WO2004072318A1 - Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof - Google Patents

Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof Download PDF

Info

Publication number
WO2004072318A1
WO2004072318A1 PCT/FR2004/000036 FR2004000036W WO2004072318A1 WO 2004072318 A1 WO2004072318 A1 WO 2004072318A1 FR 2004000036 W FR2004000036 W FR 2004000036W WO 2004072318 A1 WO2004072318 A1 WO 2004072318A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium alloy
zirconium
alloy
ingot
semi
Prior art date
Application number
PCT/FR2004/000036
Other languages
French (fr)
Other versions
WO2004072318B1 (en
Inventor
Pierre Barberis
Noël RIZZI
Xavier Robbe
Original Assignee
Compagnie Europeenne Du Zirconium-Cezus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Europeenne Du Zirconium-Cezus filed Critical Compagnie Europeenne Du Zirconium-Cezus
Priority to EP04701028A priority Critical patent/EP1585841A1/en
Priority to JP2006502091A priority patent/JP2006520430A/en
Priority to US10/541,262 priority patent/US20060081313A1/en
Publication of WO2004072318A1 publication Critical patent/WO2004072318A1/en
Publication of WO2004072318B1 publication Critical patent/WO2004072318B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Definitions

  • the invention relates to a method for manufacturing a zirconium alloy semi-product intended for the preparation of a flat product used for the production of fuel assembly elements.
  • Fuel assemblies for nuclear reactors cooled by light water for example nuclear reactors cooled by pressurized water (PWR) and nuclear reactors cooled by boiling water (BWR) or CANDU reactor fuel includes elements consisting of a zirconium alloy having the property of having a low neutron absorption in the core of the nuclear reactor.
  • PWR pressurized water
  • BWR boiling water
  • CANDU reactor fuel includes elements consisting of a zirconium alloy having the property of having a low neutron absorption in the core of the nuclear reactor.
  • the cladding tubes of the fuel rods and the plates used for the manufacture of the spacer grids of the fuel assembly can be made of zirconium alloy, in particular al- bonding of zirconium containing tin and iron such as the alloy Zircaloy 2 or Zircaloy 4.
  • the parallelepipedic housings of the fuel assemblies for BWR reactors are also generally produced from flat products made of zirconium alloy such as Zircaloy 2 or Zircaloy 4.
  • alloys such as the alloy known under the trade name 5 essentially containing zirconium and niobium are also used for the manufacture of fuel assembly elements in the form of flat or tubular products.
  • the zirconium alloys used for the manufacture of elements for fuel assemblies contain at least 97% of zirconium by weight, the rest of the composition which represents at most 3% by weight, with the exception of impurities due in the development of alloys, which may consist of different elements and, in particular, iron, tin or niobium.
  • zirconium alloys meeting these conditions relating to their composition may be present, depending on the temperature and the heat treatments which they have undergone, in one or the other of the two allotropic forms of zirconium, that is to say say in alpha phase which is the stable phase at low temperature of zirconium, with a compact hexagonal structure or in beta phase which is the stable phase at high temperature with cubic structure.
  • the zirconium alloys such as the technical alloys used for the manufacture of fuel assembly elements defined above may have a mixed alpha + beta structure.
  • the starting product is generally a very large ingot obtained by casting an alloy adjusted to the chosen shade.
  • an ingot having a diameter between 400 mm and 800 mm and a length between 2 m and 3 m is cast.
  • the ingot then undergoes forging operations in a temperature range in which it can be in the ce, ⁇ or ⁇ + ⁇ phase (EP-0.085.552 and US-5,674,330).
  • the ingot is heated, so that the alloy is in the beta phase and then a first forging step is carried out on the ingot heated in the beta phase.
  • the ingot can be heated at 1050 ° C for ten hours, prior to forging.
  • the product obtained by forging is quenched from the beta phase.
  • a second forging step is then carried out at a temperature below 800 ° C., the alloy being in the alpha phase, in the case of Zircaloy type alloys.
  • the product obtained which constitutes the semi-product of the process for producing a flat product, is a slab which can have a thickness of the order of 100 mm.
  • the slab is then subjected to various hot rolling operations and then cold rolling to obtain a final flat product such as a strip with a thickness of 0.2 mm to 4 mm.
  • Heat treatments of quenching and annealing are carried out between at least some of the operations for forming the final flat product.
  • the transformation process which has been described comprises numerous successive treatment phases and in particular several quenchings from the beta domain to obtain the semi-finished product such as a slab, which is formed hot and the second intermediate product which is formed cold.
  • the zirconium alloy product comes into contact with moist air and / or water, so that it absorbs hydrogen which is fixed in the material in the form of hydrides.
  • the precipitation of hydrides generally occurs in a range of temperatures ranging from 220 ° C. to 100 ° C., during the cooling of the product and the hydrides are formed in an amount all the greater and in a coarser form than the material has absorbed more hydrogen.
  • the heat or thermomechanical treatment in the temperature range from 830 ° C to 950 ° C which corresponds to a range in which the alpha and beta phases are present in the alloy is only implemented after a first forging of a beta phase ingot followed by water quenching.
  • the process according to the prior patent is therefore limited as regards its applications and the results obtained with regard to the presence of hydrides in the final product.
  • the object of the invention is to propose a process for manufacturing a semi-finished product of zirconium alloy containing by weight at least 97% of zirconium, intended for the production of flat products, in which an ingot of large quantities is produced.
  • the semi-finished product is produced from the ingot of large dimensions, by a single forging operation at a temperature at which the zirconium alloy is in a state comprising the crystalline phases ⁇ and ⁇ of the alloy of zirconium.
  • the ingot contains a volume proportion of zirconium alloy in the ⁇ phase of between 10% and 90%; the rest of the zirconium alloy of the ingot being in the ⁇ phase.
  • the semi-finished product is a slab;
  • the slab has a thickness of about 100 mm and it is intended for the manufacture of a flat product having a thickness between 0.2 mm and 4 mm;
  • the forging of the zirconium alloy in the ⁇ and ⁇ phase is carried out at a temperature between 850 ° C and 950 ° C;
  • the zirconium alloy contains at most 3% by weight in total of addition elements constituted by at least one of the elements: tin, iron, chromium, nickel, oxygen, niobium, vanadium and silicon, the rest of the alloy consisting of zirconium, with the exception of unavoidable impurities.
  • the invention also relates to the use of the method for the manufacture of a slab intended for the preparation of a flat product with a thickness of between 0.2 mm and 4 mm for the production of an element for nuclear fuel assembly such as a fuel assembly spacer grid plate for a PWR reactor or a wall of a fuel assembly housing for a BWR reactor or a fuel assembly element for a CANDU reactor.
  • an element for nuclear fuel assembly such as a fuel assembly spacer grid plate for a PWR reactor or a wall of a fuel assembly housing for a BWR reactor or a fuel assembly element for a CANDU reactor.
  • Figure 1 is a diagram showing symbolically the different stages of a manufacturing process according to the prior art.
  • Figure 2 is a schematic representation, similar to that of Figure 1, of the manufacturing method according to the invention for obtaining the semi-finished product.
  • Figure 1 there is shown a cast ingot 1 which can be a large ingot whose diameter can be between 400 mm and 800 mm and the length between 2 m and 3 m which is obtained by casting an alloy of zirconium used for the manufacture of flat products for the production of fuel assembly elements.
  • the zirconium alloy may for example be a Zircaloy 2 alloy containing, by weight, from 1.2 to 1.7% of tin, from 0.07 to 0.20% of iron, from 0.05 to 0, 15% chromium, 0.03 to 0.08% nickel, not more than 120 ppm silicon and 150 ppm of carbon, the rest of the alloy consisting of zirconium, with the exception of usual impurities.
  • the alloy for manufacturing the flat product can also be a Zircaloy 4 containing by weight, from 1.2 to 1.7% of tin, from 0.18 to 0.24% of iron, from 0.07 to 0, 13% chromium, at most 150 ppm carbon, the rest of the alloy consisting of zirconium and impurities.
  • the alloy is cast in the form of the ingot of large dimensions 1 which is then brought to a temperature above 1000 ° C. and for example at a temperature of 1050 ° C. for ten hours, so that the alloy of the ingot is entirely in stable cubic beta phase at high temperature.
  • the cast ingot is then forged at a temperature situated in the beta range of the alloy and, for example, at a temperature close to 1000 ° C., in the form of a very thick flat product called slab, as represented by l step 2 in figure 1.
  • the very thick slab 3 is then quenched with water or moist air, as symbolically represented by the arrows representing a third step 4 of the manufacturing process.
  • the very thick slab 3 is forged at a temperature situated in the alpha range of the zirconium alloy, for example at a temperature of the order of 800 ° C. .
  • a slab 3 is obtained having a thickness which can be of the order of 100 mm and which constitutes the semi-finished product from forging and subjected to hot rolling and then to cold rolling to obtain the final flat product in the form a sheet or strip with a thickness which may be between 0.2 mm and 4 mm.
  • step 2 of the process The initial forging of ingot 1 in beta phase (step 2 of the process) must be followed by quenching in beta phase (step 4 of the process), since the metal which cools during forging may include an external zone.
  • alpha + beta phase resulting in the formation of segregation of alphagenic elements such as tin and oxygen and betaagene elements such as iron, chromium, nickel or niobium, depending on the elements contained in the alloy.
  • the quenching in beta phase involves bringing into contact with the slab 3 a quenching medium consisting of water or moist air, that is to say a medium containing hydrogen.
  • Hydrogen is absorbed by the slab at the time of the heat treatment and is fixed inside the alloy in the form of hydrides.
  • the method according to the invention for the manufacture of a slab intended for the production of flat products will be described with reference to FIG. 2.
  • the large-sized ingot 1 made of zirconium alloy is subjected to a single forging operation 7 in the ⁇ + ⁇ phase to obtain the slab 8 substantially similar to the slab 3 obtained by the complex forging process in the ⁇ phase, quenching from the ⁇ phase and forging in the ⁇ phase.
  • the method according to the invention therefore consists in replacing the first three steps 2, 4 and 5 of the method according to the prior art, that is to say step 2 of forging in beta phase (above 1000 ° C), followed by step 4 of quenching the slab 3 'from the beta phase and forging in the alpha phase at a temperature below 800 ° C, a simple step 7 of forging in the alpha + beta phase, for example in the case of Zircaloy 2 and 4 alloys, at a temperature between 850 ° C and 950 ° C and for example at a temperature of the order of 900 ° C.
  • the forging temperature in the ⁇ + ⁇ phase is chosen so that the volume proportion of the ⁇ phase in the ingot alloy is between 10% and 90%, the rest of the alloy being in the ⁇ phase.
  • the ingot 1 is forged so as to obtain a slab 8 the thickness of which can be of the order of 100 mm which constitutes the semi-finished product which is then subjected to the operations of hot rolling and rolling to cold as described above, separated by steps of heat treatment of quenching and annealing.
  • the hydrides precipitated in the product according to the invention are also generally smaller in size than the hydrides precipitated in a flat product according to the prior art.
  • the corrosion resistance and formability properties of the flat product produced from the semi-finished product obtained according to the invention are therefore substantially superior to those of a product obtained by the process according to the prior art. These advantageous and surprising results could be due to the absence of quenching at high temperature on a slab obtained by forging in the ⁇ phase.
  • one of the advantages of the process according to the invention is that it considerably simplifies the process for manufacturing the semi-finished product. There is thus obtained a substantial reduction in cost and duration in the implementation of the method.
  • the product is only brought to a temperature situated in the range ⁇ and ⁇ , that is to say a temperature substantially lower than the temperature for maintaining the ⁇ phase of the process according to the prior art.
  • the forging of ingot 1 in the ⁇ + ⁇ phase is carried out in a temperature range from 850 ° C to 950 ° C and for example 900 ° C.
  • the transition into the ⁇ + ⁇ phase of the alloy for forging the process according to the invention can lead to the formation of tin segregations .
  • the forging temperature in the ⁇ + ⁇ phase may be sensitive - ment less than 900 ° C, taking into account however the malleability properties of the alloy at the forging temperature.
  • the invention applies in particular to the manufacture of a flat zirconium alloy product for the production of fuel assembly elements such as plates for the production of spacer grids for nuclear reactor assemblies.
  • fuel assembly elements such as plates for the production of spacer grids for nuclear reactor assemblies.
  • the temperature of forging in the ⁇ and ⁇ phase depends on the composition of the zirconium alloy.
  • the forging operations can be carried out using the usual means for forging in the ⁇ phase or in ⁇ phase of the process of the prior art or other means suitable for forging in the ⁇ + ⁇ phase in a single operation to obtain a slab.
  • the invention applies, in general, to any product made of a technical zirconium alloy defined by the limits of compositions given above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

A large-sized ingot (1) is produced by smelting the zirconium alloy and the ingot is subsequently forged in order to obtain a semi-finished product (8). The semi-finished product (8), which can be a slab for the production of a flat product, is produced from said large-sized smelted ingot (1) in a single forging operation (7) at a temperature at which the zirconium alloy is in a state that includes both alpha and beta crystalline phases of said alloy.

Description

Procédé de fabrication d'un demi-produit en alliage de zirconium pour l'élaboration d'un produit plat et utilisation L'invention concerne un procédé de fabrication d'un demi-produit en alliage de zirconium destiné à l'élaboration d'un produit plat utilisé pour la réalisation d'éléments d'assemblages de combustible. The invention relates to a method for manufacturing a zirconium alloy semi-product intended for the preparation of a flat product used for the production of fuel assembly elements.
Les assemblages de combustible des réacteurs nucléaires refroidis par de l'eau légère, par exemple les réacteurs nucléaires refroidis par de l'eau sous pression (PWR) et les réacteurs nucléaires refroidis par de l'eau bouillante (BWR) ou encore les assemblages de combustible de réacteurs CANDU comportent des éléments constitués par un alliage de zirconium ayant la propriété d'avoir une faible absorption neutronique dans le cœur du réacteur nucléaire.Fuel assemblies for nuclear reactors cooled by light water, for example nuclear reactors cooled by pressurized water (PWR) and nuclear reactors cooled by boiling water (BWR) or CANDU reactor fuel includes elements consisting of a zirconium alloy having the property of having a low neutron absorption in the core of the nuclear reactor.
Dans le cas des assemblages pour des réacteurs nucléaires de type PWR, les tubes de gainage des crayons de combustible et les plaquettes utilisées pour la fabrication des grilles entretoises de l'assemblage de combustible peuvent être réalisés en alliage de zirconium, en particulier en al- liage de zirconium renfermant de l'étain et du fer tel que l'alliage Zircaloy 2 ou Zircaloy 4.In the case of assemblies for nuclear reactors of the PWR type, the cladding tubes of the fuel rods and the plates used for the manufacture of the spacer grids of the fuel assembly can be made of zirconium alloy, in particular al- bonding of zirconium containing tin and iron such as the alloy Zircaloy 2 or Zircaloy 4.
Les boîtiers de forme parallélépipédique des assemblages de combustible pour réacteurs BWR sont également généralement réalisés à partir de produits plats en alliage de zirconium tel que le Zircaloy 2 ou le Zircaloy 4.The parallelepipedic housings of the fuel assemblies for BWR reactors are also generally produced from flat products made of zirconium alloy such as Zircaloy 2 or Zircaloy 4.
D'autres alliages tels que l'alliage connu sous l'appellation commerciale 5 renfermant essentiellement du zirconium et du niobium sont également utilisés pour la fabrication d'éléments d'assemblages de combustible sous la forme de produits plats ou tubulaires. De manière générale, les alliages de zirconium utilisés pour la fabrication d'éléments pour assemblages de combustible renferment au moins 97 % de zirconium en poids, le reste de la composition qui représente au plus 3 % en poids, à l'exception des impuretés dues à l'élaboration des alliages, pouvant être constitué de différents éléments et, en particulier, le fer, l'étain ou le niobium. Les alliages de zirconium répondant à ces conditions relatives à leur composition peuvent se présenter, suivant la température et les traitements thermiques qu'ils ont subis, sous l'une ou l'autre des deux formes allotropiques du zirconium, c'est-à-dire en phase alpha qui est la phase stable à basse température du zirconium, à structure hexagonale compacte ou en phase bêta qui est la phase stable à haute température à structure cubique.Other alloys such as the alloy known under the trade name 5 essentially containing zirconium and niobium are also used for the manufacture of fuel assembly elements in the form of flat or tubular products. In general, the zirconium alloys used for the manufacture of elements for fuel assemblies contain at least 97% of zirconium by weight, the rest of the composition which represents at most 3% by weight, with the exception of impurities due in the development of alloys, which may consist of different elements and, in particular, iron, tin or niobium. The zirconium alloys meeting these conditions relating to their composition may be present, depending on the temperature and the heat treatments which they have undergone, in one or the other of the two allotropic forms of zirconium, that is to say say in alpha phase which is the stable phase at low temperature of zirconium, with a compact hexagonal structure or in beta phase which is the stable phase at high temperature with cubic structure.
Dans certaines zones de température ou à l'issue de certains traitements, les alliages de zirconium, tels que les alliages techniques utilisés pour la fabrication d'éléments d'assemblages de combustible définis plus haut peuvent présenter une structure mixte alpha + bêta.In certain temperature zones or at the end of certain treatments, the zirconium alloys, such as the technical alloys used for the manufacture of fuel assembly elements defined above may have a mixed alpha + beta structure.
L'élaboration de produits plats en alliage de zirconium fait intervenir de nombreuses étapes successives de formage à chaud et à froid et de traitement thermique.The development of flat zirconium alloy products involves many successive stages of hot and cold forming and heat treatment.
Le produit de départ est généralement un très gros lingot obtenu par coulée d'un alliage ajusté à la nuance choisie. De manière typique, on réalise la coulée d'un lingot ayant un diamètre compris entre 400 mm et 800 mm et une longueur comprise entre 2 m et 3 m. Le lingot subit ensuite des opérations de forgeage dans un intervalle de température dans lequel il peut être en phase ce, β ou α + β (EP-0.085.552 et US-5,674,330). De manière préférentielle, le lingot est chauffé, de manière que l'alliage se trouve en phase bêta puis on réalise une première étape de forgeage sur le lingot chauffé en phase bêta. De manière typique, le lingot peut être chauffé à 1050°C pendant dix heures, préalablement au forgeage.The starting product is generally a very large ingot obtained by casting an alloy adjusted to the chosen shade. Typically, an ingot having a diameter between 400 mm and 800 mm and a length between 2 m and 3 m is cast. The ingot then undergoes forging operations in a temperature range in which it can be in the ce, β or α + β phase (EP-0.085.552 and US-5,674,330). Preferably, the ingot is heated, so that the alloy is in the beta phase and then a first forging step is carried out on the ingot heated in the beta phase. Typically, the ingot can be heated at 1050 ° C for ten hours, prior to forging.
Après une première étape de forgeage, on réalise une trempe du produit obtenu par forgeage, depuis la phase bêta.After a first forging step, the product obtained by forging is quenched from the beta phase.
On réalise alors une seconde étape de forgeage à une température inférieure à 800°C, l'alliage étant en phase alpha, dans le cas des alliages de type Zircaloy. A l'issue de la seconde étape de forgeage, le produit obtenu, qui constitue le demi-produit du procédé d'élaboration d'un produit plat, est une brame qui peut avoir une épaisseur de l'ordre de 100 mm.A second forging step is then carried out at a temperature below 800 ° C., the alloy being in the alpha phase, in the case of Zircaloy type alloys. At the end of the second forging step, the product obtained, which constitutes the semi-product of the process for producing a flat product, is a slab which can have a thickness of the order of 100 mm.
La brame est ensuite soumise à différentes opérations de laminage à chaud puis de laminage à froid pour obtenir un produit plat final tel qu'un feuillard d'une épaisseur de 0,2 mm à 4 mm. Des traitements thermiques de trempe et de recuit sont effectués entre certaines au moins des opérations de formage du produit plat final.The slab is then subjected to various hot rolling operations and then cold rolling to obtain a final flat product such as a strip with a thickness of 0.2 mm to 4 mm. Heat treatments of quenching and annealing are carried out between at least some of the operations for forming the final flat product.
Le procédé de transformation qui a été décrit comporte de nombreuses phases de traitement successives et en particulier plusieurs trempes depuis le domaine bêta pour obtenir le demi-produit tel qu'une brame, qui est formé à chaud et le second produit intermédiaire qui est formé à froid.The transformation process which has been described comprises numerous successive treatment phases and in particular several quenchings from the beta domain to obtain the semi-finished product such as a slab, which is formed hot and the second intermediate product which is formed cold.
Au cours des étapes de refroidissement des produits ou lors des étapes de trempe, le produit en alliage de zirconium vient au contact d'air humide et/ou d'eau, si bien qu'il absorbe de l'hydrogène qui se fixe dans le ma- tériau sous forme d'hydrures.During the product cooling stages or during the quenching stages, the zirconium alloy product comes into contact with moist air and / or water, so that it absorbs hydrogen which is fixed in the material in the form of hydrides.
De manière générale, la présence d'hydrures dans le matériau sous forme de gros précipités est néfaste en ce qui concerne la formabilité à froid et la tenue à la corrosion des produits.In general, the presence of hydrides in the material in the form of large precipitates is harmful with regard to the cold formability and the corrosion resistance of the products.
La précipitation des hydrures se produit généralement dans un inter- valle de températures allant de 220°C à 100°C, pendant le refroidissement du produit et les hydrures se forment en une quantité d'autant plus grande et sous une forme plus grossière que le matériau a absorbé davantage d'hydrogène.The precipitation of hydrides generally occurs in a range of temperatures ranging from 220 ° C. to 100 ° C., during the cooling of the product and the hydrides are formed in an amount all the greater and in a coarser form than the material has absorbed more hydrogen.
Du fait qu'il est avantageux de limiter la formation des hydrures dans le matériau ou de favoriser la formation préférentielle d'hydrures sous forme fine, il est préférable de conduire les traitements de transformation des produits en alliage de zirconium de manière telle que ces produits absorbent la plus faible quantité possible d'hydrogène, au cours des opérations de formage et de traitement thermique. En outre, il serait avantageux de pouvoir simplifier le procédé de formage qui est complexe et comporte de nombreuses opérations successives. Dans le brevet français 2.334.763, on a proposé un procédé de traitement thermique et/ou thermomécanique d'un alliage de zirconium renfermant plus de 150 ppm de carbone, dans un domaine de températures com- pris entre 830°C et 950°C, afin de solubiliser une partie au moins du carbone, aucun traitement thermique ultérieur n'étant effectué à une température supérieure à 950°C. Le traitement thermique ou thermomécanique dans le domaine de températures de 830°C à 950°C qui correspond à un domaine dans lequel les phases alpha et bêta sont présentes dans l'alliage n'est mis en œuvre qu'après un premier forgeage d'un lingot en phase bêta suivi d'une trempe à l'eau.Because it is advantageous to limit the formation of hydrides in the material or to favor the preferential formation of hydrides in fine form, it is preferable to carry out the processing treatments for zirconium alloy products in such a way that these products absorb as little hydrogen as possible, during forming and heat treatment operations. In addition, it would be advantageous to be able to simplify the forming process which is complex and includes many successive operations. In French patent 2,334,763, a process for the thermal and / or thermomechanical treatment of a zirconium alloy containing more than 150 ppm of carbon has been proposed, in a temperature range between 830 ° C. and 950 ° C. , in order to dissolve at least part of the carbon, no subsequent heat treatment being carried out at a temperature above 950 ° C. The heat or thermomechanical treatment in the temperature range from 830 ° C to 950 ° C which corresponds to a range in which the alpha and beta phases are present in the alloy is only implemented after a first forging of a beta phase ingot followed by water quenching.
Le traitement selon le brevet 2.334.763 n'est adapté qu'à des alliages de zirconium d'un type particulier et ne permet pas de modifier les premières phases de l'élaboration des produits au cours desquelles on effectue une trempe à l'eau. De plus, les étapes d'élaboration ultérieures au traitement thermique ou thermomécanique en phase alpha + bêta ne peuvent être effectuées à une température supérieure à 950°C.The treatment according to patent 2,334,763 is only suitable for zirconium alloys of a particular type and does not make it possible to modify the first stages of the production of products during which water quenching is carried out . In addition, the processing steps subsequent to the heat or thermomechanical treatment in the alpha + beta phase cannot be carried out at a temperature above 950 ° C.
Le procédé selon le brevet antérieur est donc limité quant à ses applications et aux résultats obtenus en ce qui concerne la présence d'hydrures dans le produit final. Le but de l'invention est de proposer un procédé de fabrication d'un demi-produit en alliage de zirconium contenant en poids au moins 97 % de zirconium, destiné à l'élaboration de produits plats, dans lequel on élabore un lingot de grandes dimensions par coulée de l'alliage de zirconium, puis par forgeage du lingot de grande dimension, le demi-produit destiné à être laminé à chaud puis à froid pour obtenir un produit plat, des traitements thermiques de trempe et de recuit étant intercalés entre certaines au moins des opérations de formage, ce procédé permettant de simplifier et de rendre moins coûteuse la fabrication du produit et de limiter à des niveaux faibles la présence d'hydrures défavorables pour la formabilité et la tenue à la corro- sion du produit en alliage de zirconium.The process according to the prior patent is therefore limited as regards its applications and the results obtained with regard to the presence of hydrides in the final product. The object of the invention is to propose a process for manufacturing a semi-finished product of zirconium alloy containing by weight at least 97% of zirconium, intended for the production of flat products, in which an ingot of large quantities is produced. dimensions by casting the zirconium alloy, then by forging the ingot of large dimension, the semi-finished product intended to be hot rolled then cold to obtain a flat product, heat treatments of quenching and annealing being interposed between certain at least of the forming operations, this process making it possible to simplify and make less expensive the manufacture of the product and to limit to low levels the presence of hydrides unfavorable for the formability and the resistance to corrosion of the product in alloy of zirconium.
Dans ce but, le demi-produit est élaboré à partir du lingot coulé de grandes dimensions, par une seule opération de forgeage à une température à laquelle l'alliage de zirconium est dans un état comportant les phases cristallines α et β de l'alliage de zirconium. Selon des modalités particulières :For this purpose, the semi-finished product is produced from the ingot of large dimensions, by a single forging operation at a temperature at which the zirconium alloy is in a state comprising the crystalline phases α and β of the alloy of zirconium. According to specific terms:
- à la température de forgeage, le lingot renferme une proportion vo- lumique d'alliage de zirconium en phase α comprise entre 10 % et 90 % ; le reste de l'alliage de zirconium du lingot étant en phase β. - le demi-produit est une brame ;- At the forging temperature, the ingot contains a volume proportion of zirconium alloy in the α phase of between 10% and 90%; the rest of the zirconium alloy of the ingot being in the β phase. - the semi-finished product is a slab;
- la brame présente une épaisseur d'environ 100 mm et elle est destinée à la fabrication d'un produit plat ayant une épaisseur comprise entre 0,2 mm et 4 mm ; - le forgeage de l'alliage de zirconium en phase α et β est réalisé à une température comprise entre 850°C et 950°C ; et- The slab has a thickness of about 100 mm and it is intended for the manufacture of a flat product having a thickness between 0.2 mm and 4 mm; - The forging of the zirconium alloy in the α and β phase is carried out at a temperature between 850 ° C and 950 ° C; and
- l'alliage de zirconium renferme au plus 3 % en poids au total d'éléments d'addition constitués par l'un au moins des éléments : étain, fer, chrome, nickel, oxygène, niobium, vanadium et silicium, le reste de l'alliage étant constitué par du zirconium, à l'exception des impuretés inévitables.the zirconium alloy contains at most 3% by weight in total of addition elements constituted by at least one of the elements: tin, iron, chromium, nickel, oxygen, niobium, vanadium and silicon, the rest of the alloy consisting of zirconium, with the exception of unavoidable impurities.
L'invention est également relative à l'utilisation du procédé pour la fabrication d'une brame destinée à l'élaboration d'un produit plat d'une épaisseur comprise entre 0,2 mm et 4 mm pour la réalisation d'un élément pour assemblage de combustible nucléaire tel qu'une plaquette de grille- entretoise d'assemblage de combustible pour réacteur PWR ou une paroi de boîtier d'assemblages de combustible pour réacteur BWR ou encore un élément d'assemblage de combustible d'un réacteur CANDU.The invention also relates to the use of the method for the manufacture of a slab intended for the preparation of a flat product with a thickness of between 0.2 mm and 4 mm for the production of an element for nuclear fuel assembly such as a fuel assembly spacer grid plate for a PWR reactor or a wall of a fuel assembly housing for a BWR reactor or a fuel assembly element for a CANDU reactor.
Afin de bien faire comprendre l'invention, on va décrire, de manière comparative, un procédé de fabrication d'un demi-produit destiné à l'élabora- tion de produits plats, selon l'art antérieur et selon l'invention.In order to clearly understand the invention, a description will be made, in a comparative manner, of a process for manufacturing a semi-finished product intended for the preparation of flat products, according to the prior art and according to the invention.
La figure 1 est un schéma montrant de manière symbolique les différentes étapes d'un procédé de fabrication selon l'art antérieur.Figure 1 is a diagram showing symbolically the different stages of a manufacturing process according to the prior art.
La figure 2 est une représentation schématique, analogue à celle de la figure 1 , du procédé de fabrication suivant l'invention permettant d'obtenir le demi-produit.Figure 2 is a schematic representation, similar to that of Figure 1, of the manufacturing method according to the invention for obtaining the semi-finished product.
Sur la figure 1 , on a représenté un lingot coulé 1 qui peut être un lingot de grandes dimensions dont le diamètre peut être compris entre 400 mm et 800 mm et la longueur entre 2 m et 3 m qui est obtenu par coulée d'un alliage de zirconium utilisé pour la fabrication de produits plats pour la réali- sation d'éléments d'assemblages de combustible.In Figure 1, there is shown a cast ingot 1 which can be a large ingot whose diameter can be between 400 mm and 800 mm and the length between 2 m and 3 m which is obtained by casting an alloy of zirconium used for the manufacture of flat products for the production of fuel assembly elements.
L'alliage de zirconium peut être par exemple un alliage Zircaloy 2 renfermant, en poids, de 1 ,2 à 1 ,7 % d'étain, de 0,07 à 0,20 % de fer, de 0,05 à 0,15 % de chrome, de 0,03 à 0,08 % de nickel, au plus 120 ppm de silicum et 150 ppm de carbone, le reste de l'alliage étant constitué par du zirconium, à l'exception d'impuretés habituelles.The zirconium alloy may for example be a Zircaloy 2 alloy containing, by weight, from 1.2 to 1.7% of tin, from 0.07 to 0.20% of iron, from 0.05 to 0, 15% chromium, 0.03 to 0.08% nickel, not more than 120 ppm silicon and 150 ppm of carbon, the rest of the alloy consisting of zirconium, with the exception of usual impurities.
L'alliage pour fabriquer le produit plat peut être également un Zircaloy 4 renfermant en poids, de 1 ,2 à 1 ,7 % d'étain, de 0,18 à 0,24 % de fer, de 0,07 à 0,13 % de chrome, au plus 150 ppm de carbone, le reste de l'alliage étant constitué par du zirconium et des impuretés.The alloy for manufacturing the flat product can also be a Zircaloy 4 containing by weight, from 1.2 to 1.7% of tin, from 0.18 to 0.24% of iron, from 0.07 to 0, 13% chromium, at most 150 ppm carbon, the rest of the alloy consisting of zirconium and impurities.
L'alliage est coulé sous la forme du lingot de grandes dimensions 1 qui est ensuite porté à une température supérieure à 1000°C et par exemple à une température de 1050°C pendant dix heures, de manière que l'alliage du lingot soit entièrement en phase cubique bêta stable à haute température.The alloy is cast in the form of the ingot of large dimensions 1 which is then brought to a temperature above 1000 ° C. and for example at a temperature of 1050 ° C. for ten hours, so that the alloy of the ingot is entirely in stable cubic beta phase at high temperature.
Le lingot coulé est ensuite forgé à une température située dans le domaine bêta de l'alliage et, par exemple, à une température voisine de 1000°C, sous la forme d'un produit plat de forte épaisseur appelé brame, comme représenté par l'étape 2 sur la figure 1.The cast ingot is then forged at a temperature situated in the beta range of the alloy and, for example, at a temperature close to 1000 ° C., in the form of a very thick flat product called slab, as represented by l step 2 in figure 1.
La brame 3, de forte épaisseur, subit ensuite une trempe à l'eau ou à l'air humide, comme représenté de manière symbolique par les flèches représentant une troisième étape 4 du procédé de fabrication.The very thick slab 3 is then quenched with water or moist air, as symbolically represented by the arrows representing a third step 4 of the manufacturing process.
Lors d'une quatrième étape représentée en 5 sur la figure 1 , la brame de forte épaisseur 3 est forgée à une température située dans le domaine alpha de l'alliage de zirconium, par exemple à une température de l'ordre de 800°C.During a fourth step represented at 5 in FIG. 1, the very thick slab 3 is forged at a temperature situated in the alpha range of the zirconium alloy, for example at a temperature of the order of 800 ° C. .
On obtient une brame 3 ayant une épaisseur qui peut être de l'ordre de 100 mm et qui constitue le demi-produit issu du forgeage et soumis à un laminage à chaud puis à un laminage à froid pour obtenir le produit plat final sous la forme d'une tôle ou feuillard d'une épaisseur qui peut être comprise entre 0,2 mm et 4 mm.A slab 3 is obtained having a thickness which can be of the order of 100 mm and which constitutes the semi-finished product from forging and subjected to hot rolling and then to cold rolling to obtain the final flat product in the form a sheet or strip with a thickness which may be between 0.2 mm and 4 mm.
Le forgeage initial du lingot 1 en phase bêta (étape 2 du procédé) doit être suivi d'une trempe en phase bêta (étape 4 du procédé), du fait que le métal qui se refroidit au cours du forgeage peut comporter une zone externe en phase alpha + bêta entraînant la formation de ségrégations d'éléments alphagènes tels que l'étain et l'oxygène et d'éléments bêtagènes tels que le fer, le chrome, le nickel ou le niobium, suivant les éléments contenus dans l'alliage.The initial forging of ingot 1 in beta phase (step 2 of the process) must be followed by quenching in beta phase (step 4 of the process), since the metal which cools during forging may include an external zone. alpha + beta phase resulting in the formation of segregation of alphagenic elements such as tin and oxygen and betaagene elements such as iron, chromium, nickel or niobium, depending on the elements contained in the alloy.
Ces ségrégations sont nuisibles aux propriétés d'utilisation de l'alliage et en particulier aux propriétés de résistance à la corrosion et d'aptitude à l'emboutissage.These segregations are detrimental to the properties of use of the alloy and in particular to the properties of corrosion resistance and ability to stamp.
La trempe en phase bêta suppose la mise en contact avec la brame 3 d'un milieu de trempe constitué par de l'eau ou de l'air humide, c'est-à-dire un milieu contenant de l'hydrogène.The quenching in beta phase involves bringing into contact with the slab 3 a quenching medium consisting of water or moist air, that is to say a medium containing hydrogen.
De l'hydrogène est absorbé par la brame au moment du traitement thermique et se fixe à l'intérieur de l'alliage sous forme d'hydrures.Hydrogen is absorbed by the slab at the time of the heat treatment and is fixed inside the alloy in the form of hydrides.
L'aptitude au formage et la tenue à la corrosion du produit plat en alliage de zirconium sont donc détériorées.The formability and the corrosion resistance of the zirconium alloy flat product are therefore deteriorated.
Le procédé suivant l'invention pour la fabrication d'une brame destinée à l'élaboration de produits plats sera décrit en regard de la figure 2. Le lingot coulé de grandes dimensions 1 en alliage de zirconium est soumis à une seule opération de forgeage 7 en phase α + β pour obtenir la brame 8 sensiblement analogue à la brame 3 obtenue par le procédé complexe de forgeage en phase β, trempe depuis la phase β et forgeage en phase α. Le procédé suivant l'invention consiste donc à substituer aux trois premières étapes 2, 4 et 5 du procédé suivant l'art antérieur, c'est-à-dire à l'étape 2 de forgeage en phase bêta (au-dessus de 1000°C), suivie de l'étape 4 de trempe de la brame 3' depuis la phase bêta et d'un forgeage en phase alpha à une température inférieure à 800°C, une simple étape 7 de forgeage en phase alpha + bêta, par exemple dans le cas des alliages Zircaloy 2 et 4, à une température comprise entre 850°C et 950°C et par exemple à une température de l'ordre de 900°C.The method according to the invention for the manufacture of a slab intended for the production of flat products will be described with reference to FIG. 2. The large-sized ingot 1 made of zirconium alloy is subjected to a single forging operation 7 in the α + β phase to obtain the slab 8 substantially similar to the slab 3 obtained by the complex forging process in the β phase, quenching from the β phase and forging in the α phase. The method according to the invention therefore consists in replacing the first three steps 2, 4 and 5 of the method according to the prior art, that is to say step 2 of forging in beta phase (above 1000 ° C), followed by step 4 of quenching the slab 3 'from the beta phase and forging in the alpha phase at a temperature below 800 ° C, a simple step 7 of forging in the alpha + beta phase, for example in the case of Zircaloy 2 and 4 alloys, at a temperature between 850 ° C and 950 ° C and for example at a temperature of the order of 900 ° C.
La température de forgeage en phase α + β est choisie pour que la proportion volumique de phase α dans l'alliage du lingot soit comprise entre 10 % et 90 %, le reste de l'alliage étant en phase β.The forging temperature in the α + β phase is chosen so that the volume proportion of the α phase in the ingot alloy is between 10% and 90%, the rest of the alloy being in the β phase.
Le lingot 1 est forgé de manière qu'on obtienne une brame 8 dont l'épaisseur peut être de l'ordre de 100 mm qui constitue le demi-produit qui est ensuite soumis aux opérations de laminage à chaud et de laminage à froid tel que décrit plus haut, séparées par des étapes de traitement thermique de trempe et de recuit.The ingot 1 is forged so as to obtain a slab 8 the thickness of which can be of the order of 100 mm which constitutes the semi-finished product which is then subjected to the operations of hot rolling and rolling to cold as described above, separated by steps of heat treatment of quenching and annealing.
On a pu observer, en effectuant des analyses sur le demi-produit 8 ou sur des produits plats obtenus à partir du demi-produit, que la quantité d'hy- drures contenus dans l'alliage obtenu par le procédé suivant l'invention est sensiblement inférieure à la quantité d'hydrures contenus dans un produit suivant l'art antérieur.It has been observed, by carrying out analyzes on the semi-finished product 8 or on flat products obtained from the semi-finished product, that the quantity of hydrides contained in the alloy obtained by the process according to the invention is substantially less than the amount of hydrides contained in a product according to the prior art.
On a pu mesurer sur le demi-produit qui est une brame dans le cas de la fabrication de produits plats, une teneur en hydrogène deux fois plus faible que dans le cas du procédé selon l'art antérieur, lorsqu'on met en œuvre un forgeage en phase α et β en remplacement des trois étapes initiales du procédé d'élaboration selon l'art antérieur.It was possible to measure, on the semi-finished product which is a slab in the case of the manufacture of flat products, a hydrogen content twice as low as in the case of the process according to the prior art, when a forging in α and β phase replacing the three initial stages of the preparation process according to the prior art.
Les hydrures précipités dans le produit suivant l'invention sont également d'une taille généralement plus faible que les hydrures précipités dans un produit plat selon l'art antérieur.The hydrides precipitated in the product according to the invention are also generally smaller in size than the hydrides precipitated in a flat product according to the prior art.
Les propriétés de tenue à la corrosion et de formabilité du produit plat réalisé à partir du demi-produit obtenu selon l'invention sont donc sensiblement supérieures à celles d'un produit obtenu par le procédé selon l'art antérieur. Ces résultats avantageux et surprenants pourraient être dus à l'absence de la trempe à haute température sur une brame obtenue par forgeage en phase β.The corrosion resistance and formability properties of the flat product produced from the semi-finished product obtained according to the invention are therefore substantially superior to those of a product obtained by the process according to the prior art. These advantageous and surprising results could be due to the absence of quenching at high temperature on a slab obtained by forging in the β phase.
En effet, cette trempe à haute température sur la brame 3' qui est réalisée avec un milieu de trempe contenant de l'hydrogène produit une ab- sorption d'hydrogène par le produit et la formation ultérieure d'hydrures.Indeed, this high temperature quenching on the slab 3 'which is carried out with a quenching medium containing hydrogen produces an absorption of hydrogen by the product and the subsequent formation of hydrides.
En outre, un des avantages du procédé suivant l'invention est de simplifier considérablement le processus de fabrication du demi-produit. On obtient ainsi une réduction substantielle de coût et de durée dans la mise en œuvre du procédé. En outre, le produit n'est porté qu'à une température située dans le domaine α et β, c'est-à-dire une température sensiblement inférieure à la température de maintien en phase β du procédé suivant l'art antérieur. Dans le cas des alliages Zircaloy 2 et 4 dont la composition a été donnée ci-dessus, le forgeage du lingot 1 en phase α + β est réalisé dans un intervalle de température allant de 850°C à 950°C et par exemple à 900°C. Dans le cas des alliages Zircaloy 2 et 4 ou de tout autre alliage renfermant de l'étain, le passage en phase α + β de l'alliage pour réaliser le forgeage du procédé selon l'invention peut entraîner la formation des ségrégations d'étain.In addition, one of the advantages of the process according to the invention is that it considerably simplifies the process for manufacturing the semi-finished product. There is thus obtained a substantial reduction in cost and duration in the implementation of the method. In addition, the product is only brought to a temperature situated in the range α and β, that is to say a temperature substantially lower than the temperature for maintaining the β phase of the process according to the prior art. In the case of Zircaloy 2 and 4 alloys, the composition of which was given above, the forging of ingot 1 in the α + β phase is carried out in a temperature range from 850 ° C to 950 ° C and for example 900 ° C. In the case of Zircaloy 2 and 4 alloys or any other alloy containing tin, the transition into the α + β phase of the alloy for forging the process according to the invention can lead to the formation of tin segregations .
Toutefois, on peut facilement effacer ces ségrégations lors de traite- ments ultérieurs dans le cadre de l'élaboration du produit plat final à partir du demi-produit.However, these segregations can easily be erased during subsequent processing within the framework of the preparation of the final flat product from the semi-finished product.
Dans le cas où l'on applique le procédé de l'invention à des alliages au niobium dont la transition entre les domaines α et α + β peut être voisine de 600°C, la température de forgeage en phase α + β peut être sensible- ment inférieure à 900°C, en tenant compte toutefois des propriétés de malléabilité de l'alliage à la température de forgeage.In the case where the method of the invention is applied to niobium alloys whose transition between the domains α and α + β may be close to 600 ° C., the forging temperature in the α + β phase may be sensitive - ment less than 900 ° C, taking into account however the malleability properties of the alloy at the forging temperature.
L'application du procédé selon l'invention à d'autres alliages de zirconium que le Zircaloy ou les alliages au niobium pourrait être envisagée. Ces alliages renferment de manière générale au plus 3 % en poids d'éléments d'addition constitués par l'un au moins des éléments d'addition, étain, fer, chrome, nickel, oxygène, niobium, vanadium et silicium, le reste de l'alliage étant constitué par du zirconium et des impuretés inévitables.The application of the process according to the invention to other zirconium alloys than Zircaloy or niobium alloys could be envisaged. These alloys generally contain at most 3% by weight of addition elements constituted by at least one of the addition elements, tin, iron, chromium, nickel, oxygen, niobium, vanadium and silicon, the rest of the alloy consisting of zirconium and unavoidable impurities.
L'invention s'applique en particulier à la fabrication d'un produit plat en alliage de zirconium pour la réalisation d'éléments d'assemblage de combus- tible tels que des plaquettes pour la réalisation de grilles-entretoises d'assemblages pour réacteur nucléaire de type PWR ou des parois de boîtier pour assemblage pour réacteur BWR, ou des éléments d'assemblages de combustible pour réacteurs CANDU.The invention applies in particular to the manufacture of a flat zirconium alloy product for the production of fuel assembly elements such as plates for the production of spacer grids for nuclear reactor assemblies. PWR type or housing walls for assembly for BWR reactor, or fuel assembly elements for CANDU reactors.
L'invention ne se limite pas strictement aux modes de réalisation qui ont été décrits.The invention is not strictly limited to the embodiments which have been described.
La température du forgeage en phase α et β dépend de la composition de l'alliage de zirconium. Les opérations de forgeage peuvent être réalisées en utilisant les moyens habituels pour le forgeage en phase α ou en phase β du procédé de l'art antérieur ou d'autres moyens adaptés au forgeage en phase α + β en une seule opération pour obtenir une brame.The temperature of forging in the α and β phase depends on the composition of the zirconium alloy. The forging operations can be carried out using the usual means for forging in the α phase or in β phase of the process of the prior art or other means suitable for forging in the α + β phase in a single operation to obtain a slab.
L'invention s'applique, de manière générale, à tout produit en un alliage technique de zirconium défini par les limites de compositions données plus haut. The invention applies, in general, to any product made of a technical zirconium alloy defined by the limits of compositions given above.

Claims

REVENDICATIONS 1.- Procédé de fabrication d'un demi-produit en alliage de zirconium contenant en poids au moins 97 % de zirconium, destiné à l'élaboration de produits plats, dans lequel on élabore un lingot de grandes dimensions par coulée de l'alliage de zirconium, puis par forgeage du lingot de grandes dimensions, le demi-produit destiné à être laminé à chaud puis à froid pour obtenir un produit plat, des traitements thermiques de trempe et de recuit étant intercalés entre certaines au moins des opérations de formage, caractérisé par le fait que le demi-produit (8) est élaboré à partir du lingot coulé de grandes dimensions (1), par une seule opération de forgeage à une température à laquelle l'alliage de zirconium est dans un état comportant les phases cristallines α et β de l'alliage de zirconium.CLAIMS 1.- Process for manufacturing a semi-finished product of zirconium alloy containing by weight at least 97% of zirconium, intended for the production of flat products, in which a large-sized ingot is produced by casting the zirconium alloy, then by forging the ingot of large dimensions, the semi-finished product intended to be hot rolled then cold to obtain a flat product, heat treatments of quenching and annealing being interposed between at least some of the forming operations , characterized in that the semi-finished product (8) is produced from the large cast ingot (1), by a single forging operation at a temperature at which the zirconium alloy is in a state comprising the phases crystals α and β of the zirconium alloy.
2.- Procédé suivant la revendication 1 , caractérisé par le fait qu'à la température de forgeage, le lingot renferme une proportion volumique d'al- liage de zirconium en phase α comprise entre 10 % et 90 %, le reste de l'alliage de zirconium du lingot étant en phase β.2.- A method according to claim 1, characterized in that at the forging temperature, the ingot contains a volume proportion of zirconium alloy in α phase between 10% and 90%, the rest of the zirconium alloy of the ingot being in β phase.
3.- Procédé suivant l'une quelconque des revendications 1 et 2, caractérisé par le fait que le demi-produit est une brame (8).3.- Method according to any one of claims 1 and 2, characterized in that the semi-finished product is a slab (8).
4.- Procédé suivant la revendication 3, caractérisé par le fait que la brame (8) présente une épaisseur d'environ 100 mm et qu'elle est destinée à la fabrication d'un produit plat ayant une épaisseur comprise entre 0,2 mm et 4 mm.4.- Method according to claim 3, characterized in that the slab (8) has a thickness of about 100 mm and that it is intended for the manufacture of a flat product having a thickness between 0.2 mm and 4 mm.
5.- Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé par le fait que le forgeage de l'alliage de zirconium en phase α et β est réalisé à une température comprise entre 850°C et 950°C.5.- Method according to any one of claims 1 to 4, characterized in that the forging of the zirconium alloy in α and β phase is carried out at a temperature between 850 ° C and 950 ° C.
6.- Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé par le fait que l'alliage de zirconium renferme au plus 3 % en poids au total d'éléments d'addition constitués par l'un au moins des éléments : étain, fer, chrome, nickel, oxygène, niobium, vanadium et silicium, le reste de l'al- liage étant constitué par du zirconium, à l'exception des impuretés inévitables.6.- Method according to any one of claims 1 to 5, characterized in that the zirconium alloy contains at most 3% by weight in total of addition elements constituted by at least one of the elements: tin, iron, chromium, nickel, oxygen, niobium, vanadium and silicon, the rest of the alloy consisting of zirconium, with the exception of unavoidable impurities.
7.- Utilisation du procédé selon l'une quelconque des revendications 1 à 6 pour la fabrication d'une brame destinée à l'élaboration d'un produit plat d'une épaisseur comprise entre 0,2 mm et 4 mm pour la réalisation d'un élément pour assemblage de combustible nucléaire tel qu'une plaquette de grille-entretoise d'assemblage de combustible pour réacteur PWR ou une paroi de boîtier d'assemblages de combustible pour réacteur BWR ou en- core un élément d'assemblage de combustible d'un réacteur CANDU. 7.- Use of the method according to any one of claims 1 to 6 for the manufacture of a slab intended for the preparation of a flat product of a thickness between 0.2 mm and 4 mm for the production of an element for nuclear fuel assembly such as a fuel assembly grid-spacer plate for a PWR reactor or a wall of assembly housing fuel for the BWR reactor or a fuel assembly element of a CANDU reactor.
PCT/FR2004/000036 2003-01-13 2004-01-09 Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof WO2004072318A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04701028A EP1585841A1 (en) 2003-01-13 2004-01-09 Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof
JP2006502091A JP2006520430A (en) 2003-01-13 2004-01-09 Method for producing semi-finished product made of zirconium alloy and its use for producing flat products
US10/541,262 US20060081313A1 (en) 2003-01-13 2004-01-09 Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0300316 2003-01-13
FR0300316A FR2849865B1 (en) 2003-01-13 2003-01-13 PROCESS FOR THE PRODUCTION OF A ZIRCONIUM ALLOY PRODUCT FOR THE PRODUCTION OF A FLAT PRODUCT AND USE THEREOF

Publications (2)

Publication Number Publication Date
WO2004072318A1 true WO2004072318A1 (en) 2004-08-26
WO2004072318B1 WO2004072318B1 (en) 2004-10-28

Family

ID=32524867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000036 WO2004072318A1 (en) 2003-01-13 2004-01-09 Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof

Country Status (8)

Country Link
US (1) US20060081313A1 (en)
EP (1) EP1585841A1 (en)
JP (1) JP2006520430A (en)
KR (1) KR20050090456A (en)
CN (1) CN100529148C (en)
FR (1) FR2849865B1 (en)
RU (1) RU2337177C2 (en)
WO (1) WO2004072318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116422B2 (en) * 2005-12-29 2012-02-14 General Electric Company LWR flow channel with reduced susceptibility to deformation and control blade interference under exposure to neutron radiation and corrosion fields

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077152A (en) * 2012-10-09 2014-05-01 Tohoku Univ Zr ALLOY AND ITS MANUFACTURING METHOD
JP6228231B2 (en) * 2013-01-11 2017-11-08 アレバ・エヌペ Zirconium alloy processing method, zirconium alloy obtained by the method, and nuclear reactor component comprising the alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645800A (en) * 1965-12-17 1972-02-29 Westinghouse Electric Corp Method for producing wrought zirconium alloys
FR2334763A1 (en) * 1975-12-12 1977-07-08 Ugine Aciers PROCESS FOR IMPROVING THE HOT RESISTANCE OF ZIRCONIUM AND ITS ALLOYS
EP0085553A2 (en) * 1982-01-29 1983-08-10 Westinghouse Electric Corporation Zirconium alloy fabrication processes
EP0085552A2 (en) * 1982-01-29 1983-08-10 Westinghouse Electric Corporation Improvements in or relating to zirconium alloys
JPH059688A (en) * 1991-07-06 1993-01-19 Kobe Steel Ltd Manufacture of zr alloy rolled stock excellent in workability
US5674330A (en) * 1994-08-30 1997-10-07 Compagnie Europeene Du Zirconium Cezus Process for the production of zirconium alloy sheet metal having good resistance to nodular corrosion and to deformation under irradiation
FR2801323A1 (en) * 1999-11-23 2001-05-25 Cezus Cie Europ Du Zirconium Zirconium alloy highly resistant to corrosion and hydridation by water and steam, used in nuclear engineering, includes sulfur present in dissolved state and as zirconium sulfide precipitates that are uniformly distributed in alloy matrix

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844959A (en) * 1997-08-01 1998-12-01 Siemens Power Corporation Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US5854818A (en) * 1997-08-28 1998-12-29 Siemens Power Corporation Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
KR100441562B1 (en) * 2001-05-07 2004-07-23 한국수력원자력 주식회사 Nuclear fuel cladding tube of zirconium alloys having excellent corrosion resistance and mechanical properties and process for manufacturing thereof
FR2849866B1 (en) * 2003-01-13 2006-01-13 Cezus Co Europ Zirconium PROCESS FOR PRODUCING A ZIRCONIUM ALLOY PRODUCT FOR PRODUCING A LONG PRODUCT AND USE THEREOF
FR2858332B1 (en) * 2003-07-31 2005-10-28 Cezus Co Europ Zirconium METHOD FOR MANUFACTURING A ZIRCONIUM ALLOY FLAT PRODUCT, FLAT PRODUCT THUS OBTAINED, AND COMPONENT FUEL ASSEMBLY ELEMENT FOR NUCLEAR POWER PLANT REACTOR PRODUCED FROM THE FLAT PRODUCT
FR2860803B1 (en) * 2003-10-08 2006-01-06 Cezus Co Europ Zirconium PROCESS FOR PRODUCING A ZIRCONIUM ALLOY FLAT PRODUCT, FLAT PRODUCT THUS OBTAINED, AND NUCLEAR POWER PLANT REACTOR GRADE REALIZED FROM THE FLAT PRODUCT
FR2874119B1 (en) * 2004-08-04 2006-11-03 Framatome Anp Sas METHOD FOR MANUFACTURING A FUEL SINK TUBE FOR A NUCLEAR REACTOR, AND A TUBE THUS OBTAINED

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645800A (en) * 1965-12-17 1972-02-29 Westinghouse Electric Corp Method for producing wrought zirconium alloys
FR2334763A1 (en) * 1975-12-12 1977-07-08 Ugine Aciers PROCESS FOR IMPROVING THE HOT RESISTANCE OF ZIRCONIUM AND ITS ALLOYS
EP0085553A2 (en) * 1982-01-29 1983-08-10 Westinghouse Electric Corporation Zirconium alloy fabrication processes
EP0085552A2 (en) * 1982-01-29 1983-08-10 Westinghouse Electric Corporation Improvements in or relating to zirconium alloys
JPH059688A (en) * 1991-07-06 1993-01-19 Kobe Steel Ltd Manufacture of zr alloy rolled stock excellent in workability
US5674330A (en) * 1994-08-30 1997-10-07 Compagnie Europeene Du Zirconium Cezus Process for the production of zirconium alloy sheet metal having good resistance to nodular corrosion and to deformation under irradiation
FR2801323A1 (en) * 1999-11-23 2001-05-25 Cezus Cie Europ Du Zirconium Zirconium alloy highly resistant to corrosion and hydridation by water and steam, used in nuclear engineering, includes sulfur present in dissolved state and as zirconium sulfide precipitates that are uniformly distributed in alloy matrix

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 278 (C - 1065) 28 May 1993 (1993-05-28) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8116422B2 (en) * 2005-12-29 2012-02-14 General Electric Company LWR flow channel with reduced susceptibility to deformation and control blade interference under exposure to neutron radiation and corrosion fields

Also Published As

Publication number Publication date
CN100529148C (en) 2009-08-19
FR2849865B1 (en) 2006-01-21
JP2006520430A (en) 2006-09-07
CN1735705A (en) 2006-02-15
US20060081313A1 (en) 2006-04-20
FR2849865A1 (en) 2004-07-16
RU2005125715A (en) 2006-02-10
EP1585841A1 (en) 2005-10-19
WO2004072318B1 (en) 2004-10-28
RU2337177C2 (en) 2008-10-27
KR20050090456A (en) 2005-09-13

Similar Documents

Publication Publication Date Title
EP0802264B1 (en) Zirconium base alloy, resistant against creep and against corrosion by water and steam, manufacturing process and application in a nuclear reactor
EP2126152B1 (en) Processing method for cracking desensitisation using a nickel based alloy environment, mainly for a nuclear reactor fuel assembly and for a nuclear reactor, and part made of the alloy thus processed
EP0552098B1 (en) Nuclear fuel rod and method to fabricate the cladding tube of the rod
JP3950651B2 (en) Zirconium alloy with excellent corrosion resistance and mechanical properties
EP1232291B1 (en) Zirconium alloy highly resistant to corrosion and to sun burst by water and water vapour and method for thermomechanical transformation of the alloy
FR2831984A1 (en) Nuclear fuel supporting grid manufacture involves assembling plate, welding at intersections and annealing
EP0720177A1 (en) Method for producing a tube for a nuclear fuel assembly and the tubes produced thereby
CA2666651A1 (en) Erbium-containing zirconium alloy, method for preparing and shaping the same, and structural part containing said alloy
EP1670963B1 (en) Method of producing a flat zirconium alloy product, flat product thus obtained and a nuclear plant reactor grid which is made from said flat product
EP0192499B1 (en) Process for manufacturing zirconium alloy platelets
EP1216479B1 (en) Zirconium based alloy and method for making a component for nuclear fuel assembly with same
EP0307268B1 (en) Method for producing a nuclear reactor fuel assembly spacer grid
EP1585841A1 (en) Method for the production of a semi-finished product made of zirconium alloy for the production of a flat product and use thereof
EP1583849A2 (en) Method of producing a zirconium alloy semi-finished product for the production of an elongated product and use thereof
EP1649073B1 (en) Method for making a flat zirconium alloy product, resulting flat product and fuel assembly component for nuclear power plant reactor made from said flat product
FR2561431A1 (en) SAGING TUBES FOR NUCLEAR FUEL ELEMENT
EP0808503A1 (en) Zirconium alloy tube for a nuclear reactor fuel assembly, and method for making same
FR2458876A1 (en) METHOD OF MANUFACTURING SOLDER TUBE FOR NUCLEAR FUEL ELEMENT AND TUBE THUS OBTAINED
WO2000046414A1 (en) Zirconium and niobium alloy comprising erbium, preparation method and component containing said alloy
FR2526213A1 (en) COMPOSITE SHEATH FOR NUCLEAR FUEL ELEMENT
FR2664907A1 (en) Process for the manufacture of a metal sheet or strip made of zircalloy with good formability and strips obtained
BE883568Q (en) PROCESS FOR MANUFACTURING A CONSTRUCTIVE REACTOR ELEMENT, MADE OF ZIRCONIUM ALLOY
JP2014077152A (en) Zr ALLOY AND ITS MANUFACTURING METHOD
JPS6236588A (en) Coated tube for nuclear fuel
FR2791804A1 (en) Thin flat zirconium alloy elements, especially for nuclear fuel rod spacer elements, are produced using long low temperature intermediate anneal or pre-anneal in multi-pass cold rolling operation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Effective date: 20040813

WWE Wipo information: entry into national phase

Ref document number: 2004701028

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006081313

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10541262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004802113X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057012999

Country of ref document: KR

Ref document number: 2006502091

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2005125715

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057012999

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004701028

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10541262

Country of ref document: US