WO2004067965A1 - Valve structure and positive displacement pump using the valve structure - Google Patents

Valve structure and positive displacement pump using the valve structure

Info

Publication number
WO2004067965A1
WO2004067965A1 PCT/JP2003/017013 JP0317013W WO2004067965A1 WO 2004067965 A1 WO2004067965 A1 WO 2004067965A1 JP 0317013 W JP0317013 W JP 0317013W WO 2004067965 A1 WO2004067965 A1 WO 2004067965A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
diaphragm
fluid
pump
flow path
Prior art date
Application number
PCT/JP2003/017013
Other languages
French (fr)
Japanese (ja)
Inventor
Fumihiro Yaguchi
Original Assignee
Shinano Kenshi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003024864A external-priority patent/JP2004060640A/en
Application filed by Shinano Kenshi Kabushiki Kaisha filed Critical Shinano Kenshi Kabushiki Kaisha
Priority to AU2003292653A priority Critical patent/AU2003292653A1/en
Publication of WO2004067965A1 publication Critical patent/WO2004067965A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/03Check valves with guided rigid valve members with a hinged closure member or with a pivoted closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive

Definitions

  • the present invention relates to a valve structure used for a positive displacement pump and a positive displacement pump using the same.
  • Diaphragm pumps which are one type of positive displacement pumps, are devices that change the volume of a diaphragm chamber (pump chamber) by reciprocatingly driving the diaphragm, thereby enabling the suction and discharge of air and other fluids.
  • a general diaphragm pump mechanically reciprocates the diaphragm to change the volume of the diaphragm chamber.
  • FIG. 12 shows a conventional example (JP-A-2001-50165) in which an electromagnetic force is used as a driving force for driving a diaphragm.
  • 10a and 10b are pump chambers arranged opposite to each other, and each of the pump chambers 10a and 10b is partitioned into two diaphragm chambers by an elastic diaphragm 12.
  • Reference numeral 14 denotes a permanent magnet fixed to a central portion in the plane of each of the diaphragms 12, and 16 denotes an electromagnet arranged in the middle of the pump chambers 10a and 10b.
  • the electromagnet 16 changes the polarity of both ends of the magnet alternately between N pole and S pole by applying AC power to the coil, so that the electromagnet 16 and the permanent magnet 14 fixed to the diaphragm 12 are alternated.
  • the magnetic force generated in the step causes the diaphragms 12 to repel or suck each other.
  • Each diaphragm chamber partitioned by the diaphragm 12 is provided with an intake valve 18 and an exhaust valve 19, and when the diaphragm 12 is driven, air is sucked into the diaphragm chamber and exhausted. The required pump action is performed.
  • the structure of the intake valve 18 shown in FIG. 13 can be considered.
  • Reference numeral 11 denotes a valve inserted in the flow path 13 and provided rotatably around a rotation shaft 11a at one end.
  • 15 is a stopper
  • 17 is a valve seat.
  • the valve element 11 comes into contact with the valve seat 17, from the position perpendicular to the flow path 13 (solid line position), to the stopper 15, and is inclined at an angle of approximately 45 ° to the flow path 13 (The broken line position) around the rotation axis 11a.
  • valve body 11 rotates to the position indicated by the broken line and opens the flow path 13 due to the negative pressure, whereby the air is sucked into the diaphragm chamber. At this time, the exhaust valve 19 is closed.
  • the exhaust valve 19 has the same structure as the intake valve 18.
  • valve structure of the positive displacement pump has the following problems.
  • valve body 11 when air (fluid) is sucked (or exhausted or sent out), the valve body 11 is pushed open.
  • the valve body 11 since the valve body 11 is provided orthogonal to the flow path 13, particularly, In the initial state in which the valve element 11 opens the flow path 13, a large force is required to open the valve element 11, resulting in a large pressure loss and poor pump efficiency. There is also a problem that the response speed of the valve body 11 is slow.
  • valve body 11 contacts the stopper 15 to open the flow path 13
  • the valve body 11 forms an angle of about 45 ° with the flow path 13, and the flow path is There was a problem that the flow path resistance was high due to the large bending situation.
