WO2004069827A1 - Derives de quinoline et leur utilisation comme agents antitumoraux - Google Patents

Derives de quinoline et leur utilisation comme agents antitumoraux Download PDF

Info

Publication number
WO2004069827A1
WO2004069827A1 PCT/GB2004/000386 GB2004000386W WO2004069827A1 WO 2004069827 A1 WO2004069827 A1 WO 2004069827A1 GB 2004000386 W GB2004000386 W GB 2004000386W WO 2004069827 A1 WO2004069827 A1 WO 2004069827A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
ethoxy
formula
propoxy
Prior art date
Application number
PCT/GB2004/000386
Other languages
English (en)
Inventor
Bernard Barlaam
Original Assignee
Astrazeneca Ab
Astrazeneca Uk Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrazeneca Ab, Astrazeneca Uk Limited filed Critical Astrazeneca Ab
Publication of WO2004069827A1 publication Critical patent/WO2004069827A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention concerns certain novel quinoline derivatives, or pharmaceutically- acceptable salts thereof, which possess anti-tumour activity and are accordingly useful in methods of treatment of the human or animal body.
  • the invention also concerns processes for the manufacture of said quinoline derivatives, pharmaceutical compositions containing them and to their use in therapeutic methods, for example in the manufacture of medicaments for use in the prevention or treatment of solid tumour disease in a warm-blooded animal such as man.
  • Many of the current treatment regimes for cell proliferation diseases such as psoriasis and cancer utilise compounds which inhibit DNA synthesis. Such compounds are toxic to cells generally but their toxic effect on rapidly dividing cells such as tumour cells can be beneficial.
  • Alternative approaches to anti-tumour agents which act by mechanisms other than the inhibition of DNA synthesis have the potential to display enhanced selectivity of action.
  • a cell may become cancerous by virtue of the transformation of a portion of its DNA into an oncogene i.e. a gene which, on activation, leads to the formation of malignant tumour cells (Bradshaw, Mutagenesis, 1986, 1, 91).
  • oncogenes give rise to the production of peptides which are receptors for growth factors. Activation of the growth factor receptor complex subsequently leads to an increase in cell proliferation. It is known, for example, that several oncogenes encode tyrosine kinase enzymes and that certain growth factor receptors are also tyrosine kinase enzymes (Yarden et al., Ann. Rev.
  • Receptor tyrosine kinases are important in the transmission of biochemical signals which initiate cell replication. They are large enzymes which span the cell membrane and possess an extracellular binding domain for growth factors such as epidermal growth factor (EGF) and an intracellular portion which functions as a kinase to phosphorylate tyrosine amino acids in proteins and hence to influence cell proliferation.
  • EGF epidermal growth factor
  • Various classes of receptor tyrosine kinases are known (Wilks, Advances in Cancer Research, 1993, 60, 43-73) based on families of growth factors which bind to different receptor tyrosine kinases.
  • the classification includes Class I receptor tyrosine kinases comprising the EGF family of receptor tyrosine kinases such as the EGF, TGF , Neu and erbB receptors, Class JJ receptor tyrosine kinases comprising the insulin family of receptor tyrosine kinases such as the insulin and IGF1 receptors and insulin-related receptor (LRR) and Class LTI receptor tyrosine kinases comprising 5 the platelet-derived growth factor (PDGF) family of receptor tyrosine kinases such as the PDGF ⁇ , PDGF ⁇ and colony-stimulating factor 1 (CSF1) receptors.
  • EGF EGF family of receptor tyrosine kinases
  • TGF TGF
  • Neu and erbB receptors Class JJ receptor tyrosine kinases comprising the insulin family of receptor tyrosine kinases such as the insulin and IGF1 receptors and insulin-related receptor (LRR)
  • tyrosine kinases belong to the class of non-receptor tyrosine kinases which are located intracellularly and are involved in the transmission of biochemical signals such as those that influence tumour cell motility, dissemination and
  • Non-receptor tyrosine kinases include the Src family such as the Src, Lyn and Yes tyrosine kinases, the Abl family such as Abl and Arg and the Jak family such as Jak 1 and Tyk 2.
  • Src family of non-receptor tyrosine kinases are highly regulated in normal cells and in the absence of extracellular stimuli are maintained in an inactive conformation.
  • some Src family members for example c-Src tyrosine kinase, are frequently significantly activated (when compared to normal cell levels) in common human cancers such as gastrointestinal cancer, for example colon, rectal and stomach cancer
  • NSCLCs non-small cell lung cancers
  • c-Src non-receptor tyrosine kinase is to regulate the assembly of focal adhesion complexes through interaction with a number of cytoplasmic proteins including, for example, focal adhesion kinase and paxillin.
  • cytoplasmic proteins including, for example, focal adhesion kinase and paxillin.
  • c-Src is coupled to signalling pathways that regulate the actin cytoskeleton which facilitates cell motility.
  • colon tumour progression from localised to disseminated, invasive metastatic disease has been correlated with c-Src non-receptor tyrosine kinase activity (Brunton et ah, Oncogene, 1997, 14, 283-293, Fincham et ah, EMBO J, 1998, 17, 81-92 and Nerbeek et ah, Exp. Cell Research. 1999, 248, 531-537).
  • an inhibitor of such non-receptor tyrosine kinases should be of value as a selective inhibitor of the motility of tumour cells and as a selective inhibitor of the dissemination and invasiveness of mammalian cancer cells leading to inhibition of metastatic tumour growth.
  • an inhibitor of such non-receptor tyrosine kinases should be of value as an anti-invasive agent for use in the containment and/or treatment of solid tumour disease.
  • the compounds of the present invention provide an anti-tumour effect by way of inhibition of the Src family of non-receptor tyrosine kinases, for example by inhibition of one or more of c-Src, c-Yes and c-Fyn.
  • c-Src non-receptor tyrosine kinase enzyme is involved in the control of osteoclast-driven bone resorption (Soriano et ah, Cell, 1991, 64, 693-702; Boyce et ah, J. Clin. Invest.. 1992, 90, 1622-1627; Yoneda et ah, J. Clin.
  • An inhibitor of c-Src non-receptor tyrosine kinase is therefore of value in the prevention and treatment of bone diseases such as osteoporosis, Paget's disease, metastatic disease in bone and tumour-induced hypercalcaemia.
  • the compounds of the present invention are also useful in inhibiting the uncontrolled cellular proliferation which arises from various non-malignant diseases such as inflammatory diseases (for example rheumatoid arthritis and inflammatory bowel disease), fibrotic diseases (for example hepatic cirrhosis and lung fibrosis), glomerulonephritis, multiple sclerosis, psoriasis, hypersensitivity reactions of the skin, blood vessel diseases (for example atherosclerosis and restenosis), allergic asthma, insulin-dependent diabetes, diabetic retinopathy and diabetic nephropathy.
  • inflammatory diseases for example rheumatoid arthritis and inflammatory bowel disease
  • fibrotic diseases for example hepatic cirrhosis and lung fibrosis
  • glomerulonephritis for example hepatic cirrhosis and lung fibrosis
  • multiple sclerosis for example herosclerosis and restenosis
  • allergic asthma insulin-dependent diabetes
  • diabetic retinopathy diabetic nephropathy
  • the compounds of the present invention possess potent inhibitory activity against the Src family of non-receptor tyrosine kinases, for example by inhibition of c-Src and/or c-Yes, whilst possessing less potent inhibitory activity against other tyrosine kinase enzymes such as the receptor tyrosine kinases, for example EGF receptor tyrosine kinase and/or NEGF receptor tyrosine kinase.
  • the receptor tyrosine kinases for example EGF receptor tyrosine kinase and/or NEGF receptor tyrosine kinase.
  • 3-cyanoquinoline derivatives are also useful in the treatment of cancer. Certain of the compounds are stated to be inhibitors of MEK, a MAPK kinase. There is no disclosure therein of any 3-pyridylamino-substituted 3-cyanoquinoline derivatives.
  • Z is an O, S, SO, SO 2 , N(R 2 ) or C(R 2 )(R 3 ) group wherein each R 2 or R 3 group, which may be the same or different, is hydrogen or (l-6C)alkyl; m is 1, 2 or 3; each R 1 group, which may be the same or different, is selected from halogeno, trifluoromethyl, cyano, isocyano, nitro, hydroxy, mercapto, amino, formyl, carboxy, carbamoyl, (l-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (l-6C)alkoxy, (2-6C)alkenyloxy, (2-6C)alkynyloxy, (l-6C)alkylthio, (l-6C)alkylsulphinyl, (l-6C)alkylsulphonyl, (l-6C)alkylamino, di-[(l-6C)alkyl] amino
  • N-(l-6C)alkylsulphamoyl N,N-di-[(l-6C)alkyl]sulphamoyl, (l-6C)alkanesulphonylamino and N-(l-6C)alkyl-(l-6C)alkanesulphonylamino, or from a group of the formula :
  • X 1 is a direct bond or is selected from O, S, SO, SO 2 , N(R 4 ), CO, CH(OR 4 ), CON(R 4 ), N(R 4 )CO, SO 2 N(R 4 ), N(R 4 )SO 2 , OC(R 4 ) 2 , SC(R 4 ) 2 and N(R 4 )C(R 4 ) 2> wherein R 4 is hydrogen or (l-6C)alkyl, and Q 1 is aryl, aryl-(l-6C)alkyl, (3-7C)cycloalkyl, (3-7C)cycloalkyl- (l-6C)alkyl, (3-7C)cycloalkenyl, (3-7C)cycloalkenyl-(l-6C)alkyl, heteroaryl, heteroaryl-
  • (l-6C)alkyl, heterocyclyl or heterocyclyl-(l-6C)alkyl, or (R ⁇ m is (l-3C)alkylenedioxy, and wherein adjacent carbon atoms in any (2-6C)alkylene chain within a R 1 substituent are optionally separated by the insertion into the chain of a group selected from O, S, SO, SO 2 , N(R 5 ), CO, CH(OR 5 ), CON(R 5 ), N(R 5 )CO, SO 2 N(R 5 ), N(R 5 )SO 2 , CH CH and C ⁇ C wherein .
  • R 5 is hydrogen or (l-6C)alkyl or, when the inserted group is N(R 5 ), R 5 may also be
  • X 2 is a direct bond or is selected from CO and N(R 6 )CO, wherein R 6 is hydrogen or (l-6C)alkyl, and Q 2 is aryl, aryl-(l-6C)alkyl, heteroaryl, heteroaryl-(l-6C)alkyl, heterocyclyl or heterocyclyl-(l-6C)alkyl, and wherein any CH 2 or CH 3 group within a R 1 substituent optionally bears on each said CH 2 or CH group one or more halogeno or (l-6C)alkyl substituents or a substituent selected from hydroxy, cyano, amino, carboxy, carbamoyl, oxo, thioxo, (l-6C)alkoxy, (l-6C)alkylthio, (l-6C)alkylsulphinyl, (l-6C)alkylsulphonyl, (l-6C)alkylamino, di-[(l-6C)CO, wherein R 6 is hydrogen
  • X 3 is a direct bond or is selected from O, S, SO, SO 2 , N(R 7 ), CO, CH(OR 7 ),
  • R 7 is hydi-ogen or (l-6C)alkyl
  • Q 3 is aryl, aryl-(l-6C)alkyl, (3-7C)cycloalkyl, (3-7C)cycloalkyl- (l-6C)alkyl, (3-7C)cycloalkenyl, (3-7C)cycloalkenyl-(l-6C)alkyl, heteroaryl, heteroaryl-
  • any aryl, heteroaryl or heterocyclyl group within a substituent on R 1 optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, cyano, nitro, hydroxy, amino, carboxy, carbamoyl, (l-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (l-6C)alkoxy, (2-6C)alkenyloxy, (2-6C)alkynyloxy, (l-6C)alkylthio, (l-6C)alkylsulphinyl, (l-6C)alkylsulphonyl, (l-6C)alkylamino, di-[(l-6C)alkyl]amino, (l-6C)alkoxycarbonyl, N-(l-6C)alkylcarb
  • X 4 is a direct bond or is selected from O and N(R 9 ), wherein R 9 is hydrogen or (l-6C)alkyl, and R 8 is halogeno-(l-6C)alkyl, hydroxy-(l-6C)alkyl, (l-6C)alkoxy-(l-6C)alkyl, cyano-(l-6C)alkyl, amino-(l-6C)alkyl, (l-6C)alkylamino-(l-6C)alkyl, di-[(l-6C)alkyl]amino- (l-6C)alkyl, (2-6C)alkanoylamino-(l-6C)alkyl or (l-6C)alkoxycarbonylamino-(I-6C)alkyl, or from a group of the formula :
  • X 5 is a direct bond or is selected from O, N(R 10 ) and CO, wherein R 10 is hydrogen or (l-6C)alkyl, and Q 4 is aryl, aryl-(l-6C)alkyl, heteroaryl, heteroaryl-(l-6C)alkyl, heterocyclyl or heterocyclyl-(l-6C)alkyl which optionally bears 1 or 2 substituents, which may be the same or different, selected from halogeno, (l-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl and (l-6C)alkoxy, and wherein any heterocyclyl group within a substituent on R 1 optionally bears 1 or 2 oxo or thioxo substituents; R a is hydrogen or halogeno;
  • R b is hydrogen, halogeno, (l-6C)alkyl or (l-6C)alkoxy; R c is (l-6C)alkoxy;
  • R d is hydrogen, halogeno, (l-6C)alkyl or (l-6C)alkoxy; or R b and R c together or R c and R d together form a (l-3C)alkylenedioxy group; or a pharmaceutically-acceptable salt thereof.
  • alkyl includes both straight-chain and branched-chain alkyl groups such as propyl, isopropyl and tert-butyl, and also (3-6C)cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • references to individual alkyl groups such as "propyl” are specific for the straight- chain version only
  • references to individual branched-chain alkyl groups such as “isopropyl” are specific for the branched-chain version only
  • references to individual cycloalkyl groups such as "cyclopentyl” are specific for that 5-membered ring only.
  • (l-6C)alkoxy includes methoxy, ethoxy, cyclopropyloxy and cyclopentyloxy
  • (l-6C)alkylamino includes methylamino, ethylamino, cyclobutylamino and cyclohexylamino
  • di-[(l-6Calkyl] amino includes dimethylamino, diethylamino, N-cyclobutyl-N-methylamino and N-cyclohexyl- N-ethylamino.
  • the invention includes in its definition any such optically active or racemic form which possesses the above-mentioned activity.
  • the synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form.
  • the above-mentioned activity may be evaluated using the standard laboratory techniques referred to hereinafter.
  • Suitable values for the generic radicals referred to above include those set out below.
  • a suitable value for any one of the 'Q' groups (Q 1 to Q 4 ) when it is aryl or for the aryl group within a 'Q' group is, for example, phenyl or naphthyl, preferably phenyl.
  • a suitable value for any one of the 'Q' groups (Q 1 or Q 3 ) when it is (3-7C)cycloalkyl or for the (3-7C)cycloalkyl group within a 'Q' group is, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or bicyclo[2.2.1]heptyl and a suitable value for any one of the 'Q' groups (Q 1 or Q 3 ) when it is (3-7C)cycloalkenyl or for the (3-7C)cycloalkenyl group within a 'Q' group is, for example, cyclobutenyl, cyclopentenyl, cyclohexenyl or cycloheptenyl.
  • a suitable value for any one of the 'Q' groups (Q 1 to Q 4 ) when it is heteroaryl or for the heteroaryl group within a 'Q' group is, for example, an aromatic 5- or 6-membered monocyclic ring or a 9- or 10-membered bicyclic ring with up to five ring heteroatoms selected from oxygen, nitrogen and sulphur, for example furyl, pyrrolyl, thienyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,3,5-triazenyl, benzofuranyl, indolyl, benzothienyl, benzoxazolyl, benzimidazolyl, be
  • a suitable value for any one of the 'Q' groups (Q 1 to Q 4 ) when it is heterocyclyl or for the heterocyclyl group within a 'Q' group is, for example, a non-aromatic saturated or partially saturated 3 to 10 membered monocyclic or bicyclic ring with up to five heteroatoms selected from oxygen, nitrogen and sulphur, for example oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropyranyl, oxepanyl, tetrahydrothienyl, 1,1-dioxotetrahydrothienyl, tetrahydrothiopyranyl, 1,1-dioxotetrahydrothiopyranyl, azetidinyl, pyrrolinyl, pyrrolidinyl, morpholinyl, tetrahydro-l,4-thiazinyl, l,l-dioxo
  • a suitable value for such a group which bears 1 or 2 oxo or thioxo substituents is, for example, 2-oxopyrrolidinyl, 2-thioxopyrrolidinyl, 2-oxoimidazolidinyl, 2-thioxoimidazolidinyl, 2-oxopiperidinyl, 2,5-dioxopyrrolidinyl, 2,5-dioxoimidazolidinyl or 2,6-dioxopiperidinyl.
  • a suitable value for a 'Q' group when it is heteroaryl-(l-6C)alkyl is, for example, heteroarylmethyl, 2-heteroarylethyl and 3-heteroarylpropyl.
  • the invention comprises corresponding suitable values for 'Q' groups when, for example, rather than a heteroaryl-(l-6C)alkyl group, an aryl-(l-6C)alkyl, (3-7C)cycloalkyl-(l-6C)alkyl, (3-7C)cycloalkenyl-(l-6C)alkyl or heterocyclyl-(l-6C)alkyl group is present.
  • R 1 substituents may only be located at the 5-, 6-, 7- or 8-positions on the quinoline ring i.e. that the 2-position remains unsubstituted.
  • Suitable values for any of the 'R' groups (R a , R b , R c , R d and R 1 to R 10 ) or for various groups within an R 1 substituent include:- for halogeno fluoro, chloro, bromo and iodo; for (l-6C)alkyl: methyl, ethyl, propyl, isopropyl and tert-butyl; for (2-8C)alkenyl: vinyl, isopropenyl, allyl and but-2-enyl; for (2-8C)alkynyl: ethynyl, 2-propynyl and but-2-ynyl; for (l-6C)alkoxy: methoxy, ethoxy, propoxy, isopropoxy and butoxy; for (2-6C)alkenyloxy: vinyloxy and allyloxy; for (2-6C)alkynyloxy: ethynyloxy and 2-propynyloxy; for
  • N-methylamino and diisopropylamino for (l-6C)alkoxycarbonyl: methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl and tert-butoxycarbonyl ; for N-(l-6C)alkylcarbamoyl: N-methylcarbamoyl, N-ethylcarbamoyl and
  • N-methylethanesulph onylaniino for (3-6C)alkenoylamino: acrylamido, methacrylamido and crotonamido; for N-(l-6C)alkyl-(3-6C)alkenoylamino: N-methylacrylamido and N-methylcrotonamido; for (3-6C)alkynoylamino: propiolamido;
  • N-(l-6C)alkyl-(3-6C)alkynoylamino N-methylpropiolamido
  • amino-(l-6C)alkyl aminomethyl, 2-aminoethyl, 1-aminoethyl and
  • halogeno-(l-6C)alkyl chloromethyl, 2-fluoroethyl, 2-chloroethyl,
  • R b and R c together or R c and R d together form a (l-3C)alkylenedioxy group a suitable value is, for example, a methylenedioxy, ethylidenedioxy, isopropylidenedioxy or ethylenedioxy group, particularly a methylenedioxy group.
  • an R 1 group forms a group of the formula Q X 1 - and, for example, X 1 is a OC(R 4 ) 2 linking group, it is the carbon atom, not the oxygen atom, of the OC(R 4 ) 2 linking group which is attached to the quinoline ring and the oxygen atom is attached to the Q 1 group.
  • a CH 3 group within a R 1 substituent bears a group of the formula -X 3 -Q 3 and, for example, X 3 is a C(R 7 ) 2 O linking group, it is the carbon atom, not the oxygen atom, of the C(R 7 )2 ⁇ linking group which is attached to the CH 3 group and the oxygen atom is linked to the Q 3 group.
  • X 3 is a C(R 7 ) 2 O linking group
  • adjacent carbon atoms in any (2-6C)alkylene chain within a R 1 substituent may be optionally separated by the insertion into the chain of a group such as O, CON(R 5 ) or C ⁇ C.
  • insertion of a C ⁇ C group into the ethylene chain within a 2-morpholinoethoxy group gives rise to a 4-morpholinobut-2-ynyloxy group and, for example, insertion of a CONH group into the ethylene chain within a 3-methoxypropoxy group gives rise to, for example, a 2-(2-methoxyacetamido)ethoxy group.
  • suitable R 1 substituents so formed include, for example, N-[heterocyclyl-
  • (l-6C)alkyl]carbamoylvinyl groups such as N-(2- ⁇ yrrolidin-l-ylethyl)carbamoylvinyl or N-[heterocyclyl-(l-6C)alkyl]carbamoylethynyl groups such as N-(2-pyrrolidin- 1 -ylethyl)carbamoylethynyl.
  • any CH or CH 3 group within a R 1 substituent optionally bears on each said CH 2 or CH 3 group one or more halogeno or (l-6C)alkyl substituents, there are suitably 1 or 2 halogeno or (l-6C)alkyl substituents present on each said CH 2 group and there are suitably 1, 2 or 3 such substituents present on each said CH group.
  • any CH 2 or CH 3 group within a R 1 substituent optionally bears on each said CH 2 or CH group a substituent as defined hereinbefore
  • suitable R 1 substituents so formed include, for example, hydroxy-substituted heterocyclyl- (l-6C)alkoxy groups such as 2-hydroxy-3-piperidinopropoxy and 2-hydroxy- 3-mor ⁇ holinopropoxy, hydroxy-substituted amino-(2-6C)alkoxy groups such as 3-amino- 2-hydroxypropoxy, hydroxy-substituted (l-6C)alkylamino-(2-6C)alkoxy groups such as 2-hydroxy-3-methylaminopropoxy, hydroxy-substituted di-[(l-6C)alkyl]arnino-(2-6C)alkoxy groups such as 3-dimethylamino-2-hydroxypropoxy, hydroxy-substituted heterocyclyl- (l-6C)alkylamino groups such as 2-hydroxy-3-p
  • hydroxy-substituted (l-6C)alkoxy groups such as 2-hydroxyethoxy, (l-6C)alkoxy-substituted (l-6C)alkoxy groups such as 2-methoxyethoxy and 3-ethoxypropoxy, (l-6C)alkylsulphonyl-substituted (l-6C)alkoxy groups such as 2-methylsulphonylethoxy and heterocyclyl-substituted (l-6C)alkylamino-(l-6C)alkyl groups such as 2-morpholinoethylaminomethyl, 2-piperazin-l-ylethylaminomethyl and 3 -morpholinopropylaminomethyl .
  • any CH 2 or CH group within a R 1 substituent optionally bears on each said CH 2 or CH 3 group a substituent as defined hereinbefore, such an optional substituent may be present on a CH 2 or CH 3 group within the hereinbefore defined substituents that may be present on an aryl, heteroaryl or heterocyclyl group within a R 1 substituent.
  • R 1 includes an aryl or heteroaryl group that is substituted by a (l-6C)alkyl group
  • the (l-6C)alkyl group may be optionally substituted on a CH 2 or CH 3 group therein by one of the hereinbefore defined substituents therefor.
  • R 1 includes a heteroaryl group that is substituted by, for example, a (l-6C)alkylamino-(l-6C)alkyl group
  • the terminal CH 3 group of the (l-6C)alkylamino group may be further substituted by, for example, a (l-6C)alkylsulphonyl group or a (2-6C)alkanoyl group.
  • the R 1 group may be a heteroaryl group such as a thienyl group that is substituted by a N-(2-methylsulphonylethyl)aminomethyl group such that R 1 is, for example, a 5-[N-(2-methylsulphonylethyl)aminomethyl]thien-2-yl group.
  • R 1 includes a heterocyclyl group such as a piperidinyl or piperazinyl group that is substituted on a nitrogen atom thereof by, for example, a (2-6C)alkanoyl group
  • the terminal CH 3 group of the (2-6C)alkanoyl group may be further substituted by, for example, a di-[(l-6C)alkyl]amino group.
  • the R 1 group may be a N-(2-dimethylaminoacetyl)piperidin-4-yl group or a 4-(2-dimethylaminoacetyl) ⁇ iperazin-l-yl group.
  • a suitable pharmaceutically-acceptable salt of a compound of the Formula I is, for example, an acid-addition salt of a compound of the Formula I, for example an acid-addition salt with an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric, trifluoroacetic, citric or maleic acid; or, for example, a salt of a compound of the Formula I which is sufficiently acidic, for example an alkali or alkaline earth metal salt such as a calcium or magnesium salt, or an ammonium salt, or a salt with an organic base such as methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • an acid-addition salt of a compound of the Formula I for example an acid-addition salt with an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric, trifluoroacetic, citric or maleic acid
  • novel compounds of the invention include, for example, quinoline derivatives of the Formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of Z, m, R 1 , R a , R b , R c and R d has any of the meanings defined hereinbefore or in paragraphs (a) to (w) hereinafter :-
  • each R group which may be the same or different, is selected from halogeno, trifluoromethyl, hydroxy, amino, carbamoyl, (l-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (l-6C)alkoxy, (2-6C)alkenyloxy, (2-6C)alkynyloxy, (l-6C)alkylamino, di-[( 1 -6C)alkyl] amino, N-( 1 -6C)alkylcarbamoyl, N,N-di- [( 1 -6C)alkyl]carbamoyl, (2-6C)alkanoylamino, N-(l-6C)alkyl-(2-6C)alkanoylamino, (3-6C)alkenoylamino, N-(l-6C)alkyl-(3-6C)alkenoylamino, (3-6C)alkynoyla
  • X 1 is a direct bond or is selected from O, N(R 4 ), CON(R 4 ), N(R 4 )CO and OC(R 4 ) 2 wherein R 4 is hydrogen or (l-6C)alkyl
  • X 2 is a direct bond or is CO or N(R 6 )CO, wherein R 6 is hydrogen or (l-6C)alkyl, and Q 2 is heteroaryl, heteroaryl-(l-6C)alkyl, heterocyclyl or heterocyclyl-(l-6C)alkyl, and wherein any CH 2 or CH 3 group within a R 1 substituent optionally bears on each said CH 2 or CH 3 group one or more halogeno groups or a substituent selected from hydroxy, amino, oxo, (l-6C)alkoxy, (l-6C)alkylsulphonyl, (l-6C)alkylamino, di-[(l-6C)alkyl]amino, (2-6C)alkanoyloxy, (2-6C)alkanoylamino and N-(l-6C)alkyl-(2-6C)alkanoylamino, or from a group of the formula :
  • X 3 is a direct bond or is selected from O, N(R 6 ), CON(R 7 ), N(R 7 )CO and C(R 7 ) 2 O, wherein R 7 is hydrogen or (l-6C)alkyl
  • Q 3 is heteroaryl, heteroaryl-(l-6C)alkyl, heterocyclyl or heterocyclyl-(l-6C)alkyl, and wherein any aryl, heteroaryl or heterocyclyl group within a substituent on R 1 optionally bears 1, 2 or 3 substituents, which may be the same or different, selected from halogeno, trifluoromethyl, hydroxy, amino, carbamoyl, (l-6C)alkyl, (2-8C)alkenyl, (2-8C)alkynyl, (l-6C)alkoxy, (l-6C)alkylsulphonyl, N-(l-6C)alkylcarbamoyl,
  • X 4 is a direct bond or is selected from O and N(R 9 ), wherein R 9 is hydrogen or (l-6C)alkyl, and R 8 is halogeno-(l-6C)alkyl, hydroxy-(l-6C)alkyl, (l-6C)alkoxy-(l-6C)alkyl, cyano-(l-6C)alkyl, amino-(l-6C)alkyl, (l-6C)alkylamino-(l-6C)alkyl, di-[(l-6C)alkyl]amino-(l-6C)alkyl, (2-6C)alkanoylamino-(l-6C)alkyl or (l-6C)alkoxycarbonylamino-(l-6C)alkyl, and from a group of the formula :
  • X 5 is a direct bond or is selected from O, N(R 10 ) and CO, wherein R 10 is hydrogen or (l-6C)alkyl, and Q 4 is heterocyclyl or heterocyclyl-(l-6C)alkyl which optionally bears 1 or 2 substituents, which may be the same or different, selected from halogeno, (l-6C)alkyl and (l-6C)alkoxy, and wherein any heterocyclyl group within a substituent on R 1 optionally bears 1 or 2 oxo substituents;
  • each R 1 group which may be the same or different, is selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, carbamoyl, methyl, ethyl, propyl, butyl, vinyl, allyl, but-3-enyl, pent-4-enyl, hex-5-enyl, ethynyl, 2-propynyl, but-3-ynyl, pent-4-ynyl, hex-5-ynyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, allyloxy, but-3-enyloxy, pent-4-enyloxy, hex-5-enyloxy, ethynyloxy, 2-propynyloxy, but-3-ynyloxy, pent-4-ynyloxy, hex-5-ynyloxy, methylamino, ethylamino, propyla
  • Q 2 -X 2 - wherein X 2 is a direct bond or is CO, NHCO or N(Me)CO and Q 2 is pyridyl, pyridylmethyl, 2-pyridylethyl, pyrrolidin-1-yl, pyrrolidin-2-yl, morpholino, piperidino, piperidin-3-yl, piperidin-4-yl, piperazin-1-yl, pyrrolidin-l-ylmethyl, 2-pyrrolidin-l-ylethyl, 3-pyrrolidin-l-ylpropyl, 4-pyrrolidin-l-ylbutyl, pyrrolidin-2-ylmethyl, 2-pyrrolidin-2-ylethyl, 3-pyrrolidin-2-ylpropyl, morpholinomethyl, 2-morpholinoethyl, 3-mor ⁇ holinopropyl, 4-morpholinobutyl, piperidinomethyl, 2-piperidinoethyl
  • X 4 is a direct bond or is selected from O and NH and R 8 is 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 3-fluoropropyl, 3,3-difluoropropyl, 3,3,3-trifluoropropyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-methoxyethyl, 3-mefhoxypropyl, cyanomethyl, aminomethyl, 2-aminoethyl, 3-aminopropyl, methylaminomethyl, 2-methylaminoethyl, 3-methylaminopropyl, 2-ethylaminoethyl, 3-ethylaminopropyl, dimethylaminomethyl, 2-dimethylaminoethyl, 3-dimethylaminopropyl, acetamidomethyl, methoxycarbonylaminomethyl, ethoxycarbonyla
  • m is 1 and the R 1 group is located at the 5-position or m is 2 and the R 1 groups, which may be the same or different, are located at the 5- and 7-positions and each R 1 is selected from hydroxy, amino, methyl, ethyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, tetrahydrofuran-3 -yloxy, tetrahydropyran-4-yloxy, 2-pyrrolidin-l -ylethoxy, 3-pyrrolidin-l-ylpropoxy,
  • (j) m is 2 and the R 1 groups, which may be the same or different, are located at the 5- and 7-positions and the R 1 group at the 5-position is selected from methoxy, ethoxy, propoxy, isopropoxy, butoxy, tetrahydrofuran-3 -yloxy, tetrahydropyran-4-yloxy, ⁇ yrrolidin-3 -yloxy, pyrrolidin-2-ylmethoxy, 3-piperidinyloxy, 4-piperidinyloxy, piperidin-3-ylmethoxy, piperidin-4-ylrnethoxy, cyclobutyloxy, cyclopentyloxy and cyclohexyloxy, and the R 1 group at the 7-position is selected from hydroxy, methoxy, ethoxy, propoxy, isopropoxy, butoxy, 2-pyrrolidin- 1 -ylethoxy, 3 -pyrrolidin- 1 -ylpropoxy, 4-pyrrolidin
  • R a is hydrogen
  • R a is fluoro, chloro or bromo
  • R a is chloro or bromo
  • R b is hydrogen, fluoro, chloro, bromo, methyl, ethyl, methoxy or ethoxy
  • (p) R is hydrogen, chloro or bromo
  • R c is methoxy or ethoxy
  • R d is hydrogen, fluoro, chloro, bromo, methyl, ethyl, methoxy or ethoxy;
  • R d is hydrogen, fluoro, chloro, bromo, methoxy or ethoxy;
  • novel compounds of the invention include, for example, quinoline derivatives of the Formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of Z, m, R 1 , R a , R b , R c and R d has any of the meanings defined hereinbefore provided that :-
  • R 1 substituents may only be located at the 5-, 6- and/or 7-positions on the quinoline ring i.e. the 2- and 8-positions remain unsubstituted; or (B) R 1 substituents may only be located at the 6- and/or 7-positions on the quinoline ring i.e. the 2-, 5- and 8-positions remain unsubstituted.
  • the compounds of the present invention possess potent inhibitory activity against the Src family of non-receptor tyrosine kinases, for example by inhibition of c-Src and/or c-Yes, whilst possessing less potent inhibitory ativity against other tyrosine kinase enzymes such as the receptor tyrosine Idnases, for example EGF receptor tyrosine kinase and/or NEGF receptor tyrosine kinase.
  • the receptor tyrosine Idnases for example EGF receptor tyrosine kinase and/or NEGF receptor tyrosine kinase.
  • quinoline derivatives of the Formula I or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of Z, m, R 1 , R and R has any of the meanings defined hereinbefore and R a is halogeno and R c is (l-4C)alkoxy.
  • each of Z, m, R and R has any of the meanings defined hereinbefore, R is halogeno c d and R and R together form a (l-3C)alkylenedioxy group.
  • quinoline derivatives of the Formula I or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of Z, m and R 1 has any of the meanings defined hereinbefore and :- R a is chloro or bromo, R is hydrogen, R c is methoxy and R is hydrogen.
  • quinoline derivatives of the Formula I or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of Z, m and R 1 has any of the meanings defined hereinbefore and :- R a is chloro or bromo, R is hydrogen and R c and R together form a methylenedioxy group.
  • a particular compound of the invention is a quinoline derivative of the Formula I wherein :
  • Z is O or NH; m is 1 and the R 1 group is located at the 5-, 6- or 7-position or m is 2 and the R 1 groups, which may be the same or different, are located at the 5- and 7-positions or at the 6- and 7-positions and each R 1 is selected from hydroxy, amino, methyl, ethyl, propyl, butyl, vinyl, ethynyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, pentyloxy, but-3-enyloxy, pent-4-enyloxy, hex-5-enyloxy, but-3-ynyloxy, pent-4-ynyloxy, hex-5-ynyloxy, methylamino, ethylamino, dimethylamino, diethylamino, acetamido, propionamido, cyclopentyloxy, cyclohexyloxy, phenoxy, benzyloxy,
  • R is hydrogen, fluoro, chloro or bromo
  • R b is hydrogen, chloro or bromo
  • R c is methoxy or ethoxy
  • R d is hydrogen, fluoro, chloro, bromo, methoxy or ethoxy; or R c and R d together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the Formula I wherein : Z is NH; m is 2 and the R 1 groups, which may be the same or different, are located at the 6- and
  • R 1 group at the 6-position is selected from hydroxy, methoxy, ethoxy and propoxy
  • R 1 group at the 7-position is selected from methoxy, ethoxy, propoxy, 2-pyrrolidin- 1 -ylethoxy, 3-pyrrolidin-l-ylpropoxy, 4-pyrrolidin-l-ylbutoxy, pyrrolidin-3 -yloxy, pyrrolidin-2-ylmethoxy, 2-pyrrolidin-2-ylethoxy, 3-pyrrolidin-2-ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-(l , 1 -dioxotetrahydro-4H-l ,4-thiazin-4-yl)ethoxy, 3-(l , l-dioxotetrahydro-4H- 1 ,4-thiazin- 4-yl)propoxy, 2-piperidinoethoxy, 3-piperidin
  • any CH 2 or CH 3 group within a R 1 substituent optionally bears on each said CH 2 or CH 3 group one or more chloro groups or a substituent selected from hydroxy, oxo, amino, methoxy, methylsulphonyl, methylamino, dimethylamino, diisopropylamino, N-ethyl-N-methylamino, N-isopropyl-N-methylamino and acetoxy, and wherein any heterocyclyl group within a substituent on R 1 optionally bears 1 or 2 substituents, which may be the same or different, selected from fluoro, chloro, trifluoromethyl, hydroxy, amino, methyl, ethyl, methoxy, methylenedioxy,
  • R a is hydrogen, chloro or bromo
  • R b is hydrogen, chloro or bromo
  • R c is methoxy or ethoxy
  • R d is hydrogen, fluoro, chloro, bromo, methoxy or ethoxy
  • R c and R together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the Formula I wherein :
  • Z is NH; m is 2 and the first R 1 group is a 6-methoxy group and the second R 1 group is located at the 7-position and is selected from 2-pyrrolidin- 1 -ylethoxy, 3 -pyrrolidin-1 -ylpropoxy, 2-[(3RS ,4SR)-3 ,4-methylenedioxypyrrolidin- 1 -yljethoxy, 3-[(3RS,4SR)-3,4-methylenedioxypyrrolidin-l-yl]propoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-( 1 , 1 -dioxotetrahydro-4H- 1 ,4-thiazin-4-yl)efhoxy, 3-(l,l-dioxotetrahydro-4H-l,4-thiazin-4-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 2-piperidin-3-ylethoxy, 2-(N-methylpipe
  • R a is chloro or bromo
  • R b is hydrogen; R c is methoxy or ethoxy; and
  • R d is hydrogen; or R c and R d together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the
  • Z is NH; m is 2 and the first R 1 group is a 6-mefhoxy group and the second R 1 group is located at the 7-position and is selected from 2-pyrrolidin- 1 -ylethoxy, 3 -pyrrolidin-1 -ylpropoxy, 2-[(3RS,4SR)-3,4-methylenedioxypyrrolidin-l-yl]ethoxy,
  • R c is methoxy
  • R d is hydrogen; or R c and R d together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the
  • Z is NH; m is 2 and the first R 1 group is a 6-methoxy group and the second R 1 group is located at the 7-position and is selected from 2-pyrrolidin- 1 -ylethoxy, 3 -pyrrolidin-1 -ylpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy, 3-(4-methylpiperazin- 1 -yl)propoxy, 2-(4-prop-2-ynylpiperazin-l-yl)ethoxy, 3-(4-prop-2-ynyl ⁇ iperazin-l-yl)propoxy, 2-(4-acetylpiperazin-l-yl)ethoxy and 3-(4-acetylpiperazin-l-yl)propoxy; R a is chloro;
  • R b is hydrogen
  • R c is methoxy
  • R d is hydrogen; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the Formula I wherein :
  • Z is NH; m is 2 and the R 1 groups, which may be the same or different, are located at the 5- and 7- ⁇ ositions and the R 1 group at the 5-position is selected from methoxy, ethoxy, propoxy, isopropoxy, butoxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, pyrrolidin-3 -yloxy, pyrrolidin-2-ylmethoxy, 3-piperidinyloxy, 4-piperidinyloxy, piperidin-3-ylmethoxy, piperidin-4-ym ⁇ ethoxy, cyclobutyloxy, cyclopentyloxy and cyclohexyloxy, and the R 1 group at the 7-position is selected from hydroxy, methoxy, ethoxy, propoxy, isopropoxy, butoxy, 2-pyrrolidin- 1 -ylethoxy, 3 -pyrrolidin-1 -ylpropoxy, 4-pyrroli
  • R a is hydrogen, chloro or bromo
  • R is hydrogen, chloro or bromo; R c is methoxy or ethoxy; and
  • R d is hydrogen, fluoro, chloro, bromo, methoxy or ethoxy; or R c and R d together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the Formula I wherein :
  • Z is NH; m is 1 and the R 1 group is located at the 5-position and is selected from ethoxy, propoxy, isopropoxy, butoxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrothien-3 -yloxy, l,l-dioxotetrahydrothien-3-yloxy, tetrahydiOthiopyran-4-yloxy, l,l-dioxotetrahydrothiopyran-4-yloxy, N-methylazetidin-3-yloxy, N-ethylazetidin-3 -yloxy, N-iso ⁇ ropylazetidin-3-yloxy, pyrrolidin-3-yloxy, N-methylpyrrolidin-3 -yloxy, pyrrolidin-2-ylmethoxy, 3-piperidinyloxy, N-methylpiperidin-3-y
  • N-methylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy, N-methylpiperidin-4-ylmethoxy, cyclobutyloxy, cyclopentyloxy and cyclohexyloxy, or m is 2 and the first R 1 group is located at the 5-position and is selected from the group of substituents listed immediately above and the second R 1 group is located at the 7-position and is selected from 2-pyrrolidin- 1 -ylethoxy, 3 -pyrrolidin-1 -ylpropoxy, 2- [(3RS ,4SR)-3 ,4-methylenedioxypyrrolidin- 1 -yljethoxy, 3-[(3RS,4SR)-3,4-methylenedioxypyrrolidin-l-yl] ⁇ ro ⁇ oxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-(l,l-dioxotetrahydro-4H-l,4-thiazin-4-yl)eth
  • R a is hydrogen, chloro or bromo
  • R b is hydrogen, chloro or bromo
  • R c is methoxy or ethoxy
  • R d is hydrogen, chloro, bromo or methoxy; or R c and R d together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the Formula I wherein :
  • Z is NH; m is 1 and the R 1 group is located at the 5-position and is selected from propoxy, isopropoxy, tetrahydrofuran-3 -yloxy, tetrahydro ⁇ yran-4-yloxy, pyrrolidin-3-yloxy, N-methylpyrrolidin-3 -yloxy, pyrrolidin-2-ylmethoxy, 3-piperidinyloxy, N-methylpiperidin- 3-yloxy, 4-piperidinyloxy, N-methylpiperidin-4-yloxy, N-allyl ⁇ iperidin-4-yloxy, N-prop-2-ynylpiperidin-4-yloxy, N-acetylpiperidin-4-yloxy, N-methylsulphonylpiperidin- 4-yloxy, piperidin-3-ylmethoxy, N-methylpiperidin-3-ylmethoxy, piperidin-4-ylmethoxy, N-methylpi ⁇ eridin-4-ylme
  • R b is hydrogen
  • R c is methoxy or ethoxy
  • R d is hydrogen, chloro or methoxy; or R c and R d together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the Formula I wherein :
  • Z is NH; m is 1 and the R 1 group is located at the 5-position and is selected from propoxy, isopropoxy, tetrahydropyran-4-yloxy, 4-piperidinyloxy and N-methylpiperidin-4-yloxy, or m is 2 and the first R 1 group is located at the 5-position and is selected from the group of substituents listed immediately above, and the second R 1 group is located at the 7- ⁇ osition and is selected from 2-pyrrolidin- 1 -ylethoxy, 3 -pyrrolidin-1 -ylpropoxy, 2- [(3RS ,4SR)-3 ,4-methylenedioxypyrrolidin- 1 -yljethoxy, 3- [(3RS ,4SR)-3 ,4-methylenedioxypyrrolidin- 1 -yljpropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-( 1 , 1 -dioxotetrahydro-4H- 1 ,4-thi
  • R a is chloro or bromo
  • R b is hydrogen
  • R c is methoxy or ethoxy; and R d is hydrogen; or R c and R d together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinoline derivative of the Formula I wherein : Z is NH; m is 2 and the first R 1 group is located at the 5-position and is selected from isopropoxy and tetrahydropyran-4-yloxy, and the second R 1 group is located at the 7-position and is selected from 2-pyrrolidin- 1 -ylethoxy, 3 -pyrrolidin-1 -ylpropoxy, 2- [(3RS ,4SR)-3 ,4-methylenedioxypyrrolidin- 1 -yl] ethoxy, 3-[(3RS ,4SR)-3 ,4-methylenedioxypyrrolidin- l-yl]propoxy, 2-morpholinoethoxy,
  • R b is hydrogen
  • R c is methoxy
  • R d is hydrogen; or R c and R d together form a methylenedioxy group; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a particular compound of the invention is, for example, the quinoline derivative of the Formula I that is disclosed within Example 1.
  • a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes, when used to prepare a quinoline derivative of the
  • Formula I are provided as a further feature of the invention and are illustrated by the following representative process variants in which, unless otherwise stated, Z, m, R 1 , R a , R , R c and R have any of the meanings defined hereinbefore.
  • Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described in conjunction with the following representative process variants and within the accompanying Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of an organic chemist.
  • L is a displaceable group and m and R 1 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, with a compound of the Formula m wherein Z is O, S, or N(R 2 ) and R 2 , R a , R b , R c and R d have any of the meanings defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
  • the reaction may conveniently be carried out in the presence of a suitable acid or in the presence of a suitable base.
  • a suitable acid is, for example, an inorganic acid such as, for example, hydrogen chloride or hydrogen bromide.
  • a suitable base is, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide, or, for example, an alkali metal amide, for example sodium hexamethyldisilazane, or, for example, an alkali metal hydride, for example sodium hydride.
  • an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene
  • a suitable displaceable group L is, for example, a halogeno, alkoxy, aryloxy or sulphonyloxy group, for example a chloro, bromo, methoxy, phenoxy, pentafluorophenoxy, methanesulphonyloxy or toluene-4-sulphonyloxy group.
  • reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example an alcohol or ester such as methanol, ethanol, isopropanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic solvent such as toluene, or a dipolar aprotic solvent such as
  • a suitable inert solvent or diluent for example an alcohol or ester such as methanol, ethanol, isopropanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic solvent such as toluene, or a dipolar aprotic solvent such as
  • reaction is conveniently carried out at a temperature in the range, for example, 0 to 250°C, preferably in the range 0 to 120°C.
  • the quinoline of the Formula JJ may be reacted with a compound of the Formula HI in the presence of an aprotic solvent such as N,N-dimethylformamide, conveniently in the presence of a base, for example potassium carbonate or sodium hexamethyldisilazane, and at a temperature in the range, for example, 0 to 150°C, preferably in the range, for example, 0 to 70°C.
  • aprotic solvent such as N,N-dimethylformamide
  • a base for example potassium carbonate or sodium hexamethyldisilazane
  • the quinoline derivative of the Formula I may be obtained from this process in the form of the free base or alternatively it may be obtained in the form of a salt with the acid of the formula H-L wherein L has the meaning defined hereinbefore.
  • the salt may be treated with a suitable base, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide.
  • a suitable base for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydro
  • protecting groups are given below for the sake of convenience, in which "lower”, as in, for example, lower alkyl, signifies that the group to which it is applied preferably has 1-4 carbon atoms. It will be understood that these examples are not exhaustive. Where specific examples of methods for the removal of protecting groups are given below these are similarly not exhaustive. The use of protecting groups and methods of deprotection not specifically mentioned are, of course, within the scope of the invention.
  • a carboxy protecting group may be the residue of an ester-forming aliphatic or arylaliphatic alcohol or of an ester-forming silanol (the said alcohol or silanol preferably containing 1-20 carbon atoms).
  • carboxy protecting groups include straight or branched chain (l-12C)alkyl groups (for example isopropyl, and tert-butyl); lower alkoxy- lower alkyl groups (for example methoxymethyl, ethoxymethyl and isobutoxymethyl); lower acyloxy-lower alkyl groups, (for example acetoxymethyl, propionyloxymefhyl, butyryloxymefhyl and pivaloyloxymethyl); lower alkoxycarbonyloxy-lower alkyl groups (for example 1-methoxycarbonyloxyethyl and
  • aryl-lower alkyl groups for example benzyl, 4-methoxybenzyl, 2-nitrobenzyl, 4-nitrobenzyl, benzhydryl and phthalidyl
  • tri(lower alkyl)silyl groups for example trimethylsilyl and tert-butyldirnefhylsilyl
  • tri(lower alkyl)silyl-lower alkyl groups for example trimethylsilylethyl
  • (2-6C)alkenyl groups for example allyl.
  • hydroxy protecting groups include lower alkyl groups (for example tert-butyl), lower alkenyl groups (for example allyl); lower alkanoyl groups (for example acetyl); lower alkoxycarbonyl groups (for example tert-butoxycarbonyl); lower alkenyloxycarbonyl groups (for example allyloxycarbonyl); aryl-lower alkoxycarbonyl groups (for example benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl); tri (lower alkyl)silyl (for example trimethylsilyl and tert-butyldimethylsilyl) and aryl-lower alkyl (for example benzyl) groups.
  • lower alkyl groups for example tert-butyl
  • lower alkenyl groups for example allyl
  • lower alkanoyl groups for example acetyl
  • amino protecting groups include formyl, aryl-lower alkyl groups (for example benzyl and substituted benzyl, 4-methoxybenzyl, 2-nitrobenzyl and 2,4-dimethoxybenzyl, and triphenylmethyl); di-4-anisylmethyl and furylmethyl groups; lower alkoxycarbonyl (for example tert-butoxycarbonyl); lower alkenyloxycarbonyl (for example allyloxycarbonyl); aryl-lower alkoxycarbonyl groups (for example benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl); trialkylsilyl (for example trimethylsilyl and tert-butyldimethylsilyl); alkylidene (for example methylidene) and benzylidene and substituted benzylidene groups.
  • aryl-lower alkyl groups for example benzy
  • Methods appropriate for removal of hydroxy and amino protecting groups include, for example, acid-, base-, metal- or enzymically-catalysed hydrolysis for groups such as 2-nitrobenzyloxycarbonyl, hydrogenation for groups such as benzyl and photolytically for groups such as 2-nitrobenzyloxycarbonyl.
  • Quinoline starting materials of the Formula JJ may be obtained by conventional procedures such as those disclosed in International Patent Applications WO 98/43960 and WO 00/68201.
  • a l,4-dihydroquinolin-4-one of Formula IN wherein m and R 1 have any of the meanings defined hereinbefore except that any functional group is protected if necessary may be reacted with a halogenating agent such as thionyl chloride, phosphoryl chloride or a mixture of carbon tetrachloride and triphenylphosphine whereafter any protecting group that is present is removed by conventional means.
  • a halogenating agent such as thionyl chloride, phosphoryl chloride or a mixture of carbon tetrachloride and triphenylphosphine whereafter any protecting group that is present is removed by conventional means.
  • the 4-chloroquinoline so obtained may be converted, if required, into a 4-pentafluorophenoxyquinoline by reaction with pentafluorophenol in the presence of a suitable base such as potassium carbonate and in the presence of a suitable solvent such as ⁇ , ⁇ -dimethylf ormamide .
  • 3-Aminopyridine starting materials (Formula HI, for example when Z is NH) may be obtained by conventional procedures as illustrated in the Examples.
  • Q 1 is an aryl-(l-6C)alkyl, (3-7C)cycloalkyl-(l-6C)alkyl, (3-7C)cycloalkenyl- (l-6C)alkyl, heteroaryl-(l-6C)alkyl or heterocyclyl-(l-6C)alkyl group or an optionally substituted alkyl group and X 1 is an oxygen atom, the coupling, conveniently in the presence of a suitable dehydrating agent, of a quinoline of the Formula V
  • m, R 1 , Z, R a , R b , R c and R d have any of the meanings defined hereinbefore except that any functional group is protected if necessary, with an appropriate alcohol wherein any functional group is protected if necessary whereafter any protecting group that is present is removed by conventional means.
  • a suitable dehydrating agent is, for example, a carbodiimide reagent such as dicyclohexylcarbodiimide or l-(3-dimethylaminopropyl)-3-ethylcarbodiimide or a mixture of an azo compound such as diethyl or di-tert-butyl azodicarboxylate and a phosphine such as triphenylphosphine.
  • the reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride and at a temperature in the range, for example, 10 to 150°C, preferably at or near ambient temperature.
  • reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride and at a temperature in the range, for example, 10 to 150°C, preferably at or near ambient temperature.
  • a suitable inert solvent or diluent for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride
  • L is a displaceable group as defined hereinbefore and Z
  • R a , R b , R c and R d have any of the meanings defined hereinbefore except that any functional group is protected if necessary, with an alcohol or amine as appropriate whereafter any protecting group that is present is removed by conventional means.
  • reaction is conveniently carried out in the presence of a suitable inert diluent or carrier as defined hereinbefore and at a temperature in the range 10 to 150°C, preferably at or near 50°C.
  • reaction is conveniently carried out in the presence of a suitable inert diluent or carrier as defined hereinbefore and at a temperature in the range 10 to 150°C, preferably at or near ambient temperature.
  • Suitable acylating agents are well known to the man skilled in the art.
  • a compound of the Formula I wherein a R 1 group contains a piperidinyl or piperazinyl group having an unsubstituted NH group may be reacted under conventional conditions with an optionally substituted carboxylic acid or a reactive derivative thereof.
  • a suitable reactive derivative of an optionally substituted carboxylic acid is, for example, a carboxylic acid halide; a carboxylic acid amide; a mixed anhydride, for example an anhydride formed by the reaction of the carboxylic acid and a chloroformate such as isobutyl chloroformate; the product of the reaction of the carboxylic acid with a carbodiimide such as dicyclohexylcarbodiimide or l-(3-dimethylaminopiOpyl)-3-ethylcarbodiimide; the product of the reaction of the carboxylic acid with a mixture of an azo compound such as diethyl or di- tert-butyl azodicarboxylate and a phosphine such as triphenylphosphine; or the product of the reaction of the carboxylic acid with a uronium salt such as
  • a suitable amino-substituted carboxylic acid is ⁇ , ⁇ -dimethylglycine and a suitable
  • reaction is conveniently carried out in the presence of a suitable inert diluent or carrier as defined hereinbefore and at a temperature in the range 10 to 150°C, preferably at or near ambient temperature.
  • the following assays can be used to measure the effects of the compounds of the present invention as c-Src tyrosine kinase inhibitors, as inhibitors in vitro of the proliferation
  • test compounds to inhibit the phosphorylation of a tyrosine containing polypeptide substrate by the enzyme c-Src kinase was assessed using a conventional Elisa
  • a substrate solution [lOO ⁇ l of a 20 ⁇ g/ml solution of the polyamino acid Poly(Glu, Tyr) 4:1 (Sigma Catalogue No. P0275) in phosphate buffered saline (PBS) containing 0.2mg/ml of sodium azide] was added to each well of a number of Nunc 96-well immunoplates (Catalogue No. 439454) and the plates were sealed and stored at 4°C for
  • Bovine Serum Albumin (BSA; 150 ⁇ l of a 5% solution in PBS) were transferred into each substrate-coated assay well and incubated for 1 hour at ambient temperature to block non specific binding.
  • the assay plate wells were washed in turn with PBS containing 0.05% v/v Tween 20 (PBST) and with Hepes pH7.4 buffer (50mM, 300 ⁇ l/well) before being blotted dry.
  • test compound was dissolved in dimethyl sulphoxide and diluted with distilled water to give a series of dilutions (from lOO ⁇ M to O.OOl ⁇ M). Portions (25 ⁇ l) of each dilution of test compound were transferred to wells in the washed assay plates. "Total" control wells contained diluted DMSO instead of compound. Aliquots (25 ⁇ l) of an aqueous magnesium chloride solution (80mM) containing adenosine-5'-triphosphate (ATP; 40 ⁇ M) was added to all test wells except the "blank" control wells which contained magnesium chloride without ATP.
  • aqueous magnesium chloride solution 80mM
  • ATP adenosine-5'-triphosphate
  • Active human c-Src kinase (recombinant enzyme expressed in Sf9 insect cells; obtained from Upstate Biotechnology Inc. product 14-117) was diluted immediately prior to use by a factor of 1:10,000 with an enzyme diluent which comprised lOOmM Hepes pH7.4 buffer, 0.2mM sodium orthovanadate, 2mM dithiothreitol and 0.02% BSA.
  • enzyme diluent which comprised lOOmM Hepes pH7.4 buffer, 0.2mM sodium orthovanadate, 2mM dithiothreitol and 0.02% BSA.
  • phosphate-citrate pH5 buffer 50mM containing 0.03% sodium perborate.
  • An aliquot (50ml) of this buffer was mixed with a 50mg tablet of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS; Boehringer Catalogue No. 1204 521). Aliquots (lOO ⁇ l) of the resultant solution were added to each well. The plates were incubated for 20 to 60 minutes at ambient temperature until the optical density value of the "total" control wells, measured at 405nm using a plate reading spectrophotometer, was approximately 1.0.
  • NTH National Institute of Health
  • the resultant c-Src 3T3 cells were typically seeded at 1.5 x 10 4 cells per well into 96-well tissue- culture-treated clear assay plates (Costar) each containing an assay medium comprising Dulbecco's modified Eagle's medium (DMEM; Sigma) plus 0.5% foetal calf serum (FCS), 2mM glutamine, 100 units/ml penicillin and O.lmg/ml streptomycin in 0.9% aqueous sodium chloride solution.
  • DMEM Dulbecco's modified Eagle's medium
  • FCS foetal calf serum
  • 2mM glutamine 100 units/ml penicillin and O.lmg/ml streptomycin in 0.9% aqueous sodium chloride solution.
  • the plates were incubated overnight at 37°C in a humidified (7.5% CO 2 : 95% air) incubator.
  • Test compounds were solubilised in DMSO to form a lOmM stock solution. Aliquots of the stock solution were diluted with the DMEM medium described above and added to appropriate wells. Serial dilutions were made to give a range of test concentrations. Control wells to which test compound was not added were included on each plate. The plates were incubated overnight at 37°Cin a humidified (7.5% CO 2 : 95% air) incubator.
  • BrdU labelling reagent (Boehringer Mannheim Catalogue No. 647 229) was diluted by a factor of 1 : 100 in DMEM medium containing 0.5% FCS and aliquots (20 ⁇ l) were added to each well to give a final concentration of lO ⁇ M). The plates were incubated at 37°C for 2 hours. The medium was decanted. A denaturating solution (FixDenat solution, Boehringer Mannheim Catalogue No. 647 229; 50 ⁇ l) was added to each well and the plates were placed on a plate shaker at ambient temperature for 45 minutes. The supernatant was decanted and the wells were washed with PBS (200 ⁇ l per well).
  • Anti-BrdU-Peroxidase solution (Boehringer Mannheim Catalogue No. 647 229) was diluted by a factor of 1:100 in PBS containing 1% BSA and 0.025% dried skimmed milk (Marvel (registered trade mark), Premier Beverages, Stafford, GB) and an aliquot (lOO ⁇ l) of the resultant solution was added to each well.
  • the plates were placed on a plate shaker at ambient temperature for 90 minutes. The wells were washed with PBS (x5) to ensure removal of non-bound antibody conjugate.
  • the plates were blotted dry and tetramethylbenzidine substrate solution (Boehringer Mannheim Catalogue No. 647 229; lOO ⁇ l) was added to each well.
  • This assay determines the ability of a test compound to inhibit the migration of adherent mammalian cell lines, for example the human tumour cell line A549.
  • RPMI medium(Sigma) containing 10% FCS, 1% L-glutamine and 0.3% agarose (Difco Catalogue No. 0142-01) was warmed to 37°C in a water bath.
  • a stock 2% aqueous agar solution was autoclaved and stored at 42°C.
  • An aliquot (1.5 ml) of the agar solution was added to RPMI medium (10 ml) immediately prior to its use.
  • A549 cells (Accession No. ATCC CCL185) were suspended at a concentration of 2 x 10 7 cells/ml in the medium and maintained at a temperature of 37°C.
  • a droplet (2 ⁇ l) of the cell/agarose mixture was transferred by pipette into the centre of each well of a number of 96-well, flat bottomed non-tissue-culture-treated microtitre plate (Bibby Sterilin Catalogue No. 642000). The plates were placed briefly on ice to speed the gelling of the agarose-containing droplets. Aliquots (90 ⁇ l) of medium which had been cooled to 4°C were transferred into each well, taking care not to disturb the microdroplets. Test compounds were diluted from a lOmM stock solution in DMSO using RPMI medium as described above. Aliquots (lO ⁇ l) of the diluted test compounds were transferred to the wells, again taking care not to disturb the microdroplets. The plates were incubated at 37°C in a humidified (7.5% CO 2 : 95% air) incubator for about 48 hours.
  • a migratory inhibitory IC 50 was derived by plotting the mean migration measurement against test compound concentration.
  • This test measures the ability of compounds to inhibit the growth of the A549 human carcinoma grown as a tumour in athymic nude mice (Alderley Park nu/nu strain).
  • a total of about 5 x 10 6 A549 cells in matrigel (Beckton Dickinson Catalogue No. 40234) were injected subcutaneously into the left flank of each test mouse and the resultant tumours were allowed to grow for about 14 days. Tumour size was measured twice weekly using callipers and a theoretical volume was calculated. Animals were selected to provide control and treatment groups of approximately equal average tumour volume.
  • Test compounds were prepared as a ball-milled suspension in 1% polysorbate vehicle and dosed orally once daily for a period of about 28 days. The effect on tumour growth was assessed.
  • the quinoline compound disclosed within Example 1 possesses the following activity :- Test (a), IC50 approximately O.Ol ⁇ M; Test (b), IC50 approximately 0.5 ⁇ M; and Test (c) activity at approximately 0.6 ⁇ M.
  • Test (d) No physiologically-unacceptable toxicity was observed in Test (d) at the effective dose for compounds tested of the present invention. Accordingly no untoward toxicological effects are expected when a compound of Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore is administered at the dosage ranges defined hereinafter.
  • a pharmaceutical composition which comprises a quinoline derivative of the Formula I, or a pharmaceuticaliy- acceptable salt thereof, as defined hereinbefore in association with a pharmaceutically- acceptable diluent or carrier.
  • compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).
  • oral use for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixir
  • compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art.
  • compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.
  • a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 0.5 g of active agent (more suitably from 0.5 to 100 mg, for example from 1 to 30 mg) compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition.
  • the size of the dose for therapeutic or prophylactic purposes of a compound of the Formula I will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine.
  • a daily dose in the range for example, 0.1 mg kg to 75 mg/kg body weight is received, given if required in divided doses.
  • a parenteral route is employed.
  • a dose in the range for example, 0.1 mg/kg to 30 mg/kg body weight will generally be used.
  • a dose in the range for example, 0.05 mg/kg to 25 mg kg body weight will be used.
  • Oral administration is however preferred, particularly in tablet form.
  • unit dosage forms will contain about 0.5 mg to 0.5 g of a compound of this invention.
  • c-Src non-receptor tyrosine kinase the predominant role of c-Src non-receptor tyrosine kinase is to regulate cell motility which is necessarily required for a localised tumour to progress through the stages of dissemination into the blood stream, invasion of other tissues and initiation of metastatic tumour growth.
  • the quinoline derivatives of the present invention possess potent anti-tumour activity which it is believed is obtained by way of inhibition of one or more of the non-receptor tyrosine-specific protein kinases such as c-Src kinase that are involved in the quinoline signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells.
  • the derivatives of the present invention are of value as anti-tumour agents, in particular as selective inhibitors of the motility, dissemination and invasiveness of mammalian cancer cells leading to inhibition of metastatic tumour growth.
  • the quinoline derivatives of the present invention are of value as anti-invasive agents in the containment and/or treatment of solid tumour disease.
  • the compounds of the present invention are expected to be useful in the prevention or treatment of those tumours which are sensitive to inhibition of one or more of the multiple non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells.
  • the compounds of the present invention are expected to be useful in the prevention or treatment of those tumours which are mediated alone or in part by inhibition of the enzyme c-Src, i.e. the compounds may be used to produce a c-Src enzyme inhibitory effect in a warm-blooded animal in need of such treatment.
  • the compounds of the present invention are expected to be useful in the prevention or treatment of solid tumour disease.
  • quinoline derivative of the Formula I or a pharmaceutically-acceptable salt thereof, as defined hereinbefore for use as an anti-invasive agent in the containment and/or treatment of solid tumour disease.
  • a quinoline derivative of the Formula I or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use as an anti-invasive agent in the containment and/or treatment of solid tumour disease.
  • a method for producing an anti-invasive effect by the containment and/or treatment of solid tumour disease in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.
  • a quinoline derivative of the Formula I or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the prevention or treatment of solid tumour disease in a warm-blooded animal such as man.
  • a method for the prevention or treatment of solid tumour disease in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.
  • a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the prevention or treatment of those tumours which are sensitive to inhibition of non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells.
  • a method for the prevention or treatment of those tumours which are sensitive to inhibition of non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells which comprises administering to said animal an effective amount of a quinoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.
  • a quinoline derivative of the Formula I or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in providing a c-Src kinase inhibitory effect.
  • the anti-cancer treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the quinoline derivative of the invention, conventional surgery or radiotherapy or chemotherapy.
  • Such chemotherapy may include one or more of the following categories of anti-tumour agents :-
  • anti-invasion agents for example metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasminogen activator receptor function
  • antiproliferative/antineoplastic drugs and combinations thereof as used in medical oncology, such as alkylating agents (for example cis-platin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan and nitrosoureas); antimetaboHtes (for example antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside and hydroxyurea; antitumour antibiotics (for example anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, d
  • inhibitors of growth factor function include growth factor antibodies, growth factor receptor antibodies (for example the anti-erbB2 antibody trastuzumab [HerceptinTM] and the anti-erbBl antibody cetuximab [C225]), farnesyl transf erase inhibitors, tyrosine kinase inhibitors and serine/threonine kinase inhibitors, for example inhibitors of the epidermal growth factor family (for example EGFR family tyrosine kinase inhibitors such as N-(3-chloro-4-fluorophenyl)-7-methoxy- 6-(3-morpholinopropoxy)quinazolin-4-amine (gefitinib, ZD1839), N-(3-ethynylphenyl)- 6,7-bis(2-methoxyethoxy)quinazolin-4-amine (erlotinib, OSI-774) and 6-acrylamido- N-(3-chloro
  • antiangiogenic agents such as those which inhibit the effects of vascular endothelial growth factor, (for example the anti-vascular endothelial cell growth factor antibody bevacizumab [AvastinTM], compounds such as those disclosed in International Patent Applications WO 97/22596, WO 97/30035, WO 97/32856 and WO 98/13354) and compounds that work by other mechanisms (for example linomide, inhibitors of integrin v ⁇ 3 function and angiostatin);
  • vascular endothelial growth factor for example the anti-vascular endothelial cell growth factor antibody bevacizumab [AvastinTM]
  • vastinTM anti-vascular endothelial cell growth factor antibody bevacizumab
  • compounds that work by other mechanisms for example linomide, inhibitors of integrin v ⁇ 3 function and angiostatin
  • vascular damaging agents such as Combretastatin A4 and compounds disclosed in International Patent Applications WO 99/02166, WO 00/40529, WO 00/41669, WO 01/92224, WO 02/04434 and WO 02/08213;
  • antisense therapies for example those which are directed to the targets listed above, such as ISIS 2503, an anti-ras antisense
  • gene therapy approaches including for example approaches to replace aberrant genes such as aberrant p53 or aberrant BRCAl or BRCA2, GDEPT (gene-directed enzyme pro-drug therapy) approaches such as those using cytosine deaminase, thymidine kinase or a bacterial nitroreductase enzyme and approaches to increase patient tolerance to chemotherapy or radiotherapy such as multi-drug resistance gene therapy; and
  • immunotherapy approaches including for example ex-vivo and in-vivo approaches to increase the immunogenicity of patient tumour cells, such as transfection with cytokines such as interleukin 2, interleukin 4 or granulocyte-macrophage colony stimulating factor, approaches to decrease T-cell anergy, approaches using transfected immune cells such as cytokine-transfected dendritic cells, approaches using cytokine-transfected tumour cell lines and approaches using anti-idiotypic antibodies.
  • cytokines such as interleukin 2, interleukin 4 or granulocyte-macrophage colony stimulating factor
  • Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment.
  • Such combination products employ the compounds of this invention within the dosage range described hereinbefore and the other pharmaceutically-active agent within its approved dosage range.
  • a pharmaceutical product comprising a quinoline derivative of the formula I as defined hereinbefore and an additional anti-tumour agent as defined hereinbefore for the conjoint treatment of cancer.
  • the compounds of the Formula I are primarily of value as therapeutic agents for use in warm-blooded animals (including man), they are also useful whenever it is required to inhibit the effects of c-Src. Thus, they are useful as pharmacological standards for use in the development of new biological tests and in the search for new pharmacological agents.
  • melting points are uncorrected and were determined using a Mettler SP62 automatic melting point apparatus or an oil-bath apparatus; melting points for the end-products of the Formula I were determined after crystallisation from a conventional organic solvent such as ethanol, methanol, acetone, ether or hexane, alone or in admixture;
  • the resultant concentrate and DMF washings were combined and injected directly on to a Waters Symmetry column (C18 reversed-phase, 5 microns, 19 mm diameter, 100 mm length) and eluted with decreasingly polar mixtures of water (containing 5% methanol and 1% acetic acid) and acetonitrile.
  • the material so obtained was mixed with methylene chloride (20 ml) that contained 5% methanol. Potassium carbonate (0.5 g) was added and the mixture was stirred at ambient temperature for 10 minutes. The solids were filtered off and the filtrate was evaporated. The resultant residue was triturated under diethyl ether.
  • the filtrate was cooled to 0°C and the acidity of the solution was reduced to pH4 by the addition of ION aqueous potassium hydroxide solution.
  • the resultant solution was extracted with methylene chloride and the organic layer was dried over magnesium sulphate and evaporated.
  • the residue was purified by column chromatography on silica using a 4:1 mixture of petroleum ether (b.p. 40-60°C) and diethyl ether as eluent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention se rapporte à des dérivés de quinoline de la formule (1) dans laquelle Z est un groupe O, S, SO, SO2, N(R2) ou C(R2)(R3) dans lequel chaque groupe R2 ou R3 est un hydrogène ou un alkyle (1-6C), m est 1, 2 ou 3, chaque groupe R1 est choisi entre halogéno, alkyle (1-6C), alcoxy (1-6C) et une quelconque définition parmi celles qui sont données dans la description, Ra est hydrogène ou halogéno, Rb est hydrogène, halogéno, alkyle (1-6C) ou alcoxy (1-6C), Rc est alcoxy (1-6C) et Rd est hydrogène, halogéno, alkyle (1-6C) ou alcoxy (1-6C), ou Rb et Rc ensemble ou Rc et Rd ensemble forment un groupe alkylènedioxy (1-3C) ; ou à des sels pharmaceutiquement acceptables de ces derniers; à des procédés de préparation, à des compositions pharmaceutiques les contenant et à leur utilisation dans la fabrication d'un médicament utilisé comme agent anti-invasif destiné à circonscrire et/ou traiter une maladie à tumeur solide.
PCT/GB2004/000386 2003-02-03 2004-01-30 Derives de quinoline et leur utilisation comme agents antitumoraux WO2004069827A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03290262 2003-02-03
EP03290262.9 2003-02-03

Publications (1)

Publication Number Publication Date
WO2004069827A1 true WO2004069827A1 (fr) 2004-08-19

Family

ID=32842858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/000386 WO2004069827A1 (fr) 2003-02-03 2004-01-30 Derives de quinoline et leur utilisation comme agents antitumoraux

Country Status (1)

Country Link
WO (1) WO2004069827A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043960A1 (fr) * 1997-04-03 1998-10-08 American Cyanamid Company 3-cyano quinolines substituees
WO2000018740A1 (fr) * 1998-09-29 2000-04-06 American Cyanamid Company Inhibiteurs de proteines de type tyrosine kinases a base de 3-cyanoquinolines substituees

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043960A1 (fr) * 1997-04-03 1998-10-08 American Cyanamid Company 3-cyano quinolines substituees
WO2000018740A1 (fr) * 1998-09-29 2000-04-06 American Cyanamid Company Inhibiteurs de proteines de type tyrosine kinases a base de 3-cyanoquinolines substituees

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BOSCHELLI D H ET AL: "OPTIMIZATION OF 4-PHENYLAMINO-3-QUINOLINECARBONITRILES AS POTENT INHIBITORS OF SRC KINASE ACTIVITY", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 44, no. 23, 8 November 2001 (2001-11-08), pages 3965 - 3977, XP001105608, ISSN: 0022-2623 *

Similar Documents

Publication Publication Date Title
US6849625B2 (en) Quinazoline derivatives with anti-tumour activity
US20070213367A1 (en) Substituted 3-cyanoquinolines as MEK inhibitors
US7141577B2 (en) Quinazoline derivatives
EP1313727A1 (fr) Derives de quinazoline
US20040063733A1 (en) Quinazoline derivatives
US20070191346A1 (en) 3-Cyano-quinoline derivatives
WO2002092578A1 (fr) Derives de quinazoline
WO2003008409A1 (fr) Derives quinoline et utilisation en tant qu'inhibiteurs de tyrosine kinase
US6939866B2 (en) Quinazoline derivatives
IL168013A (en) Quinazoline derivatives, processes for preparation thereof, pharmaceutical compositions comprising the same and uses thereof
WO2002092577A1 (fr) Derives quinazoliniques
WO2003048159A1 (fr) Derives de la quinoleine
WO2003047584A1 (fr) Derives de la quinoline
WO2004108704A1 (fr) Derives de pyrimidin-4-yl 3-cyanoquinoline servant a traiter des tumeurs
WO2004069250A1 (fr) Derives de 3-cyano-quinoline utilises comme inhibiteurs de la tyrosine kinase non associee a un recepteur
WO2004056812A1 (fr) Derives de 4-(pyridin-4-ylamino)-quinazoline utilises comme agents anticancereux
WO2004108711A1 (fr) Derives pyrazinile quinazoline destines au traitement de tumeurs
WO2004108703A1 (fr) Derives de pyrazinyl 3-cyanoquinoline destines a etre utilises dans le traitement des tumeurs
WO2004081000A1 (fr) Dérivés quinazoliniques
WO2004108707A1 (fr) Derives de pyridazinile quinazoline pour le traitement de tumeurs
WO2004069249A1 (fr) Derives de la 3-cyano-quinoleine, en tant qu'inhibiteurs de tyrosine kinase non recepteurs
WO2004056801A1 (fr) Derives quinazoliniques
WO2004108710A1 (fr) Derives 4-pyrimidinylquinazoline a utiliser dans le traitement de tumeurs
WO2004069827A1 (fr) Derives de quinoline et leur utilisation comme agents antitumoraux

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)