WO2004076290A2 - Food temperature-retaining device - Google Patents

Food temperature-retaining device Download PDF

Info

Publication number
WO2004076290A2
WO2004076290A2 PCT/JP2004/000877 JP2004000877W WO2004076290A2 WO 2004076290 A2 WO2004076290 A2 WO 2004076290A2 JP 2004000877 W JP2004000877 W JP 2004000877W WO 2004076290 A2 WO2004076290 A2 WO 2004076290A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
food
pipe
hole
ventilation
Prior art date
Application number
PCT/JP2004/000877
Other languages
French (fr)
Japanese (ja)
Other versions
WO2004076290A3 (en
Inventor
Masahiko Omura
Original Assignee
Masahiko Omura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masahiko Omura filed Critical Masahiko Omura
Publication of WO2004076290A2 publication Critical patent/WO2004076290A2/en
Publication of WO2004076290A3 publication Critical patent/WO2004076290A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D15/00Devices not covered by group F25D11/00 or F25D13/00, e.g. non-self-contained movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/805Cans

Definitions

  • the present invention relates to, for example, a food warming apparatus installed in a retail store to keep food warm.
  • a frozen showcase with a shelf-shaped exhibit at the top of the display case is also used.
  • the heat pipe is installed on the back of the exhibition section, blows cool air cooled by the heat pipe from above the exhibition section, and from the upper end of the display case to the inside of the display case. Is blowing out.
  • microwave ovens are often used to sell warm ingredients (food).
  • the clerk puts the food desired by the customer in a microwave oven, heats it for a predetermined time, and then hands it to the customer.
  • a sausage grill having a structure in which heated rollers can be rotated to apply heat to the outer periphery of cylindrical food such as frankfurters, and an oven is used as a device for warming the whole food.
  • a mechanism for rotating a saucer inside is generally used, so that the whole food can be evenly heated.
  • Patent Document 1 JP-A-10-132434 (pages 2-5, Fig. 2)
  • Patent Document 2 JP-A-2002-260842 (Pages 2-7, Fig. 4)
  • the frozen showcase described in Patent Literature 1 uses a heat pipe to cool the surrounding air, and cools the food through the cool air, so that there is much waste. Also, if the temperature of the air in the display case rises, the temperature of the food in the display case also rises, so even if the amount of food stored in the display case is small, it is necessary to cool the air inside. Therefore, regardless of the amount of food stored, there is much waste in consuming a large amount of energy to sufficiently lower the temperature inside the case.
  • the ingredients to be heated are limited to cylindrical ones that are long in the axial direction, and small ingredients such as sweet chestnuts, irregular ingredients such as onigiri, or irregular ingredients consisting of liquids such as tea and juices. Cannot be heated.
  • the irregular or irregular shaped food means a solid or liquid food that cannot be rotated even when placed on a roller.
  • the oven needs to heat the entire space surrounding the ingredients, so that no energy is consumed. There is a problem that there is much waste.
  • an object of the present invention is to provide a food warming device that can efficiently keep warm even when the amount of food is small.
  • a food warming device of the present invention is a food warming device having a temperature control device for circulating a heat medium, wherein the heat medium is passed through the inside while being in contact with the outer surface of the food, and the food is rotated. It is characterized by having a cylindrical heat retaining body that keeps the temperature while keeping it warm.
  • the temperature control device has a compressor, a radiator pipe, and a heat transfer pipe.
  • the heat medium When cooling with a temperature control device, the heat medium is compressed by a compressor, becomes a high-temperature and high-pressure gas state, passes through a radiator tube, releases heat, and liquefies.
  • the liquefied heat medium enters the heat insulator, is decompressed and vaporized, and cools the heat insulator by the latent heat of vaporization.
  • the heat medium that has been compressed by the compressor to a high pressure and high temperature and vaporized passes through the heat conduction pipe and radiates heat to liquefy while heating the heat insulator. Thereafter, the heat medium that has been decompressed and cooled absorbs heat when passing through the heat-dissipating tube functioning as a heat-absorbing tube. The heat medium circulates in this way and heats the heat insulator by heat radiation when passing through the heat conduction pipe.
  • heat medium for example, HCFC and isobutane, such as R 134 a
  • a natural refrigerant such as C0 2.
  • the heat retaining body can, for example, allow the heat medium to pass directly through the inside of the cylindrical body. Further, a pipe through which the heat medium passes can be inserted into the inside of the cylindrical body.
  • rotating food includes not only a case where the food is rotated together with the heat insulator, but also a case where only the food is rotated while the heat insulator is fixed.
  • food means food and drink, and it does not matter whether or not it is packaged.
  • the heat insulator is heated and cooled by the heat medium, and directly contacts the outer surface of the food without air. In addition, since the food is rotated, the outer surface of the food comes into contact with the heat insulator in order to be heated and cooled, and the food is uniformly heated and cooled from the outside all around.
  • keeping warm means keeping the temperature at a temperature suitable for the food.Cooling the rotating cylinder if the food is suitable for a temperature lower than the ambient temperature, or rotating the rotating cylinder if the food is suitable for a temperature higher than the ambient temperature. Is heated.
  • cooling refers to lowering the temperature of the rotating cylinder from the ambient temperature, and includes both freezing and refrigeration.
  • the food to be cooled includes not only a single food suitable for a low temperature but also, for example, a food in which a packaging container is filled with ice cream and a food in which a can is filled with juices.
  • Heating refers to raising the temperature of the rotating cylinder above the ambient temperature.
  • the food to be heated includes, in addition to a simple food suitable for high temperature, for example, a food in which sweet chestnut or the like is put in a packaging container or a food in which a can is filled with coffee.
  • the heat insulation body When the heat insulation body is provided with a gap outside the heat conduction pipe through which the heat medium passes, and is provided with a rotating cylinder that is rotationally driven by a driving device, the heat conduction pipe is fixedly arranged without rotating. And the heat medium is less likely to leak.
  • the heat transfer pipe is cooled or heated by the heat medium, and cools or heats the rotating cylinder through the gap.
  • a small gap is formed between the heat transfer pipe and the rotating cylinder, but the volume is small. Further, the inside and outside of the rotating cylinder are shut off by the rotating cylinder. Therefore, since a small amount of gas in the gap inside the rotating cylinder does not escape to the outside in the circumferential direction, the heat retention efficiency does not become very small.
  • an electric motor or the like is preferably used as the driving device.
  • a circular cylinder is often used as a cross-sectional shape, but a polygonal one is also included.
  • the both ends of the heat conduction pipe are arranged on one side of the rotating cylinder, so that the heat conduction pipe can be rotated without being removed.
  • the tube can be removed from the other end.
  • the heat medium passing through the interior of the heat transfer pipe has a force whose temperature gradually approaches room temperature as it moves downstream, and an upstream portion near the temperature of the heat medium and a downstream portion near the room temperature.
  • a force whose temperature gradually approaches room temperature as it moves downstream and an upstream portion near the temperature of the heat medium and a downstream portion near the room temperature.
  • the heat medium makes one reciprocation.
  • the present invention includes a case where the U-shaped part is provided at a plurality of locations and the heat medium is reciprocated a plurality of times.
  • the heat retaining body is formed in a disc shape with a through-hole formed on a surface of the heat retaining body, the through-hole through which air sent from a blowing means provided on the base is discharged, and the ventilation pipe is provided with a through hole.
  • a heat conductor connected to a heat conduction plate formed with a through hole, a through hole through which the heat conduction pipe is inserted, and a side wall having a cutout on the outer periphery, inside the rotation cylinder, the rotation cylinder May have a configuration in which a through hole is formed on the surface.
  • the heat of the heat medium passing through the heat conduction pipe can be transmitted to the rotary cylinder via the heat conduction plate.
  • the heat conductor is formed by connecting the heat conductive plates, it is possible to easily adjust the length of the heat conductor.
  • air is sent from one or both ends of the ventilation pipe from a ventilation means provided on a base, passed therethrough, and discharged from a through hole formed on the surface, so that the heat transfer medium passing through the heat conduction pipe is discharged.
  • the air heated or cooled by the body can be efficiently radiated into the heat retaining body.
  • the radiated heated or cooled air passes through the notch formed in the side wall of the heat conducting plate, heats and cools the rotating cylinder, and passes through the through hole formed in the rotating cylinder. Since the food can be heated and cooled directly, efficient heat retention can be achieved.
  • the heat retaining body is formed in a disk shape, and has a through hole through which the heat conducting pipe passes, a side wall having a cutout on the outer periphery, and a ventilation part which is connected to the through hole in a cylindrical shape and has a ventilation hole on a side surface.
  • a heat conductor formed by connecting a plurality of heat conductive plates formed inside the rotary cylinder is provided inside the rotating cylinder.By connecting the heat conductive plates, air is supplied from one or both ends to a ventilation path formed by the ventilation section.
  • An air blowing means for feeding is provided on the base, and the rotary cylinder has a configuration in which a through hole is formed on a surface.
  • the heat conductor is formed by connecting a heat conducting plate formed in a disc shape and having a cylindrical shape, connected to a through hole, and a ventilation portion having a ventilation hole on a side surface.
  • the air sent by the blowing means can be discharged from the ventilation hole into the ventilation path to be used.
  • the discharged air can efficiently dissipate the air heated or cooled by the heat medium passing through the heat conducting pipe through the heat conducting pipe into the heat insulator.
  • the radiated heated or cooled air passes through the notch formed in the side wall of the heat conducting plate, heats and cools the rotating cylinder, and also passes through the through-hole formed in the rotating cylinder.
  • the food can be heated and cooled directly after passing through, so that efficient heat retention can be achieved.
  • the food warming device of the present invention allows a heat medium to pass through the inside while abutting against the outer surface of the food. Since it has a cylindrical heat insulator that heats or cools the food while rotating it, the heat insulator can directly contact the outer surface of the food without air to heat or cool, and the amount of food is small. Even in this case, it is possible to keep the temperature by heating or cooling efficiently. In addition, since the outer surface of the food is heated or cooled by sequentially contacting the heat insulator, the entire circumference of the food can be uniformly heated, and the food can be prevented from freezing in contact with the heat insulator.
  • the heat retaining body is provided with a rotating cylinder that is arranged with a gap outside the heat conducting pipe through which the heat medium passes and is driven to rotate by the driving device, the heat conducting pipe is fixed without rotating the heat conducting pipe.
  • the heat medium can hardly leak, and the reliability of the device is improved.
  • the heat retention efficiency does not decrease so much, and even when a small amount of food is cooled, it can be efficiently cooled.
  • the food can be placed horizontally, and the food placed horizontally can be in the form of two sticks or cylinders. Since the food is supported by the body from below and driven to rotate, the food is driven at two locations on the outer periphery to prevent slippage, and can rotate stably to keep the entire circumference of the food evenly warm.
  • the upstream portion of the heat transfer pipe whose temperature is close to the temperature of the heat medium passing therethrough and the downstream portion whose temperature is close to room temperature are arranged side by side, the temperature distribution of the rotating cylinder is evenly distributed. Thus, the whole can be efficiently heated and cooled.
  • the heat insulator is formed in a disc-shaped ventilation pipe with a through hole formed on the surface, through which the air sent from the ventilation means provided on the base passes, and the ventilation pipe is inserted through the interior.
  • a heat transfer device having a through hole through which a heat conducting pipe is inserted and a side wall having a notch on the outer periphery.
  • a heat conductor connected to a conductive plate is provided inside the rotary cylinder, and the rotary cylinder has a through-hole formed in the surface.
  • the through-holes formed in the ventilation pipe allow the air to be discharged from the ventilation means provided on the base, so that the heat and cooling by the heat conduction pipe can be efficiently transmitted to the heat insulator.
  • the air discharged from the ventilation pipe and heated and cooled by the heat conduction pipe passes through the notch formed in the side wall of the heat conduction plate, heats and cools the rotating cylinder, and penetrates the rotating cylinder.
  • the food can be efficiently heated and cooled through the holes.
  • the heat retaining body is formed in a disk shape and has a through hole through which the heat conduction pipe passes, a side wall having a cutout on the outer periphery, and a ventilation portion which is connected to the through hole in a cylindrical shape and has a ventilation hole on a side surface.
  • a heat conductor formed by connecting a plurality of heat conducting plates formed inside the rotating cylinder is provided inside the rotating cylinder, and by connecting the heat conducting plates, air is supplied from one or both ends to a ventilation path formed by the ventilation portion.
  • the base is provided with a blowing means for blowing in, and the rotary cylinder has a through hole formed on the surface.
  • the air that has passed through the ventilation passage is discharged from the ventilation hole, and is heated and cooled by the heat conduction pipe passes through the cutout formed in the side wall of the heat conduction plate, and heats and cools the rotating cylinder.
  • the food can be efficiently heated and cooled through the through holes formed in the rotary cylinder.
  • the configuration can be such that the ventilation pipe is omitted, so that the number of components constituting the heat retaining body can be reduced, and the cost can be reduced.
  • FIG. 1 is a perspective view of a food warming apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a front sectional view of the food heat insulation apparatus.
  • FIG. 3 is a cross-sectional view showing a state where a cylindrical container is placed on a heat conducting pipe.
  • FIG. 4 is a cross-sectional view showing an arrangement structure of a heat conducting pipe of a food heat insulating apparatus according to another embodiment.
  • FIG. 5 is a perspective view of a food warming apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a front sectional view of the food warming apparatus.
  • FIG. 7A and 7B are diagrams showing a configuration of a heat insulator according to the second embodiment, wherein FIG. 7A is a front view of the heat insulator, FIG. 7B is a front view of the rotating cylinder, and FIG. FIG. 2 is a front view showing the pipe and the heat conducting pipe through, and (d) is a front view of the ventilation pipe.
  • FIG. 8A and 8B show a heat conductive plate according to Embodiment 2, wherein FIG. 8A is a perspective view of the heat conductive plate, and FIG. 8B is a view showing a state in which the heat conductive plates are connected.
  • FIG. 9 is a diagram showing a configuration of a heat insulator according to another embodiment, (a) is a front view of the heat insulator, (b) is a front view of a rotary cylinder, and (c) is a heat conductor.
  • FIG. 3 is a front view showing a ventilation pipe and a heat conduction pipe through, and
  • FIG. 4D is a front view of an air intake pipe.
  • FIG. 10A and 10B show a heat conductive plate according to another embodiment.
  • FIG. 10A is a perspective view of the heat conductive plate
  • FIG. 10B is a view showing a state where the heat conductive plates are connected.
  • FIG. 11 is a perspective view showing a state where a shielding plate is attached to the food warming apparatus according to Embodiment 2 of the present invention.
  • Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 1 is a perspective view of a food warming device according to Embodiment 1 of the present invention, and FIG. FIG.
  • a food warming apparatus 1 according to Embodiment 1 of the present invention has a plurality of rotating cylinders 4 to 11 rotatably supported by a base 12.
  • the rotary cylinders 4 to: L1 are arranged side by side in a horizontal direction and are rotatably driven by an electric motor 2 as a drive source. Further, a heat retaining section 3 is provided inside each of the rotary cylinders 4 to 11.
  • the main body 27 of the base 12 is formed in a rectangular parallelepiped shape.
  • the rotary cylinder supporting portions 13, 14 are provided detachably.
  • the upper surfaces of the rotary cylinder supporting portions 13 and 14 are provided so as to protrude above the upper surface of the main body 27.
  • rubber legs are provided at the lower portions of the rotary cylinder support portions 13 and 14, respectively.
  • a concave groove 15 is formed by the upper surface of the main body 27 and the inner surfaces of the rotary cylinder supporting portions 13 and 14 adjacent thereto.
  • the eight rotating cylinders 4 to 11 are arranged in the concave groove 15. Both ends of each of the rotary cylinders 4 to 11 are rotatably supported by rotary cylinder support portions 13 and 14 via bearings 16 and 17.
  • the rotary cylinders 4 to 11 are formed in a cylindrical shape, and the bearings 16 and 17 hold the outer circumferences of the rotary cylinders 4 to 11.
  • the outer peripheral surfaces of the rotary cylinders 4 to 11 are covered with a cover 39 made of polypropylene, which is a hydrophobic plastic.
  • cover 39 made of the hydrophobic plastic is formed, it is difficult for moisture to adhere to the surfaces of the rotary cylinders 4 to 11 when cooled, and thus frost is less likely to adhere. Therefore, the cooling efficiency can be improved and the maintenance cycle can be lengthened to save labor.
  • the plastic having hydrophobicity refers to a plastic having a hydrophobic non-polar group such as CH 3 , H 3 CH 2 or a benzene ring, for example, polypropylene.
  • the cover 39 can be formed by curing a resin applied on the surface of the rotating cylinder 4 to L1 by covering the rotating cylinder 4 to L1 with a cylinder formed in advance. It is possible.
  • a groove is formed on the surface of the rotating cylinders 4 to 11 or a rough surface is formed, so that Can also increase the adhesion.
  • the cover 39 covering the rotary cylinders 4 to 11 is a plastic cylinder, the surface thereof can be roughened or formed with a groove to prevent slippage.
  • the cover portion 39 is a coating applied by spraying to the surfaces of the rotary cylinders 4 to 11, the surface of the coating can be roughened.
  • the drive device 18 includes the electric motor 2, sprockets 44 and 45, and the endless chain 20.
  • the electric motor 2 is provided on the left side in the base portion 12.
  • the sprockets 44 and 45 are provided at the left end of the electric motor 2 and the rotating cylinders 4 to 11, respectively.
  • the endless chain 20 meshes with each sprocket 44,45.
  • An auxiliary sprocket and a guide member are provided inside the base portion 12 so that the endless chain 20 does not come off from the sprockets 44 and 45.
  • the heat retaining device 19 has a compressor 21, a heat radiating pipe 22, and a heat conducting pipe 23.
  • a radiator tube 22 is connected to a downstream end of the compressor 21.
  • the heat radiating tube 22 is bent in a zigzag manner and disposed on the back surface of the base 12.
  • a heat conducting pipe 23 is connected to a downstream end of the heat radiating pipe 22 via a dryer (not shown) and a capillary tube 24.
  • a fixed shaft 25 is inserted through the center of the rotary cylinders 4 to 11. Both ends of the fixed shaft 25 are detachably fixed to fixing portions provided on the inner walls of the rotary cylinder supporting portions 13 and 14 by fastening means such as screws.
  • the fixed shaft 25 is not in contact with the rotary cylinders 4 to 11, and does not move together with the rotary cylinders 4 to 11 when they rotate.
  • the heat conducting pipe 23 is bent in a U-shape, and an upstream portion 28 arranged on the upstream side of the bent portion and a downstream portion 29 arranged on the downstream side are arranged in parallel. And arranged in parallel The upstream portion 28 and the downstream portion 29 are detachably fixed to a fixed shaft 25 disposed inside the rotary cylinders 4 to 11.
  • the bent portion of the heat conduction pipe 23 is disposed near the left end of the rotary cylinders .4 to 11. Both ends of the heat conduction pipe 23 are arranged on the right side of the rotary cylinders 4 to 11.
  • the heat-conducting pipe 23 may be any pipe that does not easily corrode, has high thermal conductivity, and is easy to process. For example, a copper pipe can be used.
  • FIG. 3 is a cross-sectional view showing a state where a cylindrical container is placed on a heat conducting pipe. As shown in FIG. 3, the upstream portion 28 and the downstream portion 29 of the bent heat conducting pipe 23 are arranged facing each other around a fixed shaft 25.
  • the downstream end of the heat transfer pipe 23 is connected to the compressor 21, and with this configuration, the heat retaining device 19 forms a circulation circuit.
  • the heat medium is compressed by the compressor 21 to become a high-temperature and high-pressure gas, and when passing through the radiator tube 22 radiates heat and is liquefied. Then, the pressure is reduced when passing through the dryer and the capillary tube 24, the gas is vaporized when passing through the heat conducting pipe 23, and heat is absorbed by the latent heat of vaporization at this time.
  • the heat medium reciprocates in the axial direction inside the rotary cylinders 4 to 11 when passing through the inside of the heat conduction pipe 23.
  • the heat medium liquefied by absorbing heat returns to the compressor 21 and is compressed.
  • the heat medium circulates in this way and is cooled by heat absorption when passing through the heat conduction pipe 23.
  • the heat retaining device 19 includes a four-way valve (not shown) for reversing the heat cycle of the heat medium. This four-way valve switches the flow of the heat medium circulating from the compressor 21 to the heat conduction pipe 23 via the heat dissipation pipe 22 so that it flows from the compressor 21 to the heat dissipation pipe 22 via the heat conduction pipe 23. ing.
  • the warm medium compressed by the compressor 21 and having a high pressure is passed from the downstream portion 29 to the upstream portion 28 of the heat conducting pipe 23 to warm the heat conducting pipe 23, thereby cooling the heat medium.
  • the heat is absorbed when passing through the heat dissipation pipe 22 from the heat transfer pipe 23. Heat and return to compressor 21.
  • the heat medium circulates in this way and is heated by heat radiation when passing through the heat conduction pipe 23.
  • an alternative CFC such as R134a is used.
  • the heat medium, isobutane, can also be used natural refrigerant such C_ ⁇ 2.
  • heaters 34 and 35 for heating the rotary cylinders 4 to 11 are provided at positions shifted by 90 ° from the positions of the upstream part 28 and the downstream part 29 of the heat conduction pipe 23 about each fixed shaft 25 as a center. Each is provided.
  • the heaters 34 and 35 are fixed to the fixed shaft 25 by fixing members 43, respectively.
  • the heaters 34 and 35 can melt frost adhering around the rotary cylinders 4 to 11 around the heat conduction pipe 23, and can also heat food through the rotary cylinders 4 to 11. .
  • the heat retaining section 3 provided in each of the rotary cylinders 4 to 11 is constituted by a heat conducting pipe 23 and heaters 34 and 35. Further, a heat retaining body 46 is constituted by the rotary cylinders 4 to 11, the heat conduction pipe 23 and the heaters 34 and 35.
  • the heaters 34 and 35 can be omitted if the function of defrosting described below is not performed.
  • a power control device (not shown) for driving the driving device 18 and the heat retaining device 19 is provided inside the base portion 12, and power is supplied from a cord 30 with a plug connectable to an outlet.
  • the power supply control device has a power supply switch 31 that switches on and off the power supplied from the cord 30 with a plug.
  • the power switch 31 is branched into two systems, and supplies power to the output switch 32 that supplies power to the compressor 21 of the four rotary cylinders 4 to 7 and power to the remaining four rotary cylinders 8 to 11 Output switch 33.
  • the output switches 32 and 33 have five-stage switching switches.
  • the output switches 32 and 33 stop power supply at the center position, and when turned counterclockwise from the center position, switch the output to the compressor 21 in two stages and switch the cooling degree to two stages. Can be. Also the center By turning clockwise from the position, the output to the compressor 21 can be switched between two stages, and the four-way valve can be switched to switch the degree of heating between two stages.
  • the power switch 31 and the output switches 32 and 33 are provided on the front surface of the base 12, and the operator can perform switch operations from the near side.
  • lamps 36 to 38 for operation confirmation are provided above the power switch 31 and the output switches 32 and 33, respectively.
  • the electric motor 2 is configured to operate in conjunction with the power switch 31 or the output switches 32, 33.
  • the eight rotary cylinders 4 to 11 of the food warming apparatus 1 can support four foods each containing the ice room 40 in the cylindrical container 41 in the front-rear direction. In the left and right space of each cylindrical container 41, another cylindrical food can be placed.
  • the ice cream 40 is placed with the peripheral surface of the cylindrical container 41 abutting on both rotating cylinders 6 and 7 adjacent to each other.
  • the power switch 31 is turned on, and the output switch 32 is further turned counterclockwise. With this operation, the rotary cylinders 4 to 7 start rotating, and the compressor 21 operates.
  • the heat medium flows into the heat transfer pipe 23.
  • the temperature of the heat medium gradually increases as the temperature at the upstream side of the heat conduction pipe 23 decreases and goes downstream.
  • the temperature of the upstream portion 28 of the heat conduction pipe 23 is the lowest, and the temperature of the downstream portion 29 is the highest.
  • the temperature of the upstream portion 28 of the heat transfer pipe 23 is the highest, and the temperature of the downstream portion 29 is the lowest.
  • the temperature difference in the longitudinal direction of the rotating cylinders 4 to 7 is Become smaller.
  • the heat conduction pipe 23 is cooled, and the rotary cylinders 4 to 7 are further cooled.
  • the surfaces of the rotating cylinders 6 and 7 cool the two contact portions of the cylindrical container 41, respectively. Further, since the rotating cylinders 6 and 7 are rotating, the outer peripheral surface of the cylindrical container 41 is uniformly cooled. Since the cylindrical container is directly cooled by the rotating cylinders 6 and 7, the ice cream 40 can be cooled efficiently.
  • frost may adhere around the heat conduction pipe 23 and around the rotary cylinder 4 to L 1.
  • the attached frost can be melted by switching the heater output switch (not shown) and supplying electric power to the heaters 34 and 35.
  • the heater output switch not shown
  • both ends of the rotary cylinders 4 to 11 are open, the water generated inside the rotary cylinders 4 to 11 can flow out to the side.
  • the fixed shaft 25 is removed from the fixed portion 26.
  • the left rotating cylinder support 13 is removed from the main body 27.
  • the rotating cylinders 4 to 11 are removed from the bearings 16 and 17. Then, when the rotating cylinders 4 to 11 are pulled out from the left side, the driving device 1 can be removed without removing the heat retaining device 19. Only 8 can be removed.
  • FIG. 4 is a cross-sectional view showing an arrangement structure of heat conduction pipes of a food heat insulating device according to another embodiment. As shown in FIG. 4, it is also possible to arrange a heat conducting pipe 42 formed in a straight line in the rotary cylinders 4 to 11. In this case, the structure of the heat transfer pipe 42 is simplified. The heat medium flows from one of the rotary cylinders 4: L 1 to the other.
  • the present invention is not limited to the above-described embodiment.
  • transparent plates are provided on both sides in the front and rear directions of the concave groove portion 15 so that cool air around the rotary cylinders 4 to 11 is removed. It is possible to keep it inside.
  • a transparent lid may be provided to cover both sides and the upper side of the concave groove 15 in the front-rear direction, thereby preventing the inflow of moisture. By adjusting the cooling temperature, it is possible to keep not only frozen food such as ice cream, but also refrigerated food such as juice.
  • FIG. 5 is a perspective view of a food heat insulating device according to Embodiment 2 of the present invention
  • FIG. 6 is a front sectional view of the food heat insulating device.
  • FIGS. 7A and 7B are diagrams showing a configuration of a heat insulator according to Embodiment 2, wherein FIG. 7A is a front view of the heat insulator, FIG. 7B is a front view of a rotary cylinder, and FIG. It is a front view in which the ventilation pipe and the heat conduction pipe were inserted, and (d) is a front view of the ventilation pipe.
  • 8A and 8B show a heat conductive plate according to Embodiment 2, wherein FIG. 8A is a perspective view of the heat conductive plate, and FIG. 8B is a view showing a state in which the heat conductive plates are connected.
  • FIG. 11 is a perspective view showing a state where a shielding plate is attached to the food warming apparatus according to Embodiment 2 of the present invention.
  • the food heat retaining apparatus discharges heated and cooled air from a rotating cylinder to heat and cool the food, thereby more efficiently keeping the food warm.
  • Embodiment 2 of the present invention discharges heated and cooled air from a rotating cylinder to heat and cool the food, thereby more efficiently keeping the food warm. 5 and FIG. 6, the same components as those in FIG. 1 and FIG. I do.
  • the food warming apparatus 50 has a plurality of rotating cylinders 54 to 61 rotatably supported by the base 12.
  • the rotary cylinders 54 to 61 are arranged side by side in a horizontal direction.
  • the rotary cylinders 54 to 61 have through holes 62 formed therein.
  • the rotary cylinders 54 to 61 can be formed of, for example, stainless steel, which desirably has good heat conduction and high corrosion resistance.
  • the rotary cylinders 54 to 61 are supplied with air from blowers 64 and 65, which are blowing means provided in the rotary cylinder supports 13 and 14 of the base 12.
  • a ventilation pipe 66 that allows air to pass through is passed through the inside.
  • the ventilation pipe 66 has a funnel-shaped air intake section 66a, 66b that connects the heat conductor 63 so as to collect air from the blowers 64, 65. It is detachably provided at both ends of the through pipe 66c through which it passes. As shown in FIG. 7 (d), the ventilation pipe 66c of the ventilation pipe 66 is formed with a through hole 66d for discharging the air sent from the blowers 64, 65 into the rotating cylinders 54 to 61. I have.
  • the rotary cylinders 54 to 61 pass through without the heat conductor 63 coming into contact with the inside, and are provided at one end of the rotary cylinders 54 to 61. Only the rotary cylinders 54 to 61 are rotated by the drive motor 2 that drives the sprocket 45 through the endless chain 20 by the sprocket 45.
  • the heat conductor 63 is formed by connecting a heat conductive plate 67.
  • the heat conducting plate 67 is formed in a disk shape, and has a through hole 67a for passing through the through pipe 66c of the ventilation pipe 66 at one position at the center and a through hole 67b for passing through the heat conducting pipe 23 at the center. It is formed symmetrically in two places.
  • the heat conductor 63 is formed by passing the ventilation pipe 66 and the heat conduction pipe 23 through the through holes 67a and 67b, respectively, and connecting the heat conduction plate 67. You.
  • a cutout portion 67d is formed in a side wall 67c on the outer periphery of the heat conductive plate 67.
  • the uneven portion 67e can be easily formed by pressing a pressing die when manufacturing the heat conductive plate 67.
  • the heat conductive plate 67 is desirably made of a material that has a high thermal conductivity because it directly heats and cools food, and that is lightweight because it rotates with high corrosion resistance. For example, aluminum or the like can be used.
  • Each of the rotating cylinders 54 to 61, the heat conductor 63, the heat conduction pipe 23 and the ventilation pipe 66 constitute a heat insulator 51.
  • the output switches 32 and 33 shown in FIG. 5 switch the output of the compressor 21 stepwise and switch the four-way valve similarly to the food warming apparatus of the first embodiment. By this switching, switching between heating and cooling is performed, and the output to the compressor 21 is switched in a stepwise manner, and the air can be blown by supplying electricity to the blowers 64 and 65.
  • circulation ventilation holes 68 for sucking the heated or cooled air discharged from the rotating cylinders 54 to 61 or the diffused air are formed. Has been done. The air sucked through the circulation vent 68 can be sent again to the heat conductor 63 in the rotating cylinders 54 to 61 by the blowers 64 and 65, so that efficient heating and cooling can be performed.
  • the use state of the food warming device 50 will be described by taking a food that is heated and kept warm as an example.
  • the eight rotating cylinders 54 to 61 of the food warming apparatus 1 can support four canned coffee 80, which is an example of food to be heated and kept warm, in the front-rear direction.
  • other can coffee and other cylindrical food items requiring heating can be put on the space in the left-right direction of the can coffee 80 by the force S.
  • the peripheral surface of the canned coffee 80 is placed in contact with an adjacent rotating cylinder, for example, rotating cylinders 56 and 57.
  • the power switch 31 is turned on, and the output switch 32 is further turned clockwise.
  • the rotary cylinders 54 to 57 start rotating, the compressor 21 operates, and the four-way valve is switched so that the heat medium flows from the compressor 21 to the heat radiating pipe 22 via the heat conduction pipe 23, Blowers 64 and 65 start blowing.
  • the compressor 21 operates, the heated heat medium flows into the heat conduction pipe 23. Then, the blown air is sent from both ends of the ventilation pipe 66 by the blowers 64 and 65.
  • the air sent from both ends of the ventilation pipe 66 passes through the inside and is discharged from a through hole 66a formed on the surface.
  • the air discharged from the through-hole 66a is heated by the heat conduction pipe 23 heated by the heat medium, heats the heat conduction plate 67 forming the heat conductor 63, and is formed on the side wall 69 of the heat conduction plate 67.
  • the heat is dissipated from the notch 67d into the gap between the rotary cylinders 54 to 61 and the heat conductor 63.
  • the heat conductive plate 67 also heats the air in the gap between the rotary cylinders 54 to 61 and the heat conductor 63 by being directly heated from the heat conductive pipe 23 passing through the through hole 67b.
  • the rotary cylinders 54 to 61 are heated by the heated air that has passed through the notch 67d and the heat radiation from the heated heat conductor 63.
  • the heated rotary cylinders 54 to 61 directly heat the abutting can coffee 80, and the heated air in the gap between the rotary cylinders 54 to 61 and the heat conductor 63 diffuses from the through-hole 62 formed on the surface. Then, since the canned coffee is warmed, it can be kept at a temperature suitable for drinking.
  • FIG. 9A and 9B are diagrams showing a configuration of a heat insulator according to another embodiment, wherein FIG. 9A is a front view of the heat insulator, FIG. 9B is a front view of the rotary cylinder, and FIG. FIG. 2 is a front view in which a ventilation pipe and a heat conduction pipe are inserted through the air pipe, and (d) is a front view of an air intake pipe.
  • 9A and 9B show a heat conductive plate according to another embodiment.
  • FIG. 9A is a perspective view of the heat conductive plate
  • FIG. 9B is a view showing a state where the heat conductive plates are connected.
  • the rotary cylinders 54 to 61 are formed with through holes 62 as in FIGS. 7 (a) and 7 (b). As shown in FIG. 9 (c), the rotary cylinders 54 to 61 are penetrated without the heat conductor 75 contacting the inside.
  • the heat conductor 75 is formed by connecting a heat conductive plate 76.
  • the heat conducting plate 76 is formed in a disc shape, and has a through hole 76a through which the heat conducting pipe 23 is inserted, a notch in the outer peripheral side wall (576b), and a vent hole 76d around a through hole 76c formed in the center.
  • the heat conduction plate 76 has a concavo-convex portion 76f to increase the surface area so as to receive more air heated and cooled by the heat conduction pipe 23.
  • the uneven portion 76f can be easily formed by pressing a pressing mold when manufacturing the heat conductive plate 76.
  • the heat conductive plate 76 is desirably made of a material having high thermal conductivity, corrosion resistance and light weight, and aluminum or the like can be used.
  • the rotary cylinders 54 to 61, the heat conductor 75, and the heat conduction pipe 23 constitute a heat insulator.
  • the heat conductor 75 forms a ventilation path 77 formed by the ventilation section 76e by connecting the heat conduction plate 76. Is done.
  • air is collected by connecting a pipe 78b to a funnel-shaped intake portion 78a.
  • the air can be discharged from the ventilation holes 76d of the ventilation portions 76e of the respective heat conducting plates 76.
  • the air discharged from the ventilation hole 76d is heated or cooled by the heat conduction pipe 23, passes through the cutout 76b, and is radiated to the gap between the heat conductor 75 and the rotary cylinders 54 to 61.
  • the radiated air passes through the through holes 62 formed in the rotary cylinders 54 to 61 and is radiated around the rotary cylinders 54 to 61.
  • a heater can be provided as in the food warming apparatus of the first embodiment.
  • a through hole is formed in the heat conductive plate, and the heater is passed through the through hole.
  • the heater can be used as an auxiliary when the heating of the compressor 21 of the heat retaining device is insufficient.
  • the heater can also be used as a defroster for the rotating cylinder when the food warming device is used for cooling food.
  • the air sent from the blower to the ventilation pipe 66 can be heated in advance by a heater or the like, so that the food can be more efficiently heated and kept warm.
  • the heat conduction plate 67 has a separate through hole for passing the ventilation pipe 66 and the heat conduction pipe 23, the heat conduction plate 67 may have a single through hole.
  • the food warming device can efficiently heat and cool food, and is useful, for example, as a device that is installed in a retail store to keep food warm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A food temperature-retaining device (1) has rotating hollow cylinders (4-11) parallelly arranged and rotatably supported by a base (12), heat-conducting tubes inserted inside the cylinders (4-11), a heat-retaining device for circulating a heated or cooled heat medium in the heat-conducting tubes, and a drive device for rotating the cylinders (4-11). When food is placed on adjacent cylinders and the cylinders (4-11) are rotated, the food is also rotated. The peripheral surfaces of the cylinders are in contact with the surface of a hollow cylinder-like container, so that the cylinders heat or cool the food through the surface of the container. Further, entire food is uniformly heated or cooled because the cylinders (4-11) and the food rotate.

Description

明細書  Specification
食品保温装置  Food warming equipment
技術分野 Technical field
本発明は、例えば、小売店の店内に設置されて食品を保温する食品保温装置に関す る。 背景技術  The present invention relates to, for example, a food warming apparatus installed in a retail store to keep food warm. Background art
スーパーマーケットやコンビニエンスストアなどでは、食品の鮮度を維持するために冷凍 や冷蔵機能を備えた陳列ケースを数多く設置している。冷凍食品と冷蔵食品は別々の 売り場に並べられ、別々に販売されている場合が多い。  Supermarkets and convenience stores have installed many display cases with freezing and refrigeration functions to maintain the freshness of food. Frozen foods and refrigerated foods are often lined up in separate stores and sold separately.
これらの陳列ケースの多くは、消費者の買い物の便宜を図るため上部が開放しており、 陳列ケース内に上方から大量の冷気を常時供給し続けることによって庫内温度を維持し ている。  Many of these display cases are open at the top to make it easier for consumers to shop, and the interior temperature is maintained by constantly supplying a large amount of cool air from above to the display cases.
また、陳列ケースの上部に棚状の展示部を形成した冷凍ショーケースも使用されている In addition, a frozen showcase with a shelf-shaped exhibit at the top of the display case is also used.
(例えば、特許文献 1参照。 ) oヒートパイプは、展示部の背面部に設置され、ヒートパイプ によって冷やされた冷気を、展示部の上方から吹き出し、また、陳列ケースの上端部から 陳列ケース内に吹き出している。 (See, for example, Patent Document 1.) o The heat pipe is installed on the back of the exhibition section, blows cool air cooled by the heat pipe from above the exhibition section, and from the upper end of the display case to the inside of the display case. Is blowing out.
また、コンビニエンスストア等では、暖めた食材(食品)を販売するために、電子レンジが 多く用いられている。店員は、顧客の所望する食材を電子レンジに入れ、所定時間加熱 した後、客に手渡したりしている。また、加熱したローラを回転させ、フランクフルトソーセ ージ等の円柱状の食材の外周に熱を加えることができるようになつている構造のソーセ一 ジグリルや、食材全体を暖める装置としてオーブンが用いられることもある。 近年では、電子レンジ内で電磁波が一部に集中することを防止するために内部で受け 皿を回転させる機構が一般的であり、食材全体を均等に加熱することができるようになつ ている。 (例えば、特許文献 2参照。 ) In convenience stores, microwave ovens are often used to sell warm ingredients (food). The clerk puts the food desired by the customer in a microwave oven, heats it for a predetermined time, and then hands it to the customer. In addition, a sausage grill having a structure in which heated rollers can be rotated to apply heat to the outer periphery of cylindrical food such as frankfurters, and an oven is used as a device for warming the whole food. Sometimes. In recent years, in order to prevent electromagnetic waves from concentrating on a part in a microwave oven, a mechanism for rotating a saucer inside is generally used, so that the whole food can be evenly heated. (For example, refer to Patent Document 2.)
特許文献 1特開平 10— 132434号公報(第 2— 5頁、第 2図)  Patent Document 1 JP-A-10-132434 (pages 2-5, Fig. 2)
特許文献 2特開 2002— 260842号公報(第 2— 7頁、第 4図)  Patent Document 2 JP-A-2002-260842 (Pages 2-7, Fig. 4)
発明の開示 Disclosure of the invention
しかし、特許文献 1に記載された冷凍ショーケースは、ヒートパイプによって周囲の空気 を冷却し、この冷気を介して食品を冷却するので、無駄が多い。また、陳列ケース内の空 気の温度が上がると陳列ケース内の食品の温度も上昇するので、陳列ケース内に収納さ れる食品の量が少ない場合でも、内部の空気を冷却する必要がある。従って、収納され る食品の多少に関わらず、ケース内の温度を十分に下げるために大量のエネルギーを消 費するために無駄が多い。  However, the frozen showcase described in Patent Literature 1 uses a heat pipe to cool the surrounding air, and cools the food through the cool air, so that there is much waste. Also, if the temperature of the air in the display case rises, the temperature of the food in the display case also rises, so even if the amount of food stored in the display case is small, it is necessary to cool the air inside. Therefore, regardless of the amount of food stored, there is much waste in consuming a large amount of energy to sufficiently lower the temperature inside the case.
また、電子レンジでは、食材の外部のみではなく、内部にも熱を加えるため、短時間で 食材を加熱できるが、オーブンで外部のみを加熱したときのようなカラッとした食感が得ら れないという問題がある。また、食材の全体を覆うケーシングを有しているので、外形が大 きくなり、さらに、顧客の注文を受けてから食材を出し入れするため、工数がかかるという 問題もある。  In addition, in a microwave oven, food is heated not only outside but also inside the food, so that food can be heated in a short time, but the crisp texture as when only the outside is heated in an oven cannot be obtained. There is a problem. In addition, there is a problem in that the casing has a casing that covers the whole of the food material, so that the outer shape becomes large.
一方、ソーセージグリルは、加熱する食材が軸方向に長い円筒状のものに限られ、甘 栗等の小形の食材、おにぎり等の異形の食材またはお茶やジュース類等の液体からなる 不定形の食材を加熱することができないという問題がある。ここで、異形または不定形の 食材とは、ローラ上に載置しても回転できない固体または液体の食材をいう。  On the other hand, in sausage grills, the ingredients to be heated are limited to cylindrical ones that are long in the axial direction, and small ingredients such as sweet chestnuts, irregular ingredients such as onigiri, or irregular ingredients consisting of liquids such as tea and juices. Cannot be heated. Here, the irregular or irregular shaped food means a solid or liquid food that cannot be rotated even when placed on a roller.
また、オーブンは、食材の周囲を囲む空間部全体を暖める必要があり、エネルギーの無 駄が多いという問題がある。 In addition, the oven needs to heat the entire space surrounding the ingredients, so that no energy is consumed. There is a problem that there is much waste.
そこで本発明が解決しょうとする課題は、食品の量が少ない場合でも効率よく保温する ことができる食品保温装置を提供することにある。  Therefore, an object of the present invention is to provide a food warming device that can efficiently keep warm even when the amount of food is small.
課題を解決するための手段 Means for solving the problem
前記課題を解決するため、本発明の食品保温装置は、熱媒体を循環させる温度調節 装置を有する食品保温装置において、前記熱媒体を内部に通過させるとともに食品の 外面に当接し、前記食品を回転させながら保温する筒状の保温体を有することを特徴と する。  In order to solve the above-mentioned problems, a food warming device of the present invention is a food warming device having a temperature control device for circulating a heat medium, wherein the heat medium is passed through the inside while being in contact with the outer surface of the food, and the food is rotated. It is characterized by having a cylindrical heat retaining body that keeps the temperature while keeping it warm.
温度調節装置は、圧縮機、放熱管および熱伝導パイプを有している。温度調節装置で 冷却する場合、熱媒体は、圧縮機で圧縮され、高温高圧のガス状態となり、放熱管を通 過して放熱し液化する。液化した熱媒体は、保温体内に入って減圧されて気化し、気化 潜熱により保温体を冷却する。  The temperature control device has a compressor, a radiator pipe, and a heat transfer pipe. When cooling with a temperature control device, the heat medium is compressed by a compressor, becomes a high-temperature and high-pressure gas state, passes through a radiator tube, releases heat, and liquefies. The liquefied heat medium enters the heat insulator, is decompressed and vaporized, and cools the heat insulator by the latent heat of vaporization.
温度調節装置で加熱する場合、圧縮機で圧縮されて高圧高温となって気化した熱媒 体が熱伝導パイプを通過するときに放熱して保温体を加熱しながら液化する。その後、 減圧されて冷却した熱媒体は、吸熱管として機能する放熱管を通過する際に吸熱して加 熱される。熱媒体はこのようにして循環して、熱伝導パイプを通過するときに、放熱により 保温体を加熱している。  When heating with a temperature control device, the heat medium that has been compressed by the compressor to a high pressure and high temperature and vaporized passes through the heat conduction pipe and radiates heat to liquefy while heating the heat insulator. Thereafter, the heat medium that has been decompressed and cooled absorbs heat when passing through the heat-dissipating tube functioning as a heat-absorbing tube. The heat medium circulates in this way and heats the heat insulator by heat radiation when passing through the heat conduction pipe.
熱媒体としては、例えば R 134 aのような代替フロンやイソブタン、 C02などの自然冷媒 を用いることができる。 As the heat medium, for example, HCFC and isobutane, such as R 134 a, it is possible to use a natural refrigerant such as C0 2.
保温体は、例えば、筒体の内部に熱媒体を直接通過させることができる。また、筒体の 内部に熱媒体が通過するパイプを挿通させることもできる。また、食品を回転とは、保温 体とともに食品を回転させる場合の他、保温体を固定して食品のみを回転させる場合も 含まれる。また、食品とは、飲食物のことであり、包装の有無は問わない。 保温体は、熱媒体によって加熱、冷却され、空気を介さずに食品の外面に直接当接す る。また、食品を回転させるので、食品の外面が保温体に順に接触して加熱、冷却され、 食品は外側から全周を均等に加熱、冷却される。 The heat retaining body can, for example, allow the heat medium to pass directly through the inside of the cylindrical body. Further, a pipe through which the heat medium passes can be inserted into the inside of the cylindrical body. In addition, the term "rotating food" includes not only a case where the food is rotated together with the heat insulator, but also a case where only the food is rotated while the heat insulator is fixed. In addition, food means food and drink, and it does not matter whether or not it is packaged. The heat insulator is heated and cooled by the heat medium, and directly contacts the outer surface of the food without air. In addition, since the food is rotated, the outer surface of the food comes into contact with the heat insulator in order to be heated and cooled, and the food is uniformly heated and cooled from the outside all around.
ここで、保温とは、食品に適した温度に保つことをレ、い、雰囲気温度より低温に適した 食品であれば回転筒を冷却し、雰囲気温度より高温に適した食品であれば回転筒を加 熱する。  Here, keeping warm means keeping the temperature at a temperature suitable for the food.Cooling the rotating cylinder if the food is suitable for a temperature lower than the ambient temperature, or rotating the rotating cylinder if the food is suitable for a temperature higher than the ambient temperature. Is heated.
なお、冷却とは、雰囲気温度より回転筒の温度を下げることをいい、冷凍および冷蔵の いずれも含まれる。また、冷却される食品には、低温に適した食品単体の他、例えば、包 装容器にアイスクリームを充填したものや缶内にジュース類を充填したものも含まれる。 また、加熱とは、雰囲気温度より回転筒の温度を上げることをいう。加熱される食品には 、高温に適した食品単体の他、例えば、包装容器に甘栗などを入れたものや缶内にコー ヒー類を充填したものも含まれる。  Note that cooling refers to lowering the temperature of the rotating cylinder from the ambient temperature, and includes both freezing and refrigeration. In addition, the food to be cooled includes not only a single food suitable for a low temperature but also, for example, a food in which a packaging container is filled with ice cream and a food in which a can is filled with juices. Heating refers to raising the temperature of the rotating cylinder above the ambient temperature. The food to be heated includes, in addition to a simple food suitable for high temperature, for example, a food in which sweet chestnut or the like is put in a packaging container or a food in which a can is filled with coffee.
前記保温体に、内部に熱媒体を通過させる熱伝導パイプの外側に隙間を有して配置 され、駆動装置によって回転駆動される回転筒を設けると、熱伝導パイプを回転させず に固定配置することができ、熱媒体が漏洩しにくくなる。  When the heat insulation body is provided with a gap outside the heat conduction pipe through which the heat medium passes, and is provided with a rotating cylinder that is rotationally driven by a driving device, the heat conduction pipe is fixedly arranged without rotating. And the heat medium is less likely to leak.
熱伝導パイプは熱媒体によって冷却または加熱され、隙間を介して回転筒を冷却また は加熱する。熱伝導パイプと回転筒の間には、少しの隙間が形成されているが、その容 積は小さい。また、回転筒によって、回転筒の内部と外部とは遮断されている。従って、 回転筒の内部の隙間にある少量の気体は周方向の外側に逃げることはないので、保温 効率はあまり小さくはならない。  The heat transfer pipe is cooled or heated by the heat medium, and cools or heats the rotating cylinder through the gap. A small gap is formed between the heat transfer pipe and the rotating cylinder, but the volume is small. Further, the inside and outside of the rotating cylinder are shut off by the rotating cylinder. Therefore, since a small amount of gas in the gap inside the rotating cylinder does not escape to the outside in the circumferential direction, the heat retention efficiency does not become very small.
駆動装置としては例えば、電動モータ等を用いることが好ましい。また、回転筒の断面 形状は、円形のものが多く用いられるが、多角形であるものも含まれる。  For example, an electric motor or the like is preferably used as the driving device. In addition, a circular cylinder is often used as a cross-sectional shape, but a polygonal one is also included.
前記保温体を、横方向に平行に複数配置し、基台に回転可能に支持すると、食品を 横置きすることができる。横置きされた食品は、 2本の棒状または筒状の保温体によって 下側から支持され、回転駆動される。食品は、外周の 2箇所を駆動されるので、滑りが防 止される。 When a plurality of the heat insulators are arranged in parallel in the horizontal direction and rotatably supported on a base, food can be obtained. Can be placed horizontally. The food placed horizontally is supported from below by two rod-shaped or cylindrical heat insulators and driven to rotate. The food is driven at two locations on the outer circumference, preventing slippage.
前記熱伝導パイプを U字状に折り曲げ、前記回転筒内に挿入して配設すると、熱伝導 パイプの両端部が回転筒の一側に配置されるので、熱伝導パイプを取り外さずに、回転 筒を他端側から取り外すことができる。  When the heat conduction pipe is bent into a U-shape and inserted into the rotating cylinder and disposed, the both ends of the heat conduction pipe are arranged on one side of the rotating cylinder, so that the heat conduction pipe can be rotated without being removed. The tube can be removed from the other end.
また、熱伝導パイプの内部を通過する熱媒体は、下流側に移動するにつれて温度が徐 々に室温に近づいてくる力 熱媒体の温度に近い上流部と室温に近い温度となった下 流部が回転筒の内部に並べて配置されることになるので、回転筒の温度分布が均等に なる。  In addition, the heat medium passing through the interior of the heat transfer pipe has a force whose temperature gradually approaches room temperature as it moves downstream, and an upstream portion near the temperature of the heat medium and a downstream portion near the room temperature. Are arranged side by side inside the rotating cylinder, so that the temperature distribution of the rotating cylinder becomes uniform.
なお、 U字状に折り曲げた部分を 1箇所形成すると、熱媒体は 1往復する。この U字状 に折り曲げた部分を複数箇所に設け、熱媒体を複数回往復させる場合も本発明に含ま れるものとする。  In addition, when one portion bent in a U-shape is formed, the heat medium makes one reciprocation. The present invention includes a case where the U-shaped part is provided at a plurality of locations and the heat medium is reciprocated a plurality of times.
前記保温体は、内部を揷通し、前記基台に備えた送風手段から送られた空気が吐出 する貫通孔が表面に形成された通風パイプと、円盤状に形成され、前記通風パイプが揷 通する貫通孔と前記熱伝導パイプが挿通する貫通孔と外周に切り欠き部を有する側壁と が形成された熱伝導板を連ねた熱伝導体と、を前記回転筒の内部に備え、前記回転筒 は、表面に貫通孔が形成された構成とすることもできる。  The heat retaining body is formed in a disc shape with a through-hole formed on a surface of the heat retaining body, the through-hole through which air sent from a blowing means provided on the base is discharged, and the ventilation pipe is provided with a through hole. A heat conductor connected to a heat conduction plate formed with a through hole, a through hole through which the heat conduction pipe is inserted, and a side wall having a cutout on the outer periphery, inside the rotation cylinder, the rotation cylinder May have a configuration in which a through hole is formed on the surface.