  • an object of the present invention is to provide a valve structure and a positive displacement pump capable of reducing flow path resistance and increasing pump efficiency. Disclosure of the invention
  • the present invention has the following configuration to achieve the above object.
  • the valve structure according to the present invention is a valve used for a positive displacement pump, which opens when a fluid is sucked into a pump chamber and closes when a fluid is sent from the pump chamber, or a pump for suction.
  • a valve element for opening and closing the flow path is provided, and the valve element is disposed to be inclined with respect to the flow path at a contact position with a valve seat.
  • valve body is provided so as to be inclined at least 30 ° with respect to the flow path.
  • valve body is formed as a valve body that opens and closes the flow path by rotating about a rotation shaft provided at one end side, and the valve body is in contact with a valve seat.
  • the other end which is opposite to the one end provided with the rotation shaft, is inclined with respect to the one end so as to be located on the rear side in the fluid flow direction. .
  • the stopper is set so as to regulate the rotation at a position where the valve body is opened by 45 ° or more behind the position perpendicular to the flow path in the flow direction of the fluid. It is.
  • the stopper is provided so as to be located within the projection area of the valve element viewed from the flow path direction when the valve element is opened to the maximum, so that the flow path resistance can be reduced.
  • the rotating shaft swings in a direction intersecting the axis of the rotating shaft between the rotating shaft and the bearing of the valve body so that the valve body can be in close contact with the valve seat. It is preferable to provide the required clearance as described above.
  • the rotation axis is 2 with respect to the axis of the bearing. It is preferable to set the clearance so that it can swing.
  • the positive displacement pump opens when the fluid is sucked into the pump chamber, and closes when the fluid is sent out from the pump chamber, and sucks the fluid into the pump chamber.
  • a positive displacement pump having a delivery valve which is sometimes closed and opened when a fluid is delivered from the pump chamber, wherein the suction valve or the delivery valve, or both the suction valve and the delivery valve are provided.
  • any one of the above valve structures is used.
  • the outer peripheral edge portion is fixed to the frame body, and the diaphragm is attached to the frame body so that the diaphragm and the A diaphragm chamber provided with the diaphragm body, a suction valve and a delivery valve provided in communication with the diaphragm chamber, and a driving unit for driving the diaphragm.
  • the present invention is characterized in that any one of the valve structures described above is used for a delivery valve or both the suction valve and the delivery valve.
  • the driving means is provided on a permanent magnet attached to an outer surface of the diaphragm, and on an outer surface of the frame body facing the permanent magnet and opposite to the permanent magnet with the diaphragm interposed therebetween.
  • an electromagnetic force generating means may include: an electromagnetic force generating means attached to an outer surface of the diaphragm; and the electromagnetic force generating means opposed to the electromagnetic force generating means and opposite to the electromagnetic force generating means with the diaphragm interposed therebetween.
  • a permanent magnet provided on the outer surface of the frame body.
  • the means for generating the electromagnetic force may be constituted by an air-core energizing coil or an air-core energizing coil having an iron core.
  • FIG. 1 is a cross-sectional view (upper diaphragm position) showing the internal configuration of the diaphragm pump according to the present invention
  • FIG. 2 is a cross-sectional view (lower diaphragm position) showing the internal configuration of the diaphragm pump according to the present invention
  • FIG. 3 is a top view of the diaphragm pump with the second frame body removed
  • FIG. 4 is a bottom view of the diaphragm pump
  • FIG. 5 shows a configuration of an exhaust part of the diaphragm pump.
  • FIG. 6 is a cross-sectional view
  • FIG. 6 is a block diagram showing an example of a drive circuit for driving the diaphragm pump of the embodiment
  • FIG. 7 is a block diagram showing another example of the drive circuit
  • FIG. FIG. 9 is a block diagram showing still another example of the drive circuit.
  • FIG. 9 is an explanatory diagram showing the structure of the suction valve.
  • FIG. 10 is an explanatory diagram showing a state of the suction valve in FIG. 9 when the flow path is opened.
