WO2004077945A1 - Pesticides formulations - Google Patents

Pesticides formulations Download PDF

Info

Publication number
WO2004077945A1
WO2004077945A1 PCT/EP2004/001906 EP2004001906W WO2004077945A1 WO 2004077945 A1 WO2004077945 A1 WO 2004077945A1 EP 2004001906 W EP2004001906 W EP 2004001906W WO 2004077945 A1 WO2004077945 A1 WO 2004077945A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
class
parts
herbicides
polyethoxylated
Prior art date
Application number
PCT/EP2004/001906
Other languages
French (fr)
Inventor
Marco Bernardini
Francesca Borgo
Luigi Capuzzi
Pietro Domenichini
Giorgio Freschi
Original Assignee
Sipcam S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32948198&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004077945(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sipcam S.P.A. filed Critical Sipcam S.P.A.
Priority to BRPI0408009A priority Critical patent/BRPI0408009B1/en
Priority to US10/547,612 priority patent/US8029813B2/en
Priority to DE602004030775T priority patent/DE602004030775D1/en
Priority to AT04714772T priority patent/ATE493028T1/en
Priority to ES04714772T priority patent/ES2356145T5/en
Priority to EP04714772.3A priority patent/EP1608220B8/en
Publication of WO2004077945A1 publication Critical patent/WO2004077945A1/en
Priority to US13/221,346 priority patent/US8440213B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/14Ethers

Definitions

  • the present invention relates to pesticides formulations with reduced environmental impact, low toxicity and use thereof .
  • Stable concentrated formulations of agrochemicals preferred from the toxicological and environmental point of view, are therefore required. These alternative formulations are therefore an object of primary importance from both the technical and commercial point of view.
  • Stable concentrated formulations of active ingredients without solvents are known.
  • the active ingredient has a melting point higher than 60°C
  • formulations in the form of aqueous suspensions are known.
  • the active ingredient has a melting point lower than 10°C
  • formulations under the form of aqueous micro or macro emulsions are known.
  • the active ingredient has a melting point in the range 10°C-60°C the obtainment of stable formulations in concentrated aqueous suspension is very difficult. In fact micronization of the active ingredient is required causing its overheating, originating phase transition and recrystallization phenomena that can c mpromise the long-term stability of the suspension.
  • Agrochemical emulsions with melting points between 10 °C and 60 °C prepared by the Applicant resulted unstable even for small temperature variations. As a matter of fact recrystallization phenomena have been observed.
  • the Applicant has surprisingly and unexpectedly found concentrated compositions of crop protection products having a melting point in the range 10°C-60°C solving the above technical problem.
  • An object of the present invention are concentrated microemulsions stable upon time comprising:
  • hydrophylic/lipophylic balance from 9 to 15, preferably from 10 to 13;
  • the ratio by weight between the amount of solvent 2) and of active ingredient 1) ranges from 0.8:1 to 1.5:1; the ratio by weight between the sum of the amounts of the surfactants 4) and 5) and the amount of the pesticide 1) is in the range 0.5:1-3:1, preferably 1:1-
  • Said concentrated microemulsions are stable at room temperature for a very long time, even more than 2 years.
  • the crop protection product component 1) is selected among herbicides, fungicides and insecticides.
  • herbicides it can be mentioned: herbicides of the class of chloroacetamides or chloroace- tanilides as for example:
  • fungicides of the triazole clas as for example: Tetraconazole 30-35°C 156 mg/1
  • insecticides of the class of non ester pyrethroids as for example : Etofenprox 36.4-38°C ⁇ 1 microg/1 insecticides of the phosphoorganic class as for example: Chlorpyriphos 42-43.5°C 1.4 mg/1
  • the preferred herbicides are selected among Pendimethalin [N- (1-ethylpropyl) -2, 6-dinitro-3 , 4-xylidine CN. 40487-42-1] e Trifluralin (a, a , a, -trifluoro-2 , 6-dinitro-N,N-dipropyl-p- toluidine CN.1582-09-8) .
  • the preferred insecticide is Etofenprox [2- (4-ethoxyphe- nyl) -2-methylpropyl 3-phenoxybenzyl ether CN. 80844-07-1].
  • solvents component 2 it can be mentioned: acetals as for example dibutoxy methane (butylal) ; alkyl esters of carboxylic acids with the alkyl having c - C ⁇ alkyl esters of bicarboxylic acids, as for example dimethyl glutarate, dimethyl succinate, dimethyl adipate or mixtures thereof; alcohols as for example isooctanol .
  • the solvent is selected from heptyl acetate, dibutoxy methane and the mixture of the dimethyl esters of glutaric, succinic and adipic acid.
  • polyols component 3 compounds having at least 2 hydroxyl groups are meant.
  • polyols ethylene glycol, propylene glycol, glycerol, preferably propylene glycol can be used.
  • nonionic surfactants components 4 those having a cloud point higher than 50 °C are preferred. It can be mentioned polyethoxylated fat alcohols, polyethoxylated castor oil, polyethoxylated distyrylphenols, polyethoxylated tristyrylphenols , polyethoxylated sorbitan esters, alkyl polyglycosides, polyethoxylated-polypropoxylated aliphatic alcohols .
  • polyethoxylated castor oil having an ethoxylation number in the range 15-40, preferably 25-35; polyethoxylated distyrylphenols having an ethoxylation number in the range 12-25, preferably 15-20; polyethoxylated tristyrylphenols having an ethoxylation number in the range 15-40, preferably 16-25.
  • polyethoxylated castor oil having an ethoxylation number in the range 15-40, preferably 25-35
  • polyethoxylated distyrylphenols having an ethoxylation number in the range 12-25, preferably 15-20
  • polyethoxylated tristyrylphenols having an ethoxylation number in the range 15-40, preferably 16-25.
  • said products are under the form of mixtures having a different ethoxylation or propoxylation degree .
  • anionic surfactants component 5 alkyl benzen sulphonates, alkyl sulphates, polyethoxylated phosphorylated tristyryl phenols, polyethoxylated sulphated tristyryl phenols, preferably dodecyl benzen calcium sulphonate .
  • microemulsions of the present invention can optionally contain additives as for example antioxidant agents, UV stabilizers, pH correctors, antimoulding agents and antifoaming agents .
  • additives as for example antioxidant agents, UV stabilizers, pH correctors, antimoulding agents and antifoaming agents .
  • the total amount of said additives is generally lower than 2% by weight. Said additives are well known in the prior art .
  • the process of preparation of the microemulsions of the invention comprises :
  • microemulsions consist of particles of less than 200 nanometers size dispersed in an aqueous phase, they have transparent appearance and are stable at -5°C and at 54 °C for at least 14 days .
  • the formulations of the present invention show various advantages from the point of view of the user safety and from the environmental point of view. Due to the nature of the solvents used, the formulations are not flammable and, the agrochemical utilized being equal, they are less irritating and less toxic than the analogous commercial formulations containing an aromatic solvent .
  • a further object of the present invention is a method of control of agronomically remarkable pests comprising the dilution of the microemulsion in water in amounts in the range 0.05-2.5% by weight.
  • the obtained mixtures are directly sprayed on the crops obtaining a pest control at least equal and sometimes significantly improved compared to analogous treatments carried out at equal doses of active ingredient in commercial formulations containing aromatic solvents .
  • the concentrated microemulsions of the present invention are stable for more than 2 years when stored at room temperature, they are not toxic and irritating whereby they can be handled without inconveniences, in particular they can subsequently diluted with water and used in crops without damages for the environment and the animals .
  • a weighed amount of pesticide 1) is added to the solvent 2) contained in a vessel equipped with a stirrer, maintaining under stirring until complete dissolution.
  • ETOFENPROX As active ingredient ETOFENPROX having a purity of 98% by weight was used.
  • solvents 2 there were used: EXXATE 700 (heptyl acetate) marketed by Esso having the Hildebrand solubility parameter of 16.5, BUTYLAL (dibutoxy methane) marketed by LAMBIOTTE having the Hildebrand parameter of 16.2, DBE (mixture containing 55-65% of dimethyl glutarate, 15-25% of dimethyl succinate and 10-25% of dimethyl adipate) by Du Pont having the Hildebrand parameter of 20.2 and isooctanol having the Hildebrand parameter of 21.
  • polyol 3 the mono propylene glycol was used.
  • nonionic surfactant 4 As nonionic surfactant 4) it was used a mixture of polyethoxylated distyryl and tristyryl phenols with 17 ethoxylation moles (EMULSON AG 17A marketed by Cesalpinia Chemicals) , polyethoxylated castor oil with 29 ethoxyl-ation moles (ETOCAS 29 marketed by Croda) , polyethoxyl-ated tri- styrylphenol with 16 ethoxylation moles (SOPROPHOR BSU marketed by Rhodia) .
  • EMULSON AG 17A marketed by Cesalpinia Chemicals
  • ETOCAS 29 polyethoxylated castor oil with 29 ethoxyl-ation moles
  • SOPROPHOR BSU polyethoxyl-ated tri- styrylphenol with 16 ethoxylation moles
  • anionic surfactant 5 calcium dodecylbenzensulphonate was used.
  • compositions of the Examples from 1 to 9 are microemulsions having the characteristics reported in Table 2.
  • Table 2 it is reported the microemulsion appearance, the active ingredient titre, the pH determined at a dilution of 1% in water.
  • the stability of the microemulsions of Table 1 has been evaluated under the following conditions: a) at cold, modifying in a more restrictive way the standard test CIPAC MT 39.3 (storage for 7 days at 0°C) , evaluating the product after 14 days at -5°C; b) at high temperatures, according to the standard test CIPAC MT 46 which requires the storage of the formulation for 14 days at 54 °C
  • microemulsions object of the present invention have maintained unchanged the initial characteri- sitess reported in Table 2.
  • microemulsion of the Example 1 has resulted stable even after 24 months.
  • Example 8 was repeated except that instead of DBE solvent the biodiesel solvents (mixture of methyl esters of mainly oleic and linoleic fat acids) having the Hildebrand parameter equal to 14 , and N-methyl pyrrolidone having the Hildebrand solubility parameter equal to 23 were respectively used.
  • DBE solvent the biodiesel solvents (mixture of methyl esters of mainly oleic and linoleic fat acids) having the Hildebrand parameter equal to 14
  • N-methyl pyrrolidone having the Hildebrand solubility parameter equal to 23 were respectively used.
  • the Example relates to a field test carried out using the formulation of the Example 1 diluted in water at 0.093% by weight to evaluate the agronomical efficacy of the formulation on Leaf Hopper Green (Empoasca Decipiens) on grapevine, in comparison with untreated grapevine .
  • the treatment was carried out on four plots with a dose of 140 g/ha of active ingredient Etofenprox corresponding to the label application rate of commercial formulations of Etofenprox.
  • the agronomical efficacy has been evaluated by counting the number of live insects on 50 leaves, after 15 days after the treatment and comparing it with the number of insects on the untreated plots .
  • the efficacy is expressed as reduction percentage of the insect number with respect to the number of insects of the untreated plots .
  • the Example reported below relates to a field test carried out by using the formulation of the Example 1 diluted in water at 0.112% by weight to evaluate the initial activity of the formulation against aphis gossipi on melon, in comparison with melons treated with the commercial formulation Trebon ® containing the same insecticide Etofenprox and solvents, the application rate of the insecticide being equal.
  • the field test was carried out at Erbe (VR) Italy on baggio melon plants infested by aphis gossipi, grouped in 12 plots each of 15 m 2 , placed in a randomized way in the field, avoiding border zones or with unrepeatable characteristics .
  • the Example reported below relates to a field test carried out by using the formulation of the Example 1 diluted in water at 0.056% by weight to evaluate the initial activity of the formulation on potato beetle on potato (leptinotersa decunlineata) , primura variety, in comparison with potatoes treated with the commercial formulation Trebon containing the same insecticide Etofenprox and solvents, the application rate of the insecticide being equal.
  • the field test wa s carried out at Salerano sul Lambro (LO) Italy on primura potato plants infested by potato beetles, grouped in 12 plots each of 10 m 2 , placed in a randomized way in the field, avoiding border zones or with unrepeatable characteristics .
  • the product object of the present invention shows a higher initial insecticide activity in comparison with the commercial formulation as it results from the values reported in column 2 and in column 6.
  • the Example reported below relates to a field test carried out by using the formulation of the Example 1 diluted in water at 0,1% by weight to evaluate its insecticidal efficacy against Cydia funebrana (first larval generation) on plum in comparaison with plums treated with commercial product Trebon, the application rate of the insecticide being equal.
  • the field test was carried out at Riolo Terme (RA) - Italy on plums, President variety, planted in 1991, of 2.5 m of height, grouped in 12 plots of 84.4 m 2 area and having 4 plants per plot.
  • Four plots were treated with the diluted formulation of the Example 1 and other four plots werew treated with the commercial formulation Trebon ® , using a dose of 140 g/ha of Etofenprox.
  • Composition 1 shows better and statistically significant effects compared to untrated control and slightly better result compared to the corresponding commercial product.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Concentrated microemulsions comprising: 1) 10-25 parts by weight of a pesticide with a solubility in water at 20°C lower than 1%| by weight and having a melting point from 10°C to 60°C; 2) 8-25 parts by weight of one or more solvents containing oxygen atoms, having a solubility in water at 20°C lower than 5% by weight and the Hildebrand solubility parameter in the range 16 - 21 MPal/2 ; 3) 10-20 parts by weight of a polyol; 4) 10-25 parts by weight of one or more non ionic surfactants having a HLB value from 9 to 15; 5) 2-10 parts by weight of one or more anionic surfactants; 6) water up to 100 parts by weight; wherein - the ratio by weight between 2) and 1) ranges from 0.8:1 to 1.5:1; - the ratio by weight between 4)+5) and 1) is in the range 0.5:1-3:1; - the ratio by weight between 4) and 5) ranges from 1:1 to 4.1.

Description

PESTICIDES FORMULATIONS
The present invention relates to pesticides formulations with reduced environmental impact, low toxicity and use thereof .
It is well known that pesticides are marketed under the form of concentrated solutions emulsifiable in water comprising the active ingredient, surfactants and aromatic oil-originated solvents with a particular preference for the naphtha solvent.' It is well known that the presence of aromatic solvents involves toxicological risks compelling the producer, in view of the law, to classify the formulation as harmful for the user (Symbol Xn and risk phrase R65: "Harmful: may cause lung damage if swallowed") and for the environment. Therefore even non toxic active ingredients are penalized when they are used in said concentrated solutions . The Xn classi ication of a formulation, requiring for its use a specific authorization, is a strong limitation in product development .
Stable concentrated formulations of agrochemicals, preferred from the toxicological and environmental point of view, are therefore required. These alternative formulations are therefore an object of primary importance from both the technical and commercial point of view.
Stable concentrated formulations of active ingredients without solvents are known. When the active ingredient has a melting point higher than 60°C, formulations in the form of aqueous suspensions are known. When the active ingredient has a melting point lower than 10°C, formulations under the form of aqueous micro or macro emulsions are known.
When the active ingredient has a melting point in the range 10°C-60°C the obtainment of stable formulations in concentrated aqueous suspension is very difficult. In fact micronization of the active ingredient is required causing its overheating, originating phase transition and recrystallization phenomena that can c mpromise the long-term stability of the suspension.
The obtainment of formulations under the form of stable aqueous emulsions or microemulsions of agrochemicals having a melting point in the range 10°C-60°C is particularly difficult since the recrystallization risks according to unstable formulations are very frequent .
Agrochemical emulsions with melting points between 10 °C and 60 °C prepared by the Applicant resulted unstable even for small temperature variations. As a matter of fact recrystallization phenomena have been observed.
The need was therefore felt to have available concentrated formulations of pesticides having a melting point in the range 10°C-60°C with a reduced environmental impact and low toxicity and stable upon storage wihout giving recrystallization phenomena, substantially maintaining the same biological activity of the commercial formulations containing aromatic solvents .
The Applicant has surprisingly and unexpectedly found concentrated compositions of crop protection products having a melting point in the range 10°C-60°C solving the above technical problem.
An object of the present invention are concentrated microemulsions stable upon time comprising:
1) 10-25 parts by weight, preferably 12-20 parts by weight of a pesticide stable in water having a solubility in water, at 20°C, lower than 1% by weight, having a melting point from 10°C to 60°C;
2) 8-25 parts by weight of one or more solvents containing oxygen atoms, having a flash point >60°C, solubility in water at 20 °C lower than 5% by weight, the Hildebrand solubility parameter in the range 16-21 MPa12;
3) 10-20 parts by weight, preferably 12-18 parts by weight of a polyol soluble in water at 20 °C;
4) 10-25 parts by weight, preferably 12-20 parts by weight of one or more non ionic surfactants having a HLB value
(hydrophylic/lipophylic balance) from 9 to 15, preferably from 10 to 13;
5) 2-10 parts by weight, preferably 4-8 of one or more anionic surfactants;
6) 20-40 parts by weight, preferably 25-35 of -water; wherein the sum of the amounts of the compounds 1) , 2) , 3) , 4) ,
5) , 6) is 100 parts by weight; the ratio by weight between the amount of solvent 2) and of active ingredient 1) ranges from 0.8:1 to 1.5:1; the ratio by weight between the sum of the amounts of the surfactants 4) and 5) and the amount of the pesticide 1) is in the range 0.5:1-3:1, preferably 1:1-
2:1; the ratio by weight between 4) and 5) ranges from 1:1 to
4:1.
Said concentrated microemulsions are stable at room temperature for a very long time, even more than 2 years.
The crop protection product component 1) is selected among herbicides, fungicides and insecticides. In particular as herbicides it can be mentioned: herbicides of the class of chloroacetamides or chloroace- tanilides as for example:
Melting point Solubility Alachlor 40.5-41.5°C 170.3 mg/1
Propisochlor 21.6°C 184 mg/1
Acetochlor 10.6°C 223 mg/1 herbicides of the dinitro aniline class as for example:
Pendimethalin 54-58°C 0.3 mg/1
Trifluralin 43-47.5°C 0.4 mg/1 herbicides of the isoxazolidinone class as for example: Clomazone 25°C 1.1 g/1 herbicides of the hydroxybenzonitrile class as for example : Bromoxynil octanoate 45-46°C 3 mg/1 herbicides of the aryloxyalkanoic acid class as for example : MCPA-thioethyl 41-42°C 2.3 mg/1
As fungicides it can be mentioned: fungicides of the triazole clas as for example: Tetraconazole 30-35°C 156 mg/1
Penconazole 57.6-60.3°C 73 mg/1 As insecticides it can be mentioned: insecticides of the class of non ester pyrethroids as for example : Etofenprox 36.4-38°C <1 microg/1 insecticides of the phosphoorganic class as for example: Chlorpyriphos 42-43.5°C 1.4 mg/1
Methidathion 39-40°C 200 mg/1
The preferred herbicides are selected among Pendimethalin [N- (1-ethylpropyl) -2, 6-dinitro-3 , 4-xylidine CN. 40487-42-1] e Trifluralin (a, a , a, -trifluoro-2 , 6-dinitro-N,N-dipropyl-p- toluidine CN.1582-09-8) .
The preferred insecticide is Etofenprox [2- (4-ethoxyphe- nyl) -2-methylpropyl 3-phenoxybenzyl ether CN. 80844-07-1].
As solvents component 2) it can be mentioned: acetals as for example dibutoxy methane (butylal) ; alkyl esters of carboxylic acids with the alkyl having c - C alkyl esters of bicarboxylic acids, as for example dimethyl glutarate, dimethyl succinate, dimethyl adipate or mixtures thereof; alcohols as for example isooctanol .
Preferably the solvent is selected from heptyl acetate, dibutoxy methane and the mixture of the dimethyl esters of glutaric, succinic and adipic acid.
With polyols component 3), compounds having at least 2 hydroxyl groups are meant. As polyols ethylene glycol, propylene glycol, glycerol, preferably propylene glycol can be used.
As nonionic surfactants components 4) those having a cloud point higher than 50 °C are preferred. It can be mentioned polyethoxylated fat alcohols, polyethoxylated castor oil, polyethoxylated distyrylphenols, polyethoxylated tristyrylphenols , polyethoxylated sorbitan esters, alkyl polyglycosides, polyethoxylated-polypropoxylated aliphatic alcohols . There are preferred polyethoxylated castor oil having an ethoxylation number in the range 15-40, preferably 25-35; polyethoxylated distyrylphenols having an ethoxylation number in the range 12-25, preferably 15-20; polyethoxylated tristyrylphenols having an ethoxylation number in the range 15-40, preferably 16-25. Generally said products are under the form of mixtures having a different ethoxylation or propoxylation degree .
As anionic surfactants component 5) , alkyl benzen sulphonates, alkyl sulphates, polyethoxylated phosphorylated tristyryl phenols, polyethoxylated sulphated tristyryl phenols, preferably dodecyl benzen calcium sulphonate .
The microemulsions of the present invention can optionally contain additives as for example antioxidant agents, UV stabilizers, pH correctors, antimoulding agents and antifoaming agents . The total amount of said additives is generally lower than 2% by weight. Said additives are well known in the prior art .
The process of preparation of the microemulsions of the invention comprises :
- the dissolution of the product component 1) , optionally heated to a temperature of 40°C-50°C to liquify it in the solvent component 2) under mild stirring,
- addition under stirring of the surfactants component 4) and 5) and of the polyol component 3) and then of water maintaining the whole under stirring until obtaining the microemulsion, i.e., a macroscopically clear and perfectly homogeneous dispersion.
The said microemulsions consist of particles of less than 200 nanometers size dispersed in an aqueous phase, they have transparent appearance and are stable at -5°C and at 54 °C for at least 14 days .
The formulations of the present invention show various advantages from the point of view of the user safety and from the environmental point of view. Due to the nature of the solvents used, the formulations are not flammable and, the agrochemical utilized being equal, they are less irritating and less toxic than the analogous commercial formulations containing an aromatic solvent .
A further object of the present invention is a method of control of agronomically remarkable pests comprising the dilution of the microemulsion in water in amounts in the range 0.05-2.5% by weight. The obtained mixtures are directly sprayed on the crops obtaining a pest control at least equal and sometimes significantly improved compared to analogous treatments carried out at equal doses of active ingredient in commercial formulations containing aromatic solvents .
With respect to the commercial product containing the Etofenprox insecticide and aromatic solvents (Trebon) , it has been found that the microemulsions of the invention surprisingly show, the dose of Etofenprox being equal, a higher initial activity.
The concentrated microemulsions of the present invention are stable for more than 2 years when stored at room temperature, they are not toxic and irritating whereby they can be handled without inconveniences, in particular they can subsequently diluted with water and used in crops without damages for the environment and the animals .
Some illustrative Examples follow, which are not limitative of the present invention. EXAMPLES CHARACTERIZATION
- Hildebrand solubility parameter (MPa12)
It is determined by calculation according to Allan F.M. Barton, in Chemical Review 1975, vol. 76, no. 6, pages 731-753.
- Hydrophylic/lipophylic balance (HLB)
It is measured or calculated according to Journal Society
Cosmetic Chemists 1, 311, (1949) by Griffin, W.C. EXAMPLES 1-9 Preparation of aqueous compositions
A weighed amount of pesticide 1) , previously heated to 40-50°C, is added to the solvent 2) contained in a vessel equipped with a stirrer, maintaining under stirring until complete dissolution.
Subsequently, under stirring, at room temperature, the surfactant (s) , the propylene glycol and finally water are added in sequence .
As active ingredient ETOFENPROX having a purity of 98% by weight was used. As solvents 2) there were used: EXXATE 700 (heptyl acetate) marketed by Esso having the Hildebrand solubility parameter of 16.5, BUTYLAL (dibutoxy methane) marketed by LAMBIOTTE having the Hildebrand parameter of 16.2, DBE (mixture containing 55-65% of dimethyl glutarate, 15-25% of dimethyl succinate and 10-25% of dimethyl adipate) by Du Pont having the Hildebrand parameter of 20.2 and isooctanol having the Hildebrand parameter of 21.
As polyol 3) the mono propylene glycol was used.
As nonionic surfactant 4) it was used a mixture of polyethoxylated distyryl and tristyryl phenols with 17 ethoxylation moles (EMULSON AG 17A marketed by Cesalpinia Chemicals) , polyethoxylated castor oil with 29 ethoxyl-ation moles (ETOCAS 29 marketed by Croda) , polyethoxyl-ated tri- styrylphenol with 16 ethoxylation moles (SOPROPHOR BSU marketed by Rhodia) .
As anionic surfactant 5) calcium dodecylbenzensulphonate was used.
The amounts by weight of the various components 1) , 2) , 3), 4), 5) are reported in Table 1.
All the compositions of the Examples from 1 to 9 are microemulsions having the characteristics reported in Table 2. In Table 2 it is reported the microemulsion appearance, the active ingredient titre, the pH determined at a dilution of 1% in water.
Furthermore in Table 2 it is reported the appearance of the emulsions obtained by diluting the microemulsion at 5% in water, and then maintained at 30 °C for 2 hours.
The stability of the microemulsions of Table 1 has been evaluated under the following conditions: a) at cold, modifying in a more restrictive way the standard test CIPAC MT 39.3 (storage for 7 days at 0°C) , evaluating the product after 14 days at -5°C; b) at high temperatures, according to the standard test CIPAC MT 46 which requires the storage of the formulation for 14 days at 54 °C
In both cases the microemulsions object of the present invention have maintained unchanged the initial characteri- sties reported in Table 2.
The above tests are indicative that the so prepared microemulsions are stable under the normal storage conditions for long periods of time and resist even under tropical conditions. The microemulsion of the Example 1, for example, has resulted stable even after 24 months.
TABLE 1
v*
Figure imgf000010_0001
Table 2
Figure imgf000011_0002
nps = no phase separation
Figure imgf000011_0001
EXAMPLES 10-11 (comparative)
Example 8 was repeated except that instead of DBE solvent the biodiesel solvents (mixture of methyl esters of mainly oleic and linoleic fat acids) having the Hildebrand parameter equal to 14 , and N-methyl pyrrolidone having the Hildebrand solubility parameter equal to 23 were respectively used.
No microemulsion was obtained and it was observed the formation of mixtures with rapid tendency to the phase separation.
APPLICATION TESTS Field tests EXAMPLE 12
The Example relates to a field test carried out using the formulation of the Example 1 diluted in water at 0.093% by weight to evaluate the agronomical efficacy of the formulation on Leaf Hopper Green (Empoasca Decipiens) on grapevine, in comparison with untreated grapevine .
The field test was carried out at Ormelle (TV) Italy on grapevine plants, Pinot Grigio variety, 7 years old, infested by Green Leaf Hopper, grouped in 8 plots of 15 m2 each, randomly placed in the vineyard, avoiding zones having borders or unrepeteable characteristics.
The treatment was carried out on four plots with a dose of 140 g/ha of active ingredient Etofenprox corresponding to the label application rate of commercial formulations of Etofenprox.
The agronomical efficacy has been evaluated by counting the number of live insects on 50 leaves, after 15 days after the treatment and comparing it with the number of insects on the untreated plots .
The efficacy is expressed as reduction percentage of the insect number with respect to the number of insects of the untreated plots .
Figure imgf000012_0001
The product object of the present invention results to be non phytotoxic and perfectly effective. EXAMPLE 13
The Example reported below relates to a field test carried out by using the formulation of the Example 1 diluted in water at 0.112% by weight to evaluate the initial activity of the formulation against aphis gossipi on melon, in comparison with melons treated with the commercial formulation Trebon® containing the same insecticide Etofenprox and solvents, the application rate of the insecticide being equal.
The field test was carried out at Erbe (VR) Italy on baggio melon plants infested by aphis gossipi, grouped in 12 plots each of 15 m2, placed in a randomized way in the field, avoiding border zones or with unrepeatable characteristics .
Four plots were treated with the diluted formulation of the Example 1 and other four plots were treated with the commercial formulation Trebon®, using a dose of 168 g/ha of active ingredient Etofenprox.
In the Table below it is reported the number of live insects for plant leaf of the plots treated with the invention formulation with respect to those treated with Trebon or untreated and the respective agronomical efficacy expressed as reduction percentage of the number of insects with respect to the number of insects of the untreated control plots .
Figure imgf000013_0001
The product object of the present ivnention shows a higher insecticide activity in comparison with the commercial formulation up to 9 days after the treatment. EXAMPLE 14
The Example reported below relates to a field test carried out by using the formulation of the Example 1 diluted in water at 0.056% by weight to evaluate the initial activity of the formulation on potato beetle on potato (leptinotersa decunlineata) , primura variety, in comparison with potatoes treated with the commercial formulation Trebon containing the same insecticide Etofenprox and solvents, the application rate of the insecticide being equal.
The field test wa,s carried out at Salerano sul Lambro (LO) Italy on primura potato plants infested by potato beetles, grouped in 12 plots each of 10 m2, placed in a randomized way in the field, avoiding border zones or with unrepeatable characteristics .
Four plots were treated with the diluted formulation of the Example 1 and other four plots were treated with the commercial formulation Trebon®, using a dose of 84 g/ha of a- ctive ingredient Etofenprox. Said treatment was repeated after 9 days .
In the Table it is reported the average number of live larvae of first age for plot of the plots treated with the invention formulation compared to the plots treated with Trebon or untreated and the respective agronomical efficacy expressed in reduction percentage of the number of live larvae of fist age in comparaison to the average number of the first age larvae of the untreated plots.
Figure imgf000014_0001
The product object of the present invention shows a higher initial insecticide activity in comparison with the commercial formulation as it results from the values reported in column 2 and in column 6. EXAMPLE 15
The Example reported below relates to a field test carried out by using the formulation of the Example 1 diluted in water at 0,1% by weight to evaluate its insecticidal efficacy against Cydia funebrana (first larval generation) on plum in comparaison with plums treated with commercial product Trebon, the application rate of the insecticide being equal.
The field test was carried out at Riolo Terme (RA) - Italy on plums, President variety, planted in 1991, of 2.5 m of height, grouped in 12 plots of 84.4 m2 area and having 4 plants per plot. Four plots were treated with the diluted formulation of the Example 1 and other four plots werw treated with the commercial formulation Trebon®, using a dose of 140 g/ha of Etofenprox.
The flight of Cydia funebrana adults in the experimental site has been monitored by using pheromones traps, while eggs and their hatch have been direcly and periodically checked on fruits .
Treatments of plants started after having found eggs and recording has been done before tha starting of the second generation.
100 random fruits per plot were collected and the number of holes recorded.
In the following Table, percent values of damaged fruits are reported as far as concern :
- composition 1
- commercial product (Trebon®)
- untreated control
Figure imgf000015_0001
Composition 1 shows better and statistically significant effects compared to untrated control and slightly better result compared to the corresponding commercial product.

Claims

Concentrated microemulsions comprising:
1) 10-25 parts by weight, preferably 12-20 parts by weight of a pesticide stable in water having a solubility in water, at 20 °C, lower than 1% by weight, having a melting point from 10°C to 60 °C;
2) 8-25 parts by weight of one or more solvents containing oxygen atoms, having a flash point >60°C, solubility in water at 20°C lower than 5% by weight, the Hildebrand solubility parameter in the range 16-21 MPa1/2 ;
3) 10-20 parts by weight, preferably 12-18 parts by weight of a polyol soluble in water at 20°C;
4) 10-25 parts by weight, preferably 12-20 parts by weight of one or more nonionic surfactants having a HLB value (hydrophylic/lipophylic balance) from 9 to 15, preferably between 10 and 13;
5) 2-10 parts by weight, preferably 4-8 parts by weight of one or more anionic surfactants ;
6) 20-40 parts by weight, preferably 25-35 parts by weight of water; wherein the sum of the amounts of the components 1) , 2) , 3) ,
4) , 5) , 6) is 100 parts by weight; the ratio by weight between the amount of solvent 2) and the active ingredient 1) ranges from 0.8:1 to
1.5:1; the ratio by weight between the sum of the amounts of the surfactants 4) and 5) and the amount of the crop pesticide 1) is in the range 0.5:1-3:1, preferably 1:1-2:1; the ratio by weight between 4) and 5) ranges from
1:1 to 4:1. Microemulsions according to claim 1, wherein the plant protection product 1) is selected among herbicides, fungicides and insecticides .
Microemulsions according to claim 2, wherein the herbicides are selected from: herbicides of the class of chloroacetamides or chlo- roacetanilides ; herbicides of the dinitro aniline class; herbicides of the isoxaazolidinone class; herbicides of the hydroxybenzonitrile class; herbicides of the aryloxy-alcanoic acid class; fungicides are selected from: triazole class; insecticides are selected from the classes : non ester pyrethroid class; phosphoorganic class. Microemulsions according to claim 3 wherein the herbicides of the chloroacetamide or chloroacetanilide classes are selected among Alachlor, Propisochlor, Acetochlor; the herbicides of the dinitro aniline class are selected among Pendimethalin, Trifluralin; the herbicides of the isoxaazolidinone class are selected from Clomazone; the herbicides of the hydroxybenzonitrile class are selected from Bromoxynil octanoate; the herbicides of the class of the aryloxyalkanoic acids are selected from MCPA-thioethyl; the fungicides of the triazole class are selected from Tetraconazole, Penconazole; the insecticide of the non ester pyrehtroid class is Etofenprox; the insecticides of the phosphoorganic class are selected from Chlorpyri- phos, Methidathion.
Microemulsions according to claims 3-4, wherein the plant protection product 1) is selected among N- (1-ethylpro- pyl) -2 , 6-dinitro-3 , 4-xylidine, a , , a, -trifluoro-2 , 6- dinitro-N, N-dipropyl-p-toluidine and 2- (4-ethoxyphenyl) - 2-methylpropyl 3 -phenoxybenzyl ether (Etofenprox) . Microemulsions according to claims 1-5, wherein the solvents 2) is selected among acetales, alkyl esters of car- boxylic acids with the alkyl comprised between C4-C10; alkyl esters of bicarboxylic acids, or mixtures thereof, alcohols .
Microemulsions according to claim 6, wherein the solvent 2) is selected from heptyl acetate, dibutoxy methane and the dimethyl esters of glutaric, succinic and adipic acid.
8. Microemulsions according to claims 1-7, wherein the polyol 3) is selected from ethylene glycol, propylene glycol, glycerol, preferably propylene glycol.
9. Microemulsions according to claims 1-8, wherein the surfactants 4) are selected from the group formed by polyethoxylated fat alcohols, polyethoxylated castor oil, polyethoxylated distyrylphenols, polyethoxylated tristyryl- phenols, polyethoxylated sorbitan esters, alkyl polyglycosides , polyethoxylated-polypropoxylated aliphatic alcohols.
10. Microemulsions according to claims 9, wherein the surfactants 4) are selected from polyethoxylated castor oil having an ethoxylation number in the range 15-40, preferably 25-35; polyethoxylated distyrylphenols having an ethoxylation number in the range 12-25, preferably 15 -20; polyethoxylated tristyrylphenols having an ethoxylation number in the range 15-40, preferably 16-25, or mixtures thereof .
11. Microemulsions according to claims 1-10, wherein the anionic surfactants 5) are selected from alkyl benzen sulphonates, alkyl sulphates, polyethoxylated phosphorylated tristyryl phenols, polyethoxylated sulphated tristyryl phenols, preferably dodecyl benzen calcium sulphonate .
12. Microemulsions according to claims 1-11, comprising one or more additives selected among antioxidant agents, UV stabilizers, pH correctors, antimould agents.
13. A process for preparing microemulsions according to claims 1-12 comprising the dissolution of the pesticide 1) , optionally heated to a temperature of 40°C-50°C to liqufy it, in solvent 2) under mild stirring, the addition under stirring of the surfactants 4) , 5) and of the polyol 3) and lastly of the water maintaining the whole under stirring until obtaining a macroscopically limpid and perfectly homogeneous dispersion.
14. Use for the control of agronomically remarkable pests of the microemulsions of claims 1-12, comprising the dilu- tion of said microemulsions in water, in amounts in the range 0.05-2.5% by weight and directly spraying such mixture on the crops .
PCT/EP2004/001906 2003-03-06 2004-02-26 Pesticides formulations WO2004077945A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0408009A BRPI0408009B1 (en) 2003-03-06 2004-02-26 concentrated microemulsions, process for their preparation and use
US10/547,612 US8029813B2 (en) 2003-03-06 2004-02-26 Pesticides formulations
DE602004030775T DE602004030775D1 (en) 2003-03-06 2004-02-26 PESTICIDE FORMULATIONS
AT04714772T ATE493028T1 (en) 2003-03-06 2004-02-26 PESTICIDE FORMULATIONS
ES04714772T ES2356145T5 (en) 2003-03-06 2004-02-26 Pesticide formulations
EP04714772.3A EP1608220B8 (en) 2003-03-06 2004-02-26 Pesticides formulations
US13/221,346 US8440213B2 (en) 2003-03-06 2011-08-30 Pesticides formulations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000411A ITMI20030411A1 (en) 2003-03-06 2003-03-06 PHYTOPHARMACEUTICAL FORMULATIONS.
ITMI2003A000411 2003-03-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/547,612 A-371-Of-International US8029813B2 (en) 2003-03-06 2004-02-26 Pesticides formulations
US13/221,346 Division US8440213B2 (en) 2003-03-06 2011-08-30 Pesticides formulations

