WO2004073839A1 - Process and equipment for treating refinary gases containing hydrogen sulphide - Google Patents

Process and equipment for treating refinary gases containing hydrogen sulphide Download PDF

Info

Publication number
WO2004073839A1
WO2004073839A1 PCT/EP2004/001242 EP2004001242W WO2004073839A1 WO 2004073839 A1 WO2004073839 A1 WO 2004073839A1 EP 2004001242 W EP2004001242 W EP 2004001242W WO 2004073839 A1 WO2004073839 A1 WO 2004073839A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
amines
process according
gas
compressor
Prior art date
Application number
PCT/EP2004/001242
Other languages
French (fr)
Other versions
WO2004073839A8 (en
Inventor
Paolo Bassi
Emanuele Cagnoli
Original Assignee
Garo Dr. Ing. Roberto Gabbioneta S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Garo Dr. Ing. Roberto Gabbioneta S.P.A. filed Critical Garo Dr. Ing. Roberto Gabbioneta S.P.A.
Priority to EP04710034A priority Critical patent/EP1596964B1/en
Priority to DE602004012393T priority patent/DE602004012393T2/en
Priority to US10/546,564 priority patent/US7384617B2/en
Publication of WO2004073839A1 publication Critical patent/WO2004073839A1/en
Publication of WO2004073839A8 publication Critical patent/WO2004073839A8/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • C10G70/04Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes
    • C10G70/06Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00 by physical processes by gas-liquid contact

Definitions

  • the present invention relates to a process for the treatment of refinery gases. More particularly, the invention relates to a process for the abatement of hydrogen sulphide contained in the gas produced in refineries or petrochemical plants.
  • oil-refining processes and in other petrochemical processes gaseous fractions are produced that are constituted prevalently by hydrogen, sulphur compounds, and light hydrocarbons, such as methane, ethylene, ethane, propylene, propane, butylene, butane, and other higher- boiling hydrocarbons. Said fractions may also contain ammonia, oxygen, and carbon dioxide in varying quantities.
  • Sulphur compounds include mercaptans, carbonyl sulphide, and other compounds but are constituted mainly by hydrogen sulphide (H 2 S).
  • H 2 S hydrogen sulphide
  • One of the possible uses of refinery gases is as fuel for the burners of the refinery itself. In certain circumstances, also depending on the presence of gasholders in the refinery, more or less large amounts of gas must be eliminated by combustion in the refinery flare. For this reason, the said gaseous fraction is referred to also as "flare gas".
  • the amount of hydrogen sulphide in refinery gases varies according to the type of crude oil used and/or the processes carried out in the refinery or in the petrochemical plant. This amount may reach and even exceed 20 mol%.
  • WO 02/18032 describes a process for the treatment of gaseous hydrocarbons and/or atmospheric pollutants, comprising the step of passing the gas in a liquid-ring compressor, where the liquid constituting the liquid ring be able to treat the gas.
  • the liquid of the compressor is hence chosen according to the compounds to be removed or recovered from the gas; for example, a caustic liquid will be chosen to neutralize acidic gases, and an acid liquid will be chosen for neutralize caustic fumes.
  • the process requires a pre- contact of the liquid with the gas upstream of the liquid-ring compressor in a purposely designed apparatus, consisting of a container or column containing filling material, so that an intimate contact between gas and liquid be ensured prior to input into the compressor.
  • document WO 02/18032 describes the use of a chemical reaction between the service liquid of the compressor and the gas to be treated to enable neutralization of the latter, but makes no mention at all of the specific problem of removal of hydrogen sulphide, nor of what liquids can be used in the compressor to obtain said removal. Furthermore, the process is complicated by the need to obtain an intimate contact between liquid and gas upstream of the compressor. This in fact requires the presence of a purposely built piece of equipment, to which the liquid must be supplied in refrigerated form via a pump that draws in from a separation column downstream of the compressor.
  • a further disadvantage of the type of process that uses water as service liquid in the liquid-ring compressor derives from the fact that the ammonia possibly present in the gas to be compressed is dissolved by the water saturated with hydrogen sulphide and, by reacting therewith, forms ammonium salts such as ammonium sulphide and/or ammonium disulphide, which accumulate in the circuit and can reach concentrations that render the service liquid corrosive.
  • the aim of the present invention is to eliminate or reduce the disadvantages of the known processes for the treatment of gases in oil refineries or petrochemical plants by providing a process that is simpler, more effective, and considerably less costly than the known processes.
  • a first object of the invention is consequently to provide a process that is effective and less costly for the treatment of flare gas, said process being based upon the use of a liquid-ring compressor designed to perform the dual function of compressing the flare gases and abating the content of pollutant substances, particularly hydrogen sulphide.
  • Another object of the invention is to provide a process that will not require any pre-contact between the service liquid of the compressor and the gas to be treated.
  • a further object of the invention is to provide an apparatus for carrying out said process.
  • Yet a further object of the invention is to provide a process in which the efficiency of abatement of hydrogen sulphide will be further improved by the presence of a second process stage.
  • Yet a further object of the invention is to provide an integrated apparatus for canying out said multistage process.
  • a fundamental aspect of the process according to the invention lies in the use of a liquid-ring compressor for performing the dual function of compressing refinery gases and simultaneously abating the content thereof in pollutant substances, particularly hydrogen sulphide, by means of reaction between the hydrogen sulphide itself and an aqueous solution of amines.
  • the product of reaction is solublized by the aqueous solution of amines and consequently removed from the gas phase.
  • the amines used for the preparation of the solution are any amine or mixture of amines that are soluble in water and are reactive with hydrogen sulphide in the conditions of temperature and pressure existing in the liquid-ring compressor.
  • Preferred amines are the ones containing, in their molecule, functions that render them hydrophilic, and hence readily and totally soluble in water.
  • Particularly preferred are aliphatic amines with alcoholic functions, more particularly alkanolamines, whether primary, secondary, or tertiary. Reference is made hereinafter, by way of example, to some particularly preferred alkanolamines, with corresponding molecular weights (MW) and formula:
  • one or more of the aforesaid amines are present in the aqueous solution in amounts comprised between 10 wt% and 60 wt%, preferably between 15 wt% and 50 wt%.
  • so-called "formulated" amine solutions namely solutions containing additives, such as stabilizers, etc.
  • a particularly advantageous aspect of the process according to the invention is represented by the fact that aqueous solutions of amines of the aforesaid type and at the aforesaid concentrations are already normally present in refineries and/or in petrochemical plants.
  • Said solutions are in fact used for the washing of real or liquefied gases, such as LPG, in operations that do not involve the use of a liquid-ring compressor. It is evident that the use of said solutions as service liquid for a liquid-ring compressor renders superfluous the preparation of specific amine solutions for said use, thus achieving a significant saving in terms of economy of the process.
  • FIG. 1 is a schematic illustration of a particular embodiment of the process for the treatment of flare gas according to the invention.
  • the gases to be treated 12 and the amine treatment solution 14 are sent directly to the intake of a liquid-ring compressor 10, without any pre- contact upstream of the compressor itself.
  • the structure of the liquid-ring compressor is of the type known to a person skilled in the art, so that a detailed description thereof is omitted.
  • a type of liquid-ring compressor that can be advantageously used in the process according to the invention is described, for instance, in the patent application No. European EP 0 889242 Al.
  • Pressures typical of the gas fed into the compressor are of about 100 kPa and pressures typical at output from the compressor are around 750 kPa.
  • the content of hydrogen sulphide in the flare gas can be extremely high, for example up to approximately 16 mol%, or even higher.
  • the amine solution performs the function of service liquid for the compressor and carries out the compression of the gas to be treated.
  • the liquid/gas mixture 16 delivered from the compressor is sent to a three-phase separator 18.
  • the separator is formed by a cylindrical vessel, in the bottom of which there are 0 separated two liquid phases, namely an aqueous phase 21 and a hydrocarbon phase 23. In its top portion there is a collection chamber 25 for collection of the gas phase.
  • a column 20 mounted on the three-phase separator is a column 20, filled for example with Rashig rings, the bottom of which communicates with the chamber 25 for collection of the gas phase.
  • the gas phase goes up the column 20 and encounters a regenerated amine solution, supplied from above by means 5 of a line 22, designed to carry out a backwash and to achieve a further reduction of the content of hydrogen sulphide.
  • the gas that comes out of the column from the top, along the line 24, can then be sent on for combustion.
  • Also discharged from the separator 18 are, via the line 26, the aqueous solution of amine semi-rich in hydrogen sulphide, which can be sent on to a high- pressure absorber or to regeneration, and, via the line 28, a hydrocarbon phase.
  • Example 1 illustrates the effectiveness of the process according to the invention in a treatment of flare gas in conditions of operation that are particularly burdensome in terms of concentration of hydrogen sulphide in the gas to be treated and in terms of temperature of discharge from the compressor.
  • Example 2 illustrates the effectiveness of the process according to the invention in a treatment of flare gas in conditions of operation that are particularly burdensome in terms of concentration of hydrogen sulphide in the gas to be treated and in terms of temperature of discharge from the compressor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A process for the abatement of hydrogen sulphide in refinery gases by means of a liquid-ring compressor (10) uses, as service liquid, an aqueous solution of amines already available in the refinery itself. The process also comprises a stage of washing of the gas discharged by the compressor, by means of a column (20) mounted on a three-phase separator supplied with a regenerated solution of amines. The treatment in the liquid-ring compressor enables an effective abatement of the amount of hydrogen sulphide to be achieved, which can be further improved by washing using a regenerated amine solution supplied to the column set above the liquid/gas separator (18) downstream of the compressor.

Description

PROCESS AND EQUIPMENT FOR TREATING REFINARY GASES CONTAINING HYDROGEN SULPHIDE
DESCRIPTION The present invention relates to a process for the treatment of refinery gases. More particularly, the invention relates to a process for the abatement of hydrogen sulphide contained in the gas produced in refineries or petrochemical plants. oil-refining processes and in other petrochemical processes, gaseous fractions are produced that are constituted prevalently by hydrogen, sulphur compounds, and light hydrocarbons, such as methane, ethylene, ethane, propylene, propane, butylene, butane, and other higher- boiling hydrocarbons. Said fractions may also contain ammonia, oxygen, and carbon dioxide in varying quantities. Sulphur compounds include mercaptans, carbonyl sulphide, and other compounds but are constituted mainly by hydrogen sulphide (H2S). One of the possible uses of refinery gases is as fuel for the burners of the refinery itself. In certain circumstances, also depending on the presence of gasholders in the refinery, more or less large amounts of gas must be eliminated by combustion in the refinery flare. For this reason, the said gaseous fraction is referred to also as "flare gas". The amount of hydrogen sulphide in refinery gases varies according to the type of crude oil used and/or the processes carried out in the refinery or in the petrochemical plant. This amount may reach and even exceed 20 mol%. Since the combustion of hydrogen sulphide generates sulphur oxides, the dispersion of which in the atmosphere is harmful for the environment and is consequently subject to strict regulations, there exists the need to eliminate or at least reduce its amount in refinery gases to acceptable levels from the standpoint of environmental impact, both with a view to a possible reuse thereof as fuel and a view to its disposal via the flare. On the other hand, in certain cases there exists the need to compress the said refinery gases to a pressure that will enable transfer thereof from the generating units to the units for use or disposal. hi the more recent patent literature it has been proposed to use liquid-ring compressors for the compression or re-compression of refinery gases or gases emitted by mixtures of liquid hydrocarbons in the storage phase.
The patent application No. WO 02/062452 describes the use of liquid-ring compressors to compress volatile gaseous hydrocarbons (volatile organic compounds - VOCs) and obtain condensation and hence absorption thereof in a heavy liquid hydrocarbon used as service liquid for the compressor. The aim of the process described in said patent, therefore, is substantially to obtain a change of phase of the gaseous hydrocarbons, which, once condensed, are absorbed by the heavy hydrocarbon, without there occurring any change of chemical composition in the gas or in the liquid (page 4, lines 14-15). The importance that no chemical reaction occurs between the gas and the liquid is particularly emphasized (page 4, lines 1-4). The patent application No. WO 02/18032 describes a process for the treatment of gaseous hydrocarbons and/or atmospheric pollutants, comprising the step of passing the gas in a liquid-ring compressor, where the liquid constituting the liquid ring be able to treat the gas. The liquid of the compressor is hence chosen according to the compounds to be removed or recovered from the gas; for example, a caustic liquid will be chosen to neutralize acidic gases, and an acid liquid will be chosen for neutralize caustic fumes. The process requires a pre- contact of the liquid with the gas upstream of the liquid-ring compressor in a purposely designed apparatus, consisting of a container or column containing filling material, so that an intimate contact between gas and liquid be ensured prior to input into the compressor. This appears to imply that the gas will already be at a pressure higher than atmospheric pressure (page 4, lines 25-31). The processes described in the aforesaid documents, however, do not solve at all, or do not solve satisfactorily, the problem of abatement of hydrogen sulphide in refinery gases. Document WO 02/062452 is completely silent as regards this specific problem and in fact it teaches to prevent any chemical reaction between gases to be treated and the liquid constituting the liquid ring of the compressor. On the other hand, document WO 02/18032 describes the use of a chemical reaction between the service liquid of the compressor and the gas to be treated to enable neutralization of the latter, but makes no mention at all of the specific problem of removal of hydrogen sulphide, nor of what liquids can be used in the compressor to obtain said removal. Furthermore, the process is complicated by the need to obtain an intimate contact between liquid and gas upstream of the compressor. This in fact requires the presence of a purposely built piece of equipment, to which the liquid must be supplied in refrigerated form via a pump that draws in from a separation column downstream of the compressor.
On the other hand, the use of water as service liquid in liquid-ring compressors combined with the use of a liquid/gas separator set downstream of the compressor according to the prior art likewise leads to disadvantages. This type of process can be defined as a "semi-closed cycle" process because the water used as service liquid is recirculated from the liquid/gas separator to the compressor after passage through a cooler for reducing its temperature. However, the absence of a suitable container for collection of the hydrocarbons condensed in the liquid/gas separators according to the prior art causes loss of water saturated with hydrogen sulphide during the disposal of said hydrocarbons. This loss must be continuously replaced with makeup water. The water saturated with hydrogen sulphide must then be treated in a purposely designed treatment unit for the elimination thereof. This, combined with the fact that this type of known process requires a cooling device, involves significant operating costs. A further disadvantage of the type of process that uses water as service liquid in the liquid-ring compressor derives from the fact that the ammonia possibly present in the gas to be compressed is dissolved by the water saturated with hydrogen sulphide and, by reacting therewith, forms ammonium salts such as ammonium sulphide and/or ammonium disulphide, which accumulate in the circuit and can reach concentrations that render the service liquid corrosive.
The aim of the present invention is to eliminate or reduce the disadvantages of the known processes for the treatment of gases in oil refineries or petrochemical plants by providing a process that is simpler, more effective, and considerably less costly than the known processes. A first object of the invention is consequently to provide a process that is effective and less costly for the treatment of flare gas, said process being based upon the use of a liquid-ring compressor designed to perform the dual function of compressing the flare gases and abating the content of pollutant substances, particularly hydrogen sulphide. Another object of the invention is to provide a process that will not require any pre-contact between the service liquid of the compressor and the gas to be treated. A further object of the invention is to provide an apparatus for carrying out said process. Yet a further object of the invention is to provide a process in which the efficiency of abatement of hydrogen sulphide will be further improved by the presence of a second process stage.
Yet a further object of the invention is to provide an integrated apparatus for canying out said multistage process.
The aforesaid and other objects of the invention are achieved with a process for the treatment of refinery gases containing hydrogen sulphide, which comprises a stage of compression in a liquid-ring compressor, characterized in that said liquid-ring compressor uses, as service liquid, an aqueous solution containing an effective amount of amines that react with hydrogen sulphide. The invention will now be described also with reference to Figure 1, which is a schematic illustration of a preferred embodiment of the process according to the invention. As said above, a fundamental aspect of the process according to the invention lies in the use of a liquid-ring compressor for performing the dual function of compressing refinery gases and simultaneously abating the content thereof in pollutant substances, particularly hydrogen sulphide, by means of reaction between the hydrogen sulphide itself and an aqueous solution of amines. The product of reaction is solublized by the aqueous solution of amines and consequently removed from the gas phase.
The amines used for the preparation of the solution are any amine or mixture of amines that are soluble in water and are reactive with hydrogen sulphide in the conditions of temperature and pressure existing in the liquid-ring compressor. Preferred amines are the ones containing, in their molecule, functions that render them hydrophilic, and hence readily and totally soluble in water. Particularly preferred are aliphatic amines with alcoholic functions, more particularly alkanolamines, whether primary, secondary, or tertiary. Reference is made hereinafter, by way of example, to some particularly preferred alkanolamines, with corresponding molecular weights (MW) and formula:
Figure imgf000006_0001
Typically, one or more of the aforesaid amines are present in the aqueous solution in amounts comprised between 10 wt% and 60 wt%, preferably between 15 wt% and 50 wt%. Also possible is the use of so-called "formulated" amine solutions, namely solutions containing additives, such as stabilizers, etc. A particularly advantageous aspect of the process according to the invention is represented by the fact that aqueous solutions of amines of the aforesaid type and at the aforesaid concentrations are already normally present in refineries and/or in petrochemical plants. Said solutions are in fact used for the washing of real or liquefied gases, such as LPG, in operations that do not involve the use of a liquid-ring compressor. It is evident that the use of said solutions as service liquid for a liquid-ring compressor renders superfluous the preparation of specific amine solutions for said use, thus achieving a significant saving in terms of economy of the process.
In the conditions of operation of the liquid-ring compressor, the amine solutions referred to above are reactive also in regard to other sulphur compounds present in the flare gas, such as mercaptans or carbonyl sulphide. Said amine solutions are moreover effective also in regard to non-sulphur compounds, such as carbon dioxide. The degree of reactivity or effectiveness of abatement of said substances depends also upon the chemical nature of the amines, primary amines being more reactive than secondary and tertiary amines. Figure 1 is a schematic illustration of a particular embodiment of the process for the treatment of flare gas according to the invention. The gases to be treated 12 and the amine treatment solution 14 are sent directly to the intake of a liquid-ring compressor 10, without any pre- contact upstream of the compressor itself. The structure of the liquid-ring compressor is of the type known to a person skilled in the art, so that a detailed description thereof is omitted. A type of liquid-ring compressor that can be advantageously used in the process according to the invention is described, for instance, in the patent application No. European EP 0 889242 Al. Pressures typical of the gas fed into the compressor are of about 100 kPa and pressures typical at output from the compressor are around 750 kPa. The content of hydrogen sulphide in the flare gas can be extremely high, for example up to approximately 16 mol%, or even higher. The amine solution performs the function of service liquid for the compressor and carries out the compression of the gas to be treated. The contact between the gas and the amine solution, however, causes the hydrogen sulphide present in the gas to react with the dissolved amines, and the product of reaction to be dissolved in the solution. The result is an effective abatement of the content of hydrogen sulphide of the gas, since the amount of amine solution fed by unit of time is much higher than the amount theoretically sufficient for absorbing the amount of hydrogen sulphide contained in the gas supplied. This enables a very low content of hydrogen sulphide to be obtained in the treated gas such that, in some particular cases, a second
5 abatement stage might not be required. In the remaining part of the description, reference will, however, be made to a second stage of the process, aimed at further reducing the content of hydrogen sulphide in the gas discharged from the liquid-ring compressor. With reference to the figure, the liquid/gas mixture 16 delivered from the compressor is sent to a three-phase separator 18. The separator is formed by a cylindrical vessel, in the bottom of which there are 0 separated two liquid phases, namely an aqueous phase 21 and a hydrocarbon phase 23. In its top portion there is a collection chamber 25 for collection of the gas phase. Mounted on the three-phase separator is a column 20, filled for example with Rashig rings, the bottom of which communicates with the chamber 25 for collection of the gas phase. The gas phase goes up the column 20 and encounters a regenerated amine solution, supplied from above by means 5 of a line 22, designed to carry out a backwash and to achieve a further reduction of the content of hydrogen sulphide. The gas that comes out of the column from the top, along the line 24, can then be sent on for combustion. Also discharged from the separator 18 are, via the line 26, the aqueous solution of amine semi-rich in hydrogen sulphide, which can be sent on to a high- pressure absorber or to regeneration, and, via the line 28, a hydrocarbon phase.
.0 The following example illustrates the effectiveness of the process according to the invention in a treatment of flare gas in conditions of operation that are particularly burdensome in terms of concentration of hydrogen sulphide in the gas to be treated and in terms of temperature of discharge from the compressor. Example
•5 A flow of 700 NmVh of refinery gases containing 14 mol% of hydrogen sulphide, 20 mol% of hydrogen, and 66 mol% of hydrocarbons were treated. The temperature of the gas entering the compressor was 40°C and at output was 55°C, whilst its incoming pressure was 103 kPa and its outgoing pressure was 750 kPa. A volume of circulating liquid of 14 m3/h was used, constituted by an aqueous solution containing 36 wt% of MDEA. The temperature of the 0 solution at input was 46°C and at output was 55°C, i.e., the same as that of the gas with which the solution was mixed. The table below gives the results of the treatment, both at output from of the compressor and at output from of the three-phase separator.
Figure imgf000009_0001
Consequently, with the process according to the present invention a reduction of the hydrogen sulphide by a factor greater than 50 is obtained at output from the compressor, and a final reduction by a factor of 7000is obtained at output from the separator. The residual content of hydrogen sulphide at output from the compressor may thus already be sufficient, in certain cases, to enable sending the treated gas on directly for combustion.
As regards the disadvantages described previously with reference to the use of water as service liquid in liquid-ring compressors used in the known so-called "semi-closed cycle" processes, the use of aqueous solutions of amines, together with the use of liquid/gas separators according to the invention, enables elimination of the disadvantages described earlier in so far as the process according to the invention is of the "open" type; i.e., the service liquid is not recirculated to the compressor, but can be sent on to one or more conventional absorbers that work at medium pressure, or directly to the regeneration unit. Thus both the accumulation of ammonium sulphides and/or ammonium disulphides in the circuit and the need for cooling of the service liquid are prevented.
The foregoing description regards a preferential embodiment of the invention, but it is evident that the invention may undergo numerous modifications and variations, all falling within the scope of the inventive idea, as defined in the appended claims.

Claims

1. A process for the treatment of refinery gases containing hydrogen sulphide, comprising a stage of compression of said gas in a liquid-ring compressor, characterized in that said liquid-ring compressor uses, as service liquid, an aqueous solution containing an effective amount of amines that are reactive with said hydrogen sulphide.
2. Process according to claim 1, characterized in that said amines contain one or more alcoholic functions.
3. Process according to claim 2, characterized in that said amines are alkanolamines.
4. Process according to claim 3, characterized in that said alkanolamines are selected from the group consisting of monoethanolamine, diglycolamine, diethanolamine, diisopropanolamine, triethanolarnine and methyl diethanolamine.
5. Process according to claim 1, characterized in that said effective amount of amines is comprised between 10 wt% and 60 wt%.
6. Process according to claim 5, characterized in that said effective amount of said amines is comprised between 15 wt% and 50 wt%.
7. Process according to claim 1, characterized in that it re-uses an aqueous solution of amines already available in the refinery or petrochemical plant, said aqueous solution of amines having been prepared for the washing of real gases or liquefied gases.
8. Process according to claim 1, characterized in that said refinery gases and said service liquid are supplied by means of two separate lines to said liquid-ring compressor.
9. Process according to claim 8, characterized in that said refinery gases and said service liquid are in contact with one another only in said liquid-ring compressor.
10. Process according to claim 1, characterized in that it further comprises a stage of washing of the gas discharged by said liquid-ring compressor, said washing being obtained by means of an aqueous solution containing an effective amount of amines that are reactive with the residue of hydrogen sulphide present in said gas discharged by said compressor.
11. Process according to claim 10, characterized in that said amines contain one or more alcoholic functions.
12. Process according to claim 11, characterized in that said amines are alkanolamines.
13. Process according to claim 12, characterized in that said alkanolamines are selected from the group consisting of monoethanolamine, diglycolamine, diethanolamine, diisopropanolamine, triethanolamine and methyl diethanolamine.
14. Process according to claim 10, characterized in that said effective amount of said amines is comprised between 10 wt% and 60 wt%.
15. Process according to claim 14, characterized in that said effective amount of said amines is preferably comprised between 15 wt% and 50 wt%.
16. Process according to claim 10, characterized in that it uses an aqueous solution of amines available in the refinery or petrochemical plant, said solution having been prepared for washing real gases or liquefied gases.
17. Process according to claim 10, characterized in that said washing stage is carried out in a column mounted on a three-phase separator, in which there is introduced a gas-liquid mixture coming from said liquid-ring compressor.
18. Process according to claims 10 and 17, characterized in that said aqueous solution of amines is supplied from the top of said column, in countercurrent with respect to said gas to be washed.
19. A liquid-ring compressor (10), characterized in that it uses, as service liquid, an aqueous solution of amines and in that it comprises two distinct supply lines, one (12) for the gas to be compressed and one (14) for said service liquid.
20. Apparatus for the treatment of refinery gases, characterized in that it comprises: a. a liquid-ring compressor (10), which uses, as service liquid, an aqueous solution of amines, provided with two separate supply lines for said refinery gases (12) and for said aqueous solution of amines (14); b. a three-phase separator (18) set downstream of said compressor (10), said separator comprising a gas-collection chamber (25), a line for discharge of an aqueous phase (26), and a line for discharge of a hydrocarbon phase (28); and c. a column (20) for washing gases in communication with said gas-collection chamber
(25) of said three-phase separator, said column being provided, at the top, with a line (22) for supply of a washing liquid and with a line for discharge (24) of the washed gas.
21. Apparatus according to claim 20, characterized in that said washing column (20) is installed directly on said three-phase separator (18).
PCT/EP2004/001242 2003-02-19 2004-02-11 Process and equipment for treating refinary gases containing hydrogen sulphide WO2004073839A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04710034A EP1596964B1 (en) 2003-02-19 2004-02-11 Process and equipment for treating refinary gases containing hydrogen sulphide
DE602004012393T DE602004012393T2 (en) 2003-02-19 2004-02-11 METHOD AND DEVICE FOR TREATING HYDROGEN SUFFLUENT REFINERY GASES
US10/546,564 US7384617B2 (en) 2003-02-19 2004-02-11 Process and equipment for treating refinary gases containing hydrogen sulphide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT000014A ITBG20030014A1 (en) 2003-02-19 2003-02-19 PROCESS AND EQUIPMENT FOR THE REFINERY GAS TREATMENT.
ITBG2003A000014 2003-02-19