  • FIG. 11 is an explanatory view of the suction valve of FIG. 10 as viewed from the flow path side
  • FIG. 12 is an explanatory view of a conventional example of an electromagnetic diaphragm pump
  • FIG. 13 is a conventional intake pump. It is explanatory drawing which shows an example of a valve. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 and 2 are cross-sectional views showing the configuration of an embodiment of an electromagnetic diaphragm pump which is an example of a positive displacement pump.
  • FIG. 1 shows a state in which the diaphragm 20 is in an upper position (intake state). Indicates a state in which the diaphragm 20 is at the lower position (exhaust state).
  • the displacement pump is not limited to the electromagnetic diaphragm pump, and the diaphragm may be mechanically reciprocated by connecting the diaphragm to an eccentric force that is eccentrically driven by a drive motor (see FIG. Not shown).
  • an electromagnetic type will be described.
  • the electromagnetic diaphragm pump of the present embodiment has a storage space for movably storing the diaphragm 20 in a main body (frame body) 22 composed of a first frame body 22 a and a second frame body 22 b. And is assembled. That is, concave portions 23 a and 23 b for accommodating the diaphragm 20 are provided on the opposing surfaces of the first frame body 22 a and the second frame body 22 b, respectively.
  • the main body 22 is movably supported in the thickness direction of the main body 22 in the space formed by the concave portions 23a and 23b.
  • 20a is determined by a clamp provided with a predetermined width along the outer peripheral edge of the diaphragm 20.
  • FIG. 3 is a plan view showing a state where the diaphragm 20 is set in the first frame body 22a.
  • the diaphragm 20 is a member formed in a circular shape, and the clamp portion (outer peripheral edge) 20 a is provided over the entire outer peripheral edge of the diaphragm 20.
  • the diaphragm 20 is formed such that the entire periphery of the outer peripheral edge is formed along the opening edges of the concave portions 23 a and 23 b of the first frame body 22 a and the second frame body 22 b.
  • the first frame body 22a and the second frame body 22b pinch and support each other.
  • Reference numeral 24 denotes a fixing screw that presses and fixes the first frame body 22a and the second frame body 22b while the diaphragm 20 is pressed.
  • the diaphragm 20 and a first frame body 22 a arranged opposite to the diaphragm 20 constitute a diaphragm chamber 26, and the first frame body 22 a is a fixed wall,
  • the diaphragm 20 corresponds to a movable wall.
  • 2 5 is the first frame body 2 2 a
  • An intake hole (flow path) 27 opened in the center is a valve body for controlling communication between the intake hole 25 and the diaphragm chamber 26.
  • the suction valve (flow path) 25, the valve element 27, etc. constitute the suction valve 41.
  • the valve body 27 opens the intake hole 25 when outside air flows into the diaphragm chamber 26 from the intake hole 25, and conversely, the intake hole 2 when air flows out of the diaphragm chamber 26 to the outside. It acts to block 5 and shut off the air flow.
  • the second frame body 22b is provided with an opening 28 at the center, and air is allowed to flow through the opening 28 inside and outside the second frame body 22b.
  • the diaphragm 20 reciprocates in the thickness direction of the main body (frame body) 22 with the outer peripheral edge portion clamped by the first frame body 22 a and the second frame body 22 b. And made of a material having a certain elasticity and durability such as rubber. Rubber such as EPDM is suitable for the material of the diaphragm 20, but the material is not particularly limited as long as it has the required flexibility and durability.
  • a permanent magnet 30 is attached to the outer surface of the diaphragm 20 outside the diaphragm chamber 26.
  • the permanent magnet 30 formed in a rectangular flat plate shape is used, but a permanent magnet having an appropriate shape such as a circle can be used.
  • the permanent magnet 30 is fixed to the center of the diaphragm 20.
  • the permanent magnet 30 is magnetized in the thickness direction, and the polarity of the N-S pole may be either.
  • the permanent magnet 30 is fixedly mounted in an opening provided at the center of the support plate 32.
  • the support plate 32 has a ring-shaped portion (movable portion) 2 Ob having a predetermined width between the clamp portion (outer peripheral edge) 20 a of the diaphragm 20 (inside the outer peripheral edge) and the diaphragm. It is provided so as to cover 20 outer surfaces.