Publications (1)

Publication Number Publication Date
WO2004077945A1 true WO2004077945A1 (en) 2004-09-16

Family

ID=32948198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001906 WO2004077945A1 (en) 2003-03-06 2004-02-26 Pesticides formulations

Country Status (9)

Country Link
US (2) US8029813B2 (en)
EP (1) EP1608220B8 (en)
AT (1) ATE493028T1 (en)
BR (1) BRPI0408009B1 (en)
DE (1) DE602004030775D1 (en)
ES (1) ES2356145T5 (en)
IT (1) ITMI20030411A1 (en)
PT (1) PT1608220E (en)
WO (1) WO2004077945A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074683A1 (en) * 2004-01-30 2005-08-18 Rhodia Chimie Emulsifiable concentrate comprising a dinitroaniline compound
EP2005824A1 (en) * 2007-06-21 2008-12-24 Bayer CropScience AG Active agent suspensions in glycerine
WO2010051607A1 (en) * 2008-11-06 2010-05-14 Oxiteno S.A. Indústria E Comércio Water dispersible agrochemical formulations
EP2216092A1 (en) * 2007-11-14 2010-08-11 Nippon Soda Co., Ltd. Emulsion composition and agrochemical emulsion composition
AU2009202360B2 (en) * 2008-06-12 2013-10-31 Eureka Agresearch Pty Ltd Herbicidal composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20030411A1 (en) 2003-03-06 2004-09-07 Sipcam Spa PHYTOPHARMACEUTICAL FORMULATIONS.
FR2910784B1 (en) * 2006-12-27 2009-02-20 Arkema France USE OF COMPOUNDS FOR PRESERVATION OF THE HUMAN OR ANIMAL BODY AND COMPOSITIONS COMPRISING SAME
WO2009137803A2 (en) * 2008-05-09 2009-11-12 Rentech, Inc. Ft naphtha and ft diesel as solvents or carriers for pesticides and/or herbicides
US20110275519A1 (en) * 2010-05-06 2011-11-10 Otto Glatter Pesticidal Dispersion Comprising Nanostructured Dispersed Phase
CA2830518C (en) * 2011-04-20 2019-07-16 Huntsman Petrochemical Llc Spray drift reduction agents comprising low hydrophilic-lipophilic balance surfactants
CN105875678B (en) * 2016-06-07 2019-07-30 山东省花生研究所 A kind of Herbicidal composition and preparation method for preventing and treating Peanut Fields subterranean pest-insect
ES2671566B2 (en) * 2017-03-01 2019-01-24 Seipasa S A Biocide composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197403A (en) * 1988-02-01 1989-08-09 Shionogi & Co Ltd Microemulsion for agricultural chemical
EP0533057A1 (en) * 1991-09-14 1993-03-24 Hoechst Schering AgrEvo GmbH Selective herbicidal agent in the form of concentrated microemulsions
US5266590A (en) * 1989-12-11 1993-11-30 Isp Investments Inc. Cold stabilization of aqueous microemulsions of a water-insoluble agriculturally active compound
EP0729700A2 (en) * 1995-02-23 1996-09-04 ISAGRO S.p.A. Adjuvants for systemic fungicides, fungicidal compositions which contain them and their use
WO2002045507A2 (en) * 2000-12-04 2002-06-13 Syngenta Participations Ag Microemulsifiable agrochemical concentrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3920680A (en) * 1972-03-10 1975-11-18 Nikolai Mikhailovich Golyshin Method for preparing substituted benzimidozoles and their uses 1-(phenoxyacetyl)carbaminoyl-2-carbomethoxyaminobenzimidazole
DE3624910A1 (en) 1986-07-23 1988-01-28 Hoechst Ag CONCENTRATED AQUEOUS MICROEMULSIONS
DE3707711A1 (en) 1987-03-11 1988-09-22 Hoechst Ag OIL-IN-WATER EMULSIONS, METHOD FOR THEIR PRODUCTION AND THEIR USE
US5527823A (en) * 1988-03-02 1996-06-18 Roussel Uclaf Pesticidal formulations
US5262420A (en) * 1988-09-01 1993-11-16 Idemitsu Kosan Co., Ltd. Pyridine derivatives and insecticide and miticide comprising said derivatives
CO4750751A1 (en) * 1996-02-15 1999-03-31 Novartis Ag FUNGICIDAL COMPOSITIONS OF TWO COMPONENTS BASED ON METALAXYL TO CONTROL AND PREVENT FUNGAL INFESTATION OF PLANTS AND THEIR ENVIRONMENT
FR2789551B1 (en) * 1999-02-12 2002-06-21 Aventis Cropscience Sa FUNGICIDAL COMPOSITIONS FOR THE PROTECTION OF FRUITS
ITMI20030411A1 (en) 2003-03-06 2004-09-07 Sipcam Spa PHYTOPHARMACEUTICAL FORMULATIONS.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197403A (en) * 1988-02-01 1989-08-09 Shionogi & Co Ltd Microemulsion for agricultural chemical
US5266590A (en) * 1989-12-11 1993-11-30 Isp Investments Inc. Cold stabilization of aqueous microemulsions of a water-insoluble agriculturally active compound
EP0533057A1 (en) * 1991-09-14 1993-03-24 Hoechst Schering AgrEvo GmbH Selective herbicidal agent in the form of concentrated microemulsions
EP0729700A2 (en) * 1995-02-23 1996-09-04 ISAGRO S.p.A. Adjuvants for systemic fungicides, fungicidal compositions which contain them and their use
WO2002045507A2 (en) * 2000-12-04 2002-06-13 Syngenta Participations Ag Microemulsifiable agrochemical concentrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALLAN F. M. BARTON: "Solubility parameters", CHEMICAL REVIEWS, vol. 75, no. 6, 1975, pages 731 - 753, XP009030593 *
DATABASE WPI Section Ch Week 198938, Derwent World Patents Index; Class A97, AN 1989-273339, XP002279264 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074683A1 (en) * 2004-01-30 2005-08-18 Rhodia Chimie Emulsifiable concentrate comprising a dinitroaniline compound
EP2005824A1 (en) * 2007-06-21 2008-12-24 Bayer CropScience AG Active agent suspensions in glycerine
WO2008155026A2 (en) * 2007-06-21 2008-12-24 Bayer Cropscience Ag Active ingredient suspensions in glycerine
WO2008155026A3 (en) * 2007-06-21 2009-10-29 Bayer Cropscience Ag Active ingredient suspensions in glycerine
CN101677529B (en) * 2007-06-21 2014-03-19 拜尔农作物科学股份公司 Active ingredient suspensions in glycerine
KR101520117B1 (en) 2007-06-21 2015-05-13 바이엘 인텔렉쳐 프로퍼티 게엠베하 Active ingredient suspensions in glycerine
EP2216092A1 (en) * 2007-11-14 2010-08-11 Nippon Soda Co., Ltd. Emulsion composition and agrochemical emulsion composition
EP2216092A4 (en) * 2007-11-14 2012-01-25 Nippon Soda Co Emulsion composition and agrochemical emulsion composition
US9113626B2 (en) 2007-11-14 2015-08-25 Nippon Soda Co., Ltd. Emulsion composition and agrochemical emulsion composition
AU2009202360B2 (en) * 2008-06-12 2013-10-31 Eureka Agresearch Pty Ltd Herbicidal composition
AU2009202360B8 (en) * 2008-06-12 2014-02-27 Eureka Agresearch Pty Ltd Herbicidal composition
WO2010051607A1 (en) * 2008-11-06 2010-05-14 Oxiteno S.A. Indústria E Comércio Water dispersible agrochemical formulations