Publications (2)

Publication Number Publication Date
WO2004073839A1 true WO2004073839A1 (en) 2004-09-02
WO2004073839A8 WO2004073839A8 (en) 2004-11-11

Family

ID=27620558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001242 WO2004073839A1 (en) 2003-02-19 2004-02-11 Process and equipment for treating refinary gases containing hydrogen sulphide

Country Status (6)

Country Link
US (1) US7384617B2 (en)
EP (1) EP1596964B1 (en)
AT (1) ATE388749T1 (en)
DE (1) DE602004012393T2 (en)
IT (1) ITBG20030014A1 (en)
WO (1) WO2004073839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838622A (en) * 2017-04-07 2017-06-13 中国石油化工股份有限公司 A kind of flare gas recovery system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7416716B2 (en) * 2005-11-28 2008-08-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
EP2167423A4 (en) * 2007-07-23 2011-11-09 Exxonmobile Upstream Res Company Production of hydrogen gas from sulfur-containing compounds
US7837965B2 (en) * 2007-12-10 2010-11-23 ThioSolv, LLC Process to remove hydrogen-sulfide from gas by reflux recycle from sour water stripper
ITMI20120501A1 (en) * 2012-03-28 2013-09-29 Francesco Galante PLANT AND PROCEDURE FOR THE CONDENSATION OF VAPORS OF HYDROCARBONS
US9157038B2 (en) * 2012-09-28 2015-10-13 Uop Llc Process for washing a gas from a hydroprocessed effluent, and an apparatus and separator relating thereto
RU2608038C2 (en) * 2015-05-27 2017-01-12 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" Method of recycling flare gases
EP3473325A4 (en) * 2016-06-21 2020-05-06 Anlet Co., Ltd. Carbon-dioxide-containing gas recovery device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD220664A1 (en) * 1983-08-15 1985-04-03 Dresden Komplette Chemieanlag PROCESS FOR THE SUPPLY OF SULFUR HYDROGEN-CONTAINING GASES
US4997630A (en) * 1984-03-10 1991-03-05 Basf Aktiengesellschaft Removal of CO2 and/or H2 S from gases
US5133949A (en) * 1988-05-20 1992-07-28 Societe Nationale Elf Acquitaine (Production) Process and device for the removal of H2 S
WO2002018032A2 (en) * 2000-08-31 2002-03-07 Harmse Barthlo Von Moltitz A method of treating an effluent gas stream, and apparatus for use in such method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE220664C (en) *
DE277901C (en) *
US5043079A (en) * 1989-07-13 1991-08-27 Solarchem Enterprises Inc. Wastewater treatment process with an ozone contactor
NO20010345L (en) * 2001-01-19 2002-07-22 Abb Gas Technology As Method and apparatus for the treatment of gases and their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD220664A1 (en) * 1983-08-15 1985-04-03 Dresden Komplette Chemieanlag PROCESS FOR THE SUPPLY OF SULFUR HYDROGEN-CONTAINING GASES
US4997630A (en) * 1984-03-10 1991-03-05 Basf Aktiengesellschaft Removal of CO2 and/or H2 S from gases
US5133949A (en) * 1988-05-20 1992-07-28 Societe Nationale Elf Acquitaine (Production) Process and device for the removal of H2 S
WO2002018032A2 (en) * 2000-08-31 2002-03-07 Harmse Barthlo Von Moltitz A method of treating an effluent gas stream, and apparatus for use in such method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838622A (en) * 2017-04-07 2017-06-13 中国石油化工股份有限公司 A kind of flare gas recovery system

Also Published As

Publication number Publication date
US7384617B2 (en) 2008-06-10
ITBG20030014A1 (en) 2004-08-20
ATE388749T1 (en) 2008-03-15
EP1596964A1 (en) 2005-11-23
US20060165575A1 (en) 2006-07-27
ITBG20030014A0 (en) 2003-02-19
WO2004073839A8 (en) 2004-11-11
DE602004012393D1 (en) 2008-04-24
DE602004012393T2 (en) 2009-04-02
EP1596964B1 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
EP0672446B1 (en) Method for the removal of hydrogen sulfide present in gases
US7374734B2 (en) Absorbing agent and method for eliminating acid gases from fluids
AU781947B2 (en) Method for removing COS from a stream of hydrocarbon fluid and wash liquid for use in a method of this type
US6939393B2 (en) Method for neutralizing a stream of fluid, and washing liquid for use in one such method
CN1754947B (en) Process and installation for the treatment of DSO
EP0728033B1 (en) Absorption of mercaptans
RU2635620C2 (en) Aqueous composition with alkanolamine and the method of removing sulfur gases from gas mixtures
MXPA06000808A (en) Regeneration of acid gas-containing treatment fluids.
US6740230B1 (en) Method for removing mercaptans from fluid fluxes
NL8103203A (en) PROCESS FOR THE SELECTIVE REMOVAL OF HYDROGEN SULFUR FROM CARBON DIOXIDE-CONTAINING GAS MIXTURES.
WO2003089116A1 (en) Removal of h2s and/or mercaptans from supercritical and/or liquid co2
US4696803A (en) Treatment of gas streams for removal of acid gases
US7384617B2 (en) Process and equipment for treating refinary gases containing hydrogen sulphide
HU218462B (en) Improved process and composition for cleaning of liquefied petroleum gases
EA027606B1 (en) Process for purifying gas mixtures containing acid gases
EP3247484B1 (en) Solvent and method for removing acid gases from a gaseous mixture
RU56207U1 (en) INSTALLING OIL CLEANING (OPTIONS)
AU2011320717B2 (en) Use of 2-(3-aminopropoxy)ethan-1-ol as an absorbent to remove acidic gases
CN104379703B (en) Use the method that 3-(amino) acrylate-1,2-diol compound processes Liquefied Hydrocarbon
CN114828984A (en) Method for removing acid compounds from gaseous effluents using tertiary amine-based absorbent solutions
US20220152549A1 (en) Amine absorber configuration
RU2313563C1 (en) Installation used for purification of the petroleum from hydrogen sulfide and mercaptans (versions)
JP2023142600A (en) Absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide, and method for separating and recovering carbon dioxide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 36/2004 UNDER (71) THE NAME SHOULD READ "GARO DR. ING. ROBERTO GABBIONETA S.P.A."

WWE Wipo information: entry into national phase

Ref document number: 2004710034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006165575

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10546564

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004710034

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10546564

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004710034

Country of ref document: EP