WO2004073145A1 - Dc motor type fuel pump - Google Patents

Dc motor type fuel pump Download PDF

Info

Publication number
WO2004073145A1
WO2004073145A1 PCT/JP2003/015692 JP0315692W WO2004073145A1 WO 2004073145 A1 WO2004073145 A1 WO 2004073145A1 JP 0315692 W JP0315692 W JP 0315692W WO 2004073145 A1 WO2004073145 A1 WO 2004073145A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
yoke
cylindrical yoke
fuel pump
motor
Prior art date
Application number
PCT/JP2003/015692
Other languages
French (fr)
Japanese (ja)
Inventor
Seizo Inoue
Kei Yonemori
Hiroyuki Matsuzaki
Kazuyuki Yamamoto
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2004568206A priority Critical patent/JPWO2004073145A1/en
Priority to US10/509,763 priority patent/US20050118044A1/en
Priority to TW093103016A priority patent/TWI235198B/en
Publication of WO2004073145A1 publication Critical patent/WO2004073145A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas

Definitions

  • the present invention relates to a DC motor fuel pump that pressurizes fuel by driving a motor and pumps fuel in a fuel tank to an engine.
  • Japanese Patent Application Laid-Open No. 2000-2626483 discloses a configuration of a DC motor used for a DC electric fuel pump.
  • a cylindrical yoke and a magnet forming a magnetic circuit in the circumferential direction are arranged on the outer periphery of the armature.
  • a fixing hole for fixing the magnet is formed in the yoke, and the fixing hole penetrates from the inner peripheral surface to the outer peripheral surface in the thickness direction of the yoke, and has a larger outer peripheral surface than the opening diameter opened to the inner peripheral surface.
  • the opening diameter is larger than the opening diameter.
  • the magnet is a plastic magnet formed by mixing magnetic powder into a resin and formed into a ring shape.
  • the magnet is formed integrally with the yoke, and a part of itself is inserted into a fixing hole of the yoke.
  • a part of the magnet integrally molded with the yoke fits into the fixing hole of the yoke, and the outer peripheral side of the fitting portion is larger than the inner peripheral side. Even if it contracts, it does not come off the yoke and is firmly fixed to the yoke.
  • DC motors used in conventional DC motor-driven fuel pumps (ie, part of the motor) use fixing holes that penetrate the magnet in the thickness direction of the yoke. Since it is fixed to the yoke, it is necessary to make a through hole on the side of the yoke. Therefore, there is a problem that the yoke is deformed or burrs are generated by the drilling process.
  • the gate is an injection port of a mold at the time of injection molding, and a sol-like resin is injected into the mold from the injection port (that is, the gate).
  • the resin injected into the mold is kept under a predetermined pressure and a predetermined temperature for a predetermined time, thereby completing a molded product.
  • the resin is also filled in the injection port portion, the solidified injection port-shaped (projection-shaped) resin remains. Since this part is unnecessary, it is removed by cutting or the like, but this removal processing is gated.
  • a DC motor fuel pump according to the present invention is a DC motor fuel pump that boosts fuel in a pump section fixed to a yoke of the motor section and outputs the fuel when a DC motor of a motor section is driven.
  • the yoke includes a first cylindrical yoke in which a rare-earth ring-shaped magnet is disposed on an inner circumference, and a second cylindrical yoke provided on an outer circumference of the first cylindrical yoke at a position corresponding to the magnet. It is provided with a yoke.
  • FIG. 1 is a cross-sectional view of a DC motor fuel pump according to Embodiment 1 of the present invention.
  • FIG. 2 is an illustration of magnet magnetization.
  • FIG. 3 is a cross-sectional view schematically showing a magnet and a yoke of a DC motor fuel pump according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a magnet and a first cylindrical yoke of a DC motor fuel pump according to Embodiment 3 of the present invention.
  • FIG. 5 is a simplified view of a magnet and a bearing holder of a DC motor fuel pump according to Embodiment 4 of the present invention.
  • FIG. 1 is a cross-sectional view of a DC motor-type fuel pump (hereinafter, may be simply referred to as a fuel pump) according to Embodiment 1 of the present invention.
  • the fuel pump 1 is composed of a motor unit 10 and a pump unit 20.
  • the magnet 2 is formed in a cylindrical shape, and is arranged at a predetermined distance from the outer peripheral surface of the armature 6 on the inner peripheral surface of the yoke 3, and forms a magnetic circuit with the yoke 3 on the outer peripheral surface of the armature 6. I do.
  • the magnet 2 can be formed.
  • the adhesive between the yokes 3 becomes unnecessary.
  • the yoke 3 is composed of a first cylindrical yoke 4 and a second cylindrical yoke 5 made of STKM (carbon steel steel pipe for machine structure), and the second cylindrical yoke 5 has the first cylindrical yoke 4 as a shaft. From the direction until it comes into contact with the projection 50a of the second cylindrical yoke 5. '
  • the first cylindrical yoke 4 is connected to the second cylindrical yoke 5. It is preferable to magnetize the magnet 2 before press-fitting.
  • a gate for forming the magnet 2 by injection molding is provided on an end face of the magnet 2.
  • the thickness of the first cylindrical yoke 4 is 3 mm or less, preferably 2 mm or less, from the viewpoints of the magnetization accuracy and the small deformation when machining the first cylindrical yoke 4. Is good.
  • the second cylindrical yoke 5 integrates the bearing holder 12, the inlet housing 21, and the outlet housing 23 by bending both ends thereof in the axial direction of the shaft 7.
  • a bearing holder 12 or a housing composed of an inlet housing 21 and an outlet housing 23 is press-fitted and fixed to the other end that is not bent.
  • a bearing holder 12 made of an insulating resin mainly composed of a polyester resin has a check valve 13, a bearing 8 that supports a shaft 7, a conductive brush 9, and a brush 9. It houses a coil spring 10 for pressing the commutator 6a and a lead wire 11 for supplying a current to the brush 9 from outside the fuel pump.
  • the inlet housing 21 is formed of a resin, accommodates a shaft stopper 28, and is provided with a suction port for sucking fuel in a fuel tank (not shown).
  • the outlet housing 23 is formed of resin, is provided with a discharge port 24 for discharging the fuel pressurized in the flow path 27 to the armature 6 side, and has a bearing 25 for supporting the shaft 7. To store.
  • the impeller (impeller) 26 which is formed of resin and has a plurality of blade grooves on the outer periphery, has a D-shaped hole at the center of the shaft, and an end of a shaft 7 having a D-shaped cross section.
  • the D-cut portion 7a is fitted.
  • a channel 27 is formed by the concave grooves 21 a and 23 a of the inlet housing 21 and the outlet housing 22 and a plurality of blade grooves of the impeller 26.
  • the fuel in the fuel tank (not shown) is introduced from the suction port 22, and is pressurized to 300 KPa to 50 O KPa in the flow path 27, and then discharged from the discharge port 24.
  • On the street enter the space inside the Morning Night Section 10.
  • This pressurized fuel cools the armature 6 when flowing between the armature 6 and the magnet 2 in the motor section 10, opens the check valve 13 and discharges the bearing holder 12. Discharged from tube 12a.
  • the discharged pressurized fuel is supplied to an unillustrated internal combustion engine.
  • the yoke 3 includes the first cylindrical yoke 4 having a small thickness and the second cylindrical yoke 5 having a large thickness.
  • the rare earth magnet 2 when a rare earth magnet 2 having a strong holding force is used, first, the rare earth magnet 2 is formed on the inner peripheral surface of the first cylindrical yoke 4 by injection molding, and the magnet 2 is then formed. After magnetizing, the first cylindrical yoke 4 having the magnet 2 formed on the inner surface at a desired position of the second cylindrical yoke 5 can be fixed.
  • the fuel pump 1 using the rare-earth magnet 2 in the first embodiment is different from the conventional fuel pump using the sintered magnet having a lower holding force than the rare-earth magnet in that the yoke 3 Thick ones are needed.
  • the fuel pump 1 needs to be provided with a pump section 20 in the axial direction. Further, since the pressurized fuel passes through the fuel pump 1, the second cylindrical yoke 5 makes the bearing holder 12, the inlet housing 21 and the outlet housing 23 liquid-tight (that is, when the fuel is discharged). (To prevent leakage).
  • the axial length (total axial length) of the second cylindrical yoke 5 is larger than that of a general DC motor.
  • the yoke 3 is composed of two members, the first cylindrical yoke 4 and the second cylindrical yoke 5, for example, only the length of the first cylindrical yoke 4 is changed. But you can change the magnetic circuit.
  • the degree of freedom of the magnetic circuit can be increased as compared with the case of the conventional one-piece yoke.
  • the length of the first cylindrical yoke 4 it is possible to cope with a plurality of types of fuel pumps having different required specifications, so that the second cylindrical yoke 5 is shared with a plurality of types of fuel pumps. It is also possible to do.
  • the yoke 3 is composed of two members, the first cylindrical yoke 4 and the second cylindrical yoke 5, which is longer in the axial direction than the first cylindrical yoke 4, the yoke 3 has almost no influence on the magnetic circuit. The thickness of the end of the two cylindrical casings 5 can be reduced.
  • the position of the magnet 2 in the fuel pump 1 is determined by the position of the second cylindrical yoke 5 of the first cylindrical yoke 4. It can be adjusted by changing the fixed position with respect to.
  • the magnet 2 can be fixed at a convenient position in the first cylindrical yoke 4 in terms of the product configuration.
  • the first cylindrical yoke 4 and the magnet 2 have the same axial length, and the first cylindrical yoke 4 and the magnet 2 have the same end face position.
  • a gate for injection molding can be provided near the end of the first cylindrical yoke 4.
  • first cylindrical yoke 4 and the second cylindrical yoke 5 work together as a magnetic circuit in the circumferential direction, the thickness of the first cylindrical yoke 4 and the second cylindrical yoke 5 is increased.
  • the selection range is wide.
  • the first cylindrical yoke 4 can be reduced.
  • the first cylindrical yoke 4 is made thinner, and injection molding is performed inside the first cylindrical yoke 4. After the magnet 2 is magnetized, it becomes possible to mount the second cylindrical yoke 5 acting as the main magnetic circuit.
  • the magnet 2 can be magnetized with a small magnetizing device, and the occupied volume of the first cylindrical yoke 4 that is unnecessary for magnetizing the magnet 2 is small, so that the magnetizing accuracy is improved. be able to.
  • FIG. 2 is a diagram for explaining a state in which the magnet 2 is magnetized by the magnetizing device 40 with the same magnetizing force 41, and FIG. 2 (a) shows the state of the present embodiment.
  • FIG. 2 (b) shows a conventional cylindrical yoke 4 having a thick wall. The figure shows a case where the magnet 2 is formed on the inner circumference of the magnet.
  • the magnetic flux 42 intersects the first cylindrical yoke 4 and the magnet 2 by a predetermined magnetizing force 41 of the magnetizing device 40, and the magnet 2 is satisfactorily attached. Can magnetize.
  • the coefficient of linear expansion of the second cylindrical yoke 5 is selected to be smaller than the coefficient of linear expansion of the first cylindrical yoke 4, the temperature may vary depending on the operation of the fuel pump and the operating environment. Even if the first cylindrical yoke 4 and the second cylindrical yoke 5 expand, the contact between the first cylindrical yoke 4 and the second cylindrical yoke 5 is maintained, and the magnetic circuit is hardly disconnected.
  • first cylindrical yoke 4 and the second cylindrical yoke 5 have been described as being fixed by press-fitting, they may be shrink-fitted.
  • FIG. 3 is a cross-sectional view schematically showing a magnet and a yoke of the DC motor fuel pump according to Embodiment 2, and FIG. 3 (a) shows that the first cylindrical yoke is larger than the second cylindrical yoke.
  • FIG. 3 (b) shows the case where the first cylindrical yoke is shorter in axial length than the second cylindrical yoke.
  • the one shown in Fig. 3 (a) was used as a fuel pump 1 by the end face of the magnet 2a abutting on the lip 40a provided on the inner surface of the lower end of the first cylindrical yoke 4a.
  • the magnet 2 placed inside the first cylindrical yoke 4a at the time of molding or after molding integrally with the inner periphery of the first cylindrical yoke 4a a is prevented from moving downward.
  • the second cylindrical yoke 5a has the same configuration as that of the first cylindrical yoke 5 described in the first embodiment, and the other configuration (not shown) is the same as that of the first embodiment. (The same applies to the following embodiments).
  • the magnet 2a is magnetized after being integrally formed with the first cylindrical yoke 4a by injection molding, the axial direction of the first cylindrical yoke 4a is compared with that in FIG. 3 (b). Since the length is short (that is, almost the same as the axial length of magnet 2a), it can be easily magnetized.
  • the pump portion 20 is required in the axial direction and the second cylindrical yoke 5a is longer in the axial direction than in the case of the DC motor, so that this effect is remarkable.
  • FIG. 3 (b) shows that the second cylindrical yoke 5b forms a magnetic circuit with the position corresponding to the magnet 2b (ie, the magnet 2b and the first cylindrical yoke 4b). Position) covers a part of the outer periphery of the first cylindrical yoke 4b.
  • the second cylindrical yoke 5b only needs to be arranged in an area necessary for the configuration of the magnetic circuit, and the entire outer periphery of the fuel pump can be reduced.
  • the first cylindrical yoke 4b includes a bearing holder 12 (see FIG. 1), an inlet housing 21 (see FIG. 1), and an outlet housing 23 (see FIG. 1). (See Fig. 1).
  • the magnet 2b which is shorter than the first cylindrical yoke 4b by about half or less in the axial direction, is substantially at the center of the first cylindrical yoke 4b in the axial direction.
  • the magnet 2b is inserted into and fixed to the first cylindrical yoke 4b after molding, or a through hole (not shown) is provided on the side surface of the first cylindrical yoke 4b as in the conventional example. From the manufacturing efficiency, it is preferable to integrally form the magnet 2b on the inner periphery of the first cylindrical yoke 4b from the side surface of the cylindrical yoke 4b through the through hole.
  • the third embodiment is a modification of the magnet and the first cylindrical yoke in the fuel pump described in the first and second embodiments.
  • the magnet is integrated with the first cylindrical yoke by injection molding. It is a molded example.
  • FIG. 4 is a cross-sectional view schematically showing a magnet and a first cylindrical yoke of a DC motor-type fuel pump according to Embodiment 3 of the present invention
  • FIG. 4 (a) is a tapered magnet
  • Fig. 4 (b) shows an example of fixing to the first cylindrical yoke at both ends of the magnet
  • Fig. 4 (c) shows an example of providing a projection on the end surface of the first cylindrical yoke
  • Fig. 4 ( d) is a diagram showing only the yoke in FIG. 4 (c).
  • the inner peripheral surface of the first cylindrical yoke 4c has a tapered shape, and the first cylindrical yoke 4c has a first cylindrical yoke 4c formed by a rib 40c provided at an end of the magnet 2c. Since the lower end of the work 4c is covered, it is possible to prevent the magnet 2c from moving in the axial direction.
  • a convex shape 50e is provided on the upper end surface of the first cylindrical yoke 4e as shown in FIG. 4 (d), and the magnet is integrated by injection molding. 2 e covers both ends of the first cylindrical yoke 4 e, The axial movement and rotation of the cut 2 e can be prevented. The same operation and effect can be obtained even if the convex shape 50e of the first cylindrical yoke 4e is concave.
  • Embodiment 4 is a modification of the fuel pump described in Embodiments 1 to 3 for preventing rotation of the magnet.
  • FIG. 5 is a simplified view of a magnet and a bearing holder of a DC motor fuel pump according to Embodiment 4 of the present invention.
  • FIG. 5 (a) shows a cylindrical magnet bearing holder.
  • Fig. 5 (b) is a sectional view showing the magnet, bearing holder and yoke of Fig. 5 (a)
  • Fig. 5 (b) is a cross-sectional view showing the magnet, bearing holder, and yoke of Fig. 5 (a).
  • C) is an example in the case where the magnet end face is corrugated
  • FIGS. 5 (d) to (g) are examples in which the magnet end face is provided with concave portions and convex portions.
  • FIG. 5 (b) shows an example of a cylindrical yoke made of one member for convenience of description, but the cylindrical yoke and the first cylindrical yoke are similar to those in the first to third embodiments. It may be a cylindrical yoke composed of two members of a two cylindrical yoke.
  • both the bearing holder 12f and the magnet 2f have flat end faces.
  • the magnet 2 has both end faces.
  • the yoke 3 f that is, a protrusion formed radially in the inner circumference of the end of the yoke 3 f on the pump portion 20 side
  • the bearing holder 1 2 f houses the brush 9 of the DC motor (see Fig. 1), the bearing 8 of the armature 6 (see Fig. 1) (see Fig. 1), etc., and discharges the pressurized fuel 1 2a (see Fig. 1) is formed, and is always provided in the DC motor fuel pump. it can.
  • the end faces of the bearing holder 12g and the magnet 2g are corrugated, and the rotation of the magnet 2f can be stopped by engaging these corrugated parts with each other. it can.
  • a concave portion 70h is provided on the end surface of the bearing holder 12h, and a convex portion 60h is provided on the end surface of the magnet 2h. These concave portions and convex portions are alternated.
  • the rotation of the magnet 2h can be stopped by engaging with.
  • a projection 61k is provided on the end face of the bearing holder 12k, and a recess 71k is provided on the end face of the magnet 2k. By the engagement, the rotation of the magnet 2k can be stopped.
  • Fig. 5 (d) a concave portion 70h is provided on the end surface of the bearing holder 12h, and a convex portion 60h is provided on the end surface of the magnet 2h. These concave portions and convex portions are alternated.
  • the rotation of the magnet 2h can be stopped by engaging with.
  • a projection 61k is provided on the end face of the bearing holder 12k, and a recess 71k is provided on the end face of the magnet 2
  • the end face of the bearing holder 12m is provided with a concave portion 72m having panel properties in the circumferential direction
  • the magnet 2m is provided with a convex portion 62m
  • the concave portion and the convex portion are provided. The rotation of the magnet 2 m can be stopped by the parts being engaged with each other.
  • the bearing holder 12n is provided with a convex portion 73h having a panel characteristic in the circumferential direction, and the magnet 2 ⁇ is provided with a concave portion 63n, and the concave portion and the convex portion are provided. By engaging with each other, the rotation of the magnet 2 m can be stopped.
  • the concave part 72 m of the bearing holder 12 m has an insertion part (trapezoidal part) whose opening into which the convex part 62 2 m of the magnet is inserted is narrower than the convex part 62 2 of the magnet 2 m.
  • the protrusion of the magnet 2h or the magnet 2m in Fig. 5 (d) or Fig. 5 (f) is the gate part formed at the time of molding.
  • the use of is preferred because gate processing is not required.
  • the gate has a diameter or square of about 1 to 2.6 mm, and has a columnar or prismatic shape with a height of about lmm.
  • the present invention is useful for realizing a DC motor type fuel pump that has a high degree of freedom in magnetic circuit configuration and can easily magnetize a magnet with a small magnetizing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Frames (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Dc Machiner (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A DC motor type fuel pump delivering fuel while boosting at a pump section (20) secured to the yoke (3) at a motor section (10) as a DC motor at the motor section (10) is driven, wherein the yoke (3) comprises a first tubular yoke (4) having inner circumference being arranged with a rare earth ring magnet (2), and a second tubular yoke (5) being arranged on the outer circumference of the first tubular yoke (4) at a position corresponding to the magnet (2).

Description

明 細 書 直流電動機式燃料ポンプ 技術分野  Description DC motor fuel pump Technical field
この発明は、 モータの駆動により燃料を昇圧し、 燃料タンク内の燃料 をエンジンに圧送する直流電動機式燃料ポンプに関する。 背景技術  The present invention relates to a DC motor fuel pump that pressurizes fuel by driving a motor and pumps fuel in a fuel tank to an engine. Background art
例えば、 特閧 2 0 0 2— 2 6 2 4 8 3号公報には、 直流電動式の燃料 ポンプに用いられる直流電動機の構成が示されている。  For example, Japanese Patent Application Laid-Open No. 2000-2626483 discloses a configuration of a DC motor used for a DC electric fuel pump.
該公報に示された従来の直流電動機は、 電機子の外周に周方向に磁気 回路を形成する円筒形のョ一クとマグネッ トが配置されている。  In the conventional DC motor disclosed in this publication, a cylindrical yoke and a magnet forming a magnetic circuit in the circumferential direction are arranged on the outer periphery of the armature.
ヨークには、 マグネッ トを固定するための固定孔が形成されており、 この固定孔はヨークの板厚方向に内周面から外周面まで貫通し、 内周面 に開口する開口径より外周面に開口する開口径の方が大きく設けられて いる。  A fixing hole for fixing the magnet is formed in the yoke, and the fixing hole penetrates from the inner peripheral surface to the outer peripheral surface in the thickness direction of the yoke, and has a larger outer peripheral surface than the opening diameter opened to the inner peripheral surface. The opening diameter is larger than the opening diameter.
マグネッ トは、 磁粉を樹脂に混合してリング状に形成されたプラスチ ヅクマグネッ トであり、 ヨークと一体に形成され、 自身の一部がヨーク の固定孔にインサートされる。  The magnet is a plastic magnet formed by mixing magnetic powder into a resin and formed into a ring shape. The magnet is formed integrally with the yoke, and a part of itself is inserted into a fixing hole of the yoke.
この構成によれば、 ヨークと一体成型されたマグネヅ トの一部がョー クの固定孔に嵌合し、 その嵌合部の外周側が内周側より大きくなってい るので、成形後にマグネヅ トが収縮してもヨークから外れることがなく、 ヨークに対して強固に固定される。  According to this configuration, a part of the magnet integrally molded with the yoke fits into the fixing hole of the yoke, and the outer peripheral side of the fitting portion is larger than the inner peripheral side. Even if it contracts, it does not come off the yoke and is firmly fixed to the yoke.
従来の直流電動式の燃料ポンプに用いられる直流電動機 (即ち、 モ一 夕一部) は、 マグネッ トをヨークの板厚方向に貫通する固定孔を用いて ヨークに固定するので、 ヨーク側面に貫通孔を閧ける必要がある。 そのため、 孔開け加工によってヨークが変形したり、 バリが発生する という問題がある。 " DC motors used in conventional DC motor-driven fuel pumps (ie, part of the motor) use fixing holes that penetrate the magnet in the thickness direction of the yoke. Since it is fixed to the yoke, it is necessary to make a through hole on the side of the yoke. Therefore, there is a problem that the yoke is deformed or burrs are generated by the drilling process. "
さらに、 ヨークの内周側に磁粉が混合された樹脂を射出して、 マグネ ッ トをヨークと一体に成形する際、 ヨーク側面の貫通孔から樹脂がはみ 出し、 バリがヨーク外周に発生するという問題があった。  In addition, when resin mixed with magnetic powder is injected into the inner peripheral side of the yoke and the magnet is molded integrally with the yoke, the resin protrudes from the through holes on the side of the yoke, and burrs are generated on the outer periphery of the yoke. There was a problem.
また、 マグネヅ トがヨーク端部より軸方向に見て奥にあるので、 ョー ク内周側よりマグネッ トを射出成形しょうとすると、 ゲート処理が困難 であるという問題がある。  In addition, since the magnet is deeper than the end of the yoke when viewed in the axial direction, there is a problem in that if the magnet is to be injection-molded from the inner side of the yoke, gate processing is difficult.
なお、 ゲートとは、 射出成形時の金型の注入口のことであり、 この注 入口 (即ち、 ゲート) よりゾル状の樹脂が金型内に注入される。 金型内 に注入された樹脂は、所定圧力 ·所定温度の条件下で所定時間保持され、 成形品が完成する。 このとき注入口の部分にも樹脂が充填されているた め、 固化した注入口形状 (突起形状) の樹脂が残る。 この部分は不要で あるため切削などにより除去するが、 この除去処理のことをゲート処理 し 目 つ 。  The gate is an injection port of a mold at the time of injection molding, and a sol-like resin is injected into the mold from the injection port (that is, the gate). The resin injected into the mold is kept under a predetermined pressure and a predetermined temperature for a predetermined time, thereby completing a molded product. At this time, since the resin is also filled in the injection port portion, the solidified injection port-shaped (projection-shaped) resin remains. Since this part is unnecessary, it is removed by cutting or the like, but this removal processing is gated.
さらに、 マグネッ トとして強大な着磁力を必要とする保持力の高い希 土類磁石を使用する場合、 磁気回路を構成するヨークは肉厚の厚いもの が必要となるが、 ヨークが一つの部材で構成されているため着磁装置が 大型化する問題があつた。  Furthermore, when using a rare earth magnet with a high coercive force that requires a strong magnetizing force as a magnet, a thick yoke is required for the magnetic circuit, but the yoke is a single member. Due to the configuration, there was a problem that the magnetizing device became large.
この発明は、 上述のような問題点を解決するためになされたもので、 マグネッ トをヨークに固定するための貫通孔をヨーク側面に設ける必要 がなく、 さらに、 希土類のマグネッ トを使用する際に、 マグネッ トとョ —クにより構成される磁気回路構成の自由度が高く、 かつ、 小型の着磁 装置でマグネッ トの着磁が容易に行える直流電動機式燃料ポンプを提供 することを目的とする。 発明の開示 この発明に係る直流電動機式燃料ポンプは、 モータ部の直流電動機の 駆動に伴い前記モー夕部のヨークに固定されたポンプ部において燃料を 昇圧し、 出力する直流電動機式燃料ポンプにおいて、 前記ヨークは、 希 土類のリング状マグネッ トが内周に配置される第 1筒状ヨークと、 前記 マグネッ トに対応する位置で、 前記第 1筒状ヨークの外周に設けられる 第 2筒状ヨークとを備えたものである。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and there is no need to provide a through hole for fixing the magnet to the yoke on the side surface of the yoke. Another object of the present invention is to provide a DC motor-type fuel pump that has a high degree of freedom in a magnetic circuit configuration composed of a magnet and a shock and that can easily magnetize the magnet with a small magnetizing device. I do. DISCLOSURE OF THE INVENTION A DC motor fuel pump according to the present invention is a DC motor fuel pump that boosts fuel in a pump section fixed to a yoke of the motor section and outputs the fuel when a DC motor of a motor section is driven. The yoke includes a first cylindrical yoke in which a rare-earth ring-shaped magnet is disposed on an inner circumference, and a second cylindrical yoke provided on an outer circumference of the first cylindrical yoke at a position corresponding to the magnet. It is provided with a yoke.
その結果、 マグネッ トをヨークに固定するための貫通孔をヨーク側面 に設ける必要がなく、 さらに、 希土類のマグネッ トを使用する際に、 マ グネッ トとヨークにより構成される磁気回路構成の自由度が高く、かつ、 小型の着磁装置でマグネッ トの着磁が容易に行える直流電動機式燃料ポ ンプを実現できる。 図面の簡単な説明  As a result, it is not necessary to provide a through hole for fixing the magnet to the yoke on the side of the yoke, and when using a rare earth magnet, the degree of freedom of the magnetic circuit configuration composed of the magnet and the yoke is reduced. It is possible to realize a DC motor-type fuel pump that can easily magnetize magnets with high cost and a small magnetizing device. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態 1に係る直流電動機式燃料ポンプの 断面図である。  FIG. 1 is a cross-sectional view of a DC motor fuel pump according to Embodiment 1 of the present invention.
第 2図は、 マグネッ トの着磁の説明図である。  FIG. 2 is an illustration of magnet magnetization.
第 3図は、 この発明の実施の形態 2に係る直流電動機式燃料ポンプの マグネッ トとヨークを簡略表示した断面図である。  FIG. 3 is a cross-sectional view schematically showing a magnet and a yoke of a DC motor fuel pump according to Embodiment 2 of the present invention.
第 4図は、 この発明の実施の形態 3に係る直流電動機式燃料ポンプの マグネッ トと第 1筒状ヨークを簡略表示した断面図である。  FIG. 4 is a cross-sectional view schematically showing a magnet and a first cylindrical yoke of a DC motor fuel pump according to Embodiment 3 of the present invention.
第 5図は、 この発明の実施の形態 4係る直流電動機式燃料ポンプのマ グネッ トと軸受ホルダを簡略表示した図である。 発明を実施するための最良の形態 FIG. 5 is a simplified view of a magnet and a bearing holder of a DC motor fuel pump according to Embodiment 4 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 . Embodiment 1
以下この発明の実施の形態 1について説明する。  Hereinafter, Embodiment 1 of the present invention will be described.
第 1図は、この発明の実施の形態 1に係る直流電動機式燃料ポンプ(以 下、 単に燃料ポンプと称すこともある) の断面図である。 燃料ポンプ 1 は、 モ一夕部 1 0とポンプ部 2 0により構成されている。  FIG. 1 is a cross-sectional view of a DC motor-type fuel pump (hereinafter, may be simply referred to as a fuel pump) according to Embodiment 1 of the present invention. The fuel pump 1 is composed of a motor unit 10 and a pump unit 20.
まず、 モー夕部 1 0について説明する。 マグネッ ト 2は円筒状に形成 されており、 ヨーク 3の内周面において電機子 6の外周面から所定の距 離隔てた位置に配置され、 電機子 6の外周でヨーク 3とともに磁気回路 を形成する。  First, the motor section 10 will be described. The magnet 2 is formed in a cylindrical shape, and is arranged at a predetermined distance from the outer peripheral surface of the armature 6 on the inner peripheral surface of the yoke 3, and forms a magnetic circuit with the yoke 3 on the outer peripheral surface of the armature 6. I do.
なお、 例えば、 S m ' F e ' Nのネオジム (neodym) のマグネッ ト材 料をヨーク 3内周面に射出してヨーク 3と一体化したマグネッ ト 2を成 形すれば、 マグネッ ト 2とヨーク 3間の接着剤が不要となる。  For example, if a magnet material of neodymium (Sm'Fe'N) is injected into the inner peripheral surface of the yoke 3 to form the magnet 2 integrated with the yoke 3, the magnet 2 can be formed. The adhesive between the yokes 3 becomes unnecessary.
ヨーク 3は S T K M (機械構造用炭素鋼綱管) からなる第 1筒状ョー ク 4と第 2筒状ヨーク 5から構成され、 第 2筒状ヨーク 5に第 1筒状ョ ーク 4を軸方向から第 2筒状ヨーク 5の凸部 5 0 aに当接するまで圧入 する。 '  The yoke 3 is composed of a first cylindrical yoke 4 and a second cylindrical yoke 5 made of STKM (carbon steel steel pipe for machine structure), and the second cylindrical yoke 5 has the first cylindrical yoke 4 as a shaft. From the direction until it comes into contact with the projection 50a of the second cylindrical yoke 5. '
なお、 後述するように、 着磁の容易化の観点よりマグネッ ト 2を第 1 筒状ヨーク 4に射出成形により一体化する場合には、 第 2筒状ヨーク 5 に第 1筒状ヨーク 4を圧入する前にマグネッ ト 2を着磁しておくことが 好ましい。  As will be described later, when the magnet 2 is integrated with the first cylindrical yoke 4 by injection molding from the viewpoint of facilitating magnetization, the first cylindrical yoke 4 is connected to the second cylindrical yoke 5. It is preferable to magnetize the magnet 2 before press-fitting.
また、 マグネッ ト 2を射出成形によって形成するためのゲート部は、 マグネッ ト 2の端面に設けられている。  A gate for forming the magnet 2 by injection molding is provided on an end face of the magnet 2.
この場合、 着磁の精度、 あるいは第 1筒状ヨーク 4に機械加工をする 際の変形が少ないなどの観点から、 第 1筒状ヨーク 4の肉厚は 3 mm以 下、 好ましくは 2 mm以下がよい。 第 2筒状ヨーク 5は、 その両端部をシャフ ト 7の軸芯方向に曲げ加工 することにより、 軸受ホルダ 1 2、 インレッ トハウジング 2 1、 アウト レツ トハウジング 2 3を一体化する。 In this case, the thickness of the first cylindrical yoke 4 is 3 mm or less, preferably 2 mm or less, from the viewpoints of the magnetization accuracy and the small deformation when machining the first cylindrical yoke 4. Is good. The second cylindrical yoke 5 integrates the bearing holder 12, the inlet housing 21, and the outlet housing 23 by bending both ends thereof in the axial direction of the shaft 7.
なお、 第 2筒状ヨーク 5の一方の端部だけをシャフト 7の軸芯方向に 曲げ加工したものであってもよい。  Note that only one end of the second cylindrical yoke 5 may be bent in the axial direction of the shaft 7.
この場合、 曲げ加工しない他方の端部には、 軸受ホルダ 1 2あるいは インレツ トハウジング 2 1とアウトレヅ トハウジング 2 3で構成される ハウジングが圧入され、 固定される。  In this case, a bearing holder 12 or a housing composed of an inlet housing 21 and an outlet housing 23 is press-fitted and fixed to the other end that is not bent.
例えば、 ポリァセ夕一ルを主成分とする絶縁性の樹脂により形成され た軸受ホルダ 1 2は、 チェックバルブ 1 3、 シャフ ト 7を軸支する軸受 8、 導電性のブラシ 9、 このブラシ 9を整流子 6 aに押圧するコイルバ ネ 1 0、 ブラシ 9に燃料ポンプ外から電流を供給するためのリード線 1 1などを収納している。  For example, a bearing holder 12 made of an insulating resin mainly composed of a polyester resin has a check valve 13, a bearing 8 that supports a shaft 7, a conductive brush 9, and a brush 9. It houses a coil spring 10 for pressing the commutator 6a and a lead wire 11 for supplying a current to the brush 9 from outside the fuel pump.
次に、 ポンプ部 2 0について説明する。 インレッ トハウジング 2 1は 樹脂により形成され、 シャフ トス トッパ 2 8を収納し、 図示しない燃料 夕ンク内の燃料を吸入する吸入口が設けられている。  Next, the pump section 20 will be described. The inlet housing 21 is formed of a resin, accommodates a shaft stopper 28, and is provided with a suction port for sucking fuel in a fuel tank (not shown).
アウトレッ トハウジング 2 3は、 樹脂により形成され、 流路 2 7で昇 圧された燃料を電機子 6側に吐出する吐出口 2 4が設けられるとともに、 シャフ ト 7を軸支する軸受 2 5を収納する。  The outlet housing 23 is formed of resin, is provided with a discharge port 24 for discharging the fuel pressurized in the flow path 27 to the armature 6 side, and has a bearing 25 for supporting the shaft 7. To store.
樹脂により成形され、 外周に複数の羽根溝が形成されたインペラ (羽 根車) 2 6の中心部の D字形状の孔には、 断面が D字形状に形成された シャフ ト 7の端部である Dカヅ ト部 7 aが嵌合している。  The impeller (impeller) 26, which is formed of resin and has a plurality of blade grooves on the outer periphery, has a D-shaped hole at the center of the shaft, and an end of a shaft 7 having a D-shaped cross section. The D-cut portion 7a is fitted.
インレッ トハウジング 2 1およびアウトレッ トハウジング 2 2の凹溝 2 1 a、 2 3 aと、 ィンペラ 2 6の複数の羽根溝により流路 2 7が形成 される  A channel 27 is formed by the concave grooves 21 a and 23 a of the inlet housing 21 and the outlet housing 22 and a plurality of blade grooves of the impeller 26.
次に、 燃料ポンプの動作について説明する。 図示しないバッテリーから給電端子(図示せず)、 リード線 1 1、 ブラ シ 9、 整流子 6 aを介して、 電機子 6に電流が供給されると、 周知の直 流電動機の原理により、 電機子 6はシャフ ト 7を回転軸としてィンペラ 2 6とともに回転する。 Next, the operation of the fuel pump will be described. When a current is supplied to the armature 6 from a battery (not shown) via a power supply terminal (not shown), a lead wire 11, a brush 9, and a commutator 6a, the electric motor is driven by a known DC motor principle. The child 6 rotates together with the impeller 26 around the shaft 7 as a rotation axis.
これに伴い、 図示しない燃料タンク内の燃料は、 吸入口 2 2から導入 され、 流路 2 7内において 3 0 0 KP a〜 5 0 O KP aに加圧された後、 吐出口 2 4を通り、 モ一夕部 1 0内の空間に入る。 この加圧された燃料 は、 モー夕部 1 0内において電機子 6とマグネッ ト 2の間を通って流れ るときに電機子 6を冷却し、 チェヅクバルブ 1 3を開放させ軸受ホルダ 1 2の吐出管 1 2 aから吐出される。 この吐出された加圧燃料は図示し ない内燃機関 (エンジン) に供給される。  Along with this, the fuel in the fuel tank (not shown) is introduced from the suction port 22, and is pressurized to 300 KPa to 50 O KPa in the flow path 27, and then discharged from the discharge port 24. On the street, enter the space inside the Morning Night Section 10. This pressurized fuel cools the armature 6 when flowing between the armature 6 and the magnet 2 in the motor section 10, opens the check valve 13 and discharges the bearing holder 12. Discharged from tube 12a. The discharged pressurized fuel is supplied to an unillustrated internal combustion engine.
前述したように、 ヨーク 3は肉厚の薄い第 1筒状ヨーク 4と肉厚の厚 い第 2筒状ヨーク 5で構成されている。  As described above, the yoke 3 includes the first cylindrical yoke 4 having a small thickness and the second cylindrical yoke 5 having a large thickness.
従って、保持力の強い希土類のマグネッ ト 2を使用する場合は、まず、 希土類のマグネッ ト 2を射出成形により第 1筒状ヨーク 4の内周面に形 成し、 その状態でマグネヅ ト 2を着磁し、 その後、 第 2筒状ヨーク 5の 所望の位置にマグネッ ト 2が内面に形成された第 1筒状ヨーク 4を固定 することができる。  Therefore, when a rare earth magnet 2 having a strong holding force is used, first, the rare earth magnet 2 is formed on the inner peripheral surface of the first cylindrical yoke 4 by injection molding, and the magnet 2 is then formed. After magnetizing, the first cylindrical yoke 4 having the magnet 2 formed on the inner surface at a desired position of the second cylindrical yoke 5 can be fixed.
ところで、 希土類のマグネッ トよりも保持力の弱い焼結マグネッ トを 用いる従来の燃料ポンプに比較して、 実施の形態 1における希土類のマ グネッ ト 2を使用した燃料ポンプ 1は、 ヨーク 3の肉厚として厚いもの が必要となる。  By the way, the fuel pump 1 using the rare-earth magnet 2 in the first embodiment is different from the conventional fuel pump using the sintered magnet having a lower holding force than the rare-earth magnet in that the yoke 3 Thick ones are needed.
他方、 燃料ポンプ 1は、 一般の直流電動機と異なり、 軸方向にポンプ 部 2 0を設ける必要がある。 更に、 昇圧された燃料が燃料ポンプ 1内を 通過するので、 第 2筒状ヨーク 5によって軸受ホルダ 1 2、 インレヅ ト ハウジング 2 1、 アウトレヅ トハウジング 2 3を液密に (即ち、 燃料が 漏れないように) 保持する必要がある。 On the other hand, unlike a general DC motor, the fuel pump 1 needs to be provided with a pump section 20 in the axial direction. Further, since the pressurized fuel passes through the fuel pump 1, the second cylindrical yoke 5 makes the bearing holder 12, the inlet housing 21 and the outlet housing 23 liquid-tight (that is, when the fuel is discharged). (To prevent leakage).
このため、 一般の直流電動機に比較し、 第 2筒状ヨーク 5の軸方向の 長さ (軸方向の全長) が大きくなる。  Therefore, the axial length (total axial length) of the second cylindrical yoke 5 is larger than that of a general DC motor.
本実施の形態では、 ヨーク 3は、 第 1筒状ヨーク 4と第 2筒状ヨーク 5の 2部材で構成されているので、 例えば、 第 1の筒状ョ一ク 4の長さ を変えるだけでも磁気回路を変更できる。  In the present embodiment, since the yoke 3 is composed of two members, the first cylindrical yoke 4 and the second cylindrical yoke 5, for example, only the length of the first cylindrical yoke 4 is changed. But you can change the magnetic circuit.
従って、 従来のような一体物のヨークの場合と比較し、 磁気回路搆成 の自由度が高くなる。  Therefore, the degree of freedom of the magnetic circuit can be increased as compared with the case of the conventional one-piece yoke.
また、 第 1の筒状ヨーク 4の長さを変えことによって要求仕様の異な る複数種類の燃料ポンプに対応することできるので、 第 2筒状ヨーク 5 は複数種類の燃料ポンプに対して共用化することも可能となる。  Also, by changing the length of the first cylindrical yoke 4, it is possible to cope with a plurality of types of fuel pumps having different required specifications, so that the second cylindrical yoke 5 is shared with a plurality of types of fuel pumps. It is also possible to do.
また、 ヨーク 3は第 1筒状ヨーク 4と第 1筒状ヨーク 4より軸方向長 さの大きい第 2筒状ヨーク 5の 2部材で構成されているので、 磁気回路 にほとんど影響を及ぼさない第 2筒状ョ一ク 5の端部の肉厚を薄くする ことができる。  Further, since the yoke 3 is composed of two members, the first cylindrical yoke 4 and the second cylindrical yoke 5, which is longer in the axial direction than the first cylindrical yoke 4, the yoke 3 has almost no influence on the magnetic circuit. The thickness of the end of the two cylindrical casings 5 can be reduced.
また、 第 2筒状ヨーク 5の端部の肉厚を薄くすることによって、 シャ フ ト 7の軸芯方向への曲げ加工が容易となり、 燃料ポンプ 1の組立ても 容易となる。  In addition, by reducing the thickness of the end of the second cylindrical yoke 5, bending of the shaft 7 in the axial direction becomes easy, and the fuel pump 1 can be easily assembled.
また、 第 1筒状ヨーク 4の内周にマグネッ ト 2を固定する構成として いるので、 燃料ポンプ 1内におけるマグネヅ ト 2の位置は、 第 1筒状ョ —ク 4の第 2筒状ヨーク 5に対する固定位置を変えることによって調整 することができる。  Also, since the magnet 2 is fixed to the inner periphery of the first cylindrical yoke 4, the position of the magnet 2 in the fuel pump 1 is determined by the position of the second cylindrical yoke 5 of the first cylindrical yoke 4. It can be adjusted by changing the fixed position with respect to.
このため、 第 1筒状ヨーク 4内の製品構成上都合の良い位置にマグネ ッ ト 2を固定することができる。  For this reason, the magnet 2 can be fixed at a convenient position in the first cylindrical yoke 4 in terms of the product configuration.
また、 第 1筒状ョ一ク 4とマグネッ ト 2の軸方向長さを同一にして、 第 1筒状ヨーク 4とマグネッ ト 2の端部の端面位置を同一とすることに より、 第 1筒状ヨーク 4の端部近傍に射出成形用のゲ一トを設けること ができる。 The first cylindrical yoke 4 and the magnet 2 have the same axial length, and the first cylindrical yoke 4 and the magnet 2 have the same end face position. Thus, a gate for injection molding can be provided near the end of the first cylindrical yoke 4.
この場合、 従来のように第 1筒状ヨーク 4の側面に射出成形のゲ一ト の孔を閧ける必要や、 第 1筒状ヨーク 4の内周側から射出成形用のゲ一 トを設ける必要がなくなり、 しかも、 ゲート処理が容易となる。  In this case, it is necessary to form a hole for an injection molding gate on the side surface of the first cylindrical yoke 4 as in the related art, or to provide a gate for injection molding from the inner peripheral side of the first cylindrical yoke 4. There is no need to do this, and gate processing becomes easier.
さらに、 第 1筒状ヨーク 4と第 2筒状ョ一ク 5は協働して周方向の磁 気回路として働くため、 第 1筒状ョ一ク 4および第 2筒状ヨーク 5の厚 さの選択範囲が広い。  Further, since the first cylindrical yoke 4 and the second cylindrical yoke 5 work together as a magnetic circuit in the circumferential direction, the thickness of the first cylindrical yoke 4 and the second cylindrical yoke 5 is increased. The selection range is wide.
例えば、 メインの磁気回路として働く第 2筒状ヨーク 5を厚くするこ とにより、 第 1筒状ヨーク 4は薄くすることができる。  For example, by increasing the thickness of the second cylindrical yoke 5 acting as the main magnetic circuit, the first cylindrical yoke 4 can be reduced.
マグネッ ト 2に強大な着磁力を必要とする保磁力の高い希土類磁石を 使用する場合は、 その保磁力に応じた厚い肉厚の磁気回路が必要となる が、 第 1筒状ヨーク 4および第 2筒状ヨーク 5の厚さの選択範囲が広い ので、 容易に対応できる。  When using a rare earth magnet with a high coercive force that requires a strong magnetizing force for the magnet 2, a thick magnetic circuit corresponding to the coercive force is required, but the first cylindrical yoke 4 and the (2) The wide selection range of the thickness of the cylindrical yoke 5 allows easy handling.
即ち、 マグネッ ト 2に強大な着磁力を必要とする保磁力の高い希土類 磁石を使用する場合は、 第 1筒状ヨーク 4を薄く し、 この第 1筒状ョ一 ク 4の内側に射出成形されたマグネッ ト 2に着磁後、 メィンの磁気回路 として働く第 2筒状ョ一ク 5装着することが可能となる。  That is, when using a rare earth magnet having a high coercive force that requires a strong magnetizing force for the magnet 2, the first cylindrical yoke 4 is made thinner, and injection molding is performed inside the first cylindrical yoke 4. After the magnet 2 is magnetized, it becomes possible to mount the second cylindrical yoke 5 acting as the main magnetic circuit.
従って、 小型の着磁装置でマグネッ ト 2の着磁が可能であると共に、 マグネッ ト 2の着磁には不要な第 1筒状ヨーク 4の占有体積が小さいの で、 着磁の精度を高めることができる。  Therefore, the magnet 2 can be magnetized with a small magnetizing device, and the occupied volume of the first cylindrical yoke 4 that is unnecessary for magnetizing the magnet 2 is small, so that the magnetizing accuracy is improved. be able to.
ここで、 マグネッ トの着磁について第 2図を用いて説明する。  Here, the magnetization of the magnet will be described with reference to FIG.
第 2図は、 着磁装置 4 0によって同じ着磁力 4 1によりマグネッ ト 2 を着磁するときの様子を説明するための図であり、 第 2図 (a ) は本実 施の形態のように肉厚の薄い第 1筒状ヨーク 4の内周にマグネヅ ト 2が 形成されている場合、 第 2図 (b ) は従来のように肉厚の厚い筒状ョ一 クの内周にマグネヅ ト 2が形成されている場合を示している。 FIG. 2 is a diagram for explaining a state in which the magnet 2 is magnetized by the magnetizing device 40 with the same magnetizing force 41, and FIG. 2 (a) shows the state of the present embodiment. When the magnet 2 is formed on the inner periphery of the first cylindrical yoke 4 having a small thickness, FIG. 2 (b) shows a conventional cylindrical yoke 4 having a thick wall. The figure shows a case where the magnet 2 is formed on the inner circumference of the magnet.
第 2図 (a ) の場合には、 着磁装置 4 0の所定の着磁力 4 1により磁 束 4 2が第 1筒状ヨーク 4およびマグネッ ト 2に交差し、 良好にマグネ ヅト 2着磁をすることができる。  In the case of FIG. 2 (a), the magnetic flux 42 intersects the first cylindrical yoke 4 and the magnet 2 by a predetermined magnetizing force 41 of the magnetizing device 40, and the magnet 2 is satisfactorily attached. Can magnetize.
他方、 第 2図 (b ) の場合には、 第 2図 (a ) と同じ着磁力 4 1では、 磁束 4 2がマグネッ ト 2とは交差せず(所謂ショート状態)、マグネッ ト On the other hand, in the case of FIG. 2 (b), with the same magnetizing force 41 as in FIG. 2 (a), the magnetic flux 42 does not cross the magnet 2 (so-called short state),
2を充分に着磁することができない。 2 cannot be magnetized sufficiently.
従って、 第 2図 ( a ) の場合に比較し、 マグネッ ト 2の着磁に強力な 着磁力を要する。  Therefore, compared to the case of Fig. 2 (a), a strong magnetizing force is required for magnetizing magnet 2.
また、 第 2筒状ヨーク 5の線膨張率を第 1筒状ョ一ク 4の線膨張率よ りも小さなものを選定しておくと、 燃料ポンプの稼働や使用環境によつ て温度が上昇し、 第 1筒状ヨーク 4、 第 2筒状ヨーク 5が膨張しても、 第 1筒状ヨーク 4と第 2筒状ヨーク 5の間の接触は保たれ、 磁気回路が 分断されにくい。  If the coefficient of linear expansion of the second cylindrical yoke 5 is selected to be smaller than the coefficient of linear expansion of the first cylindrical yoke 4, the temperature may vary depending on the operation of the fuel pump and the operating environment. Even if the first cylindrical yoke 4 and the second cylindrical yoke 5 expand, the contact between the first cylindrical yoke 4 and the second cylindrical yoke 5 is maintained, and the magnetic circuit is hardly disconnected.
なお、 第 1筒状ヨーク 4と第 2筒状ヨーク 5の固定は圧入による例を 説明したが、 焼き嵌め等であってもよい。  Although the first cylindrical yoke 4 and the second cylindrical yoke 5 have been described as being fixed by press-fitting, they may be shrink-fitted.
実施の形態 2 . Embodiment 2
以下この発明の実施の形態 2について説明する。  Hereinafter, a second embodiment of the present invention will be described.
第 3図は、 実施の形態 2に係る直流電動機式燃料ポンプのマグネッ ト とヨークを簡略表示した断面図であり、 第 3図 (a ) は第 1筒状ヨーク が第 2筒状ヨークよりも軸方向長さが長い場合、 第 3図 (b ) は第 1筒 状ヨークが第 2筒状ヨークよりも軸方向長さ.が短い場合を示している。 第 3図 (a ) に示すものは、 第 1筒状ヨーク 4 aの下端内面に設けら れたリプ 4 0 aにマグネヅ ト 2 aの端面が当接することにより、 燃料ポ ンプ 1として使用した際に、 成形により第 1筒状ョ一ク 4 a内周に一体 成形時若しくは成形後に第 1筒状ヨーク 4 a内に配置したマグネッ ト 2 aが下方へ移動することを防止する。 FIG. 3 is a cross-sectional view schematically showing a magnet and a yoke of the DC motor fuel pump according to Embodiment 2, and FIG. 3 (a) shows that the first cylindrical yoke is larger than the second cylindrical yoke. When the axial length is long, FIG. 3 (b) shows the case where the first cylindrical yoke is shorter in axial length than the second cylindrical yoke. The one shown in Fig. 3 (a) was used as a fuel pump 1 by the end face of the magnet 2a abutting on the lip 40a provided on the inner surface of the lower end of the first cylindrical yoke 4a. In this case, the magnet 2 placed inside the first cylindrical yoke 4a at the time of molding or after molding integrally with the inner periphery of the first cylindrical yoke 4a a is prevented from moving downward.
第 2筒状ヨーク 5 aは実施の形態 1で説明した第 1筒状ヨーク 5と同 様の構成であり、 その他の図示しない構成は実施の形態 1と同様である ので、 その説明を省略する (以下の実施の形態においても同様である)。 なお、 マグネッ ト 2 aを射出成形により第 1筒状ヨーク 4 aに一体成 形後、 着磁する場合には、 第 3図 (b ) に比較し、 第 1筒状ヨーク 4 a の軸方向長さが短い (即ち、 ほぼマグネッ ト 2 aの軸方向長さと同じ) なので、 着磁を容易にできる。  The second cylindrical yoke 5a has the same configuration as that of the first cylindrical yoke 5 described in the first embodiment, and the other configuration (not shown) is the same as that of the first embodiment. (The same applies to the following embodiments). When the magnet 2a is magnetized after being integrally formed with the first cylindrical yoke 4a by injection molding, the axial direction of the first cylindrical yoke 4a is compared with that in FIG. 3 (b). Since the length is short (that is, almost the same as the axial length of magnet 2a), it can be easily magnetized.
特に、 燃料ポンプの場合には、 直流電動機に比較し、 ポンプ部 2 0が 軸方向に必要となり、 第 2筒状ヨーク 5 aは軸方向が長くなるので、 こ の作用効果は顕著である。  In particular, in the case of a fuel pump, the pump portion 20 is required in the axial direction and the second cylindrical yoke 5a is longer in the axial direction than in the case of the DC motor, so that this effect is remarkable.
第 3図 (b ) に示すものは、 第 2筒状ヨーク 5 bが、 マグネッ ト 2 b に対応する位置 (即ち、 マグネッ ト 2 b、 第 1筒状ヨーク 4 bと共に磁 気回路を構成する位置) で、 第 1筒状ヨーク 4 bの外周の一部を覆って いる。  FIG. 3 (b) shows that the second cylindrical yoke 5b forms a magnetic circuit with the position corresponding to the magnet 2b (ie, the magnet 2b and the first cylindrical yoke 4b). Position) covers a part of the outer periphery of the first cylindrical yoke 4b.
このように構成したので、 磁気回路の構成に必要な領域のみに第 2筒 状ヨーク 5 bを配置すればよく、 燃料ポンプの全体の外郭を小さくでき る  With this configuration, the second cylindrical yoke 5b only needs to be arranged in an area necessary for the configuration of the magnetic circuit, and the entire outer periphery of the fuel pump can be reduced.
また、 第 3図 (a ) の場合に比較し、 第 1筒状ヨーク 4 bと第 2筒状 ヨーク 5 bを圧入後、 第 1筒状ヨーク 4 bと第 2筒状ヨーク 5 bの固定 強化のため両者を溶接等することが容易である。  Also, as compared with the case of FIG. 3 (a), after the first cylindrical yoke 4b and the second cylindrical yoke 5b are press-fitted, the first cylindrical yoke 4b and the second cylindrical yoke 5b are fixed. It is easy to weld both for strengthening.
第 3図(b )の場合には、 第 1筒状ヨーク 4 bは、軸受ホルダ 1 2 (第 1図参照)、 インレヅ トハウジング 2 1 (第 1図参照)、 アウトレッ トハ ウジング 2 3 (第 1図参照) を固定する。  In the case of FIG. 3 (b), the first cylindrical yoke 4b includes a bearing holder 12 (see FIG. 1), an inlet housing 21 (see FIG. 1), and an outlet housing 23 (see FIG. 1). (See Fig. 1).
また、 従来例と同様に、 第 1筒状ヨーク 4 bよりも軸方向長さが半分 程度以下と短いマグネツ ト 2 bが、 第 1筒状ヨーク 4 bの軸方向略中央 に配置されている。 Similarly to the conventional example, the magnet 2b, which is shorter than the first cylindrical yoke 4b by about half or less in the axial direction, is substantially at the center of the first cylindrical yoke 4b in the axial direction. Are located in
したがって、 マグネット 2 bは、 成形後に第 1筒状ヨーク 4 bに挿入 し固定する、 或いは、 従来例と同様に第 1筒状ョ一ク 4 bの側面に図示 しない貫通孔を設け、 第 1筒状ヨーク 4 bの側面からこの貫通孔を介し てマグネッ ト 2 bを第 1筒状ヨーク 4 bの内周に一体成形することが製 造の効率からは好ましい。  Therefore, the magnet 2b is inserted into and fixed to the first cylindrical yoke 4b after molding, or a through hole (not shown) is provided on the side surface of the first cylindrical yoke 4b as in the conventional example. From the manufacturing efficiency, it is preferable to integrally form the magnet 2b on the inner periphery of the first cylindrical yoke 4b from the side surface of the cylindrical yoke 4b through the through hole.
実施の形態 3 . Embodiment 3.
以下この発明の実施の形態 3について説明する。 実施の形態 3は実施 の形態 1、 2で説明した燃料ポンプにおけるマグネッ トと第 1筒状ョ一 クの変形例であり、 いずれもマグネッ トは射出成形により第 1筒状ョ一 クに一体成形された例である。  Hereinafter, a third embodiment of the present invention will be described. The third embodiment is a modification of the magnet and the first cylindrical yoke in the fuel pump described in the first and second embodiments. In each case, the magnet is integrated with the first cylindrical yoke by injection molding. It is a molded example.
第 4図は、 この発明の実施の形態 3に係る直流電動機式燃料ポンプの マグネッ トと第 1筒状ヨークを簡略表示した断面図であり、第 4図( a ) はマグネッ トがテ一パ形状の例、 第 4図 (b ) はマグネッ トの両端で第 1筒状ヨークに固定する例、 第 4図 ( c ) は第 1筒状ヨーク端面に凸部 を設ける例、第 4図(d )は第 4図( c )のヨークのみを示す図である。 第 4図 (a ) のものは、 第 1筒状ヨーク 4 cの内周面をテ一パ形状に し、 しかも、 マグネヅ ト 2 cの端部に設けたリブ 4 0 cで第 1筒状ョ一 ク 4 cの下端を覆っているので、 マグネヅ ト 2 cが軸方向に移動するの を防ぐことができる。  FIG. 4 is a cross-sectional view schematically showing a magnet and a first cylindrical yoke of a DC motor-type fuel pump according to Embodiment 3 of the present invention, and FIG. 4 (a) is a tapered magnet. Fig. 4 (b) shows an example of fixing to the first cylindrical yoke at both ends of the magnet, Fig. 4 (c) shows an example of providing a projection on the end surface of the first cylindrical yoke, and Fig. 4 ( d) is a diagram showing only the yoke in FIG. 4 (c). In FIG. 4 (a), the inner peripheral surface of the first cylindrical yoke 4c has a tapered shape, and the first cylindrical yoke 4c has a first cylindrical yoke 4c formed by a rib 40c provided at an end of the magnet 2c. Since the lower end of the work 4c is covered, it is possible to prevent the magnet 2c from moving in the axial direction.
第 4図 (b ) のものは、 射出成形により一体化するマグネヅ ト 2 dの 両端部のリブで第 1筒状ヨーク 4 dの両端を覆っているので、 マグネッ ト 2 dの軸方向の移動を防く、ことができる。  In Fig. 4 (b), the ribs at both ends of the magnet 2d integrated by injection molding cover both ends of the first cylindrical yoke 4d, so that the magnet 2d moves in the axial direction. Prevent, can.
第 4図 ( c ) のものは、 第 1筒状ヨーク 4 eの上端面に第 4図 (d ) のように凸形状 5 0 eが設けられており、 射出成形により一体化される マグネッ ト 2 eで第 1筒状ヨーク 4 eの両端を覆っているので、 マグネ ッ ト 2 eの軸方向の移動および回転を防く、ことができる。 なお、 第 1筒 状ヨーク 4 eの凸形状 5 0 eは凹形状でも同様の作用効果を得られる。 実施の形態 4 . In the case of FIG. 4 (c), a convex shape 50e is provided on the upper end surface of the first cylindrical yoke 4e as shown in FIG. 4 (d), and the magnet is integrated by injection molding. 2 e covers both ends of the first cylindrical yoke 4 e, The axial movement and rotation of the cut 2 e can be prevented. The same operation and effect can be obtained even if the convex shape 50e of the first cylindrical yoke 4e is concave. Embodiment 4.
以下この発明の実施の形態 4について説明する。 実施の形態 4は実施 の形態 1、 〜 3で説明した燃料ポンプにおけるマグネッ トの回転防止の 変形例である。  Hereinafter, a fourth embodiment of the present invention will be described. Embodiment 4 is a modification of the fuel pump described in Embodiments 1 to 3 for preventing rotation of the magnet.
第 5図はこの発明の実施の形態 4係る直流電動機式燃料ポンプのマグ ネッ 卜と軸受ホルダを簡略表示した図であり、 第 5図 (a ) は筒状をし たマグネッ トの軸受ホルダ 1 2 (第 1図参照) と対向する側の端面が平 坦な場合の例、 第 5図 (b ) は第 5図 ( a ) のマグネッ トと軸受ホルダ とヨークを示す断面図、 第 5図 ( c ) はマグネッ ト端面が波形状の場合 の例、 第 5図 (d ) 〜 (g ) はマグネッ ト端面に凹部、 凸部を設ける場 合の例である。  FIG. 5 is a simplified view of a magnet and a bearing holder of a DC motor fuel pump according to Embodiment 4 of the present invention. FIG. 5 (a) shows a cylindrical magnet bearing holder. Fig. 5 (b) is a sectional view showing the magnet, bearing holder and yoke of Fig. 5 (a), and Fig. 5 (b) is a cross-sectional view showing the magnet, bearing holder, and yoke of Fig. 5 (a). (C) is an example in the case where the magnet end face is corrugated, and FIGS. 5 (d) to (g) are examples in which the magnet end face is provided with concave portions and convex portions.
なお、 第 5図 (b ) は、 説明の都合上、 1部材からなる筒状ヨークの 例で説明するが、 筒状ヨークは実施の形態 1〜3と同様に第 1筒状ョー クと第 2筒状ヨークの 2部材からなる筒状ヨークであってもよい。  FIG. 5 (b) shows an example of a cylindrical yoke made of one member for convenience of description, but the cylindrical yoke and the first cylindrical yoke are similar to those in the first to third embodiments. It may be a cylindrical yoke composed of two members of a two cylindrical yoke.
第 5図 (a ) のものは、 軸受ホルダ 1 2 f とマグネヅ ト 2 f とも端面 が平坦なものを示しており、 第 5図 (b ) に示すように、 マグネヅ ト 2 は、 その両端面がヨーク 3 f の凸部 (即ち、 ヨーク 3 f のポンプ部 2 0側の端部内周において径方向に突出して形成された凸部) 5 O f と軸 受ホルダ 1 2 f により挟み込まれる。  In Fig. 5 (a), both the bearing holder 12f and the magnet 2f have flat end faces. As shown in Fig. 5 (b), the magnet 2 has both end faces. Of the yoke 3 f (that is, a protrusion formed radially in the inner circumference of the end of the yoke 3 f on the pump portion 20 side) 5 O f and the bearing holder 12 f.
軸受ホルダ 1 2 f は、 直流電動機のブラシ 9 (第 1図参照)、 電機子 6 (第 1図参照) の軸受 8 (第 1図参照) 等を収納し、 昇圧した燃料の吐 出管 1 2 a (第 1図参照) が形成されたもので、 直流電動機式燃料ボン プには必ず設けられるものなので、 部品を増やすことなく、 マグネッ ト 2 f の軸方向の移動および回転を止めることができる。 第 5図 ( c ) のものは、 軸受ホルダ 1 2 gおよびマグネヅ ト 2 gの端 面を波形状とし、 この波形状部が互いに係合することにより、 マグネッ ト 2 f の回転を止めることができる。 The bearing holder 1 2 f houses the brush 9 of the DC motor (see Fig. 1), the bearing 8 of the armature 6 (see Fig. 1) (see Fig. 1), etc., and discharges the pressurized fuel 1 2a (see Fig. 1) is formed, and is always provided in the DC motor fuel pump. it can. In the case of Fig. 5 (c), the end faces of the bearing holder 12g and the magnet 2g are corrugated, and the rotation of the magnet 2f can be stopped by engaging these corrugated parts with each other. it can.
第 5図 (d ) のものは、 軸受ホルダ 1 2 hの端面に凹部 7 0 hを、 マ グネッ ト 2 hの端面に凸部 6 0 hを設け、 これらの凹部および凸部が互. いに係合することにより、マグネヅ ト 2 hの回転を止めることができる。 第 5図 ( e ) のものは、 軸受ホルダ 1 2 kの端面に凸部 6 1 kを、 マ グネッ ト 2 kの端面に凹部 7 1 kを設け、 これらの凹部および凸部が互 いに係合することにより、マグネヅ ト 2 kの回転を止めることができる。 第 5図 (f ) のものは、 軸受ホルダ 1 2 mの端面に周方向にパネ性を 有する凹部 7 2 mを、 マグネッ ト 2 mに凸部 6 2 mを設け、 これらの凹 部および凸部が互いに係合することにより、 マグネッ ト 2 mの回転を止 めることができる。  In Fig. 5 (d), a concave portion 70h is provided on the end surface of the bearing holder 12h, and a convex portion 60h is provided on the end surface of the magnet 2h. These concave portions and convex portions are alternated. The rotation of the magnet 2h can be stopped by engaging with. In Fig. 5 (e), a projection 61k is provided on the end face of the bearing holder 12k, and a recess 71k is provided on the end face of the magnet 2k. By the engagement, the rotation of the magnet 2k can be stopped. In Fig. 5 (f), the end face of the bearing holder 12m is provided with a concave portion 72m having panel properties in the circumferential direction, the magnet 2m is provided with a convex portion 62m, and the concave portion and the convex portion are provided. The rotation of the magnet 2 m can be stopped by the parts being engaged with each other.
第 5図 (g ) のものは、 軸受ホルダ 1 2 nに周方向にパネ性を有する 凸部 7 3 hを、 マグネッ ト 2 ηに凹部 6 3 nを設け、 これらの凹部およ び凸部が互いに係合することにより、 マグネッ ト 2 mの回転を止めるこ とができる。  In FIG. 5 (g), the bearing holder 12n is provided with a convex portion 73h having a panel characteristic in the circumferential direction, and the magnet 2η is provided with a concave portion 63n, and the concave portion and the convex portion are provided. By engaging with each other, the rotation of the magnet 2 m can be stopped.
さらに、 第 5図 (f ) の場合の凹部 7 2 mあるいは第 5図 (g ) の場 合の凸部 7 3 hはパネ性を有しているので、 第 5図 (d ) あるいは第 5 図 (e ) の場合に比較し、 マグネッ トと軸受ホルダをガ夕無く係合させ ることができる。  Further, since the concave portion 72 m in the case of FIG. 5 (f) or the convex portion 73 h in the case of FIG. 5 (g) has a paneling property, FIG. 5 (d) or FIG. Compared to the case of Fig. (E), the magnet and the bearing holder can be engaged without interruption.
なお、 例えば、 軸受ホルダ 1 2 mの凹部 7 2 mがバネ性を有する理由 について説明しておく。 軸受ホルダ 1 2 mの凹部 7 2 mは、 マグネヅ ト 2 mの凸部 6 2 mが揷入される開口がマグネッ ト 2 mの凸部 6 2 より も狭い挿入部 (台形形状の部分) と、 この挿入部の両側に突出する一対 の突起と、 該突起と軸受ホルダ 1 2 mの側部との間に設けられたスリッ トにより構成されている。 そして、 マグネッ ト 2 mの凸部 62 mが軸受 ホルダ 12mの凹部 72mに揷入されると、 揷入部の開口は凹部 72m より狭いので、 一対の突起はスリッ ト側に弾性変型した状態 (即ち、 軸 バネ性を有した状態) で、 マグネッ ト 2mと軸受ホルダ 12mは位置決 めされる。 Note that, for example, the reason why the recess 72 m of the bearing holder 12 m has a spring property will be described. The concave part 72 m of the bearing holder 12 m has an insertion part (trapezoidal part) whose opening into which the convex part 62 2 m of the magnet is inserted is narrower than the convex part 62 2 of the magnet 2 m. A pair of protrusions protruding on both sides of the insertion portion, and a slit provided between the protrusion and a side portion of the bearing holder 12 m. It is composed of When the convex portion 62m of the magnet 2m is inserted into the concave portion 72m of the bearing holder 12m, the opening of the inserted portion is narrower than the concave portion 72m, so that the pair of protrusions is elastically deformed toward the slit side (that is, In this state, the magnet 2m and the bearing holder 12m are positioned.
マグネット 2 hあるいはマグネッ ト 2 mを射出成形によって成形する 場合、 第 5図 (d) あるいは第 5図 (f ) のマグネヅ ト 2 hあるいはマ グネッ ト 2mの凸部は、 成形時に作られるゲート部を用いると、 ゲート 処理が不要となり好ましい。 この場合のゲートは径または角 1〜2. 6 mm程度であり、 高さ lmm程度の円柱状, 角柱状となる。 産業上の利用可能性  When the magnet 2h or the magnet 2m is molded by injection molding, the protrusion of the magnet 2h or the magnet 2m in Fig. 5 (d) or Fig. 5 (f) is the gate part formed at the time of molding. The use of is preferred because gate processing is not required. In this case, the gate has a diameter or square of about 1 to 2.6 mm, and has a columnar or prismatic shape with a height of about lmm. Industrial applicability
本発明は、 磁気回路構成の自由度が高く、 小型の着磁装置でマグネッ トの着磁が容易に行える直流電動機式燃料ポンプの実現に有用である。  INDUSTRIAL APPLICABILITY The present invention is useful for realizing a DC motor type fuel pump that has a high degree of freedom in magnetic circuit configuration and can easily magnetize a magnet with a small magnetizing device.

Claims

請 求 の 範 囲 The scope of the claims
1 . モ一夕部の直流電動機の駆動に伴い前記モ一夕部のヨークに固 定されたポンプ部において燃料を昇圧して出力する直流電動機式燃料ポ ンプにおいて、 前記ヨークは、 希土類のリング状マグネッ トが内周に配 置される第 1筒状ヨークと、 前記マグネッ トに対応する位置で前記第 1 筒状ヨークの外周に設けられる第 2筒状ヨークとで構成されることを特 徴とする直流電動機式燃料ポンプ。  1. A DC motor fuel pump that boosts and outputs fuel at a pump section fixed to the yoke of the motor section in accordance with the driving of the DC motor of the motor section, wherein the yoke is formed of a rare earth ring. And a second cylindrical yoke provided on the outer periphery of the first cylindrical yoke at a position corresponding to the magnet. DC motor fuel pump.
2 . 前記マグネッ トは、 射出成形により形成され、 そのゲート部が 当該マグネッ トの端面に設けられていることを特徴とする請求項 1記載 の直流電動機式燃料ポンプ。  2. The direct current motor-driven fuel pump according to claim 1, wherein the magnet is formed by injection molding, and a gate portion is provided on an end face of the magnet.
3 . 前記マグネッ トは、 その端面に凸部もしくは凹部が設けられ、 この凸部もしくは凹部が前記ヨークに固定される他の部材の凹部もしく は凸部と係合することを特徴とする請求項 1記載の直流電動機式燃料ポ ンプ。  3. The magnet has a convex or concave portion provided on an end face thereof, and the convex or concave portion engages with a concave or convex portion of another member fixed to the yoke. Item 1. A DC motor fuel pump according to item 1.
4 . 前記マグネッ トの凸部は、 射出成形のゲート部であることを特 徴とする請求項 3記載の直流電動機式燃料ポンプ。  4. The direct current motor type fuel pump according to claim 3, wherein the convex portion of the magnet is a gate portion of injection molding.
5 . 前記第 1筒状ヨークと前記マグネッ トの少なくとも一方の端面 が同一面であることを特徴とする請求項 1記載の直流電動機式燃料ボン プ。  5. The direct current motor type fuel pump according to claim 1, wherein at least one end surface of the first cylindrical yoke and the magnet is a same surface.
6 . 前記第 1筒状ヨークは、 その軸方長さが前記マグネットの軸方 向長さにほぼ等しいことを特徴とする請求項 1記載の直流電動機式燃料 ポンプ。  6. The direct current motor type fuel pump according to claim 1, wherein an axial length of the first cylindrical yoke is substantially equal to an axial length of the magnet.
7 . 前記マグネッ トは射出成形により形成され、 かつ前記第 1筒状 ヨークの厚さは 3 mm以下であることを特徴とする請求項 1記載の直流 電動機式燃料ポンプ。  7. The direct current motor type fuel pump according to claim 1, wherein the magnet is formed by injection molding, and the thickness of the first cylindrical yoke is 3 mm or less.
PCT/JP2003/015692 2003-02-14 2003-12-09 Dc motor type fuel pump WO2004073145A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004568206A JPWO2004073145A1 (en) 2003-02-14 2003-12-09 DC motor fuel pump
US10/509,763 US20050118044A1 (en) 2003-02-14 2003-12-09 Dc motor type fuel pump
TW093103016A TWI235198B (en) 2003-02-14 2004-02-10 Direct current motor type fuel pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-36223 2003-02-14
JP2003036223 2003-02-14

Publications (1)

Publication Number Publication Date
WO2004073145A1 true WO2004073145A1 (en) 2004-08-26

Family

ID=32866317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015692 WO2004073145A1 (en) 2003-02-14 2003-12-09 Dc motor type fuel pump

Country Status (5)

Country Link
US (1) US20050118044A1 (en)
JP (1) JPWO2004073145A1 (en)
CN (1) CN1692540A (en)
TW (1) TWI235198B (en)
WO (1) WO2004073145A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288985A (en) * 2006-04-20 2007-11-01 Denso Corp Rotor, stator, and manufacturing methods of them
JP2009189155A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Rotor of synchronous electric motor, blower electric motor, air conditioner, pump and water heater
JP2011072054A (en) * 2009-09-24 2011-04-07 Minebea Co Ltd Motor
KR101975831B1 (en) 2017-12-29 2019-05-08 (주)모토닉 Fuel pump having permanent magnet synchronous motor
US10697494B2 (en) 2014-12-26 2020-06-30 Ntn Corporation Sintered bearing

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131825B2 (en) * 2004-01-30 2006-11-07 Isothermal Systems Research, Inc. Spindle-motor driven pump system
JP4893991B2 (en) * 2005-09-06 2012-03-07 株式会社デンソー Fuel pump
JP2007129847A (en) * 2005-11-04 2007-05-24 Denso Corp Motor and fuel pump using the same
JP2007270826A (en) * 2006-03-07 2007-10-18 Denso Corp Fuel pump
US8202069B2 (en) * 2006-09-07 2012-06-19 Denso Corporation Electric fuel pump
JP4561761B2 (en) * 2007-03-07 2010-10-13 三菱電機株式会社 Fuel supply device
ES2391594T3 (en) * 2008-02-13 2012-11-28 Askoll Holding S.R.L. Electric motor and electric pump
DK2466722T3 (en) 2010-12-20 2013-09-02 Siemens Ag Go to a permamagnet machine
JP6056719B2 (en) * 2013-09-17 2017-01-11 株式会社デンソー Fuel pump
US10270306B2 (en) * 2014-01-29 2019-04-23 Denso Corporation Motor and rotor
US9705365B2 (en) 2014-04-15 2017-07-11 Asmo Co., Ltd. Motor
JP6565393B2 (en) * 2015-07-06 2019-08-28 株式会社デンソー Armature, armature manufacturing method, rotating electric machine
US11228223B2 (en) 2018-05-21 2022-01-18 Steering Solutions Ip Holding Corporation Electric power steering sealing valve system, a valve assembly arranged in the end cap

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251966U (en) * 1985-09-19 1987-03-31
JPH054773U (en) * 1991-07-04 1993-01-22 愛三工業株式会社 Electric motor
JPH0533651U (en) * 1991-09-30 1993-04-30 株式会社芝浦製作所 motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401416A (en) * 1980-02-19 1983-08-30 Walbro Corporation Self-contained rotary fuel pump
JPS59226647A (en) * 1983-06-02 1984-12-19 Matsushita Electric Ind Co Ltd Dc motor
US4789308A (en) * 1986-10-10 1988-12-06 Walbro Corporation Self-contained electric fuel pump with output pressure regulation
JP2004011556A (en) * 2002-06-07 2004-01-15 Hitachi Unisia Automotive Ltd Turbine type fuel feed pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251966U (en) * 1985-09-19 1987-03-31
JPH054773U (en) * 1991-07-04 1993-01-22 愛三工業株式会社 Electric motor
JPH0533651U (en) * 1991-09-30 1993-04-30 株式会社芝浦製作所 motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288985A (en) * 2006-04-20 2007-11-01 Denso Corp Rotor, stator, and manufacturing methods of them
JP4711232B2 (en) * 2006-04-20 2011-06-29 株式会社デンソー Fuel pump and manufacturing method thereof
JP2009189155A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Rotor of synchronous electric motor, blower electric motor, air conditioner, pump and water heater
JP2011072054A (en) * 2009-09-24 2011-04-07 Minebea Co Ltd Motor
US10697494B2 (en) 2014-12-26 2020-06-30 Ntn Corporation Sintered bearing
KR101975831B1 (en) 2017-12-29 2019-05-08 (주)모토닉 Fuel pump having permanent magnet synchronous motor

Also Published As

Publication number Publication date
US20050118044A1 (en) 2005-06-02
TWI235198B (en) 2005-07-01
JPWO2004073145A1 (en) 2006-06-01
CN1692540A (en) 2005-11-02
TW200419068A (en) 2004-10-01

Similar Documents

Publication Publication Date Title
WO2004073145A1 (en) Dc motor type fuel pump
US20070052310A1 (en) Fluid pump and electric motor, and manufacturing method for the same
JP2007032370A (en) Electric pump
EP1128524A2 (en) Electric rotary machine
US6812611B2 (en) Permanent magnet type electric rotating machine
US9780610B2 (en) Rotor and motor
JP2005273648A (en) Electric pump
JP2007049866A (en) Resin can for canned motor and production method therefor, injection mold, canned motor, and canned motor pump
JP2008008222A (en) Pump device
US7256519B2 (en) Linear actuator and pump device and compressor device therewith
US9762097B2 (en) Rotor and motor
JP4782083B2 (en) Motor rotor, motor and air conditioner
JP4246136B2 (en) Manufacturing method of electric motor rotor, electric motor rotor, electric motor, air conditioner, refrigerator, ventilation fan, and electric motor rotor resin mold
JP4208683B2 (en) Motor rotor, motor and air conditioner
JP2007325405A (en) Rotator of inner-rotor motor and manufacturing method thereof
JP4168669B2 (en) Thin pump
US6316851B1 (en) Motor
CN112350545A (en) Stepping motor
JP2007014119A (en) Magnet holder and dc motor using same
JP2006300054A (en) Linear compressor
JP5142463B2 (en) Fuel pump
CN109314447B (en) Rotor, motor, air conditioner, and method for manufacturing rotor
JP4711232B2 (en) Fuel pump and manufacturing method thereof
JP2008182896A (en) Magnet holder and dc motor using it
JP2005110477A (en) Motor and pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2004568206

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10509763

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A04940

Country of ref document: CN

122 Ep: pct application non-entry in european phase