WO2004073611A2 - Compounds for the treatment of metabolic disorders - Google Patents
Compounds for the treatment of metabolic disorders Download PDFInfo
- Publication number
- WO2004073611A2 WO2004073611A2 PCT/US2004/003718 US2004003718W WO2004073611A2 WO 2004073611 A2 WO2004073611 A2 WO 2004073611A2 US 2004003718 W US2004003718 W US 2004003718W WO 2004073611 A2 WO2004073611 A2 WO 2004073611A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon atoms
- dimethylbenzyloxy
- phenyl
- formula
- compound
- Prior art date
Links
- 0 CC(*(C)CC=C(C)C)N Chemical compound CC(*(C)CC=C(C)C)N 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/66—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
- C07C69/73—Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
- C07C69/734—Ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/075—Ethers or acetals
- A61K31/085—Ethers or acetals having an ether linkage to aromatic ring nuclear carbon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
- A61K31/24—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/12—Ophthalmic agents for cataracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
- A61P5/50—Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C59/00—Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C59/40—Unsaturated compounds
- C07C59/58—Unsaturated compounds containing ether groups, groups, groups, or groups
- C07C59/64—Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
- C07C59/66—Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings
- C07C59/68—Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C65/00—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
- C07C65/21—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
- C07C65/24—Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups polycyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/84—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
- C07C69/92—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with etherified hydroxyl groups
Definitions
- Diabetes mellitus is a major cause of morbidity and mortality.
- Chronically elevated blood glucose leads to debilitating complications: nephropathy, often necessitating dialysis or renal transplant; peripheral neuropathy; retinopathy leading to blindness; ulceration of the legs and feet, leading to amputation; fatty liver disease, sometimes progressing to cirrhosis; and vulnerability to coronary artery disease and myocardial infarction.
- Type I diabetes or insulin-dependent diabetes mellitus (IDDM) is due to autoimmune destruction of insulin-producing beta cells in the pancreatic islets. The onset of this disease is usually in childhood or adolescence. Treatment consists primarily of multiple daily injections of insulin, combined with frequent testing of blood glucose levels to guide adjustment of insulin doses, because excess insulin can cause hypoglycemia and consequent impairment of brain and other functions.
- IDDM insulin-dependent diabetes mellitus
- NIDDM n ⁇ ninsulin-dependent diabetes mellitus
- Type II, or n ⁇ ninsulin-dependent diabetes mellitus typically develops in adulthood.
- NIDDM is associated with resistance of glucose-utilizing tissues like adipose tissue, muscle, and liver, to the actions of insulin.
- the pancreatic islet beta cells compensate by secreting excess insulin.
- Eventual islet failure results in decompensation and chronic hyperglycemia.
- moderate islet insufficiency can precede or coincide with peripheral insulin resistance.
- NIDDM neurodegenerative disease 2019
- insulin releasers which directly stimulate insulin release, carrying the risk of hypoglycemia
- prandial insulin releasers which potentiate glucose-induced insulin secretion, and must be taken before each meal
- biguanides including metformin, which attenuate hepatic gluconeogenesis (which is paradoxically elevated in diabetes)
- insulin sensitizers for example the thiazolidinedione derivatives rosiglitazone and pioglitazone, which improve peripheral responsiveness to insulin, but which have side effects like weight gain, edema, and occasional liver toxicity
- insulin injections which are often necessary in the later stages of NIDDM when the islets have failed under chronic hyperstimulation.
- Insulin resistance can also occur without marked hyperglycemia, and is generally associated with atherosclerosis, obesity, hyperlipidemia, and essential hypertension. This cluster of abnormalities constitutes the "metabolic syndrome” or “insulin resistance syndrome”. Insulin resistance is also associated with fatty liver, which can progress to chronic inflammation (NASH; "nonalcoholic steatohepatitis”), fibrosis, and cirrhosis. Cumulatively, insulin resistance syndromes, including but not limited to diabetes, underlie many of the major causes of morbidity and death of people over age 40.
- NASH nonalcoholic steatohepatitis
- WO 02/100341 (Wellstat Therapeutics Corp.) discloses 4-(3-2,6- Dimethylbenzyloxy)phenyl)butyric acid. WO 02/100341 does not disclose any compounds within the scope of Formula I shown below, in which m is 0, 1, 2, 4, or 5.
- This invention provides a biologically active agent as described below.
- This invention provides the use of the biologically active agent described below in the manufacture of a medicament for the treatment of insulin resistance syndrome, diabetes, cachexia, hyperlipidemia, fatty liver disease, obesity, atherosclerosis or arteriosclerosis.
- This invention provides methods of treating a mammalian subject with insulin resistance syndrome, diabetes, cachexia, hyperlipidemia, fatty liver disease, obesity, atherosclerosis or arteriosclerosis comprising administering to the subject an effective amount of the biologically active agent described below.
- This invention provides a pharmaceutical composition comprising the biologically active agent described below and a pharmaceutically acceptable carrier.
- the biologically active agent in accordance with this invention is a compound of Formula I:
- A is phenyl, unsubstituted or substituted by 1 or 2 groups selected from: halo, alkyl having 1 or 2 carbon atoms, perfluoromethyl, alkoxy having 1 or 2 carbon atoms, and perfluoromethoxy; or cycloalkyl having from 3 to 6 ring carbon atoms wherein the cycloalkyl is unsubstituted or one or two ring carbons are independently mono- substituted by methyl or ethyl; or a 5 or 6 membered heteroaromatic ring having 1 or 2 ring heteroatoms selected from N, S and O and the heteroaromatic ring is eovalently bound to the remainder of the compound of formula I by a ring carbon; and R 1 is hydrogen or alkyl having 1 or 2 carbon atoms.
- the biologically active agent can be a pharmaceutically acceptable salt of the compound of Formula I.
- the biologically active agents described above have activity in one or more of the biological activity assays described below, which are established animal models of human diabetes and insulin resistance syndrome. Therefore such agents would be useful in the treatment of diabetes and insulin resistance syndrome. All of the exemplified compounds that were tested demonstrated activity in at least one of the biological activity assays in which they were tested. DETAILED DESCRIPTION OF THE INVENTION
- alkyl means a linear or branched-chain alkyl group.
- An alkyl group identified as having a certain number of carbon atoms means any alkyl group having the specified number of carbons.
- an alkyl having three carbon atoms can be propyl or isopropyl; and alkyl having four carbon atoms can be n-butyl, 1- methylpropyl, 2-methylpropyl or t-butyl.
- halo refers to one or more of fluoro, chloro, bromo, and iodo.
- perfluoro as in perfluoromethyl or perfluoromethoxy, means that the group in question has fluorine atoms in place of all of the hydrogen atoms.
- A is 2,6-dimethylphenyl.
- Examples of such compounds include 3-(2,6- Dimethylbenzyloxy)phenylacetic acid; 3-(2,6-Dimethylbenzyloxy)benzoic acid; Ethyl 3-(2,6-dimethylbenzyloxy)benzoate; 6-[3-(2,6-Dimethylbenzyloxy)-phenyl]-hexanoic acid; Ethyl 6-[3- 2,6-dimethylbenzyloxy)-phenyl]-hexanoate; 5-[3-(2,6- Dimethylbenzyloxy)-phenyl]-pentanoic acid; Ethyl 5-[3-(2,6-dimethylbenzyloxy)- phenyfj-pentanoate; 3-[3-(2,6-dimethylbenzyloxy)phenyl]-propionic acid; and Ethyl 3- [3-(2,6-dimethylbenzyloxy)phenyl]-propanoate.
- the agent is in substantially (at least 98%) pure form.
- the biologically active agents of the present invention can be made in accordance with the following reaction schemes.
- the compound of formula II is converted to the compound of formula V via reaction of step (a) using Mitsunobu condensation of II with III using triphenylphosphine and diethyl azodicarboxylate or diisopropyl azodicarboxylate.
- the reaction is carried out in a suitable solvent for example tetrahydrofuran. Any of tlie conditions conventionally used in Mitsunobu reactions can be utilized to carry out the reaction of step (a).
- the compound of formula V can also be prepared by etherifying or alkylating the compound of formula II with a compound of formula IV as in reaction of step (a).
- Y include but are not limited to mesyloxy, tosyloxy, chloro, bromo, iodo, and the like. Any conventional method of etherifying of a hydroxyl group by reaction with a leaving group can be utilized to carry out the reaction of step (a).
- the compound of formula V is the compound of formula I where R 1 is alkyl group having from 1 to 2 carbon atoms.
- the compound of formula V can be converted to the free acid i.e. the compound of formula I where R 1 is H by ester hydrolysis. Any conventional method of ester hydrolysis will produce the compound of formula I where R 1 is H. Reaction Scheme 1
- R is hydrogen, halo, alkoxy having from 1 to 3 carbon atoms or alkyl having from 1 to 3 carbon atoms, and R 1 is hydrogen or alkyl having from 1 to 2 carbons, i.e. compounds of formula:
- the compound of formula VI is converted to tlie compound of formula VII via reaction of step (b) using Mitsunobu condensation of VI with III using triphenylphosphine and diethyl azodicarboxylate or diisopropyl azodicarboxylate.
- the reaction is carried out in a suitable solvent for example tetrahydrofuran. Any of the conditions conventionally used in Mitsunobu reactions can be utilized to carry out the reaction of step (b).
- the compound of formula VII can also be prepared by etherifying or alkylating the compound of formula VI with a compound of formula IV via the reaction of step (c) by using suitable base such as potassium carbonate, sodium hydride, triethylamine, pyridine and the like.
- suitable base such as potassium carbonate, sodium hydride, triethylamine, pyridine and the like.
- Y include but are not limited to mesyloxy, tosyloxy, chloro, bromo, iodo, and the like. Any conventional conditions to alkylate a hydroxyl group with a halide or leaving group can be utilized to carry out the reaction of step (c).
- the reaction of step (c) is preferred over step (b) if compound of formula IV is readily available.
- the compound of formula VII is converted to the compound of formula IX via reaction of step (d) by alkylating the compound of formula VII with the compound of formula VIII.
- This reaction is carried out in the presence of approximately a molar equivalent of a conventional base that converts acetophenone to 3-keto ester (i.e. gamma-keto ester).
- alkali metal salts of hexamethyldisilane such as lithium bis-(trimethylsilyl)amide and the like.
- this reaction is carried out in inert solvents such as tetrahydrofuran: 1,3- Dimethyl-3,4,5,6-tetrahydro-2 (lH)-pyrimidinone.
- the reaction is carried out at temperatures of from -65°C to 25°C. Any of the conditions conventional in such alkylation reactions can be utilized to carry out the reaction of step (d).
- the compound of formula IX is converted to the free acid by ester hydrolysis. Any conventional method of ester hydrolysis will produce the compound of formula IX where R 1 is H.
- the compound of formula IX is converted to the compound of X via reaction of step (e) by reducing the ketone group to CH 2 group.
- the reaction is carried out by heating compound of formula IX with hydrazine hydrate and a base such as KOH or NaOH in suitable solvent such as ethylene gfycol. In carrying out this reaction it is generally preferred but not limited to utilize KOH as base. Any of the conditions conventionally used in Wolff-Kishner reduction reactions can be utilized to carry out the reaction of step (e).
- the compound .of formula X is the compound of formula I where R 1 is H.
- acid can be converted to ester i.e. the compound of formula I where R 1 is alkyl having from 1 to 2 carbon atoms by esterification of acid by using catalysts for example H 2 SO 4 , TsOH and the like or by using dehydrating agents for example dicyclohexylcarbodiimide and the like in ethanol or methanol. Any conventional conditions in such esterification reactions can be utilized to produce the compound of formula I where R 1 is alkyl having from 1 to 2 carbon atoms.
- R 1 is hydrogen or alkyl having from 1 to 2 carbon atoms
- R 3 is hydrogen, halo, alkoxy having from 1 to 3 carbon atoms or alkyl having from 1 to 3 carbon atoms, can be prepared via the reaction scheme of Scheme 3.
- R 4 is alkyl group having from 1 to 2 carbon atoms.
- Y is chloro or bromo and p is 1 to 3.
- the compound of formula XI can be mesylated to furnish the compound of formula XII via reaction of step (f). Any conventional conditions to carry out the mesylation reaction of a hydroxyl group can be utilized to carry out the step (f).
- the compound of formula XII is then heated with the compound of formula XIII to produce tlie compound of formula XIV. Any of the conditions conventional to produce amino alcohol can be utilized to carry out the reaction of step (g).
- alcohol in the compound of formula XIV, alcohol can be displaced by chloro or bromo by treating the compound of formula XIV with thionyl chloride, bromine, and phosphorus tribromide and the like to produce the compound of formula XV. Any conventional method to displace alcohol with chloro or bromo can be utilized to carry out the reaction of step (h).
- the compound of formula XV can be reacted with the compound of formula VI via reaction of step (i) in the presence of a suitable base such as potassium carbonate, sodium hydride, triethylamine and the like.
- a suitable base such as potassium carbonate, sodium hydride, triethylamine and the like.
- the reaction is carried out in conventional solvents such as dimethylformamide, tetrahydrofuran and the like to produce the corresponding compound of formula XVI.
- Any conventional method of etherification of a hydroxyl group in the presence of base (preferred base being potassium carbonate) with chloro or bromo can be utilized to carry out the reaction of step (i).
- the compound of formula XVI can be converted to the compound of formula XVII via reaction of step (j) by alkylating the compound of formula XVI with the compound of formula VIII. This reaction is carried out in the presence of approximately a molar equivalent of a suitable base such as lithium hexamethyldisilane. This reaction is carried out in the same manner as described in connection with the reaction of step (d) of Scheme 2.
- the compound of formula XVII can be converted to the free acid by ester hydrolysis. Any conventional method of ester hydrolysis will produce the compound of formula XVII where R 1 is H.
- the compound of formula XVII can be converted to the compound of XVIII via reaction of step (k) by reducing the ketone group to CH 2 group.
- the reaction can be carried out by heating compound of formula XVII with hydrazine hydrate and base such as KOH or NaOH in suitable solvent such as ethylene glycol. In carrying out this reaction it is generally preferred but not limited to utilize KOH as base. Any of the conditions conventionally used in Wolff-Kishner reduction reactions can be utilized to carry out the reaction of step (k).
- the compound of formula XVIII is the compound of formula I where R 1 is H.
- acid can be converted to ester i.e. the compound of formula I where R 1 is alkyl having from 1 to 2 carbon atoms by esterification of acid by using catalysts for example H 2 SO , TsOH and the like or by using dehydrating agents for example dicyclohexylcarbodiimide and the like in ethanol or methanol. Any conventional conditions in such esterification reactions can be utilized to produce the compound of formula I where R 1 is alkyl having from 1 to 2 carbon atoms.
- R 4 is alkyl group having from 1 to 2 carbon atoms.
- Y is chloro or bromo.
- the compound of formula XV (prepared in the same manner as described in the reaction of scheme 3) can be reacted with a compound of formula II via reaction of step (1) in the presence of a suitable base such as potassium carbonate, sodium hydride, triethyla ine and the like.
- a suitable base such as potassium carbonate, sodium hydride, triethyla ine and the like.
- the reaction can be carried out in conventional solvents such as dimethylformamide, tetrahydrofuran, dichloromethane and the like to produce the corresponding compound of formula XIX.
- Any conventional conditions of etherification of a hydroxyl group in the presence of base (preferred base being potassium carbonate) with chloro or bromo can be utilized to carry out the reaction of step (1).
- the compound of formula XIX is the compound of formula I where R 1 is alkyl group having from 1 to 2 carbon atoms.
- the compound of formula XIX can be converted to the free acid i.e. the compound of formula I where R 1 is H by ester hydrolysis. Any conventional method of ester hydrolysis will produce the compound of formula I where R 1 is H. Reaction Scheme 4
- the compound of formula XX can be reduced to the compound of formula XXI via reaction of step (m).
- the reaction is carried out utilizing a conventional reducing agent for example alkali metal hydride such as lithium aluminum hydride.
- the reaction is carried out in a suitable solvent, such as tetrahydrofuran. Any of the conditions conventional in such reduction reactions can be utilized to carry out the reaction of step (m).
- the compound of formula XXI is the compound of formula III where t is 0 and n is 1.
- the compound of formula XXI can be converted to the compound of formula XXII by displacing hydroxyl group with a halogen group preferred halogen being bromo or chloro.
- a halogen group preferred halogen being bromo or chloro.
- Appropriate halogenating reagents include but are not limited to thionyl chloride, bromine, phosphorous tribromide, carbon tetrabromide and the like. Any conditions conventional in such halogenation reactions can be utilized to carry out the reaction of step (n).
- the compound of formula XXII is the compound of formula IV where t is 0 and n is 1.
- the compound of formula XXII can be converted to the compound of formula XXIII by reacting XXII with an alkali metal cyanide for example sodium or potassium cyanide.
- the reaction is carried out in a suitable solvent, such as dimethyl sulfoxide. Any of the conditions conventionally used in the preparation of nitrile can be utilized to carry out the reaction of step (o).
- the compound of formula XXIII can be converted to tlie compound of formula XXIV via reaction step (p) by acid or base hydrolysis.
- acid or base hydrolysis In carrying out this reaction it is generally preferred to utilize basic hydrolysis, for example aqueous sodium hydroxide. Any of the conditions conventionally used in hydrolysis of nitrile can be utilized to carry out the reaction of step (p).
- the compound of formula XXIV can be reduced to give the compound of formula XXV via reaction of step (q). This reaction can be carried out in the same manner as described hereinbefore in the reaction of step (m).
- the compound of formula XXV is the compound of formula III where t is 1 and n is 1.
- the compound of formula XXV can be converted to the compound of formula XXVI via reaction of step (r) in the same manner as described hereinbefore in connection with the reaction of step (n).
- the compound of formula XXVI is the compound of formula IV where t is 1 and n is 1.
- the compound of formula XXVI can be reacted with diethyl malonate utilizing a suitable base for example sodium hydride to give compound of formula XXVII.
- the reaction is carried out in suitable solvents, such as dimethylformamide, tetrahydrofuran and the like. Any of the conditions conventional in such alkylation reactions can be utilized to carry out the reaction of step (s).
- the compound of formula XXVII can be hydrolyzed by acid or base to give compound of formula XXVIII via reaction of step (t).
- the compound of formula XXVIII can be converted to the compound of formula XXIX via reaction of step (u) in the same manner as described hereinbefore in connection with the reaction of step (m).
- the compound of formula XXIX is the compound of formula III where t is 1 and n is 2.
- the compound of formula XXIX can be converted to the compound of formula XXX via reaction of step (v) in the same manner as described hereinbefore in connection with the reaction of step (n).
- the compound of formula XXX is the compound of formula IV where t is 1 and n is 2.
- R is alkyl group having from 1 to 2 carbon aattoommss aanndd RR 33 iiss hhaalloo,, aallkkooxxyy hhaavviinngg ffrroomm 1 to 3 carbon atoms or alkyl having from 1 to 3 carbon atoms, i.e. compounds of formula:
- R 1 is H.
- R 3 and R 4 are as above.
- R 1 is H.
- the compound of formula XXXI can be converted to the compound of formula II via reaction of step (w) by esterification of compound of fonnula XXXI with methanol or ethanol.
- the reaction can be carried out either by using catalysts for example H 2 S0 4 , TsOH and the like or by using dehydrating agents for example dicyclohexylcarbodiimide and the like. Any of the conditions conventional in such esterification reactions can be utilized to carry out the reaction of step (w).
- m is 0 and R is H and R is halo, alkoxy having from 1 to 3 carbon atoms or alkyl having from 1 to 3 carbon atoms.
- Reaction Scheme 7 is analogous to the method of George M Rubottom et al, J. Org. Chem. 1983, 48, 1550-1552.
- R 1 is H
- R 3 is halo, alkoxy having from 1 to 3 carbon atoms or alkyl having from 1 to 3 carbon atoms
- R is alkyl group having 1 to 2 carbon atoms
- R 5 is a hydroxy protecting group.
- the compound of formula II where m is 0 can be converted to the compound of formula XXXII via reaction of step (y) first by protecting the hydroxy group by utilizing suitable protecting groups such as those described in Protecting Groups in Organic Synthesis by T. Greene and then by deprotectmg the ester group by ester hydrolysis. Any conventional method of ester hydrolysis will produce the compound of formula XXXII where R 1 is H.
- the compound of formula XXXII can be reduced to the compound of formula XXXIII by utilizing conventional reducing reagent that converts acid to an alcohol via reaction of step (z).
- reducing reagent that converts acid to an alcohol via reaction of step (z).
- it is generally preferred but not limited to utilize lithium aluminum hydride.
- the reaction is carried out in a suitable solvent such as tetrahydrofuran and the like. Any of the conditions conventional in such reduction reactions can be utilized to carry out the reaction of step (z).
- the compound of formula XXXIII can be converted to the compound of formula XXXIV by displacing hydroxy group with a halogen preferred halogen being bromo or chloro.
- a halogen preferred halogen being bromo or chloro.
- Appropriate halogenating reagents include but are not limited to thionyl chloride, bromine, phosphorous tribromide, carbon tetrabromide and the like. Any conditions conventional in such halogenation reactions can be utilized to carry out the reaction of step (a').
- the compound of formula XXXIV can be converted to the compound of formula XXXV by reacting XXXIV with an alkali metal cyanide for example sodium or potassium cyanide.
- the reaction is carried out in a suitable solvent such as dimethyl sulfoxide. Any of the conditions conventionally used in the preparation of nitriles can be utilized to carry out the reaction of step (b')-
- the compound of formula XXXV can be converted to the compound of formula XXXVI via reaction step (c') by acid or base hydrolysis.
- acid or base hydrolysis In carrying out this reaction, it is generally preferred to utilize basic hydrolysis, for example aqueous sodium hydroxide. Any of the conditions conventional for the hydrolysis of nitrile can be utilized to carry out the reaction of step (c').
- the compound of formula XXXVI can be converted to the compound of formula XXXVII via reaction of step (d') by removal of hydroxy protecting group utilizing suitable deprotecting reagents such as those described in Protecting Groups in Organic Synthesis by T. Greene.
- the compound of formula XXXVII can be converted to compound of formula II where m is 1 and R 4 is alkyl group having from 1 or 2 carbon atoms by esterification of compound of formula XXXVII with methanol or ethanol.
- the reaction can be carried out either by using catalysts for example H 2 SO , TsOH and the like or by using dehydrating agents for example dicyclohexylcarbodiimide and the like. Any of the conditions conventional in such esterification reactions can be utilized to carry out the reaction.
- the compound of formula XXXIV can be reacted with diethyl malonate utilizing a suitable base for example sodium hydride to give compound of formula XXXVIII.
- the reaction is carried out in suitable solvents, such as dimethylformamide, tetrahydrofuran and the like. Any of the conditions conventional in such alkylation reactions can be utilized to carry out the reaction of step (e').
- the compound of formula XXXVIII can be hydrolyzed by acid or base and removal of hydroxy protecting group utilizing suitable deprotecting reagents such as those described in Protecting Groups in Organic Synthesis by T. Greene to give compound of formula XXXIX via reaction of step (f ).
- the compound of formula XXXIX can be converted to the compound of formula II where m is 2 and R 4 is alkyl group having from 1 or 2 carbon atoms by esterification of compound of formula XXXIX with methanol or ethanol.
- the reaction can be carried out either by using catalysts for example H 2 SO 4 , TsOH and the like or by using ' dehydrating agents for example dicyclohexylcarbodiimide and the like. Any of the conditions conventional in such esterification reactions can be utilized to carry out the reaction.
- R 1 and R 3 are as above, and R 4 is alkyl group having from 1 to 2 carbon atoms.
- the compound of formula XL can be converted to the compound of formula XLI by reducing aldehyde to primary alcohol. In carrying out this reaction, it is prefe ⁇ ed but not limited to use sodium borohydride as the reducing reagent. Any of the conditions suitable in such reduction reactions can be utilized to carry out the reaction of step (g').
- the compound of formula XLI can be converted to the compound of formula XLII via reaction of step (h') by protecting 1-3 Diols by using 1,1,3,3-Tetraisopropyldisiloxane.
- the suitable conditions for this protecting group can be described in the Protecting Groups in Organic Synthesis by T. Greene.
- the compound of formula XLII can be converted to the compound of formula XLIII via reaction of step (i') by protecting phenol group by using benzyl bromide.
- the suitable conditions for this protecting group can be described in the Protecting Groups in Organic Synthesis by T. Greene.
- the compound of formula XLIII can be converted to the compound of formula XLIV by deprotection using tetrabutylammonium fluoride via reaction of step (j ').
- the suitable conditions for the deprotection can be described in the Protecting Groups in Organic Synthesis by T. Greene.
- the compound of formula XLIV can be converted to compound of formula XLV via reaction of step (k') by oxidation.
- Any conventional oxidizing group that converts primary alcohol to an acid for example chromium oxide and the like can be utilized to carry out the reaction of step (k').
- the compound of formula XLV can be converted to the compound of formula XLVI by esterification of compound of formula XLV with methanol or ethanol.
- the reaction can be carried out either by using catalysts for example H 2 SO 4 , TsOH and the like or by using dehydrating agents for example dicyclohexylcarbodiimide and the like. Any of the conditions conventional in such esterification reactions can be utilized to cany out the reaction of step (1').
- the compound of formula XLVI can be converted to the compound of formula XLVII by etherifying or alkylating the compound of formula XLVI with methyl halide or ethyl halide or propyl halide by using suitable base for example potassium carbonate, sodium hydride and the like.
- suitable base for example potassium carbonate, sodium hydride and the like.
- the reaction is carried out in conventional solvents, such as terahydrofuran, dimethylformamide.
- the reaction is generally carried out at temperatures of from 0°C to 40°C. Any of the conditions suitable in such alkylation reactions can be utilized to cany out the reaction of step (m').
- the compound of formula XLVII can be converted to the compound of formula XLVIII by deprotection of ester and benzyl groups.
- the suitable deprotectmg conditions can be described in the Protecting Groups in Organic Synthesis by T. Greene. Reaction Scheme 9
- Synthesis can be adapted from J.A.C.S (1974), 96(7), 2121-9 by using ethyl alpha formylvalerate.
- 3-Propylphenol can be methylated to 3-Propylanisole, which was then formylated to 4- Methoxy-3-benzaldehyde.
- the aldehyde can be oxidized by Jone's reagent to give co ⁇ esponding acid and deprotection of methyl group by BBr 3 will give the title compound.
- This invention provides a method for treating a mammalian subject with a condition selected from the group consisting of insulin resistance syndrome and diabetes (both primary essential diabetes such as Type I Diabetes or Type II Diabetes and secondary nonessential diabetes), comprising administering to the subject an amount of a biologically active agent as described herein effective to treat the condition.
- a symptom of diabetes or the chance of developing a symptom of diabetes such as atherosclerosis, obesity, hypertension, hyperlipidemia, fatty liver disease, nephropathy, neuropathy, retinopathy, foot ulceration and cataracts, each such symptom being associated with diabetes, can be reduced.
- This invention also provides a method for treating hyperlipidemia comprising administering to the subject an amount of a biologically active agent as described herein effective to treat the condition. As shown in the Examples, compounds reduce serum triglycerides and free fatty acids in hyperlipidemic animals.
- This invention also provides a method for treating cachexia comprising administering to the subject an amount of a biologically active agent as described herein effective to treat the cachexia.
- This invention also provides a method for treating obesity comprising administering to the subject an amount of a biologically active agent as described herein effective to treat the condition.
- This invention also provides a method for treating a condition selected from atherosclerosis or arteriosclerosis comprising administering to the subject an amount of a biologically active agent as described herein effective to treat the condition.
- the active agents of this invention are effective to treat hyperlipidemia, fatty liver disease, cachexia, obesity, atherosclerosis or arteriosclerosis whether or not the subject has diabetes or insulin resistance syndrome.
- the agent can be administered by any conventional route of systemic administration. Preferably the agent is administered orally. Accordingly, it is prefe ⁇ ed for the medicament to be fonnulated for oral administration.
- Other routes of administration that can be used in accordance with this invention include rectally, parenterally, by injection (e.g. intravenous, subcutaneous, intramuscular or intraperitioneal injection), or nasally.
- each of the uses and methods of treatment of this invention comprise administering any one of the embodiments of the biologically active agents described above.
- each such agent and group of agents is not being repeated, but they are incorporated into this description of uses and methods of treatment as if they were repeated.
- Insulin resistance syndromes and consequences of chronic hyperglycemia.
- Dysregulation of fuel metabolism, especially insulin resistance which can occur in the absence of diabetes (persistent hyperglycemia) per se, is associated with a variety of symptoms, including hyperlipidemia, atherosclerosis, obesity, essential hypertension, fatty liver disease (NASH; nonalcoholic steatohepatitis), and, especially in the context of cancer or systemic inflammatory disease, cachexia. Cachexia can also occur in the context of Type I Diabetes or late-stage Type II Diabetes.
- active agents of the invention are useful for preventing or ameHoriating diseases and symptoms associated with insulin resistance, as is demonstrated in animals in the Examples.
- NIDDM Type II diabetes mellitus
- disease symptoms secondary to hyperglycemia also occur in patients with NIDDM. These include nephropathy, peripheral neuropathy, retinopathy, microvascular disease, ulceration of the extremities, and consequences of nonenzymatic glycosylation of proteins, e.g. damage to collagen and other connective tissues. Attenuation of hyperglycemia reduces the rate of onset and severity of these consequences of diabetes. Because, as is demonstrated in the Examples, active agents and compositions of the invention help to reduce hyperglycemia in diabetes, they are useful for prevention and amelioration of complications of chronic hyperglycemia.
- Both human and non-human mammalian subjects can be treated in accordance with the treatment method of this invention.
- the optimal dose of a particular active agent of the invention for a particular subject can be determined in the clinical setting by a skilled clinician.
- the agent In the case of oral administration to a human for treatment of disorders related to insulin resistance, diabetes, hyperlipidemia, fatty liver disease, cachexia or obesity the agent is generally administered in a daily dose of from 1 mg to 400 mg, administered once or twice per day.
- oral administration to a mouse the agent is generally administered in a daily dose from 1 to 300 mg of the agent per kilogram of body weight.
- Active agents of the invention are used as monotherapy in diabetes or insulin resistance syndrome, or in combination with one or more other drugs with utility in these types of diseases, e.g.
- agents of the invention will improve the efficacy of other classes of drugs, permitting lower (and therefore less toxic) doses of such agents to be administered to patients with satisfactory therapeutic results.
- Type I Diabetes Mellitus A patient with Type I diabetes manages their disease primarily by self-administration of one to several doses of insulin per day, with frequent monitoring blood glucose to permit appropriate adjustment of the dose and timing of insulin administration. Chronic hyperglycemia leads to complications such as nephropathy, neuropathy, retinopathy, foot ulceration, and early mortality; hypoglycemia due to excessive insulin dosing can cause cognitive dysfunction or unconsciousness.
- a patient with Type I diabetes is treated with 1 to 400 mg/day of an active agent of this invention, in tablet or capsule form either as a single or a divided dose. The anticipated effect will be a reduction in the dose or frequency of administration of insulin required to maintain blood glucose in a satisfactory range, and a reduced incidence and severity of hypoglycemic episodes.
- a biologically active agent of this invention can be administered in conjunction with islet transplantation to help maintain the anti-diabetic efficacy of the islet transplant.
- Type II Diabetes Mellitus A typical patient with Type II diabetes (NIDDM) manages their disease by programs of diet and exercise as well as by taking medications such as metformin, glyburide, repaglinide, rosiglitazone, or acarbose, all of which provide some improvement in glycemic control in some patients, but none of which are free of side effects or eventual treatment failure due to disease progression. Islet failure occurs over time in patients with NIDDM, necessitating insulin injections in a large fraction of patients. It is anticipated that daily treatment with an active agent of the invention (with or without additional classes of antidiabetic medication) will improve glycemic control, reduce the rate of islet failure, and reduce the incidence and severity of typical symptoms of diabetes.
- NIDDM Type II diabetes
- active agents of the invention will reduce elevated serum triglycerides and fatty acids, thereby reducing the risk of cardiovascular disease, a major cause of death of diabetic patients.
- dose optimization is done in individual patients according to need, clinical effect, and susceptibility to side effects.
- Hyperlipidemia Elevated triglyceride and free fatty acid levels in blood affect a substantial fraction of the population and are an important risk factor for atherosclerosis and myocardial infarction. Active agents of the invention are useful for reducing circulating triglycerides and free fatty acids in hyperlipidemic patients. Hyperlipidemic patients often also have elevated blood cholesterol levels, which also increase the risk of cardiovascular disease. Cholesterol-lowering drugs such as HMG-CoA reductase inhibitors ("statins”) can be administered to hyperUpidemic patients in addition to agents of the invention, optionally incorporated into the same pharmaceutical composition.
- statins HMG-CoA reductase inhibitors
- Fatty Liver Disease A substantial fraction of the population is affected by fatty liver disease, also known as nonalcoholic steatohepatitis (NASH); NASH is often associated with obesity and diabetes. Hepatic steatosis, the presence of droplets of triglycerides with hepatocytes, predisposes the liver to chronic inflammation (detected in biopsy samples as infiltration of inflammatory leukocytes), which can lead to fibrosis and ci ⁇ hosis.
- NASH nonalcoholic steatohepatitis
- Fatty liver disease is generally detected by observation of elevated serum levels of liver-specific enzymes such as the transaminases ALT and AST, which serve as indices of hepatocyte injury, as well as by presentation of symptoms which include fatigue and pain in the region of the liver, though definitive diagnosis often requires a biopsy.
- liver-specific enzymes such as the transaminases ALT and AST, which serve as indices of hepatocyte injury, as well as by presentation of symptoms which include fatigue and pain in the region of the liver, though definitive diagnosis often requires a biopsy.
- the anticipated benefit is a reduction in liver inflammation and fat content, resulting in attenuation, halting, or reversal of the progression of NASH toward fibrosis and ci ⁇ hosis.
- This invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a biologically active agent as described herein and a pharmaceutically acceptable carrier.
- Further embodiments of the pharmaceutical composition of this invention comprise any one of the embodiments of the biologically active agents described above. In the interest of avoiding unnecessary redundancy, each such agent and group of agents is not being repeated, but they are incorporated into this description of pharmaceutical compositions as if they were repeated.
- the composition is adapted for oral administration, e.g. in the form of a tablet, coated tablet, dragee, hard or soft gelatin capsule, solution, emulsion or suspension.
- oral composition will comprise from 1 mg to 400 mg of such agent. It is convenient for the subject to swallow one or two tablets, coated tablets, dragees, or gelatin capsules per day.
- the composition can also be adapted for administration by any other conventional means of systemic administration including rectally, e.g. in tlie form of suppositories, parenterally, e.g. in the form of injection solutions, or nasally.
- the biologically active compounds can be processed with pharmaceutically inert, inorganic or organic carriers for the production of pharmaceutical compositions.
- Lactose, corn starch or derivatives thereof, talc, stearic acid or its salts and the like can be used, for example, as such ca ⁇ iers for tablets, coated tablets, dragees and hard gelatin capsules.
- Suitable carriers for soft gelatin capsules are, for example, vegetable oils, waxes, fats, semi-solid and liquid polyols and the like.
- no ca ⁇ iers are, however, usually required in the case of soft gelatin capsules, other than the soft gelatin itself.
- Suitable carriers for the production of solutions and syrups are, for example, water, polyols, glycerol, vegetable oils and the like.
- Suitable ca ⁇ iers for suppositories are, for example, natural or hardened oils, waxes, fats, semil-liquid or liquid polyols and the like.
- the pharmaceutical compositions can, moreover, contain preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, buffers, coating agents or antioxidants. They can also contain still other therapeutically valuable substances, particularly antidiabetic or hypolipidemic agents that act through mechanisms other than those underlying the effects of the compounds of the invention.
- Agents which can advantageously be combined with compounds of the invention in a single formulation include but are not limited to biguanides such as metformin, insulin releasing agents such as the sulfonylurea insulin releaser glyburide and other sulfonylurea insulin releasers, cholesterol-lowering drugs such as the "statin" HMG-CoA reductase inhibitors such as atrovastatin, lovastatin , pravastatin and simvastatin, PPAR-alpha agonists such as clofibrate and gemfibrozil, PPAR-gamma agonists such as thiazolidinediones (e.g.
- rosiglitazone and pioglitazone alpha-glucosidase inhibitors such as acarbose (which inhibit starch digestion), and prandial insulin releasers such as repaglinide.
- alpha-glucosidase inhibitors such as acarbose (which inhibit starch digestion)
- prandial insulin releasers such as repaglinide.
- Step B Preparation of 3-(2,6-Dimethylbenzyloxy)benzoic acid:
- Step A Mitsunobu Coupling - Ethyl 3-(2,6-dimethylbenzyloxy)benzoate
- the reaction mixture was filtered to remove the solids (14.3 g, tic showed it was TPP oxide) and the filter cake was rinsed with hexanes: ether 1:1 (60 mL).
- the filtrate was concentrated to give a yellow mixture of oil and solids. This was taken up in 100 mL ether and 100 mL hexanes and allowed to sit for ⁇ 1 h.
- the solids were collected by vacuum filtration (24.0 g, tic showed only TPP oxide, total solids removed was 38.3 g) and the filtrate was concentrated to give a cream colored solid.
- the solid was dissolved in 100 mL CH 2 C1 2 and applied to a pad of silica gel (9.5 cm diameter by 6 cm high, -325 g). This was eluted with CH 2 C1 2 and collected into 2 X 500 mL and 2x 250 mL flasks. The product and TPP coeluted into the first 2 flasks and TPP oxide was retained. Concentrated the first 2 fractions to give 23.6 g of white powder. LC MS (labeled M02130-01) showed 78% pure desired product with 11% TPP as the major impurity.
- the crude product was dissolved in -100 mL ether with heat and allowed to cool. A small amount of solid precipitated. Added 70 g silica gel and concentrated. This was applied to a pad of silica gel (260 g, more than equivalent to a Biotage 75S) and eluted with 1 L 5% ether in hexanes and collected -200 mL fractions (4 fractions). The first fraction contained TPP and the 4th fraction was almost pure product, the second and third were cross fractions. The silica gel was eluted with 1 L 30% ether in hexanes and collected into 3 fractions. Fractions 5 & 6 had product and were concentrated to give a white solid, 19.85 g ( 77% yield).
- Theoretical yield 9.01g; actual yield 5.0g; fractional yield 0.55
- the ester (10 g) from Step A was taken up in 50 mL absolute EtOH. It was not very soluble and addition 50 mL portions of EtOH was added until 250 mL was added. There were still some solids present and heat was applied to form a solution (46 °C). A solution of 7.5 mL 10 N NaOH diluted with 10 mL water was added and the solution was sti ⁇ ed for 1 h. Tic (hexanes: ether, UV) showed the ester was consumed and an intense spot appeared on the baseline.
- the reaction was concentrated on a rotary evaporator at 50 °C give a white solid.
- the solid was slurried in 250 mL deionized water and the insoluble material was collected by filtration. The filtrate was set aside for the time being.
- the filter cake was rinsed with 2 x 200 mL ether and examined by LC/MS after each wash. The purity was 98.4% and 98.7% respectively. The solids were sti ⁇ ed in 200 mL ether for 15 min and collected but filtration. LC/MS showed it was 99.5% pure. The solids were slu ⁇ ied in 100 mL deionzed water and treated with 2.5 mL concentrated HCI. A check with pH paper indicated pHl. The slu ⁇ y was sti ⁇ ed for 22 min and collected by vacuum filtration. The filter cake was rinsed with several portions of water (-100 mL total volume). Dried in vacuo at 45 °C with P 2 O 5 .
- Step A Synthesis of triphenylethylvalerate phosphonium bromide
- Step B Preparation of 6-[3-(2,6 dimethylbenzyloxy)-phenyl]-hex-5-enoic acid ethyl ester
- the reaction mixture was sti ⁇ ed and allowed to cool to room temperature.
- the reaction was analyzed after 1 hr. and LC-MS showed almost all the starting aldehyde left and -3% desired product.
- the reaction mixture was heated to 50°C and sti ⁇ ed for 3 hrs.
- the reaction was analyzed after 2 and 3 hrs.
- LC- MS showed -20% starting aldehyde left and 17% desired product.
- the reaction was cooled to room temperatare and placed in a refrigerator overnight.
- reaction mixture was allowed to warm to room temperature and sti ⁇ ed.
- a mixture of 5.56g (118mM) of triphenylethylvalerate phosphonium bromide and 0.312g of sodium hydride in 15.0 ml of DMSO was sti ⁇ ed for 30 min. under nitrogen.
- the mixture was added, in bolus, to the reaction, heated to 50°C and sti ⁇ ed for 6 hrs.
- Step D Preparation of 6-[3-(2,6-Dimethylbenzyloxy)-phenyl]-hexanoic acid
- the aqueous solution was extracted 3X with 50 ml of ethyl acetate.
- the aqueous layer was acidified with 3 ml of 6N aqueous HCI solution and extracted 3X with 50 ml of ethyl acetate.
- the combined organic layer was dried over sodium sulfate, filtered and concentrated in vacuo to afford ⁇ 2.2g of a gummy yellow solid.
- the residue was sti ⁇ ed in 75 ml of water for 30 min.
- the solids were collected by filtration and dried in a vacuum oven at 40°C to afford 1.62g (90.5%) of beige solid.
- LC- MS and NMR showed the desired product >98%.
- Step A Preparation of 5-[3-(2,6-dimethylbenzyloxy)-phenyl]-pent-4-enoic acid ethyl ester
- the reaction mixture was sti ⁇ ed and allowed to cool to room temperature for 3 hrs.
- the reaction was analyzed after 1 and 3 hrs.
- LC showed the progress of the reaction from -15% to -13% starting aldehyde left.
- the reaction mixture was heated to 50°C and stined for 2 hrs.
- the reaction was analyzed after 1 and 2 hrs.
- LC-MS showed little change from the previous samples with - 12% starting aldehyde left.
- the reaction mixture was cooled to room temperature and placed in a refrigerator overnight.
- reaction mixture was allowed to warm to room temperature and sti ⁇ ed.
- a mixture of 3.20g (70mM) of triphenylethylbutyrate phosphonium bromide and 0.185g of sodium hydride in 10.0 ml of DMSO was sti ⁇ ed for 30 min. under nitrogen.
- the mixture was added, in bolus, to the reaction and sti ⁇ ed at room temperature for 2 hrs.
- the reaction was analyzed after 1 and 2 hrs. LC showed the progress of the reaction from -13% to -4% starting aldehyde left.
- the reaction mixture was heated to 50°C and sti ⁇ ed for 2 hrs.
- the reaction was cooled to room temperatare and poured over 50g of ice with 50 ml of water.
- the aqueous mixture was extracted 3X with 125 ml of ethyl acetate and the combined organic layer was dried over sodium sulfate, filtered and concentrated in vacuo to afford 12.9g of a brown oil.
- LC showed -40% desired product.
- the oil dissolved in 30 ml of 95:5, hexanes: ethyl acetate and chromatographed on a BIOTAGE 75S silica gel column using 5 liters of 95:5, hexanes: ethyl acetate.
- the desired product eluted quickly, possibly due to residual DMSO from the work up.
- the fractions containing the desired product were combined and concentrated in vacuo to afford 4.9g of a yellow oil.
- the oil was dissolved in 10 ml of 1: 1, hexanes: chloroform and placed on 30g silica gel equilibrated with 1:1, hexanes: chloroform.
- the silica gel was eluted with 200 ml 1:1, hexanes: chloroform and 200 ml of 9:1, hexanes: ethyl acetate collecting 50 ml fractions. Pure fractions were combined and concentrated in vacuo to afford 3.40g (62.0%) of a faint yellow oil that mostly solidified upon standing.
- LC-MS and NMR show the desired product >98% with about a 30:70 cis to trans isomeric ratio based on the Wittig reaction producing predominantly the trans isomer.
- Step B Preparation of 5-[3-(2,6-dimethylbenzyloxy)-phenyl]-ethylpentanoate
- aqueous layer was acidified with 3 ml of 6N aqueous HCI solution and extracted 3X with 50 ml of ethyl acetate.
- the combined organic layer was dried over sodium sulfate, filtered and concentrated in vacuo to afford ⁇ 2.5g of a white gummy solid.
- the solid was sti ⁇ ed in 25 ml of hexanes for 30 min., collected by filtration and dried in a vacuum oven at 40°C to afford 2.12g (84.8%) of a white solid.
- LC-MS and NMR showed the desired product >99%.
- Step A Synthesis of ethyl-3-hydroxyphenylpropionate
- Step B Synthesis of ethyl-3-(2,6 dimethylbenzyloxy)phenylpropionate
- LC-MS showed mostly desired product with -4.5% starting material.
- the reaction was concentrated in vacuo to afford a dark yellow oil.
- 200 ml hexanes was added to the oil and the solution was sti ⁇ ed in an ice bath ( ⁇ 5°C) for 1 hr.
- the solids were collected by filtration and washed 3X with 40 ml of hexanes.
- the solids were analyzed and NMR showed that they are a mixture of triphenylphosphine oxide and reduced DIAD.
- LC-MS showed the hexanes filtrate to contain - 58% desired product. The filtrate was concentrated in vacuo to afford 10.2g of a yellow oil.
- Step C Synthesis of 3-(2,6-dimethylbenzyloxy) phenylpropionic acid
- the precipitated solid were collected by filtration, washed 3X with 25 ml of water and air-dried.
- the solids were slurried in 100 ml of hexanes and collect by filtration, washed 3X with 25 ml of hexanes and air- dried.
- LC-MS showed the solids to be -80% desired product.
- the solids were heated to 70°C in 44 ml of 3: 1, absolute ethanol: water mixture. The solution was stirred and allowed to cool to room temperature in a tap water bath.
- the solids were collected by filtration, washed with 20 ml of 3:1, absolute ethanol: water mixture and air-dried.
- LC-MS showed the solid to be - 98.5% desired product.
- the solids were heated to 70°C in 36 ml of 3:1, absolute ethanol: water mixture. The solution was sti ⁇ ed and allowed to cool to room temperature in a tap water bath.
- the solids were collected by filtration, washed with 20 ml of a 3:1, absolute ethanol: water mixture and air-dried.
- LC-MS and NMR showed the solids to be >99.5% desired product.
- the white solid was dried in a vacuum ovemat 40°C for 2 hrs. to afford 3.91g (52.9%).
- EXAMPLE A Antidiabetic effects in ob/ob mice.
- Obese (ob/ob) mice have a defect in the protein leptin, a regulator of appetite and fuel metabolism, leading to hyperphagia, obesity and diabetes.
- mice Male obese (ob/ob homozygote) C57BL/6J mice, approximately 8 weeks of age, were obtained from Jackson Labs (Bar Harbor, ME) and randomly assigned into groups of 5 animals each such that the body weights (45 -50 g) and serum glucose levels (>300 mg/dl in fed state) were similar between groups. A minimum of 7 days was allowed for adaptation after a ⁇ ival. All animals were maintained under controlled temperatare (23 °C), relative humidity (50 +.5 %) and light (7:00 - 19:00), and allowed free access to standard chow (Formulab Diet 5020 Quality Lab Products, Elkridge, MD) and water.
- Treatment cohorts were given daily oral doses of vehicle (1% hydroxypropyl- methylcellulose), Compounds Bl, CF, CA, CB, CC, or CD for 2 weeks.
- vehicle 1% hydroxypropyl- methylcellulose
- Compounds Bl, CF, CA, CB, CC, or CD for 2 weeks.
- 100 ⁇ l of venous blood was withdrawn in a heparinized capillary tube from the retro-orbital sinus of ob/ob mice for serum chemistry analysis.
- Table 15 Effects of Compounds Bl, CF, CA, CB, CC, and CD on plasma serum glucose, triglycerides, and free fatty acids in obese (ob/ob) mice
- EXAMPLE B Antidiabetic effects in db/db mice.
- db/db mice have a defect in leptin signaling, leading to hyperphagia, obesity and diabetes.
- db/db mice on a C57BL/KS background undergo failure of their insulin-producing pancreatic islet cells, resulting in progression from hyperinsuhnemia (associated with peripheral insulin resistance) to hypoinsulinemic diabetes.
- mice Male obese (db/db homozygote) C57BLKsola mice approximately 8 weeks of age, were obtained from Jackson Labs (Bar Harbor, ME) and randomly assigned into groups of 5 - 7 animals such that the body weights (50 -55 g) and serum glucose levels (>300 mg/dl in fed state) were similar between groups; male lean (db/+ heterozygote) mice served as cohort controls. A minimum of 7 days was allowed for adaptation after arrival. All animals were maintained under controlled temperature (23 °C), relative humidity (50 + 5 %) and light (7:00 - 19:00), and allowed free access to standard chow (Formulab Diet 5008, Quality Lab Products, Elkridge, MD) and water.
- Treatment cohorts were given daily oral doses of Vehicle (1% hydroxypropylmethylcellulose), Compounds Bl, CE, BT, BV, BV or Fenofibrate for 2 weeks.
- Vehicle 1% hydroxypropylmethylcellulose
- Compounds Bl, CE, BT, BV, BV or Fenofibrate were given daily oral doses of Vehicle (1% hydroxypropylmethylcellulose), Compounds Bl, CE, BT, BV, BV or Fenofibrate for 2 weeks.
- 100 ⁇ l of venous blood was withdrawn in a heparinized capillary tube from the retro-orbital sinus of db/db mice for serum chemistry analysis.
- Table 16 The effects of Compounds Bl, CE, BT, BU, BV and fenofibrate in db/db mice
- EXAMPLE C Antidiabetic effects in db/db mice.
- C57BL/Ksola mice have a defect in leptin signaling, leading to hyperphagia, obesity and diabetes. Moreover, unlike ob/ob mice on a C57BL/6J background, db/db mice on a C57BLKS background undergo failure of their insulin-producing pancreatic islet cells, resulting in progression from hyperinsulinemia (associated with peripheral insulin resistance) to hypoinsulinemic diabetes.
- mice Male obese (db/db homozygote) C57BL/Ksola mice approximately 8 weeks of age, were obtained from Jackson Labs (Bar Harbor, ME) and sorted into groups of 7 animals each animals such that the body weights (40 -45 g) and serum glucose levels (>300 mg/dl in fed state) were similar between groups. A minimum of 7 days was allowed for adaptation after a ⁇ ival. All animals were maintained under controlled temperature (23 °C), relative humidity (50 ⁇ 5 %) and light (7:00 - 19:00), and allowed free access to standard chow (Formulab Diet 5008, Quality Lab Products, Elkridge, MD) and water.
- Treatment cohorts were given daily oral doses of vehicle (1% hydroxypropylmethylcellulose), Compounds Bl, CF, CG, or phenylacetate for 17 days. At the end of the treatment period, blood samples were collected and serum glucose and triglycerides were measured. A statistically significant reduction in blood glucose or triglycerides versus animals treated with oral vehicle is considered a positive screening result for a drug.
- Table 18 The effects of Compounds Bl, CF, CG, and phenylacetate in a db/db mouse model of type I diabetes
- EXAMPLE D Transcription Activation potential of compounds on human and mouse PPAR ⁇ and PPAR ⁇ .
- Cells were seeded in 24 well plates the day prior to transfection at 5xl0 -2xl0 5 cells/well, depending upon cell type. Cells were transfected using Lipofectamine 2000 reagent from Invitrogen. A total of 0.8 ⁇ g DNA/well was added to 50 ⁇ L of Optimem Reduced Serum media (serum free; Gibco). Lipofectamine 2000 was added (2.5 ⁇ L/well) to another tube containing 50 ⁇ L of Optimem media. Plasmid DNA was added at a ratio of 4:3 (reporter: activator); where appropriate, salmon sperm DNA was substituted for activator expressing plasmid.
- the reporter plasmid used was pFR-Luc, which has the firefly luciferase gene under the control of a GAL4 UAS (STRATAGENE) containing promoter.
- the activator expressing plasmids contain yeast GAL4 DNA binding domain (dbd) fusion of either human PPAR ⁇ ligand binding domain (LBD; a.a. 167-468) or human PPAR ⁇ LBD (a.a. 176-479).
- DNA constructs containing the mouse PPAR ⁇ or PPAR ⁇ LBD fused to the GAL4 DNA binding domain were also used. The two solutions were incubated at room temperature for 5 min, and then combined. The combined solution was incubated at room temperature for approximately 30 min.
- lysate was added to 100 ⁇ L of firefly lucif erase substrate, mixed by pipetting, and analyzed on a luminometer for 10s using the integration function (relative luciferase units RLU) or on a Microbeta Trilux (luciferase counts per second/LCPS). Each treatment was performed in triplicate, and in multiple, separate experiments.
- Mouse PPAR ⁇ LBD fusion protein transcription activation potential in Hepal.6 cells (mouse hepatoma cell line). Values are in relative luciferase units (RLU) ⁇ standard deviation.
- Mouse PPAR ⁇ and PPAR ⁇ LBD fusion proteins transcription activation potential in C3A cells (human hepatoma cell line). Values are in luciferase counts per second (LCPS) ⁇ standard deviation.
- mice PPAR ⁇ and PPAR ⁇ LBD fusion proteins transcription activation potential in C3A cells. Values are in RLU ⁇ standard deviation.
- concentrations listed in the preceding table are for the test compounds.
- concentration of rosiglitazone was one-fifth the test compound concentration; thus l ⁇ M test compound was compared against 0.2 ⁇ M rosiglitzaone, etc.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Diabetes (AREA)
- Epidemiology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Neurology (AREA)
- Cardiology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurosurgery (AREA)
- Endocrinology (AREA)
- Dermatology (AREA)
- Gastroenterology & Hepatology (AREA)
- Child & Adolescent Psychology (AREA)
- Vascular Medicine (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2513092A CA2513092C (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
JP2005518490A JP4697962B2 (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
AU2004212905A AU2004212905B2 (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
EP04709467.7A EP1601251B1 (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
BRPI0407506-4A BRPI0407506A (en) | 2003-02-13 | 2004-02-09 | compounds for the treatment of metabolic disorders, their use and pharmaceutical composition comprising the same |
NZ542072A NZ542072A (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
ES04709467.7T ES2530235T3 (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
MXPA05008600A MXPA05008600A (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders. |
KR1020057014896A KR101106631B1 (en) | 2003-02-13 | 2004-02-09 | Compounds for the Treatment of Metabolic Disorders |
CN2004800041504A CN1750758B (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
US10/531,630 US7615575B2 (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
UAA200508520A UA81013C2 (en) | 2003-02-13 | 2004-09-02 | Compounds for the treatment of metabolic disorders |
IL169332A IL169332A (en) | 2003-02-13 | 2005-06-21 | (alkyloxyphenyl)carboxylic acids and esters and medicaments comprising same for treating metabolic disorders |
NO20053211A NO334606B1 (en) | 2003-02-13 | 2005-06-30 | Compounds, pharmaceutical preparations containing them as well as such compounds and preparations for the treatment of metabolic disorders |
HK05111437.3A HK1079400A1 (en) | 2003-02-13 | 2005-12-13 | Compounds for the treatment of metabolic disorders |
US11/841,489 US7605181B2 (en) | 2003-02-13 | 2007-08-20 | Method for the treatment of metabolic disorders |
AU2008229824A AU2008229824A1 (en) | 2003-02-13 | 2008-10-08 | Compounds for the treatment of metabolic disorders |
US12/550,482 US7932290B2 (en) | 2003-02-13 | 2009-08-31 | Method for the treatment of metabolic disorders |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44716803P | 2003-02-13 | 2003-02-13 | |
US60/447,168 | 2003-02-13 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10531630 A-371-Of-International | 2004-02-09 | ||
US11/841,489 Continuation US7605181B2 (en) | 2003-02-13 | 2007-08-20 | Method for the treatment of metabolic disorders |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004073611A2 true WO2004073611A2 (en) | 2004-09-02 |
WO2004073611A3 WO2004073611A3 (en) | 2004-11-25 |
Family
ID=32908414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/003718 WO2004073611A2 (en) | 2003-02-13 | 2004-02-09 | Compounds for the treatment of metabolic disorders |
Country Status (19)
Country | Link |
---|---|
US (3) | US7615575B2 (en) |
EP (2) | EP2266946A3 (en) |
JP (2) | JP4697962B2 (en) |
KR (1) | KR101106631B1 (en) |
CN (1) | CN1750758B (en) |
AU (2) | AU2004212905B2 (en) |
BR (1) | BRPI0407506A (en) |
CA (1) | CA2513092C (en) |
ES (1) | ES2530235T3 (en) |
HK (1) | HK1079400A1 (en) |
IL (1) | IL169332A (en) |
MX (1) | MXPA05008600A (en) |
NO (1) | NO334606B1 (en) |
NZ (1) | NZ542072A (en) |
PL (1) | PL377712A1 (en) |
RU (2) | RU2005128501A (en) |
UA (1) | UA81013C2 (en) |
WO (1) | WO2004073611A2 (en) |
ZA (1) | ZA200504558B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1618086A2 (en) * | 2003-04-22 | 2006-01-25 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
WO2007087504A2 (en) | 2006-01-25 | 2007-08-02 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
WO2007087505A2 (en) | 2006-01-25 | 2007-08-02 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
WO2007092729A2 (en) | 2006-02-02 | 2007-08-16 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
WO2007056771A3 (en) * | 2005-11-09 | 2007-11-22 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
EP1868595A2 (en) * | 2005-04-01 | 2007-12-26 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
WO2007146768A3 (en) * | 2006-06-09 | 2008-02-21 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
WO2008022267A3 (en) * | 2006-08-17 | 2008-07-03 | Wellstat Therapeutics Corp | Combination treatment for metabolic disorders |
EP1976378A2 (en) * | 2006-01-25 | 2008-10-08 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP2001461A2 (en) * | 2006-03-31 | 2008-12-17 | Wellstat Therapeutics Corporation | Combination treatment of metabolic disorders |
EP2019673A2 (en) * | 2006-05-18 | 2009-02-04 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
US7514555B2 (en) | 2003-04-15 | 2009-04-07 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
JP2009528375A (en) * | 2006-02-28 | 2009-08-06 | ウェルスタット セラピューティクス コーポレイション | Compounds for treating metabolic disorders |
WO2009151695A1 (en) | 2008-03-13 | 2009-12-17 | Wellstat Therapeutics Corporation | Compounds and method for reducing uric acid |
US8044243B2 (en) | 2006-02-13 | 2011-10-25 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
US10085957B2 (en) | 2010-09-08 | 2018-10-02 | Wellstat Therapeutics Corporation | Benzoic acid compounds for reducing uric acid |
CN113166024A (en) * | 2018-10-11 | 2021-07-23 | 巴斯夫股份公司 | Aromatic compounds and their medical use |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HU230352B1 (en) | 2001-06-12 | 2016-02-29 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders and pharmaceutical compositions containing them |
EP1556085A4 (en) * | 2002-11-01 | 2012-08-22 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
KR101106631B1 (en) * | 2003-02-13 | 2012-01-20 | 웰스태트 테러퓨틱스 코포레이션 | Compounds for the Treatment of Metabolic Disorders |
NZ543789A (en) * | 2003-04-30 | 2008-03-28 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
CN1835743A (en) * | 2003-08-20 | 2006-09-20 | 维尔斯达医疗公司 | Compounds for the treatment of metabolic disorders |
FR2917084B1 (en) * | 2007-06-05 | 2009-07-17 | Galderma Res & Dev | NOVEL 3-PHENYL PROPANOIC ACID DERIVATIVES OF PPAR-TYPE RECEPTORS, THEIR METHOD OF PREPARATION AND THEIR USE IN COSMETIC OR PHARMACEUTICAL COMPOSITIONS |
US8481595B2 (en) * | 2008-01-15 | 2013-07-09 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
AU2013200226B2 (en) * | 2008-03-13 | 2015-01-15 | Wellstat Therapeutics Corporation | Compounds and method for reducing uric acid |
CN102573462B (en) * | 2009-10-13 | 2014-04-16 | 维尔斯达医疗公司 | 3-substituted compounds for reducing uric acid |
CN102399148B (en) * | 2010-09-14 | 2014-03-05 | 中国科学院成都生物研究所 | Hypolipidemic compounds, preparation method thereof and purpose thereof |
FR2976943B1 (en) * | 2011-06-23 | 2013-07-12 | Metabolys | PIPERAZINE DERIVATIVES, PROCESSES FOR THEIR PREPARATION AND USES THEREOF IN THE TREATMENT OF INSULIN RESISTANCE |
WO2016054726A1 (en) * | 2014-10-10 | 2016-04-14 | Prometic Biosciences Inc. | Substituted aromatic compounds and pharmaceutical compositions for the prevention and treatment of diabetes |
US10702488B2 (en) * | 2017-12-19 | 2020-07-07 | Theriac Biomedical Inc. | PPAR-γ activators, HDAC inhibitors and their therapeutical usages |
US11497723B1 (en) * | 2017-12-19 | 2022-11-15 | Tony Antakly | PPAR-gamma activators, HDAC inhibitors and their therapeutical usages |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100341A2 (en) | 2001-06-12 | 2002-12-19 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
Family Cites Families (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2100341A (en) * | 1934-11-24 | 1937-11-30 | United Shoe Machinery Corp | Shoe bottom coating machine |
GB1393854A (en) * | 1973-02-26 | 1975-05-14 | Pfizer | Benzoic acid compounds and pharmaceutical compositions containing them |
US4067892A (en) * | 1973-08-23 | 1978-01-10 | Beecham Group Limited | Substituted (4-carboxyphenoxy) phenyl alkane compounds |
CS181686B2 (en) * | 1974-01-14 | 1978-03-31 | Isf Spa | Process for preparing 4-cyclopropylmethylenoxy-3-chlorphenylacetic acid |
CS175831B1 (en) | 1974-12-17 | 1977-05-31 | ||
GB1561350A (en) | 1976-11-05 | 1980-02-20 | May & Baker Ltd | Benzamide derivatives |
US4268442A (en) * | 1978-11-14 | 1981-05-19 | Sagami Chemical Research Center | Process for preparing aromatic acetic acid |
EP0173748B1 (en) | 1984-02-14 | 1990-01-03 | HIRAI, Hidefumi | Process for producing substituted unsaturated six-membered ring compounds from phenol derivatives |
EP0279630B1 (en) | 1987-02-16 | 1993-10-13 | Konica Corporation | Developer for light-sensitive lithographic printing plate capable of processing commonly the negative-type and the positive type and developer composition for light-sensitive material |
JPH0770025B2 (en) | 1987-09-16 | 1995-07-31 | 富士通株式会社 | Method of manufacturing thin film magnetic head |
US4923501A (en) | 1987-11-04 | 1990-05-08 | Kumiai Chemical Industry Co., Ltd. | Pyrimidine derivatives, processes for their production, and herbicidal method and compositions |
DE3738406A1 (en) * | 1987-11-12 | 1989-05-24 | Henkel Kgaa | SEBOSUPPRESSIVE TOPICAL PREPARATIONS |
JPH01216961A (en) | 1988-02-25 | 1989-08-30 | Takeda Chem Ind Ltd | 12-lipoxygenase inhibitor |
GB8806471D0 (en) * | 1988-03-18 | 1988-04-20 | Tisdale M J | Biologically active material characterised by catabolic activity generally associated with cachexia inducing tumours |
US4897397A (en) * | 1988-12-16 | 1990-01-30 | Schering Corporation | Aryl-alkynoic, alkenoic or alkanoic compounds and compositions useful as antiallergy and anti-inflammatory agents |
JPH0348603A (en) | 1989-07-14 | 1991-03-01 | Wakayama Pref Gov | Antimicrobial and deodorizing material |
HUT60458A (en) | 1991-02-01 | 1992-09-28 | Sandoz Ag | Process for producing benzyloxyphenyl derivatives and pharmaceutical compositions comprising same |
US5589492A (en) * | 1992-04-10 | 1996-12-31 | Smithkline Beecham Plc | Heterocyclic compounds and their use in the treatment of Type-II diabetes |
EP0659047A1 (en) * | 1992-09-09 | 1995-06-28 | E.I. Du Pont De Nemours And Company | Herbicidal benzene compounds |
US5484926A (en) | 1993-10-07 | 1996-01-16 | Agouron Pharmaceuticals, Inc. | HIV protease inhibitors |
JPH06293700A (en) | 1993-04-08 | 1994-10-21 | Nippon Soda Co Ltd | Production of 6-salicylic acid |
GB9315595D0 (en) | 1993-07-28 | 1993-09-08 | Res Inst Medicine Chem | New compounds |
JPH07206658A (en) | 1994-01-12 | 1995-08-08 | Shiseido Co Ltd | Therapeutic agent for acne vulgaris |
GB9401460D0 (en) | 1994-01-26 | 1994-03-23 | Rhone Poulenc Rorer Ltd | Compositions of matter |
JPH08119959A (en) | 1994-10-20 | 1996-05-14 | Oyo Seikagaku Kenkyusho | Xhanthone derivative and inhibitor of monoamine oxidase containing the same as active ingredient |
US5728718A (en) | 1994-12-20 | 1998-03-17 | The United States Of America As Represented By The Department Of Health And Human Services | 2,5-diamino-3,4-disubstituted-1,6-diphenylhexane isosteres comprising benzamide, sulfonamide and anthranilamide subunits and methods of using same |
US5530157A (en) | 1995-02-16 | 1996-06-25 | Scios Nova Inc. | Anti-inflammatory benzoic acid derivatives |
FR2730731B1 (en) | 1995-02-20 | 1997-04-04 | Rhone Poulenc Chimie | CARBOXYLATION PROCESS OF AN AROMATIC ETHER |
WO1996028423A1 (en) | 1995-03-15 | 1996-09-19 | Sankyo Company, Limited | Dipeptide compounds having ahpba structure |
JPH08325250A (en) | 1995-05-31 | 1996-12-10 | Sumitomo Metal Ind Ltd | New substituted phenol derivative |
US5519133A (en) | 1995-06-02 | 1996-05-21 | American Cyanamid Co. | 3-(3-aryloxyphenyl)-1-(substituted methyl)-s-triazine-2,4,6-oxo or thiotrione herbicidal agents |
US6423704B2 (en) | 1995-12-20 | 2002-07-23 | Aventis Pharmaceuticals Inc. | Substituted 4-(1H-benzimidazol-2-yl)[1,4]diazepanes useful for the treatment of allergic diseases |
US6194406B1 (en) | 1995-12-20 | 2001-02-27 | Aventis Pharmaceuticals Inc. | Substituted 4-(1H-benzimidazol-2-yl)[1,4]diazepanes useful for the treatment of allergic disease |
WO1997025992A1 (en) | 1996-01-16 | 1997-07-24 | Merck & Co., Inc. | Tocolytic oxytocin receptor antagonists |
CA2255858C (en) | 1996-05-24 | 2007-09-11 | Neurosearch A/S | Phenyl derivatives containing an acidic group, their preparation and their use as chloride channel blockers |
CA2260999C (en) | 1996-07-19 | 2006-07-11 | Takeda Chemical Industries, Ltd. | Heterocyclic compounds, their production and use in tyrosine kinase inhibition |
JPH1087489A (en) | 1996-09-13 | 1998-04-07 | Sankyo Co Ltd | Medicine containing ahpba structure-containing dipeptide compound as active ingredient |
EP0927035A4 (en) | 1996-09-13 | 2002-11-13 | Merck & Co Inc | Thrombin inhibitors |
JP3981771B2 (en) | 1996-10-19 | 2007-09-26 | 株式会社クレハ | 2-Benzyloxy-6-alkoxybenzoic acid derivative, method for producing the same, and agricultural and horticultural fungicide |
AU8750298A (en) * | 1997-08-28 | 1999-03-22 | Ono Pharmaceutical Co. Ltd. | Peroxisome proliferator-activated receptor controllers |
JP2003517427A (en) | 1997-09-09 | 2003-05-27 | メルク エンド カムパニー インコーポレーテッド | 3- (iodophenoxymethyl) carbapenem antibacterial agent |
DE69833036T2 (en) | 1997-09-30 | 2006-06-22 | Daiichi Pharmaceutical Co., Ltd. | sulfonyl |
US6376546B1 (en) | 1997-10-14 | 2002-04-23 | Asahi Kasei Kabushiki Kaisha | Biphenyl-5-alkanoic acid derivatives and use thereof |
US6384080B1 (en) * | 1998-04-20 | 2002-05-07 | Fujisawa Pharmaceutical Co., Ltd. | Anthranilic acid derivatives as inhibitors of the cGMP-phosphodiesterase |
JP4154773B2 (en) | 1998-11-13 | 2008-09-24 | 住友電気工業株式会社 | Single crystal manufacturing method and apparatus |
GB9914371D0 (en) | 1999-06-18 | 1999-08-18 | Smithkline Beecham Plc | Novel compounds |
CA2325358C (en) * | 1999-11-10 | 2005-08-02 | Pfizer Products Inc. | 7-¬(4'-trifluoromethyl-biphenyl-2-carbonyl)amino|-quinoline-3-carboxylic acid amides, and methods of inhibiting the secretion of apolipoprotein b |
AU1624801A (en) * | 1999-11-19 | 2001-05-30 | Corvas International, Inc. | Plasminogen activator inhibitor antagonists related applications |
AUPQ570100A0 (en) * | 2000-02-17 | 2000-03-09 | Fujisawa Pharmaceutical Co., Ltd. | Beta-alanine derivatives and their use as receptor antagonists |
US6632765B1 (en) | 2000-06-23 | 2003-10-14 | Chervon U.S.A. Inc. | Catalyst regeneration via reduction with hydrogen |
BRPI0112115B8 (en) | 2000-06-28 | 2021-05-25 | Japan Tobacco Inc | quinolinyl and benzothiazolyl ppar-gamma modulator compounds |
AU2001267878A1 (en) | 2000-07-05 | 2002-01-14 | Ajinomoto Co. Inc. | Hypoglycemics |
AR031126A1 (en) | 2000-08-29 | 2003-09-10 | Abbott Lab | AMINO ACIDS (OXO) INHIBITING ACETICS OF PROTEIN TIROSINA FOSFATASA |
AR035216A1 (en) | 2000-12-01 | 2004-05-05 | Astrazeneca Ab | MANDELIC ACID DERIVATIVES, PHARMACEUTICALLY ACCEPTABLE DERIVATIVES, USE OF THESE DERIVATIVES FOR THE MANUFACTURE OF MEDICINES, TREATMENT METHODS, PROCESSES FOR THE PREPARATION OF THESE DERIVATIVES, AND INTERMEDIARY COMPOUNDS |
DE10135027A1 (en) * | 2001-07-18 | 2003-02-06 | Solvay Pharm Gmbh | Use of trifluoroacetylalkyl-substituted phenyl, phenol and benzoyl derivatives in the treatment and / or prophylaxis of Obestias and its concomitant and / or secondary diseases |
ES2319753T3 (en) * | 2002-02-21 | 2009-05-12 | Asahi Kasei Pharma Corporation | DERIVED FROM THE SUBSTITUTED PHENYLALCANIC ACID AND USE OF THE SAME. |
EP1556085A4 (en) * | 2002-11-01 | 2012-08-22 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
DE10257785A1 (en) * | 2002-12-11 | 2004-07-01 | Bayer Healthcare Ag | isophthalic acid derivatives |
US7601868B2 (en) | 2003-02-12 | 2009-10-13 | Takeda Pharmaceutical Company Limited | Amine derivative |
KR101106631B1 (en) * | 2003-02-13 | 2012-01-20 | 웰스태트 테러퓨틱스 코포레이션 | Compounds for the Treatment of Metabolic Disorders |
JP4282345B2 (en) | 2003-03-12 | 2009-06-17 | 株式会社日立製作所 | Semiconductor integrated circuit device |
CN101912380A (en) | 2003-04-15 | 2010-12-15 | 维尔斯达医疗公司 | The chemical compound that is used for the treatment of metabolism disorder |
EP1618086B1 (en) * | 2003-04-22 | 2009-12-02 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
NZ543789A (en) * | 2003-04-30 | 2008-03-28 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
WO2005016862A1 (en) * | 2003-08-14 | 2005-02-24 | Asahi Kasei Pharma Corporation | Substituted arylalkanoic acid derivative and use thereof |
WO2005019151A1 (en) | 2003-08-20 | 2005-03-03 | Eli Lilly And Company | Ppar modulators |
CN1835743A (en) | 2003-08-20 | 2006-09-20 | 维尔斯达医疗公司 | Compounds for the treatment of metabolic disorders |
US7541455B2 (en) * | 2003-12-22 | 2009-06-02 | Ventana Medical Systems, Inc. | Microwave mediated synthesis of nucleic acid probes |
ATE540675T1 (en) * | 2005-04-01 | 2012-01-15 | Wellstat Therapeutics Corp | COMPOUNDS FOR THE TREATMENT OF METABOLIC DISORDERS |
UA95613C2 (en) * | 2005-11-09 | 2011-08-25 | Уеллстат Терепьютикс Корпорейшн | Compounds for the treatment of metabolic disorders |
US7820721B2 (en) * | 2006-01-25 | 2010-10-26 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1976378A4 (en) * | 2006-01-25 | 2010-06-09 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
KR20080089453A (en) * | 2006-01-25 | 2008-10-06 | 웰스태트 테러퓨틱스 코포레이션 | Compounds for the treatment of metabolic disorders |
EP1978948A4 (en) * | 2006-02-02 | 2010-06-16 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
US8044243B2 (en) * | 2006-02-13 | 2011-10-25 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
MX2008014560A (en) * | 2006-05-18 | 2008-11-28 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders. |
-
2004
- 2004-02-09 KR KR1020057014896A patent/KR101106631B1/en not_active IP Right Cessation
- 2004-02-09 AU AU2004212905A patent/AU2004212905B2/en not_active Ceased
- 2004-02-09 US US10/531,630 patent/US7615575B2/en not_active Expired - Fee Related
- 2004-02-09 NZ NZ542072A patent/NZ542072A/en not_active IP Right Cessation
- 2004-02-09 EP EP10184293A patent/EP2266946A3/en not_active Withdrawn
- 2004-02-09 BR BRPI0407506-4A patent/BRPI0407506A/en not_active Application Discontinuation
- 2004-02-09 MX MXPA05008600A patent/MXPA05008600A/en active IP Right Grant
- 2004-02-09 CN CN2004800041504A patent/CN1750758B/en not_active Expired - Fee Related
- 2004-02-09 RU RU2005128501/15A patent/RU2005128501A/en not_active Application Discontinuation
- 2004-02-09 WO PCT/US2004/003718 patent/WO2004073611A2/en active Application Filing
- 2004-02-09 CA CA2513092A patent/CA2513092C/en not_active Expired - Fee Related
- 2004-02-09 ES ES04709467.7T patent/ES2530235T3/en not_active Expired - Lifetime
- 2004-02-09 JP JP2005518490A patent/JP4697962B2/en not_active Expired - Fee Related
- 2004-02-09 PL PL377712A patent/PL377712A1/en unknown
- 2004-02-09 EP EP04709467.7A patent/EP1601251B1/en not_active Expired - Lifetime
- 2004-09-02 UA UAA200508520A patent/UA81013C2/en unknown
-
2005
- 2005-06-03 ZA ZA200504558A patent/ZA200504558B/en unknown
- 2005-06-21 IL IL169332A patent/IL169332A/en not_active IP Right Cessation
- 2005-06-30 NO NO20053211A patent/NO334606B1/en not_active IP Right Cessation
- 2005-12-13 HK HK05111437.3A patent/HK1079400A1/en not_active IP Right Cessation
-
2007
- 2007-08-20 US US11/841,489 patent/US7605181B2/en not_active Expired - Fee Related
-
2008
- 2008-10-08 AU AU2008229824A patent/AU2008229824A1/en not_active Abandoned
- 2008-12-24 RU RU2008151414/15A patent/RU2521284C2/en not_active IP Right Cessation
-
2009
- 2009-07-24 JP JP2009173719A patent/JP2009242434A/en not_active Withdrawn
- 2009-08-31 US US12/550,482 patent/US7932290B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002100341A2 (en) | 2001-06-12 | 2002-12-19 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7514555B2 (en) | 2003-04-15 | 2009-04-07 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
US7973052B2 (en) | 2003-04-15 | 2011-07-05 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
US7361686B2 (en) | 2003-04-22 | 2008-04-22 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1618086A4 (en) * | 2003-04-22 | 2007-05-09 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
EP1618086A2 (en) * | 2003-04-22 | 2006-01-25 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1868595A4 (en) * | 2005-04-01 | 2010-06-09 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
US8022249B2 (en) | 2005-04-01 | 2011-09-20 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1868595A2 (en) * | 2005-04-01 | 2007-12-26 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
JP2009514987A (en) * | 2005-11-09 | 2009-04-09 | ウェルスタット セラピューティクス コーポレイション | Compounds for the treatment of metabolic disorders |
AU2006311266B2 (en) * | 2005-11-09 | 2011-09-29 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
US8178675B2 (en) | 2005-11-09 | 2012-05-15 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
KR101344392B1 (en) * | 2005-11-09 | 2013-12-23 | 웰스태트 테러퓨틱스 코포레이션 | Compounds For The Treatement Of Metabolic Disorders |
WO2007056771A3 (en) * | 2005-11-09 | 2007-11-22 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
CN102743368A (en) * | 2005-11-09 | 2012-10-24 | 维尔斯达医疗公司 | Compounds for the treatment of metabolic disorders |
WO2007087505A2 (en) | 2006-01-25 | 2007-08-02 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1976378A2 (en) * | 2006-01-25 | 2008-10-08 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1976377A2 (en) * | 2006-01-25 | 2008-10-08 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1976510A2 (en) * | 2006-01-25 | 2008-10-08 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1976510A4 (en) * | 2006-01-25 | 2010-06-09 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
US7947735B2 (en) | 2006-01-25 | 2011-05-24 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
US7915429B2 (en) | 2006-01-25 | 2011-03-29 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
US7820721B2 (en) | 2006-01-25 | 2010-10-26 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1976377A4 (en) * | 2006-01-25 | 2010-06-23 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
WO2007087504A2 (en) | 2006-01-25 | 2007-08-02 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1976378A4 (en) * | 2006-01-25 | 2010-06-09 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
EP1978948A2 (en) * | 2006-02-02 | 2008-10-15 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
WO2007092729A2 (en) | 2006-02-02 | 2007-08-16 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP1978948A4 (en) * | 2006-02-02 | 2010-06-16 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
US8044243B2 (en) | 2006-02-13 | 2011-10-25 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
JP2009528375A (en) * | 2006-02-28 | 2009-08-06 | ウェルスタット セラピューティクス コーポレイション | Compounds for treating metabolic disorders |
US8338480B2 (en) | 2006-03-31 | 2012-12-25 | Wellstat Therapeutics Corporation | Combination treatment of metabolic disorders |
EP2001461A2 (en) * | 2006-03-31 | 2008-12-17 | Wellstat Therapeutics Corporation | Combination treatment of metabolic disorders |
JP2009532372A (en) * | 2006-03-31 | 2009-09-10 | ウェルスタット セラピューティクス コーポレイション | Combined treatment of metabolic disorders |
EP2001461A4 (en) * | 2006-03-31 | 2010-06-09 | Wellstat Therapeutics Corp | Combination treatment of metabolic disorders |
AU2007235145B2 (en) * | 2006-03-31 | 2011-09-22 | Wellstat Therapeutics Corporation | Combination treatment of metabolic disorders |
JP2009537559A (en) * | 2006-05-18 | 2009-10-29 | ウェルスタット セラピューティクス コーポレイション | Compounds for the treatment of metabolic disorders |
US7935689B2 (en) | 2006-05-18 | 2011-05-03 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP2019673A4 (en) * | 2006-05-18 | 2010-06-16 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
EP2019673A2 (en) * | 2006-05-18 | 2009-02-04 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
AU2007257854B2 (en) * | 2006-06-09 | 2012-04-12 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP2026659A2 (en) * | 2006-06-09 | 2009-02-25 | Wellstat Therapeutics Corporation | Compounds for the treatment of metabolic disorders |
EP2026659A4 (en) * | 2006-06-09 | 2010-06-30 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
WO2007146768A3 (en) * | 2006-06-09 | 2008-02-21 | Wellstat Therapeutics Corp | Compounds for the treatment of metabolic disorders |
JP2009539877A (en) * | 2006-06-09 | 2009-11-19 | ウェルスタット セラピューティクス コーポレイション | Compounds for the treatment of metabolic disorders |
KR101391905B1 (en) * | 2006-06-09 | 2014-05-07 | 웰스태트 테러퓨틱스 코포레이션 | compounds for the treatment of metabolic disorders |
WO2008022267A3 (en) * | 2006-08-17 | 2008-07-03 | Wellstat Therapeutics Corp | Combination treatment for metabolic disorders |
WO2009151695A1 (en) | 2008-03-13 | 2009-12-17 | Wellstat Therapeutics Corporation | Compounds and method for reducing uric acid |
US8829058B2 (en) | 2008-03-13 | 2014-09-09 | Wellstat Therapeutics Corporation | Compounds and method for reducing uric acid |
US9115072B2 (en) | 2008-03-13 | 2015-08-25 | Wellstat Therapeutics Corporation | Compounds and method for reducing uric acid |
EP3517109A1 (en) * | 2008-03-13 | 2019-07-31 | Wellstat Therapeutics Corporation | Compounds and method for reducing uric acid |
US10085957B2 (en) | 2010-09-08 | 2018-10-02 | Wellstat Therapeutics Corporation | Benzoic acid compounds for reducing uric acid |
CN113166024A (en) * | 2018-10-11 | 2021-07-23 | 巴斯夫股份公司 | Aromatic compounds and their medical use |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7605181B2 (en) | Method for the treatment of metabolic disorders | |
AU2006311266B2 (en) | Compounds for the treatment of metabolic disorders | |
US20090005451A1 (en) | Compounds for the treatment of metabolic disorders | |
NZ570100A (en) | Compounds for the treatment of metabolic disorders | |
WO2007087505A2 (en) | Compounds for the treatment of metabolic disorders | |
NZ569729A (en) | Compounds for the treatment of metabolic disorders | |
EP1618086B1 (en) | Compounds for the treatment of metabolic disorders | |
EP1868595B1 (en) | Compounds for the treatment of metabolic disorders | |
NZ570334A (en) | Compounds for the treatment of metabolic disorders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006247309 Country of ref document: US Ref document number: 10531630 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200504558 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2468/DELNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004212905 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 169332 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2004212905 Country of ref document: AU Date of ref document: 20040209 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004212905 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2513092 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005518490 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 377712 Country of ref document: PL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048041504 Country of ref document: CN Ref document number: 1020057014896 Country of ref document: KR Ref document number: PA/a/2005/008600 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 542072 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004709467 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005128501 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057014896 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004709467 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0407506 Country of ref document: BR |
|
WWP | Wipo information: published in national office |
Ref document number: 10531630 Country of ref document: US |