この構成により、熱伝導パイプを通過する熱媒体の熱を、熱伝導板を介して回転筒に 伝えることができる。また、熱伝導体は、熱伝導板が連ねて形成されているので、熱伝導 体の長さを容易に調整すること力 Sできる。  With this configuration, the heat of the heat medium passing through the heat conduction pipe can be transmitted to the rotary cylinder via the heat conduction plate. In addition, since the heat conductor is formed by connecting the heat conductive plates, it is possible to easily adjust the length of the heat conductor.
また、通風パイプの一端または両端へ基台に備えた送風手段から空気を送り込み、通 過させて、表面に形成された貫通孔から吐出させることで、熱伝導パイプを通過する熱媒 体によって加熱または冷却された空気を効率よく保温体内に放散させることができる。ま た、放散された加熱または冷却された空気は、熱伝導板の側壁に形成された切り欠き部 を通過し、回転筒を加熱、冷却するとともに、回転筒に形成された貫通孔を通過して直 接食品を加熱、冷却できるので、効率のよい保温をすることができる。 In addition, air is sent from one or both ends of the ventilation pipe from a ventilation means provided on a base, passed therethrough, and discharged from a through hole formed on the surface, so that the heat transfer medium passing through the heat conduction pipe is discharged. The air heated or cooled by the body can be efficiently radiated into the heat retaining body. The radiated heated or cooled air passes through the notch formed in the side wall of the heat conducting plate, heats and cools the rotating cylinder, and passes through the through hole formed in the rotating cylinder. Since the food can be heated and cooled directly, efficient heat retention can be achieved.
前記保温体は、円盤状に形成され、前記熱伝導パイプが揷通する貫通孔と、外周に 切り欠き部を有する側壁と、円筒形状で貫通孔に接続され側面に通気孔を有する通風 部とが形成された熱伝導板を連ねて形成された熱伝導体を前記回転筒の内部に備え、 前記熱伝導板を連ねることで前記通風部によって形成される通風路に、一端または両端 から空気を送り込む送風手段を前記基台に備え、前記回転筒は、表面に貫通孔が形成 された構成とすることちでさる。  The heat retaining body is formed in a disk shape, and has a through hole through which the heat conducting pipe passes, a side wall having a cutout on the outer periphery, and a ventilation part which is connected to the through hole in a cylindrical shape and has a ventilation hole on a side surface. A heat conductor formed by connecting a plurality of heat conductive plates formed inside the rotary cylinder is provided inside the rotating cylinder.By connecting the heat conductive plates, air is supplied from one or both ends to a ventilation path formed by the ventilation section. An air blowing means for feeding is provided on the base, and the rotary cylinder has a configuration in which a through hole is formed on a surface.
この構成により、熱伝導パイプを通過する熱媒体の熱を、熱伝導板を介して回転筒に 伝えること力 Sできる。また、熱伝導体は、熱伝導板が連ねて形成されているので、熱伝導 体の長さを容易に調整することができる。  With this configuration, it is possible to transmit the heat of the heat medium passing through the heat conduction pipe to the rotary cylinder via the heat conduction plate. Further, since the heat conductor is formed by connecting the heat conductive plates, the length of the heat conductor can be easily adjusted.
また、熱伝導体は、円盤状に形成され円筒形状で貫通孔に接続され側面に通気孔を 有する通風部とが形成された熱伝導板を連ねて形成されているので、通風部によって形 成される通風路に、送風手段によって送られる空気を通気孔から吐出させることができる 。吐出した空気は、熱伝導パイプを熱伝導パイプを通過する熱媒体によって加熱または 冷却された空気を効率よく保温体内に放散させることができる。また、放散された加熱ま たは冷却された空気は、熱伝導板の側壁に形成された切り欠き部を通過し、回転筒を加 熱、冷却するとともに、回転筒に形成された貫通孔を通過して直接食品を加熱、冷却で きるので、効率のよい保温をすることができる。  In addition, the heat conductor is formed by connecting a heat conducting plate formed in a disc shape and having a cylindrical shape, connected to a through hole, and a ventilation portion having a ventilation hole on a side surface. The air sent by the blowing means can be discharged from the ventilation hole into the ventilation path to be used. The discharged air can efficiently dissipate the air heated or cooled by the heat medium passing through the heat conducting pipe through the heat conducting pipe into the heat insulator. The radiated heated or cooled air passes through the notch formed in the side wall of the heat conducting plate, heats and cools the rotating cylinder, and also passes through the through-hole formed in the rotating cylinder. The food can be heated and cooled directly after passing through, so that efficient heat retention can be achieved.
本発明によれば次の効果を奏する。  According to the present invention, the following effects can be obtained.
(1 )本発明の食品保温装置は、熱媒体を内部に通過させるとともに食品の外面に当接し 、食品を回転させながら加熱または冷却する筒状の保温体を有するので、保温体が空気 を介さずに食品の外面に直接当接して加熱または冷却を行うことができ、食品の量が少 ない場合でも効率よく加熱または冷却して保温をすることができる。また、食品の外面が 保温体に順に接触して加熱または冷却されるので、食品の全周を均等に保温することが でき、また、食品が保温体に接触した状態で凍り付くことも防止できる。 (1) The food warming device of the present invention allows a heat medium to pass through the inside while abutting against the outer surface of the food. Since it has a cylindrical heat insulator that heats or cools the food while rotating it, the heat insulator can directly contact the outer surface of the food without air to heat or cool, and the amount of food is small. Even in this case, it is possible to keep the temperature by heating or cooling efficiently. In addition, since the outer surface of the food is heated or cooled by sequentially contacting the heat insulator, the entire circumference of the food can be uniformly heated, and the food can be prevented from freezing in contact with the heat insulator.
(2)保温体に、内部に熱媒体を通過させる熱伝導パイプの外側に隙間を有して配置され 、駆動装置によって回転駆動される回転筒を設けると、熱伝導パイプを回転させずに固 定配置することができ、熱媒体が漏洩しにくくなり装置の信頼性が向上する。また、隙間 にある少量の気体が周方向の外側に逃げることがないので、保温効率はあまり小さくなら ず、少量の食品を冷却する場合でも効率よく冷却することができる。  (2) If the heat retaining body is provided with a rotating cylinder that is arranged with a gap outside the heat conducting pipe through which the heat medium passes and is driven to rotate by the driving device, the heat conducting pipe is fixed without rotating the heat conducting pipe. The heat medium can hardly leak, and the reliability of the device is improved. In addition, since a small amount of gas in the gap does not escape to the outside in the circumferential direction, the heat retention efficiency does not decrease so much, and even when a small amount of food is cooled, it can be efficiently cooled.
(3)保温体を、横方向に平行に複数配置し、基台に回転可能に支持すると、食品を横 置きすることができ、横置きされた食品は、 2本の棒状または筒状の保温体によって下側 から支持され、回転駆動されるので、食品は、外周の 2箇所を駆動されて滑りが防止され 、安定して回転して食品の全周を均等に保温することができる。  (3) If a plurality of heat insulators are arranged in parallel in the horizontal direction and rotatably supported on the base, the food can be placed horizontally, and the food placed horizontally can be in the form of two sticks or cylinders. Since the food is supported by the body from below and driven to rotate, the food is driven at two locations on the outer periphery to prevent slippage, and can rotate stably to keep the entire circumference of the food evenly warm.
(4)熱伝導パイプを U字状に折り曲げ、回転筒内に挿入して配設すると、熱伝導パイプ の両端部が回転筒の一側に配置されるので、回転筒を他端側から取り外すことができ、 駆動装置のメンテナンス時の作業を簡略化することができる。  (4) When the heat conduction pipe is bent into a U-shape and inserted into the rotating cylinder and placed, both ends of the heat conducting pipe are arranged on one side of the rotating cylinder, so remove the rotating cylinder from the other end The operation at the time of maintenance of the drive device can be simplified.
また、熱伝導パイプの温度が、内部を通過する熱媒体の温度に近い上流部と、室温に 近い温度となった下流部が並べて配置されることになるので、回転筒の温度分布が均等 になり、全体を効率よく加熱、冷却することができる。  In addition, since the upstream portion of the heat transfer pipe whose temperature is close to the temperature of the heat medium passing therethrough and the downstream portion whose temperature is close to room temperature are arranged side by side, the temperature distribution of the rotating cylinder is evenly distributed. Thus, the whole can be efficiently heated and cooled.
(5)保温体は、内部を揷通し、基台に備えた送風手段から送られた空気が吐出する貫通 孔が表面に形成された通風パイプと、円盤状に形成され、通風パイプが挿通する貫通孔 と熱伝導パイプが挿通する貫通孔と外周に切り欠き部を有する側壁とが形成された熱伝 導板を連ねた熱伝導体と、を回転筒の内部に備え、回転筒は、表面に貫通孔が形成さ れている。この構成によって、熱伝導パイプを通過する熱媒体の熱を、熱伝導板を介して 回転筒に伝えることができるので、より効率よく食品の保温をすることができる。熱伝導体 は、熱伝導板を連ねて形成されているので、熱伝導体の長さを容易に調整することがで きる。 (5) The heat insulator is formed in a disc-shaped ventilation pipe with a through hole formed on the surface, through which the air sent from the ventilation means provided on the base passes, and the ventilation pipe is inserted through the interior. A heat transfer device having a through hole through which a heat conducting pipe is inserted and a side wall having a notch on the outer periphery. A heat conductor connected to a conductive plate is provided inside the rotary cylinder, and the rotary cylinder has a through-hole formed in the surface. With this configuration, the heat of the heat medium passing through the heat conduction pipe can be transmitted to the rotary cylinder via the heat conduction plate, so that the food can be more efficiently kept warm. Since the heat conductor is formed by connecting the heat conductive plates, the length of the heat conductor can be easily adjusted.
また、通風パイプに形成された貫通孔により、基台に備えた送風手段からの空気を吐 出させることができるので、熱伝導パイプによる加熱、冷却を効率よく保温体内に伝えるこ と力 Sできる。通風パイプから吐出して熱伝導パイプによって加熱、冷却された空気が、熱 伝導板の側壁に形成された切り欠き部を通過し、回転筒を加熱、冷却するとともに、回転 筒に形成された貫通孔を通過して食品を効率よく加熱、冷却できる。  In addition, the through-holes formed in the ventilation pipe allow the air to be discharged from the ventilation means provided on the base, so that the heat and cooling by the heat conduction pipe can be efficiently transmitted to the heat insulator. . The air discharged from the ventilation pipe and heated and cooled by the heat conduction pipe passes through the notch formed in the side wall of the heat conduction plate, heats and cools the rotating cylinder, and penetrates the rotating cylinder. The food can be efficiently heated and cooled through the holes.
(6)保温体は、円盤状に形成され、熱伝導パイプが揷通する貫通孔と、外周に切り欠き 部を有する側壁と、円筒形状で貫通孔に接続され側面に通気孔を有する通風部とが形 成された熱伝導板を連ねて形成された熱伝導体を回転筒の内部に備え、熱伝導板を連 ねることで通風部によって形成される通風路に、一端または両端から空気を送り込む送 風手段を前記基台に備え、回転筒は、表面に貫通孔が形成されている。この構成により 、通風路を通過して通風孔から吐出して熱伝導パイプによって加熱、冷却された空気が 、熱伝導板の側壁に形成された切り欠き部を通過し、回転筒を加熱、冷却するとともに、 回転筒に形成された貫通孔を通過して食品を効率よく加熱、冷却できる。  (6) The heat retaining body is formed in a disk shape and has a through hole through which the heat conduction pipe passes, a side wall having a cutout on the outer periphery, and a ventilation portion which is connected to the through hole in a cylindrical shape and has a ventilation hole on a side surface. A heat conductor formed by connecting a plurality of heat conducting plates formed inside the rotating cylinder is provided inside the rotating cylinder, and by connecting the heat conducting plates, air is supplied from one or both ends to a ventilation path formed by the ventilation portion. The base is provided with a blowing means for blowing in, and the rotary cylinder has a through hole formed on the surface. With this configuration, the air that has passed through the ventilation passage, is discharged from the ventilation hole, and is heated and cooled by the heat conduction pipe passes through the cutout formed in the side wall of the heat conduction plate, and heats and cools the rotating cylinder. In addition, the food can be efficiently heated and cooled through the through holes formed in the rotary cylinder.
また、通風部を連ねて通風路を形成することで、通風パイプを省略した構成とすること ができるので、保温体を構成する部品の削減ができ、コストを抑えることができる。 図面の簡単な説明  Further, by forming the ventilation path by connecting the ventilation sections, the configuration can be such that the ventilation pipe is omitted, so that the number of components constituting the heat retaining body can be reduced, and the cost can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施の形態 1に係る食品保温装置の斜視図である 図 2は同食品保温装置の正断面図である。 FIG. 1 is a perspective view of a food warming apparatus according to Embodiment 1 of the present invention. FIG. 2 is a front sectional view of the food heat insulation apparatus.
図 3は熱伝導パイプに筒状容器を載置した状態を示す断面図である。  FIG. 3 is a cross-sectional view showing a state where a cylindrical container is placed on a heat conducting pipe.
図 4は他の実施の形態の食品保温装置の熱伝導パイプの配置構造を示す断面図であ る。  FIG. 4 is a cross-sectional view showing an arrangement structure of a heat conducting pipe of a food heat insulating apparatus according to another embodiment.
図 5は本発明の実施の形態 2に係る食品保温装置の斜視図である。  FIG. 5 is a perspective view of a food warming apparatus according to Embodiment 2 of the present invention.
図 6は同食品保温装置の正断面図である。  FIG. 6 is a front sectional view of the food warming apparatus.
図 7は実施の形態 2に係る保温体の構成を示す図で、(a)は保温体の正面図であり、 ( b)は回転筒の正面図あり、(c)は熱伝導体に送風パイプおよび熱伝導パイプを揷通させ た正面図であり、(d)は通風パイプの正面図である。  7A and 7B are diagrams showing a configuration of a heat insulator according to the second embodiment, wherein FIG. 7A is a front view of the heat insulator, FIG. 7B is a front view of the rotating cylinder, and FIG. FIG. 2 is a front view showing the pipe and the heat conducting pipe through, and (d) is a front view of the ventilation pipe.
図 8は実施の形態 2に係る熱伝導板で、(a)は熱伝導板の斜視図であり、(b)は熱伝導 板を連ねた状態を示す図である。  8A and 8B show a heat conductive plate according to Embodiment 2, wherein FIG. 8A is a perspective view of the heat conductive plate, and FIG. 8B is a view showing a state in which the heat conductive plates are connected.
