WO2004073210A1 - Method, base station and mobile station for tdd operation in a communication system - Google Patents
Method, base station and mobile station for tdd operation in a communication system Download PDFInfo
- Publication number
- WO2004073210A1 WO2004073210A1 PCT/GB2004/000526 GB2004000526W WO2004073210A1 WO 2004073210 A1 WO2004073210 A1 WO 2004073210A1 GB 2004000526 W GB2004000526 W GB 2004000526W WO 2004073210 A1 WO2004073210 A1 WO 2004073210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tdd
- fdd
- operating
- frequency band
- downlink
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000001228 spectrum Methods 0.000 claims abstract description 15
- 230000011664 signaling Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 3
- 230000010267 cellular communication Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 1
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/204—Multiple access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1438—Negotiation of transmission parameters prior to communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2643—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J4/00—Combined time-division and frequency-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1469—Two-way operation using the same type of signal, i.e. duplex using time-sharing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/04—Traffic adaptive resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/10—Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/06—Hybrid resource partitioning, e.g. channel borrowing
Definitions
- This invention relates to communication systems and particularly Time Division Duplex (TDD) operation in cellular communication systems.
- TDD Time Division Duplex
- first and second generation cellular standards all use "Frequency Division Duplex” (FDD) in which there are separate downlink (base station to mobile) and uplink (mobile to base station) frequency allocations. These allocations are separated by a “duplex spacing” to prevent interference between the simultaneous transmission and reception taking place at both the base station and mobile. FDD allocations are typically termed “paired spectrum” .
- FDD Frequency Division Duplex
- Time Division Duplex (TDD) is used in more recent standards, such as “3 rd Generation Partnership Project” (3GPP) "Time Division - Code Division Multiple Access” (TD-CDMA) and 3GPP “Time Division - Synchronous Code Division Multiple Access” (TD-SCDMA) .
- 3GPP 3 rd Generation Partnership Project
- TD-CDMA Time Division - Code Division Multiple Access
- TD-SCDMA Time Division - Synchronous Code Division Multiple Access
- TDD is not used in FDD bands, because of interference concerns.
- TDD can operate in the mobile transmit (uplink) portion of a FDD band without detrimental interference.
- Telecommunication Union designated ⁇ 3G' band provides evidence of the feasibility of this.
- the frequency allocation for IMT-2000 is shown in FIG. 1.
- TDD Time Division Duplex
- TDD technology can normally only be operated in the FDD uplink part of the spectrum, leaving the FDD downlink spectrum unutilized and effectively 'wasted' .
- FIG. 1 shows a block schematic illustration of IMT-2000 frequency allocation
- FIG. 2 shows a block schematic illustration of TDD with auxiliary downlink utilization
- FIG. 3 shows a block schematic illustration of system architecture of TDD with auxiliary downlink.
- the present invention is based on the realisation by the inventors that it is possible to: • Enable operation of TDD technology in a band allocated as paired spectrum for FDD
- auxiliary TDD downlink channel • Provide the ability to use the FDD downlink spectrum effectively to provide capacity and therefore avoid wastage. This is referred to as an auxiliary TDD downlink channel.
- FIG. 2 An example of TDD operation with auxiliary downlink is shown in FIG. 2.
- standard TDD operates in the uplink FDD spectrum (210) while the auxiliary downlink operates in the downlink FDD spectrum (220) .
- an example of a 15-time slot frame structure is shown.
- An upward pointing arrow in a radio frame denotes an uplink time slot
- a downward pointing arrow denotes a downlink time slot.
- system capacity is expanded by use of the auxiliary downlink.
- FIG. 3 shows the basic architecture of a 3GPP cellular communication system 300 incorporating the present invention.
- a NodeB (or base station) 310 is controlled (over the Aub' interface) by a Radio Network Controller (RNC) 320 and communicates over the Uu radio interface with User Equipment (UE or mobile terminal) 330.
- RNC Radio Network Controller
- the system 300 operates in accordance with relevant 3GPP Technical Specifications (available at the website http://www.3gpp.org), and need not be described in further detail herein.
- the base station includes a lower band logical unit 322 and an upper band logical unit 324 and operates in both the upper (FDD downlink) and lower (FDD uplink) bands simultaneously, under the control of the RNC 310.
- the lower band logical unit 322 supports normal TDD operation, where the radio resource is divided into time slots .
- the upper band logical unit 324 supports auxiliary downlink operation. This logical unit supports downlink operation only.
- the radio resource is divided into time slots .
- UE 330 In the system of FIG. 3, three types of UE 330 can be supported: 1. Single frequency standard TDD UE (not shown) :
- Single instantaneous frequency UE (not shown) : This type of UE is able to tune to two different frequencies (the lower and upper FDD bands) in the same TDD frame under the control of the network.
- the UE operates uplink transmission in the lower FDD band.
- the UE can operate in either the standard TDD downlink (lower FDD band) or auxiliary downlink (upper FDD band) under the control of the network.
- Dual simultaneous frequency UE 330 This type of UE has a lower band UL/DL logical unit 332, an upper Aux DL' logical unit 334 and an ⁇ Aux DL' Capability Messaging logical unit 336, and is able to simultaneously tune to both the lower and upper FDD bands.
- the UE operates uplink transmission in the lower FDD band.
- the UE operates standard TDD downlink (lower FDD band) and auxiliary downlink (upper FDD band) under the control of the network. With dual simultaneous frequency capability the UE is able to operate with increased downlink capacity.
- the auxiliary downlink ( v Aux DL' ) capability allows an inherently TDD technology to efficiently utilize the FDD downlink band, avoiding wastage of spectrum, and the downlink resource in the lower and upper bands is treated as a combined 'single pool' resource, which can be allocated to users according to demand.
- the NodeB 320 provides common signalling for both TDD frequencies.
- an individual UE that can support the ⁇ Aux DL' mode of operation may be allocated downlink capacity in the lower band or upper band or both.
- UE's and NodeB' s exchange ⁇ Aux DL' capability messages, such that the NodeB' s and UE's with and without the Aux DL' feature can co-exist in the network and each operate to the best of their respective abilities.
- a UE that does not support auxiliary downlink e.g., a roaming UE from another TDD network, is compatible with the auxiliary downlink architecture by operating in standard TDD mode in lower band.
- the auxiliary downlink feature is transparent to the UE .
- Auxiliary Downlink increases the total downlink capacity, it also enables uplink capacity to be increased, as additional timeslots can be allocated in the lower TDD band to uplink traffic channels.
- the separation of the lower and upper band is not restricted by the standard FDD duplex frequency separation.
- the UE is instructed by the network to tune to the correct frequency for the auxiliary downlink.
- the auxiliary downlink in the upper band can even be adjacent to the lower band (even though the UE may be required to operate only on one downlink frequency at one time to minimize the receive filtering requirements) . This effectively allows the operator to deploy the proposed TDD technology in contiguous frequency allocation.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Bidirectional Digital Transmission (AREA)
- Time-Division Multiplex Systems (AREA)
- Communication Control (AREA)
Abstract
Description
Claims
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137008554A KR101460923B1 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
KR1020107028593A KR101162456B1 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
US10/544,451 US7890113B2 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
CN2004800040111A CN1748377B (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
KR1020127010275A KR101282508B1 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
JP2006502262A JP4702283B2 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for TDD operation in a communication system |
EP04710079.7A EP1597842B1 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
KR1020117016256A KR101162470B1 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
US12/979,560 US8929900B2 (en) | 2003-02-11 | 2010-12-28 | Method, base station and mobile station for TDD operation in a communication system |
US14/043,570 US8929901B2 (en) | 2003-02-11 | 2013-10-01 | Method, base station and mobile station for TDD operation in a communication system |
US14/043,472 US20140029492A1 (en) | 2003-02-11 | 2013-10-01 | Method, base station and mobile station for tdd operation in a communication system |
US14/043,546 US8797925B2 (en) | 2003-02-11 | 2013-10-01 | Method, base station and mobile station for TDD operation in a communication system |
US14/833,957 US20150365221A1 (en) | 2003-02-11 | 2015-08-24 | Method, base station and mobile station for tdd operation in a communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0303079A GB2398455B (en) | 2003-02-11 | 2003-02-11 | Method, base station and mobile station for TDD operation in a communication system |
GB0303079.8 | 2003-02-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/544,451 A-371-Of-International US7890113B2 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
US12/979,560 Continuation US8929900B2 (en) | 2003-02-11 | 2010-12-28 | Method, base station and mobile station for TDD operation in a communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004073210A1 true WO2004073210A1 (en) | 2004-08-26 |
Family
ID=9952802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2004/000526 WO2004073210A1 (en) | 2003-02-11 | 2004-02-11 | Method, base station and mobile station for tdd operation in a communication system |
Country Status (9)
Country | Link |
---|---|
US (6) | US7890113B2 (en) |
EP (2) | EP2477346B1 (en) |
JP (5) | JP4702283B2 (en) |
KR (6) | KR101460923B1 (en) |
CN (4) | CN101997601B (en) |
ES (1) | ES2443366T3 (en) |
GB (2) | GB2398455B (en) |
HK (2) | HK1153867A1 (en) |
WO (1) | WO2004073210A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8345582B2 (en) | 2008-02-19 | 2013-01-01 | Ntt Docomo, Inc. | Mobile communications system, base station apparatus, user apparatus and method |
US8917673B2 (en) | 2006-07-14 | 2014-12-23 | Qualcomm Incorporation | Configurable downlink and uplink channels for improving transmission of data by switching duplex nominal frequency spacing according to conditions |
US9456447B2 (en) | 2011-07-18 | 2016-09-27 | Qualcomm Incorporated | Enabling half-duplex operation |
US11146313B2 (en) | 2013-03-15 | 2021-10-12 | Rearden, Llc | Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications |
US11190247B2 (en) | 2004-04-02 | 2021-11-30 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11290162B2 (en) | 2014-04-16 | 2022-03-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
US11309943B2 (en) | 2004-04-02 | 2022-04-19 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US11394436B2 (en) | 2004-04-02 | 2022-07-19 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11451275B2 (en) | 2004-04-02 | 2022-09-20 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11451281B2 (en) | 2013-03-12 | 2022-09-20 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100547717B1 (en) * | 2003-01-29 | 2006-01-31 | 삼성전자주식회사 | Wireless communication system and method for providing hybrid duplexing communication method |
GB2398455B (en) | 2003-02-11 | 2007-09-26 | Ipwireless Inc | Method, base station and mobile station for TDD operation in a communication system |
EP2429099A3 (en) | 2003-05-28 | 2014-04-30 | Nvidia Corporation | Method, base station and mobile station for tdd operation in a communication system |
US10425134B2 (en) | 2004-04-02 | 2019-09-24 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US8542763B2 (en) | 2004-04-02 | 2013-09-24 | Rearden, Llc | Systems and methods to coordinate transmissions in distributed wireless systems via user clustering |
US10749582B2 (en) | 2004-04-02 | 2020-08-18 | Rearden, Llc | Systems and methods to coordinate transmissions in distributed wireless systems via user clustering |
US10886979B2 (en) | 2004-04-02 | 2021-01-05 | Rearden, Llc | System and method for link adaptation in DIDO multicarrier systems |
US8654815B1 (en) | 2004-04-02 | 2014-02-18 | Rearden, Llc | System and method for distributed antenna wireless communications |
US10277290B2 (en) | 2004-04-02 | 2019-04-30 | Rearden, Llc | Systems and methods to exploit areas of coherence in wireless systems |
US10200094B2 (en) | 2004-04-02 | 2019-02-05 | Rearden, Llc | Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems |
US9312929B2 (en) | 2004-04-02 | 2016-04-12 | Rearden, Llc | System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS) |
US9685997B2 (en) | 2007-08-20 | 2017-06-20 | Rearden, Llc | Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems |
KR20060065304A (en) * | 2004-12-10 | 2006-06-14 | 삼성전자주식회사 | Improved hybrid duplexing technology-based radio communication system |
US8462671B2 (en) * | 2005-04-07 | 2013-06-11 | Nokia Corporation | Terminal having a variable duplex capability |
GB2418806B (en) | 2005-08-19 | 2006-09-27 | Ipwireless Inc | Duplex operation in a cellular communication system |
EP1799001A1 (en) * | 2005-12-15 | 2007-06-20 | Siemens Aktiengesellschaft | Method for assigning resources of frequency bands of a radio communication system and network device and subscriber station |
US20070232349A1 (en) * | 2006-04-04 | 2007-10-04 | Jones Alan E | Simultaneous dual mode operation in cellular networks |
KR101089448B1 (en) * | 2006-11-10 | 2011-12-07 | 후지쯔 가부시끼가이샤 | Wireless communication system |
CN101197655B (en) * | 2006-12-07 | 2010-09-22 | 大唐移动通信设备有限公司 | TDD and FDD combined communication method and communication apparatus |
US20080144612A1 (en) * | 2006-12-13 | 2008-06-19 | Nokia Corporation | Flexible radio resource sharing in time and frequency domains among TDD communication systems |
CN101212249B (en) * | 2006-12-29 | 2011-08-24 | 中兴通讯股份有限公司 | Method and system for improving uplink feedback capability of TDD system |
CN101212251B (en) * | 2006-12-30 | 2011-12-28 | 中兴通讯股份有限公司 | Method and system for improving downlink feedback capability of TDD system |
CN101237675B (en) * | 2007-02-02 | 2013-01-16 | 中兴通讯股份有限公司 | Method for base station to transmit feedback signals to the terminal in time division duplex system |
CN101242215B (en) * | 2007-02-05 | 2013-02-27 | 中兴通讯股份有限公司 | Synchronous channel configuration method, cell search and access method in TDD system |
KR101339522B1 (en) * | 2007-05-07 | 2013-12-10 | 엘지전자 주식회사 | Wireless communication method for asymmetric service |
KR101372668B1 (en) * | 2007-08-23 | 2014-03-10 | 삼성전자주식회사 | Method and apparatus for transmitting of resource allocating information in a communication system |
EP2213015A4 (en) | 2007-11-07 | 2012-07-18 | Wi Lan Inc | Advanced technology frame structure with backward compatibility |
EP2223440A4 (en) * | 2007-12-21 | 2013-10-30 | Ericsson Telefon Ab L M | Tti channel arrangement and ue to channel assignment |
WO2009084925A1 (en) | 2008-01-03 | 2009-07-09 | Lg Electronics Inc. | Frame for flexibly supporting heterogeneous modes and tdd/fdd modes, and method for transmitting signals using the same |
GB2457011B (en) * | 2008-01-18 | 2010-09-29 | Toshiba Res Europ Ltd | Wireless communications apparatus |
US8605676B2 (en) * | 2008-02-18 | 2013-12-10 | Zte Corporation | Method and device for configuring inter-cell time division duplex modes based on a TDD system |
US8015313B2 (en) * | 2008-03-04 | 2011-09-06 | Sony Corporation | Method and apparatus for managing transmission of TCP data segments |
ES2334094B1 (en) * | 2008-07-15 | 2011-02-14 | Vodafone España, S.A.U. | METHOD FOR OPTIMIZING FREQUENCY CARRIERS OF DESCENDING LINK AND ASCENDING LINK. |
US7969923B2 (en) * | 2008-11-14 | 2011-06-28 | Dbsd Satellite Services G.P. | Asymmetric TDD in flexible use spectrum |
WO2011057550A1 (en) * | 2009-11-10 | 2011-05-19 | 电信科学技术研究院 | Method and device for signal transmission |
JP5866765B2 (en) | 2010-04-28 | 2016-02-17 | ソニー株式会社 | Conductive element and manufacturing method thereof, wiring element, information input device, display device, and electronic apparatus |
WO2012066385A1 (en) * | 2010-11-17 | 2012-05-24 | Nokia Corporation | Apparatus and method to reduce interference between frequency-division duplex and time-division duplex signals in a communication system |
CN102647722B (en) * | 2011-02-18 | 2016-09-07 | 中兴通讯股份有限公司 | A kind of TDD cell is the method and system of Terminal for service |
WO2012139301A1 (en) * | 2011-04-15 | 2012-10-18 | Renesas Mobile Corporation | Lte carrier aggregation configuration on tv white space bands |
US9853781B2 (en) * | 2011-07-05 | 2017-12-26 | Nokia Solutions And Networks Oy | Method and apparatus for resource aggregation in wireless communications |
KR101990134B1 (en) | 2011-08-10 | 2019-06-17 | 삼성전자주식회사 | Method and apparatus for reporting capability information of dual mode user equipment |
CN102958173B (en) * | 2011-08-26 | 2016-03-30 | 华为技术有限公司 | The method and apparatus of Resourse Distribute |
US20140334371A1 (en) | 2012-01-27 | 2014-11-13 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting and receiving data by using plurality of carriers in mobile communication systems |
US9351299B2 (en) * | 2012-03-09 | 2016-05-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatus enabling information exchange between network nodes |
CN102946304B (en) * | 2012-10-10 | 2015-11-18 | 广州海格天立通信息技术有限公司 | The time division duplex transmission method of digital handset |
US10194346B2 (en) | 2012-11-26 | 2019-01-29 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US11190947B2 (en) * | 2014-04-16 | 2021-11-30 | Rearden, Llc | Systems and methods for concurrent spectrum usage within actively used spectrum |
US11189917B2 (en) | 2014-04-16 | 2021-11-30 | Rearden, Llc | Systems and methods for distributing radioheads |
US11050468B2 (en) | 2014-04-16 | 2021-06-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
US9923657B2 (en) | 2013-03-12 | 2018-03-20 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US9713026B2 (en) * | 2013-05-17 | 2017-07-18 | Qualcomm Incorporated | Channel state information (CSI) measurement and reporting for enhanced interference management for traffic adaptation (eIMTA) in LTE |
US9698944B2 (en) * | 2013-12-04 | 2017-07-04 | Google Technology Holdings LLC | Methods for communicating simultaneously on multiple frequencies |
WO2015174328A1 (en) * | 2014-05-15 | 2015-11-19 | 株式会社Nttドコモ | Radio base station, user equipment, and radio communication method |
EP3143715A1 (en) * | 2014-05-15 | 2017-03-22 | Nokia Solutions and Networks Oy | Method and apparatus for transmitting and/or receiving reference signals |
WO2016037305A1 (en) * | 2014-09-08 | 2016-03-17 | Qualcomm Incorporated | Flexible transmissions on one or more frequency division duplexing resources |
EP3232718B1 (en) | 2014-12-12 | 2020-03-11 | Sony Corporation | Device |
WO2016138662A1 (en) * | 2015-03-05 | 2016-09-09 | Qualcomm Incorporated | Control signaling for flexible duplex in wireless communications |
CN106982435B (en) * | 2016-01-19 | 2020-11-13 | 中国移动通信集团贵州有限公司 | Capacity adjustment method and device for F-band hybrid networking |
US11153006B2 (en) * | 2018-02-14 | 2021-10-19 | Apple Inc. | Uplink transmission puncturing to reduce interference between wireless services |
CN108736988B (en) * | 2018-05-22 | 2020-12-04 | Oppo广东移动通信有限公司 | Electronic device, control method thereof, and computer-readable storage medium |
CN112888035B (en) * | 2019-11-30 | 2022-05-13 | 华为技术有限公司 | Method and network equipment for prohibiting terminal equipment from switching to single downlink cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000007399A1 (en) | 1998-07-25 | 2000-02-10 | Siemens Aktiengesellschaft | Apparatus, method of and system for improving capacity in a communications network |
US20020098821A1 (en) | 2001-01-19 | 2002-07-25 | Struhsaker Paul F. | TDD FDD air interface |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3280830B2 (en) * | 1994-06-20 | 2002-05-13 | 株式会社東芝 | Wireless communication system and wireless communication base station |
JP3215018B2 (en) * | 1994-09-09 | 2001-10-02 | 三菱電機株式会社 | Mobile communication system |
US6029071A (en) * | 1994-12-01 | 2000-02-22 | Lucent Technologies Inc. | Apparatus and method for synchronizing a cordless telephone base unit and multiple portable units on a common communication channel |
FI105371B (en) * | 1996-12-31 | 2000-07-31 | Nokia Networks Oy | A radio system and methods for establishing two-way radio communication |
ID25841A (en) * | 1997-11-14 | 2000-11-09 | Ericsson Inc | RANGE FREQUENCY-TIME DIVISION IN RADIO COMMUNICATION SYSTEMS |
WO1999026362A1 (en) * | 1997-11-14 | 1999-05-27 | Ericsson Inc. | Frequency-time division duplex in radio communications systems |
EP0975184A1 (en) * | 1998-07-20 | 2000-01-26 | Motorola, Inc. | Method of allocating resources and allocation scheme therefor |
JP3012606B1 (en) * | 1998-09-11 | 2000-02-28 | 日本電気移動通信株式会社 | Base station device, mobile station device, mobile communication system using them, and mobile communication method |
DE19901755C2 (en) | 1999-01-18 | 2003-06-18 | Siemens Ag | Frequency band allocation to radio communication systems |
AU3411299A (en) * | 1999-03-08 | 2000-09-28 | Nokia Networks Oy | Method for establishing a communication between a user equipment and a radio network |
DE19913086A1 (en) * | 1999-03-23 | 2000-10-19 | Siemens Ag | Method and device for channel allocation for broadband radio transmission |
AU4500999A (en) | 1999-05-26 | 2000-12-18 | Nokia Corporation | Random access control method and system |
US6611507B1 (en) * | 1999-07-30 | 2003-08-26 | Nokia Corporation | System and method for effecting information transmission and soft handoff between frequency division duplex and time division duplex communications systems |
JP2002094600A (en) * | 2000-09-13 | 2002-03-29 | Mitsubishi Electric Corp | Communication equipment and method |
JP2002112326A (en) * | 2000-10-02 | 2002-04-12 | Ntt Docomo Inc | Wireless resource assigning method and base station unit |
US6847622B1 (en) | 2000-11-15 | 2005-01-25 | Motorola, Inc. | Methods and apparatus for providing multiple wireless communication services having different bit rates |
JP3802372B2 (en) * | 2001-05-16 | 2006-07-26 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile communication system |
US7239621B2 (en) | 2001-12-04 | 2007-07-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Physical channel relation system/method for use in cellular telecommunications network |
WO2004062305A1 (en) * | 2002-12-16 | 2004-07-22 | Widefi, Inc. | Improved wireless network repeater |
GB2398455B (en) * | 2003-02-11 | 2007-09-26 | Ipwireless Inc | Method, base station and mobile station for TDD operation in a communication system |
US8064400B2 (en) * | 2005-07-20 | 2011-11-22 | Interdigital Technology Corporation | Method and system for supporting an evolved UTRAN |
-
2003
- 2003-02-11 GB GB0303079A patent/GB2398455B/en not_active Expired - Lifetime
- 2003-05-28 GB GBGB0312186.0A patent/GB0312186D0/en not_active Ceased
-
2004
- 2004-02-11 CN CN201010566497.5A patent/CN101997601B/en not_active Expired - Fee Related
- 2004-02-11 US US10/544,451 patent/US7890113B2/en not_active Expired - Fee Related
- 2004-02-11 EP EP12163873.8A patent/EP2477346B1/en not_active Expired - Lifetime
- 2004-02-11 EP EP04710079.7A patent/EP1597842B1/en not_active Expired - Lifetime
- 2004-02-11 KR KR1020137008554A patent/KR101460923B1/en active IP Right Grant
- 2004-02-11 CN CN201010567077.9A patent/CN101982941B/en not_active Expired - Lifetime
- 2004-02-11 ES ES12163873.8T patent/ES2443366T3/en not_active Expired - Lifetime
- 2004-02-11 KR KR1020057014736A patent/KR101041673B1/en active IP Right Grant
- 2004-02-11 CN CN2004800040111A patent/CN1748377B/en not_active Expired - Fee Related
- 2004-02-11 JP JP2006502262A patent/JP4702283B2/en not_active Expired - Lifetime
- 2004-02-11 KR KR1020127010275A patent/KR101282508B1/en active IP Right Grant
- 2004-02-11 WO PCT/GB2004/000526 patent/WO2004073210A1/en active Application Filing
- 2004-02-11 KR KR1020117016256A patent/KR101162470B1/en active IP Right Grant
- 2004-02-11 CN CN201010567169.7A patent/CN102013919B/en not_active Expired - Fee Related
- 2004-02-11 KR KR1020107028593A patent/KR101162456B1/en active IP Right Grant
- 2004-02-11 KR KR1020117025516A patent/KR20110134928A/en not_active Application Discontinuation
-
2010
- 2010-09-27 JP JP2010215116A patent/JP5353851B2/en not_active Expired - Lifetime
- 2010-09-27 JP JP2010215115A patent/JP5353850B2/en not_active Expired - Lifetime
- 2010-09-27 JP JP2010215114A patent/JP5418455B2/en not_active Expired - Lifetime
- 2010-12-28 US US12/979,560 patent/US8929900B2/en not_active Expired - Lifetime
-
2011
- 2011-07-26 HK HK11107790.4A patent/HK1153867A1/en not_active IP Right Cessation
- 2011-07-26 HK HK11107788.8A patent/HK1153865A1/en not_active IP Right Cessation
-
2013
- 2013-07-09 JP JP2013143483A patent/JP5601406B2/en not_active Expired - Lifetime
- 2013-10-01 US US14/043,472 patent/US20140029492A1/en not_active Abandoned
- 2013-10-01 US US14/043,570 patent/US8929901B2/en not_active Expired - Lifetime
- 2013-10-01 US US14/043,546 patent/US8797925B2/en not_active Expired - Lifetime
-
2015
- 2015-08-24 US US14/833,957 patent/US20150365221A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000007399A1 (en) | 1998-07-25 | 2000-02-10 | Siemens Aktiengesellschaft | Apparatus, method of and system for improving capacity in a communications network |
US20020098821A1 (en) | 2001-01-19 | 2002-07-25 | Struhsaker Paul F. | TDD FDD air interface |
Non-Patent Citations (3)
Title |
---|
HAAS ET AL.: "Outage Probability Of CDMA-TDD Micro Cells In A COMA-FDD Environment", PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, 1998 |
HAAS H ET AL: "Outage probability of CDMA-TDD micro cells in a CDMA-FDD environment", PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, 1998. THE NINTH IEEE INTERNATIONAL SYMPOSIUM ON BOSTON, MA, USA 8-11 SEPT. 1998, NEW YORK, NY, USA,IEEE, US, 8 September 1998 (1998-09-08), pages 94 - 98, XP010314770, ISBN: 0-7803-4872-9 * |
THE NINTH IEEE INTERNATIONAL SYMPOSIUM, 8 September 1998 (1998-09-08) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11309943B2 (en) | 2004-04-02 | 2022-04-19 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
US11923931B2 (en) | 2004-04-02 | 2024-03-05 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11646773B2 (en) | 2004-04-02 | 2023-05-09 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11451275B2 (en) | 2004-04-02 | 2022-09-20 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11190247B2 (en) | 2004-04-02 | 2021-11-30 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11190246B2 (en) | 2004-04-02 | 2021-11-30 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11196467B2 (en) | 2004-04-02 | 2021-12-07 | Rearden, Llc | System and method for distributed antenna wireless communications |
US11394436B2 (en) | 2004-04-02 | 2022-07-19 | Rearden, Llc | System and method for distributed antenna wireless communications |
US8917673B2 (en) | 2006-07-14 | 2014-12-23 | Qualcomm Incorporation | Configurable downlink and uplink channels for improving transmission of data by switching duplex nominal frequency spacing according to conditions |
US10244442B2 (en) | 2006-07-14 | 2019-03-26 | Qualcomm Incorporated | Configurable downlink and uplink channels for improving transmission of data by switching duplex nominal frequency spacing according to conditions |
US10993157B2 (en) | 2006-07-14 | 2021-04-27 | Qualcomm Incorporated | Configurable downlink and uplink channels for improving transmission of data by switching duplex nominal frequency spacing according to conditions |
US8345582B2 (en) | 2008-02-19 | 2013-01-01 | Ntt Docomo, Inc. | Mobile communications system, base station apparatus, user apparatus and method |
US10298378B2 (en) | 2011-07-18 | 2019-05-21 | Qualcomm Incorporated | Enabling half-duplex operation |
US9749121B2 (en) | 2011-07-18 | 2017-08-29 | Qualcomm Incorporated | Enabling half-duplex operation |
US9456447B2 (en) | 2011-07-18 | 2016-09-27 | Qualcomm Incorporated | Enabling half-duplex operation |
US11451281B2 (en) | 2013-03-12 | 2022-09-20 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US11901992B2 (en) | 2013-03-12 | 2024-02-13 | Rearden, Llc | Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology |
US11146313B2 (en) | 2013-03-15 | 2021-10-12 | Rearden, Llc | Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications |
US11581924B2 (en) | 2013-03-15 | 2023-02-14 | Rearden, Llc | Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications |
US11290162B2 (en) | 2014-04-16 | 2022-03-29 | Rearden, Llc | Systems and methods for mitigating interference within actively used spectrum |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7890113B2 (en) | Method, base station and mobile station for tdd operation in a communication system | |
AU750468B2 (en) | Apparatus, method of and system for improving capacity in a communications network | |
CA2313314A1 (en) | Control channel for a wireless digital subscriber line system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004710079 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006502262 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057014736 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20048040111 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057014736 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004710079 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006221872 Country of ref document: US Ref document number: 10544451 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10544451 Country of ref document: US |