WO2004071964A1 - Purification device and refrigerator using the same - Google Patents

Purification device and refrigerator using the same Download PDF

Info

Publication number
WO2004071964A1
WO2004071964A1 PCT/JP2003/012452 JP0312452W WO2004071964A1 WO 2004071964 A1 WO2004071964 A1 WO 2004071964A1 JP 0312452 W JP0312452 W JP 0312452W WO 2004071964 A1 WO2004071964 A1 WO 2004071964A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
purification device
photocatalyst
photocatalyst module
refrigerator
Prior art date
Application number
PCT/JP2003/012452
Other languages
French (fr)
Japanese (ja)
Inventor
Takumi Oikawa
Takao Hattori
Daishin Okada
Noboru Segawa
Naohiko Shimura
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003034008A external-priority patent/JP2004245465A/en
Priority claimed from JP2003076550A external-priority patent/JP2004283672A/en
Priority claimed from JP2003303739A external-priority patent/JP2005066556A/en
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Publication of WO2004071964A1 publication Critical patent/WO2004071964A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply

Definitions

  • the present invention relates to a purification device for purifying water and a refrigerator using the same.
  • Water is supplied to the ice tray from the water supply tank that stores the ice-making water, and the refrigerator that has the function of making ice by freezing in the ice tray suppresses the growth of organic substances and various bacteria in the stored ice-making water.
  • a purification device for descaling it is common to equip a purification device for descaling.
  • activated carbon is used in such a purification device.
  • the first conventional apparatus for purifying an ice making device will be described with reference to FIG. 21 (see Japanese Patent Application Laid-Open No. H10-54634).
  • a soaking structure is used in which activated carbon 3 is submerged in water 2 for ice making in water supply tank 1.
  • the user is required to take out the activated carbon 3 at regular intervals during the cleaning of the water supply tank 1, clean the inside of the water supply tank, and then return the activated carbon to the water supply tank again.
  • the loading and unloading work is troublesome.
  • a support 5 is provided on the lid 4 of the water supply tank 1 to reach near the bottom of the tank, and activated carbon 3 is attached to the support 5 so that the lid 4 can be cleaned when the water supply tank 1 is washed.
  • activated carbon 3 can be removed from tank 1 by removing it, and the inside of water supply tank 1 can be easily cleaned.
  • activated carbon has a service life because it is a method of removing and removing calcium and harmful substances from activated carbon. Will be needed. However, it is difficult for users to judge that activated carbon has reached the end of its useful life and that its ability to remove harmful substances has been reduced or eliminated, and that ice made ice is often put into juice or whiskey. It is hard to notice contamination by impurities.
  • This purification device 1 is made of ceramics as shown in Fig. 23, and a three-dimensional mesh-shaped photocatalyst carrier 2 carrying a photocatalyst on its surface is sandwiched between two metal electrode plates 3,3. Configuration.
  • a power source 4 is provided between the pair of metal electrodes 33 via a power line 5, and a voltage is applied.
  • the purification device 1 having the above configuration is configured using a gas such as air as a medium of a substance to be decomposed, it cannot be completely purified when purifying a gas-liquid mixture or a liquid. There is a problem.
  • the present invention has been made in view of the technical problems of the conventional refrigerator as described above, and an object of the present invention is to provide a refrigerator that can easily clean a water supply tank for ice making water.
  • the replacement life of the water purification device for ice making is semi-permanent and maintenance is required.
  • the present invention provides a purifying apparatus capable of purifying a gas-liquid mixture or a liquid and decomposing substances contained therein.
  • the invention according to claim 1 includes a photocatalyst module in which a photocatalyst is supported on a ceramic base, a pair of positive and negative electrodes, and a power supply unit, and a voltage is applied between the pair of electrodes by the power supply unit.
  • the photocatalyst module is irradiated with the generated discharge light to activate the photocatalyst module, and a substance to be decomposed such as a liquid, a gas, or a gas-liquid mixture inside or near the photocatalyst module is activated by the activated photocatalyst.
  • the photocatalyst module is formed in a columnar shape, and a rod-shaped electrode, which is one electrode, is disposed on a shaft portion of the photocatalyst module. Further, there is provided a purification device, wherein an arc-shaped electrode, which is the other electrode, is arranged on an outer peripheral portion of the photocatalyst module via an insulator.
  • the invention according to claim 2 is characterized in that the insulator is formed of a tubular reaction vessel, the photocatalyst module is housed in the insulator, and the other electrode is arranged on the outer periphery of the reaction vessel.
  • the invention according to claim 3 is the purification device according to claim 2, wherein the other electrode is formed on the outer peripheral surface of the reaction container by printing, plating, or vapor deposition using a conductive ink.
  • the invention according to claim 4 is the purification device according to claim 1, wherein an axial dimension of the cylindrical photocatalyst module is larger than a diameter dimension thereof.
  • the invention according to claim 5 is the purification device according to claim 1, wherein the catalyst loading rate of the photocatalyst module is 5% or more.
  • the invention according to claim 6 is the purification device according to claim 1, wherein a voltage waveform applied to the pair of electrodes by the power supply means is a waveform swinging to both positive and negative sides.
  • the invention according to claim 7 is the purification device according to at least one of claims 1 to 6, wherein a plurality of the purification devices are bundled to form a purification device assembly.
  • the invention according to claim 8 includes a photocatalyst module having a photocatalyst supported on a ceramic substrate, a pair of positive and negative electrodes, and a power supply unit, wherein the power supply unit generates a voltage by applying a voltage between the pair of electrodes.
  • the activated discharge light is applied to the photocatalyst module to activate the photocatalyst module.
  • the photocatalyst module is used to decompose the liquid medium, gas, gas-liquid mixture or other substance to be decomposed inside or near the photocatalyst module.
  • the photocatalyst module is formed in a columnar shape, and a rod-shaped discharge electrode, which is one electrode, is arranged on a shaft portion of the photocatalyst module.
  • An arc-shaped counter electrode, which is the other electrode, is provided via an insulator, and a protective layer made of an insulating material is provided on an outer peripheral portion of the discharge electrode. It is an apparatus.
  • the invention according to claim 9 is that the insulator is formed of a cylindrical insulator container, the photocatalyst module is housed inside the insulator, and the counter electrode is arranged on an outer peripheral portion of the insulator container.
  • the coefficient of expansion in the length direction of the protective layer is in a range of about 90% to about 110% of a linear expansion coefficient of the metal material used for the discharge electrode.
  • the invention according to claim 11 is the purification device according to claim 8, wherein the thickness of the protective layer is about 1 mm or less.
  • the invention according to claim 12 is the purification device according to claim 8, wherein the insulating material of the protective layer is an elastic body capable of elastic deformation of about 1%.
  • the invention according to claim 13 is the purification device according to claim 8, wherein the insulating material of the protective layer is stainless steel, glass, or silicon rubber.
  • the invention according to claim 14 is a refrigerator having a water making device for making ice by supplying ice making water from a water supply tank to an ice making tray, wherein the purifying device according to at least one of claims 1 to 13 is provided.
  • the invention according to claim 15 is a refrigerator having an ice making function of supplying water to an ice tray from a water supply tank storing ice making water, wherein the water supply tank is provided with a purifying device for purifying water supplied to the ice tray.
  • the invention according to claim 16 is the refrigerator according to claim 15, wherein the purifying device is installed in a place where a user cannot touch the refrigerator during normal use of the refrigerator.
  • the invention according to claim 17 is the refrigerator according to claim 15 or 16, wherein the purifying device is a discharge-type photocatalytic filter.
  • the invention according to claim 18 is the refrigerator according to claim 17, wherein the photocatalyst module of the discharge-type photocatalyst filter is made of porous ceramics.
  • the invention according to claim 19 is the refrigerator according to claim 17 or 18, wherein the purification device supplies the ice making water to the photocatalyst module as a gas-liquid mixture.
  • the invention according to claim 20 is the refrigerator according to claim 19, wherein the gas of the gas-liquid mixture is a gas containing oxygen.
  • the invention according to claim 21 is the refrigerator according to claim 17 or 18, wherein the ice making water is dropped on the photocatalyst module as water droplets.
  • the invention according to claim 22 is the refrigerator according to claim 17 or 18, wherein the water for ice making is introduced into the photocatalyst module in a spiral water flow.
  • the invention according to claim 23 is the refrigerator according to claim 17 or 18, wherein the photocatalyst module or the reaction vessel thereof is provided with spiral irregularities for creating a spiral water flow. .
  • the rod-shaped electrode in the photocatalyst module, is disposed at the center of the arc-shaped electrode on the outer peripheral portion, and the distance between the rod-shaped electrode and the arc-shaped electrode is always constant. Therefore, uniform discharge can be performed, and the entire surface of the photocatalyst module can be purified.
  • ultraviolet rays can be generated because an insulator is interposed between the pair of electrodes to generate electric discharge, and purification can be performed by ozone from the ultraviolet rays.
  • the photocatalyst module into a cylindrical shape, the dimensions between the arc-shaped electrode and the rod-shaped electrode can be accurately maintained. can do.
  • the structure is such that the cylindrical photocatalyst module is housed inside the cylindrical insulator container, so that the manufacturing is easy, and the rod-shaped electrode and the arc-shaped electrode are used. Dimensional accuracy can be maintained accurately.
  • an electrode is formed on the outer peripheral surface of the insulating container by printing, plating, or vapor deposition using a conductive ink to form an arc-shaped electrode that is the other electrode. And a gap is not formed between the insulator container and the arc-shaped electrode. Therefore, a discharge occurs reliably.
  • the distance between the rod-shaped electrode and the arc-shaped electrode is increased by making the axial length of the cylindrical photocatalyst module larger than its diameter. And the opposing dimension of the rod-shaped electrode and the arc-shaped electrode becomes longer, so that discharge light can be generated efficiently.
  • a purifying effect can be obtained if the loading rate is at least 5% or more.
  • the voltage applied between the pair of electrodes has a waveform swinging to both the positive and negative sides, so that the discharge can be performed efficiently.
  • the purification device of the invention of claim 7 even if a large amount of the decomposition target substance medium flows in, it is possible to deteriorate.
  • a protective layer made of an insulating material is provided on the discharge electrode. Therefore, when the gas-liquid mixture continuously enters into or near the photocatalyst module, the liquid portion does not have the same potential as the discharge electrode, and no electric shock is caused even if a human touches the liquid.
  • the decomposition target substance in the gas-liquid mixture can be decomposed.
  • the photocatalyst module since the photocatalyst module is housed in the insulator container, the discharge electrode provided with the protective layer and the photocatalyst module are not exposed, and human hands are not exposed. It is hard to touch.
  • the coefficient of expansion in the length direction of the protective layer is in a range of about 90% to about 110% of a linear expansion coefficient of the metal material used for the discharge electrode. Therefore, the protective layer also expands in accordance with the linear expansion of the discharge electrode, and the protective layer does not peel off or crack from the discharge electrode.
  • the thickness of the protective layer is set to about 1 mm or less, purification can be performed at a low voltage without applying a large voltage.
  • the insulating material of the protective layer is an elastic body capable of elastic deformation of about 1%, the elastic material responds to expansion of the discharge electrode due to heat generation of the discharge electrode. Since the protective layer is deformed, it is possible to prevent the protective layer from peeling or cracking.
  • the ice making water flowing to the ice tray can be reliably purified.
  • the water tank including the lid, can be easily cleaned, and the cleanliness of the water tank can be maintained.
  • the storage of the invention according to claim 16 will be described.
  • the water purifier With the conventional method of removing water after washing, the water purifier must be manually placed somewhere when cleaning the water supply tank. May adhere to the In addition, other than bacteria, there is a possibility that oil may adhere to the surface depending on the place where the oil adheres. If oil adheres to the surface, the part becomes ineffective and the life may be extremely shortened. Therefore, in the refrigerator of the present invention according to claim 16, the purifying device is installed in a place where the user does not touch the purifying device, so that the purifying device is not touched by a human hand when the water supply tank is washed. There is no need to remove it from the water tank and place it somewhere, and there is no possibility of adhesion of various bacteria and oil.
  • the discharge type photocatalyst filter activates the photocatalyst module using ultraviolet light generated by the discharge of the discharge device.
  • This discharge-type photocatalyst filter has an advantage of a longer life than a method in which the photocatalyst is activated by activated carbon or a lamp.
  • the photocatalyst module has a strong oxidizing effect and can decompose harmful substances such as trihalomethane. Therefore, in the refrigerator according to the seventeenth aspect of the present invention, the discharge type photocatalytic filter is used in a purification device. As a result, a long service life can be achieved, and harmful substances such as trihalomethane can be decomposed and purified from ice-making water.
  • the photocatalyst module is a porous ceramic
  • the water permeating the photocatalyst module can be expected to be effectively purified since the contact time with the photocatalyst becomes long. Therefore, in the refrigerator according to the eighteenth aspect of the present invention, by using such a porous ceramic for the photocatalyst module of the discharge type photocatalyst filter, the water for ice making can be effectively purified.
  • the discharge starting voltage between the electrodes of the discharge device can be reduced by making the ice-making water into a gas-liquid mixture.
  • the reliability can be increased and the service life can be extended.
  • the gas and the liquid simultaneously flow in the photocatalyst module, the flow of the liquid is disturbed, so that an agitation effect is generated and the water can be purified in a shorter time.
  • ozone is generated from oxygen by the discharge action by including oxygen in the gas of the gas-liquid mixture flowing in the photocatalyst module, and the oxidizing power of the ozone also purifies water. And a stronger water purification effect can be obtained.
  • the refrigerator of claim 21 since the discharge space is at a high voltage, a high voltage is also applied to the water flowing through the discharge space. High voltage can occur, and if high-voltage water comes into contact with surrounding conductors in the way the water flows, that conductor can also reach high voltage. Therefore, in the refrigerator of the invention according to claim 21, the water for ice making is charged to a high voltage when passing through the discharge space by dropping water for ice making into water droplets onto the photocatalyst module of the discharge type photocatalyst filter. Even so, the entire ice making water is prevented from becoming a high voltage, and the adverse effects due to it are prevented.
  • the refrigerator of the invention of claim 22 when water for ice making is allowed to flow through the photocatalytic module of the discharge type photocatalytic filter, it is most simply desirable to have a structure in which water falls naturally. However, since the contact time with the photocatalyst module is short in natural fall, it is preferable to make the contact time longer for more effective discharge purification. Therefore, in the refrigerator according to the present invention, the ice making water is introduced into the photocatalyst module of the discharge type photocatalyst filter so as to form a helical water flow, so that it can be brought into contact with the photocatalyst module. The discharge interval is made longer to make the discharge purifying action more effective.
  • the refrigerator of the invention when flowing water for ice making to the photocatalyst module of the discharge type photocatalyst filter, the water is spirally flown in the photocatalyst module by the unevenness for creating the spiral water flow.
  • the discharge purifying action is performed more effectively.
  • FIG. 1 is an explanatory diagram of a refrigerator according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a refrigerator according to a second embodiment of the present invention.
  • FIG. 3 is a sectional view of a purification device in a refrigerator according to the second embodiment.
  • FIG. 4 is a graph showing the measured purifying performance of the purifying apparatus in the refrigerator according to the second embodiment of the present invention.
  • FIG. 5 is a horizontal sectional view and a vertical sectional view of a purification device in a refrigerator according to a third embodiment of the present invention.
  • FIG. 6 is a graph showing the measurement of the purification performance of the purification device in the refrigerator according to the third embodiment of the present invention.
  • FIG. 7 is a sectional view of a purification device in a refrigerator according to a fourth embodiment of the present invention.
  • FIG. 8 is a graph showing the measurement of the purification performance of the gasifier in the refrigerator according to the fourth embodiment of the present invention.
  • FIG. 9 is an explanatory diagram illustrating a structure of an ice making device according to the fifth embodiment.
  • FIG. 10 is a longitudinal sectional view of the purification device.
  • FIG. 11 is a table showing the experimental results of the free chlorine removal rate when the diameter and the axial length of the photocatalyst module were changed.
  • FIG. 12 is a graph showing the experimental results of the free chlorine removal rate and the catalyst loading rate.
  • FIG. 13 is a graph of a full-wave waveform applied by the power supply device.
  • Fig. 14 is a graph of the half-wave waveform.
  • FIGS. 15A and 15B are explanatory diagrams of the optical module according to the sixth embodiment.
  • FIG. 15A is a cross-sectional view
  • FIG. 15B is a longitudinal cross-sectional view.
  • FIG. 16 is a longitudinal sectional view of the purification device of the seventh embodiment.
  • FIG. 17 is a longitudinal sectional view showing the structure of a purification device according to the eighth embodiment.
  • FIG. 18 is a graph of a full-wave waveform applied by the power supply.
  • FIG. 19 is a graph showing the relationship between the protective layer and the discharge voltage.
  • FIG. 20 is a perspective view of a purification device assembly according to the tenth embodiment.
  • FIG. 21 is an explanatory diagram of a purification device in a first conventional refrigerator.
  • FIG. 22 is an explanatory diagram of a purification device in a refrigerator of the second conventional example.
  • FIG. 23 is an explanatory view of a conventional purification device.
  • FIG. 1 shows a configuration of an ice making device in a refrigerator 100 according to a first embodiment of the present invention.
  • a water supply pipe 11 is provided in a water supply tank 11.
  • the ice making water 13 in the water supply evening tank 11 is drawn out of the tank from the water supply pipe 12 and passed through the purification device 14 installed outside the evening water tank, and then the ice making tray in the ice making chamber 15 Water is supplied to 16.
  • the water receiver 21 is a part for temporarily storing water for pumping water 13 drawn from a water supply tank 11 through a water supply pipe 12 by a pump (not shown). Supply ice making water 13 at an appropriate flow rate to 14 and ice making room 15 with advection tube 17.
  • a suction pump for advancing water from the water supply tank 11 to the ice making chamber 15.
  • a pump is provided in the water receiver 21, the end of the water supply pipe 12 outside the tank is connected to its suction port, and the water receiver 21 is connected to its outlet, so that the inside of the water tank 11 is The ice making water 13 can be sucked out, passed through the purification device 14, and supplied to the ice making tray 16 in the ice making room 15.
  • a pump is provided at the lower end of the water supply pipe 12 inside the tank, and a rotating magnetic field generator that applies a rotating magnetic field is installed outside the water supply tank 11 near the pump.
  • a configuration may be adopted in which rotation is induced by rotation.
  • the type and structure of the purifying device 14 are special.
  • the present invention is not limited to this, and any type may be used as long as it has a function of purifying the ice making water 13 flowing therethrough.
  • an activated carbon filter for example, an activated carbon filter, a water purification filter, a photocatalyst filter, and the like.
  • the purifying device 14 needs to be capable of purifying the ice making water 13 while passing through the inside thereof. Since it can be installed outside the water tank 11, it is acceptable even if it occupies a relatively large volume, so that it can be used with a higher purification capacity and a longer life can be achieved.
  • a water supply pipe 12 and an advection pipe 17 are provided between the water supply tank 11 and the external purification device 14 for pumping and supplying ice making water 13 from the tank. Therefore, if the purifying device 14 is configured to be separated from the user's hand in a normal use condition by a partition wall 22 in the middle of the water supply pipe 12 or the advection pipe 17, It is possible to avoid the occurrence of the germ breeding due to the user's hand touching 14 and maintenance free.
  • the second embodiment is characterized in that a discharge type photocatalyst filter is used for a purification device 14 installed outside a water supply nozzle 11.
  • a discharge type photocatalyst filter is used for a purification device 14 installed outside a water supply nozzle 11.
  • the piping for supplying the ice making water 13 in the water supply tank 11 to the purification device 14 and purifying the water after the purification is the same as in the first embodiment.
  • the advection pipe 17 from the water receiver 21 to the purifier 14 is an orifice, which reduces the flow rate and raises the discharge pressure. 3 is supplied.
  • the discharge type photocatalyst filter which is the purifying device 14 includes a photocatalyst module 141 and a high-voltage power source 142.
  • the photocatalyst module 14 1 reacts with a photocatalyst such as titanium oxide coated on a cylindrical three-dimensional porous ceramic carrier 144 with a central hole for electrode insertion at the center axis. It is housed in a vessel 144, and has a structure in which electrodes 144 and 146 are arranged on the outer periphery of the reaction vessel 144 and in the center hole.
  • the electrodes 1 4 5, 1 4 6 A high voltage is applied in between.
  • the reaction vessel 144 of the photocatalyst module 144 is made of a dielectric material such as glass or resin, and the outer electrode 146 is provided in close contact with the reaction vessel 144.
  • a high voltage is applied to the photocatalyst module 14 1 by the high voltage power supply 14 2 to cause a discharge phenomenon between the electrodes 1 4 5 and 1 4 6.
  • Ultraviolet rays are generated in the space where the photocatalyst is installed. The irradiation of the generated ultraviolet rays excites the photocatalyst, and can decompose the organic substance in the water flowing through the ceramic carrier 144.
  • the discharge type photocatalyst filter constituting the purifying device 14 has a long service life and has a feature that a high purifying performance can be obtained.
  • a high voltage of 1 OkV or more must be applied between the electrodes 145 and 146.
  • the discharge starting voltage can be reduced, and a water purification effect can be obtained with a voltage of 4 kV or more.
  • ozone is generated together with the ultraviolet rays in the discharge space, and the water purification effect is further improved by the oxidizing and sterilizing action of the ozone.
  • ozone is a harmful substance to the human body, its lifetime in water is said to be several seconds to several ten seconds, and since it immediately returns to oxygen, it has no effect on the human body.
  • Figure 4 shows the difference in the free chlorine removal rate between underwater discharge and discharge in a gas-liquid mixture of water and air.
  • Free chlorine has the effect of killing microorganisms and various bacteria in water, but it is also a source of odor. Therefore, it is important when storing water, but if it is contained, it causes unpleasant taste when drinking. Therefore, if the gas-liquid mixture is supplied to the purification device 14 of the discharge-type photocatalyst filter 14 and supplied with ice-making water 13 to purify it, free chlorine can be removed and the smell of lime can be effectively removed.
  • the chalky remains in the ice making water 13 in the water supply tank 11, there is also an advantage that the generation of various bacteria can be suppressed even during long-term storage.
  • the flow rate can be adjusted with the orifice. Therefore, the flow rate of the ice making water 13 from the water receiver 21 to the purification device 14 is reduced, and the water 14 can be supplied. If the water droplets are supplied to the purifying device 14 in this manner, a high voltage is applied to the water droplets for discharging, and even if the water droplets are charged to a high voltage, the entire ice making water 13 is charged to a high voltage. Therefore, the conductor that comes into contact with the ice-making water 13 is not charged with high voltage, and even if the user may come into contact with the conductor, there is a risk of electric shock. Absent.
  • FIG. 5 shows a purifying device 14 employed in the refrigerator of the third embodiment.
  • the purifier 14 used in the present embodiment is characterized in that the flow of the ice making water 13 introduced into the purifier 14 from the advection pipe 17 is a cyclone (vortex flow). That is, the water introduction port 147 is provided in the upper part of the reaction vessel 144 in a horizontal tangential direction, and the ice making water 14 flowing into the purification device 14 from the advection pipe 17 becomes a rotating vortex as shown by the arrow A, and the ceramic is formed. A spiral water stream flows into the carrier 144.
  • the other configuration is the same as the configuration of the refrigerator according to the second embodiment shown in FIGS. Further, a configuration is also possible in which the ice making water 13 is supplied to the purification device 14 as a gas-liquid mixture.
  • FIG. 6 shows the results of measuring the free chlorine removal rate when the ice making water 13 is dropped on the ceramic carrier 144 from the information and when the ice making water 13 is supplied by the cyclone method as in the present embodiment. Even at the same flow rate, in the present embodiment, it can be seen that the free fiber chlorine removal rate is improved by more than 10 points compared to the case of dripping from the top.
  • a spiral projection 148 is provided in the reaction vessel 144 of the purification device 14.
  • the ice making water 13 led out of the water supply tank 11 to the advection pipe 17 and introduced from the advection pipe 17 to the upper part of the purification device 14 is formed by a spiral projection. Guided by 148, it flows down in the ceramic carrier 144 in a spiral rotating flow.
  • the contact time between the ice making water 13 and the photocatalyst while the ice making water 13 is passing through the purification device 14 is increased, and the water purification effect is enhanced.
  • Figure 8 compares the water purification effect with a purification device equipped with a reaction vessel without spiral projections 148.
  • a purification device 14 according to a fifth embodiment of the present invention will be described.
  • the purifying device 14 of the present embodiment is provided in the ice making device 10 of the refrigerator 100. That is, in this embodiment, the ice making water produced by the ice making device 10 is purified by the purification device 14.
  • the refrigerator 100 of the present embodiment is provided with a refrigerator room 102, a vegetable room 104, an ice making room 106, and a freezer room 108 from the top. , Doors 1 1 0, 1 1 2, 1 1 4, 1 1 6 are provided.
  • a machine room 1 18 on which a compressor 1 17 is mounted is arranged behind the freezer room 108, and a control unit 120 of a refrigerator 100 composed of a microcomputer is provided behind the refrigerator room 102.
  • an operation unit 126 having an operation switch and a display unit of the refrigerator 100 is provided.
  • a water supply tank 11 storing ice-making water 13 is disposed below the refrigerator compartment 102, and a water supply pipe 12 projects rearward.
  • the ice making water 13 in the water supply tank 11 is led out of the water supply pipe 12 to the water receiver 21 outside the water supply tank 11 and passes through the purification device 14 located behind the vegetable compartment 104. After that, water is supplied to the ice tray 16 in the ice chamber 106.
  • the ice tray 16 supplied with water is twisted and rotated by the ice making mode 15 after a predetermined time, and the ice frozen by cold air is dropped into the storage case 107.
  • the ice detection hopper 109 detects whether or not there is ice in the storage case 107.
  • the water receiver 21 is a part for temporarily storing the ice making water 13 sucked by the pump 23 from the water supply tank 11 through the water supply pipe 12 and is advected from the water receiver 21 to the purification device 14.
  • the pipe 17 is an orifice. The flow rate is reduced to increase the discharge pressure, and the purification device 14 is supplied with ice making water 13 as a gas-liquid mixture.
  • the location of the suction pump 23 for advancing the water from the water supply tank 11 to the ice making chamber 106 is located near the suction port of the water supply pipe 12, but is not limited to this location.
  • a water supply tank 1 is provided by providing a pump 23 in the water receiver 21, connecting the end of the water supply pipe 12 outside the tank to its inlet, and connecting the water receiver 21 to its outlet.
  • the ice making water 13 in 1 can be sucked out, passed through the purification device 14, and supplied to the ice tray 16 in the water making chamber 106.
  • a pump 23 is provided at the lower end inside the tank of the water supply pipe 12, and a rotating magnetic field generator that applies a rotating magnetic field near the pump outside the water supply tank 11 is installed.
  • a configuration may be adopted in which rotation is induced by rotation.
  • the purifier 14 uses a photocatalyst module 14 1 and will be described in detail later.
  • the partition 22 allows the user's hand to touch in normal use. It is a structure that divides the purification device 14 so that it does not occur. The partition wall 22 prevents the user from touching the purification device 14 to cause germs to multiply, and prevents the device from being exposed to high pressure for generating electric discharge, thereby further achieving maintenance-free operation.
  • the discharge-type photocatalytic filter as the purifying device 14 includes a photocatalyst module 144 and a power supply device 142.
  • the photocatalyst module 144 is obtained by applying a photocatalyst (for example, titanium oxide) to a cylindrical three-dimensional porous ceramic substrate 144 having a central shaft portion provided with a shaft hole for electrode insertion.
  • the cylindrical photocatalyst module 144 is accommodated in a cylindrical insulator container 144.
  • the cylindrical insulator container 144 is made of a dielectric material such as insulating glass or resin.
  • the rod-shaped electrode discharge electrode 145 is inserted into the shaft hole of the photocatalyst module 014 ⁇
  • a counter electrode 144 ⁇ which is an arc-shaped electrode, is formed by printing, printing, or vaporizing with conductive ink.
  • a power supply device 142 for applying a very high voltage to the pair of discharge electrodes 144 and the counter electrode 144 is connected.
  • a power supply device 142 to which power is supplied from the control unit 120 is disposed near the insulator container 144, and both are incorporated as an integrated unit.
  • the axial length of the photocatalyst module 141 is formed larger than its diameter.
  • the axial length is 20 mm and the diameter is 10 mm.
  • the loading ratio of the photocatalyst supported on the ceramic substrate 144 in the photocatalyst module 141 is 5% or more.
  • the high voltage applied from the power supply device 142 to the pair of electrodes 144 and 146 has a full-wave sinusoidal waveform as shown in FIG.
  • the photocatalyst module 141 has a columnar shape, the discharge electrode 144 is provided at the center thereof, and the counter electrode 144 is disposed at the outer peripheral portion.
  • the distance between the discharge electrode 144 and the counter electrode 144 can be easily made constant, and the discharge can be made uniform over the entire circumference.
  • this discharge electrode 1 4 5 Since the rod-shaped discharge electrode 1 4 5 is the part that comes into direct contact with water, this discharge electrode 1 4 5 By increasing the thickness of 5, it is possible to prevent electrode corrosion and wear.
  • the counter electrode 144 is formed on the surface of the insulator container 144 by printing, plating, or vapor deposition using a conductive ink will be described.
  • the counter electrode 1 4 6 is formed on the surface of the insulating container 1 4 4 by printing, plating, or vapor deposition using a conductive ink, the space between the counter electrode 1 4 6 and the green body 1 4 4 No gaps can be created. If a gap is formed, a potential is generated during the gap, and a discharge occurs between the counter electrode 144 and the insulator container 144, and this discharge becomes a very high energy discharge, so the counter electrode 144 ⁇ And the life of the insulating container 144 is significantly reduced. However, by forming the counter electrode 144 directly on the surface of the insulator container 144 and not providing a gap, such unnecessary discharge is eliminated, and the counter electrode 144 and the insulator container 1 4 The life of 4 can be improved.
  • the distance between the discharge electrode 14 5 and the counter electrode 14 6 can be shortened, and the distance between the discharge electrode 14 5 and the counter electrode 14 6 can be reduced. Since it is possible to lengthen the distance, the ultraviolet light can be generated efficiently. In particular, the substance to be decomposed in water can be decomposed efficiently. In addition, since the length of the discharge electrode 145 is directly related to the contact time between water and the photocatalyst, a sufficient effect cannot be obtained if the dimension in the axial direction is short. By purifying it, sufficient purification can be performed.
  • FIG. 11 shows the results of experiments on the performance of the removal rate of free chlorine, which is a substance causing the odor of lime in water, when the diameter and the axial length of the photocatalyst module 141 were changed.
  • the input power is always 10W and the condition is constant.
  • the removal ratio of free chlorine is 9% when the length / diameter ratio in the axial direction is 1/2, and 35% when the ratio is 1/1.
  • the free chlorine removal rate can be significantly improved by making the length in the axial direction larger than the length in the diameter.
  • the ratio of the axial length / diameter is preferably 1.5 / 1 or more.
  • the loading ratio of the photocatalyst carried on the ceramic substrate 143 is 5% or more. The reason for this will be described with reference to FIG.
  • FIG. 12 is a graph in which the free chlorine removal rate is plotted on the vertical axis and the catalyst loading rate is plotted on the horizontal axis, and is an experimental result in which the state of the free chlorine removal rate was measured by changing the catalyst loading rate.
  • the catalyst loading rate is 5% or less
  • the free chlorine removal rate becomes 10% or less
  • the ratio of the axial length to the diameter length is changed, and the voltage waveform state described later is used.
  • the required free chlorine removal rate cannot be obtained even if the temperature is changed. Therefore, a loading rate of 5% or more is required.
  • FIG. 13 shows a state in which the full-wave waveform is applied to the pair of electrodes 145 3 146 as described above
  • FIG. 14 shows a waveform in which the half-wave waveform is applied to the pair of electrodes 145, 146.
  • the free chlorine removal rate in the full-wave waveform is 85%, while that in the half-wave waveform is 11%.
  • the discharge is a Palia discharge through the insulator, and the electrons charged on the insulator surface only when a high voltage is applied flows as a current when the potential reverses. by.
  • the half-wave waveform This is because current does not flow due to the difficulty of flowing and the amount of ultraviolet rays decreases, and the free chlorine removal rate decreases.
  • the discharge-type photocatalytic filter that constitutes the purifying device 14 has a long service life and is characterized by high purifying performance. If the photocatalyst module 141 is discharged with water completely filled, a high voltage of 10 kV or more must be applied between the electrodes 144 and 146. By flowing water at a flow rate where gas and water are mixed together, the discharge starting voltage can be reduced, and a water purification effect can be obtained with a voltage of 4 kV or more. In addition, at this time, if a gas containing oxygen is used as the gas of the gas-liquid mixture, ozone is generated together with the ultraviolet rays in the discharge space, and the water purification effect is further improved by the oxidizing and sterilizing action of the ozone. Although ozone is a harmful substance to the human body, its lifetime in water is said to be several seconds to several ten seconds, and since it immediately returns to oxygen, it has no effect on the human body.
  • the flow rate can be adjusted with this orifice.
  • the flow rate of the ice making water 13 from the water receiver 21 to the purification device 14 can be reduced, and the flow can be supplied to the purification device 14 as water droplets. If the water droplets are supplied to the purifying equipment 14 as described above, a high voltage is applied to the water droplets for discharging, and even if the water droplets are charged to a high voltage, the entire ice making water 13 is charged to a high voltage. Therefore, the conductor that comes into contact with the ice-making water 13 is not charged with a high voltage, and even if one of the users touches the conductor, there is no risk of electric shock. There is no fear of doing it.
  • FIG. 15 shows a purification device 14 of the sixth embodiment.
  • the purifying device 14 of the present embodiment is characterized in that the flow of the ice making water 13 introduced from the advection pipe 17 into the purifying device 14 is a cyclone (vortex flow).
  • the water introduction port 147 is installed in the upper part of the insulator container 144 in a horizontal tangential direction, and the ice making water 13 flowing into the purification device 14 from the advection pipe 17 becomes a rotating vortex as shown by the arrow A.
  • a spiral water stream flows into the ceramic carrier 144.
  • the other configuration is the same as that of the fifth embodiment shown in FIG.
  • a configuration may be adopted in which the ice making water 13 is supplied to the purification device 14 as a gas-liquid mixture.
  • the time for the ice making water 13 flowing into the purification device 14 to come into contact with the photocatalyst applied to the ceramic carrier 144 is lengthened, and the water purification effect can be enhanced.
  • a purifying apparatus 14 according to a seventh embodiment of the present invention will be described with reference to FIG.
  • the feature of this embodiment is that a spiral projection 148 is provided in the insulator container 144 of the purification device 14.
  • a configuration may be adopted in which the ice making water 13 is supplied to the purification device 14 as a gas-liquid mixture.
  • the ice making water 13 led from the water supply nozzle 11 to the advection pipe 17 and introduced from the advection pipe 17 "to the upper part of the purification device 14 is guided to the spiral projections 14 8 As a result, a spiral rotating flow flows down the ceramic carrier 144. Therefore, similarly to the sixth embodiment, the ice making water 13 passes through the purification device 14 while being mixed with the photocatalyst. The contact time is longer and the water purification effect is higher.
  • a purification device 14 according to an eighth embodiment of the present invention will be described.
  • the purifying device 14 of the present embodiment is a case where it is provided in the ice making device 10 of the refrigerator 100 of the fifth embodiment.
  • the discharge-type photocatalytic filter as the purifying device 14 includes a photocatalyst module 14 1 and a power supply device 142.
  • the photocatalyst module 144 is obtained by applying a photocatalyst (for example, titanium oxide) to a cylindrical three-dimensional porous ceramic substrate 144 having a central shaft portion provided with a shaft hole for electrode insertion.
  • the cylindrical photocatalyst module 144 is accommodated in a cylindrical insulator container 144.
  • the cylindrical insulator container 144 is made of a dielectric material such as insulating glass or resin.
  • a discharge electrode 145 which is a rod-shaped electrode is inserted into a shaft hole of the photocatalyst module 141.
  • a protective layer 152 made of an insulating material is coated on the outer periphery of the discharge electrode 145 which is a rod-shaped electrode.
  • the material of the protective layer 152 is stainless steel or glass having an insulating property and has a linear expansion coefficient of about 90% to about 110% of the metal discharge electrode 144. It has an expansion coefficient.
  • the thickness of the protective layer is 0.6 mm, and the outer surface of the insulating container 144 is printed on the outer surface of the insulating container 144 by printing, plating, or vapor deposition. 6 are formed.
  • a power supply device 142 for applying a high voltage is connected to the pair of discharge electrodes 144 and the counter electrode 144 ⁇ .
  • a power supply device 142 to which power is supplied from the control unit 120 is disposed near the insulator container 144, and both are incorporated as an integrated unit.
  • the axial length of the photocatalyst module 141 is formed larger than its diameter.
  • the axial length is 20 mm and the diameter is 10 mm.
  • the loading rate of the photocatalyst carried on the ceramic substrate 144 in the photocatalyst module 141 is 5% or more.
  • the high voltage applied from the power supply device 142 to the pair of electrodes 144 and 146 has a full-wave sinusoidal waveform as shown in FIG.
  • the photocatalyst module 14 1 Discharge electrode 1 4 5 is located at the center of the column, and the counter electrode 1 4 6 is located at the outer peripheral part. Therefore, the distance between the discharge electrode 1 4 5 and the counter electrode 1 4 6 can be easily set. The distance can be constant, and the discharge can be made uniform over the entire circumference.
  • a uniform discharge can be obtained by installing a rod-shaped discharge electrode 144 at the center of the arc-shaped counter electrode 146, and the entire surface of the photocatalyst module can be used for decomposition. It becomes possible to purify the substance.
  • discharge-type photocatalyst filters have a long life and provide high purification performance.
  • the protective layer 15 2 is provided on the discharge electrode 1 45, water as a gas-liquid mixture flows continuously from the advection pipe 17 to the photocatalyst module 14 1 of the purification device 14. If the user comes in contact with the flowing water for some reason, the protective layer 15 2 is provided on the discharge electrode 144, so that the discharge electrode 144 is discharged. You won't get an electric shock even if you touch the water.
  • the expansion coefficient of the protective layer 152 is within the range of about 90% to about 110% of the linear expansion coefficient of the metal material used for the discharge electrode 144, the discharge electrode 144 Even if it generates heat and expands, the protective layer 152 expands with the expansion of the discharge electrode 144, so that the protective layer 152 does not peel off or crack from the discharge electrode 144. . If the coefficient of expansion of the protective layer 152 is too large than the linear expansion coefficient of the discharge electrode 144, a phenomenon occurs in which the protective layer 152 expands or peels off from the discharge electrode 144 due to expansion. On the other hand, if the coefficient of expansion is too small, the protective layer 152 will not be able to follow the expansion of the discharge electrode 145 and cracks will run. Therefore, as described above, it is preferable to select the expansion coefficient of the protective layer 152 within the range of about 90% to about 110% of the linear expansion coefficient of the metal material.
  • the thickness of the protective layer 152 is 1 mm or less. The reason for this is that the thickness of the protective layer 15 2 The thickness greatly affects the discharge starting voltage and the dielectric breakdown voltage. If the protective layer 152 is thick, dielectric breakdown does not easily occur. However, since the discharge starting voltage becomes high, a higher voltage must be applied. On the other hand, when the thickness of the protective layer 152 is reduced, the dielectric breakdown voltage is reduced, but the discharge starting voltage is also low, so that purification can be performed at a low voltage.
  • FIG. 19 is a graph showing the relationship between the thickness of the protective layer and the discharge voltage. As is clear from the graph of FIG. 19, the thickness of the protective layer 152 is preferably 1 mm or less.
  • the coating is performed with a thickness of 0.6 mm. If the photocatalyst module 14 is discharged with water completely filled, a high voltage of 1 O kV or more must be applied between the electrodes 14 5 and 14 6. By flowing water at a flow rate where gas and water are mixed together, the discharge starting voltage can be reduced, and a water purification effect can be obtained with a voltage of 4 kV or more. Moreover, at this time, if a gas containing oxygen is used as the gas of the gas-liquid mixture, ozone is generated together with the ultraviolet rays in the discharge space, and the water purification effect is further improved by the oxidative sterilization effect of the ozone. Ozone is a harmful substance to the human body, but its lifetime in water is said to be several seconds to several ten seconds. Since it immediately returns to oxygen, it has no effect on the human body.
  • the coefficient of expansion of the protective layer 152 is set to be about 90% to 110% of the linear expansion coefficient of the metal material used for the discharge electrode 144.
  • the insulating material of the layer 152 may be made of an elastic body capable of elastic deformation of about 1% of the length of the protective layer 152.
  • the heat generated by the discharge electrode 145 causes the discharge electrode 145 to expand, but the insulating material forming the protective layer 152 so that deformation close to this expansion rate is possible. Is selected. If an elastic body (for example, silicon rubber) having an elastic modulus of about 1% is used as the material of the insulating material, the expansion due to the heat generation of the discharge electrode 145 can be sufficiently absorbed, and the protective layer 155 is formed. Deformation and cracking of 2 can be prevented.
  • an elastic body for example, silicon rubber
  • the purification device 14 in the ice making device 10 in the refrigerator is described. explained. However, such a purification device 14 can be applied to other fields.
  • the present invention can be applied to a case where wastewater in a factory or a sewage treatment plant is purified.
  • the amount of water in the case of performing such wastewater treatment is very large unlike the ice making water in the ice making device 10 as described above.
  • a plurality of column-shaped purification devices 10 are bundled to form a large purification device assembly 150.
  • the purification apparatus of the present invention can be applied to the purification of ice-making water in an ice-making apparatus of a refrigerator and the purification of wastewater in a factory or a sewage treatment plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Catalysts (AREA)

Abstract

There is provided a purification device capable of purifying material to be decomposed contained in a vapor-liquid mixture or liquid. A power source device (142) applies a full-wave waveform voltage between two electrodes (145, 146) to generate discharge light, thereby decomposing the material to be decomposed contained in the vapor-liquid mixture. An optical catalyst module (143) has a cylindrical shape. At its axis, a discharge electrode (145) is arranged and around its external circumference, an arc-shaped opposing electrode (146) is formed via an insulator (144).

Description

明 細 浄化装置とそれを用いた冷蔵庫  Clarification Purifier and refrigerator using it
【技術分野】 【Technical field】
本発明は、 水を浄化する浄化装置と、 それを用いた冷蔵庫に関するものであ る  The present invention relates to a purification device for purifying water and a refrigerator using the same.
【背景技術】 [Background Art]
製氷用水を貯蔵する給水タンクから製氷皿に水を供給し、 製氷皿内で凍らせて 製氷する製氷機能を有する冷蔵庫では、 貯蔵している製氷用水の中の有機物質や 雑菌の増殖を抑制すると共にカルキ除去のために浄化装置を備えるのが一般的で ある。 そして通常、 このような浄化装置には活性炭を用いている。  Water is supplied to the ice tray from the water supply tank that stores the ice-making water, and the refrigerator that has the function of making ice by freezing in the ice tray suppresses the growth of organic substances and various bacteria in the stored ice-making water. In addition, it is common to equip a purification device for descaling. Usually, activated carbon is used in such a purification device.
この第 1の従来例の製氷装置の浄化装置について、 図 2 1に基づいて説明する (特開平 1 0— 5 4 6 3 4号公報参照) 。  The first conventional apparatus for purifying an ice making device will be described with reference to FIG. 21 (see Japanese Patent Application Laid-Open No. H10-54634).
図 2 1に示したように、 給水タンク 1の製氷用水 2中に活性炭 3を沈める漬け 置き構造がとられている。  As shown in Fig. 21, a soaking structure is used in which activated carbon 3 is submerged in water 2 for ice making in water supply tank 1.
この構造では、 給水夕ンク 1の定期的な清掃時に活性炭 3をいつたん取り出 し、 給水タンク内を洗浄した後に再び活性炭を給水タンク中に戻すという作業が ユーザーに要求され、 活性炭フィル夕の出し入れ作業が煩わしいという問題点が める。  In this structure, the user is required to take out the activated carbon 3 at regular intervals during the cleaning of the water supply tank 1, clean the inside of the water supply tank, and then return the activated carbon to the water supply tank again. There is a problem that the loading and unloading work is troublesome.
この第 2の従来例の製氷装置の浄化装置について、 図 2 2に基づいて説明する (特開平 1 0— 5 4 6 3 5号公報参照) 。  The second conventional example of a purification device for an ice making device will be described with reference to FIG. 22 (see Japanese Patent Application Laid-Open No. H10-54635).
図 2 2に示すように、 給水タンク 1の蓋 4にタンク底面付近まで届く支持体 5 を設け、 その支持体 5に活性炭 3を取り付ける構造にすることにより、 給水タン ク 1の洗浄時に蓋 4を外せば活性炭 3がタンク 1から取り出せ、 給水タンク 1内 の洗浄が簡単にできるようにしたものも存在する。  As shown in Fig. 22, a support 5 is provided on the lid 4 of the water supply tank 1 to reach near the bottom of the tank, and activated carbon 3 is attached to the support 5 so that the lid 4 can be cleaned when the water supply tank 1 is washed. There is also a type in which activated carbon 3 can be removed from tank 1 by removing it, and the inside of water supply tank 1 can be easily cleaned.
この構造の場合には、 給水タンク 1の清掃は簡単であるが、 蓋の構造が複雑に なり、 蓋の清掃が難しい問題点がある。 加えて、 上記の従来のいずれの構造の浄化装置にあっても、 活性炭にカルキや 有害物質を吸着させて除去する方式であるため活性炭に寿命があり、 通常、 2〜 3年でその交換が必要になる。 しかしながら、 ユーザーには活性炭の寿命が到来 し、 有害物除去能が低下したりなくなったりしていることを判断するのが難し く、 また製氷した氷はジュースやウィスキーなどに入れることが多いために不純 物の混入に気づきにくい。 そのため、 交換時期が過ぎ、 活性炭のカルキや有害物 質の吸着除去効果がなくなったまま継続して使用される場合があり、 逆に活性炭 に付着した雑菌が増殖し、 製氷用水を汚染する場合も起こり得る問題点もある。 また、 放電電極からの放電光により光触媒を活性化させて、 気体中の分解対象 物質を除去して気体を清浄あるいは脱臭する浄化装置として、 特開 2 0 0 0 - 1 4 0 6 2 4に示すような浄化装置が提案されている。 In the case of this structure, the cleaning of the water supply tank 1 is easy, but the structure of the lid is complicated, and there is a problem that the lid is difficult to clean. In addition, in any of the above-mentioned conventional purifiers, activated carbon has a service life because it is a method of removing and removing calcium and harmful substances from activated carbon. Will be needed. However, it is difficult for users to judge that activated carbon has reached the end of its useful life and that its ability to remove harmful substances has been reduced or eliminated, and that ice made ice is often put into juice or whiskey. It is hard to notice contamination by impurities. For this reason, the replacement time may have passed, and the activated carbon may continue to be used without its adsorptive and removing effect on the lime and harmful substances.On the other hand, bacteria that adhere to the activated carbon may proliferate and contaminate the ice making water. There are also problems that can occur. Further, as a purifying apparatus for activating a photocatalyst by discharge light from a discharge electrode to remove a substance to be decomposed in a gas to clean or deodorize the gas, see Japanese Patent Application Laid-Open No. 2000-140600. A purifying device as shown below has been proposed.
この浄化装置 1の構造は、 図 2 3に示すようにセラミックスで構成され、 その 表面に光触媒を担持する三次元網目状の光触媒担持体 2を、 二枚の金属電極板 3 , 3で挟持した構成である。 この一対の金属電極 3 3の間には、 電源 4が電 線 5を介して設けられ、 電圧が印加される。  The structure of this purification device 1 is made of ceramics as shown in Fig. 23, and a three-dimensional mesh-shaped photocatalyst carrier 2 carrying a photocatalyst on its surface is sandwiched between two metal electrode plates 3,3. Configuration. A power source 4 is provided between the pair of metal electrodes 33 via a power line 5, and a voltage is applied.
この一対の金属鼋極板 3 s 3の間に所要の電圧が印加されると放電光が発生 し、 光触媒担持体 2が担持する光触媒が活性化され、 光触媒担持体 2を通過する 気体中に含まれる所要の物質が、 放電光によって作用した光触媒反応によって分 解される。 When a required voltage is applied between the pair of metal electrodes 3 s 3, discharge light is generated, the photocatalyst carried by the photocatalyst carrier 2 is activated, and the gas passing through the photocatalyst carrier 2 becomes The required substances contained are decomposed by a photocatalytic reaction acted on by the discharge light.
しかしながら上記構成の浄化装置 1は、 空気等の気体を分解対象物質の媒体と して構成されているため、 気液混合体あるいは液体を対象として浄化を行う場合 には、 完全に浄化ができないという問題点がある。  However, since the purification device 1 having the above configuration is configured using a gas such as air as a medium of a substance to be decomposed, it cannot be completely purified when purifying a gas-liquid mixture or a liquid. There is a problem.
【発明の開示】 DISCLOSURE OF THE INVENTION
【発明が解決しょうとする課題】 [Problems to be solved by the invention]
そこで、 本発明は、 上記のような従来の冷蔵庫の技術的課題に鑑みてなされた もので、 製氷用水の給水タンクの清掃作業が簡単にできる冷蔵庫を提供すること を目的とする。 また、 製氷用水の浄化装置の交換寿命が半恒久的でメンテナンス フリ一であり、 常に清浄な氷を製氷することができる冷蔵庫を提供する。 Therefore, the present invention has been made in view of the technical problems of the conventional refrigerator as described above, and an object of the present invention is to provide a refrigerator that can easily clean a water supply tank for ice making water. In addition, the replacement life of the water purification device for ice making is semi-permanent and maintenance is required. Provide a refrigerator that is free and can always make pure ice.
さらに、 本発明は、 気液混合体または液体を対象としてそれに含まれる分解対 象物質を浄化することができる浄化装置を提供する。  Further, the present invention provides a purifying apparatus capable of purifying a gas-liquid mixture or a liquid and decomposing substances contained therein.
【課題を解決するための手段】  [Means for Solving the Problems]
請求項 1に係る発明は、 セラミックス基体に光触媒を担持した光触媒モジュ一 ルと、 正負極の一対の電極と、 電源手段とを有し、 前記電源手段により前記一対 の電極間に電圧を印加して発生させた放電光を前記光触媒モジュールに照射して 活性化させ、 この活性化した前記光触媒の作用により前記光触媒モジュールの内 部あるいは近傍にある液体、 気体、 気液混合体等の分解対象物質媒体に含まれる 分解対象物質を分解する放電型光触媒フィル夕よりなる浄化装置において、 前記 光触媒モジュールを円柱状に形成し、 前記光触媒モジュールの軸部分に一方の電 極である棒状の電極を配し、 前記光触媒モジュールの外周部に絶縁体を介して他 方の電極である円弧状の電極を配することを特徴とする浄化装置である。  The invention according to claim 1 includes a photocatalyst module in which a photocatalyst is supported on a ceramic base, a pair of positive and negative electrodes, and a power supply unit, and a voltage is applied between the pair of electrodes by the power supply unit. The photocatalyst module is irradiated with the generated discharge light to activate the photocatalyst module, and a substance to be decomposed such as a liquid, a gas, or a gas-liquid mixture inside or near the photocatalyst module is activated by the activated photocatalyst. In a purifying apparatus comprising a discharge-type photocatalyst filter for decomposing a substance to be decomposed contained in a medium, the photocatalyst module is formed in a columnar shape, and a rod-shaped electrode, which is one electrode, is disposed on a shaft portion of the photocatalyst module. Further, there is provided a purification device, wherein an arc-shaped electrode, which is the other electrode, is arranged on an outer peripheral portion of the photocatalyst module via an insulator.
請求項 2に係る発明は、 前記絶縁体を筒状の反応容器で形成し、 前記絶縁体内 部に前記光触媒モジュールを収納し、, 前記反応容器の外周部に前記他方の電極を 配することを特徴とする請求項 1記載の浄化装置である。  The invention according to claim 2 is characterized in that the insulator is formed of a tubular reaction vessel, the photocatalyst module is housed in the insulator, and the other electrode is arranged on the outer periphery of the reaction vessel. The purifying apparatus according to claim 1, wherein
請求項 3に係る発明は、 前記反応容器の外周面に、 導電性インクによる印刷、 メツキ、 または、 蒸着により前記他方の電極を形成することを特徴とする請求項 2記載の浄化装置である。  The invention according to claim 3 is the purification device according to claim 2, wherein the other electrode is formed on the outer peripheral surface of the reaction container by printing, plating, or vapor deposition using a conductive ink.
請求項 4に係る発明は、 前記円柱状の光触媒モジュールの軸方向の寸法を、 そ の直径の寸法より大きくすることを特徴とする請求項 1記載の浄化装置である。 請求項 5に係る発明は、 前記光触媒モジュールの触媒担持率を 5 %以上とする ことを特徴とする請求項 1記載の浄化装置である。  The invention according to claim 4 is the purification device according to claim 1, wherein an axial dimension of the cylindrical photocatalyst module is larger than a diameter dimension thereof. The invention according to claim 5 is the purification device according to claim 1, wherein the catalyst loading rate of the photocatalyst module is 5% or more.
請求項 6に係る発明は、 前記電源手段により前記一対の電極へ印加する電圧波 形が、 正と負の両側に振れる波形であることを特徴とする請求項 1記載の浄化装 置である。  The invention according to claim 6 is the purification device according to claim 1, wherein a voltage waveform applied to the pair of electrodes by the power supply means is a waveform swinging to both positive and negative sides.
請求項 7に係る発明は、 前記浄化装置を複数個束ねて浄化装置集合体を形成す ることを特徴とする請求項 1から 6の中の少なくとも一項に記載の浄化装置であ る。 請求項 8に係る発明は、 セラミック基体に光触媒を担持した光触媒モジュール と、 正負極の一対の電極と、 電源手段とを有し、 前記電源手段により前記一対の 電極間に電圧を印加して発生させた放電光を前記光触媒モジュールに照射して活 性化させ、 この活性化した前記光触媒の作用により前記光触媒モジュールの内部 あるいは近傍にある液体、 気体、 気液混合体等の分解対象物質媒体に含まれる分 解対象物質を分解する浄化装置において、 前記光触媒モジュールを円柱状に形成 し、 前記光触媒モジュールの軸部分に一方の電極である棒状の放電電極を配し、 前記光触媒モジュールの外周部に絶縁体を介して他方の電極である円弧状の対向 電極を配し、 前記放電電極の外周部に絶縁材料よりなる保護層を設けることを特 徴とする浄化装置である。 The invention according to claim 7 is the purification device according to at least one of claims 1 to 6, wherein a plurality of the purification devices are bundled to form a purification device assembly. The invention according to claim 8 includes a photocatalyst module having a photocatalyst supported on a ceramic substrate, a pair of positive and negative electrodes, and a power supply unit, wherein the power supply unit generates a voltage by applying a voltage between the pair of electrodes. The activated discharge light is applied to the photocatalyst module to activate the photocatalyst module. By the action of the activated photocatalyst, the photocatalyst module is used to decompose the liquid medium, gas, gas-liquid mixture or other substance to be decomposed inside or near the photocatalyst module. In the purifying apparatus for decomposing the contained decomposition target substance, the photocatalyst module is formed in a columnar shape, and a rod-shaped discharge electrode, which is one electrode, is arranged on a shaft portion of the photocatalyst module. An arc-shaped counter electrode, which is the other electrode, is provided via an insulator, and a protective layer made of an insulating material is provided on an outer peripheral portion of the discharge electrode. It is an apparatus.
請求項 9に係る発明は、 前記絶縁体を筒状の絶縁体容器で形成し、 前記絶縁体 内部に前記光触媒モジュールを収納し、 前記絶縁体容器の外周部に前記対向電極 を配することを特徴とする請求項 8記载の浄化装置である。  The invention according to claim 9 is that the insulator is formed of a cylindrical insulator container, the photocatalyst module is housed inside the insulator, and the counter electrode is arranged on an outer peripheral portion of the insulator container. A purifying apparatus according to claim 8, characterized in that:
請求項 1 0に係る発明は、 前記保護層の長さ方向の膨張率が、 前記放電電極に 用いる金属材料の線膨張率の約 9 0 %から約 1 1 0 %の範囲内であることを特徴 とする請求項 8記戴の浄化装置である。  The invention according to claim 10, wherein the coefficient of expansion in the length direction of the protective layer is in a range of about 90% to about 110% of a linear expansion coefficient of the metal material used for the discharge electrode. The purification device according to claim 8, wherein
請求項 1 1に係る発明は、 前記保護層の厚さを約 1 mm以下とすることを特徵 とする請求項 8記載の浄化装置である。  The invention according to claim 11 is the purification device according to claim 8, wherein the thickness of the protective layer is about 1 mm or less.
請求項 1 2に係る発明は、 前記保護層の絶籙材料が、 約 1 %の弾性変形が可能 な弾性体であることを特徴とする請求項 8記載の浄化装置である。  The invention according to claim 12 is the purification device according to claim 8, wherein the insulating material of the protective layer is an elastic body capable of elastic deformation of about 1%.
請求項 1 3に係る発明は、 前記保護層の絶縁材料が、 ステンレス、 ガラス、 ま たは、 シリコンゴムであることを特徴とする請求項 8記載の浄化装置である。 請求項 1 4に係る発明は、 給水タンクから製氷皿へ製氷用水を供給して製氷を 行う製水装置を有する冷蔵庫において、 請求項 1から 1 3の中の少なくとも一項 に記載された浄化装置を用いて、 前記給水タンクから前記製氷皿へ流れる製氷用 水を浄化することを特徴とする冷蔵庫である。  The invention according to claim 13 is the purification device according to claim 8, wherein the insulating material of the protective layer is stainless steel, glass, or silicon rubber. The invention according to claim 14 is a refrigerator having a water making device for making ice by supplying ice making water from a water supply tank to an ice making tray, wherein the purifying device according to at least one of claims 1 to 13 is provided. A refrigerator for purifying ice making water flowing from the water supply tank to the ice tray.
請求項 1 5に係る発明は、 製氷用水を貯蔵する給水タンクから製氷皿に水を供 給する方式の製氷機能を有する冷蔵庫において、 前記製氷皿に供給する水を浄化 する浄化装置を前記給水タンクの外に設けたことを特徴とする冷蔵庫である。 請求項 1 6に係る発明は、 前記浄化装置は、 前記冷蔵庫の通常使用時にユーザ —の手に触れない場所に設置したことを特徴とする請求項 1 5記載の冷蔵庫であ る ο The invention according to claim 15 is a refrigerator having an ice making function of supplying water to an ice tray from a water supply tank storing ice making water, wherein the water supply tank is provided with a purifying device for purifying water supplied to the ice tray. A refrigerator provided outside of the refrigerator. The invention according to claim 16 is the refrigerator according to claim 15, wherein the purifying device is installed in a place where a user cannot touch the refrigerator during normal use of the refrigerator.
請求項 1 7に係る発明は、 前記浄化装置は、 放電型光触媒フィルタであること を特徴とする請求項 1 5または 1 6記載の冷蔵庫である。  The invention according to claim 17 is the refrigerator according to claim 15 or 16, wherein the purifying device is a discharge-type photocatalytic filter.
請求項 1 8に係る発明は、 前記放電型光触媒フィル夕の光触媒モジュールは、 多孔質セラミックスであることを特徴とする請求項 1 7記載の冷蔵庫である。 請求項 1 9に係る発明は、 前記浄化装置は、 前記製氷用水を前記光触媒モジュ —ルに気液混合体にして供給することを特徴とする請求項 1 7または 1 8記載の 冷蔵庫である。  The invention according to claim 18 is the refrigerator according to claim 17, wherein the photocatalyst module of the discharge-type photocatalyst filter is made of porous ceramics. The invention according to claim 19 is the refrigerator according to claim 17 or 18, wherein the purification device supplies the ice making water to the photocatalyst module as a gas-liquid mixture.
請求項 2 0に係る発明は、 前記気液混合体の気体は、 酸素を含む気体であるこ とを特徴とする請求項 1 9記載の冷蔵庫である。  The invention according to claim 20 is the refrigerator according to claim 19, wherein the gas of the gas-liquid mixture is a gas containing oxygen.
請求項 2 1に係る発明は、 前記製氷用水を、 前記光触媒モジュールに水滴にし て滴下することを特徴とする請求項 1 7または 1 8記載の冷蔵庫である。  The invention according to claim 21 is the refrigerator according to claim 17 or 18, wherein the ice making water is dropped on the photocatalyst module as water droplets.
請求項 2 2に係る発明は、 前記製氷用水を前記光触媒モジュールにらせん状の 水流になるように導入することを特徴とする請求項 1 7または 1 8記載の冷蔵庫 である。  The invention according to claim 22 is the refrigerator according to claim 17 or 18, wherein the water for ice making is introduced into the photocatalyst module in a spiral water flow.
請求項 2 3に係る発明は、 前記光触媒モジュールまたはその反応容器にらせん 状の水流を作るためのらせん状の凹凸を設けたことを特徴とする請求項 1 7また は 1 8記載の冷蔵庫である。  The invention according to claim 23 is the refrigerator according to claim 17 or 18, wherein the photocatalyst module or the reaction vessel thereof is provided with spiral irregularities for creating a spiral water flow. .
【発明の効果】 【The invention's effect】
請求項 1に係る発明の浄化装置であると、 光触媒モジュールにおいて、 外周部 にある円弧状の電極の中心に棒状の電極が配され、 棒状の電極と円弧状の電極と の距離が常に一定であるため、 均一な放電を行うことができ、 光触媒モジュール の表面全体を用いて浄化することができる。 この場合に、 絶縁体を一対の電極間 に介在させて放電が起こるため紫外線を発生させることができ、 その紫外線から のオゾンによっても浄化を行うことができる。 また、 光触媒モジュールを円柱状 に形成することにより、 円弧状の電極と棒状の電極との間の寸法を精度よく保持 することができる。 According to the purification device of the invention according to claim 1, in the photocatalyst module, in the photocatalyst module, the rod-shaped electrode is disposed at the center of the arc-shaped electrode on the outer peripheral portion, and the distance between the rod-shaped electrode and the arc-shaped electrode is always constant. Therefore, uniform discharge can be performed, and the entire surface of the photocatalyst module can be purified. In this case, ultraviolet rays can be generated because an insulator is interposed between the pair of electrodes to generate electric discharge, and purification can be performed by ozone from the ultraviolet rays. In addition, by forming the photocatalyst module into a cylindrical shape, the dimensions between the arc-shaped electrode and the rod-shaped electrode can be accurately maintained. can do.
請求項 2に係る発明の浄化装置であると、 筒状の絶縁体容器の内部に円柱状の 光触媒モジュールを収納する構造であるため、 製造が容易で、 また、 棒状の電極 と円弧状の電極との寸法精度を正確に保持することができる。  According to the purifying apparatus of the invention according to claim 2, the structure is such that the cylindrical photocatalyst module is housed inside the cylindrical insulator container, so that the manufacturing is easy, and the rod-shaped electrode and the arc-shaped electrode are used. Dimensional accuracy can be maintained accurately.
請求項 3に係る発明の浄化装置であると、 絶縁体容器の外周面に、 導電性イン クによる印刷、 メツキ、 または、 蒸着により他方の電極である円弧状の電極を形 成するため、 電極を形成し易く、 また、 絶縁体容器と円弧状の電極との間に隙間 が形成されることがない。 したがって、 放電が確実に起こる。  According to the purification device of the third aspect of the present invention, an electrode is formed on the outer peripheral surface of the insulating container by printing, plating, or vapor deposition using a conductive ink to form an arc-shaped electrode that is the other electrode. And a gap is not formed between the insulator container and the arc-shaped electrode. Therefore, a discharge occurs reliably.
請求項 4に係る発明の浄化装置であると、 円柱状の光触媒モジュールの軸方向 の長さを、 その直径の寸法より大きくすることにより、 棒状の電極と円弧状の電 極との間の距離が短くなり、 棒状の電極と円弧状の電極との対向する寸法が長く なるため、 効率よく放電光を発生させることができる。  According to the purifying device of the invention according to claim 4, the distance between the rod-shaped electrode and the arc-shaped electrode is increased by making the axial length of the cylindrical photocatalyst module larger than its diameter. And the opposing dimension of the rod-shaped electrode and the arc-shaped electrode becomes longer, so that discharge light can be generated efficiently.
請求項 5に係る発明の浄化装置においては、 少なくとも 5 %以上の担持率があ ると、 浄化効果を得ることができる。  In the purifying device according to the fifth aspect of the present invention, a purifying effect can be obtained if the loading rate is at least 5% or more.
請求項 6に係る発明の浄化装置であると、 一対の電極間にかかる電圧の波形が 正と負の両側に振れる波形であるため、 効率よく放電を行うことができる。 請求項 7に係る発明の浄化装置であると、 多量の分解対象物質媒体が流入して も诤化をすることが可能となる。  According to the purifying apparatus of the invention of claim 6, the voltage applied between the pair of electrodes has a waveform swinging to both the positive and negative sides, so that the discharge can be performed efficiently. According to the purification device of the invention of claim 7, even if a large amount of the decomposition target substance medium flows in, it is possible to deteriorate.
請求項 8に係る浄化装置においてほ、 放電電極に絶縁材料からなる保護層を設 けている。 そのため、 気液混合体が光触媒モジュールの内部あるいは近傍に連続 して入ってきた場合に、 この液体部分が放電電極と同電位になることがなく、 液 体に人間が触れても感電しない。  In the purifying apparatus according to claim 8, a protective layer made of an insulating material is provided on the discharge electrode. Therefore, when the gas-liquid mixture continuously enters into or near the photocatalyst module, the liquid portion does not have the same potential as the discharge electrode, and no electric shock is caused even if a human touches the liquid.
また、 放電電極と対向電極との間に所要の電圧が印加されて放電光が発生し光 触媒が活性化すると、 気液混合体中の分解対象物質を分解することができる。 請求項 9に係る発明の浄化装置においては、 光触媒モジュールが絶縁体容器に 収納されているため、 保護層が設けられている放電電極と光触媒モジュ一ルが露 出することがなく、 人間の手に触れにくい。  Further, when a required voltage is applied between the discharge electrode and the counter electrode to generate discharge light and activate the photocatalyst, the decomposition target substance in the gas-liquid mixture can be decomposed. In the purifying apparatus according to the ninth aspect of the present invention, since the photocatalyst module is housed in the insulator container, the discharge electrode provided with the protective layer and the photocatalyst module are not exposed, and human hands are not exposed. It is hard to touch.
請求項 1 0に係る発明の浄化装置においては、 保護層の長さ方向の膨張率が、 放電電極に用いる金属材料の線膨張率の約 9 0 %から約 1 1 0 %の範囲内である ため、 放電電極の線膨張に合わせて保護層も膨張し、 保護層が放電電極から剥が れたり、 亀裂が入ったりすることがない。 In the purifying apparatus according to the tenth aspect, the coefficient of expansion in the length direction of the protective layer is in a range of about 90% to about 110% of a linear expansion coefficient of the metal material used for the discharge electrode. Therefore, the protective layer also expands in accordance with the linear expansion of the discharge electrode, and the protective layer does not peel off or crack from the discharge electrode.
請求項 1 1に係る発明の浄化装置においては、 保護層の厚さを約 l mm以下と しているため、 大きな電圧をかけることなく低い電圧で浄化を行うことができ る o  In the purifying apparatus according to the eleventh aspect of the present invention, since the thickness of the protective layer is set to about 1 mm or less, purification can be performed at a low voltage without applying a large voltage.o
請求項 1 2に係る発明の浄化装置においては、 保護層の絶縁材料が、 約 1 %の 弾性変形が可能な弾性体であるため、 放電電極の発熱による放電電極の膨張に対 応して弾性変形するため、 保護層が剥がれたり亀裂が発生したりするのを防止す ることができる。  In the purifying apparatus of the invention according to claim 12, since the insulating material of the protective layer is an elastic body capable of elastic deformation of about 1%, the elastic material responds to expansion of the discharge electrode due to heat generation of the discharge electrode. Since the protective layer is deformed, it is possible to prevent the protective layer from peeling or cracking.
請求項 1 4に係る発明の冷蔵庫であると、 製氷皿へ流れる製氷用水を確実に浄 化をすることができる。  According to the refrigerator of the invention according to claim 14, the ice making water flowing to the ice tray can be reliably purified.
請求項 1 5に係る発明の冷蔵庫によれば、 給水タンクは蓋部分も含めて洗浄が 容易であり、 給水タンクの清潔性が保てる。  According to the refrigerator of the fifteenth aspect of the present invention, the water tank, including the lid, can be easily cleaned, and the cleanliness of the water tank can be maintained.
請求項 1 6に係る発明の拎蔵庫について説明する。 従来の洗浄の度に取り外す 方式では、 給水タンクを洗浄する際に人の手によって浄化装置をどこかに置かな ければならないが、 その際に人の手からあるいはおいた場所から雑菌が浄化装置 に付着する可能性がある。 また雑菌以外でも置き場所によっては油分の付着の可 能性があり、 表面に油分が付着するとその部分は効果がなくなつてしまうために 寿命を極端に短くしてしまう結果になりかねない。 そこで、 請求項 1 6に係る発 明の冷蔵庫では、 浄化装置をユーザ一の手に触れない場所に設置したことによつ て、 給水タンクの洗浄時に浄化装置に人の手が触れることがなく、 給水タンクか ら取り外してどこかに置く必要もなく、 雑菌の付着や油分の付着の可能性がな い。  The storage of the invention according to claim 16 will be described. With the conventional method of removing water after washing, the water purifier must be manually placed somewhere when cleaning the water supply tank. May adhere to the In addition, other than bacteria, there is a possibility that oil may adhere to the surface depending on the place where the oil adheres. If oil adheres to the surface, the part becomes ineffective and the life may be extremely shortened. Therefore, in the refrigerator of the present invention according to claim 16, the purifying device is installed in a place where the user does not touch the purifying device, so that the purifying device is not touched by a human hand when the water supply tank is washed. There is no need to remove it from the water tank and place it somewhere, and there is no possibility of adhesion of various bacteria and oil.
請求項 1 7に係る発明の冷蔵庫によれば、 放電型光触媒フィル夕は、 放電装置 の放電によって発生した紫外線を利用して光触媒モジュールを活性化させるもの である。 この放電型光触媒フィル夕は、 活性炭やランプによって光触媒を活性化 させる方式に比較して寿命が長い長所がある。 また、 光触媒モジュールは強力な 酸化作用を有するためにトリハロメタンなどの有害物質も分解できる。 そこで、 請求項 1 7に係る発明の冷蔵庫では、 浄化装置にこの放電型光触媒フィルタを用 いたことにより、 長い寿命を実現し、 また製氷用水から トリハロメタンなどの有 害物質も分解して浄化できる。 According to the refrigerator of the seventeenth aspect of the present invention, the discharge type photocatalyst filter activates the photocatalyst module using ultraviolet light generated by the discharge of the discharge device. This discharge-type photocatalyst filter has an advantage of a longer life than a method in which the photocatalyst is activated by activated carbon or a lamp. In addition, the photocatalyst module has a strong oxidizing effect and can decompose harmful substances such as trihalomethane. Therefore, in the refrigerator according to the seventeenth aspect of the present invention, the discharge type photocatalytic filter is used in a purification device. As a result, a long service life can be achieved, and harmful substances such as trihalomethane can be decomposed and purified from ice-making water.
請求項 1 8に係る発明の冷蔵庫によれば、 光触媒モジュールが多孔質セラミツ クスである場合、 それを透過する水は光触媒との接触時間が長くなつて効果的な 浄化が期待できる。 そこで、 請求項 1 8に係る発明の冷蔵庫では、 放電型光触媒 フィル夕の光触媒モジュールにこのような多孔質セラミヅクスを用いたことによ り、 製氷用水の効果的な浄化が可能である。  According to the refrigerator of the eighteenth aspect of the invention, when the photocatalyst module is a porous ceramic, the water permeating the photocatalyst module can be expected to be effectively purified since the contact time with the photocatalyst becomes long. Therefore, in the refrigerator according to the eighteenth aspect of the present invention, by using such a porous ceramic for the photocatalyst module of the discharge type photocatalyst filter, the water for ice making can be effectively purified.
請求項 1 9に係る発明の冷蔵庫によれば、 製氷用水を気液混合体にすることに よって放電装置の電極間の放電開始電圧を下げることができるので、 高電圧を発 生させる電源部分の信頼性を増すことができ、 また長寿命化ができる。 また、 気 体と液体とが同時に光触媒モジュール内を流れることによって液体の流れが乱れ るため、 撹拌効果が生まれ、 より短時間で水の浄化処理ができる。  According to the refrigerator of the invention according to claim 19, the discharge starting voltage between the electrodes of the discharge device can be reduced by making the ice-making water into a gas-liquid mixture. The reliability can be increased and the service life can be extended. In addition, since the gas and the liquid simultaneously flow in the photocatalyst module, the flow of the liquid is disturbed, so that an agitation effect is generated and the water can be purified in a shorter time.
請求項 2 0に係る発明の冷蔵庫によれば、 光触媒モジュール内を流れる気液混 合体の気体に酸素を含ませることによって、 放電作用によって酸素からオゾンが 発生し、 そのオゾンによる酸化力も水の浄化に利用することができ、 より強力な 浄水効果を得ることができる。  According to the refrigerator of the present invention, ozone is generated from oxygen by the discharge action by including oxygen in the gas of the gas-liquid mixture flowing in the photocatalyst module, and the oxidizing power of the ozone also purifies water. And a stronger water purification effect can be obtained.
請求項 2 1に係る発明の冷蔵庫によれば、 放電空間は高電圧であるためにそこ を流れる水にも高電圧がかかっており、 水が連続して流れていると連続した水全 体も高電圧になる可能性があり、 その水の流れ方で周囲の導電体に高電圧の水が 触れるとその導電体も高電圧になる可能性がある。 そこで、 請求項 2 1に係る発 明の冷蔵庫では、 製氷用水を水滴にして放電型光触媒フィル夕の光触媒モジュ一 ルに滴下することで、 放電空間を通過するときにその水滴が高電圧に帯電しても 製氷用水の全体が高電圧になるのを防ぎ、 それによる悪影響を防ぐ。  According to the refrigerator of claim 21, since the discharge space is at a high voltage, a high voltage is also applied to the water flowing through the discharge space. High voltage can occur, and if high-voltage water comes into contact with surrounding conductors in the way the water flows, that conductor can also reach high voltage. Therefore, in the refrigerator of the invention according to claim 21, the water for ice making is charged to a high voltage when passing through the discharge space by dropping water for ice making into water droplets onto the photocatalyst module of the discharge type photocatalyst filter. Even so, the entire ice making water is prevented from becoming a high voltage, and the adverse effects due to it are prevented.
請求項 2 2に係る発明の冷蔵庫によれば、 製氷用水を放電型光触媒フィルタの 光触媒モジュールに流す場合、 最も簡単には水を自然落下させる構造が望まし い。 しかし、 自然落下では光触媒モジュールとの接触時間が短いので、 放電浄化 をより効果的にするにはその接触時間を長くするのが好ましい。 そこで、 請求項 1 6に係る発明の冷蔵庫では、 製氷用水を放電型光触媒フィル夕の光触媒乇ジュ —ルにらせん状の水流になるように導入することで光触媒モジュールとの接触時 間を長くし、 放電浄化作用をより効果的に行う。 According to the refrigerator of the invention of claim 22, when water for ice making is allowed to flow through the photocatalytic module of the discharge type photocatalytic filter, it is most simply desirable to have a structure in which water falls naturally. However, since the contact time with the photocatalyst module is short in natural fall, it is preferable to make the contact time longer for more effective discharge purification. Therefore, in the refrigerator according to the present invention, the ice making water is introduced into the photocatalyst module of the discharge type photocatalyst filter so as to form a helical water flow, so that it can be brought into contact with the photocatalyst module. The discharge interval is made longer to make the discharge purifying action more effective.
請求項 2 3に係る発明の冷蔵庫によれば、 製氷用水を放電型光触媒フィル夕の 光触媒モジュールに流す際に、 そのらせん状の水流を作るための凹凸によって水 を光触媒モジュール内でらせん状に流し、 光触媒モジュールとの接触時間を長く して放電浄化作用をより効果的に行う。  According to the refrigerator of the invention according to claim 23, when flowing water for ice making to the photocatalyst module of the discharge type photocatalyst filter, the water is spirally flown in the photocatalyst module by the unevenness for creating the spiral water flow. By extending the contact time with the photocatalyst module, the discharge purifying action is performed more effectively.
【図面の簡単な説明】 [Brief description of the drawings]
図 1は、 本発明の第 1の実施形態の冷蔵庫の説明図である。  FIG. 1 is an explanatory diagram of a refrigerator according to a first embodiment of the present invention.
図 2は、 本発明の第 2の実施形態の冷蔵庫の説明図である。  FIG. 2 is an explanatory diagram of a refrigerator according to a second embodiment of the present invention.
図 3は、 第 2の実施形態の冷蔵庫における浄化装置の断面図である。  FIG. 3 is a sectional view of a purification device in a refrigerator according to the second embodiment.
図 4は、 本発明の第 2の実施形態の冷蔵庫における浄化装置の浄化性能を計測 したグラフである。  FIG. 4 is a graph showing the measured purifying performance of the purifying apparatus in the refrigerator according to the second embodiment of the present invention.
図 5は、 本発明の第 3の実施形態の冷蔵庫における浄化装置の水平断面図及び 垂直断面図である。  FIG. 5 is a horizontal sectional view and a vertical sectional view of a purification device in a refrigerator according to a third embodiment of the present invention.
図 6は、 本発明の第 3の実施形態の冷蔵庫における浄化装置の浄化性能を計測 したグラフである。  FIG. 6 is a graph showing the measurement of the purification performance of the purification device in the refrigerator according to the third embodiment of the present invention.
図 7は、 本発明の第 4の実施形態の冷蔵庫における浄化装置の断面図である。 図 8は、 本発明の第 4の実施形態の冷蔵庫における诤化装置の浄化性能を計測 したグラフである。  FIG. 7 is a sectional view of a purification device in a refrigerator according to a fourth embodiment of the present invention. FIG. 8 is a graph showing the measurement of the purification performance of the gasifier in the refrigerator according to the fourth embodiment of the present invention.
図 9は、 第 5の実施形態における製氷装置の構造を示す説明図である。  FIG. 9 is an explanatory diagram illustrating a structure of an ice making device according to the fifth embodiment.
図 1 0は、 同じく浄化装置の縦断面図である。  FIG. 10 is a longitudinal sectional view of the purification device.
図 1 1は、 光触媒モジュールの直径と軸方向の長さを変化させた時の遊離塩素 除去率の実験結果を示した表の図である。  FIG. 11 is a table showing the experimental results of the free chlorine removal rate when the diameter and the axial length of the photocatalyst module were changed.
図 1 2は、 遊離塩素除去率と触媒担持率の実験結果を示すグラフである。 図 1 3は、 電源装置によって印加される全波波形のグラフである。  FIG. 12 is a graph showing the experimental results of the free chlorine removal rate and the catalyst loading rate. FIG. 13 is a graph of a full-wave waveform applied by the power supply device.
図 1 4は、 同じく半波波形のグラフである。  Fig. 14 is a graph of the half-wave waveform.
図 1 5は、 第 6の実施形態の光モジュールの説明図であり、 (a ) は横断面図 であり、 (b ) は縦断面図である。  FIGS. 15A and 15B are explanatory diagrams of the optical module according to the sixth embodiment. FIG. 15A is a cross-sectional view, and FIG. 15B is a longitudinal cross-sectional view.
図 1 6は、 第 7の実施形態の浄化装置の縦断面図である。 図 1 7は、 第 8の実施形態における浄化装置の構造を示す縦断面図である。 図 1 8は、 電源装置によって印加される全波波形のグラフである。 FIG. 16 is a longitudinal sectional view of the purification device of the seventh embodiment. FIG. 17 is a longitudinal sectional view showing the structure of a purification device according to the eighth embodiment. FIG. 18 is a graph of a full-wave waveform applied by the power supply.
図 1 9は、 保護層と放電電圧との関係を示すグラフである。  FIG. 19 is a graph showing the relationship between the protective layer and the discharge voltage.
図 2 0は、 第 1 0の実施形態の浄化装置集合体の斜視図である。  FIG. 20 is a perspective view of a purification device assembly according to the tenth embodiment.
図 2 1は、 第 1の従来例の冷蔵庫における浄化装置の説明図である。  FIG. 21 is an explanatory diagram of a purification device in a first conventional refrigerator.
図 2 2は、 第 2の従来例の冷蔵庫における浄化装置の説明図である。  FIG. 22 is an explanatory diagram of a purification device in a refrigerator of the second conventional example.
図 2 3は、 従来例の浄化装置の説明図である。  FIG. 23 is an explanatory view of a conventional purification device.
【発明を実施するための最良の形態】 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を図に基づいて詳説する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第 1の実施形態)  (First Embodiment)
図 1は本発明の第 1の実施形態の冷蔵庫 1 0 0における製氷装置の構成を示し ている。 製水装置は、 給水タンク 1 1には給水管 1 2が設けてある。 給水夕ンク 1 1内の製氷用水 1 3は、 この給水管 1 2からタンク外に導出し、 また夕ンク外 に設置されている浄化装置 1 4に通した後に製氷室 1 5内の製氷皿 1 6に給水す るようにしてある。  FIG. 1 shows a configuration of an ice making device in a refrigerator 100 according to a first embodiment of the present invention. In the water producing apparatus, a water supply pipe 11 is provided in a water supply tank 11. The ice making water 13 in the water supply evening tank 11 is drawn out of the tank from the water supply pipe 12 and passed through the purification device 14 installed outside the evening water tank, and then the ice making tray in the ice making chamber 15 Water is supplied to 16.
なお、 水受け体 2 1は、 給水タンク 1 1から給水管 1 2を通じてポンプ (図示 せず) で吸い出した製水用水 1 3を一時貯溜する部分であり、 この水受け体 2 1 から浄化装置 1 4及び製氷室 1 5へ移流管 1 7にて製氷用水 1 3を適宜の流量で 供給する。  The water receiver 21 is a part for temporarily storing water for pumping water 13 drawn from a water supply tank 11 through a water supply pipe 12 by a pump (not shown). Supply ice making water 13 at an appropriate flow rate to 14 and ice making room 15 with advection tube 17.
給水タンク 1 1から製氷室 1 5への移流のための吸い上げポンプを設ける場所 については特に限定されない。 例えば、 水受け体 2 1にポンプを設け、 給水管 1 2のタンク外の端部をその吸い込み口に接続し、 水受け体 2 1をその吐き出し口 に接続することによって給水タンク 1 1内の製氷用水 1 3を吸い出して浄化装置 1 4に通し、 製氷室 1 5の製氷皿 1 6に給水する構成にすることができる。 ある いは、 給水管 1 2のタンク内部の下端にポンプを設け、 給水タンク 1 1の外部に おいてこのポンプに近接して回転磁界を与える回転磁界発生装置を設置し、 ボン プを回転磁界によって誘導回転させる構成でもよい。  There is no particular limitation on the location of a suction pump for advancing water from the water supply tank 11 to the ice making chamber 15. For example, a pump is provided in the water receiver 21, the end of the water supply pipe 12 outside the tank is connected to its suction port, and the water receiver 21 is connected to its outlet, so that the inside of the water tank 11 is The ice making water 13 can be sucked out, passed through the purification device 14, and supplied to the ice making tray 16 in the ice making room 15. Alternatively, a pump is provided at the lower end of the water supply pipe 12 inside the tank, and a rotating magnetic field generator that applies a rotating magnetic field is installed outside the water supply tank 11 near the pump. Alternatively, a configuration may be adopted in which rotation is induced by rotation.
この第 1の実施形態の冷蔵庫 1 0 0において、 浄化装置 1 4の種類、 構造は特 に限定されるものではなく、 その中を流れる製氷用水 1 3を浄化する機能があれ ばいずれを用いることもできる。 例えば、 活性炭フィルタ、 浄水フィルタ、 光触 媒フィルタ等である。 In the refrigerator 100 of the first embodiment, the type and structure of the purifying device 14 are special. However, the present invention is not limited to this, and any type may be used as long as it has a function of purifying the ice making water 13 flowing therethrough. For example, an activated carbon filter, a water purification filter, a photocatalyst filter, and the like.
この第 1の実施形態の冷蔵庫 1 0 0によれば、 浄化装置 1 4には製氷用水 1 3 がその内部を通過している間に浄化する能力が必要であるが、 浄化装置 1 4が給 水タンク 1 1の外に設置できるので比較的に大きな容積を占めるものであっても 許容でき、 それだけ浄化能力の高いものを採用することができ、 長寿命化も図れ る o  According to the refrigerator 100 of the first embodiment, the purifying device 14 needs to be capable of purifying the ice making water 13 while passing through the inside thereof. Since it can be installed outside the water tank 11, it is acceptable even if it occupies a relatively large volume, so that it can be used with a higher purification capacity and a longer life can be achieved.
また本実施形態の構成では、 給水タンク 1 1から外部の浄化装置 1 4との間に は製氷用水 1 3をタンクから汲み上げて供給するための給水管 1 2、 移流管 1 7 を設置してあるため、 その給水管 1 2あるいは移流管 1 7の途中で隔壁 2 2によ つて通常の使用状態ではユーザーの手が触れることがないように浄化装置 1 4を 仕切る構造にすれば、 浄化装置 1 4にュ一ザ一の手が触れて雑菌が繁殖する事態 の発生が避けられ、 メンテナンスフリ一化が図れる。  In the configuration of the present embodiment, a water supply pipe 12 and an advection pipe 17 are provided between the water supply tank 11 and the external purification device 14 for pumping and supplying ice making water 13 from the tank. Therefore, if the purifying device 14 is configured to be separated from the user's hand in a normal use condition by a partition wall 22 in the middle of the water supply pipe 12 or the advection pipe 17, It is possible to avoid the occurrence of the germ breeding due to the user's hand touching 14 and maintenance free.
(第 2の実施形態)  (Second embodiment)
次に、 本発明の第 2の実施形態の冷蔵庫 1 0 0について、 図 2、 図 3を用いて a>¾明 ¾ o  Next, a refrigerator 100 according to a second embodiment of the present invention will be described with reference to FIGS.
第 2の実施形態の特徴ほ、 給水夕ンク 1 1の外部に設置する浄化装置 1 4に放 鼋型光触媒フィル夕を用いた点にある。 なお、 この浄化装置 1 4に給水タンク 1 1内の製氷用水 1 3を供給し、 浄化した後に製氷室 1 5に給水する配管径路につ いては第 1の実施形態と同様である。 ただし、 水受け体 2 1から浄化装置 1 4ま での移流管 1 7はオリフィスになっていて、 流量を絞って吐圧をあげ、 浄化装置 1 4には気液混合体にして製氷用水 1 3を供給するようにしてある。  The second embodiment is characterized in that a discharge type photocatalyst filter is used for a purification device 14 installed outside a water supply nozzle 11. Note that the piping for supplying the ice making water 13 in the water supply tank 11 to the purification device 14 and purifying the water after the purification is the same as in the first embodiment. However, the advection pipe 17 from the water receiver 21 to the purifier 14 is an orifice, which reduces the flow rate and raises the discharge pressure. 3 is supplied.
図 3に示したように、 浄化装置 1 4である放電型光触媒フィル夕は、 光触媒乇 ジュール 1 4 1と高圧電源 1 4 2から構成される。 光触媒モジュール 1 4 1は、 中心軸部分に電極揷入用の中心穴が開けられた円柱状の 3次元多孔質セラミック ス担体 1 4 3に例えば、 酸化チタンのような光触媒を塗布したものを反応容器 1 4 4内に収容し、 反応容器 1 4 4の外周と前記中心穴内とに電極 1 4 5, 1 4 6 を配置した構造である。 そして、 高圧電源 1 4 2によりこの電極 1 4 5, 1 4 6 間に高電圧を印加するようにしてある。 光触媒モジュール 1 4 1の反応容器 1 4 4は、 ガラスや樹脂などの誘電体で構成してあり、 外側の電極 1 4 6はこの反応 容器 1 4 4に密着するように設けてある。 As shown in FIG. 3, the discharge type photocatalyst filter which is the purifying device 14 includes a photocatalyst module 141 and a high-voltage power source 142. The photocatalyst module 14 1 reacts with a photocatalyst such as titanium oxide coated on a cylindrical three-dimensional porous ceramic carrier 144 with a central hole for electrode insertion at the center axis. It is housed in a vessel 144, and has a structure in which electrodes 144 and 146 are arranged on the outer periphery of the reaction vessel 144 and in the center hole. The electrodes 1 4 5, 1 4 6 A high voltage is applied in between. The reaction vessel 144 of the photocatalyst module 144 is made of a dielectric material such as glass or resin, and the outer electrode 146 is provided in close contact with the reaction vessel 144.
上記の構成の放電型光触媒フィルタの浄化装置 1 4では、 光触媒モジュール 1 4 1に対して高圧電源 1 4 2によって高圧を印加することにより電極 1 4 5 , 1 4 6間で放電現象が起こり、 光触媒を設置している空間に紫外線が発生する。 こ の発生した紫外線が照射されることによって光触媒が励起され、 前記セラミック 担体 1 4 3を流れる水の中の有機物質を分解することができる。  In the discharge type photocatalytic filter purifying device 14 having the above configuration, a high voltage is applied to the photocatalyst module 14 1 by the high voltage power supply 14 2 to cause a discharge phenomenon between the electrodes 1 4 5 and 1 4 6. Ultraviolet rays are generated in the space where the photocatalyst is installed. The irradiation of the generated ultraviolet rays excites the photocatalyst, and can decompose the organic substance in the water flowing through the ceramic carrier 144.
この浄化装置 1 4をなす放電型光触媒フィル夕は寿命が長く、 高度な浄化性能 が得られる特長がある。 また、 光触媒モジュール 1 4 1の部分に水を完全に充満 させた状態で放電させると 1 O k V以上の高電圧を電極 1 4 5, 1 4 6間に印加 しなければならないが、 光触媒部分に気体と水とが混在する流量で水を流すこと によって放電開始電圧を低下させることができ、 4 k V以上の電圧で浄水効果を 得ることができる。 しかもこのとき、 気液混合体の気体として酸素を含むものを 用いると、 放電空間で紫外線と共にオゾンも発生し、 このオゾンによる酸化殺菌 作用によって浄水効果がいっそう向上する。 なお、 オゾンは人体にとって有害な 物質であるが、 水中での寿命が数秒から数 1 0秒と言われており、 直ちに酸素に 戻るために人体への影響ほない。  The discharge type photocatalyst filter constituting the purifying device 14 has a long service life and has a feature that a high purifying performance can be obtained. In addition, if the photocatalyst module 141 is discharged with water completely filled, a high voltage of 1 OkV or more must be applied between the electrodes 145 and 146. By flowing water at a flow rate where gas and water are mixed together, the discharge starting voltage can be reduced, and a water purification effect can be obtained with a voltage of 4 kV or more. In addition, at this time, if a gas containing oxygen is used as the gas of the gas-liquid mixture, ozone is generated together with the ultraviolet rays in the discharge space, and the water purification effect is further improved by the oxidizing and sterilizing action of the ozone. Although ozone is a harmful substance to the human body, its lifetime in water is said to be several seconds to several ten seconds, and since it immediately returns to oxygen, it has no effect on the human body.
図 4には水中放電と水に空気を混合した気液混合体の中での放電との遊離塩素 除去率の違いを示した。 遊離塩素は水中の微生物や雑菌を死減させる作用がある が、 カルキ臭の発生源でもある。 そのため、 水の貯蔵時には重要であるが、 それ が含有されていると飲用するときには不味さの原因となる。 したがって、 放電型 光触媒フィル夕方式の浄化装置 1 4に気液混合体にして製氷用水 1 3を供給して 浄化すれば、 遊離塩素を除去してカルキ臭の効果的な除去が図れる。 加えて、 給 水タンク 1 1中の製氷用水 1 3にはカルキが残留しているので、 長期の貯溜でも 雑菌の発生を抑えることができる利点もある。  Figure 4 shows the difference in the free chlorine removal rate between underwater discharge and discharge in a gas-liquid mixture of water and air. Free chlorine has the effect of killing microorganisms and various bacteria in water, but it is also a source of odor. Therefore, it is important when storing water, but if it is contained, it causes unpleasant taste when drinking. Therefore, if the gas-liquid mixture is supplied to the purification device 14 of the discharge-type photocatalyst filter 14 and supplied with ice-making water 13 to purify it, free chlorine can be removed and the smell of lime can be effectively removed. In addition, since the chalky remains in the ice making water 13 in the water supply tank 11, there is also an advantage that the generation of various bacteria can be suppressed even during long-term storage.
なお、 水受け体 2 1と浄化装置 1 4とを接続する移流管 1 7はオリフィスにし てあるので、 このオリフィスで流量を調整することが可能である。 そこで、 水受 け体 2 1から浄化装置 1 4への製氷用水 1 3の流量を絞り、 水滴にして浄化装置 1 4に供給するようにすることができる。 このように水滴にして浄化装置 1 4に 供給すれば、 放電のために高電圧が水滴に印加され、 水滴が高電圧に帯電すると しても、 製氷用水 1 3の全体が高電圧に帯電することはなく、 したがって製氷用 水 1 3が接触する導電体部分が高電圧に帯電することもなく、 万が一にもユーザ —がその導電体部分に接触するようなことがあっても感電する恐れがない。 Since the advection pipe 17 connecting the water receiver 21 and the purification device 14 is an orifice, the flow rate can be adjusted with the orifice. Therefore, the flow rate of the ice making water 13 from the water receiver 21 to the purification device 14 is reduced, and the water 14 can be supplied. If the water droplets are supplied to the purifying device 14 in this manner, a high voltage is applied to the water droplets for discharging, and even if the water droplets are charged to a high voltage, the entire ice making water 13 is charged to a high voltage. Therefore, the conductor that comes into contact with the ice-making water 13 is not charged with high voltage, and even if the user may come into contact with the conductor, there is a risk of electric shock. Absent.
(第 3の実施形態)  (Third embodiment)
次に、 本発明の第 3の実施形態の冷蔵庫について、 図 5及び図 6を用いて説明 する。  Next, a refrigerator according to a third embodiment of the present invention will be described with reference to FIGS.
図 5は第 3の実施形態の冷蔵庫において採用される浄化装置 1 4を示してい る。 本実施形態で使用する浄化装置 1 4は、 移流管 1 7から浄化装置 1 4内に導 入する製氷用水 1 3の流れがサイクロン (渦流) となるように構成したことを特 徴としている。 すなわち、 導水口 1 4 7を反応容器 1 4 4の上部に水平接線方向 にして設け、 移流管 1 7から浄化装置 1 4に流れ込む製氷用水 1 4が矢印 Aのよ うに回転渦流になってセラミック担体 1 4 3にらせん状の水流になって流れ込む ようにしている。 なお、 その他の構成は図 2、 図 3に示した第 2の実施形態の冷 蔵庫の構成と同様である。 また、 製氷用水 1 3を気液混合体にして浄化装置 1 4 に供給する構成とすることもできる。  FIG. 5 shows a purifying device 14 employed in the refrigerator of the third embodiment. The purifier 14 used in the present embodiment is characterized in that the flow of the ice making water 13 introduced into the purifier 14 from the advection pipe 17 is a cyclone (vortex flow). That is, the water introduction port 147 is provided in the upper part of the reaction vessel 144 in a horizontal tangential direction, and the ice making water 14 flowing into the purification device 14 from the advection pipe 17 becomes a rotating vortex as shown by the arrow A, and the ceramic is formed. A spiral water stream flows into the carrier 144. The other configuration is the same as the configuration of the refrigerator according to the second embodiment shown in FIGS. Further, a configuration is also possible in which the ice making water 13 is supplied to the purification device 14 as a gas-liquid mixture.
これにより、 第 3の実施形態の冷蔵庫でほ、 浄化装置 1 4に流れ込む製氷用水 1 3がセラミック担体 1 4 3に塗布されている光触媒と接触する時間が長くな り、 浄水効果を高めることができる。 図 6は製氷用水 1 3を情報からセラミック 担体 1 4 3に滴下する場合と、 本実施形態のようにサイクロン方式で供給する場 合との遊離塩素除去率を計測した結果を示している。 同じ流量であっても、 本実 施形態の場合、 上部から滴下する場合よりも 1 0数ポイント、 遊纖塩素除去率が 向上していることが分かる。  Thereby, in the refrigerator of the third embodiment, the ice making water 13 flowing into the purification device 14 is in contact with the photocatalyst coated on the ceramic carrier 144 for a longer time, and the water purification effect can be enhanced. it can. FIG. 6 shows the results of measuring the free chlorine removal rate when the ice making water 13 is dropped on the ceramic carrier 144 from the information and when the ice making water 13 is supplied by the cyclone method as in the present embodiment. Even at the same flow rate, in the present embodiment, it can be seen that the free fiber chlorine removal rate is improved by more than 10 points compared to the case of dripping from the top.
(第 4の実施形態)  (Fourth embodiment)
次に、 本発明の第 4の実施形態の冷蔵庫について、 図 7及び図 8を用いて説明 する。  Next, a refrigerator according to a fourth embodiment of the present invention will be described with reference to FIGS.
本実施形態の特徴は、 浄化装置 1 4の反応容器 1 4 4内にらせん状の突起 1 4 8を設けた点にある。 なお、 本実施形態の冷蔵庫においても、 上記の特徴点以外 は、 図 2、 図 3に示した第 2の実施形態の冷蔵庫の構成と同様である。 また、 製 氷用水 1 3を気液混合体にして浄化装置 1 4に供給する構成とすることもでき る o The feature of this embodiment is that a spiral projection 148 is provided in the reaction vessel 144 of the purification device 14. In addition, also in the refrigerator of the present embodiment, Is the same as the configuration of the refrigerator of the second embodiment shown in FIG. 2 and FIG. It is also possible to adopt a configuration in which the ice making water 13 is supplied to the purification device 14 as a gas-liquid mixture o
これにより、 本実施形態の冷蔵庫では、 給水タンク 1 1から移流管 1 7に導出 され、 この移流管 1 7から浄化装置 1 4の上部に導入される製氷用水 1 3は、 ら せん状の突起 1 4 8にガイ ドされてらせん状の回転流になづてセラミヅク担体 1 4 3内を流下する。 これにより、 第 3の実施形態と同様に、 製氷用水 1 3が浄化 装置 1 4内を通過中に光触媒との接触時間が長くなり、 浄水効果が高くなる。 図 8はその浄水効果を、 らせん状突起 1 4 8を持たない反応容器を備えた浄化 装置と比較したものである。 本実施形態のように反応容器 1 4 4の内壁にらせん 状の突起 1 4 8を設け、 製氷用水 1 3を回転渦流にして流下させる場合、 そのよ うな突起がなく、 製氷用水 1 3が直線的に流下する場合に対して、 遊離塩素除去 率が 2 0ポィント前後改善されていることが分かる。  As a result, in the refrigerator of the present embodiment, the ice making water 13 led out of the water supply tank 11 to the advection pipe 17 and introduced from the advection pipe 17 to the upper part of the purification device 14 is formed by a spiral projection. Guided by 148, it flows down in the ceramic carrier 144 in a spiral rotating flow. Thus, as in the third embodiment, the contact time between the ice making water 13 and the photocatalyst while the ice making water 13 is passing through the purification device 14 is increased, and the water purification effect is enhanced. Figure 8 compares the water purification effect with a purification device equipped with a reaction vessel without spiral projections 148. As in the present embodiment, when spiral projections 1448 are provided on the inner wall of the reaction vessel 144, and the ice making water 13 is caused to flow down in a rotating vortex, there is no such projection, and the ice making water 13 is linear. It can be seen that the free chlorine removal rate has been improved by around 20 points compared to the case where the water flows downward.
(第 5の実施形態)  (Fifth embodiment)
本発明の第 5の実施形態の浄化装置 1 4について説明する。  A purification device 14 according to a fifth embodiment of the present invention will be described.
本実施形態の浄化装置 1 4は、 冷蔵庫 1 0 0における製氷装置 1 0に設けた場 合である。 すなわち、 この製氷装置 1 0によって製氷される製氷用水を浄化装置 1 4によって浄化する実施形態である。  The purifying device 14 of the present embodiment is provided in the ice making device 10 of the refrigerator 100. That is, in this embodiment, the ice making water produced by the ice making device 10 is purified by the purification device 14.
( 1 ) 冷蔵庫 1 0 0の構造  (1) Structure of refrigerator 100
図 9に示すように、 本実施形態の冷蔵庫 1 0 0は、 上から冷蔵室 1 0 2、 野菜 室 1 0 4、 製氷室 1 0 6、 冷凍室 1 0 8が設けられ、 各部屋には、 扉 1 1 0、 1 1 2、 1 1 4、 1 1 6が設けられている。  As shown in FIG. 9, the refrigerator 100 of the present embodiment is provided with a refrigerator room 102, a vegetable room 104, an ice making room 106, and a freezer room 108 from the top. , Doors 1 1 0, 1 1 2, 1 1 4, 1 1 6 are provided.
冷凍室 1 0 8の後方に圧縮機 1 1 7が載置された機械室 1 1 8が配され、 冷蔵 室 1 0 2の後方にマイコンよりなる冷蔵庫 1 0 0の制御部 1 2 0が設けられてい る o  A machine room 1 18 on which a compressor 1 17 is mounted is arranged behind the freezer room 108, and a control unit 120 of a refrigerator 100 composed of a microcomputer is provided behind the refrigerator room 102. O
また、 冷蔵室用扉 1 1 0の前面には、 冷蔵庫 1 0 0の操作スィツチと表示部を 有する操作部 1 2 6が設けられている。  Further, on the front surface of the refrigerator compartment door 110, an operation unit 126 having an operation switch and a display unit of the refrigerator 100 is provided.
( 2 ) 製氷装置 1 0の構造  (2) Structure of ice making device 10
製氷装置 1 0の構造について図 9に基づいて説明する。 製氷用水 1 3が貯蔵してある給水タンク 1 1は、 冷蔵室 1 0 2の下部に配置さ れ、 給水管 1 2が後方へ突出している。 給水タンク 1 1内の製氷用水 1 3は、 こ の給水管 1 2から給水タンク 1 1外の水受け体 2 1に導出し、 野菜室 1 0 4の後 方にある浄化装置 1 4を通過した後に製氷室 1 0 6内の製氷皿 1 6に給水され る。 給水された製氷皿 1 6は、 所定時間後に製氷モー夕 1 5によって、 ひねりな がら回転して、 冷気により凍結した氷を収納ケース 1 0 7に落下させる。 また、 収納ケース 1 0 7に氷があるか否かを検氷レパー 1 0 9で検知する。 The structure of the ice making device 10 will be described with reference to FIG. A water supply tank 11 storing ice-making water 13 is disposed below the refrigerator compartment 102, and a water supply pipe 12 projects rearward. The ice making water 13 in the water supply tank 11 is led out of the water supply pipe 12 to the water receiver 21 outside the water supply tank 11 and passes through the purification device 14 located behind the vegetable compartment 104. After that, water is supplied to the ice tray 16 in the ice chamber 106. The ice tray 16 supplied with water is twisted and rotated by the ice making mode 15 after a predetermined time, and the ice frozen by cold air is dropped into the storage case 107. The ice detection hopper 109 detects whether or not there is ice in the storage case 107.
水受け体 2 1は、 給水タンク 1 1から給水管 1 2を通じてポンプ 2 3で吸い出 した製氷用水 1 3を一時貯溜する部分であり、 水受け体 2 1から浄化装置 1 4ま での移流管 1 7はオリフィスになっていて、 流量を絞って吐圧をあげ、 浄化装置 1 4には気液混合体にして製氷用水 1 3を供給する。  The water receiver 21 is a part for temporarily storing the ice making water 13 sucked by the pump 23 from the water supply tank 11 through the water supply pipe 12 and is advected from the water receiver 21 to the purification device 14. The pipe 17 is an orifice. The flow rate is reduced to increase the discharge pressure, and the purification device 14 is supplied with ice making water 13 as a gas-liquid mixture.
給水タンク 1 1から製氷室 1 0 6への移流のための吸い上げポンプ 2 3を設け る場所は、 給水管 1 2の吸い込み口近傍にあるが、 この箇所には限定されない。 例えば、 水受け体 2 1にポンプ 2 3を設け、 給水管 1 2のタンク外の端部をそ の吸い込み口に接続し、 水受け体 2 1をその吐き出し口に接続することによって 給水タンク 1 1内の製氷用水 1 3を吸い出して浄化装置 1 4に通し、 製水室 1 0 6の製氷皿 1 6に給水する構成にすることができる。 あるいは、 給水管 1 2の夕 ンク内部の下端にポンプ 2 3を設け、 給水タンク 1 1の外部においてこのポンプ に近接して回転磁界を与える回転磁界発生装置を設置し、 ポンプ 2 3を回転磁界 によって誘導回転させる構成でもよい。  The location of the suction pump 23 for advancing the water from the water supply tank 11 to the ice making chamber 106 is located near the suction port of the water supply pipe 12, but is not limited to this location. For example, a water supply tank 1 is provided by providing a pump 23 in the water receiver 21, connecting the end of the water supply pipe 12 outside the tank to its inlet, and connecting the water receiver 21 to its outlet. The ice making water 13 in 1 can be sucked out, passed through the purification device 14, and supplied to the ice tray 16 in the water making chamber 106. Alternatively, a pump 23 is provided at the lower end inside the tank of the water supply pipe 12, and a rotating magnetic field generator that applies a rotating magnetic field near the pump outside the water supply tank 11 is installed. Alternatively, a configuration may be adopted in which rotation is induced by rotation.
浄化装置 1 4は、 光触媒モジュール 1 4 1を用いたもので、 後から詳しく説明 The purifier 14 uses a photocatalyst module 14 1 and will be described in detail later.
9る ο 9 ru ο
給水タンク 1 1から外部の浄化装置 1 4との間には製氷用水 1 3をタンクから 汲み上げて供給するための給水管 1 2、 移流管 1 7がある。 図 9に示すように、 給水管 1 2は冷蔵室の後方、 移流管 1 7は野菜室の後方に配されているため、 隔 壁 2 2によつて通常の使用状態ではユーザーの手が触れることがないように浄化 装置 1 4を仕切る構造である。 この隔壁 2 2によって、 浄化装置 1 4にユーザー の手が触れて雑菌が繁殖する事態の発生したり、 また、 放電を起こすための高圧 に触れるのが避けられ、 さらに、 メンテナンスフリー化が図れる。 ( 3 ) 浄化装置 1 4の構造 Between the water supply tank 11 and the external purification device 14, there are a water supply pipe 12 and an advection pipe 17 for pumping and supplying ice making water 13 from the tank. As shown in Fig. 9, since the water supply pipe 12 is located behind the refrigerator compartment and the advection pipe 17 is located behind the vegetable compartment, the partition 22 allows the user's hand to touch in normal use. It is a structure that divides the purification device 14 so that it does not occur. The partition wall 22 prevents the user from touching the purification device 14 to cause germs to multiply, and prevents the device from being exposed to high pressure for generating electric discharge, thereby further achieving maintenance-free operation. (3) Structure of purification device 14
次に、 浄化装置 1 4の構造について図 1 0に基づいて説明する。  Next, the structure of the purification device 14 will be described with reference to FIG.
図 1 0に示したように、 浄化装置 1 4である放電型光触媒フィルタは、 光触媒 モジュール 1 4 1と電源装置 1 4 2から構成される。  As shown in FIG. 10, the discharge-type photocatalytic filter as the purifying device 14 includes a photocatalyst module 144 and a power supply device 142.
光触媒モジュール 1 4 1は、 中心の軸部分に電極揷入用の軸孔が開けられた円 柱状の 3次元多孔質セラミックス基体 1 4 3に光触媒 (例えば、 酸化チタン) を 塗布したものである。 この円柱状の光触媒モジュール 1 4 1を、 筒状の絶縁体容 器 1 4 4内に収容している。 筒状の絶縁体容器 1 4 4は、 絶縁性のガラスや樹脂 等の誘電体よりなる。  The photocatalyst module 144 is obtained by applying a photocatalyst (for example, titanium oxide) to a cylindrical three-dimensional porous ceramic substrate 144 having a central shaft portion provided with a shaft hole for electrode insertion. The cylindrical photocatalyst module 144 is accommodated in a cylindrical insulator container 144. The cylindrical insulator container 144 is made of a dielectric material such as insulating glass or resin.
光触媒モジュール 1 4 1の軸孔に棒状の電極である放電電極 1 4 5を揷入して いる ο  The rod-shaped electrode discharge electrode 145 is inserted into the shaft hole of the photocatalyst module 014 ο
絶縁体容器 1 4 4の外周面には、 導電性インクによる印刷、 メヅキ、 または蒸 着によって、 円弧状の電極である対向電極 1 4 βが形成されている。  On the outer peripheral surface of the insulator container 144, a counter electrode 144β, which is an arc-shaped electrode, is formed by printing, printing, or vaporizing with conductive ink.
上記一対の放電電極 1 4 5と対向電極 1 4 6にほ高電圧を印加するための電源 装置 1 4 2が接続されている。 制御部 1 2 0から電源が供給される電源装置 1 4 2は、 絶縁体容器 1 4 4の近傍に配され、 両者は一体のユニットとして組み込ま れている。  A power supply device 142 for applying a very high voltage to the pair of discharge electrodes 144 and the counter electrode 144 is connected. A power supply device 142 to which power is supplied from the control unit 120 is disposed near the insulator container 144, and both are incorporated as an integrated unit.
円柱状の光触媒モジュール 1 4 1の形状に関しては、 光触媒モジュール 1 4 1 の軸方向の長さが、 その直径よりも大きく形成されている。 例えば、 軸方向の長 さが 2 0 mmであり、 直径が 1 0 mmである。  Regarding the shape of the cylindrical photocatalyst module 141, the axial length of the photocatalyst module 141 is formed larger than its diameter. For example, the axial length is 20 mm and the diameter is 10 mm.
光触媒モジュール 1 4 1におけるセラミヅクス基体 1 4 3に担持する光触媒の 担持率は 5 %以上となっている。  The loading ratio of the photocatalyst supported on the ceramic substrate 144 in the photocatalyst module 141 is 5% or more.
電源装置 1 4 2から一対の電極 1 4 5, 1 4 6に印加される高電圧は図 9 4に 示すように、 正弦波波形において全波波形となっている。  The high voltage applied from the power supply device 142 to the pair of electrodes 144 and 146 has a full-wave sinusoidal waveform as shown in FIG.
このように本実施形態の浄化装置においては、 光触媒モジュール 1 4 1が円柱 状でその中心に放電電極 1 4 5があり、 外周部に位置する部分に対向電極 1 4 6 が配置されているため、 放電電極 1 4 5と対向電極 1 4 6との距離が簡単に一定 の距離とすることができ、 放電を全周に亘つて均一にすることができる。  As described above, in the purification device of the present embodiment, the photocatalyst module 141 has a columnar shape, the discharge electrode 144 is provided at the center thereof, and the counter electrode 144 is disposed at the outer peripheral portion. In addition, the distance between the discharge electrode 144 and the counter electrode 144 can be easily made constant, and the discharge can be made uniform over the entire circumference.
棒状の放電電極 1 4 5は直接水と接触する部分であるため、 この放電電極 1 4 5の太さを太くすることで、 電極の腐食や摩耗を防止することができる。 Since the rod-shaped discharge electrode 1 4 5 is the part that comes into direct contact with water, this discharge electrode 1 4 5 By increasing the thickness of 5, it is possible to prevent electrode corrosion and wear.
( 4 ) 浄化装置 1 4が上記構成となる第 1の理由  (4) First reason that the purifier 14 has the above configuration
光触媒モジュール 1 4 1は、 絶縁体容器 1 4 4に収納されている理由について 説明する。  The reason why the photocatalyst module 14 1 is housed in the insulator container 144 will be described.
放電電極 1 4 5と対向電極 1 4 6との間に絶縁体が存在しないと、 光触媒モジ ユール 1 4 1に水が浸入すると、 この水によって放電電極 1 4 5と対向電極 1 4 6との間に導通が起こり放電が発生しないためである。 また、 筒状の絶縁体容器 1 4 4であるため、 対向電極 1 4 6に対して必ず絶縁効果を得ることができる。  If there is no insulator between the discharge electrode 144 and the counter electrode 144, when water enters the photocatalyst module 144, the water causes the water to flow between the discharge electrode 144 and the counter electrode 144. This is because conduction occurs between the electrodes and no discharge occurs. In addition, since it is a cylindrical insulator container 144, an insulating effect can always be obtained for the counter electrode 146.
( 5 ) 浄化装置 1 4が上記構成となる第 2の理由  (5) Second reason that the purifier 14 has the above configuration
対向電極 1 4 6が絶縁体容器 1 4 4の表面に導電性ィンクによる印刷、 メッ キ、 蒸着の方法で形成されている理由について説明する。  The reason why the counter electrode 144 is formed on the surface of the insulator container 144 by printing, plating, or vapor deposition using a conductive ink will be described.
対向電極 1 4 6が絶縁体容器 1 4 4の表面に導電性ィンクによる印刷、 メッ キ、 蒸着の方法で形成されているため、 対向電極 1 4 6と絶緑体容器 1 4 4との 間で隙間ができることがない。 隙間ができるとその間に電位が生じてしまい対向 電極 1 4 6と絶縁体容器 1 4 4との間で放電が起こり、 この放電は非常に高いェ ネルギ一の放電となるため対向電極 1 4 βや絶縁体容器 1 4 4の寿命を著しく低 下させてしまう。 しかし、 このように絶縁体容器 1 4 4の表面に直接対向電極 1 4 6を形成し隙間を設けないことにより、 このような不要な放電がなくなり、 対 向電極 1 4 6や絶縁体容器 1 4 4の寿命を向上させることができる。  Since the counter electrode 1 4 6 is formed on the surface of the insulating container 1 4 4 by printing, plating, or vapor deposition using a conductive ink, the space between the counter electrode 1 4 6 and the green body 1 4 4 No gaps can be created. If a gap is formed, a potential is generated during the gap, and a discharge occurs between the counter electrode 144 and the insulator container 144, and this discharge becomes a very high energy discharge, so the counter electrode 144β And the life of the insulating container 144 is significantly reduced. However, by forming the counter electrode 144 directly on the surface of the insulator container 144 and not providing a gap, such unnecessary discharge is eliminated, and the counter electrode 144 and the insulator container 1 4 The life of 4 can be improved.
( 6 ) 浄化装置 1 4が上記構成となる第 3の理由  (6) Third reason that the purifier 14 has the above configuration
光触媒モジュール 1 4· 1の軸方向の長さを径方向の長さよりも長くする理由に ついて説明する。  The reason why the axial length of the photocatalyst module 14.1 is longer than the radial length will be described.
光触媒モジュール 1 4 1をこのような形状にすると、 放電電極 1 4 5と対向電 極 1 4 6との距離を近付けることができ、 また、 放電電極 1 4 5と対向電極 1 4 6との対向する距離が長くすることができるために、 効率よく紫外線を発生させ ることが可能となる。 特に、 水中の分解対象物質を効率よく分解することができ る。 また、 放電電極 1 4 5の長さは水と光触媒との接触時間に直接関係するた め、 軸方向の寸法が短いと十分な効果を得ることができないが、 このように軸方 向の寸法を長くすることにより十分な浄化を行える。 図 11は、 水道中のカルキ臭の原因物質である遊離塩素に対する除去率の性能 を、 光触媒モジュール 141の直径と軸方向の長さを変えた場合の実験結果を示 したものである。 When the photocatalyst module 14 1 has such a shape, the distance between the discharge electrode 14 5 and the counter electrode 14 6 can be shortened, and the distance between the discharge electrode 14 5 and the counter electrode 14 6 can be reduced. Since it is possible to lengthen the distance, the ultraviolet light can be generated efficiently. In particular, the substance to be decomposed in water can be decomposed efficiently. In addition, since the length of the discharge electrode 145 is directly related to the contact time between water and the photocatalyst, a sufficient effect cannot be obtained if the dimension in the axial direction is short. By purifying it, sufficient purification can be performed. FIG. 11 shows the results of experiments on the performance of the removal rate of free chlorine, which is a substance causing the odor of lime in water, when the diameter and the axial length of the photocatalyst module 141 were changed.
図 11に示すように、 入力電力は常に 10Wであって条件は一定である。 この 状態で、 軸方向の長さ/直径の比率が 1/2であると遊離塩素除去率が 9 %であ り、 1/1であると 35%である。 一方、 2/1であると 67%まで向上する。 よって、 軸方向の長さを直径の長さよりも大きくすることによりその遊離塩素除 去率を著しく向上させることができる。  As shown in Fig. 11, the input power is always 10W and the condition is constant. In this state, the removal ratio of free chlorine is 9% when the length / diameter ratio in the axial direction is 1/2, and 35% when the ratio is 1/1. On the other hand, if it is 2/1, it will increase to 67%. Therefore, the free chlorine removal rate can be significantly improved by making the length in the axial direction larger than the length in the diameter.
なお、 冷蔵庫の製氷用水における遊離塩素除去率としては 50%以上が好まし いため、 軸方向の長さ/直径の長さとしては、 1. 5/1以上が好ましい。 In addition, since the free chlorine removal rate in the ice making water of the refrigerator is preferably 50% or more, the ratio of the axial length / diameter is preferably 1.5 / 1 or more.
(7) 浄化装置 14が上記構成となる第 4の理由 (7) Fourth reason that the purifier 14 has the above configuration
セラミヅクス基体 143に担持する光触媒の担持率を 5 %以上としている。 こ の理由を図 12に基づいて説明する。  The loading ratio of the photocatalyst carried on the ceramic substrate 143 is 5% or more. The reason for this will be described with reference to FIG.
図 12は、 遊離塩素除去率を縦軸に、 触媒担持率を横軸にしたグラフであつ て、 触媒担持率を変化させて遊離塩素除去率の状態を測定した実験結果である。 図 12に示すように、 触媒担持率が 5%以下であると遊離塩素除去率が 10% 以下となり、 軸方向の長さと直径の長さの比率を変えたり、 後から説明する電圧 波形の状態を変化させても、 必要な遊離塩素除去率を得ることができない。 その ため 5 %以上の担持率が必要である。  FIG. 12 is a graph in which the free chlorine removal rate is plotted on the vertical axis and the catalyst loading rate is plotted on the horizontal axis, and is an experimental result in which the state of the free chlorine removal rate was measured by changing the catalyst loading rate. As shown in Fig. 12, when the catalyst loading rate is 5% or less, the free chlorine removal rate becomes 10% or less, the ratio of the axial length to the diameter length is changed, and the voltage waveform state described later is used. However, the required free chlorine removal rate cannot be obtained even if the temperature is changed. Therefore, a loading rate of 5% or more is required.
(8) 浄化装置 14が上記構成となる第 5の理由  (8) Fifth reason that the purifier 14 has the above configuration
電源装置 142によって、 正弦波における全波波形を一対の電極 145 s 14 6に印加した理由を図 13及び図 14に基づいて説明する。 The reason why a full-wave sine wave is applied to the pair of electrodes 145 s 146 by the power supply device 142 will be described with reference to FIGS. 13 and 14.
図 13は、 上記したように全波波形を一対の電極 1453 146に印加した状 態であり、 図 14は半波波形を一対の電極 145, 146に印加したものの波形 である。 そして、 全波波形における遊離塩素除去率は 85%に対し、 半波波形で は 11 %である。 FIG. 13 shows a state in which the full-wave waveform is applied to the pair of electrodes 145 3 146 as described above, and FIG. 14 shows a waveform in which the half-wave waveform is applied to the pair of electrodes 145, 146. The free chlorine removal rate in the full-wave waveform is 85%, while that in the half-wave waveform is 11%.
この理由は、 全波波形では、 放電が絶縁物を介したパリア放電となるため、 高 電圧がかかっている時にのみ絶縁物表面にチャージした電子に関して、 電位が逆 転する際に電流として流れることによる。 一方、 半波波形ではチャージした電子 が流れにくいために電流が流れず、 紫外線量が減少して、 遊離塩素除去率が減少 からである。 The reason is that in a full-wave waveform, the discharge is a Palia discharge through the insulator, and the electrons charged on the insulator surface only when a high voltage is applied flows as a current when the potential reverses. by. On the other hand, the half-wave waveform This is because current does not flow due to the difficulty of flowing and the amount of ultraviolet rays decreases, and the free chlorine removal rate decreases.
( 9 ) 実施形態の効果  (9) Effects of the embodiment
この浄化装置 1 4をなす放電型光触媒フィルタは寿命が長く、 高度な浄化性能 が得られる特長がある。 また、 光触媒モジュール 1 4 1の部分に水を完全に充満 させた状態で放電させると 1 0 k V以上の高電圧を電極 1 4 5 , 1 4 6間に印加 しなければならないが、 光触媒部分に気体と水とが混在する流量で水を流すこと によって放電開始電圧を低下させることができ、 4 k V以上の電圧で浄水効果を 得ることができる。 しかもこのとき、 気液混合体の気体として酸素を含むものを 用いると、 放電空間で紫外線と共にオゾンも発生し、 このオゾンによる酸化殺菌 作用によって浄水効果がいっそう向上する。 なお、 オゾンは人体にとって有害な 物質であるが、 水中での寿命が数秒から数 1 0秒と言われており、 直ちに酸素に 戻るために人体への影響はない。  The discharge-type photocatalytic filter that constitutes the purifying device 14 has a long service life and is characterized by high purifying performance. If the photocatalyst module 141 is discharged with water completely filled, a high voltage of 10 kV or more must be applied between the electrodes 144 and 146. By flowing water at a flow rate where gas and water are mixed together, the discharge starting voltage can be reduced, and a water purification effect can be obtained with a voltage of 4 kV or more. In addition, at this time, if a gas containing oxygen is used as the gas of the gas-liquid mixture, ozone is generated together with the ultraviolet rays in the discharge space, and the water purification effect is further improved by the oxidizing and sterilizing action of the ozone. Although ozone is a harmful substance to the human body, its lifetime in water is said to be several seconds to several ten seconds, and since it immediately returns to oxygen, it has no effect on the human body.
( 1 0 ) 変更例  (1 0) Change example
水受け体 2 1と浄化装置 1 4とを接続する移流管 1 7はオリフィスにしてある ので、 このォリフィスで流量を調整することが可能である。  Since the advection tube 17 connecting the water receiver 21 and the purification device 14 is an orifice, the flow rate can be adjusted with this orifice.
そこで、 水受け体 2 1から浄化装置 1 4への製氷用水 1 3の流量を絞り、 水滴 にして浄化装置 1 4に供給するようにすることができる。 このように水滴にして 浄化装釁 1 4に供給すれば 放電のために高電圧が水滴に印加され、 水滴が高電 圧に帯電するとしても、 製氷用水 1 3の全体が高電圧に帯電することはなく、 し たがって製氷用水 1 3が接触する導電体部分が高電圧に帯電することもなく、 万 がーにもユーザ一がその導電体部分に接触するようなことがあっても感電する恐 れがない。  Therefore, the flow rate of the ice making water 13 from the water receiver 21 to the purification device 14 can be reduced, and the flow can be supplied to the purification device 14 as water droplets. If the water droplets are supplied to the purifying equipment 14 as described above, a high voltage is applied to the water droplets for discharging, and even if the water droplets are charged to a high voltage, the entire ice making water 13 is charged to a high voltage. Therefore, the conductor that comes into contact with the ice-making water 13 is not charged with a high voltage, and even if one of the users touches the conductor, there is no risk of electric shock. There is no fear of doing it.
(第 6の実施形態)  (Sixth embodiment)
本発明の第 6の実施形態の浄化装置 1 4について図 1 5に基づいて説明する。 図 1 5は、 第 6の実施形態の浄化装置 1 4である。  A purification device 14 according to a sixth embodiment of the present invention will be described with reference to FIG. FIG. 15 shows a purification device 14 of the sixth embodiment.
本実施形態の浄化装置 1 4は、 移流管 1 7から浄化装置 1 4内に導入する製氷 用水 1 3の流れがサイクロン (渦流) となるように構成したことを特徴としてい る ο すなわち、 導水口 1 4 7を絶縁体容器 1 4 4の上部に水平接線方向にして設 け、 移流管 1 7から浄化装置 1 4に流れ込む製氷用水 1 3が矢印 Aのように回転 渦流になってセラミヅク担体 1 4 3にらせん状の水流になって流れ込むようにし ている。 The purifying device 14 of the present embodiment is characterized in that the flow of the ice making water 13 introduced from the advection pipe 17 into the purifying device 14 is a cyclone (vortex flow). In other words, the water introduction port 147 is installed in the upper part of the insulator container 144 in a horizontal tangential direction, and the ice making water 13 flowing into the purification device 14 from the advection pipe 17 becomes a rotating vortex as shown by the arrow A. Thus, a spiral water stream flows into the ceramic carrier 144.
なお、 その他の構成は図 1 0に示した第 5の実施形態と同様である。  The other configuration is the same as that of the fifth embodiment shown in FIG.
また、 製氷用水 1 3を気液混合体にして浄化装置 1 4に供給する構成とするこ ともできる。  Further, a configuration may be adopted in which the ice making water 13 is supplied to the purification device 14 as a gas-liquid mixture.
これにより、 浄化装置 1 4に流れ込む製氷用水 1 3がセラミック担体 1 4 3に 塗布されている光触媒と接触する時間が長くなり、 浄水効果を高めることができ る o  As a result, the time for the ice making water 13 flowing into the purification device 14 to come into contact with the photocatalyst applied to the ceramic carrier 144 is lengthened, and the water purification effect can be enhanced.
(第 7の実施形態)  (Seventh embodiment)
本発明の第 7の実施形態の浄化装置 1 4について図 1 6に基づいて説明する。 本実施形態の特徴は、 浄化装置 1 4の絶縁体容器 1 4 4内にらせん状の突起 1 4 8を設けた点にある。  A purifying apparatus 14 according to a seventh embodiment of the present invention will be described with reference to FIG. The feature of this embodiment is that a spiral projection 148 is provided in the insulator container 144 of the purification device 14.
なお、 本実施形態においても、 上記の特徴点以外は、 第 5の実施形態と同様で める。  Note that, in this embodiment as well, the same features as in the fifth embodiment can be applied except for the features described above.
また、 製氷用水 1 3を気液混合体にして浄化装置 1 4に供給する構成とするこ ともできる。  Further, a configuration may be adopted in which the ice making water 13 is supplied to the purification device 14 as a gas-liquid mixture.
これにより、 給水夕ンク 1 1から移流管 1 7に導出され、 この移流管 1 7"から 浄化装置 1 4の上部に導入される製氷用水 1 3は、 らせん状の突起 1 4 8にガイ ドされてらせん状の回転流になってセラミック担体 1 4 3内を流下する。 そのた め、 第 6の実施形態と同様に、 製氷用水 1 3が浄化装置 1 4内を通過中に光触媒 との接触時間が長くなり、 浄水効果が高くなる。  As a result, the ice making water 13 led from the water supply nozzle 11 to the advection pipe 17 and introduced from the advection pipe 17 "to the upper part of the purification device 14 is guided to the spiral projections 14 8 As a result, a spiral rotating flow flows down the ceramic carrier 144. Therefore, similarly to the sixth embodiment, the ice making water 13 passes through the purification device 14 while being mixed with the photocatalyst. The contact time is longer and the water purification effect is higher.
(第 8の実施形態)  (Eighth embodiment)
本発明の第 8の実施形態の浄化装置 1 4について説明する。  A purification device 14 according to an eighth embodiment of the present invention will be described.
本実施形態の浄化装置 1 4は、 第 5の実施形態の冷蔵庫 1 0 0における製氷装 置 1 0に設けた場合である。  The purifying device 14 of the present embodiment is a case where it is provided in the ice making device 10 of the refrigerator 100 of the fifth embodiment.
( 1 ) 浄化装置 1 4の構造  (1) Structure of purification device 14
次に、 浄化装置 1 4の構造について図 1 7に基づいて説明する。 図 1 8に示したように、 浄化装置 1 4である放電型光触媒フィルタは、 光触媒 モジュール 1 4 1と電源装置 1 4 2から構成される。 Next, the structure of the purification device 14 will be described with reference to FIG. As shown in FIG. 18, the discharge-type photocatalytic filter as the purifying device 14 includes a photocatalyst module 14 1 and a power supply device 142.
光触媒モジュール 1 4 1は、 中心の軸部分に電極揷入用の軸孔が開けられた円 柱状の 3次元多孔質セラミックス基体 1 4 3に光触媒 (例えば、 酸化チタン) を 塗布したものである。 この円柱状の光触媒モジュール 1 4 1を、 筒状の絶縁体容 器 1 4 4内に収容している。 筒状の絶縁体容器 1 4 4は、 絶縁性のガラスや樹脂 等の誘電体よりなる。  The photocatalyst module 144 is obtained by applying a photocatalyst (for example, titanium oxide) to a cylindrical three-dimensional porous ceramic substrate 144 having a central shaft portion provided with a shaft hole for electrode insertion. The cylindrical photocatalyst module 144 is accommodated in a cylindrical insulator container 144. The cylindrical insulator container 144 is made of a dielectric material such as insulating glass or resin.
光触媒モジュール 1 4 1の軸孔に棒状の電極である放電電極 1 4 5を揷入して いる。  A discharge electrode 145 which is a rod-shaped electrode is inserted into a shaft hole of the photocatalyst module 141.
この棒状の電極である放電電極 1 4 5の外周部には、 絶縁材料よりなる保護層 1 5 2がコーティングされている。  A protective layer 152 made of an insulating material is coated on the outer periphery of the discharge electrode 145 which is a rod-shaped electrode.
この保護層 1 5 2の材料としては、 絶縁性を有するステンレス、 または、 ガラ スであり、 金属製の放電電極 1 4 5の線膨張率の約 9 0 %から約 1 1 0 %範囲内 の膨張率を有しているものである。 また、 この保護層の厚さは 0 , 6 mmであ 絶縁体容器 1 4 4の外周面には、 導電性インクによる印刷、 メツキ、 または蒸 着によって、 円弧状の電極である対向電極 1 4 6が形成されている。  The material of the protective layer 152 is stainless steel or glass having an insulating property and has a linear expansion coefficient of about 90% to about 110% of the metal discharge electrode 144. It has an expansion coefficient. The thickness of the protective layer is 0.6 mm, and the outer surface of the insulating container 144 is printed on the outer surface of the insulating container 144 by printing, plating, or vapor deposition. 6 are formed.
上記一対の放電電極 1 4 5と対向電極 1 4 βには高電圧を印加するための電源 装置 1 4 2が接銃されている。 制御部 1 2 0から電源が供給される電源装置 1 4 2は、 絶縁体容器 1 4 4の近傍に配され、 両者は一体のユニットとして組み込ま れている。  A power supply device 142 for applying a high voltage is connected to the pair of discharge electrodes 144 and the counter electrode 144β. A power supply device 142 to which power is supplied from the control unit 120 is disposed near the insulator container 144, and both are incorporated as an integrated unit.
円柱状の光触媒モジュール 1 4 1の形状に関しては、 光触媒モジュール 1 4 1 の軸方向の長さが、 その直径よりも大きく形成されている。 例えば、 軸方向の長 さが 2 0 mmであり、 直径が 1 0 mmである。  Regarding the shape of the cylindrical photocatalyst module 141, the axial length of the photocatalyst module 141 is formed larger than its diameter. For example, the axial length is 20 mm and the diameter is 10 mm.
光触媒モジュール 1 4 1におけるセラミック基体 1 4 3に担持する光触媒の担 持率は 5 %以上となっている。  The loading rate of the photocatalyst carried on the ceramic substrate 144 in the photocatalyst module 141 is 5% or more.
電源装置 1 4 2から一対の電極 1 4 5, 1 4 6に印加される高電圧は図 1 8に 示すように、 正弦波波形において全波波形となっている。  The high voltage applied from the power supply device 142 to the pair of electrodes 144 and 146 has a full-wave sinusoidal waveform as shown in FIG.
このように本実施形態の浄化装置 1 4においては、 光触媒モジュール 1 4 1が 円柱状でその中心に放電電極 1 4 5があり、 外周部に位置する部分に対向電極 1 4 6が配置されているため、 放電電極 1 4 5と対向電極 1 4 6との距離が簡単に 一定の距離とすることができ、 放電を全周に亘つて均一にすることができる。 Thus, in the purification device 14 of the present embodiment, the photocatalyst module 14 1 Discharge electrode 1 4 5 is located at the center of the column, and the counter electrode 1 4 6 is located at the outer peripheral part. Therefore, the distance between the discharge electrode 1 4 5 and the counter electrode 1 4 6 can be easily set. The distance can be constant, and the discharge can be made uniform over the entire circumference.
( 2 ) 実施形態の効果  (2) Effects of the embodiment
浄化装置 1 4であると、 円弧状の対向電極 1 4 6の中心に棒状の放電電極 1 4 5を設置することで、 均一な放電を得ることができ、 光触媒モジュール表面全体 を用いて分解対象物質を浄化することが可能となる。 また、 放電型光触媒フィル 夕は寿命が長く、 高度な浄化性能が得られる。  In the case of the purification device 14, a uniform discharge can be obtained by installing a rod-shaped discharge electrode 144 at the center of the arc-shaped counter electrode 146, and the entire surface of the photocatalyst module can be used for decomposition. It becomes possible to purify the substance. In addition, discharge-type photocatalyst filters have a long life and provide high purification performance.
また、 放電電極 1 4 5には、 保護層 1 5 2が設けられているため、 浄化装置 1 4の光触媒モジュール 1 4 1に移流管 1 7から気液混合体である水が連続して流 れてきた場合に、 何らかの理由でユーザ一がこの流れる水に触れても、 放電電極 1 4 5には保護層 1 5 2が設けられているため、 放電電極 1 4 5が放電状態でュ —ザ一が水に触れても感電するということがない。  Further, since the protective layer 15 2 is provided on the discharge electrode 1 45, water as a gas-liquid mixture flows continuously from the advection pipe 17 to the photocatalyst module 14 1 of the purification device 14. If the user comes in contact with the flowing water for some reason, the protective layer 15 2 is provided on the discharge electrode 144, so that the discharge electrode 144 is discharged. You won't get an electric shock even if you touch the water.
例えば、 気液混合体として水を 1 0 0 e c /分の速度で流すとする。 この速度 は、 光触媒モジュール 1 4 1内部に空気と水が両方存在する流量であり、 水が水 滴にならず、 繫がった状態で流れる速度であり、 この状態で水にユーザ一が手を 触れても感電しない。 また、 対向電極 1 4 βと放電電極 1 4 5との間では、 図 1 8に示すような電圧が印加されており、 浄化する効果は従来と同様である。  For example, suppose that water flows as a gas-liquid mixture at a rate of 100 e c / min. This speed is the flow rate at which both air and water are present inside the photocatalyst module 14 1, and the speed at which the water flows in a sprinkled state without water droplets. There is no electric shock even if you touch. Further, a voltage as shown in FIG. 18 is applied between the counter electrode 14β and the discharge electrode 144, and the purifying effect is the same as the conventional one.
また、 保護層 1 5 2の膨張率が放電電極 1 4 5に用いる金属材料の線膨張率の 約 9 0 %から約 1 1 0 %の範囲内としているため、 放電により放電電極 1 4 5が 発熱して膨張しても、 保護層 1 5 2はこの放電電極 1 4 5の膨張と共に膨張する ため、 保護層 1 5 2が放電電極 1 4 5から剥がれたり、 亀裂が走ったりすること がない。 この保護層 1 5 2の膨張率が放電電極 1 4 5の線膨張率より大き過ぎる と、 保護層 1 5 2の膨張によって放電電極 1 4 5から膨れたり剥がれたりすると いう現象が起こり、 逆に、 膨張率が小さ過ぎると放電電極 1 4 5の膨張に追随で きず保護層 1 5 2に亀裂が走ることとなる。 そのため、 上記したように金属材料 の線膨張率の約 9 0 %から約 1 1 0 %の範囲内で保護層 1 5 2の膨張率を選択す るのがよい。  In addition, since the expansion coefficient of the protective layer 152 is within the range of about 90% to about 110% of the linear expansion coefficient of the metal material used for the discharge electrode 144, the discharge electrode 144 Even if it generates heat and expands, the protective layer 152 expands with the expansion of the discharge electrode 144, so that the protective layer 152 does not peel off or crack from the discharge electrode 144. . If the coefficient of expansion of the protective layer 152 is too large than the linear expansion coefficient of the discharge electrode 144, a phenomenon occurs in which the protective layer 152 expands or peels off from the discharge electrode 144 due to expansion. On the other hand, if the coefficient of expansion is too small, the protective layer 152 will not be able to follow the expansion of the discharge electrode 145 and cracks will run. Therefore, as described above, it is preferable to select the expansion coefficient of the protective layer 152 within the range of about 90% to about 110% of the linear expansion coefficient of the metal material.
保護層 1 5 2の厚さを 1 mm以下としている。 この理由は、 保護層 1 5 2の厚 さは放電開始電圧及び絶縁破壊電圧に大きく影響し、 保護層 1 5 2が厚いと絶縁 破壊が起こりにくいが、 放電開始電圧も高くなるために、 より大きい電圧を印加 する必要がある。 これに対して保護層 1 5 2を薄くした場合は、 絶縁破壊電圧が 低くなるが、 放電開始電圧も低いために低い電圧で浄化を行うことが可能とな る。 この保護層の厚さと放電電圧との関係を示したものが図 1 9のグラフであ り、 この図 1 9のグラフから明らかなように保護層 1 5 2の厚さは l mm以下が 好適であり、 本実施形態の場合では 0 . 6 mmの厚さでコーティングしている。 光触媒モジュール 1 4 1の部分に水を完全に充満させた状態で放電させると 1 O k V以上の高電圧を電極 1 4 5, 1 4 6間に印加しなければならないが、 光触 媒部分に気体と水とが混在する流量で水を流すことによって放電開始電圧を低下 させることができ、 4 k V以上の電圧で浄水効果を得ることができる。 しかもこ のとき、 気液混合体の気体として酸素を含むものを用いると、 放電空間で紫外線 と共にオゾンも発生し、 このオゾンによる酸化殺菌作用によって浄水効果がいつ そう向上する。 なお、 オゾンは人体にとって有害な物質であるが、 水中での寿命 が数秒から数 1 0秒と言われており、 直ちに酸素に戻るために人体への影響はな い。 The thickness of the protective layer 152 is 1 mm or less. The reason for this is that the thickness of the protective layer 15 2 The thickness greatly affects the discharge starting voltage and the dielectric breakdown voltage. If the protective layer 152 is thick, dielectric breakdown does not easily occur. However, since the discharge starting voltage becomes high, a higher voltage must be applied. On the other hand, when the thickness of the protective layer 152 is reduced, the dielectric breakdown voltage is reduced, but the discharge starting voltage is also low, so that purification can be performed at a low voltage. FIG. 19 is a graph showing the relationship between the thickness of the protective layer and the discharge voltage. As is clear from the graph of FIG. 19, the thickness of the protective layer 152 is preferably 1 mm or less. In the present embodiment, the coating is performed with a thickness of 0.6 mm. If the photocatalyst module 14 is discharged with water completely filled, a high voltage of 1 O kV or more must be applied between the electrodes 14 5 and 14 6. By flowing water at a flow rate where gas and water are mixed together, the discharge starting voltage can be reduced, and a water purification effect can be obtained with a voltage of 4 kV or more. Moreover, at this time, if a gas containing oxygen is used as the gas of the gas-liquid mixture, ozone is generated together with the ultraviolet rays in the discharge space, and the water purification effect is further improved by the oxidative sterilization effect of the ozone. Ozone is a harmful substance to the human body, but its lifetime in water is said to be several seconds to several ten seconds. Since it immediately returns to oxygen, it has no effect on the human body.
(第 9の実施形態)  (Ninth embodiment)
第 8の実施形態では保護層 1 5 2の膨張率を、 放電電極 1 4 5に用いる金属材 料の線膨張率の約 9 0 %から 1 1 0 %としていたが、 これに代えて、 保護層 1 5 2の絶縁材料が、 保護層 1 5 2の長さに対して約 1 %の長さの弾性変形が可能な 弾性体で構成してもよい。  In the eighth embodiment, the coefficient of expansion of the protective layer 152 is set to be about 90% to 110% of the linear expansion coefficient of the metal material used for the discharge electrode 144. The insulating material of the layer 152 may be made of an elastic body capable of elastic deformation of about 1% of the length of the protective layer 152.
上記したように、 放電電極 1 4 5の発熱により放電電極 1 4 5が膨張すること となるが、 この膨張率に近い変形が可能なように保護層 1 5 2を形成している絶 縁材料の弾性率を選択するものである。 この絶縁材料の材料として弾性率が約 1 %の長さの弾性体 (例えば、 シリコンゴム) を用いれば、 放電電極 1 4 5の発熱 による膨張を十分に吸収することができ、 保護層 1 5 2の変形や亀裂を防止する ことができる。  As described above, the heat generated by the discharge electrode 145 causes the discharge electrode 145 to expand, but the insulating material forming the protective layer 152 so that deformation close to this expansion rate is possible. Is selected. If an elastic body (for example, silicon rubber) having an elastic modulus of about 1% is used as the material of the insulating material, the expansion due to the heat generation of the discharge electrode 145 can be sufficiently absorbed, and the protective layer 155 is formed. Deformation and cracking of 2 can be prevented.
(第 1 0の実施形態)  (10th embodiment)
上記実施形態では冷蔵庫における製氷装置 1 0における浄化装置 1 4について 説明した。 しかしながら、 このような浄化装置 1 4は、 他の分野においても適用 することが可能である。 例えば、 工場や下水処理場における排水を浄化する場合 についても適用することができる。 In the above embodiment, the purification device 14 in the ice making device 10 in the refrigerator is described. explained. However, such a purification device 14 can be applied to other fields. For example, the present invention can be applied to a case where wastewater in a factory or a sewage treatment plant is purified.
ところが、 このような排水処理を行う場合の水の量は、 上記のような製氷装置 1 0における製氷用水とは異なり非常に多い量となる。  However, the amount of water in the case of performing such wastewater treatment is very large unlike the ice making water in the ice making device 10 as described above.
そのため、 このような非常に多い量でも浄化を可能とするため、 図 1 7に示す ように、 円柱状の浄化装置 1 0を複数個束ねて大きな浄化装置集合体 1 5 0を形 成する。  Therefore, in order to purify even such an extremely large amount, as shown in FIG. 17, a plurality of column-shaped purification devices 10 are bundled to form a large purification device assembly 150.
これによつて、 多量の排水であってもその処理を行うことが可能となる。  This makes it possible to treat even a large amount of wastewater.
【産業上の利用可能性】 [Industrial applicability]
本発明の浄化装置は、 冷蔵庫の製氷装置における製氷用水の浄化や、 工場や下 水処理場における排水を浄化する場合についても適用することができる。  The purification apparatus of the present invention can be applied to the purification of ice-making water in an ice-making apparatus of a refrigerator and the purification of wastewater in a factory or a sewage treatment plant.

Claims

請求の範囲 The scope of the claims
1 . セラミックス基体に光触媒を担持した光触媒モジュールと、 正負極の一対の 電極と、 電源手段とを有し、 1. A photocatalyst module having a photocatalyst supported on a ceramic substrate, a pair of positive and negative electrodes, and a power supply means.
前記電源手段により前記一対の電極間に電圧を印加して発生させた放電光を前 記光触媒モジュールに照射して活性化させ、 この活性化した前記光触媒の作用に より前記光触媒モジュールの内部あるいは近傍にある液体、 気体、 気液混合体等 の分解対象物質媒体に含まれる分解対象物質を分解する放電型光触媒フィル夕よ りなる浄化装置において、  A discharge light generated by applying a voltage between the pair of electrodes by the power supply means is irradiated to the photocatalyst module to activate the photocatalyst module, and the inside of or near the photocatalyst module is activated by the action of the activated photocatalyst. In a purification device consisting of a discharge-type photocatalyst filter that decomposes substances to be decomposed contained in a medium for decomposition, such as liquids, gases, and gas-liquid mixtures,
前記光触媒モジュールを円柱状に形成し、  The photocatalyst module is formed in a cylindrical shape,
前記光触媒モジュールの軸部分に一方の電極である棒状の電極を配し、 前記光触媒モジュールの外周部に絶縁体を介して他方の電極である円弧状の電 極を配する  A rod-shaped electrode as one electrode is disposed on a shaft portion of the photocatalyst module, and an arc-shaped electrode as the other electrode is disposed on an outer peripheral portion of the photocatalyst module via an insulator.
ことを特徴とする浄化装置。  Purification device characterized by the above-mentioned.
2 . 前記絶縁体を筒状の反応容器で形成し、 2. The insulator is formed in a cylindrical reaction vessel,
前記絶籙体内部に前記光触媒モジュールを収納し、  Storing the photocatalyst module inside the insulator;
前記反応容器の外周部に前記他方の電極を配する  Disposing the other electrode on the outer periphery of the reaction vessel
ことを特徴とする請求項 1記載の浄化装置。  The purification device according to claim 1, wherein
3 . 前記反応容器の外周面に、 導電性インクによる印刷、 メツキ、 または、 蒸着 により前記他方の電極を形成する 3. The other electrode is formed on the outer peripheral surface of the reaction vessel by printing, plating, or vapor deposition using a conductive ink.
ことを特徴とする請求項 2記載の浄化装置。  3. The purification device according to claim 2, wherein:
4 . 前記円柱状の光触媒モジュールの軸方向の寸法を、 その直径の寸法より大き くする 4. Make the axial dimension of the cylindrical photocatalyst module larger than its diameter
ことを特徴とする請求項 1記載の浄化装置。  The purification device according to claim 1, wherein
5 . 前記光触媒モジュールの触媒担持率を 5 %以上とする ことを特徴とする請求項 1記載の浄化装置。 5. The catalyst loading rate of the photocatalyst module is 5% or more. The purification device according to claim 1, wherein
6 . 前記電源手段により前記一対の電極へ印加する電圧波形が、 正と負の両側に 振れる波形である 6. The voltage waveform applied to the pair of electrodes by the power supply means is a waveform that swings to both positive and negative sides.
ことを特徴とする請求項 1記載の浄化装置。  The purification device according to claim 1, wherein
7 . 前記浄化装置を複数個束ねて浄化装置集合体を形成する 7. Bundling a plurality of purification devices to form a purification device assembly
ことを特徴とする請求項 1から 6の中の少なくとも一項に記載の浄化装置。  The purification device according to at least one of claims 1 to 6, characterized in that:
8 . セラミック基体に光触媒を担持した光触媒モジュールと、 正負極の一対の電 極と、 電源手段とを有し、 8. A photocatalyst module having a photocatalyst supported on a ceramic substrate, a pair of positive and negative electrodes, and power supply means.
前記電源手段により前記一対の電極間に電圧を印加して発生させた放電光を前 記光触媒モジユールに照射して活性化させ、 この活性化した前記光触媒の作用に より前記光触媒モジュールの内部あるいは近傍にある液体、 気体、 気液混合体等 の分解対象物質媒体に含まれる分解対象物質を分解する浄化装置において、 前記光触媒モジュールを円柱状に形成し、  A discharge light generated by applying a voltage between the pair of electrodes by the power supply means is irradiated to the photocatalyst module to activate the photocatalyst module, and the inside of or near the photocatalyst module is activated by the action of the activated photocatalyst. A purifying apparatus for decomposing a decomposition target substance contained in a decomposition target substance medium such as a liquid, a gas, and a gas-liquid mixture, wherein the photocatalyst module is formed in a cylindrical shape;
前記光触媒モジュールの軸部分に一方の電極である棒状の放電電極を配し、 前記光触媒モジュールの外周部に絶/縁体を介して他方の電極である円弧状の対 向電極を配し、  A rod-shaped discharge electrode, which is one electrode, is disposed on a shaft portion of the photocatalyst module, and an arc-shaped counter electrode, which is the other electrode, is disposed on an outer peripheral portion of the photocatalyst module via an insulator.
前記放電電極の外周部に絶縁材料よりなる保護層を設ける  A protective layer made of an insulating material is provided on an outer peripheral portion of the discharge electrode.
ことを特徵とする浄化装置。  Purification device characterized by the following.
9 . 前記絶縁体を筒状の絶縁体容器で形成し、 9. The insulator is formed of a cylindrical insulator container,
前記絶縁体内部に前記光触媒モジュ一ルを収納し、  Storing the photocatalyst module inside the insulator;
前記絶縁体容器の外周部に前記対向電極を配する  Disposing the counter electrode on the outer periphery of the insulator container
ことを特徴とする請求項 8記載の浄化装置。  9. The purification device according to claim 8, wherein:
1 0 . 前記保護層の長さ方向の膨張率が、 前記放電電極に用いる金属材料の線膨 張率の約 9 0 %から約 1 1 0 %の範囲内である ことを特徴とする請求項 8記載の浄化装置 10. The expansion coefficient in the length direction of the protective layer is in the range of about 90% to about 110% of the linear expansion coefficient of the metal material used for the discharge electrode. 9. The purification device according to claim 8, wherein:
1 1 . 前記保護層の厚さを約 l mm以下とする 1 1. The thickness of the protective layer should be about lmm or less
ことを特徴とする請求項 8記載の浄化装置。  9. The purification device according to claim 8, wherein:
1 2 . 前記保護層の絶縁材料が、 約 1 %の弾性変形が可能な弾性体である ことを特徴とする請求項 8記載の浄化装置。 12. The purification device according to claim 8, wherein the insulating material of the protective layer is an elastic body capable of elastic deformation of about 1%.
1 3 . 前記保護層の絶縁材料が、 ステンレス、 ガラス、 または、 シリコンゴムで1 3. The insulating material of the protective layer is stainless steel, glass, or silicon rubber
¾>る ¾> る
ことを特徴とする請求項 8記載の浄化装置。  9. The purification device according to claim 8, wherein:
1 4 . 給水タンクから製氷皿へ製氷用水を供給して製氷を行う製氷装置を有する 冷蔵庫において、 1 4. In a refrigerator having an ice making device for making ice by supplying ice making water from a water supply tank to an ice making tray,
請求項 1から 1 3の中の少なくとも一項に記載された浄化装置を用いて、 前記 給水タンクから前記製氷皿へ流れる製水用水を浄化する  Using the purifying device according to at least one of claims 1 to 13, purifying water for making water flowing from the water supply tank to the ice tray.
ことを特徴とする冷蔵庫。  A refrigerator characterized by that:
1 5 . 製氷用水を貯蔵する給水タンクから製水皿に水を供給する方式の製氷機能 を有する冷蔵庫において、 15 5. In a refrigerator having an ice making function of supplying water to a water tray from a water supply tank storing ice making water,
前記製氷皿に供給する水を浄化する浄化装置を前記給水タンクの外に設けた ことを特徴とする冷蔵庫。  A refrigerator, wherein a purifier for purifying water supplied to the ice tray is provided outside the water supply tank.
1 6 . 前記浄化装置は、 前記冷蔵庫の通常使用時にユーザーの手に触れない場所 に設置した 16. The purifier was installed in a place where the refrigerator would not be touched by the user during normal use.
ことを特徴とする請求項 1 5記載の冷蔵庫。  16. The refrigerator according to claim 15, wherein:
1 7 . 前記浄化装置は、 放電型光触媒フィル夕である 17. The purifier is a discharge-type photocatalyst filter
ことを特徴とする請求項 1 5または 1 6記載の冷蔵庫。 The refrigerator according to claim 15 or 16, wherein:
1 8 . 前記放電型光触媒フィルタの光触媒モジュールは、 多孔質セラミックスで ある 18. The photocatalytic module of the discharge type photocatalytic filter is made of porous ceramics.
ことを特徴とする請求項 1 7記載の冷蔵庫。  The refrigerator according to claim 17, wherein:
1 9 . 前記浄化装置は、 1 9. The purification device is
前記製氷用水を前記光触媒モジュールに気液混合体にして供給する  The ice making water is supplied to the photocatalyst module as a gas-liquid mixture.
ことを特徴とする請求項 1 7または 1 8記載の冷蔵庫。  The refrigerator according to claim 17 or 18, wherein:
2 0 . 前記気液混合体の気体は、 酸素を含む気体である 20. The gas of the gas-liquid mixture is a gas containing oxygen
ことを特徴とする請求項 1 9記載の冷蔵庫。  10. The refrigerator according to claim 19, wherein:
2 1 . 前記製水用水を、 前記光触媒モジュールに水滴にして滴下する 2 1. Drop the water for water production onto the photocatalyst module as water droplets
ことを特徴とする請求項 1 7または 1 8記載の冷蔵庫。  The refrigerator according to claim 17 or 18, wherein:
2 2 . 前記製氷用水を前記光触媒モジュールにらせん状の水流になるように導入 する 2 2. Introduce the ice making water into the photocatalyst module in a spiral water flow
ことを特徴とする請求項 1 7または 1 8記載の冷蔵庫。  The refrigerator according to claim 17 or 18, wherein:
2 3 . 前記光触媒モジュールまたはその反応容器にらせん状の水流を作るための らせん状の凹凸を設けた 23. The photocatalyst module or its reaction vessel was provided with spiral irregularities to create a spiral water flow.
ことを特徴とする請求項 1 7または 1 8記載の冷蔵庫。  The refrigerator according to claim 17 or 18, wherein:
PCT/JP2003/012452 2003-02-12 2003-09-29 Purification device and refrigerator using the same WO2004071964A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003034008A JP2004245465A (en) 2003-02-12 2003-02-12 Refrigerator
JP2003-34008 2003-02-12
JP2003-76550 2003-03-19
JP2003076550A JP2004283672A (en) 2003-03-19 2003-03-19 Purifying device and refrigerator using the same
JP2003-303739 2003-08-27
JP2003303739A JP2005066556A (en) 2003-08-27 2003-08-27 Purifying apparatus and refrigerator using the same

Publications (1)

Publication Number Publication Date
WO2004071964A1 true WO2004071964A1 (en) 2004-08-26

Family

ID=32872543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012452 WO2004071964A1 (en) 2003-02-12 2003-09-29 Purification device and refrigerator using the same

Country Status (2)

Country Link
KR (1) KR20050093762A (en)
WO (1) WO2004071964A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023065074A1 (en) * 2021-10-18 2023-04-27 合肥美的电冰箱有限公司 Purification apparatus and refrigerator
EP3875875B1 (en) * 2019-07-04 2023-12-13 Arçelik Anonim Sirketi A cooling appliance having an icemaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272695A (en) * 1994-03-30 1995-10-20 Ushio Inc Dielectric barrier discharge fluorescent lamp
JPH09155369A (en) * 1995-12-05 1997-06-17 Sharp Corp Automatic ice maker of freezing refrigerator
JP2000140624A (en) * 1998-11-16 2000-05-23 Toshiba Corp Photocatalytic reaction device and photocatalytic reaction method
JP2000237543A (en) * 1999-02-23 2000-09-05 Tao:Kk Photocatalytic device
JP2002113474A (en) * 2000-10-06 2002-04-16 Nok Corp Method for decomposing organic substance in water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272695A (en) * 1994-03-30 1995-10-20 Ushio Inc Dielectric barrier discharge fluorescent lamp
JPH09155369A (en) * 1995-12-05 1997-06-17 Sharp Corp Automatic ice maker of freezing refrigerator
JP2000140624A (en) * 1998-11-16 2000-05-23 Toshiba Corp Photocatalytic reaction device and photocatalytic reaction method
JP2000237543A (en) * 1999-02-23 2000-09-05 Tao:Kk Photocatalytic device
JP2002113474A (en) * 2000-10-06 2002-04-16 Nok Corp Method for decomposing organic substance in water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875875B1 (en) * 2019-07-04 2023-12-13 Arçelik Anonim Sirketi A cooling appliance having an icemaker
WO2023065074A1 (en) * 2021-10-18 2023-04-27 合肥美的电冰箱有限公司 Purification apparatus and refrigerator

Also Published As

Publication number Publication date
KR20050093762A (en) 2005-09-23

Similar Documents

Publication Publication Date Title
JP5431537B2 (en) Plasma generating apparatus, radical generating method, and cleaning and purifying apparatus
JP4355315B2 (en) Fluid purification device
US9352984B2 (en) Fluid treatment using plasma technology
JP6004613B2 (en) Uniform electric field dielectric discharge reactor
US6419831B2 (en) Water purifier method
RU2371395C2 (en) Sanitation system and components, producing ozonised liquid
JP2009537290A (en) Portable ozone generator for water purification and use thereof
JP2000093967A (en) Method and apparatus for liquid treatment
CN104023753A (en) Purification device and purification method
JP2008093549A (en) Water purification device
WO2004071964A1 (en) Purification device and refrigerator using the same
JP2702378B2 (en) Water purification equipment
KR101005679B1 (en) Purification method for removing noxious gases and all maloder by using underwater plasma generation apparatus
JP2004245465A (en) Refrigerator
JP2012196621A (en) Water sterilization apparatus and water sterilization method
JPH01139186A (en) Sterilizing and purifying equipment for water
KR100304461B1 (en) Apparatus cleaning water
RU2152359C1 (en) Device for cleaning and decontamination of water by high-voltage electrical discharges
JP2004283672A (en) Purifying device and refrigerator using the same
TW200426333A (en) Purification device and refrigerator using the same
JP2005066556A (en) Purifying apparatus and refrigerator using the same
KR200265961Y1 (en) An Ozone apparatus for a clean water
JP2022132263A (en) Air purification device
JP2010149071A (en) Apparatus and method for electrical discharge
JPH02198693A (en) Ozone water cleaner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057008217

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038254956

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057008217

Country of ref document: KR

122 Ep: pct application non-entry in european phase