図 9は他の実施の形態に係る保温体の構成を示す図で、 (a)は保温体の正面図であり 、(b)は回転筒の正面図あり、(c)は熱伝導体に送風パイプおよび熱伝導パイプを揷通 させた正面図であり、 (d)は空気取り入れパイプの正面図である。  FIG. 9 is a diagram showing a configuration of a heat insulator according to another embodiment, (a) is a front view of the heat insulator, (b) is a front view of a rotary cylinder, and (c) is a heat conductor. FIG. 3 is a front view showing a ventilation pipe and a heat conduction pipe through, and FIG. 4D is a front view of an air intake pipe.
図 10は他の実施の形態の熱伝導板で、(a)は熱伝導板の斜視図であり、 (b)は熱伝 導板を連ねた状態を示す図である。  10A and 10B show a heat conductive plate according to another embodiment. FIG. 10A is a perspective view of the heat conductive plate, and FIG. 10B is a view showing a state where the heat conductive plates are connected.
図 11は本発明の実施の形態 2に係る食品保温装置に遮蔽板を取り付けた状態の斜 視図である。 発明を実施するための最良の形態  FIG. 11 is a perspective view showing a state where a shielding plate is attached to the food warming apparatus according to Embodiment 2 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1)  (Embodiment 1)
以下、本発明の実施の形態 1について図 1から図 4に基づいて説明する。  Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS.
図 1は本発明の実施の形態 1に係る食品保温装置の斜視図、図 2は同食品保温装置 の正断面図である。図 1、図 2に示すように、本発明の実施の形態 1に係る食品保温装置 1は、基台部 12に回転可能に支持された複数の回転筒 4〜11を有している。各回転筒 4 〜: L 1は、横方向に平行に並べて配置されて、駆動源である電動モータ 2により回転可能 に駆動されている。また、各回転筒 4〜1 1の内部には、保温部 3が設けられている。 FIG. 1 is a perspective view of a food warming device according to Embodiment 1 of the present invention, and FIG. FIG. As shown in FIGS. 1 and 2, a food warming apparatus 1 according to Embodiment 1 of the present invention has a plurality of rotating cylinders 4 to 11 rotatably supported by a base 12. The rotary cylinders 4 to: L1 are arranged side by side in a horizontal direction and are rotatably driven by an electric motor 2 as a drive source. Further, a heat retaining section 3 is provided inside each of the rotary cylinders 4 to 11.
基台部 12の本体部 27は、直方体状に形成されている。また、本体部 27の両側には、 回転筒支持部 13, 14が着脱可能に設けられている。回転筒支持部 13, 14の上面は、 本体部 27の上面よりも上方に突出して設けられている。また、回転筒支持部 13, 14の下 部には、ゴム製の脚部がそれぞれ設けられている。  The main body 27 of the base 12 is formed in a rectangular parallelepiped shape. In addition, on both sides of the main body 27, the rotary cylinder supporting portions 13, 14 are provided detachably. The upper surfaces of the rotary cylinder supporting portions 13 and 14 are provided so as to protrude above the upper surface of the main body 27. Further, rubber legs are provided at the lower portions of the rotary cylinder support portions 13 and 14, respectively.
本体部 27の上面と、これに隣接する回転筒支持部 13, 14の内側面とによって、凹形 溝部 15が形成されている。 8本の回転筒 4〜11は、凹形溝部 15内に配置されている。 各回転筒 4〜11の両端部は、回転筒支持部 13, 14に軸受 16, 17を介して回転可能に 支持されている。  A concave groove 15 is formed by the upper surface of the main body 27 and the inner surfaces of the rotary cylinder supporting portions 13 and 14 adjacent thereto. The eight rotating cylinders 4 to 11 are arranged in the concave groove 15. Both ends of each of the rotary cylinders 4 to 11 are rotatably supported by rotary cylinder support portions 13 and 14 via bearings 16 and 17.
回転筒 4〜11は円筒状に形成されており、軸受 16, 17は、回転筒 4〜11の外周を保 持している。また、回転筒 4〜 11の外周面には、疎水性のプラスチックであるポリプロピレ ン製のカバー部 39が被覆されている。この疎水性のプラスチックからなるカバ一部 39を 形成すると、冷却した場合に、回転筒 4〜11の表面に水分が付着しにくくなるので、霜が 付着しにくくなる。従って、冷却効率がよくなるとともにメンテナンスの周期を長くして手間 を省くことができる。  The rotary cylinders 4 to 11 are formed in a cylindrical shape, and the bearings 16 and 17 hold the outer circumferences of the rotary cylinders 4 to 11. The outer peripheral surfaces of the rotary cylinders 4 to 11 are covered with a cover 39 made of polypropylene, which is a hydrophobic plastic. When the cover part 39 made of the hydrophobic plastic is formed, it is difficult for moisture to adhere to the surfaces of the rotary cylinders 4 to 11 when cooled, and thus frost is less likely to adhere. Therefore, the cooling efficiency can be improved and the maintenance cycle can be lengthened to save labor.
ここで、疎水性を有するプラスチックとは、 CH3、 H3 CH2またはベンゼン環等の疎水性 非極性基を有するプラスチックをいい、例えば、ポリプロピレン等をいう。カバー部 39は、 予め筒状に形成したものを回転筒 4〜: L 1に被せることができ、また、回転筒 4〜: L 1の表 面に塗布した樹脂を硬化させて形成することも可能である。 Here, the plastic having hydrophobicity refers to a plastic having a hydrophobic non-polar group such as CH 3 , H 3 CH 2 or a benzene ring, for example, polypropylene. The cover 39 can be formed by curing a resin applied on the surface of the rotating cylinder 4 to L1 by covering the rotating cylinder 4 to L1 with a cylinder formed in advance. It is possible.
なお、回転筒 4〜: 11の表面に、溝を形成したり、粗面加工を施したりしてカバー部 39と の密着力を高めることもできる。また、回転筒 4〜11に被せるカバー部 39をプラスチック 製の筒体とした場合には、その表面に粗面加工を施したり溝部を形成したりして、滑り止 めとすることができる。また、カバー部 39を、回転筒 4〜; 1 1の表面にスプレーによって塗 布された塗膜とした場合には、その塗膜の表面に粗面加工を施すことができる。 In addition, a groove is formed on the surface of the rotating cylinders 4 to 11 or a rough surface is formed, so that Can also increase the adhesion. When the cover 39 covering the rotary cylinders 4 to 11 is a plastic cylinder, the surface thereof can be roughened or formed with a groove to prevent slippage. In the case where the cover portion 39 is a coating applied by spraying to the surfaces of the rotary cylinders 4 to 11, the surface of the coating can be roughened.
図 2に示すように、基台部 12の内部には駆動装置 18と保温装置 19が設けられている。 駆動装置 18は、電動モータ 2と、スプロケット 44, 45と、無端チェーン 20を有している。 電動モータ 2は、基台部 12内の左側に設けられている。スプロケット 44, 45は、電動モ ータ 2、回転筒 4〜: 11の左側端部にそれぞれが設けられている。無端チェーン 20は、各 スプロケット 44, 45に歯合している。また、基台部 12の内部には、無端チェーン 20が各 スプロケット 44, 45から外れないように、補助スプロケットおよびガイド部材(図示せず)が 設けられている。電動モータ 2を駆動させると、スプロケット 44を介して無端チェーン 20に 動力が伝達される。この動力は、スプロケット 45を介して各回転筒に伝達され、各回転筒 4〜1 1は同じ回転方向に等速回転する。  As shown in FIG. 2, a driving device 18 and a heat retaining device 19 are provided inside the base 12. The drive device 18 includes the electric motor 2, sprockets 44 and 45, and the endless chain 20. The electric motor 2 is provided on the left side in the base portion 12. The sprockets 44 and 45 are provided at the left end of the electric motor 2 and the rotating cylinders 4 to 11, respectively. The endless chain 20 meshes with each sprocket 44,45. An auxiliary sprocket and a guide member (not shown) are provided inside the base portion 12 so that the endless chain 20 does not come off from the sprockets 44 and 45. When the electric motor 2 is driven, power is transmitted to the endless chain 20 via the sprocket 44. This power is transmitted to each rotary cylinder via the sprocket 45, and each rotary cylinder 4 to 11 rotates at a constant speed in the same rotation direction.
保温装置 19は、圧縮機 21、放熱管 22および熱伝導パイプ 23を有している。圧縮機 2 1の下流側端部には放熱管 22が接続されている。放熱管 22は、つづら折り状に屈曲さ れて、基台部 12の背面に配置されている。放熱管 22の下流側端部には、乾燥機(図示 せず)および毛細管 24を介して熱伝導パイプ 23が接続されている。  The heat retaining device 19 has a compressor 21, a heat radiating pipe 22, and a heat conducting pipe 23. A radiator tube 22 is connected to a downstream end of the compressor 21. The heat radiating tube 22 is bent in a zigzag manner and disposed on the back surface of the base 12. A heat conducting pipe 23 is connected to a downstream end of the heat radiating pipe 22 via a dryer (not shown) and a capillary tube 24.
回転筒 4〜11の中心には、固定軸 25が挿通されている。固定軸 25の両端部は、回転 筒支持部 13, 14の内壁に設けられた固定部に、ねじ等の締結手段により着脱可能に固 定されている。固定軸 25は、回転筒 4〜11には接触しておらず、回転筒 4〜11が回転 するときに、これと一緒に移動することはない。  A fixed shaft 25 is inserted through the center of the rotary cylinders 4 to 11. Both ends of the fixed shaft 25 are detachably fixed to fixing portions provided on the inner walls of the rotary cylinder supporting portions 13 and 14 by fastening means such as screws. The fixed shaft 25 is not in contact with the rotary cylinders 4 to 11, and does not move together with the rotary cylinders 4 to 11 when they rotate.
熱伝導パイプ 23は U字状に折り曲げられ、この屈曲部分より上流側に配置された上流 部 28と下流側に配置された下流部 29を平行に配置している。そして、平行に配置した 上流部 28および下流部 29とを、回転筒 4〜 11の内側に配置された固定軸 25に着脱可 能に固定している。熱伝導パイプ 23の屈曲部分は、回転筒.4〜11の左側端部付近に配 置されている。また、熱伝導パイプ 23の両端部は、回転筒 4〜11の右側に配置されてい る。熱伝導パイプ 23は、腐食しにくく、熱伝導率が高く、加工しやすいものであればよ 例えば、銅製の管が使用できる。 The heat conducting pipe 23 is bent in a U-shape, and an upstream portion 28 arranged on the upstream side of the bent portion and a downstream portion 29 arranged on the downstream side are arranged in parallel. And arranged in parallel The upstream portion 28 and the downstream portion 29 are detachably fixed to a fixed shaft 25 disposed inside the rotary cylinders 4 to 11. The bent portion of the heat conduction pipe 23 is disposed near the left end of the rotary cylinders .4 to 11. Both ends of the heat conduction pipe 23 are arranged on the right side of the rotary cylinders 4 to 11. The heat-conducting pipe 23 may be any pipe that does not easily corrode, has high thermal conductivity, and is easy to process. For example, a copper pipe can be used.
図 3は、熱伝導パイプに筒状容器を載置した状態を示す断面図である。図 3に示すよう に、屈曲した熱伝導パイプ 23の上流部 28と下流部 29は、固定軸 25を中心として対向 配置されている。  FIG. 3 is a cross-sectional view showing a state where a cylindrical container is placed on a heat conducting pipe. As shown in FIG. 3, the upstream portion 28 and the downstream portion 29 of the bent heat conducting pipe 23 are arranged facing each other around a fixed shaft 25.
図 2に戻って、熱伝導パイプ 23の下流側端部は、圧縮機 21に接続されており、かかる 構成によって、保温装置 19は循環の回路を形成している。  Returning to FIG. 2, the downstream end of the heat transfer pipe 23 is connected to the compressor 21, and with this configuration, the heat retaining device 19 forms a circulation circuit.
熱媒体は、圧縮機 21で圧縮されて高温高圧の気体となり、放熱管 22を通過するときに 放熱を行い液化する。そして、乾燥機および毛細管 24を通過するときに減圧され、熱伝 導パイプ 23を通過するときに気化して、このときの気化潜熱により吸熱を行う。熱媒体は 、熱伝導パイプ 23の内部を通過するときに、回転筒 4〜: 11の内部を軸方向に往復する。 吸熱して液化した熱媒体は、圧縮機 21に戻って圧縮される。熱媒体はこのようにして循 環して、熱伝導パイプ 23を通過するときに、吸熱により冷却している。  The heat medium is compressed by the compressor 21 to become a high-temperature and high-pressure gas, and when passing through the radiator tube 22 radiates heat and is liquefied. Then, the pressure is reduced when passing through the dryer and the capillary tube 24, the gas is vaporized when passing through the heat conducting pipe 23, and heat is absorbed by the latent heat of vaporization at this time. The heat medium reciprocates in the axial direction inside the rotary cylinders 4 to 11 when passing through the inside of the heat conduction pipe 23. The heat medium liquefied by absorbing heat returns to the compressor 21 and is compressed. The heat medium circulates in this way and is cooled by heat absorption when passing through the heat conduction pipe 23.
また、保温装置 19は、熱媒体の熱サイクルを逆転させるため図示しない四方弁を備え ている。この四方弁により、圧縮機 21から放熱管 22を経由して熱伝導パイプ 23へ熱媒 体が循環する流れを、圧縮機 21から熱伝導パイプ 23を経由して放熱管 22へ流れるよう に切り換えている。  In addition, the heat retaining device 19 includes a four-way valve (not shown) for reversing the heat cycle of the heat medium. This four-way valve switches the flow of the heat medium circulating from the compressor 21 to the heat conduction pipe 23 via the heat dissipation pipe 22 so that it flows from the compressor 21 to the heat dissipation pipe 22 via the heat conduction pipe 23. ing.
これにより、圧縮機 21で圧縮されて高圧となった暖かい熱媒体を、熱伝導パイプ 23の 下流部 29方向から上流部 28方向へ通過させ、熱伝導パイプ 23を暖めることで、熱媒体 は冷えて液化する。そして熱媒体力 熱伝導パイプ 23から放熱管 22を通過するときに吸 熱して圧縮機 21へ戻る。熱媒体はこのようにして循環して、熱伝導パイプ 23を通過する ときに、放熱により加熱している。 As a result, the warm medium compressed by the compressor 21 and having a high pressure is passed from the downstream portion 29 to the upstream portion 28 of the heat conducting pipe 23 to warm the heat conducting pipe 23, thereby cooling the heat medium. To liquefy. The heat is absorbed when passing through the heat dissipation pipe 22 from the heat transfer pipe 23. Heat and return to compressor 21. The heat medium circulates in this way and is heated by heat radiation when passing through the heat conduction pipe 23.
熱媒体としては、 R134aのような代替フロンを用いている。また、熱媒体は、イソブタン、 C〇2などの自然冷媒を用いることもできる。 As a heating medium, an alternative CFC such as R134a is used. The heat medium, isobutane, can also be used natural refrigerant such C_〇 2.
図 3に示すように各固定軸 25を中心として熱伝導パイプ 23の上流部 28と下流部 29の 配置位置から 90° ずらした位置には、回転筒 4〜11を加熱するヒータ 34, 35がそれぞ れ設けられている。ヒータ 34, 35は、固定部材 43によって固定軸 25にそれぞれ固定され ている。ヒータ 34, 35は、熱伝導パイプ 23の周囲おょぴ回転筒 4〜11の周囲に付着した 霜を溶かすことができ、また、回転筒 4〜: 11を介して食品を加熱することもできる。  As shown in FIG. 3, heaters 34 and 35 for heating the rotary cylinders 4 to 11 are provided at positions shifted by 90 ° from the positions of the upstream part 28 and the downstream part 29 of the heat conduction pipe 23 about each fixed shaft 25 as a center. Each is provided. The heaters 34 and 35 are fixed to the fixed shaft 25 by fixing members 43, respectively. The heaters 34 and 35 can melt frost adhering around the rotary cylinders 4 to 11 around the heat conduction pipe 23, and can also heat food through the rotary cylinders 4 to 11. .
各回転筒 4〜11に設けられた保温部 3は、熱伝導パイプ 23およびヒータ 34, 35によつ て構成されている。また、各回転筒 4〜11、熱伝導パイプ 23およびヒータ 34, 35によって 、保温体 46を構成している。ヒータ 34, 35は、後述する霜取りの機能をしない場合には、 省略することもできる。  The heat retaining section 3 provided in each of the rotary cylinders 4 to 11 is constituted by a heat conducting pipe 23 and heaters 34 and 35. Further, a heat retaining body 46 is constituted by the rotary cylinders 4 to 11, the heat conduction pipe 23 and the heaters 34 and 35. The heaters 34 and 35 can be omitted if the function of defrosting described below is not performed.
基台部 12の内部には、駆動装置 18および保温装置 19を駆動する電源制御装置(図 示せず)が設けられており、電力は、コンセントに接続可能なプラグ付きコード 30から供給 される。  A power control device (not shown) for driving the driving device 18 and the heat retaining device 19 is provided inside the base portion 12, and power is supplied from a cord 30 with a plug connectable to an outlet.
電源制御装置は、プラグ付きコード 30から供給される電力のオンオフを切り替える電源 スィッチ 31を有している。電源スィッチ 31は、 2系統に分岐されており、 4本の回転筒 4〜 7の圧縮機 21に電力を供給する出力スィッチ 32と、残りの 4本の回転筒 8〜1 1に電力を 供給する出力スィッチ 33に接続されている。  The power supply control device has a power supply switch 31 that switches on and off the power supplied from the cord 30 with a plug. The power switch 31 is branched into two systems, and supplies power to the output switch 32 that supplies power to the compressor 21 of the four rotary cylinders 4 to 7 and power to the remaining four rotary cylinders 8 to 11 Output switch 33.
出力スィッチ 32, 33は、 5段切り替えスィッチを備えている。出力スィッチ 32, 33は、中 央位置では、電力の供給を停止し、中央位置から反時計回り方向に回すと圧縮機 21へ の出力を 2段階に切り替え、冷却の度合いを 2段階に切り替えることができる。また、中央 位置から時計回り方向に回すと圧縮機 21への出力を 2段階に切り替えるとともに、四方 弁を切り替え、加熱の度合いを 2段階に切り替えることができる。 The output switches 32 and 33 have five-stage switching switches. The output switches 32 and 33 stop power supply at the center position, and when turned counterclockwise from the center position, switch the output to the compressor 21 in two stages and switch the cooling degree to two stages. Can be. Also the center By turning clockwise from the position, the output to the compressor 21 can be switched between two stages, and the four-way valve can be switched to switch the degree of heating between two stages.
電源スィッチ 31および出力スィッチ 32, 33は、基台部 12の前面に設けられており、操 作者は、手前側からスィッチ操作を行うことができる。なお、電源スィッチ 31および出カス イッチ 32, 33の上部には、それぞれ動作確認用のランプ 36〜38が設けられている。 電動モータ 2は、電源スィッチ 31または出力スィッチ 32, 33に連動して作動するように 構成されている。  The power switch 31 and the output switches 32 and 33 are provided on the front surface of the base 12, and the operator can perform switch operations from the near side. In addition, lamps 36 to 38 for operation confirmation are provided above the power switch 31 and the output switches 32 and 33, respectively. The electric motor 2 is configured to operate in conjunction with the power switch 31 or the output switches 32, 33.
次に食品保温装置 1の使用状態について、食品の一例であるアイスクリームを保温する 場合を説明する。  Next, as to the use state of the food warming apparatus 1, a case in which ice cream as an example of food is kept warm will be described.
図 1に示すように、食品保温装置 1の 8本の回転筒 4〜11は、筒状容器 41にアイスタリ ーム 40を収納した食品を前後方向に 4つ支持することができる。なお、各筒状容器 41の 左右方向のスペースには、他の円筒状の食品を載せることができる。  As shown in FIG. 1, the eight rotary cylinders 4 to 11 of the food warming apparatus 1 can support four foods each containing the ice room 40 in the cylindrical container 41 in the front-rear direction. In the left and right space of each cylindrical container 41, another cylindrical food can be placed.
図 3に示すように、アイスクリーム 40を冷却するときには、隣接する両回転筒 6, 7に、筒 状容器 41の周面を当接させて載置する。次いで、電源スィッチ 31をオンにし、さらに出 カスイッチ 32を反時計回り方向に回す。この操作によって、回転筒 4〜7が回転を開始し 、圧縮機 21が作動する。  As shown in FIG. 3, when cooling the ice cream 40, the ice cream 40 is placed with the peripheral surface of the cylindrical container 41 abutting on both rotating cylinders 6 and 7 adjacent to each other. Next, the power switch 31 is turned on, and the output switch 32 is further turned counterclockwise. With this operation, the rotary cylinders 4 to 7 start rotating, and the compressor 21 operates.
圧縮機 21が作動すると、熱伝導パイプ 23内に熱媒体が流れる。このとき、熱媒体の温 度は、熱伝導パイプ 23の上流側での温度が低ぐ下流側に行くにつれ徐々に高くなる。 回転筒 4〜7の右端は、熱伝導パイプ 23の上流部 28の温度が一番低くなり、下流部 2 9の温度が一番高くなる。また、回転筒 4〜7の左端では、熱伝導パイプ 23の上流部 28 の温度が一番高くなり、下流部 29の温度が一番低くなる。回転筒 4〜7の軸方向の各部 分の温度は、内部にある熱伝導パイプ 23の上流部 28と下流部 29の平均値程度となる ので、回転筒 4〜7の長手方向の温度差は小さくなる。 熱伝導パイプ 23内に熱媒体が流れることによって、熱伝導パイプ 23が冷却され、さらに 回転筒 4〜7が冷却される。回転筒 6, 7の表面は筒状容器 41の 2箇所の当接部をそれ ぞれ冷却する。また、回転筒 6, 7が回転しているので、筒状容器 41は外周面を均等に 冷却される。回転筒 6, 7によって筒状容器を直接冷却するので、アイスクリーム 40の冷 却を効率よく行うことができる。 When the compressor 21 operates, the heat medium flows into the heat transfer pipe 23. At this time, the temperature of the heat medium gradually increases as the temperature at the upstream side of the heat conduction pipe 23 decreases and goes downstream. At the right ends of the rotary cylinders 4 to 7, the temperature of the upstream portion 28 of the heat conduction pipe 23 is the lowest, and the temperature of the downstream portion 29 is the highest. At the left ends of the rotary cylinders 4 to 7, the temperature of the upstream portion 28 of the heat transfer pipe 23 is the highest, and the temperature of the downstream portion 29 is the lowest. Since the temperature of each part of the rotating cylinders 4 to 7 in the axial direction is about the average value of the upstream part 28 and the downstream part 29 of the heat conduction pipe 23 inside, the temperature difference in the longitudinal direction of the rotating cylinders 4 to 7 is Become smaller. When the heat medium flows into the heat conduction pipe 23, the heat conduction pipe 23 is cooled, and the rotary cylinders 4 to 7 are further cooled. The surfaces of the rotating cylinders 6 and 7 cool the two contact portions of the cylindrical container 41, respectively. Further, since the rotating cylinders 6 and 7 are rotating, the outer peripheral surface of the cylindrical container 41 is uniformly cooled. Since the cylindrical container is directly cooled by the rotating cylinders 6 and 7, the ice cream 40 can be cooled efficiently.
食品保温装置 1を連続して使用した場合に、熱伝導パイプ 23の周囲と、回転筒 4〜: L 1 の周囲に霜が付着することがある。この場合には、図示しないヒータ出力スィッチを切り替 えてヒータ 34, 35に電力を供給することによって、付着した霜を溶かすことができる。この とき、回転筒 4〜11の両端部は開口しているので、回転筒 4〜11の内部で発生した水は 、側方に流出させることができる。  When the food warming device 1 is used continuously, frost may adhere around the heat conduction pipe 23 and around the rotary cylinder 4 to L 1. In this case, the attached frost can be melted by switching the heater output switch (not shown) and supplying electric power to the heaters 34 and 35. At this time, since both ends of the rotary cylinders 4 to 11 are open, the water generated inside the rotary cylinders 4 to 11 can flow out to the side.
なお、回転筒 4〜11の保温装置 19に電力を供給する場合に、一本おきに供給できる ように構成することも可能である。かかる構成によって、 1つの筒状容器 41を、 1本の回転 筒で冷却して、電力の消費を抑えることができる。また、霜取りを行うときに、対となる 2本 の回転筒の一方を冷却したまま、他方の回転筒を加熱できるので、食品を冷却しながら 霜を除去することができる。  When power is supplied to the heat retaining devices 19 of the rotary cylinders 4 to 11, it is also possible to provide a configuration in which power can be supplied alternately. With such a configuration, one cylindrical container 41 can be cooled by one rotating cylinder, and power consumption can be suppressed. Further, when defrosting, since one of the pair of rotating cylinders can be heated while the other rotating cylinder is cooled, the frost can be removed while cooling the food.
また、電源スィッチ 31をオンにし、さらに出力スィッチ 32を時計回り方向に回す。この操 作によって、回転筒 4〜7が回転を開始し、圧縮機 21が作動する。回転筒 4〜: 11および 筒状容器 41を加熱し、 50°C程度の温度で、食品を保温することができる。かかる構成に よって、店舗等で使用する場合に、季節ごとに加熱装置と冷却装置を入れ替える手間が 省ける。  Also, turn on the power switch 31 and turn the output switch 32 clockwise. With this operation, the rotary cylinders 4 to 7 start rotating, and the compressor 21 operates. The rotating cylinders 4 to 11 and the cylindrical container 41 can be heated to keep food at a temperature of about 50 ° C. With such a configuration, when used in a store or the like, the trouble of replacing the heating device and the cooling device every season can be saved.
食品保温装置 1のメンテナンスを行うときは、まず、固定軸 25を固定部 26から外す。次 いで左側の回転筒支持部 13を本体部 27から外す。次に各回転筒 4〜11を軸受 16, 17 から外す。そして回転筒 4〜: 11を左側から抜くと、保温装置 19を取り外さずに駆動装置 1 8のみを取り外すことができる。 When performing maintenance on the food warming device 1, first, the fixed shaft 25 is removed from the fixed portion 26. Next, the left rotating cylinder support 13 is removed from the main body 27. Next, the rotating cylinders 4 to 11 are removed from the bearings 16 and 17. Then, when the rotating cylinders 4 to 11 are pulled out from the left side, the driving device 1 can be removed without removing the heat retaining device 19. Only 8 can be removed.
図 4は、他の実施の形態の食品保温装置の熱伝導パイプの配置構造を示す断面図で ある。図 4に示すように、直線状に形成した熱伝導パイプ 42を回転筒 4〜: 1 1内に配置す ることも可能である。この場合には、熱伝導パイプ 42の構造が簡単になる。なお、熱媒体 は、回転筒 4〜: L 1の一方から他方に向かって流れる。  FIG. 4 is a cross-sectional view showing an arrangement structure of heat conduction pipes of a food heat insulating device according to another embodiment. As shown in FIG. 4, it is also possible to arrange a heat conducting pipe 42 formed in a straight line in the rotary cylinders 4 to 11. In this case, the structure of the heat transfer pipe 42 is simplified. The heat medium flows from one of the rotary cylinders 4: L 1 to the other.
なお、本発明は前記実施の形態に限定されるものではなぐ例えば、凹形溝部 15の前 後方向の両側に透明板を設け、回転筒 4〜: 1 1の周辺の冷気を凹形溝部 15の内部に保 持しておくことが可能である。さらに凹形溝部 15の前後方向の両側および上方を覆う透 明蓋部を設けて、湿気の流入を防止することも可能である。また、冷却温度を調整するこ とによって、アイスクリーム等の冷凍食品を保温するだけではなく、ジュース等の要冷蔵食 品を保温することも可能である。  Note that the present invention is not limited to the above-described embodiment. For example, transparent plates are provided on both sides in the front and rear directions of the concave groove portion 15 so that cool air around the rotary cylinders 4 to 11 is removed. It is possible to keep it inside. Further, a transparent lid may be provided to cover both sides and the upper side of the concave groove 15 in the front-rear direction, thereby preventing the inflow of moisture. By adjusting the cooling temperature, it is possible to keep not only frozen food such as ice cream, but also refrigerated food such as juice.
(実施の形態 2)  (Embodiment 2)
次に、本発明の実施の形態 2について図 5から図 8,図 1 1に基づいて説明する。  Next, a second embodiment of the present invention will be described with reference to FIGS. 5 to 8 and FIG.
図 5は本発明の実施の形態 2に係る食品保温装置の斜視図、図 6は同食品保温装置 の正断面図である。図 7は、実施の形態 2に係る保温体の構成を示す図で、(a)は保温 体の正面図であり、(b)は回転筒の正面図あり、(c)は熱伝導体に送風パイプおょぴ熱 伝導パイプを挿通させた正面図であり、(d)は通風パイプの正面図である。図 8は、実施 の形態 2に係る熱伝導板で、(a)は熱伝導板の斜視図であり、(b)は熱伝導板を連ねた 状態を示す図である。図 11は、本発明の実施の形態 2に係る食品保温装置に遮蔽板を 取り付けた状態の斜視図である。  FIG. 5 is a perspective view of a food heat insulating device according to Embodiment 2 of the present invention, and FIG. 6 is a front sectional view of the food heat insulating device. FIGS. 7A and 7B are diagrams showing a configuration of a heat insulator according to Embodiment 2, wherein FIG. 7A is a front view of the heat insulator, FIG. 7B is a front view of a rotary cylinder, and FIG. It is a front view in which the ventilation pipe and the heat conduction pipe were inserted, and (d) is a front view of the ventilation pipe. 8A and 8B show a heat conductive plate according to Embodiment 2, wherein FIG. 8A is a perspective view of the heat conductive plate, and FIG. 8B is a view showing a state in which the heat conductive plates are connected. FIG. 11 is a perspective view showing a state where a shielding plate is attached to the food warming apparatus according to Embodiment 2 of the present invention.
本発明の実施の形態 2に係る食品保温装置は、回転筒から加熱、冷却された空気を 吐出させて、食品を加熱、冷却することで、より効率的に食品の保温を行うものである。 図 5および図 6において、図 1および図 2と同様の構成は、同符号を付して説明を省略 する。 The food heat retaining apparatus according to Embodiment 2 of the present invention discharges heated and cooled air from a rotating cylinder to heat and cool the food, thereby more efficiently keeping the food warm. 5 and FIG. 6, the same components as those in FIG. 1 and FIG. I do.
図 5および図 6に示すように、本発明の実施の形態 2に係る食品保温装置 50は、基台 部 12に回転可能に支持された複数の回転筒 54〜61を有している。各回転筒 54〜61 は、横方向に平行に並べて配置されている。  As shown in FIG. 5 and FIG. 6, the food warming apparatus 50 according to the second embodiment of the present invention has a plurality of rotating cylinders 54 to 61 rotatably supported by the base 12. The rotary cylinders 54 to 61 are arranged side by side in a horizontal direction.
図 7 (b)に示すように、回転筒 54〜61は、貫通孔 62が形成されている。回転筒 54〜6 1は、熱伝導がよく耐腐食性が高いのが望ましぐ例えば、ステンレス鋼で形成することが できる。また、図 6および図 7 (c)に示すように、回転筒 54〜61は、基台部 12の回転筒支 持部 13 , 14に備えた送風手段である送風機 64, 65から送られ空気を通過させる通風 パイプ 66を内部に揷通させている。  As shown in FIG. 7B, the rotary cylinders 54 to 61 have through holes 62 formed therein. The rotary cylinders 54 to 61 can be formed of, for example, stainless steel, which desirably has good heat conduction and high corrosion resistance. As shown in FIGS. 6 and 7 (c), the rotary cylinders 54 to 61 are supplied with air from blowers 64 and 65, which are blowing means provided in the rotary cylinder supports 13 and 14 of the base 12. A ventilation pipe 66 that allows air to pass through is passed through the inside.
図 7 (c)および図 7 (d)で示すように、通風パイプ 66は、送風機 64, 65からの空気を集 めるよう漏斗状の空気取り入れ部 66a, 66bが、熱伝導体 63を揷通する揷通パイプ 66c の両端部に脱着可能に設けられている。また、図 7 (d)に示すように、通風パイプ 66の揷 通パイプ 66cには、送風機 64, 65から送られた空気を回転筒 54〜61内へ吐出する貫 通孔 66dが形成されている。  As shown in FIG. 7 (c) and FIG. 7 (d), the ventilation pipe 66 has a funnel-shaped air intake section 66a, 66b that connects the heat conductor 63 so as to collect air from the blowers 64, 65. It is detachably provided at both ends of the through pipe 66c through which it passes. As shown in FIG. 7 (d), the ventilation pipe 66c of the ventilation pipe 66 is formed with a through hole 66d for discharging the air sent from the blowers 64, 65 into the rotating cylinders 54 to 61. I have.
図 6および図 7 (a) , (c)に示すように、回転筒 54〜61は、内部に熱伝導体 63が接触し ない状態で揷通おり、回転筒 54〜61の一端部に備えたスプロケット 45を無端チェーン 2 0を介してスプロケット 44を駆動する駆動モータ 2により、回転筒 54〜61のみを回転させ る。  As shown in FIGS. 6 and 7 (a) and (c), the rotary cylinders 54 to 61 pass through without the heat conductor 63 coming into contact with the inside, and are provided at one end of the rotary cylinders 54 to 61. Only the rotary cylinders 54 to 61 are rotated by the drive motor 2 that drives the sprocket 45 through the endless chain 20 by the sprocket 45.
図 7 (c)および図 8 (a)に示すように、熱伝導体 63は、熱伝導板 67が連ねて形成されて いる。熱伝導板 67は、円盤状に形成され、通風パイプ 66の揷通パイプ 66cを揷通させる 貫通孔 67aが中心部に 1箇所に、熱伝導パイプ 23を揷通させる貫通孔 67bが中心部を 対称に 2箇所に形成されている。この貫通孔 67a, 67bにそれぞれ通風パイプ 66および 熱伝導パイプ 23を揷通させ、熱伝導板 67を連ねることで、熱伝導体 63は形成されてい る。 As shown in FIG. 7 (c) and FIG. 8 (a), the heat conductor 63 is formed by connecting a heat conductive plate 67. The heat conducting plate 67 is formed in a disk shape, and has a through hole 67a for passing through the through pipe 66c of the ventilation pipe 66 at one position at the center and a through hole 67b for passing through the heat conducting pipe 23 at the center. It is formed symmetrically in two places. The heat conductor 63 is formed by passing the ventilation pipe 66 and the heat conduction pipe 23 through the through holes 67a and 67b, respectively, and connecting the heat conduction plate 67. You.
また、熱伝導板 67の外周の側壁 67cに切り欠き部 67dが形成されている。この切り欠き 部 67dにより、通風パイプ 66の貫通孔 66dから吐出した空気力 熱伝導パイプ 23により 加熱、冷却された後、回転筒 54〜61と熱伝導体 63の隙間に放散される。この隙間に放 散された空気は、回転筒 54〜61に形成された貫通孔 62を通過して、回転筒 54〜61の 周囲に放散される。また、熱伝導板 67は、熱伝導パイプ 23により加熱、冷却された空気 をより多く受けるように表面積を増やすため凹凸部 67eが形成されている。凹凸部 67eは 、熱伝導板 67を製造する際に、押し型を押し当てることで容易に形成することができる。 熱伝導板 67は、食品を直接加熱、冷却するので熱伝導率が高く、耐腐食性が高ぐ回 転するので軽量である材質が望ましい。例えば、アルミニウムなどが使用できる。各回転 筒 54〜61、熱伝導体 63、熱伝導パイプ 23および通風パイプ 66によって、保温体 51を 構成している。  Further, a cutout portion 67d is formed in a side wall 67c on the outer periphery of the heat conductive plate 67. After being heated and cooled by the pneumatic heat conduction pipe 23 discharged from the through hole 66d of the ventilation pipe 66 by the notch portion 67d, the heat is radiated to the gap between the rotary cylinders 54 to 61 and the heat conductor 63. The air radiated into the gap passes through the through holes 62 formed in the rotary cylinders 54 to 61 and is radiated around the rotary cylinders 54 to 61. Further, the heat conduction plate 67 is formed with an uneven portion 67e in order to increase the surface area so as to receive more air heated and cooled by the heat conduction pipe 23. The uneven portion 67e can be easily formed by pressing a pressing die when manufacturing the heat conductive plate 67. The heat conductive plate 67 is desirably made of a material that has a high thermal conductivity because it directly heats and cools food, and that is lightweight because it rotates with high corrosion resistance. For example, aluminum or the like can be used. Each of the rotating cylinders 54 to 61, the heat conductor 63, the heat conduction pipe 23 and the ventilation pipe 66 constitute a heat insulator 51.
図 5に示す、出力スィッチ 32, 33は、実施の形態 1の食品保温装置と同様に圧縮機 21 の出力を段階的な切り替えと四方弁の切り替えをする。この切り替えにより、加熱と冷却 の切り替えを行うとともに、圧縮機 21への出力を段階的に切り替え、送風機 64, 65に通 電することで送風を行うことができる。  The output switches 32 and 33 shown in FIG. 5 switch the output of the compressor 21 stepwise and switch the four-way valve similarly to the food warming apparatus of the first embodiment. By this switching, switching between heating and cooling is performed, and the output to the compressor 21 is switched in a stepwise manner, and the air can be blown by supplying electricity to the blowers 64 and 65.
送風機 64, 65が備えられている回転支持部 13, 14には、回転筒 54〜61から吐出さ れた加熱,冷却された空気、または放散された空気を吸入する循環通気孔 68が、形成さ れている。この循環通気孔 68により吸入された空気を、送風機 64, 65により再度、回転 筒 54〜61内の熱伝導体 63へ送り込むことができるので、効率のよい加熱、冷却ができ る。  In the rotating support portions 13 and 14 provided with the blowers 64 and 65, circulation ventilation holes 68 for sucking the heated or cooled air discharged from the rotating cylinders 54 to 61 or the diffused air are formed. Has been done. The air sucked through the circulation vent 68 can be sent again to the heat conductor 63 in the rotating cylinders 54 to 61 by the blowers 64 and 65, so that efficient heating and cooling can be performed.
図 1 1に示すように、効率よく冷却するために、凹形溝部 15の前後方向の両側に遮蔽 板 81を設けることにより、凹形溝部 15内の冷気を保持することが可能である。 次に食品保温装置 50の使用状態について、加熱して保温する食品を例に説明する。 図 5に示すように、食品保温装置 1の 8本の回転筒 54〜61は、加熱して保温する食品 の一例である缶コーヒ 80などを前後方向に 4つ支持することができる。なお、缶コーヒ 80 の左右方向のスペースにも、他の缶コーヒや、他の加熱を要する円筒状の食品を載せる こと力 Sでさる。 As shown in FIG. 11, by providing shielding plates 81 on both sides in the front-rear direction of the concave groove portion 15 for efficient cooling, it is possible to keep cool air in the concave groove portion 15. Next, the use state of the food warming device 50 will be described by taking a food that is heated and kept warm as an example. As shown in FIG. 5, the eight rotating cylinders 54 to 61 of the food warming apparatus 1 can support four canned coffee 80, which is an example of food to be heated and kept warm, in the front-rear direction. In addition, other can coffee and other cylindrical food items requiring heating can be put on the space in the left-right direction of the can coffee 80 by the force S.
図 5に示すように、缶コーヒ 80を加熱して保温するときには、隣接する回転筒、例えば 回転筒 56 , 57に、缶コーヒ 80の周面を当接させて载置する。次いで、電源スィッチ 31を オンにし、さらに出力スィッチ 32を時計回り方向に回す。この操作によって、回転筒 54〜 57が回転を開始し、圧縮機 21が作動し、熱媒体が圧縮機 21から熱伝導パイプ 23を経 由して放熱管 22へ流れるよう四方弁が切り替えられ、送風機 64, 65が送風を開始する。 圧縮機 21が作動すると、熱伝導パイプ 23内に加熱された熱媒体が流れる。そして送風 機 64, 65により、送風された空気が通風パイプ 66の両端部より送りこまれる。  As shown in FIG. 5, when heating the canned coffee 80 to keep it warm, the peripheral surface of the canned coffee 80 is placed in contact with an adjacent rotating cylinder, for example, rotating cylinders 56 and 57. Next, the power switch 31 is turned on, and the output switch 32 is further turned clockwise. By this operation, the rotary cylinders 54 to 57 start rotating, the compressor 21 operates, and the four-way valve is switched so that the heat medium flows from the compressor 21 to the heat radiating pipe 22 via the heat conduction pipe 23, Blowers 64 and 65 start blowing. When the compressor 21 operates, the heated heat medium flows into the heat conduction pipe 23. Then, the blown air is sent from both ends of the ventilation pipe 66 by the blowers 64 and 65.
通風パイプ 66の両端部より送り込まれた空気は、内部を通過し、表面に形成された貫 通孔 66aから吐出される。  The air sent from both ends of the ventilation pipe 66 passes through the inside and is discharged from a through hole 66a formed on the surface.
貫通孔 66aから吐出した空気は、熱媒体により加熱された熱伝導パイプ 23により加熱 され、熱伝導体 63を形成する熱伝導板 67を加熱するとともに、熱伝導板 67の側壁 69に 形成された切り欠き部 67dから回転筒 54〜61と熱伝導体 63との隙間に放散される。 熱伝導板 67は、貫通孔 67bを揷通する熱伝導パイプ 23からも直接加熱されることで、 回転筒 54〜 61と熱伝導体 63との隙間の空気を加熱する。  The air discharged from the through-hole 66a is heated by the heat conduction pipe 23 heated by the heat medium, heats the heat conduction plate 67 forming the heat conductor 63, and is formed on the side wall 69 of the heat conduction plate 67. The heat is dissipated from the notch 67d into the gap between the rotary cylinders 54 to 61 and the heat conductor 63. The heat conductive plate 67 also heats the air in the gap between the rotary cylinders 54 to 61 and the heat conductor 63 by being directly heated from the heat conductive pipe 23 passing through the through hole 67b.
回転筒 54〜61は、切り欠き部 67dを通過した加熱された空気と、加熱された熱伝導体 63からの放熱により、加熱される。  The rotary cylinders 54 to 61 are heated by the heated air that has passed through the notch 67d and the heat radiation from the heated heat conductor 63.
加熱した回転筒 54〜61は、当接する缶コーヒ 80を直接加熱するとともに、表面に形成 された貫通孔 62にから回転筒 54〜61と熱伝導体 63との隙間の加熱された空気が放散 して、缶コーヒを暖めるので、飲み頃の温度に保温することができる。 The heated rotary cylinders 54 to 61 directly heat the abutting can coffee 80, and the heated air in the gap between the rotary cylinders 54 to 61 and the heat conductor 63 diffuses from the through-hole 62 formed on the surface. Then, since the canned coffee is warmed, it can be kept at a temperature suitable for drinking.
次に、本発明の他の実施の形態の熱伝導体を図 9および図 10に基づいて説明する。 図 9は、他の実施の形態に係る保温体の構成を示す図で、(a)は保温体の正面図であり 、(b)は回転筒の正面図あり、(c)は熱伝導体に送風パイプおよび熱伝導パイプを挿通 させた正面図であり、(d)は空気取り入れパイプの正面図である。図 9は、他の実施の形 態の熱伝導板で、(a)は熱伝導板の斜視図であり、 (b)は熱伝導板を連ねた状態を示す 図である。  Next, a heat conductor according to another embodiment of the present invention will be described with reference to FIG. 9 and FIG. 9A and 9B are diagrams showing a configuration of a heat insulator according to another embodiment, wherein FIG. 9A is a front view of the heat insulator, FIG. 9B is a front view of the rotary cylinder, and FIG. FIG. 2 is a front view in which a ventilation pipe and a heat conduction pipe are inserted through the air pipe, and (d) is a front view of an air intake pipe. 9A and 9B show a heat conductive plate according to another embodiment. FIG. 9A is a perspective view of the heat conductive plate, and FIG. 9B is a view showing a state where the heat conductive plates are connected.
図 9 (a)および図 9 (b)に示すように、回転筒 54〜61は、図 7 (a)および図 7 (b)と同様 に貫通孔 62が形成されている。図 9 (c)に示すように、回転筒 54〜61は、内部に熱伝導 体 75が接触しない状態で揷通している。  As shown in FIGS. 9 (a) and 9 (b), the rotary cylinders 54 to 61 are formed with through holes 62 as in FIGS. 7 (a) and 7 (b). As shown in FIG. 9 (c), the rotary cylinders 54 to 61 are penetrated without the heat conductor 75 contacting the inside.
図 10 (a)に示すように、熱伝導体 75は、熱伝導板 76が連ねて形成されている。熱伝導 板 76は、円盤状に形成され、熱伝導パイプ 23を挿通させる貫通孔 76aと、外周の側壁 に切り欠き咅 (576bと、中心部に形成された貫通孔 76cの周囲に通気孔 76dを有する円筒 形状の通風部 76eとが形成されている。また、熱伝導板 76は、熱伝導パイプ 23により加 熱、冷却された空気をより多く受けるように表面積を増やすため凹凸部 76fが形成されて いる。凹凸部 76fは、熱伝導板 76を製造する際に、押し型を押し当てることで容易に形 成すること力できる。  As shown in FIG. 10A, the heat conductor 75 is formed by connecting a heat conductive plate 76. The heat conducting plate 76 is formed in a disc shape, and has a through hole 76a through which the heat conducting pipe 23 is inserted, a notch in the outer peripheral side wall (576b), and a vent hole 76d around a through hole 76c formed in the center. The heat conduction plate 76 has a concavo-convex portion 76f to increase the surface area so as to receive more air heated and cooled by the heat conduction pipe 23. The uneven portion 76f can be easily formed by pressing a pressing mold when manufacturing the heat conductive plate 76.
熱伝導板 76は、熱伝導率が高く、耐腐食性を有し、軽量である材質が望まし アルミ ニゥムなどが使用できる。各回転筒 54〜61、熱伝導体 75、熱伝導パイプ 23によって、 保温体を構成している。  The heat conductive plate 76 is desirably made of a material having high thermal conductivity, corrosion resistance and light weight, and aluminum or the like can be used. The rotary cylinders 54 to 61, the heat conductor 75, and the heat conduction pipe 23 constitute a heat insulator.
図 9 (b) ,図 9 (c)およぴ図 10 (b)に示すように、熱伝導体 75は、熱伝導板 76を連ねる ことで通風部 76eによって形成される通風路 77が形成される。  As shown in FIG. 9 (b), FIG. 9 (c) and FIG. 10 (b), the heat conductor 75 forms a ventilation path 77 formed by the ventilation section 76e by connecting the heat conduction plate 76. Is done.
この通風路 77の両端部に、漏斗状の取り入れ部 78aにパイプ 78bを連通した空気取り 入れパイプ 78を接続して、図 6で示すような送風機 66a, 66bから空気を送り込むことで、 それぞれの熱伝導板 76の通風部 76eの通気孔 76dから空気を吐出させることができる。 通気孔 76dから吐出した空気は、熱伝導パイプ 23により加熱または冷却され、切り欠き 部 76bを通過して、熱伝導体 75と回転筒 54〜61の隙間に放散される。放散された空気 は、回転筒 54〜61に形成された貫通孔 62を通過して、回転筒 54〜61の周囲に放散さ れる。 At both ends of the ventilation passage 77, air is collected by connecting a pipe 78b to a funnel-shaped intake portion 78a. By connecting the inlet pipe 78 and sending air from the blowers 66a and 66b as shown in FIG. 6, the air can be discharged from the ventilation holes 76d of the ventilation portions 76e of the respective heat conducting plates 76. The air discharged from the ventilation hole 76d is heated or cooled by the heat conduction pipe 23, passes through the cutout 76b, and is radiated to the gap between the heat conductor 75 and the rotary cylinders 54 to 61. The radiated air passes through the through holes 62 formed in the rotary cylinders 54 to 61 and is radiated around the rotary cylinders 54 to 61.
このようにして、熱伝導板 77の通風部 76eを連ねることで形成された通風路 77を、図 7 に示す通風パイプ 66の代わりとすることで、保温体を構成する部品の削減ができコストを 抑えることができる。  In this way, by replacing the ventilation path 77 formed by connecting the ventilation section 76e of the heat conduction plate 77 with the ventilation pipe 66 shown in FIG. 7, the number of components constituting the heat insulator can be reduced, and the cost can be reduced. Can be suppressed.
なお、本発明は前記実施の形態に限定されるものではなく、例えば、実施の形態 1の食 品保温装置のように、ヒータを備えることができる。ヒータを備える場合には、熱伝導板に 、貫通孔を形成し、この貫通孔にヒータを揷通させる。ヒータを備えることで、保温装置の 圧縮機 21の加熱が不足する場合に、ヒータを補助的に使用することができる。また、ヒー タを備えることで、食品保温装置を食品の冷却に使用する場合において、ヒータを回転 筒の霜取りとしても使用できる。  Note that the present invention is not limited to the above-described embodiment. For example, a heater can be provided as in the food warming apparatus of the first embodiment. When a heater is provided, a through hole is formed in the heat conductive plate, and the heater is passed through the through hole. By providing the heater, the heater can be used as an auxiliary when the heating of the compressor 21 of the heat retaining device is insufficient. In addition, by providing a heater, the heater can also be used as a defroster for the rotating cylinder when the food warming device is used for cooling food.
また、送風機から通風パイプ 66に送り込む空気を予めヒータなどで加熱することも可能 であり、より効率よく食品を加熱して保温すること力 Sできる。  Further, the air sent from the blower to the ventilation pipe 66 can be heated in advance by a heater or the like, so that the food can be more efficiently heated and kept warm.
' また、熱伝導板 67は、通風パイプ 66と熱伝導パイプ 23とを揷通させる貫通孔を別々と したが、 1つの貫通孔に揷通させてもよい。 産業上の利用可能性  Further, although the heat conduction plate 67 has a separate through hole for passing the ventilation pipe 66 and the heat conduction pipe 23, the heat conduction plate 67 may have a single through hole. Industrial applicability
本発明に係る食品保温装置は、効率よく食品を加熱、冷却することができ、例えば、 小売店の店内に設置されて、食品を保温する装置として有用である。  INDUSTRIAL APPLICABILITY The food warming device according to the present invention can efficiently heat and cool food, and is useful, for example, as a device that is installed in a retail store to keep food warm.

Claims

請求の範囲 The scope of the claims
1 .熱媒体を循環させる温度調節装置を有する食品保温装置において、 前記熱媒 体を内部に通過させ、 食品の外面に当接するとともに前記食品を回転させなが ら加熱または冷却する筒状の保温体を有することを特徴とする食品保温装置。1. A food heat insulating device having a temperature control device for circulating a heat medium, wherein the heat medium is passed through the inside, and a cylindrical heat insulator that heats or cools while rotating the food while making contact with the outer surface of the food. A food warming device having a body.
2 .前記保温体は、 内部に熱媒体を通過させる熱伝導パィプの外側に隙間を有し て配置され、 駆動装置によって回転駆動される回転筒を有していることを特徴 とする請求項 1に記載の食品保温装置。 2. The heat insulator is provided with a gap outside a heat conducting pipe through which a heat medium passes, and has a rotating cylinder driven to rotate by a driving device. A food warming apparatus according to claim 1.
3 .前記保温体は、 横方向に平行に複数配置されて、 基台に回転可能に支持され ていることを特徴とする請求項 1または 2に記載の食品保温装置。  3. The food heat insulation device according to claim 1, wherein a plurality of the heat insulation bodies are arranged in parallel in a horizontal direction, and are rotatably supported by a base.
4 .前記熱伝導パイプは U字状に折り曲げられて、 前記回転筒内に挿入して配設 されていることを特徴とする請求項 2または 3に記載の食品保温装置。  4. The food heat insulation device according to claim 2, wherein the heat conduction pipe is bent in a U-shape and inserted and disposed in the rotary cylinder.
5 .前記保温体は、 内部を揷通し、 前記基台に備えた送風手段から送られた空気 が吐出する貫通孔が表面に形成された通風パイプと、 円盤状に形成され、 前記 通風パイプが揷通する貫通孔と前記熱伝導パイプが挿通する貫通孔と外周に切 り欠き部を有する側壁とが形成された熱伝導板を連ねた熱伝導体と、 を前記回 転筒の内部に備え、 前記回転筒は、 表面に貫通孔が形成されたことを特徴とす る請求項 2から 4のいずれかの項に記載の食品保温装置。  5. The heat insulation body has a ventilation pipe having a through hole formed on the surface through which air is discharged from the ventilation means provided on the base and a disc-shaped ventilation pipe. A heat conductor connected to a heat conducting plate formed with a through hole through which the heat conducting pipe passes, a through hole through which the heat conducting pipe penetrates, and a side wall having a notch on the outer periphery thereof, provided inside the rotating cylinder. The food insulation device according to any one of claims 2 to 4, wherein a through-hole is formed on a surface of the rotary cylinder.
6 .前記保温体は、 円盤状に形成され、 前記熱伝導パイプが揷通する貫通孔と、 外周に切り欠き部を有する側壁と、 円筒形状で貫通孔に接続され側面に通気孔 を有する通風部とが形成された熱伝導板を連ねて形成された熱伝導体を前記回 転筒の内部に備え、 前記熱伝導板を連ねることで前記通風部によって形成され る通風路に、 一端または両端から空気を送り込む送風手段を前記基台に備え、 前記回転筒は、 表面に貫通孔が形成されたことを特徴とする請求項 2から 4の いずれかの項に記載の食品保温装置。 6. The heat retaining body is formed in a disk shape, and has a through hole through which the heat conducting pipe passes, a side wall having a cutout on the outer periphery, and a cylindrical shape which is connected to the through hole and has a ventilation hole on a side surface. A heat conductor formed by connecting a heat conductive plate formed with a heat conductive plate inside the rotating cylinder; and connecting the heat conductive plate to a ventilation path formed by the ventilation portion, at one end or both ends. Equipped with a blowing means for sending air from the base, The food insulation device according to any one of claims 2 to 4, wherein a through hole is formed on a surface of the rotary cylinder.
PCT/JP2004/000877 2003-01-29 2004-01-29 Food temperature-retaining device WO2004076290A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003020265 2003-01-29
JP2003-020265 2003-01-29

Publications (2)

Publication Number Publication Date
WO2004076290A2 true WO2004076290A2 (en) 2004-09-10
WO2004076290A3 WO2004076290A3 (en) 2004-11-11

Family

ID=32923205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000877 WO2004076290A2 (en) 2003-01-29 2004-01-29 Food temperature-retaining device

Country Status (1)

Country Link
WO (1) WO2004076290A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317866A (en) * 2000-05-02 2001-11-16 Koichi Higa Heat treating device for drink etc.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211349A (en) * 1991-01-23 1992-08-03 Mitsubishi Kasei Eng Co Rotary drum treating apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317866A (en) * 2000-05-02 2001-11-16 Koichi Higa Heat treating device for drink etc.

Also Published As

Publication number Publication date
WO2004076290A3 (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US6038865A (en) Temperature-controlled appliance
EP1821051B1 (en) Quick ice making units
JP2002139268A (en) Ice maker and freezer/refrigerator comprising it
CN108433449A (en) A kind of cold and hot showcase
WO2004081455A1 (en) Steam generating function-equipped high-frequency heating device
AU609893B2 (en) Dispenser with temperature control
WO2004076290A2 (en) Food temperature-retaining device
JP2004249096A (en) Food warmer
US4798132A (en) Controllable temperature grid assembly for food
GB2428783A (en) Fan having an auxiliary cooling device
JP2001082852A (en) Refrigerator with thawing chamber
WO2002101306A1 (en) Refrigerator
US6490878B1 (en) Cold sales cabinet
JP2006501907A (en) Rotating skewer
JP3655968B2 (en) Thawing and refrigeration equipment
JP2631259B2 (en) Thawing and refrigeration continuous processing equipment
JP2002364980A (en) Cooking appliance and cooking method
JP3411247B2 (en) Cooling and heating device
JPH08303933A (en) Defrosting device for freezing and refrigerating showcase
JP4641684B2 (en) Defroster
CN217330335U (en) Quick-cooling food processor
JP2005114311A (en) Cooking apparatus
JP2023161953A (en) Thawing device and refrigerator comprising thawing device
CN217357733U (en) Refrigerator with a door
KR101121776B1 (en) Heat msulation case exhibition of barbecue

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP