, pFBIF (a vector in which a region encoding a FLAG peptide is incorporated into pFastBac (Invitrogen): see Examples described later). . Those skilled in the art can select an appropriate basic vector based on the host cell used for expression of the enzyme, restriction enzymes, identification peptides, and the like.
( 7 ) 本発明のタンパク質を認識する抗体  (7) an antibody that recognizes the protein of the present invention
本発明により、 L4タンパク質に免疫反応性である抗体が提供される。 こうした 抗体は、 (非特異的結合と対照的に)抗体の抗原結合部位を介して、該酵素タンパ ク質に特異的に結合し得る。 具体的には、 配列番号 3のアミノ酸配列を有するポ リペプチド又はその断片、 その変異体タンパク質又は融合タンパク質などを、 そ れぞれに免疫反応性である抗体を産生するための免疫原として使用することが可 能である。  The present invention provides antibodies that are immunoreactive with the L4 protein. Such antibodies can specifically bind to the enzyme protein via the antigen-binding site of the antibody (as opposed to non-specific binding). Specifically, a polypeptide having the amino acid sequence of SEQ ID NO: 3 or a fragment thereof, a mutant protein thereof or a fusion protein thereof is used as an immunogen for producing an antibody which is immunoreactive with each. It is possible.
より具体的には、 タンパク質、 断片、 変異体、 融合タンパク質などは、 抗体形 成を引き出す抗原決定基またはェピトープを含むが、 これら抗原決定基またはェ ピトープは、 直鎖でもよいし、 より高次構造 (断続的) でもよい。 なお、 該抗原 決定基またはェピトープは、 当該技術分野に知られるあらゆる方法によって同定 できる。 したがって、 本発明は、 L4酵素タンパク質の抗原性ェピトープにも関す る。 こうしたェピトープは、 以下により詳細に記載されるように、 抗体、 特にモ ノクローナル抗体を作成するのに有用である。  More specifically, proteins, fragments, mutants, fusion proteins and the like contain antigenic determinants or epitopes that elicit antibody formation, but these antigenic determinants or epitopes may be linear or higher order. The structure (intermittent) may be used. In addition, the antigenic determinant or epitope can be identified by any method known in the art. Therefore, the present invention also relates to the antigenic epitope of the L4 enzyme protein. Such epitopes are useful for generating antibodies, particularly monoclonal antibodies, as described in more detail below.
本発明のェピトープは、 アツセィにおいて、 そしてポリクローナル血清または 培養ハイプリ ドーマ由来の上清などの物質から特異的に結合する抗体を精製する ための研究試薬として使用可能である。こうしたェピトープまたはその変異体は、 固相合成、 タンパク質の化学的または酵素的切断などの当該技術分野において公 知の技術を用いて、 あるいは組換え DNA技術を用いて産生することができる。 本発明のタンパク質によってあらゆる態様の抗体が誘導される。 該タンパク質 のポリべプチド全部若しくは一部又はェピトープが単離されていれば、 慣用的技 術を用いてポリクローナル抗体およびモノクローナル抗体のいずれも調製可能で ある。 例えば、 Kennetら (監修) , Monoclonal Antibodies, Hybridomas -' A New Dimens i on in Biological Anal yses, Pl enum Press, New York, 1980を参照され たい。 The epitopes of the invention can be used in Atsey and as research reagents for purifying antibodies that specifically bind from substances such as polyclonal serum or supernatants from cultured hybridomas. Such epitopes or variants thereof can be produced using techniques known in the art, such as solid phase synthesis, chemical or enzymatic cleavage of proteins, or using recombinant DNA techniques. Antibodies of all aspects are induced by the proteins of the present invention. The protein As long as all or part of the polypeptide or epitope is isolated, both polyclonal antibodies and monoclonal antibodies can be prepared using conventional techniques. See, for example, Kennet et al. (Supervised), Monoclonal Antibodies, Hybridomas-'A New Dimensions in Biological Analyzes, Plenum Press, New York, 1980.
本発明によれば、 L4酵素タンパク質に特異的なモノクローナル抗体を産生する ハイブリ ドーマ細胞株も提供される。 こうしたハイプリ ドーマは、 慣用的技術に よって産生し、 そして同定することが可能である。 こうしたハイブリ ドーマ細胞 株を産生するための 1つの方法は、 動物を本発明の酵素タンパク質で免疫し、 免 疫された動物から脾臓細胞を採取し、 該脾臓細胞を骨髄腫細胞株に融合させ、 そ れによりハイプリ ドーマ細胞を生成し、 そして該酵素に結合するモノクローナル 抗体を産生するハイプリ ドーマ細胞株を同定することを含む。 モノクローナル抗 体は、 慣用的技術によって回収可能である。  According to the present invention, there is also provided a hybridoma cell line that produces a monoclonal antibody specific to the L4 enzyme protein. These hybridomas can be produced and identified by conventional techniques. One method for producing such a hybridoma cell line is to immunize an animal with the enzyme protein of the present invention, collect spleen cells from the immunized animal, fuse the spleen cells with a myeloma cell line, Thereby producing hybridoma cells and identifying a hybridoma cell line that produces a monoclonal antibody that binds to the enzyme. Monoclonal antibodies can be recovered by conventional techniques.
本発明のモノクローナル抗体には、 キメラ抗体、 例えば、 ネズミモノクローナ ル抗体のヒ ト化型が含まれる。 こうしたヒ ト化型抗体は、 ヒ トに投与されて免疫 原性を減少させるという利点を有する。  The monoclonal antibodies of the present invention include chimeric antibodies, for example, humanized forms of murine monoclonal antibodies. Such humanized antibodies have the advantage of being administered to humans to reduce immunogenicity.
また本発明によれば、 上記抗体の抗原結合断片も提供される。 慣用的技術によ つて産生可能な抗原結合断片の例には、 £1 13ぉょび ( a b ' ) 2断片が含まれ るが、 これらに限定されない。 遺伝子工学技術によって産生可能な抗体断片およ び誘導体もまた提供される。 According to the present invention, there is also provided an antigen-binding fragment of the above antibody. Examples of antigen-binding fragments that can be produced by conventional techniques include, but are not limited to, £ 113 and (ab ') 2 fragments. Antibody fragments and derivatives that can be produced by genetic engineering techniques are also provided.
本発明の抗体は、 in vitro及ぴ in vivoのいずれにおいても、 本発明の L4酵 素タンパク質又はそのポリぺプチド断片の存在を検出するためのアツセィに使用 可能である。 また本発明の抗体は、 免疫ァフィ二ティークロマトグラフィーによ つて L4酵素タンパク質又はそのポリペプチド断片を精製することにも使用する ことができる。  The antibody of the present invention can be used in an assay for detecting the presence of the L4 enzyme protein of the present invention or a polypeptide fragment thereof both in vitro and in vivo. The antibodies of the present invention can also be used for purifying L4 enzyme proteins or polypeptide fragments thereof by immunoaffinity chromatography.
さらに本発明の抗体は、 結合パートナー、 例えば受容体基質への前記糖転移酵 素タンパク質の結合を遮断することが可能な遮断抗体として提供されてもよく、 そのような結合により当該酵素の生物活性を阻害可能である。 こうした遮断抗体 は、 受容体基質を発現してレ、る特定の細胞への該タンパク質の結合を阻害する能 力に関して抗体を試験するなど、 あらゆる適切なアツセィ法を用いて同定するこ とができる。 Further, the antibodies of the present invention may be provided as blocking antibodies capable of blocking the binding of the glycosyltransferase protein to a binding partner, eg, a receptor substrate, and such binding may result in the biological activity of the enzyme. Can be inhibited. These blocking antibodies can express receptor substrates and inhibit the binding of the protein to certain cells. Identification can be made using any suitable Atsey method, such as testing antibodies for force.
また遮断抗体は、 標的細胞の結合パートナーに結合している該酵素タンパク質 から生じる生物学的影響を阻害する能力に関するァッセィにおいても同定可能で ある。 こうした抗体は、 in vitro法で使用するか又は in vivoで投与して、 抗体 を生成した実体によって仲介される生物活性を阻害し得る。 従って、 本発明によ れば、 L4酵素タンパク質と結合パートナーとの間の直接又は間接的な相互作用に 起因して引き起こされるか又は悪化する障害を治療するための抗体も提供され得 る。 こうした療法は、 結合パートナー仲介生物学的活性を阻害するのに有効な量 の遮断抗体を哺乳動物に in vivo投与することを含むであろう。 一般にこうした 療法の使用にはモノクローナル抗体が好ましく、 1つの態様として抗原結合抗体 断片が使用される。  Blocking antibodies can also be identified in assays relating to their ability to inhibit the biological effects resulting from the enzyme protein binding to the binding partner of the target cell. Such antibodies can be used in in vitro methods or administered in vivo to inhibit a biological activity mediated by the entity that produced the antibody. Thus, according to the present invention, there can be provided an antibody for treating a disorder caused or exacerbated by a direct or indirect interaction between an L4 enzyme protein and a binding partner. Such therapy will involve administering to the mammal an in vivo amount of a blocking antibody effective to inhibit the binding partner-mediated biological activity. Generally, monoclonal antibodies are preferred for use in such therapies, and in one embodiment, antigen-binding antibody fragments are used.
以下、 実施例により本発明を更に具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
実施例  Example
実施例 1 : L4核酸のクローニング Example 1: Cloning of L4 nucleic acid
本発明者等は、 LARGE と呼ばれる公知の遺伝子配列をクエリーとする BLAST、 PSI - BLAST検索を介して、 新規な構造遺伝子を見出し、 これを L4と命名した。 L4 の核酸配列から予測されるオープンリーディングフレーム (0RF) は 1047 bp (配 列番号 1及び 2 )、 アミノ酸配列にして 349残基 (配列番号 2及び 3 ) である。 実施例 2 : ヒト大腸癌組織における L4核酸の発現量、 及び癌化検定  The present inventors have found a novel structural gene through BLAST and PSI-BLAST searches using a known gene sequence called LARGE as a query, and named it L4. The open reading frame (0RF) predicted from the nucleic acid sequence of L4 is 1047 bp (SEQ ID NOS: 1 and 2) and 349 residues in amino acid sequence (SEQ ID NOs: 2 and 3). Example 2: Expression level of L4 nucleic acid in human colorectal cancer tissue and canceration assay
定量的リアルタイム PCR法を用いて、 ヒ ト大腸癌組織と同一患者の正常大腸癌 組織との間で L4遺伝子の発現量を比較した。  Using a quantitative real-time PCR method, the expression level of the L4 gene was compared between human colorectal cancer tissue and normal colorectal cancer tissue of the same patient.
定量的リアルタイム PCR法とは、 PCRにおいてセンスプライマーおよびアンチ センスプライマーに加え、蛍光標識されたプローブを組合わせる方法である。 PCR で増幅されると伴にプローブの蛍光標識が外れて蛍光を示す。 この蛍光強度が目 的遺伝子の増幅に相関して増大するので、これを指標として L4核酸の定量を行う。 ヒ ト大腸癌組織と同一患者の正常大腸癌組織の RNAを RNeasy Mini Kit (キア ゲン社製) で抽出し、 Super- Script First-Strand Synthesis System (インビト ロジェン社製) を用いた oligo (dT)法により 1本鎖 DNAとした。 この抽出 DNAを 铸型として用いて 5 ' プライマー (配列番号 4 )、 3 ' プライマー (配列番号 5 ) 及び TaqManプローブ (配列番号 6 ) を用いて、 ABI PRISM 7700 (アプライ ドバイ ォシステムズジャパン社製) により定量的リアルタイム PCRを行った。 PCRの条 件は、 50°C 2分、 95°C 10分で反応させた後、 95°C 15秒、 60。C 1分を 50回繰り 返した。 蛍光強度を指標に得られた測定値は、 個体間のばらつきを補正するため 内標準遗伝子としてアプライドバイォシステムズジャパン社製のキットを用いて 定量した j8 -ァクチンにより除し、 ヒ ト大腸癌組織の測定値と、同一患者の正常大 腸癌組織の測定値との間で比較を行つた。 The quantitative real-time PCR method is a method of combining a fluorescently labeled probe in addition to a sense primer and an antisense primer in PCR. As the probe is amplified by PCR, the fluorescent label on the probe comes off and shows fluorescence. Since this fluorescence intensity increases in correlation with the amplification of the target gene, L4 nucleic acid is quantified using this as an index. RNA from normal colon cancer tissue of the same patient as human colon cancer tissue was extracted with the RNeasy Mini Kit (Qiagen) and oligo (dT) using Super-Script First-Strand Synthesis System (Invitrogen) Single-stranded DNA was obtained by the method. This extracted DNA Using the 5 'primer (SEQ ID NO: 4), 3' primer (SEQ ID NO: 5) and TaqMan probe (SEQ ID NO: 6) as template 定量, quantitative real-time with ABI PRISM 7700 (Applied Biosystems Japan) PCR was performed. The PCR conditions were as follows: reaction at 50 ° C for 2 minutes and 95 ° C for 10 minutes, followed by 95 ° C for 15 seconds and 60 minutes. C 1 minute was repeated 50 times. The measured value obtained by using the fluorescence intensity as an index was divided by j8-actin, which was quantified using an Applied Biosystems Japan kit as an internal standard gene, to correct inter-individual variability. A comparison was made between measurements of cancerous tissue and those of normal colorectal cancer tissue of the same patient.
その結果 (表 1 ) から、 大腸癌化組織で発現している L4核酸の量 (すなわち癌 化組織での転写レベル) は、 正常組織のそれと比較して有意に低いことが明らか となった。 また、 患者ごとで対比すれば、 全患者の癌化組織で正常組織の発現量 を下回っており、 その低下の程度は、 概ね 1 Z 1 0以下、 平均値間の対比で 1 / 1 1 . 5である。 また例えば、 正常組織と比較して 1 / 2の発現量に低下してい るものを陽性と判定すると陽性率は 8 3 %である。  The results (Table 1) revealed that the amount of L4 nucleic acid expressed in colon cancerous tissues (ie, the transcription level in cancerous tissues) was significantly lower than that in normal tissues. Also, when compared by patient, the expression level of normal tissues was lower than that of normal tissues in the cancerous tissues of all patients, and the degree of the decrease was about 1 Z10 or less, which was 1/1/1 compared to the average value. 5 In addition, for example, if the expression level is reduced to one half of that in normal tissues, the positive rate is 83%.
表 1 '  table 1 '
患者番号 正常組織 癌化組織  Patient number Normal tissue Cancerous tissue
1 0.034 0.023  1 0.034 0.023
2 0.020 0.001  2 0.020 0.001
3 0.017 0.003  3 0.017 0.003
4 0.036 0.002  4 0.036 0.002
5 0.117 0.011  5 0.117 0.011
6 0.012 0.009  6 0.012 0.009
7 0.019 0.002  7 0.019 0.002
8 0.010 0.002  8 0.010 0.002
9 0.203 0.005  9 0.203 0.005
10 0.272 0.005  10 0.272 0.005
11 0.026 0.003  11 0.026 0.003
12 0.059 0.007  12 0.059 0.007
平均 0.069 0.006 実施例 3 :単離された L4核酸の哺乳類細胞での発現 Average 0.069 0.006 Example 3: Expression of isolated L4 nucleic acid in mammalian cells
L4核酸の哺乳類細胞発現ベクターへの揷入 Introduction of L4 nucleic acid into mammalian cell expression vector
L4の活性を調べるために以下の方法により L4を哺乳類細胞内で発現させた。 すなわち、 L4遺伝子を pENTR/D-TOPO Cloning Kit (ィンビトロジェン社) の pENTR (イ ンビ トロジヱン社製) に組込み、 さ らに哺乳類細胞発現用ベクター pcDNA3. 2-DEST (ィンビト口ジェン社) および p FLAG - CMV3 (SIGMA 社製) に当該 遺伝子の 0RFを導入した。  To examine the activity of L4, L4 was expressed in mammalian cells by the following method. That is, the L4 gene was incorporated into pENTR (manufactured by Invitrogen) of the pENTR / D-TOPO Cloning Kit (manufactured by Invitrogen), and the mammalian cell expression vector pcDNA3.2-DEST (Invitrogen) and pFLAG -0RF of the relevant gene was introduced into CMV3 (manufactured by SIGMA).
①ェントリークローンの作製  ① Preparation of entry clone
ヒ ト骨格筋組織から得られた cDNA (クロンテック社製) を铸型とし 5, プライ マー(L4_fullNkoz :配列番号 7 )と 3 ' プライマー (L4— fullC :配列番号 8 ) を用い て PCR反応を行い、目的の DNA断片を得た。 PCR法は 98°C 10秒、 54°C 30秒、 72°C 2分を 30回,操り返す条件で行つた。そして PCR産物を MiniElute PCR Purification Kit (QIAGEN社製) により精製し定法により単離した。  Using a cDNA obtained from human skeletal muscle tissue (Clontech) as type III, a PCR reaction was performed using a primer 5 (L4_fullNkoz: SEQ ID NO: 7) and a 3 ′ primer (L4-fullC: SEQ ID NO: 8). Thus, the desired DNA fragment was obtained. The PCR method was carried out under the conditions of 98 ° C for 10 seconds, 54 ° C for 30 seconds, and 72 ° C for 2 minutes 30 times. Then, the PCR product was purified by MiniElute PCR Purification Kit (manufactured by QIAGEN) and isolated by a conventional method.
この PCR産物を T0P0イソメラーゼ反応によって pENTR/D (ィンビトロジェン社 製) へ組み込み、 「エントリークローン」 を作製した。 反応は、 目的とする精製 DNA断片溶液 2 1、 pENTR/D- T0P0溶液 0· 5 1 (70ng)、反応緩衝液 0. 5 μ 1を 25°C で 5分間インキュベートして行った。 その後、 その反応液 2 μ ΐをコンビテント セル (大腸菌 Τ0Ρ10、 インビトロジェン社製) 100 / 1 と混合し、 ヒートショック 法の後、カナマイシンを含む LBプレートに植菌し培養した。翌日コロニーをとり、 直接 PCRで目的 DNA断片を保持する大腸菌クローンを確認した。 さらに確実を期 すためシーケンシングによ り DNA 配列の確認をした後、 プラスミ ド DNA (pENTR- L4A) を抽出 ·精製した。  This PCR product was incorporated into pENTR / D (manufactured by Invitrogen) by a T0P0 isomerase reaction to prepare an “entry clone”. The reaction was performed by incubating the desired purified DNA fragment solution 21, pENTR / D-TOP0 solution 0.51 (70 ng), and reaction buffer 0.5 μl at 25 ° C for 5 minutes. Thereafter, 2 μl of the reaction solution was mixed with 100/1 of a competent cell (Escherichia coli 0-10, manufactured by Invitrogen), and after heat shock, inoculated on an LB plate containing kanamycin and cultured. The next day, a colony was picked, and an E. coli clone retaining the target DNA fragment was confirmed by direct PCR. To further ensure the DNA sequence by sequencing, the plasmid DNA (pENTR-L4A) was extracted and purified.
②発現プラスミ ドの作製  ② Preparation of expression plasmid
上記ェントリークローンは、 揷入部位の両側にラムダファージが大腸菌から切 り出される際の組換部位である attLを持つもので、 LRクロナーゼ (ラムダファ ージの組換酵素 Int、 IHF、 Xisを混合したもの) とデスティネーションベクター と混合することで、 挿入部位がデスティネーションベクターに移り、 発現クロ一 ンが作製される。 具体的な工程は、 以下のとおりである。  The above-mentioned entry clone has attL which is a recombination site when lambda phage is cut out of E. coli on both sides of the insertion site, and LR clonase (lambda phage recombinant enzymes Int, IHF, Xis By mixing the mixture with a destination vector, the insertion site is transferred to the destination vector, and an expression clone is produced. The specific steps are as follows.
まずエントリークローンプラスミ ド溶液 1 μ 1、 pcDNA3. 2 - DEST 溶液を 1 μ 1 (75ng)、 LR反応緩衝液 2 μ 1、 TE4 μ 1、 LRクロナーゼ mix 2 μ 1を 25°Cで 1時間 反応させ、プロティナーゼ K溶液を 加えて 37°C10分インキュベートして反 応を終了させた (この組換え反応で pcDNA3. 2 - L4Aが生成される)。 pcDNA3. 2 は、 CMV プロモーター支配下に目的遺伝子を挿入し哺乳動物由来の細胞内で挿入遺伝 子を発現させるものである。 First, 1 μl of the entry clone plasmid solution and 1 μl of pcDNA3.2-DEST solution (75 ng), 2 μl of LR reaction buffer, 4 μl of TE, and 2 μl of LR clonase mix for 1 hour at 25 ° C, add proteinase K solution, incubate at 37 ° C for 10 minutes to terminate the reaction. (This recombination reaction produces pcDNA3.2-L4A). pcDNA3.2 inserts the target gene under the control of the CMV promoter and expresses the inserted gene in mammalian cells.
③可溶型タンパク質発現ブラスミ ドの作製  (3) Preparation of soluble protein expression plasmid
p FLAG- CMVSプラスミ ドベクター (SIGMA社製) は、 哺乳類細胞で働く CMVプロ モーターにより揷入遺伝子を発現し、 挿入遺伝子産物の N 末端部分に精製用に FLAGペプチド配列 (配列番号 9 ) を付加するプラスミ ドベクターである。 L4遺伝 子産物は N末端付近に疎水性領域を持つ膜結合型タンパク質と予想されることか ら、 酵素タンパク質の精製を容易にする目的で竦水性領域を除いた可溶型酵素タ ンパク質を発現するべく遺伝子を改変し、 これを発現プラスミ ドベクター PFLAG-CMV3に組み込み哺乳類細胞中に遺伝子導入した上で発現させ、可溶型酵素 タンパク質を取得する。  p FLAG-CMVS plasmid vector (manufactured by SIGMA) expresses a transgene by a CMV promoter that works in mammalian cells, and adds a FLAG peptide sequence (SEQ ID NO: 9) to the N-terminal part of the inserted gene product for purification. This is a plasmid vector. Since the L4 gene product is expected to be a membrane-bound protein with a hydrophobic region near the N-terminus, a soluble enzyme protein excluding the water-soluble region was used to facilitate purification of the enzyme protein. The gene is modified to express it, incorporated into the expression plasmid vector PFLAG-CMV3, transfected into mammalian cells, and expressed to obtain a soluble enzyme protein.
当該遺伝子産物の疎水性領域をコードする遺伝子領域の除去は、 エントリーク 口一ンで得られた全鎖長 0RFの部分配列を PCR法により増幅しクローニングする ことで行った。  The removal of the gene region encoding the hydrophobic region of the gene product was carried out by amplifying by PCR the partial sequence with a total chain length of 0RF obtained by entry and cloning.
3種類の 5 ' 末端プライ マー ( L4_Lf ormKpn77F ; 配列番号 1 0 、 L4_MformKpnllOF;配列番号 1 1、 L4_NformKpnl55F;配列番号 1 2 ) はそれぞれ cDNAの開始コドン 1から 73番目のリジンコドン、 106番目のァスパラギン酸コド ン、 151番目のイソロイシンコドンを N末端とするぺプチドをコ一ドする cDNA部 分配列を増幅する。 3 ' 末端のプライマーはエントリークローン pENTR- L4Aプラ スミ ドに含まれるプラスミ ドベクター由来の配列(XBM13R;配列番号 1 3 ) を用い た。 PCR法は 94°C 30秒、 54°C 30秒、 72°C 1分を 20回繰り返す条件で行った。 増幅産物を MiniElute PCR Purification Kit (QIAGEN社製) により精製した。 上記改変遺伝子の発現べクタ一への組み込みは PCRプライマーの両端に設定し た制限酵素認識配列を利用して行った。 精製 PCR産物を制限酵素 Kpnlと Xbalで 37°C2時間消化した後に MiniElute PCR Purification Kitで精製した。 同様にし て pFLAG- CMV3プラスミ ドベクターを Kpnl/Xbalにより消化し精製した。 そのプラスミ ドベクターと挿入遣伝子のライゲーションはライゲーションキッ ト ver. 1 (TAKARA社製) を用いて行った。 揷入遺伝子断片溶液 0. 5 μ Lとプラスミ ド溶液 0. 5 μ L、 ライゲ——ンヨンキット A液 4 μレ Β液 4 μ Lを混ぜ 16。Cにて 30 分間反応を行った。 その後、 上記反応液 2 μ 1 をコンビテントセル (大腸菌 DH5 ひ、 インビトロジェン社製) 100 i l と混合し、 ヒートショ ック法の後、 アンピシ リンを含む LBプレー卜に植菌し培養した。翌日コロニーをとり、直接 PCRで目的 DNA 断片を保持する大腸菌クローンを確認した。 さらに確実を期すためシーケン シングにより DNA 配列の確認をした後、 3種のプラスミ ド DNA (pFLAG- L4し、 pFLAG_L4M、 および pFLAG- L4N) を抽出 ·精製した。 The three types of 5'-terminal primers (L4_LformKpn77F; SEQ ID NO: 10 and L4_MformKpnllOF; SEQ ID NO: 11 and L4_NformKpnl55F; SEQ ID NO: 12) are lysine codons 1 to 73 and 106 aspartic acid codon of cDNA, respectively. Amplify the cDNA partial sequence encoding a peptide having an isoleucine codon at position 151 N-terminal. As a primer at the 3 ′ end, a sequence derived from a plasmid vector (XBM13R; SEQ ID NO: 13) contained in the entry clone pENTR-L4A plasmid was used. The PCR method was performed under the conditions of repeating 94 ° C for 30 seconds, 54 ° C for 30 seconds, and 72 ° C for 1 minute 20 times. The amplification product was purified using MiniElute PCR Purification Kit (QIAGEN). The above-mentioned modified gene was incorporated into the expression vector using restriction enzyme recognition sequences set at both ends of the PCR primer. Purification The PCR product was digested with the restriction enzymes Kpnl and Xbal at 37 ° C for 2 hours, and then purified using the MiniElute PCR Purification Kit. Similarly, the pFLAG-CMV3 plasmid vector was digested with Kpnl / Xbal and purified. The ligation of the plasmid vector and the insertion gene was performed using a ligation kit ver. 1 (TAKARA). Mix 0.5 μL of the imported gene fragment solution, 0.5 μL of the plasmid solution, and 4 μL of the LIGAI-YEONGYON Kit A solution 4 μL. The reaction was performed at C for 30 minutes. Thereafter, the reaction solution 2 mu 1 Combi competent cells were mixed with (shed E. coli DH5, Invitrogen) 100 il, after Hitosho click method, was inoculated and cultured in LB play Bok containing ampicillin phosphorus. The next day, a colony was picked and an E. coli clone retaining the target DNA fragment was confirmed by direct PCR. After confirming the DNA sequence by sequencing for further assurance, three plasmid DNAs (pFLAG-L4, pFLAG_L4M, and pFLAG-L4N) were extracted and purified.
発現プラスミ ドの哺乳類培養細胞への導入及び発現 Introduction and expression of expression plasmid into cultured mammalian cells
上記の方法により得られた発現プラスミ ドに L4 遺伝子が揷入されていること を確認した後、 本プラスミ ドを哺乳類培養細胞 Coslおよび 293Tに導入した。 す なわち、 150mmシャーレに Cosl細胞あるいは 293T細胞の 4 X 106個を 20mlの DMEM 培地(Gibco社製、 Cosl細胞にはロー 'グルコース培地を 293T細胞にはハイダルコ ース培地を用いた。 それぞれ 10%非働化牛血清を添加して使用した) にて 1晚培 養した後に遺伝子導入を行った。 培地による共洗後にリポフエクタミン 2000 を 200 とプラスミ ド DNA60 gを含む 0pti_MEM (Gibco社製、 10ml)を加え、 37°C、 5%C02にて 48時間培養した。 After confirming that the L4 gene was inserted into the expression plasmid obtained by the above method, this plasmid was introduced into cultured mammalian cells Cosl and 293T. That is, 4 × 10 6 Cosl cells or 293T cells were placed in a 150 mm Petri dish in 20 ml of DMEM medium (manufactured by Gibco Co., Ltd., Low's glucose medium was used for Cosl cells, and Hydalcos medium was used for 293T cells. 10% inactivated bovine serum was used), and the cells were cultured for 1 晚. After co-washing with the medium, 0pti_MEM (manufactured by Gibco, 10 ml) containing 200 of Lipofectamine 2000 and 60 g of plasmid DNA was added, and the cells were cultured at 37 ° C. and 5% CO 2 for 48 hours.
培養後トリプシンを用いる定法により細胞を回収し、 細胞および培養上清を凍 結保存し、 酵素活性測定に供した。  After the culture, the cells were collected by a conventional method using trypsin, and the cells and the culture supernatant were frozen and preserved, and used for enzyme activity measurement.
L4のレジン精製 Resin purification of L4
上記哺乳細胞培養上清の FLAG- L4上清 10mlに NaN3 (0. 05 %)、 NaCl (150 mM)、 CaCl2 (2 mM)、 抗 Mlレジン (Sigma社) (100 μ 1 )を混合し、 4°Cで一夜攪拌した。 翌日 遠心して (3000 rpm 5分、 4°C) ペレツトを回収し、 2 raMの CaCl2 · TBSを 900 1 加えて再度遠心分離 (2000 rpm 5分、 4°C) し、 ペレツトを 200 μ 1 の 1 mM CaCL · TBS に浮遊させ活性測定のサンプル' (L4酵素液) とした。 この一部を SDS - PAGEに よる電気泳動について抗 FLAG M2-ペルォキシダーゼ (SIGMA社製) を用いてウェス タンブロッテイングを行い、 目的とする L4タンパク質の発現を確認した。 その結 果約 50kDaの位置を中心としてブロードに複数のバンド(糖鎖などの翻訳後修飾の 違いによるものと考えられる) が検出、 発現が確認された。 NaN 3 (0.05%), NaCl (150 mM), CaCl 2 (2 mM), anti-Ml resin (Sigma) (100 μ 1) are mixed with 10 ml of FLAG-L4 supernatant of the above mammalian cell culture supernatant And stirred overnight at 4 ° C. The next day, centrifuge (3000 rpm, 5 minutes, 4 ° C), collect the pellet, add 9001 of 2 raM CaCl 2 · TBS, centrifuge again (2000 rpm, 5 minutes, 4 ° C), and remove the pellet to 200 μl. Was suspended in 1 mM CaCL · TBS to prepare a sample for activity measurement (L4 enzyme solution). A part of this was subjected to Western blotting using anti-FLAG M2-peroxidase (manufactured by SIGMA) for electrophoresis by SDS-PAGE, and the expression of the desired L4 protein was confirmed. As a result, multiple bands (post-translational modification of sugar chains, etc.) This was probably due to the difference), and the expression was confirmed.
実施例 4 :哺乳類培養細胞における糖鎖構造の解析 Example 4: Analysis of sugar chain structure in cultured mammalian cells
上記実施例 3に記載されるようにして L4 遺伝子が導入された哺乳類培養細胞 では、その L4遺伝子導入に起因してそれら細胞内又は細胞表層における糖鎖構造 の変化が引き起こされる。 この変化を解析することにより、 L4遺伝子産物を特定 し、 酵素活性を推定できる。  In the cultured mammalian cells into which the L4 gene has been introduced as described in Example 3, the introduction of the L4 gene causes a change in the sugar chain structure in the cells or in the cell surface. By analyzing this change, the L4 gene product can be identified and the enzyme activity can be estimated.
実施例 5 :酵素活性の測定 Example 5: Measurement of enzyme activity
L4タンパク質の具体的な酵素活性を調べるには、当該技術分野において知られ た常法を使用できる。 例えば、 上記実施例 3に記載されたように調製された L4 酵素液を用いた反応系に、 グリコサミノダリカン合成等に関与するような供与体 基質群ないし受容体基質群を含ませることによってその基質特異性をスクリー二 ングできるし、 使用緩衝液の種類、 p H条件、 或いは共存金属イオンの種類等を 変えた場合の反応結果を比較することで、至適緩衝液、至適 p H、要求金属イオン 等を特定することもできる。  In order to examine the specific enzymatic activity of the L4 protein, a conventional method known in the art can be used. For example, by incorporating a donor substrate group or an acceptor substrate group involved in glycosaminodalican synthesis into a reaction system using the L4 enzyme solution prepared as described in Example 3 above. The substrate specificity can be screened, and by comparing the reaction results when the type of buffer used, pH conditions, and the type of coexisting metal ions, etc., are compared, the optimal buffer and optimal pH can be determined. , Required metal ions, etc. can also be specified.

Claims

請求の範囲 The scope of the claims
1. 配列番号 1に記載の塩基配列又はそれに相補的な塩基配列にス トリンジ ントな条件下でハイブリダイズする核酸。 1. A nucleic acid that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto.
2. 配列番号 1に記載の塩基配列中の少なくとも十数個の連続する塩基配列又 はそれに相補的な塩基配列からなる、 請求項 1に記載の核酸。  2. The nucleic acid according to claim 1, consisting of at least a dozen or more consecutive base sequences in the base sequence set forth in SEQ ID NO: 1 or a base sequence complementary thereto.
3. 配列番号 1に記載の塩基配列又はそれに相補的な塩基配列からなる、 請求 項 2に記載の核酸。  3. The nucleic acid according to claim 2, consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto.
4. プローブまたはプライマーである、 請求項 1〜3のいずれか 1項に記載の 核酸。  4. The nucleic acid according to any one of claims 1 to 3, which is a probe or a primer.
5. 配列番号 4若しくは配列番号 5に記載の塩基配列、 又はそれに相補的な塩 基配列からなる、 請求項 4に記載のプライマー。  5. The primer according to claim 4, consisting of the nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5, or a nucleotide sequence complementary thereto.
6. 癌マーカーである、 請求項 1〜 5のいずれか 1項に記載の核酸。  6. The nucleic acid according to any one of claims 1 to 5, which is a cancer marker.
7. 生物試料の癌化を検定する方法であって、  7. A method for assaying canceration of a biological sample,
(a) 請求項 1〜6のいずれか 1項に記載の核酸を使用して、 生物試料におけ る該核酸についての転写レベルを測定し;そして  (a) using the nucleic acid according to any one of claims 1 to 6 to measure a transcription level of the nucleic acid in a biological sample; and
(b) 該測定値が、 健常生物試料についての測定値と比較して有意に下回るか 否かを判断すること ;  (b) determining whether the measured value is significantly lower than the measured value for a healthy biological sample;
を含む方法。 A method that includes
8. 前記 (a) の工程において、 該生物試料についての測定値が、 健常生物試 料についての測定値と比較して 1Z2以下であるか否かを判断することを含む、 請求項 7に記載の方法。  8. The method according to claim 7, wherein the step (a) includes determining whether a measured value of the biological sample is 1Z2 or less as compared with a measured value of a healthy biological sample. the method of.
9. 前記 (a) の工程において、 請求項 1〜6のいずれか 1項に記載の核酸を 標識プローブとして使用し、 該標識プローブをストリンジェントなハイブリダィ ゼーション条件下で生物試料に接触させ、 そこでハイブリダイズした該標識プロ ーブからのシグナルに基づいて前記転写レベルを測定することを含む、 請求項 7 又は 8に記載の方法。  9. In the step (a), the nucleic acid according to any one of claims 1 to 6 is used as a labeling probe, and the labeled probe is contacted with a biological sample under stringent hybridization conditions. The method according to claim 7 or 8, comprising measuring the transcription level based on a signal from the hybridized labeled probe.
1 0. 前記 (a) の工程において、 請求項 4又は 5に記載のプライマーを 使用して生物試料に含まれる核酸について核酸増幅処理を行い、 そして、 該プラ イマ一で増幅された核酸の量を測定することを含む、 請求項 7又は 8に記載の方 法。 10. In the step (a), the nucleic acid contained in the biological sample is subjected to a nucleic acid amplification treatment using the primer according to claim 4 or 5, and 9. The method according to claim 7 or 8, comprising measuring the amount of the nucleic acid amplified by the immobilizer.
1 1. 癌治療に関する処置の有効性を検定する方法であって、 請求項 1〜 6のいずれか 1項に記載の核酸を使用して、 癌治療のための処置が施された生物 試料における該核酸についての転写レベルを測定し、 該測定値がその処置前又は 未処置の場合と比較して有意に上回るか否かを判断することを含む方法。  1 1. A method for assaying the effectiveness of a treatment for cancer therapy, comprising using the nucleic acid according to any one of claims 1 to 6 in a biological sample that has been treated for cancer treatment. Measuring the level of transcription for the nucleic acid and determining whether the measured value is significantly greater than before or without treatment.
1 2. 前記生物試料が大腸由来の試料である、 請求項 7〜 1 1の何れか 1 項に記載の方法。  12. The method according to any one of claims 7 to 11, wherein the biological sample is a sample derived from the large intestine.
1 3. 糖転移活性を有するポリペプチドをコードする核酸であって、 下記 ( a ) 〜 ( d ) の塩基配列:  1 3. A nucleic acid encoding a polypeptide having glycosyltransferase activity, comprising the following nucleotide sequences (a) to (d):
( a ) 配列番号 1の全長の塩基配列;  (a) the full-length nucleotide sequence of SEQ ID NO: 1;
( b ) 配列番号 1の塩基番号 7 3〜 1 04 7に記載の塩基配列;  (b) the nucleotide sequence of SEQ ID NO: 1 from nucleotide numbers 73 to 1074;
( c ) 配列番号 1の塩基番号 1 0 6〜 1 04 7に記載の塩基配列;又は  (c) the nucleotide sequence of nucleotide numbers 106 to 1074 of SEQ ID NO: 1; or
( d ) 配列番号 1の塩基番号 1 5 1〜 1 04 7に記載の塩基配列;  (d) the nucleotide sequence of SEQ ID NO: 1 as represented by nucleotide numbers 151 to 1047;
のいずれか 1つを有する核酸。 A nucleic acid having any one of the above.
1 4. 糖転移活性を有するポリペプチドをコードする核酸であって、 下記 (a) 〜 (d) のアミノ酸配列:  1 4. A nucleic acid encoding a polypeptide having glycosyltransferase activity, comprising the following amino acid sequence (a) to (d):
( a ) 配列番号 3の全長のァミノ酸配列;  (a) the full-length amino acid sequence of SEQ ID NO: 3;
( b ) 配列番号 3のァミノ酸番号 2 5〜 34 9に記載のァミノ酸配列;  (b) the amino acid sequence of SEQ ID NO: 3 according to amino acid numbers 25 to 349;
( c ) 配列番号 3のァミノ酸番号 3 6〜 34 9に記載のァミノ酸配列;又は ( d ) 配列番号 3のァミノ酸番号 5 1〜 3 4 9に記載のァミノ酸配列; のいずれか 1つを有するポリべプチドをコ一ドする核酸。  (c) the amino acid sequence of SEQ ID NO: 3 as described in amino acid numbers 36 to 349; or (d) the amino acid sequence of SEQ ID NO. 3 as described in amino acid numbers 51 to 349; A nucleic acid encoding a polypeptide having one or more of the following:
1 5. DNAである、 請求項 1 3又は 1 4のいずれか 1項に記載の核酸。 15. The nucleic acid according to any one of claims 13 to 14, which is a DNA.
1 6. 請求項 1 3〜 1 5のいずれか 1項に記載の核酸を含むベクター。 1 6. A vector comprising the nucleic acid according to any one of claims 13 to 15.
1 7. 請求項 1 6に記載のべクターを含む形質転換体。 1 7. A transformant containing the vector according to claim 16.
1 8. 糖転移活性を有するボリぺプチドであって、 下記 (a) 〜 (d) の ァミノ酸配列:  1 8. A polypeptide having glycosyltransferase activity, comprising the following amino acid sequence (a) to (d):
( a ) 配列番号 3の全長のァミノ酸配列;  (a) the full-length amino acid sequence of SEQ ID NO: 3;
( b ) 配列番号 3のァミノ酸番号 2 5〜 34 9に記載のァミノ酸配列; ( c ) 配列番号 3のァミノ酸番号 3 6〜 3 4 9に記載のァミノ酸配列;又は ( d ) 配列番号 3のァミノ酸番号 5 1〜 3 4 9に記載のアミノ酸配列; のいずれか 1つを有するポリぺプチド。 (b) the amino acid sequence of SEQ ID NO: 3 according to amino acid numbers 25 to 349; (c) the amino acid sequence of amino acid numbers 36 to 349 of SEQ ID NO: 3; or (d) the amino acid sequence of amino acid numbers 51 to 349 of SEQ ID NO: 3; Polypeptide having one.
1 9 . 請求項 1 8に記載のポリぺプチドに対する抗体。  19. An antibody against the polypeptide according to claim 18.
PCT/JP2004/002925 2003-03-05 2004-03-05 Nucleic acid and method of examining canceration using the nucleic acid WO2004078980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003058225A JP2004267015A (en) 2003-03-05 2003-03-05 Nucleic acid and method for testing canceration using the same nucleic acid
JP2003-058225 2003-03-05

Publications (1)

Publication Number Publication Date
WO2004078980A1 true WO2004078980A1 (en) 2004-09-16

Family

ID=32958785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002925 WO2004078980A1 (en) 2003-03-05 2004-03-05 Nucleic acid and method of examining canceration using the nucleic acid

Country Status (2)

Country Link
JP (1) JP2004267015A (en)
WO (1) WO2004078980A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055351A1 (en) * 1999-03-12 2000-09-21 Human Genome Sciences, Inc. Human colon cancer associated gene sequences and polypeptides
WO2002020756A2 (en) * 2000-09-05 2002-03-14 Incyte Genomics, Inc. Secretory molecules
WO2002040656A2 (en) * 2000-11-14 2002-05-23 Millennium Pharmaceuticals, Inc. 47476, 67210, 49875, 46842, 33201, 83378, 84233, 64708, 85041, and 84234, novel human guanine nucleotide dissociation stimulator, glycosyltransferase, dead type helicase, centaurin, dehydrogenase/reductase, and metal transporter family members and uses thereof
JP2002191363A (en) * 1999-07-29 2002-07-09 Herikkusu Kenkyusho:Kk PRIMER FOR WHOLE LENGTH cDNA SYNTHESIS AND ITS USE
US20030022328A1 (en) * 1997-03-31 2003-01-30 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
EP1293569A2 (en) * 2001-09-14 2003-03-19 Helix Research Institute Full-length cDNAs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030022328A1 (en) * 1997-03-31 2003-01-30 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
WO2000055351A1 (en) * 1999-03-12 2000-09-21 Human Genome Sciences, Inc. Human colon cancer associated gene sequences and polypeptides
JP2002191363A (en) * 1999-07-29 2002-07-09 Herikkusu Kenkyusho:Kk PRIMER FOR WHOLE LENGTH cDNA SYNTHESIS AND ITS USE
WO2002020756A2 (en) * 2000-09-05 2002-03-14 Incyte Genomics, Inc. Secretory molecules
WO2002040656A2 (en) * 2000-11-14 2002-05-23 Millennium Pharmaceuticals, Inc. 47476, 67210, 49875, 46842, 33201, 83378, 84233, 64708, 85041, and 84234, novel human guanine nucleotide dissociation stimulator, glycosyltransferase, dead type helicase, centaurin, dehydrogenase/reductase, and metal transporter family members and uses thereof
EP1293569A2 (en) * 2001-09-14 2003-03-19 Helix Research Institute Full-length cDNAs

Also Published As

Publication number Publication date
JP2004267015A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US8278037B2 (en) N-acetylgalactosamine transferases and nucleic acids encoding the same
US8431365B2 (en) β1,3-N-acetyl-D-galactosamine transferase protein, nucleic acid encoding the same and method of examining canceration using the same
WO2004078980A1 (en) Nucleic acid and method of examining canceration using the nucleic acid
JP4608694B2 (en) Glycosyltransferase, nucleic acid encoding the glycosyltransferase, and canceration assay method using the nucleic acid
US20030100005A1 (en) CRBs as modifiers of branching morphogenesis and methods of use
WO2004039976A1 (en) Novel glycosyltransferase, nucleic acid encoding the same and method of detecting cancer tissue using the nculeic acid
KR101683961B1 (en) Recurrence Marker for Diagnosis of Bladder Cancer
JP5105261B2 (en) β1,3-N-acetyl-D-galactosamine transferase protein, nucleic acid encoding the same, and canceration assay method using the same
JP2004215619A (en) New galactose transferase and nucleic acid encoding the same
JP4517189B2 (en) Protein having sugar nucleotide-carrying action, and method for detecting canceration of tissue
JP4491536B2 (en) Novel sulfotransferase and its gene
JP2003230388A (en) Disease marker of sugar-lipid dysbolism and utilization thereof
JPWO2003057887A1 (en) Novel UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosamine transferase and nucleic acid encoding the same
JP2006006155A (en) New sulfate transferase and gene thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase