WO2004068500A1 - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device Download PDF

Info

Publication number
WO2004068500A1
WO2004068500A1 PCT/JP2003/001000 JP0301000W WO2004068500A1 WO 2004068500 A1 WO2004068500 A1 WO 2004068500A1 JP 0301000 W JP0301000 W JP 0301000W WO 2004068500 A1 WO2004068500 A1 WO 2004068500A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
voltage
threshold
writing
write
Prior art date
Application number
PCT/JP2003/001000
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Kurata
Shunichi Saeki
Masahiro Sakai
Yoshinori Takase
Jiro Kishimoto
Original Assignee
Hitachi, Ltd.
Hitachi Device Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Device Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2003/001000 priority Critical patent/WO2004068500A1/en
Publication of WO2004068500A1 publication Critical patent/WO2004068500A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0491Virtual ground arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/562Multilevel memory programming aspects
    • G11C2211/5621Multilevel programming verification

Definitions

  • Nonvolatile semiconductor memory device includes
  • the present invention relates to an electrically rewritable nonvolatile semiconductor memory device, and more particularly to a nonvolatile semiconductor memory device capable of storing multiple data.
  • flash memory has excellent portability and impact resistance, and can be erased electrically all at once.
  • flash memory has rapidly become a file for small portable information devices such as portable personal computers and digital still cameras.
  • Demand is growing. To expand the market, it is essential to reduce the bit cost by reducing the memory cell area, and various memory cell methods have been proposed to achieve this.
  • One of them is a virtual ground type memory cell using a three-layer polysilicon gate as shown in Japanese Patent Application No. 11-200242.
  • the memory cell has a first well composed of a well WEL in a silicon substrate SUB, a source in a well, a drain diffusion layer region DR, and a polysilicon film formed on the well.
  • a floating gate FG serving as a gate
  • a control gate VV serving as a second gate
  • an auxiliary gate AG serving as a third gate.
  • AG and FG are disposed through an insulating film TOX as that formed for example Si0 2 on WEL.
  • the third gate AG is embedded in the gap between the floating gate FG that is perpendicular to the word line and the channel, and Between has a separate structure in example Si0 2 of such an insulating film SWA.
  • the floating gate FG and the SWF which is also made of a polysilicon film, are separated from the lead line WL by an insulating film IPO, and the third gate AG is separated from the word line WL by an insulating film CA and IPO. Have been.
  • the source / drain diffusion layer DR is arranged perpendicular to the word line WL and exists as a local source line and a local data line connecting the source / drain of the memory cell in the column direction (X direction). Consists contactors Torres-type array having no contactor Bokuana for each memory cell, it is possible to improve the formation density of the memory cells, the memory cell area 4 F 2: can be reduced to (F minimum feature size).
  • FIG. 2 shows the voltage application conditions during memory cell writing.
  • a positive voltage of, for example, about 5 V is applied to the diffusion layer Dn serving as the drain of the selected memory cell M, and a positive voltage of, for example, about 13 V is applied to the lead line WLn of the selected memory cell M.
  • a voltage approximately equal to the threshold of the MOS transistor constituted by the third gate, for example, approximately IV is applied to the third gates AGe of the memory cells M and M + 2 .
  • the diffusion layer D n ⁇ 1, the gate, and the unselected word line WL n + 1 that are the sources of the selected memory cell M are held at 0V.
  • the Constant Charge Injection Programming method shown in DIGEST OF TECHNICAL PAPERS 2002 SYMPOSIUM ON VLSI CIRCUITS p.302 to 303 (Hereinafter referred to as the CCIP method).
  • the CCIP method as shown in Fig. 3, electric charge is stored in a fixed capacitance C provided on the drain side of the memory cell MEM, and only the electric charge stored in that capacitance is passed to the memory cell to perform writing.
  • Figure 4 shows the write operation method of the CCIP method.
  • the internal power supply PROG that supplies the channel current at the timing of t0 is set to 5 V
  • SWS and SED are started at the timing of t1
  • STS which is the switching MOS on the source side and the drain side of the memory cell MEM, Turn STD ON.
  • a write voltage of 13 V is applied to the read line WL of the selected memory cell at the timing of t2.
  • the charge accumulated at the node ND starts flowing to the source side via the memory cell.
  • a hot electron generated in the channel region of the memory cell is injected into the floating gate to write data. Only happens.
  • the potential of the node ND on the drain side decreases as the channel current flows, but writing occurs while a high horizontal electric field sufficient to generate hot electrons is generated in the channel portion.
  • the amount of current per cell must be reduced to several hundred nA or less in order to write cells in kilobytes in parallel. It was necessary to set the voltage to be applied to, for example, IV or less, and operate in the subthreshold region.
  • the write characteristics of the memory cell greatly vary due to dimensional variations in the AG section, etc., but according to the CCIP method, the variations in the write characteristics can be greatly improved.
  • a multilevel flash memory a very narrow distribution width is required for a threshold voltage corresponding to each data. When writing, it is necessary to keep the threshold voltage of each memory cell within this narrow threshold distribution. In general, the value is narrowed by applying a write pulse and reading (verify) for verifying whether the data has been written.
  • the variation in writing characteristics between memory cells is large, the number of times of verifying is required, and thus there is a problem that the writing of the entire storage device is delayed.
  • the variation in writing between memory cells can be significantly reduced, so that the number of times of verification can be reduced, and the writing speed of the multi-level flash memory can be increased.
  • writing to a large-capacity flash memory is performed simultaneously on a plurality of memory cells connected to one read line. Since the write speed differs depending on the memory cell, the write pulse is applied repeatedly while verifying the threshold voltage Vth. Memory cells whose value Vth has risen up to a predetermined write level Only when all the memory cells to be written are written, that is, when the threshold voltage Vth of all the memory cells to be written reaches a predetermined level, the writing is completed. . .
  • a writing speed is determined by a memory cell having a low writing speed.
  • the allowable threshold voltage Vth width for each level is, for example, about 0.4 V. Is very small, a write error occurs when a memory cell in which writing is fast exceeds a predetermined threshold voltage Vth. Therefore, it is necessary to optimize the pulse application method so that both the fast-writing memory cell and the slow-writing memory cell can write fastest within the allowable threshold voltage range.
  • FIG. 5 shows a write pulse in the 1SPP method, and shows a pulse voltage applied to the lead line.
  • the low voltage pulse Vvr in the figure is a pulse applied in the verify operation, and a high voltage, for example, a Vpp pulse is a pulse applied in the write operation.
  • This write operation and verify operation are one cycle. The cycle is repeated.
  • the ISPP method is characterized in that the pulse voltage is increased by Vpp for each application cycle.
  • JP-A-134879 shows an example in which the ISPP method is applied to a 2-bit / cell multi-level flash memory.
  • Figure 6 shows the relationship between data and threshold distribution in a 2-bit / cell multi-level flash memory. By making it possible to set the threshold distribution in four states, one memory cell can hold 2-bit data.
  • Figure 7 shows the application of the ISPP method to this 2-bit / cell multi-level flash memory.
  • writing is performed by increasing the pulse voltage by ⁇ Vppl every write cycle from the initial write pulse Vppl, and verification is performed with the verify voltage Vvrl corresponding to the “1” level. This cycle is repeated, and when all the memory cells to be written to the "1" level have been completely written, the operation shifts to the "2" level write P2.
  • writing is performed by increasing the pulse voltage by A Vpp2 for each write cycle from the initial write pulse Vpp2, and verification is performed with the verify eye voltage Vvr2 corresponding to the "2" level.
  • Japanese Patent Application Laid-Open No. 11-39887 discloses an improved technique for increasing the writing speed of the ISPP method.
  • the first pulse width in writing is set longer than the second pulse width, and the first pulse voltage is set shorter than the second pulse voltage. Therefore, the fastest bit to be written will be completed with one or several pulses.
  • Non-volatile semiconductor storage device represented by flash memory Since the data capacity of data storage devices such as moving pictures is increasing, the speed of writing and erasing data is required to be further improved.
  • an object of the present invention is to provide a nonvolatile semiconductor memory device capable of shortening a writing time of the entire memory device and realizing an improvement in a writing speed by improving a writing method. Disclosure of the invention
  • a nonvolatile semiconductor memory device of the present invention provides a threshold voltage by applying a write or erase signal composed of a plurality of pulses to transfer charges to and from a charge storage node.
  • a non-volatile semiconductor memory device having a storage element for storing information in accordance with the threshold voltage, wherein after applying each pulse, a threshold voltage of the storage element is detected, and the threshold voltage is detected.
  • the pulse When it is determined that the voltage has not reached the above-described predetermined level, control means for performing the next pulse application is provided, and the voltage is applied before the first threshold verification in the writing or erasing.
  • the voltage of the first pulse is the first pulse voltage, the second threshold, and the second / pulse voltage applied before value verification is the second pulse voltage, the first pulse voltage is There is control means for setting the voltage higher than the second pulse voltage.
  • the pulses applied after the second pulse have the same pulse width, and the pulse voltage increases by a constant pulse height increment every time the threshold value is verified.
  • the control means sets the pulse width of the panel applied after the second pulse to be equal to or less than the pulse width of the first pulse, and the pulse voltage is When the voltage reaches a predetermined voltage, the pulse voltage applied thereafter is set to the predetermined voltage, and the pulse width can be set so as to gradually increase.
  • the write pulse can be optimized, the threshold band can be narrowed without increasing the write time, and the write speed of the entire memory device can be improved.
  • a first conductivity type well formed on a main surface of a semiconductor substrate, a second conductivity type semiconductor region formed in the well and extending in a first direction, A first gate formed on the substrate via a first insulating film, a second gate formed on the first gate via a second insulating film, and a third gate;
  • An end face of the third gate is an end face facing between the adjacent first gates, and faces an end face of the first gate existing in parallel with the first direction via a third insulating film.
  • the formed electrically rewritable memory cells be applied to a memory cell array arranged in a matrix. Since the above-mentioned memory cell can perform high-speed writing by hot electron injection with high injection efficiency, the writing speed of the entire memory device can be further increased with the optimization of the writing pulse.
  • a memory cell array in which electrically rewritable memory cells each formed by stacking a charge storage node and a control gate on a semiconductor layer are arranged in a matrix, and at least a memory cell for performing writing or erasing. And the same number of capacitor elements as described above, and the charge stored in the capacitor element is stored in the memory by applying a pulse. By discharging through a cell and injecting a hot electron generated at that time into a floating gate, a threshold value after a pulse is applied to a flash memory having a means for writing or erasing is detected.
  • Verification means for verifying whether the threshold voltage has reached a predetermined level, and when the verification means determines that the threshold voltage has reached the predetermined level, Control means for terminating the application of the pulse, applying the next pulse when the threshold value and the value voltage have not reached the predetermined level, and before the first threshold value verification in the writing or erasing
  • the first pulse voltage is the second pulse voltage. Greater than the voltage, The width of the pulse applied after the first threshold verification is the same, and the voltage of the pulse applied after the first threshold verification is changed every time the threshold is verified. It has a control means for setting so as to increase by a constant pulse height increment.
  • FIG. 1 is a diagram showing a structure of a memory cell for realizing high-speed writing and miniaturization.
  • FIG. 2 is a diagram showing an array configuration of the memory cells.
  • FIG. 3 is a circuit diagram showing the operation of the CCIP method.
  • FIG. 4 is a waveform chart showing the operation of the CCIP method.
  • FIG. 5 is a waveform diagram showing a write pulse waveform according to the ISPP method.
  • FIG. 6 is a diagram showing a threshold distribution of 2 bits / cell.
  • FIG. 7 is a waveform diagram showing a write pulse waveform when the ISEP method is applied to 2 bits / cell.
  • FIG. 8 is a waveform diagram showing a write pulse waveform in a conventional write method.
  • FIG. 9 is a waveform diagram showing a write pulse waveform according to the first embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a write pulse generation circuit according to the first embodiment of the present invention.
  • FIG. 11 shows a write pulse waveform according to the second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a configuration example of a write pulse generation circuit according to the first embodiment of the present invention.
  • FIG. 11 shows a write pulse waveform according to the second embodiment of the present invention.
  • FIG. 12 shows a write pulse waveform according to the third embodiment of the present invention.
  • FIG. 13 shows a write pulse waveform according to the fourth embodiment of the present invention.
  • FIG. 14 shows a write pulse waveform according to the fifth embodiment of the present invention.
  • FIG. 15 shows a write pulse waveform according to the sixth embodiment of the present invention.
  • FIG. 16 shows a write pulse waveform according to the sixth embodiment of the present invention.
  • FIG. 17 shows a write pulse waveform according to the sixth embodiment of the present invention.
  • FIG. 18 shows a write pulse waveform according to the sixth embodiment of the present invention.
  • FIG. 19 shows a write pulse waveform according to the seventh embodiment of the present invention.
  • FIG. 20 shows a write pulse waveform according to the eighth embodiment of the present invention.
  • FIG. 21 shows a write pulse waveform according to the ninth embodiment of the present invention.
  • FIG. 22 shows a write pulse waveform according to the ninth embodiment of the present invention.
  • FIG. 9 is a diagram showing one embodiment of the nonvolatile semiconductor memory device according to the present invention, and is a waveform diagram showing a write pulse in the present embodiment.
  • the pulse voltage Vppi applied at the beginning of writing is set higher than the pulse voltage Vpp applied for the second time, compared to the conventional ISPP method. It is desirable that the pulse voltage Vppi at the beginning of writing be set so that the fastest bit to be written is written up to the target threshold voltage by this pulse.
  • the second and subsequent pulses are written by increasing the pulse voltage by ⁇ according to the ISPP method.
  • FIG. 10 shows a configuration example of a write pulse generation circuit according to the present embodiment.
  • the write pulse generation circuit consists of the internal power supply circuit CP and the code decoder DW.
  • the input signal SEL to the internal power supply circuit CP is a signal for selecting a generated voltage level, and is controlled by the CPU in the nonvolatile semiconductor memory device.
  • the signal STP is a signal for selecting a pulse width, and is an output from the CPU in the non-volatile semiconductor memory device like the SEL.
  • the STP and the address selection signal ADH enable the code decoder DW to output a bias with a specified pulse width and pulse voltage to the selected code line.
  • the initial pulse width was set to 50 ⁇ 3
  • the pulse voltage was set to 14.5V
  • the pulse width for the second and subsequent pulses was increased to 2 s
  • the pulse voltage was increased stepwise by 0.5V.
  • the initial pulse width is set to 2 ⁇ , which is the same as the second and subsequent pulse widths
  • the pulse voltage is set to about 16 V, which is higher than the second pulse voltage of 15 V. This reduces the initial pulse width, which previously required 50 S to 2 S, before the fastest bit is written. This will make it possible to significantly speed up writing.
  • FIG. 11 is a waveform diagram illustrating a write pulse according to another embodiment of the present invention.
  • the maximum pulse voltage Vppmax that can be used is used for the initial pulse, and the pulse width is set to Tppi larger than the second and subsequent pulse widths Tpp.
  • the fastest bit at which programming can be performed is up to the specified threshold voltage by the initial pulse.
  • the maximum usable voltage is used for the initial pulse, there is an effect that the writing can be completed at the fastest speed and the bit can be completed in the shortest time.
  • FIG. 12 is a waveform diagram showing a write pulse according to another embodiment of the present invention.
  • the threshold voltage needs to be shifted greatly, as in a multilevel flash memory, writing using the maximum available pulse voltage may not be completed by the ISPP method. Therefore, as shown in Fig. 12, when the pulse voltage reaches the maximum usable voltage Vppmax when writing is performed by the ISPP method, the pulse width of the subsequent pulses gradually increases while keeping the pulse voltage at Vppmax. Let it. This At this time, it is desirable to set the width of each pulse so that the threshold voltage shift amount that changes for each pulse is constant.
  • the initial pulse voltage may be Vppmax, and the pulse width may be Tppi larger than the pulse width Tpp used in ISFP. According to the present embodiment, even when writing is not completed by ISPP alone, there is an effect that writing can be completed quickly by gradually increasing the pulse width.
  • FIG. 13 shows an example in which the write pulse shown in FIG. 9 is applied to the 2-bit / cell multi-level flash memory shown in FIG.
  • the write cycles Pl, P2, and P3 represent writing to the "1" level, "2" level, and "3 level” in FIG. 6, respectively.
  • the fastest write bit is set to be complete, and subsequent ISPPs cause the write to proceed sequentially.
  • the initial pulse voltage Vpp li is higher than the initial pulse voltage Vpp 1 of the ISPP.
  • the step voltage ⁇ Vp 1 of the ISPP is set to be equal to or less than the threshold distribution width allowed for the “1” level.
  • the cycle P2 for entering the "2" level starts.
  • the initial pulse Vpp2 i is set so that the write to the fastest bit power “2,” level is completed, and the write is advanced sequentially by the subsequent ISPP.
  • the initial pulse voltage Vpp2 i is larger than the first pulse voltage Vpp2 of the ISPP, and the step voltage AVpp2 of the ISPP is set equal to or less than the threshold distribution width allowed for the "2" level Is done.
  • the write cycle P3 for the "3" level starts.
  • the initial pulse Vpp3 i is set so that the write to the fastest bit card ⁇ 3 "level is completed, and the subsequent ISPP sequentially proceeds with the write.
  • the initial pulse voltage Vpp3 i The ISPP first pulse voltage Vpp3 is larger than the ISPP step voltage AVpp3 is set to be equal to or less than the threshold distribution width allowed for the "3" level.
  • the writing of the threshold value When the writing of the threshold value is completed, it means that the multi-level level writing has been completed.
  • the amount of shift of the threshold voltage required at the time of writing is small, such as the T level, Does not have to apply the initial pulse.
  • the amount of shift of the threshold voltage required at the time of writing is large, such as "3"
  • the initial pulse voltage is Vppmax.
  • FIG. 14 is an example different from FIG. 13 in which the write pulse shown in FIG. 9 is applied to a 2-bit / cell multilevel flash memory.
  • the threshold and value configuration shown in Fig. 6 the threshold located at the center and the distribution width required for the value distributions "1" level and "2" level are small, but the uppermost threshold, The distribution width of the value distribution "3" level may be large. Therefore, in writing at the "3" level, the ISPP to narrow the threshold distribution is not performed, and a high-voltage and wide pulse is applied to make the "3" level as fast as possible. Finish writing.
  • the no- and low-voltages Vpp3 i may be Vppmax.
  • the write pulse application method shown in FIG. 14 has the following effects in addition to increasing the write speed.
  • FIG. 15 is a diagram showing one embodiment of the nonvolatile semiconductor memory device according to the present invention, and is a waveform diagram showing a write pulse in the present embodiment.
  • the present embodiment is based on the premise of a writing method in which electric charges accumulated in a certain capacitance are discharged through a memory cell, and a hot electron generated at that time is injected into a floating gate.
  • a writing method in which electric charges accumulated in a certain capacitance are discharged through a memory cell, and a hot electron generated at that time is injected into a floating gate.
  • FIGS. 3 and 4 an application example of the present invention will be described for the CCIP method illustrated in FIGS. 3 and 4 in the flash memory having the third gate illustrated in FIGS. 1 and 2.
  • the same effect can be obtained by setting the initial pulse voltage higher or lower than the second pulse voltage, as in FIG. If the threshold voltage needs to be greatly shifted, as in the case of multilevel flash memory, the pulse width of the initial pulse can be reduced even if the maximum available pulse voltage is used. There is a possibility that the same pulse width cannot be set for the second and subsequent times.
  • Normal hot electron injection method, source side injection writing, or Fowler-Nordheim tunneling In the case of writing with a single current, as shown in Fig. 11, the maximum pulse voltage Vppmax is used for the initial pulse, and the pulse width is set to Tppi larger than the second and subsequent pulse widths Tpp to increase the speed. Can be realized.
  • FIG. 16 shows a write pulse when applied to the memory cells shown in FIGS.
  • the upper part of the figure shows the voltage pulse applied to the control gate of the memory cell, that is, the lead line
  • the lower part shows the voltage pulse to AG, which is the third gate of the memory cell.
  • writing to a memory cell is performed by applying a high voltage of, for example, 13 V to a lead line, and applying a low voltage such as a threshold voltage to the AG. Therefore, the voltage pulse to the word line takes longer time to rise and fall than the voltage pulse to AG. Therefore, in the initial pulse region in FIG. 15, it is better to apply the voltage pulse to the AG Ni times and set the lead line voltage to Vppi—constant than applying the voltage pulse to the word line Ni times. Can write faster There is an advantage that will be.
  • the threshold value may not be sufficiently changed by one injection operation.
  • FIG. 17 in the Pispp region, it is possible to secure the shift amount of the threshold voltage by applying a plurality of pulses, for example, Ns times in one cycle.
  • FIG. 18 shows a write pulse when this method is applied to the memory cells shown in FIGS.
  • the upper part of the figure shows the voltage pulse applied to the control gate of the memory cell, that is, the lead line, and the lower part shows the voltage pulse to the third gate of the memory cell, AG.
  • writing to a memory cell is performed by applying a high voltage of, for example, 13 V to a word line, and applying a voltage as low as a threshold voltage to AG. Therefore, the voltage pulse to the word line takes more time to rise and fall than the voltage pulse of AG. For this reason, in the Pispp region in FIG. 17, it is better to apply a voltage pulse to the AG Ns times and apply a constant voltage to the lead wire during this period than to apply a voltage pulse to the lead wire Ns times between belly eyes. There is an advantage that writing can be performed faster.
  • FIG. 19 is a diagram showing one embodiment of the nonvolatile semiconductor memory device according to the present invention, and is a waveform diagram showing a write pulse in the present embodiment.
  • Multi-value flash If the threshold voltage needs to be shifted significantly, as in the case of a memory, even if the maximum available pulse voltage is used, writing by the ISPP method may not be completed. If a normal hot electron injection method, source side injection writing, or writing by Fowler-Nordheim tunnel current is used, the maximum pulse voltage that can be used when writing is performed by the ISPP method is shown in Fig. 12. When the voltage reaches Vppmax, the speed of subsequent pulses can be increased by gradually increasing the pulse width while keeping the pulse voltage at Vppmax.
  • the effect of speeding up cannot be obtained even if the pulse width is increased. This is because the amount of charge injected into the floating gate is limited by the amount of charge stored in a given capacitance. Therefore, as shown in Fig. 19, in the ISPP region Pispp, after the pulse voltage reaches Vppmax, the writing speed is increased by gradually increasing the number of pulses.
  • the number of pulses is the number of times that charge is accumulated in a fixed capacity and discharge is performed by a memory cell repeatedly. During this time, the verify operation for verifying whether writing is completed is not performed. It is desirable that the number of pulses be set so that the shift amount of the threshold voltage is constant.
  • the number of times is set so that the threshold voltage shift amount by Nbl pulse application and the threshold shift amount by Nb2 pulse application performed subsequently are the same.
  • the word voltage is kept constant and the AG voltage is kept constant. It is desirable to adopt a method in which pressure is applied a plurality of times.
  • FIG. 20 shows an example in which the write pulse shown in FIG. 15 is applied to the 2-bit / cell multi-line flash memory shown in FIG.
  • the write cycles Pl, P2, and P3 represent writing to the "1" level, "2" level, and "3 level” in FIG. 6, respectively.
  • writing is performed using the initial pulse area and the subsequent ISEP area.
  • Nli pulses are applied at the pulse voltage Vppli in the initial pulse region.
  • the setting is made such that the fastest bit power of the write ⁇ 1 "level write is completed.
  • the initial pulse voltage Vppl i is
  • the step voltage ⁇ in the ISPP region is set equal to or less than the threshold distribution width allowed for the “1” level.
  • pulse application and verification are repeated, and if all bits to be written to the "1" level are determined to have been written by verification, the write cycle P1 ends and the write cycle P2 starts. You.
  • N2 i pulses are applied at the pulse voltage Vpp2 i in the initial pulse region.
  • the initial pulse voltage Vpp2 i is larger than the first pulse voltage Vpp2 in the ISPP area.
  • the step voltage ⁇ Vpp2 in the ISPP region is set to be equal to or less than the threshold and the value distribution width allowed for the “2” level.
  • N3 i pulses are applied at the pulse voltage Vpp3 i in the initial pulse region.
  • the initial pulse voltage Vpp3i is higher than the first pulse voltage Vpp3 in the ISPP region.
  • Vpp3 is set to be equal to or less than the threshold and value distribution width allowed for level “3.”
  • pulse application and verification should be repeated and written to level “3” If all the bits are determined to have been written by the verify operation, the write cycle P3 ends, and writing of all multi-valued levels ends.
  • the initial pulse area may not be necessary if the shift amount of the threshold voltage required for data writing is small. When the amount of shift of the threshold voltage to be performed is large, setting the pulse voltage in the initial pulse region to Vppmax has the effect of increasing the writing speed of the entire memory device.
  • FIG. 21 is an example different from FIG. 20 in the case where the write pulse shown in FIG. 15 is applied to a 2-bit / cell multi-level flash memory.
  • the distribution width required for the threshold distribution "1" level and "2" level located at the center is small, but the threshold distribution is the highest.
  • "3" level distribution width is It can be large. Therefore, when writing at the "3" level, the ISPP method for narrowing the threshold distribution is not performed, and a high voltage and multiple pulses are applied to make the "3" level as fast as possible.
  • the CCIP method writing is performed using the charge stored in the constant capacitance, so the amount of charge injected into the floating gate is limited by the amount of charge stored in the constant capacitance.
  • writing is performed by applying multiple pulses, instead of setting the pulse width to a long value as shown in Fig. 14. During this time, it is necessary to verify whether the writing has been completed. The refining operation is not performed, and an extra overhead time is omitted, and the panelless voltage Vpp3 i may be Vppmax in FIG.
  • the write pulse application method shown in FIG. 21 has the following effects in addition to the higher write speed.
  • a wide pulse is applied at a high voltage. Therefore, if the writing to the "3" level is performed after the writing to the "1" and “2" levels is completed, the Levels "1" and “2" are subject to day staves, and the thresholds and value distribution may be broadened and become indistinguishable from other levels.
  • the thresholds and value distribution may be broadened and become indistinguishable from other levels.
  • since the "3" level writing is performed before the writing to the "1" level and the "2" level, there is an effect that this problem can be avoided.
  • FIG. 22 shows a write pulse when applied to the memory cells shown in FIGS.
  • the upper part of the figure shows a voltage pulse applied to the control gate of the memory cell, that is, the lead line, and the lower part shows a voltage pulse to AG, which is the third gate of the memory cell.
  • a high voltage of, for example, 13 V is applied to a read line, This is implemented by applying a voltage to the AG! Therefore, the voltage pulse to the word line takes longer time to rise and fall than the voltage pulse to AG. For this reason, in the initial pulse region in FIG.
  • the storage node may be a nanoscale silicon sphere. And there is no problem with silicon nitride electron traps.
  • a 2-bit / cell memory cell in which four threshold states can be formed in one memory cell was described. Needless to say, the present invention can be applied to a flash memory. Industrial applicability
  • the present invention relates to a semiconductor integrated circuit device, and more particularly to a technique for realizing high integration, high reliability, and high speed of an electrically rewritable nonvolatile semiconductor memory device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

A nonvolatile semiconductor memory device has control means which arranges that a pulse voltage to be applied, before a first verifying operation, to memory cells during write operation is greater than a pulse voltage to be applied before a second verifying operation and that any pulse voltage to be applied after the first verifying operation is increased by a constant pulse height increment each time a threshold value verifying operation is performed. In this way, a narrow-band of threshold voltage can be obtained without any increase of write time, and the write speed of the whole memory can be raised.

Description

不揮発性半導体記憶装置 Nonvolatile semiconductor memory device
技術分野 本発明は電気的書換え可能な不揮発性半導体記憶装置に係わり、特に多 デ 一タを記憶可能な不揮発性半導体記憶装置に関する。 TECHNICAL FIELD The present invention relates to an electrically rewritable nonvolatile semiconductor memory device, and more particularly to a nonvolatile semiconductor memory device capable of storing multiple data.
明 田  Akita
背景技術 フラッシュメモリは携帯性、 耐衝擊性に優れ、 電気的に一括消去が可能なこ と力ゝら、 近年、携帯型パーソーナルコンピュータやデジタルスチルカメラ等の 小型携帯情報機器のファイルとして急速に需要が拡大している。その市場の拡 大にはメモリセル面積の縮小によるビットコストの低減が必須であり、 これを 実現する様々なメモリセル方式が提案されている。 そのうちの 1つとして、 例えば、 特願平 11 - 200242に示されたような、 3層 ポリシリコンゲートを用いた仮想接地型のメモリセルがある。 このメモリセル は、 図 1に示したように、 シリコン基板 SUB中のゥエル WEL、 ゥエル中のソ 一ス、 ドレイン拡散層領域 DR、 及びゥェル上に形成されたボリシリコン膜か らなる第 1のゲートとなる浮遊ゲ一ト FG、第 2のゲー卜となる制御ゲー卜 VVし、 及び第 3のゲー卜となる補助ゲート AG の 3つのゲー卜から構成される。 AG ならびに FGは、 WEL上に形成された例えば Si02のような絶縁膜 TOXを介し て設置されている。 このうち、 第 3のゲート AGはワード線及びチャネルと垂 直な方向に存在する浮遊ゲート FGの隙間に埋込まれて存在し、浮遊ゲート FG との間は、例えば Si02のような絶縁膜 SWAにて分離された構成となっている。 また、 浮遊グート FG とおよび同じくポリシリコン膜からなる SWFは絶縁膜 IPOによって、 ヮード線 WLと分離されており、 また第 3のゲート AGは、 絶 縁膜 CAおよび IPOによって、 ワード線 WLと分離されている。 ソース/ドレ イン拡散層 DRはワード線 WLに垂直に配置され、 列方向 (X方向) のメモリ セルのソース/ドレインを接続するローカルソース線およびローカルデータ 線として存在する。 メモリセル毎にコンタク 卜孔を持たないコンタク トレス型 のアレイから構成され、 メモリセルの形成密度が向上できるため、 メモリセル 面積を 4 F 2 ( F :最小加工寸法) に縮小できる。 2. Description of the Related Art In recent years, flash memory has excellent portability and impact resistance, and can be erased electrically all at once. In recent years, flash memory has rapidly become a file for small portable information devices such as portable personal computers and digital still cameras. Demand is growing. To expand the market, it is essential to reduce the bit cost by reducing the memory cell area, and various memory cell methods have been proposed to achieve this. One of them is a virtual ground type memory cell using a three-layer polysilicon gate as shown in Japanese Patent Application No. 11-200242. As shown in FIG. 1, the memory cell has a first well composed of a well WEL in a silicon substrate SUB, a source in a well, a drain diffusion layer region DR, and a polysilicon film formed on the well. It consists of three gates: a floating gate FG serving as a gate, a control gate VV serving as a second gate, and an auxiliary gate AG serving as a third gate. AG and FG are disposed through an insulating film TOX as that formed for example Si0 2 on WEL. Of these, the third gate AG is embedded in the gap between the floating gate FG that is perpendicular to the word line and the channel, and Between has a separate structure in example Si0 2 of such an insulating film SWA. The floating gate FG and the SWF, which is also made of a polysilicon film, are separated from the lead line WL by an insulating film IPO, and the third gate AG is separated from the word line WL by an insulating film CA and IPO. Have been. The source / drain diffusion layer DR is arranged perpendicular to the word line WL and exists as a local source line and a local data line connecting the source / drain of the memory cell in the column direction (X direction). Consists contactors Torres-type array having no contactor Bokuana for each memory cell, it is possible to improve the formation density of the memory cells, the memory cell area 4 F 2: can be reduced to (F minimum feature size).
上記メモリセルは、 微細化だけでなく、 高速な書込みを可能とする。 図 2に メモリセル書込み時の電圧印加条件を示す。選択メモリセル Mのドレインとな る拡散層 D nに例えば 5 V程度の正の電圧を印加し、 選択メモリセル Mのヮー ド線 WLn に例えば 1 3 V程度の正の電圧を印加し、 選択メモリセル M及び M+2の第 3のゲート AG eに第 3のゲー卜によって構成される MO S トランジ スタのしきいィ直程度の電圧、 例えば I V程度を印加する。 選択メモリセル Mの ソースとなる拡散層 D n- 1、 ゥエル、 非選択ワード線 W L n+1 は 0 Vに保持さ れる。 上記動作により、 浮遊ゲー卜と第 3のゲートとの境界部下のチャネルに 大きな横方法及び縦方向の電界が形成される。 これによりホッ 卜エレク 卜ロン の発生及び注入効率が増大し、 チャネル電流が小さいにもかかわらず、 高速の 書込みが可能となる。 従来のホットエレク トロン注入方式では、 注入効率が 10_5から 10— 6であるのに対して、 本方式では、 10_3程度の高い注入効率を得る ことができる。 このため、 1 mA程度の電流供給能力を有する内部電源を用い ても、 キロバイト以上のメモリセルを並列に書込むことが可能となる。 The above-mentioned memory cell enables not only miniaturization but also high-speed writing. Figure 2 shows the voltage application conditions during memory cell writing. A positive voltage of, for example, about 5 V is applied to the diffusion layer Dn serving as the drain of the selected memory cell M, and a positive voltage of, for example, about 13 V is applied to the lead line WLn of the selected memory cell M. To the third gates AGe of the memory cells M and M + 2 , a voltage approximately equal to the threshold of the MOS transistor constituted by the third gate, for example, approximately IV is applied. The diffusion layer D n−1, the gate, and the unselected word line WL n + 1 that are the sources of the selected memory cell M are held at 0V. By the above operation, a large horizontal electric field and a vertical electric field are formed in the channel below the boundary between the floating gate and the third gate. This increases the generation and injection efficiency of hot electrons, and enables high-speed writing despite the small channel current. In conventional hot Elec tron injection method, with respect to the injection efficiency in the range of 10- 6 10_ 5, in this method, it is possible to obtain a high injection efficiency of approximately 10_ 3. Therefore, use an internal power supply with a current supply capacity of about 1 mA. However, it is possible to write more than kilobytes of memory cells in parallel.
また、フラッシュメモリにおいては、低コスト化を実現する方法として、 1999 IBaa International Solid一 State Circuits し onference Digest of Technical Papers ρ.110〜111 に示されたように、 1つのメモリセルに複数のしきい値電圧レべ ルを設けて、 多ビットデータを保持させる多値技術が知られている。  In flash memory, as a method of achieving cost reduction, as shown in 1999 IBaa International Solid State Circuits and onference Digest of Technical Papers ρ. There is known a multi-valued technology in which a multi-bit data is held by providing a value voltage level.
図 1に示したメモリセルを多値フラッシュメモリに適用した場合に、書込み 高速化させる方式として、 例えば DIGEST OF TECHNICAL PAPERS 2002 SYMPOSIUM ON VLSI CIRCUITS p.302〜303 に示された、 Constant Charge Injection Programming方式 (以下 CCIP方式と呼称)がある。 CCIP方式では、 図 3に示したように、 メモリセル MEMのドレイン側に設けられた一定容量 Cに 電荷を蓄えておき、その容量に蓄えられた電荷のみをメモリセルに流して書込 みを行う。 図 4は CCIP方式の書込み動作方式を示したものである。 まず、 t 0のタイミングでチャネル電流を供給する内部電源 PROGを 5 Vとし、 t 1の タイミングで SWSおよび SEDを立上げて、 メモリセル MEMのソース側とド レイン側のスィッチング MOSである STS、 STDを O N状態とする。 次に、 t 2のタイミングで選択メモリセルのヮード線 WLに書込み電圧 1 3Vを印加す る。その後、メモリセル MEMのドレイン側ノ一ド N D力; 5 Vに充電されると、 t 3のタイミングで SWDを立下げて、 ドレイン側のスィッチ MOSである S T Dを〇 F F状態とし、 内部電源 PROGと切り離す。 t 4のタイミングで選択メ モリセルの AGに I V程度を印加することで、 ノード N Dに蓄積された電荷が メモリセルを介してソース側に流れ始める。 この時メモリセルのチャネル領域 で発生するホッ トエレク トロンが浮遊ゲートに注入されることによって書込 みが起こる。 ドレイン側のノード N Dはチャネル電流が流れるのにしたがって 電位が低下するが、ホットエレク 卜ロンの発生に十分な高い水平電界をチヤネ ル部に生成している間に書込みが起こる。 CCIP方式を用いない場合、 キロバ ィ ト単位のセルを並列に書込むためには、 セル当たりの電流量を数百 nA以下 に抑えることが必要であり、 このためメモリセルは第 3のゲート AGに印加す る電圧を例えば IV以下に設定し、 サブスレショルド領域で動作させる必要が あった。 このため AG部の寸法ばらつきなどによって、 メモリセルの書込み特 性が大きくばらつくことになるが、 CCIP 方式によれば、 この書込み特性のば らつきが大幅に改善することができる。 一方、 多値フラッシュメモリにおいて は、各データに対応するしきい値電圧に、非常に狭い分布幅が要求されている。 書込みを行う際は、各メモリセルのしきい値電圧を、 この狭いしきい値分布の 範囲内に収める必要がある。 一般には書込みパルスの印加と、 書込まれたかど うかを検証する読出し (ベリファイ)によってしき 、値の狭帯化を実現している。 つまり、 多値フラッシュメモリでは、 メモリセル間の書込み特性ばらつきが大 きいと、 ベリファイの回数が多く必要となるため、記憶装置全体の書込みが遅 くなる問題がある。 CCIP方式によれば、 メモリセル間の書込みばらつきを大 幅に低減できるため、 ベリファイ回数を減らすことが可能となり、 多値フラッ シュメモリの書込み速度を高速化することができる効果がある。 When the memory cell shown in Fig. 1 is applied to a multi-valued flash memory, as a method for speeding up writing, for example, the Constant Charge Injection Programming method shown in DIGEST OF TECHNICAL PAPERS 2002 SYMPOSIUM ON VLSI CIRCUITS p.302 to 303 (Hereinafter referred to as the CCIP method). In the CCIP method, as shown in Fig. 3, electric charge is stored in a fixed capacitance C provided on the drain side of the memory cell MEM, and only the electric charge stored in that capacitance is passed to the memory cell to perform writing. Do. Figure 4 shows the write operation method of the CCIP method. First, the internal power supply PROG that supplies the channel current at the timing of t0 is set to 5 V, SWS and SED are started at the timing of t1, and STS, which is the switching MOS on the source side and the drain side of the memory cell MEM, Turn STD ON. Next, a write voltage of 13 V is applied to the read line WL of the selected memory cell at the timing of t2. After that, when the memory cell MEM is charged to the drain side node ND power; 5 V, the SWD falls at the timing of t3, the STD which is the drain side switch MOS is set to the FFFF state, and the internal power supply PROG And disconnect. By applying about IV to the AG of the selected memory cell at the timing of t4, the charge accumulated at the node ND starts flowing to the source side via the memory cell. At this time, a hot electron generated in the channel region of the memory cell is injected into the floating gate to write data. Only happens. The potential of the node ND on the drain side decreases as the channel current flows, but writing occurs while a high horizontal electric field sufficient to generate hot electrons is generated in the channel portion. If the CCIP method is not used, the amount of current per cell must be reduced to several hundred nA or less in order to write cells in kilobytes in parallel. It was necessary to set the voltage to be applied to, for example, IV or less, and operate in the subthreshold region. For this reason, the write characteristics of the memory cell greatly vary due to dimensional variations in the AG section, etc., but according to the CCIP method, the variations in the write characteristics can be greatly improved. On the other hand, in a multilevel flash memory, a very narrow distribution width is required for a threshold voltage corresponding to each data. When writing, it is necessary to keep the threshold voltage of each memory cell within this narrow threshold distribution. In general, the value is narrowed by applying a write pulse and reading (verify) for verifying whether the data has been written. In other words, in a multi-level flash memory, if the variation in write characteristics between memory cells is large, the number of times of verifying is required, and thus there is a problem that the writing of the entire storage device is delayed. According to the CCIP method, the variation in writing between memory cells can be significantly reduced, so that the number of times of verification can be reduced, and the writing speed of the multi-level flash memory can be increased.
先記した通り、 大容量フラッシュメモリの書込みは、 1本のヮード線に連な る複数のメモリセルに対して同時に行われる。 メモリセルによって書込み速度 が異なるため、 しきい値電圧 Vthの検証を行いながら、 書込みパルスを繰返し 印加する。所定の書込みレベルまでしきレ、値 Vthが上昇したメモリセルは書込 み禁止状態とし、 書込み対象のメモリセルが全て書込まれた時点、 すなわち、 書込み対象である全てのメモリセルのしきい値電圧 Vth が所定のレベルに達 した時点で書込みが終了したことになる。 . As described above, writing to a large-capacity flash memory is performed simultaneously on a plurality of memory cells connected to one read line. Since the write speed differs depending on the memory cell, the write pulse is applied repeatedly while verifying the threshold voltage Vth. Memory cells whose value Vth has risen up to a predetermined write level Only when all the memory cells to be written are written, that is, when the threshold voltage Vth of all the memory cells to be written reaches a predetermined level, the writing is completed. . .
このような書込み方式においては、書込み速度の遅いメモリセルによって書 込みスピードが決定される。書込みが最も遅いメモリセルを速く書込むために は、 書込みパルス電圧を高くする力 \書込みパルス幅を長くすることが考えら れる。 し力 し、 このようにすると、 書込みの速いメモリセルが、 最初のパルス で、 許容されるしきい値電圧 Vth以上に書込まれてしまレ、、 誤書込みとなる可 能性がある。 特に、 1つのメモリセルに複数のしきレ、値レベルを設けて多ビッ トデータを保持する多値フラッシュメモ.リにおいては、各レベルに許容される しきい値電圧 Vthの幅が例えば 0.4V程度と非常に小さいため、 書込みの速い メモリセルが所定のしきい値電圧 Vthを超えてしまうと書込みエラーとなる。 そこで、 書込みの速いメモリセルと書込みの遅いメモリセルの両方が、 許容さ れるしきい値電圧範囲内に最も速く書込めるよう、パルスの印加方法を最適化 する必要がある。  In such a writing method, a writing speed is determined by a memory cell having a low writing speed. In order to write the memory cell with the slowest write speed faster, it is conceivable to increase the write pulse voltage and increase the write pulse width. However, in this case, a memory cell with a fast write time may be written at the first pulse beyond the allowable threshold voltage Vth, resulting in erroneous write. In particular, in a multi-level flash memory in which multiple thresholds and value levels are provided in one memory cell to hold multi-bit data, the allowable threshold voltage Vth width for each level is, for example, about 0.4 V. Is very small, a write error occurs when a memory cell in which writing is fast exceeds a predetermined threshold voltage Vth. Therefore, it is necessary to optimize the pulse application method so that both the fast-writing memory cell and the slow-writing memory cell can write fastest within the allowable threshold voltage range.
これを可能とする一つの手段として、 例えば特開平 7- 169284および、 特開 平 U - 134879に示されたような ISPPdncremental Step Pulse Programming)法が提 案されている。 図 5は 1SPP法における書込みパルスを表したものであり、 ヮ 一ド線に印加されるパルス電圧を示したものである。 図中の低い電圧パルス Vvrはベリフアイ動作において印加されるパルスであり、高い電圧、例えば Vpp のパルスは、 書込み動作において印加されるパルスである。 この書込み動作と ベリファイ動作が 1つのサイクルとなっており、 書込みが完了するまで、 この サイクルが繰返し行われる。 ISPP法ではパルスの電圧を各印加サイクル毎に厶 Vppずつ上げていくことが特徴である。 このようにすると、 書込みの速いメモ リセルは、 初期の書込みパルス電圧が低い間に書込みが終了し、 その後の高い パルス電圧が印加されることがないため、過剰に書込まれることを防止できる。 また、 書込みの遅いメモリセルに対しては、 書込みパルス電圧がパルス印加毎 に上がっていくため、 同じ電圧のパルスを印加し続けるより、 速く書込まれる ことになる。 また、 特開平 134879は、 ISPP法を 2ビッ ト/セルの多値フラ ッシュメモリに適用した例を示している。図 6は、 2ビッ 卜/セルの多値フラッ シュメモリにおけるデータとしきい値分布との関係を示したものである。 4状 態のしきい値分布を設定可能とすることで、 1つのメモリセルで 2ビッ トのデ ータを保持することができる。 図 7はこの 2 ビッ 卜/セルの多値フラッシュメ モリに ISPP法を適用したものである。 Ρίにおいて" 1"レベルへの書込みを、 Ρ2 において" 2"レベルへの書込みを、 Ρ3において" 3"レベルへの書込みをそれぞれ 行っている。 まず P1では、 初期書込みパルス Vpplから、 書込みサイクル毎に Δ Vpplずつパルス電圧を上げていくことで書込みを行い、"1" レベルに相当す るべリファイ電圧 Vvrl にて検証を行う。 このサイクルを繰返し行い、 "1" レ ベルに書込むべきメモリセルが全て書込み完了となった場合、 "2"レベルの書 込み P2へと移行する。 P2では、 初期書込みパルス Vpp2から、 書込みサイク ル毎に A Vpp2ずつパルス電圧を上げていくことで書込みを行い、" 2" レベルに 相当するベリフアイ電圧 Vvr2にて検証を行う。このサイクルを繰返し行い、" 2" レベルに書込むべきメモリセルが全て書込み完了となった場合、 "3" レベルの 書込み P3へと移行する。 同様に、 P3では、 初期書込みパルス Vpp3から、 書 込みサイクル毎に Δ νΡρ3 ずつパルス電圧を上げていくことで書込みを行 い、 "3" レベルに相当するべリファイ電圧 Vvr3 にて検証を行う。 このサイク ルを繰返し行い、 "2" レベルに書込むべきメモリセルが全て書込み完了となつ た場合、 多値レベルの書込みが全て完了したことになる。 As one means for making this possible, for example, an ISPP dncremental step pulse programming method as disclosed in JP-A-7-169284 and JP-A-134879 has been proposed. FIG. 5 shows a write pulse in the 1SPP method, and shows a pulse voltage applied to the lead line. The low voltage pulse Vvr in the figure is a pulse applied in the verify operation, and a high voltage, for example, a Vpp pulse is a pulse applied in the write operation. This write operation and verify operation are one cycle. The cycle is repeated. The ISPP method is characterized in that the pulse voltage is increased by Vpp for each application cycle. In this way, a memory cell with a fast write operation can be prevented from being overwritten because the write operation is completed while the initial write pulse voltage is low and no subsequent high pulse voltage is applied. Also, for memory cells with slow writing, the writing pulse voltage rises with each pulse application, so writing is faster than continuing to apply pulses of the same voltage. JP-A-134879 shows an example in which the ISPP method is applied to a 2-bit / cell multi-level flash memory. Figure 6 shows the relationship between data and threshold distribution in a 2-bit / cell multi-level flash memory. By making it possible to set the threshold distribution in four states, one memory cell can hold 2-bit data. Figure 7 shows the application of the ISPP method to this 2-bit / cell multi-level flash memory. Ρί, writing to the “1” level, Ρί2, writing to the “2” level, and Ρ3, writing to the “3” level. First, in P1, writing is performed by increasing the pulse voltage by ΔVppl every write cycle from the initial write pulse Vppl, and verification is performed with the verify voltage Vvrl corresponding to the “1” level. This cycle is repeated, and when all the memory cells to be written to the "1" level have been completely written, the operation shifts to the "2" level write P2. In P2, writing is performed by increasing the pulse voltage by A Vpp2 for each write cycle from the initial write pulse Vpp2, and verification is performed with the verify eye voltage Vvr2 corresponding to the "2" level. This cycle is repeated, and when all the memory cells to be written to the "2" level have been completely written, the operation shifts to the "3" level write P3. Similarly, in P3, from the initial write pulse Vpp3, the write Writing is performed by increasing the pulse voltage by Δ ν Ρ ρ3 for each write cycle, and verification is performed with the verify voltage Vvr3 corresponding to the “3” level. This cycle is repeated, and when all the memory cells to be written to the "2" level have been completely written, all multi-level level writing has been completed.
上記 ISPP法では、 書込み高速化に限界が存在する。 すなわち、 書込みの最 も速いビットでも、電圧の低い初期のパルスでは十分にしきい値電圧が上昇せ ず、 書込み終了となるまでに複数のパルスを必要とすることである。 特開平 11-39887では、 上記 ISPP法の書込みを高速化すべく、 改良を施した技術が開 示されている。 ここでは、 図 8に示すように、 書込みにおける 1回目のパルス 幅を 2回目のパルス幅よりも長く、 1回目のパルス電圧を 2回目のパルス電圧 よりも短く設定している。 このため、 書込みの最も速いビッ トは、 1回または 数回のパルスで書込みが終了することになる。  In the above ISPP method, there is a limit in increasing the writing speed. In other words, even for the fastest bit for writing, the threshold voltage does not rise sufficiently with the initial pulse with a low voltage, and multiple pulses are required before the writing is completed. Japanese Patent Application Laid-Open No. 11-39887 discloses an improved technique for increasing the writing speed of the ISPP method. Here, as shown in FIG. 8, the first pulse width in writing is set longer than the second pulse width, and the first pulse voltage is set shorter than the second pulse voltage. Therefore, the fastest bit to be written will be completed with one or several pulses.
しかしながら、上記技術では、特に多値の書込み高速化には限界が存在する。 すなわち、 多値フラッシュメモリでは、複数のしきい値状態を形成する必要が あるため、 しきい値の設定範囲が通常の 1 ビット/セルのフラッシュメモリよ りも広くなる。 このため、 書込みの最も速いビッ トを 1回のパルスで書込み完 了とするには、 より幅の広いパルスを印加する必要がある。 しきい値の変化量 は、 パルス印加時間の対数にほぼ比例することから、 1回目に印加すべきパル ス幅は指数関数的に大きくなり、 書込み速度を大幅に低下させることになる。 さらに、 前述した CCIP方式による多値フラッシュメモリの書込みを実行する 際には、従来の書込みパルス印加方式だと記憶装置全体の書込み速度の高速化 を図ることができない。フラッシュメモリに代表される不揮発性半導体記憶装 置は、 動画など扱うデータ容量がますます増大しているため、 その書込み消去 には更なる速度の向上が要求されている。 本発明は、 このような背景のもと、 書込み方法の改善により、 記憶装置全体の書込み時間を短縮でき、書込み速度 の向上を実現できる不揮発性半導体記憶装置を提供することにある。 発明の開示 However, in the above technique, there is a limit particularly in increasing the speed of multi-value writing. That is, in a multi-level flash memory, it is necessary to form a plurality of threshold states, so that the threshold setting range is wider than that of a normal 1-bit / cell flash memory. For this reason, a wider pulse must be applied to complete the write with the fastest bit in one pulse. Since the amount of change in the threshold is almost proportional to the logarithm of the pulse application time, the pulse width to be applied first becomes exponentially large, and the writing speed is greatly reduced. Furthermore, when writing to a multi-level flash memory by the CCIP method described above, the writing speed of the entire storage device cannot be increased with the conventional writing pulse application method. Non-volatile semiconductor storage device represented by flash memory Since the data capacity of data storage devices such as moving pictures is increasing, the speed of writing and erasing data is required to be further improved. SUMMARY OF THE INVENTION Under such a background, an object of the present invention is to provide a nonvolatile semiconductor memory device capable of shortening a writing time of the entire memory device and realizing an improvement in a writing speed by improving a writing method. Disclosure of the invention
上記目的を達成するため、 本発明の不揮発性半導体記憶装置は、複数のパル スからなる書込みまたは消去信号を印加し、電荷蓄積ノードに対して電荷の授 受を行うことにより、 しきい値電圧を制御し、 そのしきい値電圧に応じて情報 を保持する記憶素子を有する不揮発性半導体記憶装置であって、各パルス印加 後に上記記憶素子のしきい値電圧を検出し、当該しきい値電圧が所定のレベル に達したか否かを検証する (ベリファイする) 検証手段を有し、 上記検証手段 により上記記憶素子のしきい値電圧が上記所定のレベルに達したと判定した 時、 上記パルス印加を終了させ、 上記所定のレベルに達していないと判定した 時、 次のパルス印加を行う制御手段を有し、 前記書込みまたは消去における 1 回目のしきい値検証前に印加される第 1のパルスの電圧を第 1のパルス電圧、 2回目のしきレ、値検証前に印加される第 2の/ ルスの電圧を第 2のバルス電圧 としたとき、第 1のパルス電圧が第 2のバルス電圧よりも大きく設定する制御 手段を有する。  In order to achieve the above object, a nonvolatile semiconductor memory device of the present invention provides a threshold voltage by applying a write or erase signal composed of a plurality of pulses to transfer charges to and from a charge storage node. A non-volatile semiconductor memory device having a storage element for storing information in accordance with the threshold voltage, wherein after applying each pulse, a threshold voltage of the storage element is detected, and the threshold voltage is detected. Has a verifying means for verifying whether or not has reached a predetermined level. When the verifying means determines that the threshold voltage of the storage element has reached the predetermined level, the pulse When it is determined that the voltage has not reached the above-described predetermined level, control means for performing the next pulse application is provided, and the voltage is applied before the first threshold verification in the writing or erasing. When the voltage of the first pulse is the first pulse voltage, the second threshold, and the second / pulse voltage applied before value verification is the second pulse voltage, the first pulse voltage is There is control means for setting the voltage higher than the second pulse voltage.
また、 本発明では、 好適には第 2のパルス以降に印加されるパルスは、 パル ス幅が同じであり、またパルス電圧はしきい値の検証を行う毎に一定のパルス 波高増分だけ増大するように設定する。 さらに本発明では、 上記制御手段は、 上記第 2のパルス以降に印加されるパ ノレスのパルス幅を第 1 のパルスのパルス幅と同じまたはそれ以下であるよう に設定し、 また、 パルス電圧が所定の電圧に達した場合、 以降に印加されるパ ルス電圧は前記所定の電圧とし、パルス幅を漸増させるように設定できる特徴 を持つ。 本発明により、 書込みパルスを最適化することができ、 書込み時間の 増大を招くことなく、 しきい値の狭帯化を実現し、 メモリ装置全体の書込み速 度向上を可能とする。 In the present invention, preferably, the pulses applied after the second pulse have the same pulse width, and the pulse voltage increases by a constant pulse height increment every time the threshold value is verified. Set as follows. Further, in the present invention, the control means sets the pulse width of the panel applied after the second pulse to be equal to or less than the pulse width of the first pulse, and the pulse voltage is When the voltage reaches a predetermined voltage, the pulse voltage applied thereafter is set to the predetermined voltage, and the pulse width can be set so as to gradually increase. According to the present invention, the write pulse can be optimized, the threshold band can be narrowed without increasing the write time, and the write speed of the entire memory device can be improved.
また、 本発明では特に、 半導体基板の主面に形成された第 1導電型のゥエル と、前記ゥエル内に第 1方向に延在して形成された第 2導電型の半導体領域と、 前記半導体基板上に第 1絶縁膜を介して形成された第 1ゲー卜と、前記第 1ゲ ート上に第 2絶縁膜を介して形成された第 2ゲートと、 第 3ゲートとを有し、 前記第 3ゲー卜の端面が、隣接する前記第 1ゲート間に対向する端面であって 前記第 1方向に平行して存在する前記第 1ゲートの端面と第 3絶縁膜を介し て対向して形成されている電気的書換え可能なメモリセルがマトリタス状に 配置されたメモリセルアレイに対して適用されることが望ましい。上記メモリ セルは注入効率の高いホットエレク 卜ロン注入で高速に書込みを行うことが できるため、 書込みパルスの最適化と合わせて、 メモリ装置全体の書込みをよ り高速にすることが可能となる。  In the present invention, in particular, a first conductivity type well formed on a main surface of a semiconductor substrate, a second conductivity type semiconductor region formed in the well and extending in a first direction, A first gate formed on the substrate via a first insulating film, a second gate formed on the first gate via a second insulating film, and a third gate; An end face of the third gate is an end face facing between the adjacent first gates, and faces an end face of the first gate existing in parallel with the first direction via a third insulating film. It is preferable that the formed electrically rewritable memory cells be applied to a memory cell array arranged in a matrix. Since the above-mentioned memory cell can perform high-speed writing by hot electron injection with high injection efficiency, the writing speed of the entire memory device can be further increased with the optimization of the writing pulse.
また、 本発明では、 半導体層上に電荷蓄積ノードと制御ゲートを積層して構 成された電気的書換え可能なメモリセルがマトリクス状に配置されたメモリ セルァレイと、少なくとも書込みまたは消去を行うメモリセルと同数の容量素 子を備え、前記容量素子に蓄積しておいた電荷をパルスの印加によってメモリ セルを介して放電し、その際に発生するホッ 卜エレク トロンを浮遊ゲートに注 入することにより、書込みまたは消去を行う手段を有するフラッシュメモリに 対して、 、 パルス印加後のしきい値を検出して当該しきい値電圧を所定のレべ ルに達したか否かを検証する検証手段を有し、前記検証手段によりしきい値電 圧が前記所定のレベルに達したと判定したとき、前記パルスの印加を終了させ、 前記しきレ、値電圧が前記所定のレベルに達していないとき、次のパルス印加を 行う制御手段を有し、前記書込みまたは消去における 1回目のしきい値検証前 に印加されるパルスの電圧を第 1のパルス電圧、 2回目のしきい値検証前に印 加されるパルスの電圧を第 2のパルス電圧としたとき、第 1のパルス電圧が第 2のパルス電圧よりも大きく、 また 1回目のしきい値検証以降に印加されるパ ルスの幅は同じであり、また 1回目のしきい値検証以降に印加されるにパルス の電圧は、 しきい値の検証を行う毎に一定のパルス波高増分だけ増大するよう に設定する制御手段を有する。 Further, according to the present invention, there is provided a memory cell array in which electrically rewritable memory cells each formed by stacking a charge storage node and a control gate on a semiconductor layer are arranged in a matrix, and at least a memory cell for performing writing or erasing. And the same number of capacitor elements as described above, and the charge stored in the capacitor element is stored in the memory by applying a pulse. By discharging through a cell and injecting a hot electron generated at that time into a floating gate, a threshold value after a pulse is applied to a flash memory having a means for writing or erasing is detected. Verification means for verifying whether the threshold voltage has reached a predetermined level, and when the verification means determines that the threshold voltage has reached the predetermined level, Control means for terminating the application of the pulse, applying the next pulse when the threshold value and the value voltage have not reached the predetermined level, and before the first threshold value verification in the writing or erasing When the voltage of the pulse applied to the first pulse voltage is the first pulse voltage and the voltage of the pulse applied before the second threshold value verification is the second pulse voltage, the first pulse voltage is the second pulse voltage. Greater than the voltage, The width of the pulse applied after the first threshold verification is the same, and the voltage of the pulse applied after the first threshold verification is changed every time the threshold is verified. It has a control means for setting so as to increase by a constant pulse height increment.
さらに、 上記制御手段は、 1回目のしきレ、値検証前に印加されるパルスを 2 回以上であるように設定することを特徴とし、 また、 1回目のしきい値検証以 降に印加されるパルスは、 しきい値検証としきい値検証の間に少なくとも 2回 以上印加されるように設定することを特徴とする。 これにより、 特に多値の害 込み動作において、 メモリセルの書込み特性ばらつきの抑制と、 害込みパルス の最適化を実現することができ、 メモリ装置全体の書込み速度向上を実現する ことができる。 図面の簡単な説明 図 1は、書込み高速化と微細化を実現するメモリセルの構造を示す図である。 図 2は、 上記メモリセルのアレイ構成を示す図である。 図 3は、 CCIP法の動 作を示す回路図である。図 4は、 CCIP法の動作を示す波形図である。図 5は、 ISPP法による書込みパルス波形を示す波形図である。 図 6は、 2ビッ ト /セル のしきい値分布を示す図である。 図 7は、 ISEP法を 2ビッ 卜/セルに適用した 場合の、 書込みパルス波形を示す波形図である。 図 8は、 従来の書込み方法の 書込みパルス波形を示す波形図である。 図 9は、 第 1の実施形態における、 書 込みパルス波形を示す波形図である。 図 1 0は、本発明第 1の実施形態におけ る書込みパルス発生回路の一構成例を示す図である。 図 1 1は、 本発明第 2の 実施形態における書込みパルス波形である。 図 1 2は、本発明第 3の実施形態 における書込みパルス波形である。 図 1 3は、 本発明第 4の実施形態における 書込みパルス波形である。 図 1 4は、 本発明第 5の実施形態における書込みパ ルス波形である。 図 1 5は、 本発明第 6の実施形態における書込みパルス波形 である。 図 1 6は、 本発明第 6 の実施形態における書込みパルス波形である。 図 1 7は、本発明第 6の実施形態における書込みパルス波形である。図 1 8は、 本発明第 6の実施形態における書込みパルス波形である。 図 1 9は、 本発明第 7の実施形態における書込みバルス波形である。 図 2 0は、 本発明第 8の実施 形態における書込みパルス波形である。 図 2 1は、 本発明第 9の実施形態にお ける書込みパルス波形である。 図 2 2は、本発明第 9の実施形態における書込 みパルス波形である。 発明を実施するための最良の形態 <第 1の実施形態 > Further, the control means is characterized in that the pulse applied before the first threshold and value verification is set to be two or more times, and that the pulse is applied after the first threshold verification. The pulse is set so as to be applied at least twice between the threshold verifications. As a result, especially in a multi-valued damage operation, it is possible to suppress the variation in the write characteristics of the memory cell and to optimize the damage pulse, and to improve the write speed of the entire memory device. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a diagram showing a structure of a memory cell for realizing high-speed writing and miniaturization. FIG. 2 is a diagram showing an array configuration of the memory cells. FIG. 3 is a circuit diagram showing the operation of the CCIP method. FIG. 4 is a waveform chart showing the operation of the CCIP method. FIG. 5 is a waveform diagram showing a write pulse waveform according to the ISPP method. FIG. 6 is a diagram showing a threshold distribution of 2 bits / cell. FIG. 7 is a waveform diagram showing a write pulse waveform when the ISEP method is applied to 2 bits / cell. FIG. 8 is a waveform diagram showing a write pulse waveform in a conventional write method. FIG. 9 is a waveform diagram showing a write pulse waveform according to the first embodiment. FIG. 10 is a diagram illustrating a configuration example of a write pulse generation circuit according to the first embodiment of the present invention. FIG. 11 shows a write pulse waveform according to the second embodiment of the present invention. FIG. 12 shows a write pulse waveform according to the third embodiment of the present invention. FIG. 13 shows a write pulse waveform according to the fourth embodiment of the present invention. FIG. 14 shows a write pulse waveform according to the fifth embodiment of the present invention. FIG. 15 shows a write pulse waveform according to the sixth embodiment of the present invention. FIG. 16 shows a write pulse waveform according to the sixth embodiment of the present invention. FIG. 17 shows a write pulse waveform according to the sixth embodiment of the present invention. FIG. 18 shows a write pulse waveform according to the sixth embodiment of the present invention. FIG. 19 shows a write pulse waveform according to the seventh embodiment of the present invention. FIG. 20 shows a write pulse waveform according to the eighth embodiment of the present invention. FIG. 21 shows a write pulse waveform according to the ninth embodiment of the present invention. FIG. 22 shows a write pulse waveform according to the ninth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION <First embodiment>
図 9 は本発明に係わる不揮発性半導体記憶装置の一実施形態を示す図であ り、 本実施形態における書込みパルスを示す波形図である。 本実施形態では、 従来の ISPP法に対して、 書込み初期に印加するパルス電圧 Vppiを 2回目に 印加されるパルス電圧 Vpp よりも高く設定する。 書込み初期のパルス電圧 Vppi は、 書込みの最も速いビッ 卜が、 本パルスによって、 目標とするしきい 値電圧まで書込まれるように設定されることが望ましい。 2回目以降のパルス は ISPP法に従い、 ΔνΡΡずつパルス電圧を増大させて書込みを行う。  FIG. 9 is a diagram showing one embodiment of the nonvolatile semiconductor memory device according to the present invention, and is a waveform diagram showing a write pulse in the present embodiment. In the present embodiment, the pulse voltage Vppi applied at the beginning of writing is set higher than the pulse voltage Vpp applied for the second time, compared to the conventional ISPP method. It is desirable that the pulse voltage Vppi at the beginning of writing be set so that the fastest bit to be written is written up to the target threshold voltage by this pulse. The second and subsequent pulses are written by increasing the pulse voltage by ΔνΡΡ according to the ISPP method.
図 10は、 本実施形態における書込みパルス発生回路の構成例を示したもの である。書込みパルス発生回路は、 内部電源回路 CPとヮードデコーダ DWで 構成されている。 内部電源回路 CPへの入力信号 SELは、 発生する電圧レべ ルを選択するための信号であり、 不揮発性半導体記憶装置内にある CPUによ つて制御される。 また、 信号 STPはパルス幅を選択する信号であり、 SELと 同じく不揮発性半導体記憶装置内にある CPUからの出力である。 STPとァド レス選択信号 ADHによって、 ヮードデコ一ダ DWは選択されたヮード線へ所 定のパルス幅とパルス電圧を持ったバイァスを出力することが可能となる。 図 8 に示した従来例では、 例えば初期のパルス幅を 50 μ 3、 パルス電圧を 14.5Vとし、 2回目以降のパルス幅を 2 s、 パルス電圧を 0.5Vずつステップ 状に増大させていた。 しかしながら、 本方式に従えば、 初期パルスの幅を 2回 目以降のパルス幅と同じ 2 μ βとし、 パルス電圧を 2回目のパルス電圧 15Vよ り高い 16V程度に設定する。 これにより、 書込みの最も速いビッ 卜が書込み 完了となるまでに、 従来 50 S必要であった初期パルス幅が 2 Sにまで低減 できることになり、 大幅な書込み高速化が可能となる。 FIG. 10 shows a configuration example of a write pulse generation circuit according to the present embodiment. The write pulse generation circuit consists of the internal power supply circuit CP and the code decoder DW. The input signal SEL to the internal power supply circuit CP is a signal for selecting a generated voltage level, and is controlled by the CPU in the nonvolatile semiconductor memory device. The signal STP is a signal for selecting a pulse width, and is an output from the CPU in the non-volatile semiconductor memory device like the SEL. The STP and the address selection signal ADH enable the code decoder DW to output a bias with a specified pulse width and pulse voltage to the selected code line. In the conventional example shown in Fig. 8, for example, the initial pulse width was set to 50 µ3, the pulse voltage was set to 14.5V, the pulse width for the second and subsequent pulses was increased to 2 s, and the pulse voltage was increased stepwise by 0.5V. However, according to this method, the initial pulse width is set to 2 μβ, which is the same as the second and subsequent pulse widths, and the pulse voltage is set to about 16 V, which is higher than the second pulse voltage of 15 V. This reduces the initial pulse width, which previously required 50 S to 2 S, before the fastest bit is written. This will make it possible to significantly speed up writing.
<第 2の実施形態 >  <Second embodiment>
図 11は、 本発明の別の形態における書込みパルスを表す波形図である。 先 記した内部電源回路 CPで発生可能な電圧や、 ヮードデコーダにおける 卜ラン ジスタの耐圧、メモリセルの信頼性を確保可能なパルス電圧などには上限があ る。 そのため、 特に多値フラッシュメモリのように、 しきい値を大きくシフ 卜 させる必要がある場合には、 使用可能な最大のパルス電圧を用いても、 初期パ ルスのパルス幅を 2回目以降と同じパルス幅に設定できない可能性が生じる。 そこで本実施形態では、 図 11のように、 初期パルスには、 使用可能な最大パ ルス電圧 Vppmaxを用い、 パルス幅を 2回目以降のパルス幅 Tppよりも大き い Tppiに設定する。 これにより、 多値フラッシュメモリのように、 書込みの 際に必要とされるしきい値電圧変化量が大きい場合でも、書込みの最も速いビ ットが、 初期パルスによって、 所定のしきい値電圧まで書込まれる。 さらに、 使用可能な最大電圧を初期パルスに用いることから、書込みの最も速レ、ビッ ト を最短の時間で書込み完了とすることができる効果がある。  FIG. 11 is a waveform diagram illustrating a write pulse according to another embodiment of the present invention. There is an upper limit to the voltage that can be generated by the internal power supply circuit CP described above, the withstand voltage of the transistor in the code decoder, and the pulse voltage that can ensure the reliability of the memory cell. Therefore, especially when the threshold value needs to be shifted greatly, such as in a multi-valued flash memory, the pulse width of the initial pulse is the same as the second and subsequent pulses even if the maximum available pulse voltage is used. There is a possibility that the pulse width cannot be set. Therefore, in this embodiment, as shown in FIG. 11, the maximum pulse voltage Vppmax that can be used is used for the initial pulse, and the pulse width is set to Tppi larger than the second and subsequent pulse widths Tpp. As a result, even when the threshold voltage change required at the time of programming is large, as in a multi-valued flash memory, the fastest bit at which programming can be performed is up to the specified threshold voltage by the initial pulse. Written. Furthermore, since the maximum usable voltage is used for the initial pulse, there is an effect that the writing can be completed at the fastest speed and the bit can be completed in the shortest time.
く第 3の実施形態 >  Third Embodiment>
図 12は、 本発明の別の形態における書込みパルスを表す波形図である。 多 値フラッシュメモリのように、 しきい値電圧を大きくシフ卜させる必要がある 場合には、 使用可能な最大のパルス電圧を用いても、 ISPP法による書込みが 完了しない可能性がある。 そこで、 図 12に示すように、 ISPP法によって書込 みを実施した際にパルス電圧が使用可能な最大の電圧 Vppmaxに達した場合、 以降のパルスはパルス電圧を Vppmax としたままパルス幅を漸増させる。 こ の時、 各パルスの幅は、 パルス毎に変化するしきい値電圧シフ 卜量が一定とな- るように設定することが望ましい。 また、 図 12において、 初期パルス電圧が Vppmaxであり、 そのパルス幅が ISFPで使用するパルス幅 Tpp よりも大き い Tppiであっても構わない。本実施の形態によれば、 ISPPだけでは書込みが 完了しない場合でも、 パルス幅を漸増させることにより、 書込みを速やかに完 了させることができるという効果がある。 FIG. 12 is a waveform diagram showing a write pulse according to another embodiment of the present invention. If the threshold voltage needs to be shifted greatly, as in a multilevel flash memory, writing using the maximum available pulse voltage may not be completed by the ISPP method. Therefore, as shown in Fig. 12, when the pulse voltage reaches the maximum usable voltage Vppmax when writing is performed by the ISPP method, the pulse width of the subsequent pulses gradually increases while keeping the pulse voltage at Vppmax. Let it. This At this time, it is desirable to set the width of each pulse so that the threshold voltage shift amount that changes for each pulse is constant. In FIG. 12, the initial pulse voltage may be Vppmax, and the pulse width may be Tppi larger than the pulse width Tpp used in ISFP. According to the present embodiment, even when writing is not completed by ISPP alone, there is an effect that writing can be completed quickly by gradually increasing the pulse width.
ぐ第 4の実施形態 >  4th embodiment>
図 13は図 9で示した書込みパルスを、図 6に示した 2ビッ 卜/セルの多値フ ラッシュメモリへ適用した場合の一例である。 書込みサイクル Pl、 P2、 P3 はそれぞれ、 図 6 における "1 "レベル、 "2"レベル、 "3 レベル"への書込みを表 している。 各書込みサイクルでは、 図 9で示した通り、 初期パルスとその後の FIG. 13 shows an example in which the write pulse shown in FIG. 9 is applied to the 2-bit / cell multi-level flash memory shown in FIG. The write cycles Pl, P2, and P3 represent writing to the "1" level, "2" level, and "3 level" in FIG. 6, respectively. In each write cycle, as shown in Figure 9, the initial pulse and subsequent
ISPPによって書込みが行われる。 まず書込みサイクル ; P1では、 初期パルスWriting is performed by ISPP. First, write cycle; In P1, initial pulse
Vppl iにより、 書込みの最も速いビッ 卜が書込み完了となるよう設定され、 その後の ISPPによって、 順次書込みが進められる。 初期パルス電圧 Vpp l i は ISPPの最初のパルス電圧 Vpp 1よりも大きい。 ISPPのステツプ電圧 Δ Vp 1 は、 "1"レベルに許容されるしきい値分布幅と同じ、 もしくはそれ以下に設定 される。 "1"レベルへの書込みが終了後、 "2"レベルへの 込みサイクル P2 が 開始される。 書込みサイクル P2では、 初期パルス Vpp2 iにより、 書込みの 最も速いビッ 卜力 "2,,レベルへの書込み完了となるよう設定され、 その後の ISPP によって、 順次書込みが進められる。 ここで初期パルス電圧 Vpp2 iは ISPPの最初のパルス電圧 Vpp2よりも大きレ、。 ISPPのステップ電圧 AVpp2 は、 "2"レベルに許容されるしきい値分布幅と同じ、 もしくはそれ以下に設定 される。 "2"レベルへの書込みが終了後、 "3"レベルへの書込みサイクル P3 力 S 開始される。 書込みサイクル P3では、 初期パルス Vpp3 iにより、 書込みの 最も速いビッ トカ^ 3"レベルへの書込み完了となるよう設定され、 その後の ISPP によって、 順次書込みが進められる。 ここで初期パルス電圧 Vpp3 iは ISPPの最初のパルス電圧 Vpp3よりも大きレ、。 ISPPのステップ電圧 AVpp3 は、 "3"レベルに許容されるしきい値分布幅と同じ、 もしくはそれ以下に設定 される。 この" 3"レベルへの書込みが終了すれば、 多値レベルの書込みが終了 したことになる。 ここで、 例えば' Tレベルのように、 書込みの際に必要とさ れるしきい値電圧のシフ卜量が小さい場合には、初期パルスを印加しなくても 構わない。 また、 例えば、 "3"のように、 書込みの際に必要とされるしきい値 電圧のシフ ト量が大きい場合には、 初期パルス電圧を Vppmax とし、 そのパ ルス幅を ISPPで使用するパルス幅 Tpp より も大きく設定することで、記憶装 置全体の書込み高速化を図ることができる。 With Vppli, the fastest write bit is set to be complete, and subsequent ISPPs cause the write to proceed sequentially. The initial pulse voltage Vpp li is higher than the initial pulse voltage Vpp 1 of the ISPP. The step voltage ΔVp 1 of the ISPP is set to be equal to or less than the threshold distribution width allowed for the “1” level. After writing to the "1" level is completed, the cycle P2 for entering the "2" level starts. In the write cycle P2, the initial pulse Vpp2 i is set so that the write to the fastest bit power “2,” level is completed, and the write is advanced sequentially by the subsequent ISPP. Here, the initial pulse voltage Vpp2 i is larger than the first pulse voltage Vpp2 of the ISPP, and the step voltage AVpp2 of the ISPP is set equal to or less than the threshold distribution width allowed for the "2" level Is done. After the writing to the "2" level is completed, the write cycle P3 for the "3" level starts. In the write cycle P3, the initial pulse Vpp3 i is set so that the write to the fastest bit card ^ 3 "level is completed, and the subsequent ISPP sequentially proceeds with the write. Here, the initial pulse voltage Vpp3 i The ISPP first pulse voltage Vpp3 is larger than the ISPP step voltage AVpp3 is set to be equal to or less than the threshold distribution width allowed for the "3" level. When the writing of the threshold value is completed, it means that the multi-level level writing has been completed. Here, for example, when the amount of shift of the threshold voltage required at the time of writing is small, such as the T level, Does not have to apply the initial pulse.If the amount of shift of the threshold voltage required at the time of writing is large, such as "3", the initial pulse voltage is Vppmax, The pulse width by setting larger than the pulse width Tpp used in ISPP, it is possible to write faster storage instrumentation 置全 body.
<第 5の実施形態 >  <Fifth embodiment>
図 14は図 9で示した書込みパルスを、 2 ビッ ト/セルの多値フラッシュメモ リへ適用した場合の図 13とは異なる一例である。 図 6のようなしきレ、値構成 では、 中央に位置するしきし、値分布である " 1"レベルおよび" 2"レべノレに要求さ れる分布幅は小さいが、 最も上のしきレ、値分布である" 3"レベルの分布幅は大 きくても構わない。 そこで、 " 3"レベルの書込みにおいては、 しきい値分布を 狭帯化するための ISPPを実施せず、 高電圧で幅の広いパルスを印加すること により、 可能な限り速く" 3"レベルの書込みを終了する。 図 14において、 ノ、°ル ス電圧 Vpp3 iは Vppmaxであっても良い。 図 14の書込みパルス印加方法には書込み高速化の他に以下に述べる効果が ある。 "3"レベルへの書込みでは、高電圧で幅の広いパルスを印加するため、 "Γ および" 2"レベルへの書込み完了後に" 3"レベルへの書込みが行われると、 既に 形成後の" 1"および" 2"のレベルがディスターブを受け、しきい値分布が広がり、 他のレベルと区別できなくなる可能性がある。 図 14 の書込み方法では、 "1" レベルおよび" 2"レベルへの書込みに先だって、 "3"レベル書込みが行われるた め、 この問題を回避できる効果がある。 FIG. 14 is an example different from FIG. 13 in which the write pulse shown in FIG. 9 is applied to a 2-bit / cell multilevel flash memory. In the threshold and value configuration shown in Fig. 6, the threshold located at the center and the distribution width required for the value distributions "1" level and "2" level are small, but the uppermost threshold, The distribution width of the value distribution "3" level may be large. Therefore, in writing at the "3" level, the ISPP to narrow the threshold distribution is not performed, and a high-voltage and wide pulse is applied to make the "3" level as fast as possible. Finish writing. In FIG. 14, the no- and low-voltages Vpp3 i may be Vppmax. The write pulse application method shown in FIG. 14 has the following effects in addition to increasing the write speed. In writing to the "3" level, a wide pulse with a high voltage is applied, so if writing to the "3" level is performed after writing to the "Γ" and "2" levels is completed, the " The 1 "and" 2 "levels are disturbed and the threshold distribution may be broadened, making it indistinguishable from the other levels. Prior to programming, "3" level programming is performed, which has the effect of avoiding this problem.
<第 6の実施形態 >  <Sixth embodiment>
図 15は本発明に関わる不揮発性半導体記憶装置の一実施形態を示す図であ り、 本実施形態における書込みパルスを示す波形図である。 本実施形態は、一 定の容量に蓄積した電荷をメモリセルを介して放電し、その際に発生するホッ トェレク トロンをフローティングゲートに注入する書込み方式を前提とする。 以下では、図 1および図 2に示した第 3のゲー卜を持つフラッシュメモリにお いて、 図 3および図 4に示した CCIP方式について、本発明の適用例を説明す る。 CCIP方式においても ISPP法を適用することで、 書込みの高速化を図る ことが可能である。 さらに、 CCIP方式においても、 図 9と同様、 初期のパル ス電圧を 2回目に印加されるパルス電圧よりも高くも高く設定することで、同 様の効果を得ることが可能である。 し力 しな力 ら、 特に多値フラッシュメモリ のように、 しきいィ直を大きくシフトさせる必要がある場合には、 使用可能な最 大のパルス電圧を用いても、初期パルスのパルス幅を 2回目以降と同じパルス 幅に設定できない可能性が生じる。 通常のホットエレク トロン注入方式や、 ソ ースサイドインジェクション書込み、あるいはファウラーノードハイムトンネ ル電流による書込みであれば、 図 11に示すように初期パルスには使用可能な 最大パルス電圧 Vppmaxを用い、 パルス幅を 2回目以降のパルス幅 Tppより も大きい Tppiに設定することで、 高速化を実現することができる。 しかしな がら CCIP方式のように、一定容量に蓄積した電荷を用いて書込みを行う場合 には、 パルス幅を長くしても高速化の効果は得られない。 これは、 フローティ ングゲ一卜に注入される電荷量が、一定容量に蓄積された電荷量によって制約 されるからである。 そこで図 15に示すように、 初期パルス領域 Pinitでは、 —定容量への電荷の蓄積と、 メモリセルによる放電を複数回行う。 この間、 書 込みが完了したかどうかを検証するべリファイ動作は行わず、書込みの最も速 ぃビッ 卜がこの初期パルス領域で、 書込み完了となるように、 その回数 Niと パルス電圧 Vppiを設定することが望ましい。図 15に示すパルス設定により、 CCIP方式において書込み高速化を実現できる効果がある。 図 15 の具体的な 例として、 図 1、 図 2に示したメモリセルに適用した場合の書き込みパルスを 図 16に示す。 図の上段にはメモリセルのコントロールゲー卜すなわちヮード 線に印加される電圧パルスを示しており、下段にはメモリセルの第 3のゲート である AGへの電圧パルスを示している。 前記したように、 メモリセルへの書 込みはヮード線に例えば 13Vの高電圧を印加し、 AGにはしきレ、値電圧程度の 低い電圧を印加することによって実施される。 したがって、 ワード線への電圧 パルスは、 AGの電圧パルスに比べて、 立上げおよび立下げに時間がかかるこ とになる。 このため、 図 15における初期パルス領域において、 ワード線への 電圧パルスを Ni回印加するよりも、 AGへの電圧パルスを Ni回印加し、 その 間ヮード線電圧を Vppi—定に設定する方が、 より高速に書き込みを実施でき ることになるという利点がある。 FIG. 15 is a diagram showing one embodiment of the nonvolatile semiconductor memory device according to the present invention, and is a waveform diagram showing a write pulse in the present embodiment. The present embodiment is based on the premise of a writing method in which electric charges accumulated in a certain capacitance are discharged through a memory cell, and a hot electron generated at that time is injected into a floating gate. Hereinafter, an application example of the present invention will be described for the CCIP method illustrated in FIGS. 3 and 4 in the flash memory having the third gate illustrated in FIGS. 1 and 2. By applying the ISPP method to the CCIP method, it is possible to increase the writing speed. Furthermore, in the CCIP system, the same effect can be obtained by setting the initial pulse voltage higher or lower than the second pulse voltage, as in FIG. If the threshold voltage needs to be greatly shifted, as in the case of multilevel flash memory, the pulse width of the initial pulse can be reduced even if the maximum available pulse voltage is used. There is a possibility that the same pulse width cannot be set for the second and subsequent times. Normal hot electron injection method, source side injection writing, or Fowler-Nordheim tunneling In the case of writing with a single current, as shown in Fig. 11, the maximum pulse voltage Vppmax is used for the initial pulse, and the pulse width is set to Tppi larger than the second and subsequent pulse widths Tpp to increase the speed. Can be realized. However, when writing is performed using charges accumulated in a fixed capacity as in the CCIP method, the effect of speeding up cannot be obtained even if the pulse width is increased. This is because the amount of charge injected into the floating gate is limited by the amount of charge stored in a certain capacitance. Therefore, as shown in Fig. 15, in the initial pulse area Pinit:-accumulation of electric charge in the constant capacity and discharge by the memory cell are performed several times. During this period, the verify operation is not performed to verify whether or not the writing has been completed, and the number of times Ni and the pulse voltage Vppi are set so that the fastest bit of writing is completed in this initial pulse region. It is desirable. The pulse setting shown in FIG. 15 has the effect that the writing speed can be increased in the CCIP method. As a specific example of FIG. 15, FIG. 16 shows a write pulse when applied to the memory cells shown in FIGS. The upper part of the figure shows the voltage pulse applied to the control gate of the memory cell, that is, the lead line, and the lower part shows the voltage pulse to AG, which is the third gate of the memory cell. As described above, writing to a memory cell is performed by applying a high voltage of, for example, 13 V to a lead line, and applying a low voltage such as a threshold voltage to the AG. Therefore, the voltage pulse to the word line takes longer time to rise and fall than the voltage pulse to AG. Therefore, in the initial pulse region in FIG. 15, it is better to apply the voltage pulse to the AG Ni times and set the lead line voltage to Vppi—constant than applying the voltage pulse to the word line Ni times. Can write faster There is an advantage that will be.
また、 先記したように、 CCIP方式では、 一定容量に蓄積した電荷を用いて 書込みを行うため、 フローティングゲートに注入される電荷量が、 一定容量に 蓄積された電荷量によって制約される。 このため、 蓄積電荷が小さい場合や、 注入効率が小さい場合には、 1回の注入動作でしきい値が十分に変化しない可 能性がある。 このような場合には、 図 17に示すように、 Pisppの領域におい て、 1サイクルに例えば Ns回の複数パルスを印加することで、 しきい値電圧 のシフト量を確保することが可能となる。 さらに、 この方式を図 1、 図 2に示 したメモリセルに適用した場合の書き込みパルスを図 18に示す。 図の上段に はメモリセルのコントロールゲートすなわちヮード線に印加される電圧パル スを示しており、下段にはメモリセルの第 3のゲートである AGへの電圧パル スを示している。 前記したように、 メモリセルへの書込みはワード線に例えば 13Vの高電圧を印加し、 AGにはしきい値電圧程度の低い電圧を印加すること によって実施される。 したがって、 ワード線への電圧パルスは、 AGの電圧パ ノレスに比べて、 立上げおよび立下げに時間がかかることになる。 このため、 図 17における Pispp領域において、 ベリフアイ間にヮード線への電圧パルスを Ns回印加するよりも、 AGへの電圧パルスを Ns回印加し、 その間ヮード線電 圧を一定に設定する方が、 より高速に書き込みを実施できることになるという 利点がある。  In addition, as described above, in the CCIP method, writing is performed using charges accumulated in a fixed capacitance, and thus the amount of charge injected into the floating gate is limited by the amount of charge accumulated in the fixed capacitance. Therefore, when the accumulated charge is small or the injection efficiency is low, the threshold value may not be sufficiently changed by one injection operation. In such a case, as shown in FIG. 17, in the Pispp region, it is possible to secure the shift amount of the threshold voltage by applying a plurality of pulses, for example, Ns times in one cycle. . Further, FIG. 18 shows a write pulse when this method is applied to the memory cells shown in FIGS. The upper part of the figure shows the voltage pulse applied to the control gate of the memory cell, that is, the lead line, and the lower part shows the voltage pulse to the third gate of the memory cell, AG. As described above, writing to a memory cell is performed by applying a high voltage of, for example, 13 V to a word line, and applying a voltage as low as a threshold voltage to AG. Therefore, the voltage pulse to the word line takes more time to rise and fall than the voltage pulse of AG. For this reason, in the Pispp region in FIG. 17, it is better to apply a voltage pulse to the AG Ns times and apply a constant voltage to the lead wire during this period than to apply a voltage pulse to the lead wire Ns times between belly eyes. There is an advantage that writing can be performed faster.
<第 7の実施形態 >  <Seventh embodiment>
図 19は本発明に関わる不揮発性半導体記憶装置の一実施形態を示す図であ り、 本実施形態における書込みパルスを示す波形図である。 多値フラッシュメ モリのように、 しきい値電圧を大きくシフトさせる必要がある場合には、 使用 可能な最大のパルス電圧を用いても、 ISPP法による書込みが完了しない可能 性がある。 通常のホットエレクトロン注入方式や、 ソースサイ ドインジェクシ ョン書込み、あるいはファウラーノードハイムトンネル電流による書込みであ れば、図 12に示すように、 ISPP法によって書込みを実施した際にパルス電圧 が使用可能な最大の電圧 Vppmax に達した場合、 以降のパルスはパルス電圧 を Vppmax としたままパルス幅を漸増させることで高速化が可能である。 し かしながら、 CCIP方式のように、 一定容量に蓄積した電荷を用いて書込みを 行う場合には、 パルス幅を長く しても高速化の効果は得られなレ、。 これは、 フ ローテイングゲートに注入される電荷量が、一定容量に蓄積された電荷量によ つて制約されるからである。 そこで図 19に示すように、 ISPP領域 Pisppお いて、 パルス電圧が Vppmax に達した後は、 パルスの回数を漸増させること で書込みの高速化を実現する。 ここでパルスの回数とは、 一定容量への電荷の 蓄積とメモリセルによる放電を繰返し行う回数であり、 この間、 書込みが完了 したかどうかを検証するべリファイ動作は行わない。 このパルス回数は、 しき い値電圧のシフト量が一定となるように設定されることが望ましい。 例えば、 図 19において、 Nb l回のパルス印加によるしきい値電圧シフ ト量と、 続いて 行われる Nb2 回のパルス印加によるしきい値シフト量が同じになるように回 数を設定する。 本実施の形態によれば、 ISPPだけでは書込みが完了しない場 合でも、 パルス回数を漸増させることにより、書込みを速やかに完了させるこ とができるという効果がある。 さらに、 図 1、 2に示すメモリセルに適用した 場合、 第 6の実施形態と同じように、 ワード電圧を一定にしたまま、 AGの電 圧を複数回印加する方式とすることが望ましい。 FIG. 19 is a diagram showing one embodiment of the nonvolatile semiconductor memory device according to the present invention, and is a waveform diagram showing a write pulse in the present embodiment. Multi-value flash If the threshold voltage needs to be shifted significantly, as in the case of a memory, even if the maximum available pulse voltage is used, writing by the ISPP method may not be completed. If a normal hot electron injection method, source side injection writing, or writing by Fowler-Nordheim tunnel current is used, the maximum pulse voltage that can be used when writing is performed by the ISPP method is shown in Fig. 12. When the voltage reaches Vppmax, the speed of subsequent pulses can be increased by gradually increasing the pulse width while keeping the pulse voltage at Vppmax. However, when writing is performed using charges accumulated in a fixed capacity as in the CCIP method, the effect of speeding up cannot be obtained even if the pulse width is increased. This is because the amount of charge injected into the floating gate is limited by the amount of charge stored in a given capacitance. Therefore, as shown in Fig. 19, in the ISPP region Pispp, after the pulse voltage reaches Vppmax, the writing speed is increased by gradually increasing the number of pulses. Here, the number of pulses is the number of times that charge is accumulated in a fixed capacity and discharge is performed by a memory cell repeatedly. During this time, the verify operation for verifying whether writing is completed is not performed. It is desirable that the number of pulses be set so that the shift amount of the threshold voltage is constant. For example, in FIG. 19, the number of times is set so that the threshold voltage shift amount by Nbl pulse application and the threshold shift amount by Nb2 pulse application performed subsequently are the same. According to the present embodiment, even when writing is not completed by ISPP alone, there is an effect that writing can be completed quickly by gradually increasing the number of pulses. Further, when applied to the memory cells shown in FIGS. 1 and 2, as in the sixth embodiment, the word voltage is kept constant and the AG voltage is kept constant. It is desirable to adopt a method in which pressure is applied a plurality of times.
<第 8の実施形態 > ' 図 20は図 15で示した書込みパルスを、 図 6に示した 2ビット /セルの多ィ直 フラッシュメモリへ適用した場合の一例である。 書込みサイクル Pl、 P2、 P3 はそれぞれ、 図 6 における" 1 "レベル、 "2"レベル、 "3 レベル"への書込みを表 している。 各書込みサイクルでは、 図 20で示した通り、 初期パルス領域とそ の後の ISEP領域によつて書込みが行われる。  <Eighth Embodiment> 'FIG. 20 shows an example in which the write pulse shown in FIG. 15 is applied to the 2-bit / cell multi-line flash memory shown in FIG. The write cycles Pl, P2, and P3 represent writing to the "1" level, "2" level, and "3 level" in FIG. 6, respectively. In each write cycle, as shown in Fig. 20, writing is performed using the initial pulse area and the subsequent ISEP area.
まず書込みサイクル P1では、 初期パルス領域において、 パルス電圧 Vppl iで、 Nl i回のパルスが印加される。 これにより、 書込みの最も速いビット 力^ 1 "レベル書込み完了となるように設定される。 初期パルス電圧 Vppl iは First, in the write cycle P1, Nli pulses are applied at the pulse voltage Vppli in the initial pulse region. As a result, the setting is made such that the fastest bit power of the write ^ 1 "level write is completed. The initial pulse voltage Vppl i is
ISPP領域における最初のパルス電圧 Vpp 1よりも大きい。 ISPP領域における ステップ電圧 Δνρρΐは、 "1 "レベルに許容されるしきい値分布幅と同じ、 もし くはそれ以下に設定される。 ISPP領域において、 パルス印加とベリファイを 繰り返し、 "1"レベルへ書込むべき全てのビッ トが、 ベリファイによって書込 み完了と判定された場合、 書込みサイクル P1 が終了し、 書込みサイクル P2 が開始される。 It is larger than the first pulse voltage Vpp 1 in the ISPP region. The step voltage Δνρρΐ in the ISPP region is set equal to or less than the threshold distribution width allowed for the “1” level. In the ISPP area, pulse application and verification are repeated, and if all bits to be written to the "1" level are determined to have been written by verification, the write cycle P1 ends and the write cycle P2 starts. You.
書込みサイクノレ P2では、初期パルス領域において、パルス電圧 Vpp2 iで、 N2 i回のパルスが印加される。 これにより、 書込みの最も速いビッ ト力;" 2"レ ベル書込み完了となるように設定される。 初期パルス電圧 Vpp2 iは ISPP領 域における最初のパルス電圧 Vpp2よりも大きレ、。 ISPP領域におけるステツ プ電圧 Δ Vpp2は、 "2"レベルに許容されるしきレ、値分布幅と同じ、 もしくはそ れ以下に設定される。 ISPP領域において、 パルス印加とベリファイを繰り返 し、 "2"レベルへ書込むべき全てのビットが、 ベリファイによって書込み完了 と判定された場合、 書込みサイクル P2が終了し、 書込みサイクル P3が開始 さ;^る。 In the write cycle P2, N2 i pulses are applied at the pulse voltage Vpp2 i in the initial pulse region. As a result, the fastest bit power for writing; "2" level writing is set to be completed. The initial pulse voltage Vpp2 i is larger than the first pulse voltage Vpp2 in the ISPP area. The step voltage ΔVpp2 in the ISPP region is set to be equal to or less than the threshold and the value distribution width allowed for the “2” level. Repeat pulse application and verify in ISPP area However, if all bits to be written to the “2” level are determined to be completely written by the verification, the write cycle P2 ends and the write cycle P3 starts.
書込みサイクル P3では、初期パルス領域において、パルス電圧 Vpp3 iで、 N3 i回のパルスが印加される。 これにより、 書込みの最も速いビット力 '2"レ ベル書込み完了となるように設定される。 初期パルス電圧 Vpp3 iは ISPP領 域における最初のパルス電圧 Vpp3よりも大きい。 ISPP領域におけるステツ プ電圧 Δ Vpp3は、 "3"レベルに許容されるしきレ、値分布幅と同じ、 もしくはそ れ以下に設定される。 ISPP領域において、 パルス印加とベリファイを繰り返 し、 "3"レベルへ書込むべき全てのビットが、 ベリファイによって書込み完了 と判定された場合、 書込みサイクル P3が終了し、 多値レベル全ての書込みが 終了したことになる。 ここで、 例えば " 1"レベルのように、 書込みの際に必要 とされるしきい値電圧のシフ卜量が小さい場合には、初期パルス領域が不要と なる可能性がある。 また、 例えば、 "3"レベルのように、 書込みの際に必要と されるしきい値電圧のシフ卜量が大きい場合には、初期パルス領域のパルス電 圧を Vppmax とすることにより、 記憶装置全体の書込み高速化を図ることが できる効果がある。  In the write cycle P3, N3 i pulses are applied at the pulse voltage Vpp3 i in the initial pulse region. As a result, the fastest bit power of the writing is set so that the writing is completed at the '2' level.The initial pulse voltage Vpp3i is higher than the first pulse voltage Vpp3 in the ISPP region. Vpp3 is set to be equal to or less than the threshold and value distribution width allowed for level “3.” In the ISPP area, pulse application and verification should be repeated and written to level “3” If all the bits are determined to have been written by the verify operation, the write cycle P3 ends, and writing of all multi-valued levels ends. The initial pulse area may not be necessary if the shift amount of the threshold voltage required for data writing is small. When the amount of shift of the threshold voltage to be performed is large, setting the pulse voltage in the initial pulse region to Vppmax has the effect of increasing the writing speed of the entire memory device.
ぐ第 9の実施形態 >  Ninth embodiment>
図 21は図 15で示した書込みパルスを、 2 ビッ 卜/セルの多値フラッシュメ モリへ適用した場合の図 20とは異なる一例である。 図 6のようなしきいィ直構 成では、 中央に位置するしきい値分布である" 1 "レベルおよび" 2"レベルに要求 される分布幅は小さいが、 最も上のしきい値分布である" 3"レベルの分布幅は 大きくても構わない。 そこで、 "3"レベルの書込みにおいては、 しきい値分布 を狭帯化するための ISPP法を実施せず、 高電圧かつ複数のパルスを印加する ことにより、 可能な限り速ぐ' 3"レベルの書込みを終了する。 CCIP方式では、 —定容量に蓄積した電荷を用いて書込みを行うため、フローティングゲートに 注入される電荷量は、 一定容量に蓄積された電荷量によって制約される。 この ため、 "3"レベルの書込みにおいては、 図 14のようにパルス幅を長く設定する のではなく、 複数のパルスを印加することによって書込みを行う。 この間、 書 込みが完了したかどうかを検証するべリファイ動作は行わず、余計なオーバー へッド時間を省いている。また、図 21において、パノレス電圧 Vpp3 iは Vppmax であっても良い。 FIG. 21 is an example different from FIG. 20 in the case where the write pulse shown in FIG. 15 is applied to a 2-bit / cell multi-level flash memory. In the threshold direct configuration shown in Fig. 6, the distribution width required for the threshold distribution "1" level and "2" level located at the center is small, but the threshold distribution is the highest. "3" level distribution width is It can be large. Therefore, when writing at the "3" level, the ISPP method for narrowing the threshold distribution is not performed, and a high voltage and multiple pulses are applied to make the "3" level as fast as possible. In the CCIP method, — writing is performed using the charge stored in the constant capacitance, so the amount of charge injected into the floating gate is limited by the amount of charge stored in the constant capacitance. In writing at the "3" level, writing is performed by applying multiple pulses, instead of setting the pulse width to a long value as shown in Fig. 14. During this time, it is necessary to verify whether the writing has been completed. The refining operation is not performed, and an extra overhead time is omitted, and the panelless voltage Vpp3 i may be Vppmax in FIG.
図 21の書込みパルス印加方法には書込み高速化の他に以下に述べる効果が ある。 "3"レベルへの書込みでは、高電圧で幅の広いパルスを印加するため、 "1" および" 2"レベルへの書込み完了後に" 3"レベルへの書込みが行われると、 既に 形成後の " 1"および" 2"のレベルがデイスターブを受け、しきレ、値分布が広がり、 他のレベルと区別できなくなる可能性がある。 図 21 の書込み方法では、 " 1" レベルおよび" 2"レベルへの書込みに先だって、 "3"レベル書込みが行われるた め、 この問題を回避できる効果がある。  The write pulse application method shown in FIG. 21 has the following effects in addition to the higher write speed. When writing to the "3" level, a wide pulse is applied at a high voltage. Therefore, if the writing to the "3" level is performed after the writing to the "1" and "2" levels is completed, the Levels "1" and "2" are subject to day staves, and the thresholds and value distribution may be broadened and become indistinguishable from other levels. In the writing method of FIG. 21, since the "3" level writing is performed before the writing to the "1" level and the "2" level, there is an effect that this problem can be avoided.
また、 図 21の具体的な例として、 図 1、 図 2に示したメモリセルに適用し た場合の書き込みパルスを図 22に示す。 図の上段にはメモリセルのコントロ 一ルゲートすなわちヮード線に印加される電圧パルスを示しており、下段には メモリセルの第 3のゲートである AGへの電圧パルスを示している。前記した ように、 メモリセルへの書込みはヮード線に例えば 13Vの高電圧を印加し、 AGにはしき!/、値電圧程度の低レ、電圧を印加することによって実施される。 し たがって、 ワード線への電圧パルスは、 AGの電圧パルスに比べて、 立上げお よび立下げに時間がかかることになる。 このため、 図 21における初期パルス 領域において、 ヮード線への電圧パルスを N3i回印加するよりも、 AGへの電 圧パルスを N3i回印加し、その間ヮード線電圧を Vpp3i—定に設定する方が、 より高速に書き込みを実施できることになるという利点がある。 これは、 引続 き行われる" 2"レベル書込み、 "1"レベル書込みにおいても同様である。 As a specific example of FIG. 21, FIG. 22 shows a write pulse when applied to the memory cells shown in FIGS. The upper part of the figure shows a voltage pulse applied to the control gate of the memory cell, that is, the lead line, and the lower part shows a voltage pulse to AG, which is the third gate of the memory cell. As described above, when writing to a memory cell, a high voltage of, for example, 13 V is applied to a read line, This is implemented by applying a voltage to the AG! Therefore, the voltage pulse to the word line takes longer time to rise and fall than the voltage pulse to AG. For this reason, in the initial pulse region in FIG. 21, it is better to apply the voltage pulse to the AG N3i times and apply the voltage of the lead line to Vpp3i during the initial pulse region than to apply the voltage pulse to the AG line N3i times. There is an advantage that writing can be performed at higher speed. The same applies to the subsequent “2” level writing and “1” level writing.
以上、 本発明の実施形態 1から 9において、記憶ノ一ドがポリシリコンゲー トであることを前提に説明を行つてきたが、記憶ノ一ドがナノスケールのシリ コン球であつても構わないし、シリコンナイ トライ ドの電子トラップでも何ら 問題はない。 また、 多値フラッシュメモリの一例として、 1つのメモリセルに 4 つのしきい値状態を形成可能とした 2 ビッ 卜/セルのメモリセルについて説 明を行ったが、 3ビット /セル以上の多値フラッシュメモリに対しても適用可能 であることは言うまでもない。 産業上の利用可能性  As described above, in the first to ninth embodiments of the present invention, the description has been made on the assumption that the storage node is a polysilicon gate. However, the storage node may be a nanoscale silicon sphere. And there is no problem with silicon nitride electron traps. In addition, as an example of a multi-valued flash memory, a 2-bit / cell memory cell in which four threshold states can be formed in one memory cell was described. Needless to say, the present invention can be applied to a flash memory. Industrial applicability
本発明は半導体集積回路装置に関し、特に電気的書き換えが可能な不揮発性 半導体記憶装置の高集積化、 高信頼化、 高速化を実現する技術に関する。  The present invention relates to a semiconductor integrated circuit device, and more particularly to a technique for realizing high integration, high reliability, and high speed of an electrically rewritable nonvolatile semiconductor memory device.

Claims

請 求 の 範 囲  The scope of the claims
. 半導体層上に電荷蓄積ノードと制御ゲートを積層して構成された電気 的書換え可能なメモリセルがマトリクス状に配置されたメモリセルァレ ィと、 前記メモリセルのしきい値を変化させることによって書込みまたは 消去を行うパルス印加手段と、 パルス印加後のしきい値を検出し、 当該し きい値電圧を所定のレベルに達したか否かを検証する検証手段を有し、 前 記検証手段により しきい値電圧が前記所定のレベルに達したと判定した とき、 前記パルスの印加を終了させ、 前記しきい値電圧が前記所定のレべ ルに達していないとき、 次のパルス印加を行う制御手段を有し、 前記パル ス印加手段は、 前記書込みまたは消去における 1回目のしきい値検証前に 印加される第 1のパルスの電圧を第 1のパルス電圧、 2回目のしきい値検 証前に印加される第 2のパルスの電圧を第 2のパルス電圧としたとき、 第 1のパルス電圧が第 2のパルス電圧よりも大きく設定することを特徴とす る不揮発性半導体記憶装置。  A memory cell array in which electrically rewritable memory cells each formed by stacking a charge storage node and a control gate on a semiconductor layer are arranged in a matrix; and writing or writing is performed by changing a threshold value of the memory cells. A pulse applying means for erasing; and a verifying means for detecting a threshold after the pulse is applied and verifying whether the threshold voltage has reached a predetermined level. When it is determined that the value voltage has reached the predetermined level, control means for terminating the application of the pulse and, when the threshold voltage has not reached the predetermined level, applying the next pulse Wherein the pulse applying means converts the voltage of the first pulse applied before the first threshold verification in the writing or erasing into a first pulse voltage and a second threshold verification. When the voltage of the second pulse is a second of the pulse voltage applied to the first pulse voltage is a non-volatile semiconductor memory device you and sets greater than the second pulse voltage.
2 . 請求項 1において、 前記パルス印加手段は、 第 2 のパルス以降に印加 するパルスを、 パルス幅が同じであり、 またパルス電圧はしきい値の検証 を行う毎に一定のパルス波高増分だけ増大するように設定することを特 徴とする不揮発性半導体記憶装置。 2. The method according to claim 1, wherein the pulse applying unit applies pulses applied after the second pulse with the same pulse width, and the pulse voltage is increased by a constant pulse height increment every time the threshold value is verified. A nonvolatile semiconductor memory device characterized in that it is set to increase.
3 . 請求項 2において、 前記パルス印加手段は、 第 2のパルス以降に印加 するパルスのパルス幅を、 第 1のパルスのパルス幅と同じ、 またはそれ以 下であるように設定することを特徴とする不揮発性半導体記憶装置。 3. The pulse application unit according to claim 2, wherein the pulse application unit sets a pulse width of a pulse applied after a second pulse to be equal to or less than a pulse width of the first pulse. Nonvolatile semiconductor memory device.
4 . 請求項 2において、 前記パルス印加手段は、 パルス電圧が所定の電圧 に達した場合、 以降に印加されるパルス電圧は前記所定の電圧とし、 パル ス幅を漸増させるように設定することを特徴とする不揮発性半導体記憶 半導体基板の主面に形成された第 1導電型のゥ ルと、 前記ゥ ル内 に第 1方向に延在して形成された第 2導電型の半導体領域と、 前記半導体 基板上に第 1絶縁膜を介して形成された第 1ゲー卜と、 前記第 1ゲート上 に第 2絶縁膜を介して形成された第 2ゲー卜と、 第 3ゲートとを有し、 前 記第 3ゲートの端面が、 隣接する前記第 1ゲー卜間に対向する端面であつ て前記第 1方向に平行して存在する前記第 1ゲー卜の端面と第 3絶縁膜 を介して対向して形成されている電気的書換え可能なメモリセルがマト リクス状に配置されたメモリセルアレイと、 前記メモリセルのしきい値を 変化させることによつて書込みまたは消去を行うパルス印加手段と、 パル ス印加後のしきい値を検出し、 当該しきレ、値電圧を所定のレベルに達した か否かを検証する検証手段を有し、 前記検証手段によりしきい値電圧が前 記所定のレベルに達したと判定したとき、 前記パルスの印加を終了させ、 前記しきレ、値電圧が前記所定のレベルに達していないとき、 次のパルス印 加を行う制御手段を有し、 前記パルス印加手段は、 前記書込みまたは消去 における 1回目のしきい値検証前に印加されるパルスの電圧を第 1のパル ス電圧、 2 回目のしきい値検証前に印加される書込みパルスの電圧を第 2 のパルス電圧としたとき、 第 1のパルス電圧が第 2のパルス電圧よりも大 きく、 また第 2のパルス以降に印加されるパルスの幅は同じであり、 また 第 2のパルス以降に印加されるパルスの電圧は、 しきい値の検証を行う毎 に一定のパルス波高増分だけ増大するように設定することを特徴とする 不揮発性半導体記憶装置。4. The pulse application device according to claim 2, wherein the pulse application means has a pulse voltage of a predetermined voltage. And the pulse voltage applied thereafter is set to the predetermined voltage, and the pulse width is set so as to increase gradually. The first conductive layer formed on the main surface of the semiconductor substrate A mold gate; a second conductivity type semiconductor region formed in the mold so as to extend in a first direction; and a first gate formed on the semiconductor substrate via a first insulating film. A second gate formed on the first gate with a second insulating film interposed therebetween, and a third gate, wherein the end face of the third gate is between the adjacent first gates. An electrically rewritable memory cell formed opposite to the end face of the first gate, which is parallel to the first direction, and faces the end face of the first gate with a third insulating film interposed therebetween. A memory cell array disposed therein and changing a threshold value of the memory cell. A pulse applying means for performing writing or erasing, and a verifying means for detecting a threshold value after the pulse application, and verifying whether the threshold value and the value voltage have reached a predetermined level. When the verifying means determines that the threshold voltage has reached the predetermined level, the application of the pulse is terminated, and when the threshold and the value voltage have not reached the predetermined level, the next pulse mark is applied. And a pulse applying means for applying a voltage of a pulse applied before a first threshold value verification in the writing or erasing to a first pulse voltage and a second threshold value verification. When the voltage of the previously applied write pulse is the second pulse voltage, the first pulse voltage is larger than the second pulse voltage, and the width of the pulse applied after the second pulse is the same And the second pal The voltage of the pulse applied after the threshold A non-volatile semiconductor memory device characterized in that it is set so as to increase by a constant pulse height increment.
. 請求項 5において、 前記パルス印加手段は、 第 2のパルス以降に印加 されるパルスのパルス幅を、 第 1のパルスのパルス幅と同じ、 またはそれ 以下であるように設定することを特徴とする不揮発性半導体記憶装置。 The pulse application unit according to claim 5, wherein the pulse application unit sets a pulse width of a pulse applied after the second pulse to be equal to or less than a pulse width of the first pulse. Nonvolatile semiconductor memory device.
7 . 請求項 5において、 前記パルス印加手段は、 パルス電圧が所定の電圧 に達した場合、 以降に印加されるパルス電圧を前記所定の電圧とし、 パル ス幅を漸増させるように設定することを特徴とする不揮発性半導体記憶 8 . 半導体層上に電荷蓄積ノードと制御ゲー卜を積層して構成された電気 的書換え可能なメモリセルがマ ト リ クス状に配置されたメモリセルァレ ィと、 少なくとも書込みまたは消去を行うメモリセルと同数の容量素子を 備え、 前記容量素子に蓄積しておいた電荷をパルスの印加によってメモリ セルを介して放電し、 その際に発生するホッ 卜エレク 卜ロンを浮遊ゲート に注入することにより、 書込みまたは消去を行うパルス印加手段を有し、 パルス印加後のしきい値を検出して、 当該しきい値電圧を所定のレベルに 達したか否かを検証する検証手段を有し、 前記検証手段によりしきい値電 圧が前記所定のレベルに達したと判定したとき、 前記パルスの印加を終了 させ、 前記しきい値電圧が前記所定のレベルに達していないとき、 次のパ ルス印加を行う制御手段を有し、 前記パルス印加手段は、 前記書込みまた は消去における 1回目のしきい値検証前に印加されるパルスの電圧を第 1 のパルス電圧、 2回目のしきい値検証前に印加されるパルスの電圧を第 2 のパルス電圧としたとき、 第 1のパルス電圧が第 2のパルス電圧よりも大 きく、 また 1回目のしきい値検証以降に印加されるパルスの幅は同じであ り、 また 1回目のしきい値検証以降に印加されるにパルスの電圧は、 しき い値の検証を行う毎に一定のパルス波高増分だけ増大するように設定す ることを特徴とする不揮発性半導体記憶装置。 7. The pulse application device according to claim 5, wherein, when the pulse voltage reaches a predetermined voltage, the pulse voltage applied thereafter is set to the predetermined voltage, and the pulse width is set to be gradually increased. Characteristic nonvolatile semiconductor memory 8. A memory cell array in which electrically rewritable memory cells configured by stacking a charge storage node and a control gate on a semiconductor layer are arranged in a matrix, and at least writing is performed. Alternatively, the same number of capacitive elements as the memory cells to be erased are provided, and the charge stored in the capacitive elements is discharged through the memory cells by applying a pulse, and the hot electrons generated at that time are discharged to the floating gate. And a pulse applying means for performing writing or erasing by injecting the threshold voltage, detecting a threshold value after the pulse application and setting the threshold voltage to a predetermined level A verification unit that verifies whether or not the threshold voltage has reached the predetermined level. When the verification unit determines that the threshold voltage has reached the predetermined level, the application of the pulse is terminated, and the threshold voltage is reduced. A control unit that performs a next pulse application when the predetermined level has not been reached; the pulse application unit includes a pulse voltage applied before a first threshold value verification in the writing or erasing; The first pulse voltage and the second pulse voltage before the second threshold verification. When the first pulse voltage is larger than the second pulse voltage, the pulse width applied after the first threshold value verification is the same, and the first pulse voltage is higher than the second pulse voltage. A nonvolatile semiconductor memory device characterized in that a pulse voltage applied after threshold value verification is set so as to increase by a constant pulse height increment every time threshold value verification is performed.
請求項 8において、 前記パルス印加手段は、 1回目のしきい値検証前 に印加されるパルスを 2回以上であるように設定することを不揮発性半導 . 請求項 8において、 前記パルス印加手段は、 1回目のしきい値検証以 降に印加されるパルスは、 しきい値検証としきい値検証の間に少なくとも 2回以上印加されるように設定することを特徴とする不揮発性半導体記憶  9. The non-volatile semiconductor device according to claim 8, wherein the pulse application unit sets the number of pulses applied before the first threshold value verification to be two or more. The non-volatile semiconductor memory is characterized in that the pulse applied after the first threshold verification is set to be applied at least twice between the threshold verifications.
PCT/JP2003/001000 2003-01-31 2003-01-31 Nonvolatile semiconductor memory device WO2004068500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001000 WO2004068500A1 (en) 2003-01-31 2003-01-31 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001000 WO2004068500A1 (en) 2003-01-31 2003-01-31 Nonvolatile semiconductor memory device

Publications (1)

Publication Number Publication Date
WO2004068500A1 true WO2004068500A1 (en) 2004-08-12

Family

ID=32800843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001000 WO2004068500A1 (en) 2003-01-31 2003-01-31 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
WO (1) WO2004068500A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299443B1 (en) 2014-09-29 2016-03-29 Sandisk Technologies Inc. Modifying program pulses based on inter-pulse period to reduce program noise

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737395A (en) * 1993-07-19 1995-02-07 Sony Corp Nonvolatile semiconductor memory
JPH10106276A (en) * 1996-09-30 1998-04-24 Hitachi Ltd Semiconductor integrated circuit, and data-processing system
JP2001028428A (en) * 1999-07-14 2001-01-30 Hitachi Ltd Semiconductor integrated circuit device, and manufacture and operation thereof
JP2001067884A (en) * 1999-08-31 2001-03-16 Hitachi Ltd Nonvolatile semiconductor memory device
JP2002109891A (en) * 2000-09-28 2002-04-12 Hitachi Ltd Nonvolatile memory and writing method for nonvolatile memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737395A (en) * 1993-07-19 1995-02-07 Sony Corp Nonvolatile semiconductor memory
JPH10106276A (en) * 1996-09-30 1998-04-24 Hitachi Ltd Semiconductor integrated circuit, and data-processing system
JP2001028428A (en) * 1999-07-14 2001-01-30 Hitachi Ltd Semiconductor integrated circuit device, and manufacture and operation thereof
JP2001067884A (en) * 1999-08-31 2001-03-16 Hitachi Ltd Nonvolatile semiconductor memory device
JP2002109891A (en) * 2000-09-28 2002-04-12 Hitachi Ltd Nonvolatile memory and writing method for nonvolatile memory

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KURATA HIDEAKI ET AL.: "Constant-charge-injection programming for 10-MB/s multilevel AG-AND flash memories", 2002 SYMPOSIUM ON VLSI CIRCUITS DIGEST OF TECHNICAL PAPERS, 2002, pages 302 - 303, XP003008040 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9299443B1 (en) 2014-09-29 2016-03-29 Sandisk Technologies Inc. Modifying program pulses based on inter-pulse period to reduce program noise
WO2016053544A1 (en) * 2014-09-29 2016-04-07 Sandisk Technologies Inc. Modifying program pulses based on inter-pulse period to reduce program noise

Similar Documents

Publication Publication Date Title
JP4372196B2 (en) Pipeline programming of non-volatile memory using initial data.
JP4221196B2 (en) Operating technology to reduce the impact of coupling between storage elements of non-volatile memory operating in multiple data states
KR100918591B1 (en) Selective operation of a multi-state non-volatile memory system in a binary mode
US10559368B1 (en) Non-volatile memory with countermeasures for select gate disturb during program pre-charge
JP4726807B2 (en) Variable current sinking for non-volatile memory miscellaneous / fine programming
JP4510031B2 (en) Efficient verification for coarse / fine programming of non-volatile memory
US6456528B1 (en) Selective operation of a multi-state non-volatile memory system in a binary mode
JP3889699B2 (en) Nonvolatile semiconductor memory device and data writing method thereof
JP2007520028A (en) Charge packet measurement for non-volatile memory miscellaneous / fine programming
US11081198B2 (en) Non-volatile memory with countermeasure for over programming
WO2002073623A1 (en) Nonvolatile semiconductor storage device
JP2005527061A (en) Method for erasing flash memory using a pre-erase step
US10839928B1 (en) Non-volatile memory with countermeasure for over programming
TW201203262A (en) Saw-shaped multi-pulse programming for program noise reduction in memory
US7804713B2 (en) EEPROM emulation in flash device
JP4568365B2 (en) Alternative sensing technology for non-volatile memory
US7791954B2 (en) Dynamic erase state in flash device
US8004888B2 (en) Flash mirror bit architecture using single program and erase entity as logical cell
US7907455B2 (en) High VT state used as erase condition in trap based nor flash cell design
US8605509B2 (en) Data line management in a memory device
US7881105B2 (en) Quad+bit storage in trap based flash design using single program and erase entity as logical cell
US11670380B2 (en) Two-sided adjacent memory cell interference mitigation
JP2007042166A (en) Nonvolatile semiconductor storage device and method of operating the same
CN115019861A (en) Memory, programming method of memory and memory system
US7864596B2 (en) Sector configure registers for a flash device generating multiple virtual ground decoding schemes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP