WO2004072599A1 - Messvorrichtung zum messen von positionen oder bewegungen - Google Patents

Messvorrichtung zum messen von positionen oder bewegungen Download PDF

Info

Publication number
WO2004072599A1
WO2004072599A1 PCT/EP2003/006058 EP0306058W WO2004072599A1 WO 2004072599 A1 WO2004072599 A1 WO 2004072599A1 EP 0306058 W EP0306058 W EP 0306058W WO 2004072599 A1 WO2004072599 A1 WO 2004072599A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
assembly
measuring device
spring
relative
Prior art date
Application number
PCT/EP2003/006058
Other languages
English (en)
French (fr)
Inventor
Bernd Gombert
Original Assignee
3Dconnexion Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3Dconnexion Gmbh filed Critical 3Dconnexion Gmbh
Priority to US10/516,860 priority Critical patent/US7296463B2/en
Priority to EP03735593A priority patent/EP1511982A1/de
Publication of WO2004072599A1 publication Critical patent/WO2004072599A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/166Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using photoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • G01L5/223Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to joystick controls

Definitions

  • the present invention relates to a measuring device for measuring positions or movements of two objects relative to one another.
  • the invention further relates to a force and / or moment sensor that uses such a measuring device.
  • the invention relates to a joystick which has the measuring device.
  • a force and torque sensor which measures all six possible force and torque components in the Cartesian coordinate system with the aid of strain gauges.
  • the device consists of two superimposed spoke wheels with four spokes each and a total of 20 strain gauges are wired together.
  • DE 36 11 337 AI discloses an optoelectronic arrangement which can also detect six components.
  • six light-emitting devices are arranged at equal angular distances from one another in a common plane inside a plastic ball.
  • Each light-emitting device is preceded by a fixed slit diaphragm.
  • the relative movements or relative positions are recorded by light-sensitive detectors, which are movably arranged relative to the arrangements of light-emitting devices and slit diaphragms.
  • the detector axis of each detector runs perpendicular to the slot direction of the associated slot diaphragm.
  • the known measuring devices have only a limited measuring range. This is essentially determined by the type, length and arrangement of the spokes and strain gauges or by the type and relative arrangement of the light-emitting devices, slit diaphragms and light-sensitive detectors.
  • the present invention has for its object to provide a measuring device for measuring positions or movements of two objects relative to each other, which can be easily adapted to different measuring ranges. Furthermore, the invention is based on the object of creating a force and / or moment sensor, the force-displacement characteristic of which can be adapted to the requirements of different applications. Finally, the invention is based on the object of creating a joystick for the input of up to six force or torque components.
  • the invention teaches a measuring device for measuring positions or movements of two objects relative to one another, which is defined by the features of claim 1. It also teaches a force and / or torque sensor, which is defined by the features of claim 16. Finally, the invention teaches a joystick defined by the features of claim 17.
  • the translation spring device of the measuring device can convert a spring travel or a spring rotation into a force or a moment. This force is measured with the force and / or torque sensor.
  • the measuring range of the measuring device can be adapted to the requirements of the application by appropriate selection of the transmission spring device.
  • a preferred embodiment of the measuring device comprises a measuring spring device and a transmission spring device, which are arranged in series.
  • the spring devices connected in series connect a first assembly to a third assembly.
  • the first assembly is connected to one, the third assembly to the other of the two objects whose relative movements or relative positions are to be measured.
  • the first and / or the third assembly can also be the objects themselves.
  • a second assembly is arranged between the two spring devices connected in series. At least one optoelectronic measuring cell measures the path length of the relative movement sl of the second module relative to the first module, which results approximately from the path length of the relative movement s2 of the third module relative to the first module:
  • Kl is the spring constant of the transmission spring device between the first and the second assembly
  • K2 is the spring constant of the transmission spring device between the second and the third assembly.
  • the range in which path lengths s2 of the relative movements between the first module and the third module can be measured can be increased almost arbitrarily by a suitable choice of K2 to adjust.
  • K2 the measuring cell can measure relative movements along an axis with path lengths in the range from minus 2 mm to plus 2 mm, but the measuring device is to measure relative movements between the first and the third module with path lengths in the range of minus 8 mm and plus 8 mm, This can be achieved by choosing a transmission spring device with a spring constant for which the following applies:
  • the third assembly defines an interior in which the first and the second assembly are arranged.
  • the third assembly can be part of the housing of the measuring device, for example.
  • the interior does not have to be closed.
  • the third assembly is preferably fixed with an object connected, whose position is to be detected relative to another object.
  • the third module itself is particularly preferred, for example the housing of a control stick.
  • the transmission spring device which connects the third and the second assembly to one another, preferably comprises one of the following components or combinations thereof: coil spring (package), elastomer molded part, cast resin molded part.
  • the second assembly is suspended by the transmission spring device in the center of the ring of the third assembly.
  • the transmission spring device preferably comprises three components.
  • the components are preferably arranged rotationally symmetrically. In addition, they preferably have the same spring constant.
  • the components of the transmission spring device are particularly preferably coil springs / In addition, the components of the transmission spring device are preferably preloaded.
  • the measuring spring device which connects the first to the second assembly, preferably comprises one of the following components or combinations thereof: coil spring (package), elastomer molded part, cast resin molded part.
  • the measuring spring device also preferably comprises three components, and the components of the measuring spring device are preferably arranged rotationally symmetrically.
  • the first assembly and the second assembly each comprise a printed circuit board. In this way, the first and the second subassembly can be provided in a simple manner with the elements of the measuring cells, that is to say position-sensitive detectors, diaphragms and light emission devices, as well as, if necessary, control electronics and other components.
  • At least one component of the first spring device comprises at least one helical spring, the ends of which are firmly connected to the first or the second assembly by soldering.
  • the coil springs can thus be loaded in all directions, ie thrust and pressure forces as well as forces acting transversely to the coil spring can act without the coil springs moving in their seat or even jumping out.
  • a component of the first spring device comprises at least one elastomer cylinder, the ends of which are connected to the first or second assembly by gluing.
  • a system comprising the first assembly, the second assembly, the measuring spring device and the optoelectronic measuring cells can be easily produced in series. The measuring device is then adapted to the desired measuring range by selecting a suitable transmission spring device.
  • the measuring device also comprises at least one stop device which limits the movement of the first assembly relative to the second assembly.
  • This is preferably implemented by stop bolts which are firmly connected to the first printed circuit board. In this way, the measuring device is protected against overload.
  • the stop bolts protrude through holes in the second assembly.
  • the measuring device comprises six 'opto-electronic measuring cells.
  • serial movements and relative positions can be measured in six degrees of freedom.
  • Three measuring cells preferably measure movements parallel to the plane of the first printed circuit board, and three measuring cells movements perpendicular to it.
  • the optoelectronic measuring cells are preferably arranged on the circumference of a circle, particularly preferably in pairs and preferably rotationally symmetrically with respect to the center of the circle. Measuring cells that measure movements in the plane preferably alternate with those that measure movements perpendicular to them.
  • Each optoelectronic measuring cell comprises a position-sensitive detector arranged in the beam path of a light-emitting device and a slit diaphragm arranged in the beam path of the light-emitting device between the light-emitting device and the position-sensitive detector.
  • the detector axis of the position-sensitive detector is aligned perpendicular to a slit direction of the slit diaphragm. This means that only a narrow light bar falls on the position-sensitive detector behind the aperture.
  • the slit diaphragms of the measuring cells which measure movements in the plane, run perpendicular to the plane, while the slit diaphragms of the measuring cells, which measure movements perpendicular to the plane, run parallel to the plane.
  • the light emission devices are particularly preferably infrared light-emitting diodes and the position-sensitive detectors and position-sensitive infrared detectors.
  • One element of a system consisting of light emission device, slit diaphragm and detector can be moved relative to the other two elements.
  • the Position of the narrow light bar on the position-sensitive detector depends on the position of the movable element relative to the other two elements, and so it is possible to detect relative positions or relative movements.
  • Each measuring cell is preferably assigned its own light emission device, which radiates radially towards a circumference.
  • the infrared light-emitting diodes face the position-sensitive infrared detectors.
  • the beam path runs in a direction starting from the center. Because each measuring cell is assigned its own light emission device, the output signal of the position-sensitive detectors can be used to regulate the currents of the light emission devices assigned to them in such a way that the same constant amount of light strikes each position-sensitive detector. This has the advantage that all six measuring systems are largely unaffected by temperature and aging influences as well as contamination and component tolerance.
  • one component of the system light emission device, slit diaphragm, detector must be movable relative to the two elements.
  • the slot diaphragm in each measuring cell is arranged either on the first or on the second assembly, and the position-sensitive detectors and the light emission devices are arranged together on the other of the two assemblies. This has the advantage that all electronic components can be accommodated on a single circuit board.
  • the force and / or moment sensor according to the invention makes use of the measuring device according to the present invention. This takes advantage of the fact that the force-displacement characteristic of the force and / or moment sensor can be set within wide ranges by the choice of the spring constant of the transmission spring device.
  • the path length of the relative movement s2 between the first and the third assembly depends on the incremental force applied to it as follows:
  • the measuring device according to the invention and the force and / or moment sensor according to the invention can be used particularly advantageously in control sticks such as are used, for example, in computer games , on PCs or on game consoles, but also, for example, for controlling machines and means of transport. Here it is necessary to adapt the measuring range to the respective environmental conditions of the application. Accordingly, the present invention also includes a control stick which uses the measuring device for measuring positions or movements of two objects relative to one another or a force and / or moment sensor according to one of the preceding claims.
  • FIG. 1 schematically explains the functioning of the measuring device for measuring positions or movements of two objects relative to one another and the force and / or moment sensor.
  • FIG. 2 shows an embodiment of the measuring device and the force and / or moment sensor in a perspective view from above.
  • FIG 3 shows a partial view of the measuring device and the force and / or moment sensor in a perspective view from above.
  • the mode of operation of the measuring device for measuring positions or movements of two objects relative to one another is described below with reference to FIG. 1.
  • the device consists of a first 12, a second 14 and a third assembly 16, which are connected to one another by a measuring device 18 and a transmission spring device 20.
  • the measuring spring device 18 has spring properties with a spring constant Kl in the direction represented by the straight line 22
  • the transmission spring device 20 has spring properties with the spring constant K2 in the same direction.
  • the spring devices should have spring properties in an analogous manner .also in these spatial directions, namely essentially linear spring properties for measuring translations and torsion spring properties for measuring rotary movements.
  • FIG. 1 for the sake of simplicity, it is assumed that only translational movements along the direction indicated by straight line 22 are to be measured. It is also possible to consider non-linear spring characteristics. However, this can require more computing effort for the evaluation.
  • the second 14 and the third assembly 16 are freely movable relative to the first assembly 12. As shown in the lower part of FIG. 1, a displacement of the third assembly 16 relative to the first assembly 12 also leads to a displacement of the second assembly 14 relative to the first assembly 12.
  • the extent of the displacement sl depends, as shown above, on s2 and the spring constants Kl and K2.
  • the shift sl is measured by an optoelectronic measuring device. If Kl and K2 are known, s2 can be determined from this.
  • the measuring device 10 In order to effect the shift, an incremental force F must be applied.
  • the measuring device 10 according to the invention can also be used as a force and / or moment sensor.
  • the relationship between the incremental force F and the path length of the relative movement s2 can, as shown above, be set by the spring constants K2 and Kl.
  • FIG. 2 A perspective view of the measuring device 10 according to the invention is shown in FIG. 2.
  • the third assembly 16 forms a ring, inside which the first 12 and the second assembly 14 are arranged.
  • the second assembly 14 is suspended by the spring device 20 in the middle of the ring 16 and is freely movable.
  • the translation spring device 20 consists of three preloaded coil springs. The coil springs are arranged in a circle around the center of the ring and have an angular distance of 120 ° to each other.
  • the translation spring device 20 thus has spring properties in all three spatial directions and also acts as a torsion spring when rotated around these spatial directions.
  • the third assembly 16 is part of the housing of a control stick for a personal computer or a game console.
  • the second 14 and the first assembly 12 are printed circuit boards.
  • the first assembly 12 is connected to the second assembly 14 by a measuring spring device 18 which consists of three spiral springs, one end of which is soldered to the second assembly 14 and the other end of which is firmly soldered to the first assembly 12.
  • the measuring spring device 18 thus acts both as a linear spring device in all three spatial directions and also as a torsion spring when rotated around these spatial directions.
  • the measuring spring device 18 comprises three helical springs which are arranged rotationally symmetrically with an angle of 120 ° to each other.
  • stop devices 24 in the form of stop bolts are provided.
  • the stop bolts are firmly connected to the first assembly 12 and project through holes in the second assembly 14.
  • the horizontal movement of the second assembly 14 relative to the first assembly 12 is determined by the diameter of the stop device 24.
  • the movement of the two assemblies 12 and 14 relative to one another is limited by thickenings 26 and 28 on the bolt-shaped stop devices 24.
  • the distances of the thickenings 26 and 28 from the second assembly 14 in the direction of the axis of symmetry of the stop pin determine the range in which the first assembly can be moved in this direction relative to the second assembly 14.
  • the measuring device 10 can measure relative movements or relative positions of the first 12 and the second assembly 14 in six degrees of freedom, namely displacements in three linearly independent spatial directions and rotations by likewise three linearly independent spatial directions.
  • six position-sensitive infrared detectors 30 are provided, which together with six infrared light-emitting diodes (ILEDs) 32 and six slit diaphragms form six measuring cells.
  • the position sensitive infrared detectors 30 are each around A cylindrical surface, which is defined by a printed circuit board 34, is rotated 120 ° relative to one another about the axis of symmetry.
  • the ILEDs 32 are each offset by 120 ° to one another about the same axis of symmetry.
  • the axis of symmetry is perpendicular to the printed circuit board 38 of the first assembly 12.
  • the position-sensitive infrared detectors 30 are arranged in pairs of superposed detectors 30.
  • the ILEDs 32 are also arranged in pairs of superimposed ILEDs 32.
  • the ILED pairs 32 each lie between pairs of position-sensitive infrared detectors 30.
  • the pairs of position-sensitive infrared detectors 30 each consist of a position-sensitive infrared detector 30 for detecting a movement perpendicular to the plane defined by the printed circuit board 38 of the first assembly, and a position-sensitive infrared detector 30 for detecting movement in this plane.
  • a slit diaphragm 40 is arranged in the beam path of the ILED in front of the position-sensitive infrared detector.
  • the slit 40 has a narrow slit, so that only a narrow strip of light falls on the positionsem 'p-sensitive detector 30th
  • the slit direction of the slit diaphragm 40 runs perpendicular to the detector axis, that is, perpendicular to the measuring direction of the detector 30. Because one element of the system ILED 32, slit diaphragm 40 and position-sensitive infrared detector 30 is movably arranged relative to the other two elements, the measuring cell can make relative movements and Capture relative positions.
  • the ILEDs 32 and the position-sensitive infrared detectors 30 are firmly connected to the printed circuit board 38 of the first assembly by the vertical printed circuit board 34.
  • the printed circuit board 38 also carries further electronic components for controlling the ILEDs 32 and for evaluating the position information of the position-sensitive detectors 30.
  • the diaphragms 40 are fixedly connected to the second assembly 14 so that they can move.
  • the slit diaphragms 40 which are assigned to a pair of detectors 30 lying one above the other, are combined into a single slit diaphragm with two mutually perpendicular slits
  • the upper thickenings 28 of the stop devices 24 serve at the same time for fastening the control handle of the joystick.
  • the joystick with the first assembly 12 is the Measuring device 10 for measuring positions or movements of two objects connected to each other.
  • the annular third assembly 16 forms part of the housing of the joystick. In this way, movements of the handle relative to the housing can be converted into relative movements of the first assembly 12 to the third assembly 16 and thus into relative movements of the first assembly 12 to the second assembly 14 and measured in the manner described above.

Abstract

Eine Messvorrichtung zum Messen von Positionen oder Bewegungen zweier Gegenstände relativ zueinander mit einem Kraft- und/oder Momentensensor und einer Übersetzungsfedereinrichtung, wobei der Kraft- und/oder Momentensensor mit einem der Gegenstände mindestens über die Übersetzungsfedereinrichtung elastisch verbunden ist. Ein Kraft- und/oder Momentensensor mit der Messvorrichtung. Ein Steuerknüppel, mit der Messvorrichtung oder dem Kraft- und/oder Momentensensor.

Description

MESSVORRICHTUNG ZUM MESSEN VON POS- IONEN ODER BEWEGUNGEN
Beschreibung
Hintergrund der Erfindung
Die vorliegende Erfindung betrifft eine Messvorrichtung zum Messen von Positionen oder Bewegungen zweier Gegenstände relativ zueinander. Die Erfindung betrifft weiterhin einen Kraft- und/oder Momentensensor, der sich einer solchen Messvorrichtung bedient. Schließlich betrifft die Erfindung einen Steuerknüppel, der die Messvorrichtung aufweist.
Stand der Technik
Aus DE 36 11 336 C2 ist einen Kraft- und Drehmomentfühler bekannt, der alle sechs möglichen Kraft- und Drehmoment-Komponenten im kartesischen Koordinatensystem mit Hilfe von Dehnungsmessstreifen misst Die Vorrichtung besteht aus zwei übereinander angeordneten Speichenrädern mit jeweils vier Speichen und insgesamt 20 Dehnungsmessstreifen, die miteinander verdrahtet sind.
DE 36 11 337 AI offenbart eine optoelektronische Anordnung, die ebenfalls sechs Komponenten erfassen kann. Zu diesem Zweck sind sechs lichtemittierende Einrichtungen in gleichen Winkelabständen zueinander in einer gemeinsamen Ebene im Inneren eine Kunststoffkugel angeordnet. Jeder lichtemittierenden Einrichtung ist eine fest angeordnete Schlitzblende vorgeschaltet Die Relativbewegungen oder Relativpositionen werden durch lichtempfindliche Detektoren aufgenommen, die relativ zu den Anordnungen aus lichtemittierenden Einrichtungen und Schlitzblenden beweglich angeordnet sind. Die Detektorachse eines jeden Detektors verläuft senkrecht zur Schlitzrichtung der zugeordneten Schlitzblende.
Weitere Dokumente ohne Anspruch auf Vollständigkeit, die den technischen Hintergrund für die Erfindung zeigen, sind:
DE 27 27 704 C3, DE 36 11 336 C2, DE 32 40 241 AI, US 3,921,445, US 3,628,394.
Der Erfindung zugrundeliegendes Problem Die bekannten Messvorrichtungen haben nur einen begrenzten Messbereich. Dieser ist im Wesentlichen durch Art, Länge und Anordnung der Speichen und Dehnungsmessstreifen bzw. durch die Art und relative Anordnung der lichtemittierenden Einrichtungen, Schlitzblenden und lichtempfindlichen Detektoren bestimmt.
Bei unterschiedlichen Verwendungen der Messvorrichtung muss in unterschiedlichen Kraft- oder Wegmessbereichen gemessen werden. Es werden demnach für die Vielzahl von Einsatzmöglichkeiten eine Vielzahl von Kleinserien mit entsprechenden Komponenten und Anordnungen der Komponenten hergestellt.
Ausgehend vom Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Messvorrichtung zum Messen von Positionen oder- Bewegungen zweier Gegenstände relativ zueinander zu schaffen, die einfach an unterschiedliche Messbereiche angepasst werden kann. Weiterhin liegt der Erfindung die Aufgabe zu Grunde, einen Kraft- und/oder Momentensensor zu schaffen, dessen Kraft-Weg- Kennlinie an die Erfordernisse unterschiedliche Anwendungen angepasst werden kann. Schließlich liegt der Erfindung die Aufgabe zu Grunde, einen Steuerknüppel für die Eingabe von bis zu sechs Kraft- bzw. Drehmomentkomponenten zu schaffen.
Erfindungsgemäße Lösung
Zum Erfüllen diese Aufgabe lehrt die Erfindung eine Messvorrichtung zum Messen von Positionen oder Bewegungen zweier Gegenstände relativ zueinander, die durch die Merkmale des Anspruchs 1 definiert ist Sie lehrt weiter einen Kraft- und/oder Momentensensor, der durch die Merkmale des Anspruchs 16 definiert ist. Schließlich lehrt die Erfindung einen Steuerknüppel, der durch die Merkmale des Anspruchs 17 definiert ist.
Die Übersetzungsfedereinrichtung der erfindungsgemäßen Messvorrichtung kann einen Federweg oder eine Federdrehung in eine Kraft bzw. ein Moment umsetzen. Mit dem Kraft- und/oder Momentenfühler wird diese Kraft gemessen. Durch entsprechende Wahl der Übersetzungsfedereinrichtung kann der Messbereich der Messvorrichtung an die Erfordernisse der Anwendung angepasst werden.
Aufbau und Weiterbildung der erfindungsgemäßen Lösung Eine bevorzugte Ausführung der erfindungsgemäßen Messvorrichtung umfasst eine Messfedereinrichtung und eine Übersetzungsfedereinrichtung, die in Reihe angeordnet sind. Die in Reihe geschalteten Federeinrichtungen verbinden eine erste Baugruppe mit einer dritten Baugruppe. Die erste Baugruppe ist mit dem einen, die dritte Baugruppe mit dem anderen der beiden Gegenstände verbunden, deren Relativbewegungen oder Relativpositionen gemessen werden sollen. In einer besonders bevorzugten Ausführung der Erfindung können die erste und/oder die dritte Baugruppe auch die Gegenstände selbst sein. Eine zweite Baugruppe ist zwischen den beiden in Serie geschaltete Federeinrichtungen angeordnet. Mindestens eine optoelektronische Messzelle misst die Weglänge der Relativbewegung sl der zweiten Baugruppe relativ zur ersten Baugruppe, die sich aus der Weglänge der Relativbewegung s2 der dritten Baugruppe relativ zur ersten Baugruppe näherungsweise wie folgt ergibt:
sl = s2-K2/(Kl+K2).
Hierbei ist Kl die Federkonstante der Übersetzungsfedereinrichtung zwischen der ersten und der zweiten Baugruppe, und K2 ist die Federkonstante der Übersetzungsfedereinrichtung zwischen der zweiten und der dritten Baugruppe.
Wenn also die Messzelle auch Relativbewegungen mit Weglängen sl nur in einem begrenzten Wertebereich messen kann, so lässt sich der Bereich, in dem Weglängen s2 der Relativbewegungen zwischen der ersten Baugruppe und der dritten Baugruppe gemessen werden können, durch geeignete Wahl von K2 doch nahezu beliebig größer einstellen. Wenn die Messzelle zum Beispiel Relativbewegungen entlang einer Achse mit Weglängen im Bereich von minus 2 mm bis plus 2 mm messen kann, die Messvorrichtung jedoch Relativbewegungen zwischen die ersten und der dritten Baugruppe mit Weglängen im Bereich von minus 8 mm und plus 8 mm messen soll, so lässt sich dies erreichen, in dem man eine Übersetzungsfedereinrichtung mit einer Federkonstante wählt, für die gilt:
K2 = 1/3-K1
In einer bevorzugten Ausführung definiert die dritte Baugruppe einen Innenraum, in dem die erste und die zweite Baugruppe angeordnet sind. Die dritte Baugruppe kann zum Beispiel Teil des Gehäuses der Messvorrichtung sein. Der Innenraum muss nicht geschlossen sein. Die dritte Baugruppe ist vorzugsweise fest mit einem Gegenstand verbunden, dessen Position relativ zu einem anderen Gegenstand erfasst werden soll. Besonderes bevorzugt ist die dritte Baugruppe selbst dieser Gegenstand, zum Beispiel das Gehäuse eines Steuerknüppels.
Die Übersetzungsfedereinrichtung, welche die dritte und die zweite Baugruppe miteinander verbindet, umfaßt bevorzugt eine der folgende Komponenten oder Kombinationen daraus: Schraubenfeder (-paket), Elastomerformteil, Gießharzformteil. In einer bevorzugten Ausführung ist die zweite Baugruppe durch die Übersetzungsfedereinrichtung in Zentrum des Rings der dritten Baugruppe aufgehängt Vorzugsweise umfaßt die Übersetzungsfedereinrichtung hierzu drei Komponenten. Die Komponenten sind bevorzugt rotationssymmetrisch angeordnet Darüber hinaus weisen sie bevorzugt die gleiche Federkonstante auf. Die Komponenten der Übersetzungsfedereinrichtung sind besonderes bevorzugt Schraubenfedern/ Außerdem sind die Komponenten der Übersetzungsfedereinrichtung bevorzugt vorgespannt.
Die Messfedereinrichtung, welche die erste mit der zweiten Baugruppe verbindet, umfaßt bevorzugt eine der folgenden Komponenten oder Kombinationen daraus: Schraubenfeder (-paket), Elastomerformteil, Gießharzformteil. Auch die Messfedereinrichtung umfasst bevorzugt drei Komponenten, und die Komponenten der Messfedereinrichtung sind bevorzugt rotationssymmetrisch angeordnet. In einer bevorzugten Ausführung der Messvorrichtung umfassen die erste Baugruppe und die zweite Baugruppe jeweils eine Leiterplatte. Auf diese Weise können die erste und die zweite Baugruppe auf einfache Weise mit den Elementen der Messzellen, also positionsempfindlichen Detektoren, Blenden und Lichtemissionseinrichtungen, sowie ggf. Steuerelektronik und anderen Komponenten versehen werden.
In einer bevorzugten Ausführung umfasst mindestens eine Komponente der ersten Federeinrichtung mindestens eine Schraubenfeder, deren Enden durch Löten fest mit der ersten bzw. der zweiten Baugruppe verbunden sind. Die Schraubenfedern können so in alle Richtungen belastet werden, d.h. es können Schub- und Druckkräfte sowie quer zu Schraubenfeder angreifende Kräfte wirken, ohne dass sich die Schraubenfedern in ihrem Sitz bewegen oder gar heraus springen. In einer anderen bevorzugten Ausführung umfasst eine Komponente der ersten Federeiπrichtung mindestens einen Elastomerzylinder, dessen Enden durch Kleben mit der ersten bzw. zweiten Baugruppe verbunden sind. Ein System, das die erste Baugruppe, die zweite Baugruppe, die Messfedereinrichtung und die optoelektronischen Messzellen umfaßt, läßt sich auf einfache Weise in Serie produzieren. Durch Wähl einer geeigneten Übersetzungsfedereinrichtung wird die Messvorrichtung anschließend an den gewünschten Messbereich angepaßt.
In einer bevorzugten Ausführung umfaßt die Messvorrichtung außerdem mindestens eine Anschlageinrichtung, welche die Bewegung der ersten Baugruppe relativ zur zweiten Baugruppe begrenzt Dies ist vorzugsweise durch Anschlagbolzen realisiert, die fest mit der ersten Leiterplatte verbunden sind. Auf diese Weise wird die Messvorrichtung gegen Überlastung geschützt. Die Anschlagbolzen ragen durch Löcher in der zweiten Baugruppe durch diese hindurch.
In einer bevorzugten Ausführung umfaßt die Messvorrichtung sechs'optoelektroni- sche Messzellen. Auf diese Weise lassen sich Reiativbewegungen und Relativpositionen in sechs Freiheitsgraden messen. Dabei messen bevorzugt drei Messzellen Bewegungen parallel zur Ebene der ersten Leiterplatte, und drei Messzellen Bewegungen senkrecht dazu. Die optoelektronischen Messzellen sind bevorzugt auf dem Umfang eines Kreises, besonderes bevorzugt in Paaren und vorzugsweise rotationssymmetrisch bezüglich des Mittelpunkts des Kreises angeordnet. Dabei wechseln sich bevorzugt Messzellen, die Bewegungen in der Ebene messen, mit solchen, die Bewegungen senkrecht dazu messen, ab.
Jede optoelektronische Messzelle umfaßt einen im Strahlengang einer Lichtemissionseinrichtung angeordneten positionsempfindlichen Detektor sowie eine im Strahlengang der Lichtemissionseinrichtung zwischen der Lichtemissionseinrichtung und dem positionsempfindlichen Detektor angeordnete Schlitzblende. Die Detektorachse des positionsempfindlichen Detektors ist senkrecht zu einer Schlitzrichtung der Schlitzblende ausgerichtet. So fällt nur ein schmaler Lichtbalken auf den hinter der Blende liegenden positionsempfindlichen Detektor. Die Schlitzblenden der Messzellen, die Bewegungen in der Ebenen messen, verlaufen senkrecht zur Ebene, während die Schlitzblenden der Messzellen, die Bewegungen senkrecht zur Ebene messen parallel zur Ebene verlaufen. Besonderes bevorzugt handelt es sich bei den Lichtemissionseinrichtungen um Infrarotleuchtdioden und bei den positionsempfindlichen Detektoren und positionsempfindliche Infrarotdetektoren.
Ein Element eines Systems bestehend aus Lichtemissionseinrichtung, Schlitzblende und Detektor ist relativ zu den anderen beiden Elementen bewegbar. Folglich ist die Lage des schmalen Lichtbalkens auf dem positionsempfindlichen Detektor von der Position des bewegbaren Elements relativ .zu den anderen beiden Elementen abhängig, und so ist es möglich Relativpositionen oder Relativbewegungen zu detektieren.
Bevorzugt ist jeder Messzelle eine eigene Lichtemissionseinrichtung zugeordnet, die radial zu einem Kreisumfang hin leuchtet Dort stehen den Infrarotleuchtdioden die positions-empfindlichen Infrarotdetektoren gegenüber. Der Strahlengang verläuft also jeweils in einer vom Zentrum ausgehenden Richtung. Dadurch, dass jeder Messzelle eine eigene Lichtemissionseinrichtung zugeordnet ist, kann das Ausgangssignal der positionsempfindlichen Detektoren verwendet werden, um die Ströme der ihnen jeweils zugeordneten Lichtemissionseinrichtungen so zu regeln, das auf jeden positionsempfindlichen Detektor die gleiche konstante Lichtmenge trifft. Das hat den Vorteil, das alle sechs Messsysteme in weiten Bereichen unbeeinflußt von Temperatur und Alterungseinflüssen sowie Verschmutzung und Bauteiltoleranz sind.
Um Relativbewegungen zu messen zu können muß jeweils eine Komponente des Systems Lichtemissionseinrichtung, Schlitzblende, Detektor relativ zu den beiden Elementen bewegbar sein. In einer bevorzugten Ausführung ist bei jeder Messzelle die Schlitzblende entweder auf der ersten oder auf der zweiten Baugruppe angeordnet, und die positionsempfindlichen Detektoren und die Lichtemissionseinrichtungen sind gemeinsam auf der jeweils anderen der beiden Baugruppen angeordnet. Dies hat den Vorteil, das alle elektronischen Komponenten auf eine einzigen Leiterplatte untergebracht werden können.
Der erfindungsgemäße Kraft- und/oder Momentensensor macht von der Messvorrichtung gemäß der vorliegenden Erfindung gebrauch. Hierbei wird ausgenutzt, dass sich durch die Wahl der Federkonstante der Übersetzungsfedereinrichtung die Kraft-Weg- Kennlinie des Kraft- und/oder Momentensensors in weiten Bereichen einstellen läßt Die Weglänge der Relativbewegung s2 zwischen der ersten und der dritten Baugruppe hängt von der dazu aufgebrachten inkrementellen Kraft wie folgt ab:
s2 = F-(1/Kl+1/K2).
s2 ist dabei die Weglänge der Relativbewegung zwischen der ersten und der dritten Baugruppe, F ist die dazu aufgebrachte inkrementelle Kraft. Die erfindungsgemäße Messvorrichtung bzw. der erfindungsgemäße Kraft- und/oder Momentensensor läßt sich besonderes vorteilhaft in Steuerknüppeln einsetzen, wie sie z.B. bei Computerspielen'.an PCs oder an Spielkonsolen, aber auch z.B. zur Steuerung von Maschinen und Transportmitteln zum Einsatz kommen. Hier ist es notwendig, den Messbereich den jeweiligen Umgebungsbedingungen der Anwendung anzupassen. Entsprechend umfaßt die vorliegende Erfindung auch einen Steuerknüppel, der sich der Messvorrichtung zum Messen von Positionen oder Bewegungen zweier Gegenstände relativ zueinander oder eines Kraft- und/oder Momentensensors nach einem der vorgehenden Ansprüche bedient.
Weitere Merkmale, Eigenarten, Vorteile und mögliche Abwandlungen werden für den Fachmann an Hand der nachstehenden Beschreibung einer bevorzugten Ausführung deutlich, in der auf die beigefügten Zeichnungen Bezug genommen wird.
Kurzbeschreibung der Zeichnungen
Fig. 1 erläutert schematisch die Funktionsweise der Messvorrichtung zum Messen von Positionen oder Bewegungen zweier Gegenstände relativ zueinander und des Kraft- und/oder Momentensensors.
Fig. 2 zeigt eine Ausführung der Messvorrichtung und des Kraft- und/oder Momentensensors in perspektivischer Ansicht von oben.
Fig. 3 zeigt eine Teilansicht der Messvorrichtung und des Kraft- und/oder Momentensensors in perspektivischer Ansicht von oben.
Ausführliche Beschreibung eines Ausführungsbeispiels
Im folgenden wird die Funktionsweise der Messvorrichtung zum Messen von Positionen oder Bewegungen zweier Gegenstände zueinander an Hand der Fig. 1 beschrieben. Die Vorrichtung besteht aus eine ersten 12, eine zweiten 14 und eine dritten Baugruppe 16, die durch eine Mess- 18 und eine Übersetzungsfedereinrichtung 20 miteinander verbunden sind. Die Messfedereinrichtung 18 weist Federeigenschaften mit einer Federkonstanten Kl in die durch die Gerade 22 dargestellte Richtung auf, die Übersetzungsfedereinrichtung 20 weist Federeigenschaften mit der Federkonstanten K2 in die gleiche Richtung auf. Soll die Messvorrichtung auch zum Erfassen von Weglängen von Relativbewegungen oder Relativpositionen in andere Raumrich- tungen und/oder zum Erfassen von Drehbewegungen eingesetzt werden, so sollten die Federeinrichtungen in analoger Weise .auch in diese Raumrichtungen Federeigenschaften aufweisen, und zwar im wesentlichen lineare Federeigenschaften zur Messung von Translationen und Torsionsfedereigenschaften zum Messen von Drehbewegungen. In Fig. 1 wird aber der Einfachheit halber davon ausgegangen, dass nur Translationsbewegungen entlang der durch die Gerade 22 angegebenen Richtung gemessen werden sollen. Es ist auch möglich, nicht lineare Federkennlinien zu berücksichtigen. Dies kann jedoch bei der Auswertung einen höheren Rechenaufwand erfordern.
Die zweite 14 und die dritte Baugruppe 16 sind relativ zur ersten Baugruppe 12 frei beweglich. Wie im unteren Teil der Fig. 1 dargestellt, führt eine Verschiebung der dritten Baugruppe 16 relativ zur ersten Baugruppe 12 auch zu einer Verschiebung der zweiten Baugruppe 14 relativ zur ersten Baugruppe 12. Das Ausmaß der Verschiebung sl hängt, wie weiter oben dargestellt, von s2 und den Federkonstanten Kl und K2 ab. Die Verschiebung sl wird von einer optoelektronischen Messvorrichtung gemessen. Bei bekanntem Kl und K2 kann daraus s2 ermittelt werden.
Um die Verschiebung zu bewirken, muß eine inkrementelle Kraft F aufgewandt werden. Auf diese Weise kann die erfindungsgemäße Messvorrichtung 10 auch als Kraft- und/oder Momentensensor eingesetzt werden. Das Verhältnis zwischen inkrementeller Kraft F und der Weglänge der Relativbewegung s2 kann, wie weiter oben dargestellt, durch die Federkonstanten K2 und Kl eingestellt werden.
Eine perspektivische Ansicht der erfindungsgemäßen Messvorrichtung 10 ist in Fig. 2 dargestellt. Mit dieser Vorrichtung 10 können Relativpositionen und Relativbewegungen in allen sechs Freiheitsgraden gemessen werden, also Translationen in drei Raumrichtungen und Rotationen um diese Raumrichtungen. Dazu bildet die dritte Baugruppe 16 einen Ring, in dessen Inneren die erste 12 und die zweite Baugruppe 14 angeordnet sind. Die zweite Baugruppe 14 ist durch die Federeinrichtung 20 in der Mitte des Rings 16 aufgehängt und frei beweglich. Die Übersetzungsfedereinrichtung 20 besteht aus drei vorgespannten Schraubenfedern. Die Schraubenfedern sind kreisförmig um das Zentrum des Rings herum angeordnet und weisen einen Winkelabstand von je 120° zueinander auf. Die Übersetzungsfedereinrichtung 20 hat somit Federeigenschaften in alle drei Raumrichtungen und wirkt außerdem als Torsionsfeder bei Drehungen um dieser Raumrichtungen.
Die dritte Baugruppe 16 ist Teil des Gehäuses eines Steuerknüppels für einen Personalcomputer oder eine Spielkonsole. Die zweite 14 und die erste Baugruppe 12 sind Leiterplatten. Die erste Baugruppe 12 ist mit der zweiten Baugruppe 14 durch eine Messfedereinrichtung 18 verbunden, die aus drei Spiralfedern besteht, deren eines Ende jeweils mit der zweiten Baugruppe 14 und deren anderes Ende jeweils mit der ersten Baugruppe 12 fest verlötet ist.
So wirkt auch die Messfedereinrichtung 18 sowohl als lineare Federeinrichtung in alle drei Raumrichtungen, als auch als Torsionsfeder bei Drehungen um diese Raumrichtungen. Die Messfedereinrichtung 18 umfasst drei Schraubenfedern, die rotationssymmetrisch mit einem Winkel von je 120° zueinander angeordnet sind.
Um die Relativbewegungen oder Relativpositionen der ersten 12 und zweiten Baugruppe 14 zu begrenzen, so dass durch Überlastung keine Beschädigung der Messvorrichtung 10 bzw. das Kraft- und/oder Momentensensors auftreten kann, sind drei Anschlageinrichtungen 24 in Form von Anschlagbolzen vorgesehen. Die Anschlagbolzen sind fest mit der ersten Baugruppe 12 verbunden und ragen durch Löcher in der zweiten Baugruppe 14. Die horizontal Bewegung der zweiten Baugruppe 14 relativ zur ersten Baugruppe 12 ist durch den Durchmesser der Anschlagvorrichtung 24 bestimmt Die Bewegung der beiden Baugruppen 12 und 14 zueinander ist durch Verdickungen 26 und 28 an den bolzenförmigen Anschlagvorrichtungen 24 begrenzt. Der Abstände der Verdickungen 26 und 28 von der zweiten Baugruppe 14 in Richtung der Symmetrieachse des Anschlagbolzens bestimmen den Bereich, in dem die erste Baugruppe relativ zur zweiten Baugruppe 14 in diese Richtung bewegt werden kann.
Die Messvorrichtung 10 kann in sechs Freiheitsgraden Relativbewegungen oder Relativpositionen der ersten 12 und der zweiten Baugruppe 14 messen, nämlich Verschiebungen in drei linear unabhängigen Raumrichtungen und Drehungen um ebenfalls drei linear unabhängiger Raumrichtungen. Zu diesem Zweck sind, wie in Fig. 3 dargestellt, sechs positionsempfindliche Infrarotdetektoren 30 vorgesehen, die zusammen mit sechs Infrarotleuchtdioden (ILEDs) 32 und sechs Schlitzblenden sechs Messzellen bilden. Die positionsempfindlichen Infrarotdetektoren 30 sind jeweils um 120° zueinander um die Symmetrieachse eine Zylinderfläche gedreht, die von einer Leiterplatte 34 definiert wird. Auf gleiche Weise sind die ILEDs 32 jeweils um 120° zueinander um dieselbe Symmetrieachse versetzt angeordnet. Die Symmetrieachse steht senkrecht auf der Leiterplatte 38 der ersten Baugruppe 12.
Die positionsempfindlichen Infrarotdetektoren 30 sind in Paaren von übereinander liegenden Detektoren 30 angeordnet Auf gleiche Weise sind auch die ILEDs 32 in Paaren übereinander liegender ILEDs 32 angeordnet. Dabei liegen die ILED-Paare 32 jeweils zwischen Paaren positionsempfindliche Infrarotdetektoren 30. Die Paare positionsempfindliche Infrarotdetektoren 30 bestehen aus jeweils einem positionsempfindlichen Infrarotdetektor 30 zum Erfassen eine Bewegung senkrecht zu der Ebene, die durch die Leiterplatte 38 der ersten Baugruppe definiert wird, und einem positionsempfindlichen Infrarotdetektor 30 zum Erfassen eine Bewegung in dieser Ebene.
Bei jeder Messzelle ist eine Schlitzblende 40 im Strahlengang der ILED vor dem positionsempfindlichen Infrarotdetektor angeordnet. Die Schlitzblende 40 weist einen schmaler Schlitz auf, so dass nur ein schmaler Lichtstreifen auf dem positionsem'p- findlichen Detektor 30 fällt. Die Schlitzrichtung der Schlitzblende 40 verläuft dabei senkrecht zu Detektorachse, also senkrecht zur Messrichtung des Detektors 30. Dadurch, das ein Element des Systems ILED 32, Schlitzblende 40 und positionsempfindlicher Infrarotdetektor 30 relativ zu den anderen beiden Elementen bewegbar angeordnet ist, kann die Messzelle Relativbewegungen und Relativpositionen erfassen.
Die ILEDs 32 und die positionsempfindlichen Infrarotdetektoren 30 sind durch die senkrechte Leiterplatte 34 fest mit der Leiterplatte 38 der ersten Baugruppe verbunden. Die Leiterplatte 38 trägt außerdem noch weitere elektronische Komponenten zum Ansteuern der ILEDs 32 und zum Auswerten der Positionsinformation der positionsempfindlichen Detektoren 30. Die Blenden 40 sind beweglich hierzu mit der zweiten Baugruppe 14 fest verbunden. Die Schlitzblenden 40 die einem Paar übereinander liegender Detektoren 30 zugeordnet sind, sind zu einer einzigen Schlitzblende mit zwei zueinander senkrechten Schlitzen zusammengefasst
Bei dem erfindungsgemäßen Steuerknüppel dienen die oberen Verdickungen 28 der Anschlageinrichtungen 24 gleichzeitig zu Befestigung des Steuergriffs des Steuerknüppels. Auf diese Weise ist der Steuerknüppel mit der ersten Baugruppe 12 der Messvorrichtung 10 zum Messen von Positionen oder Bewegungen zweier Gegenstände relativ zueinander verbunden. Die ringförmige dritte Baugruppe 16 bildet einen Teil des Gehäuses des Steuerknüppels. Auf diese Weise können Bewegungen des Griffs relativ zum Gehäuse in Relativbewegungen der ersten Baugruppe 12 zur dritten Baugruppe 16 und damit in Relativbewegungen der ersten Baugruppe 12 zur zweiten Baugruppe 14 umgesetzt und in der oben beschriebenen Weise gemessen werden.

Claims

Ansprüche
1. Messvorrichtung (10)',- die aus mehreren Baugruppen besteht, von denen mindestens eine einen Kraft- und/oder Momentenfühler, zum Messen von Positionen oder Bewegungen zweier Gegenstände relativ zueinander aufweist, dadurch gekennzeichnet, dass sie eine Übersetzungsfedereinrichtung (20) aus vorgespannten Federn umfasst, die einen Luftspalt überbrücken, der durch einen bestimmten Abstand einer ersten und zweiten Baugruppe zu einer dritten Baugruppe definiert ist, wobei der Kraft- und/oder Momentenfühler mit einem der Gegenstände zumindest über die Übersetzungsfedereinrichtung (20) elastisch verbunden ist.
2. Messvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass sie umfasst
- einen Kraft- und/oder Momentenfühler mit mindestens
~ einer ersten Baugruppe(12), die mit einem der zwei Gegenstände verbunden ist,
-- einer zweiten Baugruppe (14), die durch mindestens eine Messfedereinrichtung (18) elastisch mit der ersten Baugruppe (12) verbunden ist, und -- mindestens einer optoelektronischen Messzelle zum Messen der Position oder Bewegung der ersten (12) relativ zur zweiten Baugruppe (14), und
- eine dritte Baugruppe (16), die mit dem anderen der zwei Gegenstände verbunden ist, und die durch die Übersetzungsfedereinrichtung (20) mit der zweiten Baugruppe (14) elastisch verbunden ist, wobei die Position der ersten Baugruppe (12) relativ zur dritten Baugruppe (16) von außen veränderbar ist, und die zweite Baugruppe (14) eine Position relativ zur ersten Baugruppe (12) einnimmt, die von der Position der dritten (16) relativ zur ersten Baugruppe (12) abhängt.
3. Messvorrichtung (10) nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die dritte Baugruppe (16) einen Innenraum definiert, in dem die erste (12) und die zweite Baugruppe (14) so angeordnet sind, dass sie durch den Luftspalt von der dritten Baugruppe (16) beabstandet sind.
4. Messvorrichtung (10) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Übersetzungsfedereinrichtung (20) ein Schraubenfederpaket umfasst, das bevorzugt rotationssymmetrisch angeordnet sind.
5. Messvorrichtung (10) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Messfedereinrichtung (18) eine der nachfolgenden Komponenten oder Kombinationen daraus umfasst: Schraubenfeder (-paket), Elastomerformteil, Gießharzformteil.
6. Messvorrichtung (10) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die Messfedereinrichtung (18) drei Komponenten umfasst und die Komponenten der Messfedereinrichtung (18) bevorzugt rotationssymmetrisch angeordnet sind.
7. Messvorrichtung (10) nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die erste (12) und zweite Baugruppe (14) im Wesentlichen über die Komponenten der Messfedereinrichtung (18) elastisch miteinander verbunden sind.
8. Messvorrichtung (10) nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die erste (12) und zweite Baugruppe (14) jeweils eine Leiterplatte umfassen.
9. Messvorrichtung (10) nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass mindestens eine Komponente der Messfedereinrichtung (18) mindestens eine Schraubenfeder umfasst, die durch Löten fest mit der ersten (12) und zweiten Baugruppe (14) verbunden ist.
10. Messvorrichtung (10) nach einem der Ansprüche 2 bis 9, gekennzeichnet durch mindestens eine Anschlageinrichtung (24), welche die Bewegung der ersten Baugruppe (12) relativ zur zweiten Baugruppe (14) begrenzt
11. Messvorrichtung (10) nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass sie mindestens sechs optoelektronische Messzellen umfasst um Bewegungen oder Positionen in sechs Freiheitsgraden zu erfassen.
12. Messvorrichtung (10) nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, dass die optoelektronischen Messzellen auf dem Umfang eines Kreises liegen und bevorzugt in Paaren von übereinanderliegenden Messzellen angeordnet sind, und die Paare bevorzugt rotationssymmetrisch angeordnet sind.
13. Messvorrichtung (10) nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, dass jede optoelektronische Messzelle einen im Strahlengang einer Lichtemissionseinrichtung (32) angeordneten positionsempfindlichen Detektor (30) sowie eine im Strahiengang der Lichtemissionseinrichtung (32) zwischen der Lichtemissionseinrichtung (32) und dem positionsempfindlichen Detektor (30) angeordnete Schlitzblende (40) umfassen, wobei eine Detektorachse des positionsempfindlichen Detektors senkrecht zu einer Schlitzrichtung der Schlitzblende (40) ausgerichtet ist und ein Element eines Systems bestehend aus Lichtemissionseinrichtung (32), Schlitzblende (40) und Detektor (30) relativ zu den anderen beiden Elementen bewegbar ist.
14. Messvorrichtung (10) nach Anspruch 13, dadurch gekennzeichnet, dass bei jeder Messzelle die Schlitzblende (40) entweder auf der ersten (12) oder der zweiten Baugruppe (14) angeordnet ist und der positionsempfindliche Detektor (30) und die Lichtemissionseinrichtung (32) gemeinsam auf der jeweils anderen der beiden vorgenannten Baugruppen (12, 14) angeordnet sind.
15. Kraft- und/oder Momentensensor gekennzeichnet durch die Messvorrichtung (10) nach einem der vorhergehenden Ansprüche.
16. Steuerknüppel, gekennzeichnet durch
- eine Messvorrichtung (10) nach einem der Ansprüche 1 bis 15 oder
- einen Kraft- und/oder Momentensensor nach Anspruch' 15.
PCT/EP2003/006058 2002-06-07 2003-06-10 Messvorrichtung zum messen von positionen oder bewegungen WO2004072599A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/516,860 US7296463B2 (en) 2002-06-07 2003-06-10 Measuring device for measuring positions or movements
EP03735593A EP1511982A1 (de) 2002-06-07 2003-06-10 Messvorrichtung zum messen von positionen oder bewegungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10225418.4 2002-06-07
DE10225418A DE10225418A1 (de) 2002-06-07 2002-06-07 Meßvorrichtung zum Messen von Positionen oder Bewegungen

Publications (1)

Publication Number Publication Date
WO2004072599A1 true WO2004072599A1 (de) 2004-08-26

Family

ID=29718895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/006058 WO2004072599A1 (de) 2002-06-07 2003-06-10 Messvorrichtung zum messen von positionen oder bewegungen

Country Status (4)

Country Link
US (1) US7296463B2 (de)
EP (1) EP1511982A1 (de)
DE (1) DE10225418A1 (de)
WO (1) WO2004072599A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10158776B4 (de) * 2001-11-30 2004-05-13 3Dconnexion Gmbh Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte
EP1850210B1 (de) * 2006-04-05 2012-02-01 Société Civile "GALILEO 2011" Optoelektronische Vorrichtung zur Bestimmung der relativen Bewegungen oder relativen Positionen zweier Objekte
DE102006058805B4 (de) * 2006-12-13 2011-12-22 Spacecontrol Gmbh Vorrichtung zur Eingabe von Bewegungen und/oder Erfassung von Kräften
EP1998243A1 (de) * 2007-05-25 2008-12-03 3Dconnexion Holding SA Optoelektronische Vorrichtung und elastisches Element dafür
US8963804B2 (en) * 2008-10-30 2015-02-24 Honeywell International Inc. Method and system for operating a near-to-eye display
DE202011109036U1 (de) 2011-12-13 2012-10-15 Jan Rotard Bedienorgan mit translatorischen und rotatorischen Freiheitsgraden
KR102203516B1 (ko) * 2013-03-12 2021-01-18 스트리커 코포레이션 힘 및 토크를 측정하기 위한 센서 조립체 및 방법
CN109649654B (zh) * 2018-12-28 2021-09-14 东南大学 一种低空搜索定位方法
CN113494975B (zh) * 2020-04-07 2023-04-11 群光电子股份有限公司 物件按压性能量测系统
WO2022079789A1 (ja) 2020-10-13 2022-04-21 任天堂株式会社 情報処理システム、情報処理プログラムおよび情報処理方法
US11073920B1 (en) 2020-10-20 2021-07-27 Cirque Corporation Multi-touch input system
CN112682054B (zh) * 2020-12-03 2022-08-23 重庆文理学院 一种用于tbm施工监测的挖掘设备及其勘测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1470352A (en) * 1975-01-07 1977-04-14 Stanford Research Inst Sensing of force and torque components transmitted between members
US5798748A (en) * 1995-06-07 1998-08-25 Spacetec Imc Corporation Force and torque converter with improved digital optical sensing circuitry
US20020056326A1 (en) * 2000-07-14 2002-05-16 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Means for sensing relative movements of an object

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628394A (en) 1970-02-09 1971-12-21 Sperry Rand Corp Operator-manipulative control apparatus
US3921445A (en) 1973-10-15 1975-11-25 Stanford Research Inst Force and torque sensing method and means for manipulators and the like
DE2727704C3 (de) 1977-06-21 1982-12-09 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Kraft-Drehmoment-Fühler
DE3611336A1 (de) 1986-04-04 1987-10-15 Deutsche Forsch Luft Raumfahrt Kraft-drehmoment-fuehler
DE3827719A1 (de) * 1988-08-16 1990-02-22 Dietmar Klinger Optoelektronische messanordnung
DE19758283A1 (de) 1997-12-31 1999-07-01 Hejm Gmbh Haustechnik & Elektr Absolutes Längenmeßsystem mittels Feder und Kraftmesser
DE19937307A1 (de) * 1998-08-10 2000-02-17 Deutsch Zentr Luft & Raumfahrt Verfahren zum Auslösen von technischen Steueroperationen und/oder zum Auslösen der Ausführung von technischen Funktionen sowie Anordnung zur Durchführung des Verfahrens
DE10143489C2 (de) * 2001-09-05 2003-07-17 Deutsch Zentr Luft & Raumfahrt Anordnung zum Erfassen von Relativbewegungen zweier Objekte
DE10158775B4 (de) * 2001-11-30 2004-05-06 3Dconnexion Gmbh Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte
DE10158777B4 (de) * 2001-11-30 2004-05-06 3Dconnexion Gmbh Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte
DE10246031A1 (de) * 2002-10-02 2004-04-15 3Dconnexion Gmbh Positions- und/oder Bewegungsfühler mit Überlastungsschutz

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1470352A (en) * 1975-01-07 1977-04-14 Stanford Research Inst Sensing of force and torque components transmitted between members
US5798748A (en) * 1995-06-07 1998-08-25 Spacetec Imc Corporation Force and torque converter with improved digital optical sensing circuitry
US20020056326A1 (en) * 2000-07-14 2002-05-16 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Means for sensing relative movements of an object

Also Published As

Publication number Publication date
US20050172711A1 (en) 2005-08-11
US7296463B2 (en) 2007-11-20
DE10225418A1 (de) 2004-01-08
EP1511982A1 (de) 2005-03-09

Similar Documents

Publication Publication Date Title
DE10158775B4 (de) Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte
DE10158777B4 (de) Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte
DE10143489C2 (de) Anordnung zum Erfassen von Relativbewegungen zweier Objekte
EP1195580B1 (de) Einrichtung zum Erfassen von Relativbewegungen eines Objekts
DE10158776B4 (de) Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte
DE102006058805B4 (de) Vorrichtung zur Eingabe von Bewegungen und/oder Erfassung von Kräften
DE102014210379B4 (de) Drehmomentsensor und Verfahren zum Erfassen von an oder in einem Gelenk eines Gelenkarmroboters auftretenden Drehmomenten
DE2529796B2 (de) Mehrkomponenten-Kraftmeßdose
WO2004072599A1 (de) Messvorrichtung zum messen von positionen oder bewegungen
DE102019113424A1 (de) Kraftsensor vom Verschiebungsdetektionstyp
DE10246031A1 (de) Positions- und/oder Bewegungsfühler mit Überlastungsschutz
DE102004063975B4 (de) Optoelektronische Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte
DE102010017851B4 (de) Torsionsmodul
DE102006034481B4 (de) Messeinrichtung
DD218458A1 (de) Kraft-momenten-fuehler
WO2004063693A1 (de) Kompakte optische erfassung von relativbewegungen durch eine geschlizte loch - platte
DE102016116181A1 (de) Ein- oder mehrachsige Kraftmesseinrichtung mit kurzer Verformungszone
EP0256393B1 (de) Messanordnung zum Erfassen von Kräften und Momenten
DE102008028365A1 (de) Rotorfluggerät mit einer Steuereinrichtung zum Generieren von Steuerbefehlen
DD224930A1 (de) Kraft-momenten-fuehler
DE102021110150B3 (de) Rundstecker mit Einstellelement
DE102004051565B4 (de) Optoelektronische Anordnung zum Erfassen von Relativbewegungen oder Relativpositionen zweier Objekte sowie Kraft- und/oder Momentsensor, Pan/Zoom-Sensor und PC-Tastatur mit einer derartigen Anordnung
DE102017213667A1 (de) Kraft-Moment-Sensor
DE10012983C2 (de) Kraft-Momenten-Sensor
DE102016212407A1 (de) Sensorplatte zur Befestigung an einem Manipulator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003735593

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10516860

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003735593

Country of ref document: EP