WO2004072698A1 - Microlens array integrated lens - Google Patents

Microlens array integrated lens Download PDF

Info

Publication number
WO2004072698A1
WO2004072698A1 PCT/JP2004/001697 JP2004001697W WO2004072698A1 WO 2004072698 A1 WO2004072698 A1 WO 2004072698A1 JP 2004001697 W JP2004001697 W JP 2004001697W WO 2004072698 A1 WO2004072698 A1 WO 2004072698A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
array
microlens
axis
integrated
Prior art date
Application number
PCT/JP2004/001697
Other languages
French (fr)
Japanese (ja)
Inventor
Junichi Kubo
Kouei Hatade
Masayoshi Yamada
Original Assignee
Nalux Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co., Ltd. filed Critical Nalux Co., Ltd.
Priority to JP2005505027A priority Critical patent/JPWO2004072698A1/en
Publication of WO2004072698A1 publication Critical patent/WO2004072698A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present invention relates to a lens having an integrated lens array with a micro aperture for condensing a beam from a light source such as a semiconductor laser array.
  • the lens with an integrated microphone aperture lens array of the present invention can be used for a laser processing head or the like.
  • Drilling and cutting in the manufacturing industry have an extremely strong demand for ultra-fine writing, but conventional machining has the following processing limits.
  • Drilling and thinning of thin metal plates In drilling, it is impossible to make a diameter of 0.2 mm or less by drilling. ⁇ Etching requires a mask, and it is difficult to machine straight holes and slits. It is.
  • the conventional processing method does not allow a tool with a line width of 200 m or less.
  • the high-power semiconductor laser array itself developed for pumping YAG lasers can be directly used as the light source for laser processing, energy-saving, inexpensive, compact, and high-performance laser processing machines, and the currently widely used
  • a compact laser-processed head that can be mounted on a center can be developed. Furthermore, it can be used in the market for single excitation of YAG laser in the future.
  • a high-power semiconductor laser array has a power capability of several 10 W class, but its output beam spreads to several 10 degrees, so it is necessary to focus on a small spot with high energy required for processing. Was extremely difficult.
  • a power supply for laser processing using a microlens array has been proposed, but a type in which a condensing lens is separately provided (see, for example, Japanese Patent Application Laid-Open No. 2002-264652, 26 paragraphs, Fig. 8, etc.)). Disclosure of the invention
  • the present invention has been made in view of the above situation.
  • an array of microlenses with a beam shaping function is realized to realize high-efficiency coupling of a semiconductor laser, and to provide an optical element that focuses the shaped laser beam to a sufficiently small spot diameter by a lens.
  • the micro lens does not specify an absolute size, but means that the micro lens is relatively small as compared with the lens on the light-collecting surface.
  • the lens with integrated microphone aperture lens array includes a microlens array in which microlenses for receiving beams from individual light sources are arranged on one surface, and the shaped beam is condensed or parallelized on the other surface. It has a shape to be converted. Therefore, highly efficient coupling of the semiconductor laser can be realized, and the laser beam can be focused to a sufficiently small spot diameter by the lens.
  • the surface of the microlens is non-circular in any in-plane cross-section including the optical axis.
  • the surface of the microlens is represented by a mathematical expression including a term representing a non-rotationally symmetric aspherical aperture file.
  • the laser beam shape can be shaped mainly by the non-rotationally symmetric aspherical profile, and the aberrations can be minimized by the collection term.
  • the optical axis of the micro lens coincides with the Z axis of a three-axis orthogonal XYZ coordinate system
  • c x is the curvature of the center of the curve of the XZ cut surface
  • C y is YZ switching Kx and ky are coefficients representing the shape of the curve
  • AR, BR, CR, DR, AP, BP, CP and DP are correction coefficients (constants).
  • c x is the curvature of the center of the curve of the XZ cut surface
  • c y is YZ Kx
  • ky are coefficients representing the shape of the curve, and assuming that the correction coefficients A i and B; are constants
  • k is a constant that determines the shape of the quadratic curve
  • c is the central curvature
  • the other surface is represented by an aspherical surface.
  • the other surface has an optical axis that is orthogonal to three axes.
  • k is a constant that determines the shape of the quadratic curve
  • c is the central curvature
  • A is the correction coefficient.
  • the shaped laser beam can be focused to a sufficiently small spot diameter by the lens.
  • the other surface forms a cylindrical lens for condensing or collimating a beam. Therefore, the crystal rod can be irradiated with the excitation light to extract the stimulated emission light.
  • FIG. 1 shows an embodiment of a microlens array integrated lens according to the present invention.
  • FIG. 2 is a diagram showing a beam shaping optical element.
  • FIG. 3 is a diagram showing a curved surface of the beam shaping optical element.
  • FIG. 4 is a diagram showing an optical path of a beam shaping optical element.
  • FIG. 5 is a diagram showing a shunt switching basic circuit.
  • FIG. 6 shows the shape of a microlens array-integrated lens including an emission surface.
  • FIG. 7 is a view showing a method of defining a light beam of the microlens array integrated lens of the present invention.
  • FIG. 8 is a diagram showing an embodiment of a lens with an integrated microphone aperture lens array of the present invention.
  • FIG. 9 is a diagram showing a relationship between a semiconductor laser and a microlens array.
  • FIG. 10 is a diagram showing a YZ section of a type 1 optical path.
  • FIG. 11 is a diagram showing an XZ cross section of a type 1 optical path.
  • FIG. 12 is a three-dimensional view of a type 1 optical path.
  • FIG. 13 is a diagram showing a cross section of a spot including a type 1 peak in the Y and X directions.
  • FIG. 14 is a diagram showing a YZ section of a type 2 optical path.
  • FIG. 15 is a diagram showing an XZ cross section of a type 2 optical path.
  • FIG. 16 is a three-dimensional view of a type 2 optical path.
  • FIG. 17 is a diagram showing a spot cross section in the Y direction and the X direction including a type 2 peak.
  • FIG. 18 is a diagram showing a YZ section of a type 3 optical path.
  • FIG. 19 is a diagram showing an XZ cross section of a type 3 optical path.
  • FIG. 20 is a three-dimensional view of a type 3 optical path.
  • FIG. 21 is a diagram showing a spot cross section in the Y direction and the X direction including a type 3 peak.
  • FIG. 22 is a diagram showing a YZ section of a type 4 optical path.
  • FIG. 23 is a diagram showing an XZ section of a type 4 optical path.
  • FIG. 24 is a three-dimensional view of a type 4 optical path.
  • FIG. 25 is a diagram showing a cross section of a spot including a type 4 peak in the Y direction and the X direction.
  • FIG. 26 is a diagram showing solid-state laser oscillation due to bombing of a semiconductor laser array.
  • FIG. 1 and FIG. 8 show the configuration of a lens with an integrated microphone aperture lens array according to the present invention.
  • an array with microlenses with a beam shaping function is provided for each laser of the laser diode array.
  • the exit surface of the microlens array integrated lens is designed to focus the shaped beam.
  • the laser diode array is connected to an ultrashort pulse generation circuit.
  • the ultrashort pulse generation circuit uses the energy efficient shunt switching circuit shown in Fig.5. That is, by switching the current i flowing through the inductance L by the power M0SFET, a large current is instantaneously passed through the semiconductor laser LD, and the short pulse compression operation is performed electrically.
  • the surface of the microlens is determined based on the following equation with the optical axis as the Z axis. c x x + c v y
  • c x is the curvature of the center of the curve of the XZ cut surface
  • c x l / Rx
  • c y is the center of curvature of the curve of YZ cut surface is a
  • c y lZRy.
  • kx and ky are coefficients representing the shape of the curved line.
  • the second and subsequent terms are correction terms representing deviations from the curved surface.
  • AR, BR, CR, DR, AP, BP, CP and DP are correction factors (constants).
  • it is determined by the following equation.
  • c x and c y are the curvature of the X-axis and Y-axis direction of the surface, respectively, k x Contact and k y and the correction coefficients A i and B i are constants.
  • a function such as changing the beam shape can be mainly achieved.
  • changing the beam shape means changing a beam emitted from a semiconductor laser having an elliptical energy distribution into a beam having an approximately circular energy distribution.
  • functions such as minimizing wavefront aberration can be achieved.
  • the use of super-resolution in a microlens can reduce the beam spot diameter and increase the depth of focus.
  • FIG. 2 is a diagram illustrating an example of a beam shaping optical element.
  • FIG. 3 is a diagram illustrating an example of a curved surface of the beam shaping optical element.
  • FIG. 4 is a diagram illustrating an example of an optical path of a beam shaping optical element.
  • Table 1 shows the general relationship between the lens diameter, the focal length, and the lZe 2 spot diameter. In Table 1, bre and re indicate intermediate parameters. From Table 1, although depending on the lens diameter and the focal length, spot diameters less than 10 ⁇ are also sufficiently possible. table 1
  • FIG. 6 shows the shape of the microlens array-integrated lens including the exit surface.
  • the S 2 plane is, for example, an optical axis symmetric rotation plane obtained by rotating the following quadratic curve around the optical axis.
  • the optical axis is represented by Z
  • the coordinates of a plane perpendicular to the optical axis are represented by xy.
  • k is a constant that determines the shape of the quadratic curve
  • c is the central curvature.
  • A is a correction coefficient.
  • h 2 + For example, a coefficient up to the fourth order is used as the correction coefficient A.
  • Table 2 shows the design specifications of the optical system in Fig. 6. The circled numbers in the table correspond to those in Figure 6.
  • LD represents a laser diode as a light source.
  • Fig. 7 explains the method of defining light rays.
  • the S2 surface is decentered, and the principal ray position (condensing position) on the image plane is changed by the same amount as the S2 surface is decentered.
  • Table 3 shows the resulting relationship between the surface eccentricity and the focusing position.
  • a system that irradiates a crystal aperture with reflected light to extract stimulated emission light can be considered.
  • a cylindrical lens is arranged on the other surface of the lens array surface, and a focused or collimated light beam is made incident on the crystal aperture.
  • LDs semiconductor lasers
  • Table 4 An array of 25 semiconductor lasers (LDs) shown in Table 4 is used.
  • the light emitted from the semiconductor laser is assumed to have a Gaussian distribution, and the numerical aperture ⁇ is specified so as to capture the ideal effective Gaussian energy of 86.5%.
  • Table 4
  • a coordinate system is created as shown in FIG. 9, and a lens array element is provided on the surface on the semiconductor laser side so as to correspond to each semiconductor laser arranged in an array.
  • the optical system is designed so that the chief rays emitted from each semiconductor laser with the numerical aperture NA shown in Table 1 converge at one point on the image plane, and the wavefront aberration is minimized. Design is performed using optical design software.
  • Intensity magnification is defined as a lens evaluation index. Emitting from a semiconductor laser The light beam is captured with an ideal effective Gaussian energy of 86.5%, and the intensity magnification when condensed by an ideal lens without wavefront aberration is 1. Therefore, the effective Gaussian energy (%) is Divide by 86.5 (%) and multiply by the Strehl ratio to obtain the intensity magnification, where the Strehl ratio is the ratio of the intensity resulting from the wavefront aberration to the intensity of the ideal lens. .
  • the intensity distribution of each semiconductor laser is calculated separately, and the total intensity distribution is calculated by calculating the sum.
  • the maximum intensity magnification when using 25 semiconductor lasers is 25.
  • Spot diameter is defined as another evaluation index.
  • the spot diameter in the X direction and the Y direction is calculated with a range of the intensity of 13.5% (1 / e 2 ) or more relative to the peak intensity as a spot. The smaller the spot diameter, the easier the microfabrication becomes.
  • a side lobe is defined as another evaluation index.
  • the ratio (%) of the intensity of the place that can be regarded as the second peak to the peak intensity is supported. And a drip rope.
  • Table 5 shows the lens specifications of Design Example 1 and the above evaluation indices.
  • type 1 defines the surface of the microlens by equation (2), and the image-side condensing surface (S2 plane) by equation (3).
  • the condensing surface (S2 surface) on the near image side of the microlens surface is defined by equation (3).
  • the 0-31 plane distance represents the distance between the semiconductor laser and the corresponding microlens plane.
  • BF represents pack focus.
  • the free form of the surface definition represents the surface defined by equation (2), and the aspherical surface represents the surface defined by equation (3). It should be noted that design can be performed in the same manner by using equation (1) instead of equation (2).
  • Table 5 shows the lens specifications of Design Example 1 and the above evaluation indices.
  • type 1 defines the surface of the microlens by equation (2), and the image-side condensing surface (S2 plane) by equation (3).
  • the condensing surface (S2 surface) on the near image side of the microlens surface is
  • Type 1 is superior to Type 2 in all of the evaluation indexes for strength magnification, spot diameter, and side lobe.
  • Type 1 wavefront aberrations are much smaller than Type 2 wavefront aberrations.
  • the wavefront aberration can be made extremely small by defining the surface of the microlens by equation (2). Wear.
  • Table 6 shows the coefficients for Type 1 and Type 2.
  • the optical path diagram of type 1 is shown in Figs. 10 to 12, and the spot cross section including the peak is shown in Fig. 13.
  • the optical path diagrams of type 2 are shown in FIGS. 14 to 16, and the spot cross section including the peak is shown in FIG. Table 6
  • Table 7 shows the array of Design Example 1. Table 7
  • the difference between the semiconductor lasers in Design Example 1 and Design Example 2 is the XY ratio of the emission angle to the emission angle.
  • Table 8 shows the lens specifications and evaluation indices of Design Example 2.
  • Table 8 also shows the lens specifications and evaluation indices of Design Example 1.
  • S2 surface condensing surface
  • Table 9 shows type 3 and type 4 coefficients.
  • the optical path diagram of type 3 is shown in Figs. 18 to 20, and the cross-sectional view of the spot including the peak is shown in Fig. 21.
  • the optical path diagrams of type 4 are shown in FIGS. 22 to 24, and the spot cross-sectional view including the peak is shown in FIG. Table 9

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Lenses (AREA)

Abstract

An optical element for forming microlenses, each provided with a beam shaping function, into an array, realizing the high-efficiency coupling of a semiconductor laser, and condensing a laser beam after shaping into a sufficiently small spot diameter by a lens. A microlens array in which micolenses are arranged for shaping beams from individual laser diodes is provided on one surface and a shape is provided on the other surface for condensing shaped beams. In one embodiment, the plane of a microlens is non-circular at any in-plane section including the optical axis. In another embodiment, the optical axis agrees with Z-axis in a 3-axis orthogonal XYZ coordinates system and a microlens plane is represented by a numerical expression including a term representing a non-rotary-symmetric non-spherical surface profile and at least one correction term.

Description

マイク口レンズアレイ一体型レンズ 技術分野 Microphone with lens array integrated lens
本発明は、 半導体レーザーァレイなどの光源からのビームを集光するためのマ イク口レンズアレイ一体型レンズに関する。 本発明のマイク口レンズアレイ一体 型レンズは、 レーザー加工へッドなどに使用することができる。  The present invention relates to a lens having an integrated lens array with a micro aperture for condensing a beam from a light source such as a semiconductor laser array. The lens with an integrated microphone aperture lens array of the present invention can be used for a laser processing head or the like.
 Light
背景技術 Background art
製造業における穴あけや切断加工は、 その書超精細化に極めて強い要求があるが 、 従来の機械加工等では下記に示すような加工限界がある。  Drilling and cutting in the manufacturing industry have an extremely strong demand for ultra-fine writing, but conventional machining has the following processing limits.
プリント基板スルーホール加工においては、 機械的なパンチ加工では 0. 8 mm 以下、 ドリル加工では 0. 2 mm以下が不可能である。  In printed circuit board through-hole processing, mechanical punching cannot be less than 0.8 mm and drilling cannot be less than 0.2 mm.
金属薄板の穴あけ ·切断加工においては、 ドリルによる穴あけ加工では直径 0. 2■以下が不可能であり、 ゥエツトエッチング方法ではマスクが必要であり、 さらに、 ストレートな穴ゃスリット等の加工が困難である。  Drilling and thinning of thin metal plates In drilling, it is impossible to make a diameter of 0.2 mm or less by drilling. 、 Etching requires a mask, and it is difficult to machine straight holes and slits. It is.
ラベル加工においては、 複雑微細カッティングができない。 従来の加工方法は 刃物の場合線幅 200 m以下は不可能である。  In label processing, complicated fine cutting cannot be performed. The conventional processing method does not allow a tool with a line width of 200 m or less.
したがって、 これらの限界以下の微細な穴あけや切断力卩ェには、 高価な YAGレ 一ザ一加工機が用いられている。 従来、 Xeランプ励起 YAGレーザーが用いられて きたが、 近年、 エネルギー変換効率の良い半導体ダイオード励起 YAGが用いられ るようになっている。 しかし、 高価で装置サイズが大きいため、 その普及には停 滞感がある。  Therefore, expensive YAG laser processing machines are used for fine drilling and cutting force below these limits. Conventionally, a Xe lamp-pumped YAG laser has been used, but in recent years, a semiconductor diode-pumped YAG with high energy conversion efficiency has been used. However, it is expensive and the equipment size is large, so there is a sense of stagnation in its spread.
YAGレーザー励起用に開発された高出力半導体レーザーアレイそのものをレー ザ一加工の光源に直接利用できれば、 省エネルギーで安価かつコンパクトで高性 能なレーザー加工機、 さらには、 現在普及しているマシユングセンター等に装着 できるコンパクトなレーザー加工へッドが開発できる。 さらに、 将来 YAGレーザ 一励起用等の市場にも活用可能である。  If the high-power semiconductor laser array itself developed for pumping YAG lasers can be directly used as the light source for laser processing, energy-saving, inexpensive, compact, and high-performance laser processing machines, and the currently widely used A compact laser-processed head that can be mounted on a center can be developed. Furthermore, it can be used in the market for single excitation of YAG laser in the future.
しかしながら、 高出力半導体レーザーアレイは、 数 1 0 Wクラスのパワー能力 を持っているが、 その出射ビームは数 1 0 ° に広がるため、 加工に必要な高エネ ルギ一で微小なスポットに絞ることは極めて困難であった。 また、 マイクロレンズアレイを使用したレーザー加工用電源も提案されている が、 集光レンズを別途設けるタイプのものであった (たとえば、 特開 2 0 0 2— 2 6 4 5 2号公報 (第 2 6段落、 図 8他) ) 。 発明の開示 However, a high-power semiconductor laser array has a power capability of several 10 W class, but its output beam spreads to several 10 degrees, so it is necessary to focus on a small spot with high energy required for processing. Was extremely difficult. Also, a power supply for laser processing using a microlens array has been proposed, but a type in which a condensing lens is separately provided (see, for example, Japanese Patent Application Laid-Open No. 2002-264652, 26 paragraphs, Fig. 8, etc.)). Disclosure of the invention
本発明は、 上記の状況に鑑みてなされたものである。 すなわち、 ビーム整形機 能を備えたマイクロレンズをアレイ化し半導体レーザーの高効率カツプリングを 実現し、 さらに、 整形後のレーザービームをレンズによって十分小さなスポット 径に集光化する光学素子を提供することを目的とする。 なお、 ここで、 マイクロ レンズとは、 絶対的な大きさを規定するものではなく、 集光面のレンズと比較し て相対的に小さいことをいう。  The present invention has been made in view of the above situation. In other words, an array of microlenses with a beam shaping function is realized to realize high-efficiency coupling of a semiconductor laser, and to provide an optical element that focuses the shaped laser beam to a sufficiently small spot diameter by a lens. Aim. Here, the micro lens does not specify an absolute size, but means that the micro lens is relatively small as compared with the lens on the light-collecting surface.
本発明のマイク口レンズアレイ一体型レンズは、 個々の光源からのビームを入 射するマイクロレンズを配列したマイクロレンズアレイを一方の面に備え、 他方 の面に整形後のビームを集光または平行化する形状を備える。 したがって、 半導 体レーザーの高効率カップリングを実現し、 さらに、 レーザービームをレンズに よって十分小さなスポット径に集光化することができる。  The lens with integrated microphone aperture lens array according to the present invention includes a microlens array in which microlenses for receiving beams from individual light sources are arranged on one surface, and the shaped beam is condensed or parallelized on the other surface. It has a shape to be converted. Therefore, highly efficient coupling of the semiconductor laser can be realized, and the laser beam can be focused to a sufficiently small spot diameter by the lens.
本発明の 1実施形態によれば、 マイクロレンズの面が、 光軸を含むいかなる面 内の断面においても非円形である。  According to one embodiment of the present invention, the surface of the microlens is non-circular in any in-plane cross-section including the optical axis.
本発明の 1実施形態によれば、 マイクロレンズの面が、 非回転対称の非球面プ 口ファイルを表す項を含む数式によって表される。  According to one embodiment of the present invention, the surface of the microlens is represented by a mathematical expression including a term representing a non-rotationally symmetric aspherical aperture file.
したがって、 主に非回転対称の非球面プロファイルによってレーザーのビーム 形状を整形し、 さらに捕正項によって収差をできるだけ小さくするようにするこ とができる。  Therefore, the laser beam shape can be shaped mainly by the non-rotationally symmetric aspherical profile, and the aberrations can be minimized by the collection term.
本発明の 1実施形態によれば、 マイクロレンズの光軸が 3軸直交 X Y Z座標系 の Z軸と一致し、 c xは、 X Z切断面の曲線の中心曲率であり、 C yは、 Y Z切 断面の曲線の中心曲率であり、 k x、 k yは、 曲線の形状を表わす係数であり、 A R , B R , C R , D R , A P , B P , C Pおよび D Pは、 補正係数 (定数) で あるとして、 マイクロレンズの面が、 式
Figure imgf000004_0001
According to one embodiment of the present invention, the optical axis of the micro lens coincides with the Z axis of a three-axis orthogonal XYZ coordinate system, c x is the curvature of the center of the curve of the XZ cut surface, C y is YZ switching Kx and ky are coefficients representing the shape of the curve, and AR, BR, CR, DR, AP, BP, CP and DP are correction coefficients (constants). The lens surface is
Figure imgf000004_0001
+ BR[(l一 BP)x2 + (1 + BP)y2 f + CR[(1一 CP)x2 + (1 + CP)y2 f + DR[(l一 DP)x2 + (1 + DP)y2 ] によって表わされる。 したがって、 主に c x、 07ぉょぴ1?: 、 k yによってレ 一ザ一のビーム形状を整形し、 さらに補正項によって収差をできるだけ小さくす るようにすることができる。 + BR [(l-BP) x 2 + (1 + BP) y 2 f + CR [(1-CP) x 2 + (1 + CP) y 2 f + DR [(l-DP) x 2 + ( 1 + DP) y 2 ] Is represented by Therefore, it is possible to mainly c x, 0 7 Oyopi 1 ?: shapes the record one The one beam shape by ky, to as small to so that possible aberrations by further correction term.
本発明の 1実施形態によれば、 マイクロレンズの光軸が 3軸直交 XY Z座標系 の Z軸と一致し、 c xは、 XZ切断面の曲線の中心曲率であり、 cyは、 YZ切 断面の曲線の中心曲率であり、 k x、 k yは、 曲線の形状を表わす係数であり、 補正係数 A iおよび B;が定数であるとして、 マイクロレンズの面が、 式 According to one embodiment of the present invention, coincides with the Z-axis optical axis of a three-axis orthogonal XY Z coordinate system of microlenses, c x is the curvature of the center of the curve of the XZ cut surface, c y is YZ Kx, ky are coefficients representing the shape of the curve, and assuming that the correction coefficients A i and B; are constants,
Figure imgf000005_0001
によって表わされる。 したがって、 主に c x、 cyおよび k x、 k yによってレ 一ザ一のビーム形状を整形し、 さらに補正項によって収差をできるだけ小さくす るようにすることができる。 また、 補正項について Xに関する補正項と yに関す る補正項を独立に操作することにより補正の自由度が向上する。
Figure imgf000005_0001
Is represented by Therefore, mainly c x, c y and kx, shapes the record one The one beam shape by ky, can be further only small to so that possible aberrations by the correction term. In addition, the degree of freedom of correction is improved by independently operating the correction term relating to X and the correction term relating to y.
本発明の 1実施形態によれば、 マイクロレンズの光軸が 3軸直交 XY Z座標系 の Z軸と一致したときに、 kは、 2次曲線の形状を決める定数、 cは中心曲率、 Aは補正係数であるとして、 マイクロレンズの面が、 式
Figure imgf000005_0002
According to one embodiment of the present invention, when the optical axis of the microlens coincides with the Z axis of the three-axis orthogonal XYZ coordinate system, k is a constant that determines the shape of the quadratic curve, c is the central curvature, A Is the correction coefficient.
Figure imgf000005_0002
C = R
Figure imgf000005_0003
によって表わされる。
C = R
Figure imgf000005_0003
Is represented by
本発明の 1実施形態によれば、 前記他方の面が、 非球面式によって表わされる 本発明の 1実施形態によれば、 前記他方の面が、 光軸が 3軸直交 ΧΥΖ座標系 の Ζ軸と一致したときに、 kは、 2次曲線の形状を決める定数、 cは中心曲率、 Aは補正係数であるとして、 式
Figure imgf000006_0001
According to one embodiment of the present invention, the other surface is represented by an aspherical surface. According to one embodiment of the present invention, the other surface has an optical axis that is orthogonal to three axes. Where k is a constant that determines the shape of the quadratic curve, c is the central curvature, and A is the correction coefficient.
Figure imgf000006_0001
c =  c =
R  R
ch"  ch "
z = ■ + 2i  z = ■ + 2i
1 + l-(1 + k)c2h2 i -- によって表わされる。 1 + l- (1 + k) c 2 h 2 it - is represented by.
したがって、 整形後のレーザービームをレンズによって十分小さなスポット径 に集光化することができる。  Therefore, the shaped laser beam can be focused to a sufficiently small spot diameter by the lens.
本発明の 1実施形態によれば、 前記他方の面が、 ビームを集光または平行化す るシリンドリカル · レンズをなす。 したがって、 結晶ロッドに励起光を照射して 、 誘導放出光を取り出すことができる。 図面の簡単な説明  According to one embodiment of the present invention, the other surface forms a cylindrical lens for condensing or collimating a beam. Therefore, the crystal rod can be irradiated with the excitation light to extract the stimulated emission light. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明のマイクロレンズアレイ一体型レンズの実施形態を示す図で める。  FIG. 1 shows an embodiment of a microlens array integrated lens according to the present invention.
第 2図は、 ビーム整形光学素子を示す図である。  FIG. 2 is a diagram showing a beam shaping optical element.
第 3図は、 ビーム整形光学素子の曲面を示す図である。  FIG. 3 is a diagram showing a curved surface of the beam shaping optical element.
第 4図は、 ビーム整形光学素子の光路を示す図である。  FIG. 4 is a diagram showing an optical path of a beam shaping optical element.
第 5図は、 シャントスィツチング基本回路を示す図である。  FIG. 5 is a diagram showing a shunt switching basic circuit.
第 6図は、 出射面を含むマイクロレンズアレイ一体型レンズの形状を示す図で める。  FIG. 6 shows the shape of a microlens array-integrated lens including an emission surface.
. 第 7図は、 本発明のマイクロレンズアレイ一体型レンズの光線の定義方法を示 す図である。  FIG. 7 is a view showing a method of defining a light beam of the microlens array integrated lens of the present invention.
第 8図は、 本発明のマイク口レンズアレイ一体型レンズの実施形態を示す図で ある。  FIG. 8 is a diagram showing an embodiment of a lens with an integrated microphone aperture lens array of the present invention.
第 9図は、 半導体レーザーとマイクロレンズアレイとの関係を示す図である。 第 1 0図は、 タイプ 1の光路の Y Z断面を示す図である。  FIG. 9 is a diagram showing a relationship between a semiconductor laser and a microlens array. FIG. 10 is a diagram showing a YZ section of a type 1 optical path.
第 1 1図は、 タイプ 1の光路の X Z断面を示す図である。  FIG. 11 is a diagram showing an XZ cross section of a type 1 optical path.
第 1 2図は、 タイプ 1の光路の立体図である。  FIG. 12 is a three-dimensional view of a type 1 optical path.
第 1 3図は、 タイプ 1のピークを含む Y方向および X方向のスポット断面を示 す図である。  FIG. 13 is a diagram showing a cross section of a spot including a type 1 peak in the Y and X directions.
第 1 4図は、 タイプ 2の光路の Y Z断面を示す図である。 第 1 5図は、 タイプ 2の光路の X Z断面を示す図である。 FIG. 14 is a diagram showing a YZ section of a type 2 optical path. FIG. 15 is a diagram showing an XZ cross section of a type 2 optical path.
第 1 6図は、 タイプ 2の光路の立体図である。  FIG. 16 is a three-dimensional view of a type 2 optical path.
第 1 7図は、 タイプ 2のピークを含む Y方向おょぴ X方向のスポット断面を示 す図である。  FIG. 17 is a diagram showing a spot cross section in the Y direction and the X direction including a type 2 peak.
第 1 8図は、 タイプ 3の光路の Y Z断面を示す図である。  FIG. 18 is a diagram showing a YZ section of a type 3 optical path.
第 1 9図は、 タイプ 3の光路の X Z断面を示す図である。  FIG. 19 is a diagram showing an XZ cross section of a type 3 optical path.
第 2 0図は、 タイプ 3の光路の立体図である。  FIG. 20 is a three-dimensional view of a type 3 optical path.
第 2 1図は、 タイプ 3のピークを含む Y方向おょぴ X方向のスポット断面を示 す図である。  FIG. 21 is a diagram showing a spot cross section in the Y direction and the X direction including a type 3 peak.
第 2 2図は、 タイプ 4の光路の Y Z断面を示す図である。  FIG. 22 is a diagram showing a YZ section of a type 4 optical path.
第 2 3図は、 タイプ 4の光路の X Z断面を示す図である。  FIG. 23 is a diagram showing an XZ section of a type 4 optical path.
第 2 4図は、 タイプ 4の光路の立体図である。  FIG. 24 is a three-dimensional view of a type 4 optical path.
第 2 5図は、 タイプ 4のピークを含む Y方向および X方向のスポット断面を示 す図である。  FIG. 25 is a diagram showing a cross section of a spot including a type 4 peak in the Y direction and the X direction.
第 2 6図は、 半導体レーザーァレイのボンビングによる固体レーザ発振を示す 図である。 発明を実施するための最良の形態  FIG. 26 is a diagram showing solid-state laser oscillation due to bombing of a semiconductor laser array. BEST MODE FOR CARRYING OUT THE INVENTION
図 1およぴ図 8に本発明のマイク口レンズァレイ一体型レンズの構成を示す。 マイク口レンズアレイ一体型レンズの入射面には、 レーザーダイォードアレイの 個々のレーザーごとに、 ビーム整形機能を備えたマイクロレンズを備えたアレイ が設けられている。 マイクロレンズアレイ一体型レンズの出射面は、 整形後のビ ームを集光するように設計される。  FIG. 1 and FIG. 8 show the configuration of a lens with an integrated microphone aperture lens array according to the present invention. On the entrance surface of the lens with integrated microphone aperture lens array, an array with microlenses with a beam shaping function is provided for each laser of the laser diode array. The exit surface of the microlens array integrated lens is designed to focus the shaped beam.
なお、 レーザーダイオードアレイは、 超短パルス生成回路と接続されている。 超短パルス生成回路は、 図 5に示すエネルギー効率の良いシャントスィツチング 回路を用いる。 すなわち、 インダクタンス Lに流す電流 iをパワー M0SFETでスイツ チングすることにより、 瞬間的に半導体レーザー LDに大電流を流し、 電気的に短 パルス圧縮動作させる。  The laser diode array is connected to an ultrashort pulse generation circuit. The ultrashort pulse generation circuit uses the energy efficient shunt switching circuit shown in Fig.5. That is, by switching the current i flowing through the inductance L by the power M0SFET, a large current is instantaneously passed through the semiconductor laser LD, and the short pulse compression operation is performed electrically.
マイクロレンズの面は、 光軸を Z軸として以下の式に基づいて定める。 cxx + cvy The surface of the microlens is determined based on the following equation with the optical axis as the Z axis. c x x + c v y
Z + AR[{1 - AP)x2 + (1 + AP)y2 Z + AR [(1-AP) x 2 + (1 + AP) y 2
1 + 1— (1 + kx cx x^)— (1 + (c ) 1 + 1— (1 + k x c x x ^) — (1 + (c)
+ BR[(l - BP)x2 + fl + BP)y2 + CR[(1― CP)x2 + (1 + CP)y2 ]4 + DR[(l - DP)x2 + (1 + DP)y2 ] + BR [(l-BP) x 2 + fl + BP) y 2 + CR [(1-CP) x 2 + (1 + CP) y 2 ] 4 + DR [(l-DP) x 2 + (1 + DP) y 2 ]
(1) ここで、 c xは、 XZ切断面の曲線の中心曲率であり、 c x= l/Rx、 cyは、 YZ切断面の曲線の中心曲率であり、 c y= lZRyである。 k x、 k yは、 曲 線の形状を表わす係数である。 第 2項以下は曲面からのずれを表す補正項である 。 AR, BR, CR, DR, AP, BP, CPおよび DPは、 補正係数 (定数) である。 ■ あるいは、 以下の式によって定められる。 (1) Here, c x is the curvature of the center of the curve of the XZ cut surface, c x = l / Rx, c y is the center of curvature of the curve of YZ cut surface is a c y = lZRy. kx and ky are coefficients representing the shape of the curved line. The second and subsequent terms are correction terms representing deviations from the curved surface. AR, BR, CR, DR, AP, BP, CP and DP are correction factors (constants). ■ Alternatively, it is determined by the following equation.
Figure imgf000008_0001
Figure imgf000008_0001
ここで、 c xおよび c yはそれぞれ X軸および Y軸方向の面の曲率であり、 kxお よび kyおよび補正係数 A iおよび B iが定数である。 Here, c x and c y are the curvature of the X-axis and Y-axis direction of the surface, respectively, k x Contact and k y and the correction coefficients A i and B i are constants.
上記の式 (1) または (2) において、 第 1項の非球面プロファイルを表す項 の係数を調整することにより、 主にビーム形状の変更などの機能を達成すること ができる。 ここで、 ビーム形状の変更とは、 半導体レーザーから放射されるエネ ルギ一分布が楕円形状のビームをエネルギー分布がほぼ円形状のビームに変更す ることである。 さらに、 Xおよび Y補正項の係数を操作することにより波面収差 を最小とするなどの機能を達成することができる。  In the above equation (1) or (2), by adjusting the coefficient of the term representing the aspherical profile of the first term, a function such as changing the beam shape can be mainly achieved. Here, changing the beam shape means changing a beam emitted from a semiconductor laser having an elliptical energy distribution into a beam having an approximately circular energy distribution. Further, by manipulating the coefficients of the X and Y correction terms, functions such as minimizing wavefront aberration can be achieved.
マイクロレンズにおいて超解像を利用することによりビームのスポット径を小 さくし焦点深度を大きくすることができる。  The use of super-resolution in a microlens can reduce the beam spot diameter and increase the depth of focus.
図 2は、 ビーム整形光学素子の 1例を示す図である。 図 3は、 ビーム整形光学 素子の曲面の 1例を示す図である。 図 4は、 ビーム整形光学素子の光路の 1例を 示す図である。  FIG. 2 is a diagram illustrating an example of a beam shaping optical element. FIG. 3 is a diagram illustrating an example of a curved surface of the beam shaping optical element. FIG. 4 is a diagram illustrating an example of an optical path of a beam shaping optical element.
設計において 0. 07えの波面収差を得ることができれば、 表 1の最下列のよ うに 20 μ m以下のスポット径が得られる。 なお、 表 1は、 レンズ径と焦点距離 および lZe 2スポット径との一般的な関係を示す。 表 1において、 b r eおよ び r eは中間パラメータを示す。 表 1からレンズ径ゃ焦点距離にもよるが、 1 0 μπιを下回るスポット径も充分可能である。 表 1 If 0.07 wavefront aberration can be obtained in the design, a spot diameter of 20 μm or less can be obtained as shown in the bottom row of Table 1. Table 1 shows the general relationship between the lens diameter, the focal length, and the lZe 2 spot diameter. In Table 1, bre and re indicate intermediate parameters. From Table 1, although depending on the lens diameter and the focal length, spot diameters less than 10 μπι are also sufficiently possible. table 1
Figure imgf000009_0002
つぎに、 本発明のマイクロレンズアレイ一体型レンズの出射面 (S 2面) の形 状について説明する。 図 6に出射面を含むマイクロレンズアレイ一体型レンズの 形状を示す。 S 2面は、 たとえば、 以下の 2次曲線を光軸の周りに回転させた光 軸対称回転面である。 ただし、 光軸を Z、 光軸に垂直な面の座標を x yで表わ している。 kは、 2次曲線の形状を決める定数、 cは中心曲率である。 また、 A は補正係数である。 h = 2 +
Figure imgf000009_0001
補正係数 Aとして、 たとえば 4次までの係数を使用する。 図 6の光学系の設計仕 様を表 2に示す。 表中の丸で囲った数字は、 図 6中のそれと対応する。 表 2にお いて、 L Dは、 光源であるレーザーダイオードを表す。 表 2
Figure imgf000009_0002
Next, the shape of the exit surface (S2 surface) of the microlens array integrated lens of the present invention will be described. Figure 6 shows the shape of the microlens array-integrated lens including the exit surface. The S 2 plane is, for example, an optical axis symmetric rotation plane obtained by rotating the following quadratic curve around the optical axis. Here, the optical axis is represented by Z , and the coordinates of a plane perpendicular to the optical axis are represented by xy. k is a constant that determines the shape of the quadratic curve, and c is the central curvature. A is a correction coefficient. h = 2 +
Figure imgf000009_0001
For example, a coefficient up to the fourth order is used as the correction coefficient A. Table 2 shows the design specifications of the optical system in Fig. 6. The circled numbers in the table correspond to those in Figure 6. In Table 2, LD represents a laser diode as a light source. Table 2
•光学設計仕様  • Optical design specifications
Figure imgf000010_0001
図 7によって光線の定義方法を説明する。 S 2面を偏芯させて、 S 2面を偏芯 させた同じ量だけ像面での主光線位置 (集光位置) を変化させるようにする。 結 果としての、 面偏芯量と集光位置との関係を表 3に示す。 表 3
Figure imgf000010_0001
Fig. 7 explains the method of defining light rays. The S2 surface is decentered, and the principal ray position (condensing position) on the image plane is changed by the same amount as the S2 surface is decentered. Table 3 shows the resulting relationship between the surface eccentricity and the focusing position. Table 3
像面上での主光線通過位置
Figure imgf000010_0002
なお、 レーザーダイォードアレイをマイク口レンズァレイの近くに設ける図 1 に示した実施形態の他に、 光ファイバ一を介してレーザービームをマイクロレン ズァレイに供給する実施形態も考えられる。
Principal ray passing position on image plane
Figure imgf000010_0002
In addition to the embodiment shown in FIG. 1 in which the laser diode array is provided near the microphone lens array, an embodiment in which a laser beam is supplied to the micro lens array via an optical fiber is also conceivable.
なお、 本発明の別の実施形態として、 図 2 6に示すように、 結晶口ッドに反射 光を照射させて誘導放出光を取り出すシステムが考えられる。 この場合に、 レン ズァレイ面の他方の面には、 シリンドリカル · レンズを配置し、 結晶口ッドへ集 光または平行化した光束を入射させる。 設計例 1  As another embodiment of the present invention, as shown in FIG. 26, a system that irradiates a crystal aperture with reflected light to extract stimulated emission light can be considered. In this case, a cylindrical lens is arranged on the other surface of the lens array surface, and a focused or collimated light beam is made incident on the crystal aperture. Design example 1
本設計例では、 表 4に示される、 2 5個の半導体レーザー (L D ) のアレイを 用いる。 半導体レーザーから出射された光線は、 ガウス分布と仮定し、 理想有効 ガウスエネルギー 8 6 . 5 %を取り込むように開口数 ΝΑを規定している。 表 4 In this design example, an array of 25 semiconductor lasers (LDs) shown in Table 4 is used. The light emitted from the semiconductor laser is assumed to have a Gaussian distribution, and the numerical aperture 規定 is specified so as to capture the ideal effective Gaussian energy of 86.5%. Table 4
Figure imgf000011_0001
表 4に示される半導体レーザーを使用し、 図 9に示すように座標系をくみ、 ァ レイ状に並んでいる各半導体レーザーに対応させるように、 半導体レーザー側の 面にレンズアレイエレメントを設ける。 光学系は、 表 1に示される開口数 N Aを 備えた、 それぞれの半導体レーザーから出射された主光線が像面上で 1点に集ま り、 波面収差をできるだけ小さくするように設計する。 設計は、 光学設計ソフト を使用して行う。
Figure imgf000011_0001
Using the semiconductor lasers shown in Table 4, a coordinate system is created as shown in FIG. 9, and a lens array element is provided on the surface on the semiconductor laser side so as to correspond to each semiconductor laser arranged in an array. The optical system is designed so that the chief rays emitted from each semiconductor laser with the numerical aperture NA shown in Table 1 converge at one point on the image plane, and the wavefront aberration is minimized. Design is performed using optical design software.
レンズの評価指標として強度倍率を定義する。 半導体レーザーから出射 「され る光線を理想有効ガウスエネルギー 8 6 . 5 %で取り込み、 波面収差のない理想 レンズで集光した場合の強度倍率を 1とする。 したがって、 有効ガウスエネルギ 一 (%) を 8 6 . 5 (%) で除して、 ストレール比を乗じた値が強度倍率となる 。 ここで、 ストレール比とは、 理想レンズによる強度に対する、 波面収差により 減少した結果の強度の割合である。  Intensity magnification is defined as a lens evaluation index. Emitting from a semiconductor laser The light beam is captured with an ideal effective Gaussian energy of 86.5%, and the intensity magnification when condensed by an ideal lens without wavefront aberration is 1. Therefore, the effective Gaussian energy (%) is Divide by 86.5 (%) and multiply by the Strehl ratio to obtain the intensity magnification, where the Strehl ratio is the ratio of the intensity resulting from the wavefront aberration to the intensity of the ideal lens. .
ところで、 異なった光源からの光が重ね合わされた場合、 干渉は通常の条件で は観測されず、 どの場所でも全体の強度は個々の光束の強度の和に等しい ( 「光 学の原理 II」 東海大学出版会、 4 2 1頁) 。 したがって、 それぞれの半導体レー ザ一の強度分布を別個に計算し、 和を求めることにより全体の強度分布を計算す る。 このように、 2 5個の半導体レーザーを使用した場合の最大の強度倍率は 2 5である。  By the way, when light from different light sources is superimposed, no interference is observed under normal conditions, and the total intensity is equal to the sum of the individual light fluxes at any location (see “Principles of Optics II” Tokai University Press, pp. 421). Therefore, the intensity distribution of each semiconductor laser is calculated separately, and the total intensity distribution is calculated by calculating the sum. Thus, the maximum intensity magnification when using 25 semiconductor lasers is 25.
別の評価指標としてスポッ ト径を定義する。 像面強度分布において、 ピーク強 度に対して、 強度 1 3 . 5 % (1/e2) 以上の範囲をスポットとして X方向おょぴ Y方向のスポット径を計算する。 スポット径が小さいほど微細加工が容易になる さらに、 別の評価指標としてサイドローブを定義する。 像面強度分布において 、 ピーク強度に対して、 2番目のピークとみなせる場所の強度の比率 (%) をサ ィドロープとする。 Spot diameter is defined as another evaluation index. In the image plane intensity distribution, the spot diameter in the X direction and the Y direction is calculated with a range of the intensity of 13.5% (1 / e 2 ) or more relative to the peak intensity as a spot. The smaller the spot diameter, the easier the microfabrication becomes. Furthermore, a side lobe is defined as another evaluation index. In the image plane intensity distribution, the ratio (%) of the intensity of the place that can be regarded as the second peak to the peak intensity is supported. And a drip rope.
設計例 1のレンズ仕様と上記の評価指標とを表 5に示す。 表 5においてタィプ 1は、 マイクロレンズの面を式 (2) で規定し、 像側の集光面 (S 2面) を式 ( 3) で規定している。 表 5においてタイプ 2は、 マイクロレンズの面のおょぴ像 側の集光面 (S 2面) を式 (3) で規定している。 表 5において、 0—31面 距離は、 半導体レーザーと対応するマイクロレンズ面との間の距離を表す。 BF は、 パックフォーカスを表す。 また、 面定義の Free Formは、 式 (2) で定義さ れる面を表し、 非球面は式 (3) で定義される面を表す。 なお、 式 (2) 代わり に式 (1) を使用しても、 同様に設計を行うことができる。 表 5  Table 5 shows the lens specifications of Design Example 1 and the above evaluation indices. In Table 5, type 1 defines the surface of the microlens by equation (2), and the image-side condensing surface (S2 plane) by equation (3). In Table 5, for Type 2, the condensing surface (S2 surface) on the near image side of the microlens surface is defined by equation (3). In Table 5, the 0-31 plane distance represents the distance between the semiconductor laser and the corresponding microlens plane. BF represents pack focus. The free form of the surface definition represents the surface defined by equation (2), and the aspherical surface represents the surface defined by equation (3). It should be noted that design can be performed in the same manner by using equation (1) instead of equation (2). Table 5
Figure imgf000012_0001
表 5において、 タイプ 1は、 強度倍率、 スポッ ト径およびサイドローブのいず れの評価指標においてもタイプ 2よりも優れている。 実際、 タイプ 1の波面収差 は、 タイプ 2の波面収差と比較してきわめて小さい。 このように、 マイクロレン ズの面を式 (2) で規定することにより波面収差をきわめて小さくすることがで きる。
Figure imgf000012_0001
In Table 5, Type 1 is superior to Type 2 in all of the evaluation indexes for strength magnification, spot diameter, and side lobe. In fact, Type 1 wavefront aberrations are much smaller than Type 2 wavefront aberrations. Thus, the wavefront aberration can be made extremely small by defining the surface of the microlens by equation (2). Wear.
タイプ 1およびタイプ 2の各係数を表 6に示す。 タイプ 1の光路図を図 1 0乃 至 1 2に、 ピークを含むスポッ ト断面図を図 1 3に示す。 タイプ 2の光路図を図 1 4乃至 1 6に、 ピークを含むスポット断面図を図 1 7に示す。 表 6  Table 6 shows the coefficients for Type 1 and Type 2. The optical path diagram of type 1 is shown in Figs. 10 to 12, and the spot cross section including the peak is shown in Fig. 13. The optical path diagrams of type 2 are shown in FIGS. 14 to 16, and the spot cross section including the peak is shown in FIG. Table 6
Figure imgf000013_0001
設計例 2
Figure imgf000013_0001
Design example 2
本設計例では、 表 7に示される、 4 6個の半導体レーザー (L D) のアレイを 用いる。 なお、 表 7には、 設計例 1のアレイも併せて示している。 表 7  In this design example, an array of 46 semiconductor lasers (LD) as shown in Table 7 is used. Table 7 also shows the array of Design Example 1. Table 7
Figure imgf000013_0002
設計例 1と設計例 2との半導体レーザーの相違として、 出射角と出射角の X Y 比がある。 半導体レーザー数は増加しているが、 半導体レーザーアレイのピッチ が小さくなっているので、 最大物体高が小さくなり設計しやすくなっている。 設計例 2のレンズ仕様と評価指標とを表 8に示す。 なお、 表 8には設計例 1の レンズ仕様と評価指標とを併せて示している。 表 8においてタイプ 3およびタイ プ 4は、 マイクロレンズの面おょぴ像側の集光面 (S 2面) を式 (3 ) で規定し ている。 タイプ 3は、 パックフォーカスを 4 5 mmとし、 タイプ 4は、 バックフ オーカスを 3 O mmとしている。 表 8
Figure imgf000013_0002
The difference between the semiconductor lasers in Design Example 1 and Design Example 2 is the XY ratio of the emission angle to the emission angle. Although the number of semiconductor lasers is increasing, the pitch of the semiconductor laser array Is smaller, so the maximum object height is smaller, making it easier to design. Table 8 shows the lens specifications and evaluation indices of Design Example 2. Table 8 also shows the lens specifications and evaluation indices of Design Example 1. In Table 8, for types 3 and 4, the condensing surface (S2 surface) on the surface and image side of the microlens is defined by equation (3). Type 3 has a pack focus of 45 mm, and type 4 has a back focus of 3 O mm. Table 8
Figure imgf000014_0001
設計例 2の場合は、 マイクロレンズの面と集光面の両面を式 (3 ) で規定して も良好な評価指標が得られる。 設計例 2の場合には、 設計例 1の場合よりも半導 体レーザー数が多いにもかかわらず、 ピッチが小さいために物体高が小さくなり 、 設計が容易になる。 このため、 式 (2 ) で規定する必要がない。
Figure imgf000014_0001
In the case of design example 2, a good evaluation index can be obtained even when both the microlens surface and the light-collecting surface are defined by the equation (3). In the case of Design Example 2, although the number of semiconductor lasers is larger than in the case of Design Example 1, the object height is reduced due to the small pitch. , Design becomes easier. For this reason, there is no need to specify the equation (2).
タイプ 3およびタイプ 4の各係数を表 9に示す。 タイプ 3の光路図を図 1 8乃 至 2 0に、 ピークを含むスポット断面図を図 2 1に示す。 タイプ 4の光路図を図 2 2乃至 2 4に、 ピークを含むスポット断面図を図 2 5に示す。 表 9  Table 9 shows type 3 and type 4 coefficients. The optical path diagram of type 3 is shown in Figs. 18 to 20, and the cross-sectional view of the spot including the peak is shown in Fig. 21. The optical path diagrams of type 4 are shown in FIGS. 22 to 24, and the spot cross-sectional view including the peak is shown in FIG. Table 9
Type3 Type4  Type3 Type4
アレイ面 S2面 アレイ面 S2面  Array surface S2 surface Array surface S2 surface
定義 非球面 非球面 非球面 非球面  Definition Aspheric surface Aspheric surface Aspheric surface Aspheric surface
C 3. 916815121 -0. 04351724 3. 916818208 -15. 322196  C 3.916815121 -0.04351724 3.916818208 -15.322196
K -2. 28196922 0. 0 - 2. 28196645 0  K -2.28196922 0.0-2.28196645 0
A4 0 2. 33E-05 0 7. 82E-05  A4 0 2.33E-05 0 7.82E-05
A6 0 0 0 0  A6 0 0 0 0
A8 0 0 0 0  A8 0 0 0 0
A10 0 0 0 0  A10 0 0 0 0

Claims

請求 の 範 囲 The scope of the claims
1. 個々の光源からのビームを入射するマイク口レンズを配列したマイクロレ ンズアレイを一方の面に備え、 他方の面にビームを集光するまたは平行化する形 状を備えるマイクロレンズアレイ一体型レンズ。 1. A microlens array-integrated lens that has a microlens array in which microphone aperture lenses that receive beams from individual light sources are arranged on one surface and condenses or collimates the beam on the other surface. .
2. マイクロレンズの面が、 光軸を含むいかなる面内の断面においても非円形 である請求項 1に記載のマイクロレンズアレイ一体型レンズ。  2. The microlens array-integrated lens according to claim 1, wherein the surface of the microlens is non-circular in any in-plane cross section including the optical axis.
3. マイクロレンズの面が、 非回転対称の非球面プロファイルを表す項を含む 数式によって表される請求項 1または 2に記載のマイクロレンズアレイ一体型レ ンズ。  3. The microlens array-integrated lens according to claim 1, wherein the surface of the microlens is represented by a mathematical expression including a term representing a non-rotationally symmetric aspherical profile.
4. マイクロレンズの光軸が 3軸直交 XYZ座標系の Z軸と一致し、 c xは、 XZ切断面の曲線の中心曲率であり、 c yは、 Y Z切断面の曲線の中心曲率であ り、 k x、 k yは、 曲線の形状を表わす係数であり、 AR, BR, CR, DR, AP, B P, C Pおよび D Pは、 補正係数 (定数) であるとして、 マイクロレン ズの面が、 式 4. Consistent with the Z-axis optical axis of a three-axis orthogonal XYZ coordinate system of microlenses, c x is the curvature of the center of the curve of the XZ cut surface, c y is the center curvature der curves YZ cut surface Where kx and ky are coefficients representing the shape of the curve, and AR, BR, CR, DR, AP, BP, CP and DP are correction coefficients (constants).
Z =—— . + AR[(1 - AP)x2 +(1 + AP)y2f Z = ——. + AR [(1-AP) x 2 + (1 + AP) y 2 f
1 + ^ - (1 + kx)(cx 2x2 )-(l + ky )( V) 1 + ^ - (1 + k x) (c x 2 x 2) - (l + k y) (V)
+ BR[(l - BP)xl +(1 + BP)y2† + CR[(1― CP)xz + (1 + CP)y2 ]4 + DR[(1一 DP)x2 + (1 + DP)y2 ] によって表わされる請求項 3に記載のマイク口レンズアレイ一体型レンズ。 + BR [(l-BP) x l + (1 + BP) y 2 † + CR [(1-CP) x z + (1 + CP) y 2 ] 4 + DR [(1-DP) x 2 + 4. The lens integrated with a microphone opening lens array according to claim 3, represented by (1 + DP) y 2 ].
5. マイクロレンズの光軸が 3軸直交 XYZ座標系の Z軸と一致し、 c xは、 XZ切断面の曲線の中心曲率であり、 c yは、 YZ切断面の曲線の中心曲率であ り、 k X、 k yは、 曲線の形状を表わす係数であり、 補正係数 A 5および B ;が 定数であるとして、 マイクロレンズの面が、 式 z y 2i 5. the optical axis of the micro lens coincides with the Z axis of a three-axis orthogonal XYZ coordinate system, c x is the curvature of the center of the curve of the XZ cut surface, c y is the center curvature der curves YZ cut surface Ri, k X, ky is a coefficient representing the shape of the curve, the correction coefficient a 5 and B; a is a constant, the surface of the microlens, wherein z y 2i
Figure imgf000016_0001
によって表わされる請求項 3に記載のマイクロレンズアレイ一体型レンズ。
Figure imgf000016_0001
4. The microlens array-integrated lens according to claim 3, represented by:
6. マイクロレンズの光軸が 3軸直交 XYZ座標系の Z軸と一致したときに 、 kは、 2次曲線の形状を決める定数、 cは中心曲率、 Aは補正係数であるとし て、 マイクロレンズの面が、 式
Figure imgf000017_0001
6. When the optical axis of the micro lens coincides with the Z axis of the three-axis orthogonal XYZ coordinate system, k is a constant that determines the shape of the quadratic curve, c is the center curvature, and A is the correction coefficient. The lens surface is
Figure imgf000017_0001
Figure imgf000017_0002
によって表わされる請求項 1に記載のマイクロレンズアレイ一体型レンズ。
Figure imgf000017_0002
The microlens array-integrated lens according to claim 1, represented by:
7 . 前記他方の面が、 非球面式によって表わされる請求項 1から 6のいずれか 1項に記載のマイク口レンズアレイ一体型レンズ。 7. The lens with an integrated microphone aperture lens array according to claim 1, wherein the other surface is represented by an aspherical surface.
8 . 前記他方の面が、 当該面の光軸が 3軸直交 X Y Z座標系の Z軸と一致した ときに、 kは、 2次曲線の形状を決める定数、 cは中心曲率、 Aは補正係数であ るとして、 式 h = y[x2 + y2 1 r 2 m 8. When the other surface coincides with the Z-axis of the three-axis orthogonal XYZ coordinate system, k is a constant that determines the shape of the quadratic curve, c is the center curvature, and A is the correction coefficient. H = y [x 2 + y 2 1 r 2 m
Ch \ 9;  Ch \ 9;
=—— , = + ∑Αφ  = ——, = + ∑Αφ
1 + + k)c2h2 1 + + k) c 2 h 2
によって表わされる請求項 1から 6のいずれか 1項に記載のマイク口レンズァレ ィー体型レンズ。 The microphone lens body type lens according to any one of claims 1 to 6, represented by:
9 . マイクロレンズに超解像を利用した請求項 1カゝら 8のいずれか 1項に記載 のマイク口レンズァレイ一体型レンズ。  9. The lens integrated with a microphone opening lens array according to any one of claims 1 to 8, wherein super resolution is used for the micro lens.
1 0 . 前記他方の面が、 ビームを集光または平行化するシリンドリカル · レンズ をなす請求項 1に記載のマイク口レンズアレイ一体型レンズ。  10. The microphone-integrated lens array lens according to claim 1, wherein the other surface forms a cylindrical lens that focuses or collimates a beam.
PCT/JP2004/001697 2003-02-17 2004-02-17 Microlens array integrated lens WO2004072698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505027A JPWO2004072698A1 (en) 2003-02-17 2004-02-17 Micro lens array integrated lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003038862 2003-02-17
JP2003-038862 2003-02-17

Publications (1)

Publication Number Publication Date
WO2004072698A1 true WO2004072698A1 (en) 2004-08-26

Family

ID=32866410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001697 WO2004072698A1 (en) 2003-02-17 2004-02-17 Microlens array integrated lens

Country Status (2)

Country Link
JP (1) JPWO2004072698A1 (en)
WO (1) WO2004072698A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621822A (en) * 2012-04-13 2012-08-01 中国科学院光电技术研究所 Lens for achieving curved-surface-to-plane super-resolution demagnification imaging photo-etching
WO2015182619A1 (en) * 2014-05-27 2015-12-03 ナルックス株式会社 Microlens array and optics containing microlens array
CN109648951A (en) * 2019-01-04 2019-04-19 江苏科麦特科技发展有限公司 A kind of discontinuous aluminium-plastic tape and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594752A (en) * 1992-12-07 1997-01-14 Sdl, Inc. Diode laser source with concurrently driven light emitting segments
JP2000292738A (en) * 1999-04-02 2000-10-20 Ricoh Co Ltd Beam shaping optical system and recording and reproducing device
WO2001035146A1 (en) * 1999-11-10 2001-05-17 Hamamatsu Photonics K.K. Optical lens and optical system
JP2003344609A (en) * 2002-05-23 2003-12-03 Fuji Photo Film Co Ltd Condenser lens, multiplexing laser and exposure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594752A (en) * 1992-12-07 1997-01-14 Sdl, Inc. Diode laser source with concurrently driven light emitting segments
JP2000292738A (en) * 1999-04-02 2000-10-20 Ricoh Co Ltd Beam shaping optical system and recording and reproducing device
WO2001035146A1 (en) * 1999-11-10 2001-05-17 Hamamatsu Photonics K.K. Optical lens and optical system
WO2001035145A1 (en) * 1999-11-10 2001-05-17 Hamamatsu Photonics K.K. Optical lens and optical system
JP2003344609A (en) * 2002-05-23 2003-12-03 Fuji Photo Film Co Ltd Condenser lens, multiplexing laser and exposure device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102621822A (en) * 2012-04-13 2012-08-01 中国科学院光电技术研究所 Lens for achieving curved-surface-to-plane super-resolution demagnification imaging photo-etching
CN102621822B (en) * 2012-04-13 2014-03-05 中国科学院光电技术研究所 Lens for achieving curved-surface-to-plane super-resolution demagnification imaging photo-etching
WO2015182619A1 (en) * 2014-05-27 2015-12-03 ナルックス株式会社 Microlens array and optics containing microlens array
US10443811B2 (en) 2014-05-27 2019-10-15 Nalux Co., Ltd. Microlens array and optical system including the same
CN109648951A (en) * 2019-01-04 2019-04-19 江苏科麦特科技发展有限公司 A kind of discontinuous aluminium-plastic tape and preparation method thereof

Also Published As

Publication number Publication date
JPWO2004072698A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US8891579B1 (en) Laser diode apparatus utilizing reflecting slow axis collimators
JP5602300B2 (en) Laser processing head, laser processing apparatus, optical system of laser processing apparatus, laser processing method, and laser focusing method
US20090071947A1 (en) Laser beam machine
CN100546752C (en) Adopt the laser cutting of thick metal parts of bifocal
JP4188795B2 (en) Optical power combining optical system and light source module
KR20020070802A (en) Lighting optical system and laser processing device having the same
TWI834736B (en) Laser machining system
US20170357097A1 (en) Semiconductor Laser Module
EP3008780A1 (en) Semiconductor laser module
JP2020134872A (en) Light source device, direct diode laser device, and optical coupler
JPWO2017187609A1 (en) Parallel light generator
US11378809B2 (en) Reflective optical beam conditioners with integrated alignment features
WO2004072698A1 (en) Microlens array integrated lens
EP0940701A2 (en) Optical coupler using anamorphic microlens
JPH0694990A (en) Condensing optical system for semiconductor
CN111736355A (en) Adjustable energy distribution optical system based on micro-lens group
KR100837458B1 (en) Beam shaping element and optical pickup employing it
KR100805479B1 (en) Beam shaping element and optical pickup employing it
WO2005106566A1 (en) Beam shaping optical system and optical system of laser beam printer
WO2019111705A1 (en) Beam converting optical system and light source device
JP7398649B2 (en) Laser processing equipment and laser processing method
CN1145051C (en) Broad-surface emitting laser diode and single-mode optical fiber coupler
JP3207939U (en) Beam shaping optical system and laser solder welding apparatus using the same
JP2001009580A (en) Laser light condensing device
JP5430510B2 (en) Laser processing equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505027

Country of ref document: JP

122 Ep: pct application non-entry in european phase