Also Published As

Publication number Publication date
US20060154826A1 (en) 2006-07-13
PT1608220E (en) 2011-03-01
US8029813B2 (en) 2011-10-04
ITMI20030411A1 (en) 2004-09-07
DE602004030775D1 (en) 2011-02-10
ATE493028T1 (en) 2011-01-15
US8440213B2 (en) 2013-05-14
ES2356145T3 (en) 2011-04-05
BRPI0408009B1 (en) 2018-09-11
EP1608220B1 (en) 2010-12-29
EP1608220B2 (en) 2020-08-19
US20110312496A1 (en) 2011-12-22
BRPI0408009A (en) 2006-02-14
EP1608220B8 (en) 2021-03-17
EP1608220A1 (en) 2005-12-28
ES2356145T5 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
US8440213B2 (en) Pesticides formulations
AU2006231454B2 (en) Stable pesticide concentrates and end-use emulsions
JP6228153B2 (en) Compositions obtainable by a method for controlling the release rate of microencapsulated active ingredients
JP6227566B2 (en) Emulsifying thick preparation
WO2020198853A1 (en) Antimicrobial nano-emulsion
JP6315702B2 (en) Agrochemical emulsifiable concentrate
CN102123590B (en) For regulating the method for the rate of release of the active component of microencapsulation
US11980193B2 (en) Natural oil pesticidal compositions
AU2013289339B2 (en) Insecticidal formulations of microcapsules
CN116369315A (en) Stable co-formulations of benzoylurea and pyrethroids
JPS6324483B2 (en)
AU2009241790A1 (en) Novel pyriproxyfen compositions
DE60109408T2 (en) PROCESS FOR THE PROTECTION OF CULTURAL PLANTS FROM THE PHYTOTOXIC EFFECT OF HERBICIDES THROUGH THE USE OF PHOSPHOROUS ESTERS
JP2013510892A (en) Biocide comprising carbamate
US9560847B2 (en) Stable matrix emulsion concentrates and stable aqueous and/or organic solvent compositions containing biocides
JPH02188507A (en) Cock roach-killing composition, preparation thereof and protection and removing of cock roach
BR112012029270B1 (en) BIOCID COMPOSITIONS, AND, USE OF ISOAMILA LACTED.
CA3096451A1 (en) Improved natural oil pesticidal compositions
IT202100016433A1 (en) METHOD FOR THE CREATION OF A PHYTOSANITARY MICRO/NANOEMULSION
JPS6289605A (en) Pyrethroid composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004714772

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006154826

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10547612

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 05088768

Country of ref document: CO

WWP Wipo information: published in national office

Ref document number: 2004714772

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0408009

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10547612

Country of ref document: US