  • the support plate 32 functions to support the diaphragm 20 such that the diaphragm 20 is driven in parallel with the thickness direction of the main body 22 while maintaining a flat surface.
  • the diaphragm 20 is deformed and pushed only by the ring-shaped portion 20b sandwiched between the support plate 32 and the clamp portion 20a.
  • the entire diaphragm 20 is not deformed, and the diaphragm 20
  • the ring shape 20b is formed to be thinner than other parts of the diaphragm 20 to improve the response of the diaphragm 20, and the diaphragm 20 is moved to the lower position. At this time, a flow space is formed with a slight gap between the inner surface (taper surface) of the concave portion 23a provided in the first frame body 22a.
  • the support plate 32 is provided with a through hole 32 a in a predetermined arrangement, and a stopper protrusion 20 c integrally formed with the diaphragm 20 is fitted into the through hole 32 a on the outer surface of the diaphragm 20. .
  • the stopper projection 20c is provided to buffer the impact of the diaphragm 20 when the diaphragm 20 collides with the inner surface of the second frame body 22b, as shown in FIG.
  • the support plate 32 is provided so that the end surface protrudes from the outer surface.
  • the stopper projections 20c are provided at four locations that are equally spaced in the circumferential direction as shown in FIG. 3, but the number of the stopper projections 20c can be appropriately selected. .
  • reference numeral 34 denotes a back yoke provided on the back of the permanent magnet.
  • the backpack 34 is provided so that a magnetic field acts efficiently on the permanent magnet, and is formed of a magnetic material such as iron.
  • the back yoke 34 is formed in a flat plate shape having the same shape as the permanent magnet 30, and the back yoke 34 is attached so as to overlap the permanent magnet 30.
  • reference numeral 40 denotes an energizing coil attached to the outer surface of the first frame body 22a. The current-carrying coil 40 drives the diaphragm 20 by applying a magnetic force to the permanent magnet 30.
  • the energizing coil 40 is provided so as to wind around the intake valve 27 arranged at the center of the first frame body 22a.
  • the current-carrying coil 40 is attached to the first frame body 22a in an arrangement facing the diaphragm 20. It is preferable that the thickness of the winding be as small as possible so that the energizing coil 40 can be stored in the first frame body 22a.
  • FIG. 4 shows a state where the first frame body 22a is viewed from the lower surface side. An intake hole (flow path) 25 is opened at the center of the first frame body 22 a, and a conduction coil 40 is arranged around the suction valve 41.
  • the electromagnetic force generating means is not necessarily limited to the air-core energizing coil 40. Even a current-carrying coil having an iron core can be arranged in the same manner as in the present embodiment by using an air-core iron core.
  • the suction valve 41 is arranged at the center of the winding area of the energizing coil 40. However, the position where the suction valve 41 is arranged is not limited to the winding area of the energizing coil 40. The position of the first frame body 22a can be appropriately selected.
  • control board 36 is a control board attached to the lower surface of the first frame body 22a.
  • the control board 36 is attached to one half of the lower surface of the first frame body 22a except for the area where the energizing coil 40 is arranged.
  • the control board 36 is provided with a drive circuit for controlling the time, polarity, and the like for energizing the energizing coil 40, whereby the electromagnetic diaphragm pump is appropriately mounted as a unit obtained by modularizing the electromagnetic diaphragm pump. It can be mounted on products.
  • the control board 36 is also housed within the thickness of the first frame body 22a, so that all necessary modules for driving the diaphragm pump are housed in the main body 22.
  • An extremely compact electromagnetic diaphragm pump is constructed.
  • the permanent magnet 30 may be attached to the outer surface of the first frame body 22a, and the energizing coil 40 may be attached to the outer surface of the diaphragm 20.
  • the energizing coil 40 moves together with the diaphragm 20, so that the control board and the energizing coil 40 are electrically connected by a flexible wire (not shown).
  • 38 denotes an exhaust pipe (flow path) extending from the first frame body 22a. Inside the first frame body 22a, a flow path 38a for communicating the exhaust pipe 38 and the diaphragm chamber 26 is provided.
  • FIG. 5 shows a flow path 38a provided inside the first frame body 22a.
  • the end of the channel 38a opens in a tapered surface provided on the peripheral edge of the recess 23a formed in the first frame body 22a.
  • the flow path 38a communicates with the diaphragm chamber 26, and the communication between the diaphragm chamber 26 and the flow path 38a also occurs when the diaphragm 20 moves to the lower position. Will be maintained.
  • a valve element 39 is attached in the middle of the exhaust pipe 38 and the flow path 38a.
  • This valve The body 39 opens when air flows out of the diaphragm chamber 26 to the outside, and conversely blocks air flow when air flows into the diaphragm chamber 26 from the exhaust pipe 38.
  • the delivery valves 42 are composed of the flow paths 38, 38a, the valve body 39, and the like. 9 to 11 show an example of the valve mechanism of the suction valve 41 and the delivery valve 42 in more detail. Since both valves have the same configuration, the suction valve 41 will be described as an example.
  • Reference numeral 25 denotes the above-described intake hole (flow path), which communicates with the diaphragm chamber 26 on the downstream side.
  • a valve seat 43 is formed in the intake hole 25.
  • the valve seat surface of the valve seat 43 with which the valve element 27 abuts is provided to be inclined with respect to the intake hole (flow path) 25 as shown in the figure.
  • the valve element 27 rotates around a rotation shaft 27 a provided on one end side, contacts the valve seat 43, and opens and closes the intake hole (flow path) 25.
  • the movable part side (the side opposite to the rotating shaft 27 a) has a more inflow of air (fluid) than the rotating shaft 27 a side at the contact position with the valve seat 43. It is arranged at an angle so as to be located on the rear side in the direction.
  • the inclination angle of the valve element 27 is set to be 10 ° to 80 °, preferably 30 ° or more with respect to the flow path 25.
  • Reference numeral 4 denotes a stopper, which restricts further rotation of the valve element 27 when the valve element 27 rotates by a required angle in the direction of fluid flow during suction of air (fluid). It is preferable that the stopper 44 regulates the rotation at a position where the valve element 27 is opened by 45 ° or more behind the position orthogonal to the flow path 25 in the fluid flowing direction.
  • the stopper 44 be provided so as to be located in the projection area of the valve element 27 viewed from the flow path direction when the valve element 27 is opened to the maximum. You. As a result, an increase in the flow path resistance due to the stopper 44 can be prevented.
  • the rotating shaft 27 a of the valve element 27 is formed in a columnar shape as shown in the figure, and the rotating shaft 27 a is rotatable in a bearing hole 45 provided on the base side of the valve seat 43. It is inserted in. Then, the valve body 27 swings between the rotating shaft 27a and its bearing 45 in a direction in which the rotating shaft 27a intersects the axis of the rotating shaft 27a, and the valve body 27 The required clearance is provided so that 27 can be in close contact with the valve seat (surface) 43. In the present embodiment, the bearing holes 45 are rotated. The diameter of the moving shaft 27a is also made large so that the rotating shaft 27a can swing in the bearing hole 45.
  • valve body 27 can be surely secured to the valve seat ( (4) Since it comes into contact with 4 3, it is possible to prevent fluid leakage at the time of check, and to improve pump efficiency.
  • the above clearance is such that the rotation shaft 27 a is 2 with respect to the axis of the bearing hole 45. It is preferable to make the swingable as described above.
  • the structure of the rotating shaft 27a and the bearing 45 is not limited to the above example.
  • the bearing side may be a pin
  • the rotating shaft may be a shaft hole into which the pin enters.
  • valve element 27 is configured to rotate about the rotation shaft 27a. However, the valve element 27 is moved in parallel with respect to the valve seat so that It may be configured to open and close (not shown). Even in this case, the valve body 27 is disposed so as to be inclined with respect to the flow path when the valve body 27 is in contact with the valve seat.
  • FIG. 1 shows a state in which the diaphragm 20 is in the upper position and the air is sucked into the diaphragm chamber 26. That is, when a current in a direction that repels the permanent magnet 30 is applied to the energizing coil 40, the permanent magnet 30 repels due to the magnetic force, and the diaphragm 20 starts moving toward the second frame body 22b. I do.
  • This operation is an intake operation.
  • the valve element 39 closes the exhaust pipe (flow path) 38, the valve element 27 opens the intake hole (flow path) 25, and outside air flows into the diaphragm chamber 26. Get started. Then, by continuing the energization of the energizing coil 40, the diaphragm 20 moves until it comes into contact with the inner surface of the second frame body 22b, and outside air is introduced into the diaphragm chamber 26.
  • valve body 27 to open the intake hole (flow path) is as follows.
  • the valve body 27 is inclined with respect to the intake hole (flow path). From the initial stage of opening of the flow path by the body 27, the fluid (air) bends into the flow path obliquely (approximately 30 ° with respect to the flow path in the illustrated example) and enters the flow path. Not large, pressure loss is reduced, and pump efficiency can be increased accordingly. Also, the responsiveness of opening and closing the flow path is good.
  • the valve element closes the flow path perpendicular to the flow path
  • the fluid is bent almost at right angles to the flow path in the initial stage of opening the flow path by the valve element. Therefore, the flow path resistance becomes extremely large, and the pressure loss also increases accordingly. Also, the responsiveness of opening and closing the channel is not good.
  • the diaphragm 20 is stopped when the end face of the stopper projection 20c abuts on the inner face of the second frame body 22b.
  • the operation of the diaphragm 20 is controlled by a drive circuit mounted on the control board 36.
  • the diaphragm 20 is actually operated at a high speed and the second frame 2
  • the electromagnetic diaphragm pump according to the present embodiment is controlled so that it does not collide with the inner surface of the second frame body 2b, so that the stopper projection 20c is brought into contact with the inner surface of the second frame body 22b. To prevent noise.
  • stopper projection 20c is formed integrally with the diaphragm 20 having flexibility such as rubber, noise when the stopper 20c contacts the second frame body 22b is reduced.
  • the opening operation of the exhaust pipe 38 by the valve body 39 is also smoothly performed with good responsiveness because the valve body 39 is arranged inclined with respect to the flow path, and the pressure loss is also reduced.
  • the pump efficiency can be increased.
  • FIG. 2 shows a state in which the diaphragm 20 has moved in a direction approaching the first frame body 22a, and the diaphragm 20 has finally contacted the inner surface of the first frame body 22a. is there.
  • the diaphragm 20 comes into contact with the first frame body 22a, the problem of noise is avoided because the diaphragm 20 itself comes into contact with the first frame body 22a. Since the diaphragm 20 is supported flat by the electromagnetic attraction of the energizing coil 40 and the support plate 32, the air introduced into the diaphragm chamber 26 efficiently passes through the flow path 38a. And is discharged from the exhaust pipe 38.
  • the diaphragm 20 since the permanent magnet 30 is arranged on the outer surface of the diaphragm 20, the diaphragm 20 is completely The first frame body 22 a can be moved to a position where it comes into contact with the inner surface thereof, whereby the air introduced into the diaphragm chamber 26 can be almost completely discharged.
  • the point at which the diaphragm 20 contacts the inner surface of the first frame member 22 a is determined by the fact that the permanent magnet 30 attached to the diaphragm 20 and the energizing coil 40 are closest. This is the point where the magnetic force becomes the strongest, and the arrangement is the most efficient as the air discharge operation of the diaphragm chamber 26.
  • the operation is switched to the intake operation by reversing the direction of current supply to the current supply coil 40 again.
  • the energization of the energizing coil 40 in this way, it is possible to continuously perform the intake and exhaust operations by the diaphragm 20.
  • the drive of the diaphragm 20 is controlled by appropriately controlling the current, frequency, and the like, which flow through the current-carrying coil.
  • FIG. 6 shows examples of drive circuits for driving the electromagnetic diaphragm pump.
  • the drive circuit 50 shown in FIG. 6 inputs a drive command signal and a current cutoff signal to the control circuit 52, and when the drive command signal is input, energizes the energizing coil 40 to drive the diaphragm 20.
  • the diaphragm 20 is configured to automatically return to one position of the intake or exhaust, and when the energizing coil 40 is energized, the electromagnetic force acts on the permanent magnet 30 to cause the other to return to the other position. It is controlled to move to the position.
  • a return spring to the diaphragm 20 or the like, the diaphragm 20 can be automatically returned to the negative position.
  • the drive circuit 50 shown in FIG. 7 energizes the energizing coil 40 in the forward and reverse directions according to the drive command signal and the current cutoff command signal input to the control circuit 52, and This is an example in which a suction force and a repulsion force are alternately generated between the two to drive. It is possible to control the energizing coil 40 by applying an alternating current or a pulse current.
  • the drive circuit 50 shown in FIG. 8 uses a diaphragm position detecting element 54 to drive the diaphragm 20 by electromagnetic force by energizing the current-carrying coil 40. This is an example in which the movement position of the diaphragm 20 is detected and the drive of the diaphragm 20 is controlled.
  • a reflective optical sensor 56a is provided on a first frame body 22a as a position detecting element 54 of the diaphragm 20, and an inner surface of the diaphragm 20 facing the reflective optical sensor 56a.
  • a light reflecting coating 56b is provided on the rim is shown.
  • FIG. 2 shows that a magnetic detection sensor 57 a is provided on the first frame body 22 a as a diaphragm position detection element 54, and is located on the outer surface of the diaphragm 20 so as to face the magnetic detection sensor 57 a.
  • a magnetic detection sensor 57 a is provided on the first frame body 22 a as a diaphragm position detection element 54, and is located on the outer surface of the diaphragm 20 so as to face the magnetic detection sensor 57 a.
  • the detection magnet 57b is attached.
  • the position of the diaphragm 20 is constantly detected by the position detecting element 54, and the current and frequency of the current-carrying coil 40 are controlled based on the detection signal of the position detecting element 54.
  • the operation of the diaphragm 20 can be accurately controlled. For example, the impact force when the diaphragm 20 collides with the inner surface of the first frame body 22a or the second frame body 22b is reduced, the generation of noise is suppressed, and the diaphragm 20 has a long service life. Then, the control can be performed.
  • the current detection element 58 monitors the current flowing through the current-carrying coil 40 so that when the movement of the diaphragm 20 is deviated from the drive command signal, the current supplied from the drive circuit to the current-carrying coil 40 It is used to adjust the value and correct the deviation accurately. Responsiveness and high-accuracy control are possible because of current control.
  • the electromagnetic diaphragm pump according to the present embodiment includes the diaphragm 20 in the main body (frame body) 22 including the first frame body 22a and the second frame body 22b. It is housed to form a diaphragm chamber 26, and the intake and exhaust operations are performed using electromagnetic force. As shown in Figs.
  • the structure of the main part of the diaphragm pump is extremely simple, and it is characterized in that it is thin and extremely compact.
  • the diaphragm 20 is designed to occupy a large movable area (volume) in the thin main body 22, the entire apparatus is formed in a compact form, so that power can be efficiently used. It has the characteristic that it is configured to perform the intake and exhaust functions.
  • the first frame body 22a and the second frame body 22b constituting the main body 22 are not limited to non-magnetic metal as long as they have a predetermined strength, and may be formed of resin or the like. Of course it is possible.
  • the electromagnetic diaphragm pump of the present embodiment has a configuration in which the energizing coil 40 is directly attached to the first frame body 22 a, the heat generated from the energizing coil 40 generates the first frame body 22. a and the second frame body 22 b are efficiently transmitted. Therefore, by forming the first frame body 22a and the second frame body 22b with a material having good heat conductivity, the air (fluid) introduced into the diaphragm chamber 26 is warmed and discharged. It becomes possible to do.
  • the electromagnetic diaphragm pump of the present embodiment can be formed in a very small size, it can be used for various purposes such as cooling of a notebook computer, a device for supplying air or fuel of a fuel cell, and medical equipment.
  • a fuel cell has the advantage that the reaction of the cell can be promoted by supplying warm air.
  • the pump when used for medical equipment, it is possible to use the pump as an easy-to-use pump by heating and supplying the fluid.
  • the permanent magnet 30 is attached to the outer surface of the diaphragm 20 which is the outside of the diaphragm chamber 26, so that the permanent magnet 30 is provided inside the diaphragm chamber 26.
  • There are no fasteners or adhesives for attaching the diaphragm so that the air, fuel and blood sucked into the diaphragm chamber 26 can be supplied in a clean state without contaminating the air, fuel and blood.
  • dust and gas generated from permanent magnets, fasteners, adhesives, and the like are likely to poison catalysts used in fuel cells and contain metal ions that cause deterioration of fuel cell functions. Therefore, an electromagnetic diaphragm pump in which the permanent magnet 30 is not provided in the diaphragm chamber 26 can be suitably used for a fuel cell.
  • the air intake / exhaust is described as an example.
  • the diaphragm pump according to the present invention is not limited to gas such as air, but may be used for supply / discharge of fluid such as liquid. Can be.
  • air is taken in from the front of the first frame body 22 a and exhausted from the side of the main body 22 (the side of the first frame body 22 a or the side of the diaphragm chamber 26).
  • a valve mechanism may be provided so as to suck and exhaust air from the side of the frame body 22.
  • valve element is provided to be inclined with respect to the flow path, particularly in the initial stage of opening the flow path by the valve element,
  • the fluid can be bent obliquely to the flow path and entered, and the flow resistance can be reduced, the pressure loss can be reduced, and the pump efficiency can be increased as compared to the case where the fluid enters at a right angle. it can.
  • the responsiveness of opening and closing the flow path is excellent.
  • the diaphragm pump by providing the permanent magnet and the current-carrying coil on opposite sides of the diaphragm as described above, the diaphragm pump can be suitably reduced in size and thickness. It can be easily mounted on small devices and used.
  • the diaphragm chamber is always kept in a clean space, and the air, fuel, and blood supplied from the diaphragm chamber are not polluted and the fuel is not contaminated. It can be suitably used for batteries, medical equipment, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A valve structure capable of increasing a pump efficiency by reducing a flow passage resistance and a positive displacement pump using the valve structure, the valve structure of a suction valve (41) opened when fluid is sucked into a pump chamber (26) and closed when the fluid is discharged from the pump chamber (26) or a delivery valve (42) closed when the fluid is sucked into the pump chamber (26) and opened when the fluid is discharged from the pump chamber (26), comprising valve elements (27) and (39) opening and closing flow passages (25) and (38), characterized in that the valve elements (27) and (39) are disposed aslant relative to the flow passages (25) and (38) in the contact state thereof with a valve seat (43).

Description

バルブ構造およびこれを用いた容積型ポンプ 技術分野 Valve structure and positive displacement pump using the same
本発明は容積型ポンプに用いるバルブ構造およびこれを用いた容積型ポンプに 関する。  The present invention relates to a valve structure used for a positive displacement pump and a positive displacement pump using the same.
明 背景技術 田  Akira Background technology
容積型ポンプの一種であるダイアフラムポンプは、 ダイアフラムを往復駆動さ せることによりダイアフラム室 (ポンプ室) を容積変化させ、 これにともなって 空気等の流体の吸排を可能にする装置である。 一般的なダイアフラムポンプはダ ィァフラムを機械的に往復駆動してダイアフラム室を容積変化させるものであ る。  Diaphragm pumps, which are one type of positive displacement pumps, are devices that change the volume of a diaphragm chamber (pump chamber) by reciprocatingly driving the diaphragm, thereby enabling the suction and discharge of air and other fluids. A general diaphragm pump mechanically reciprocates the diaphragm to change the volume of the diaphragm chamber.
図 1 2は、 ダイアフラムを駆動する駆動力に電磁力を利用する従来例 (特開 2001-50165) を示す。 同図で、 1 0 a、 1 0 bは対向して配置したポンプ室であ り、 各々のポンプ室 1 0 a、 1 0 bは、 弾性を有するダイアフラム 1 2により 2 つのダイアフラム室に仕切られている。 1 4は各々のダイアフラム 1 2の面内の 中央部に固定した永久磁石であり、 1 6はポンプ室 1 0 a、 1 0 bの中間に配置 した電磁石である。  FIG. 12 shows a conventional example (JP-A-2001-50165) in which an electromagnetic force is used as a driving force for driving a diaphragm. In the figure, 10a and 10b are pump chambers arranged opposite to each other, and each of the pump chambers 10a and 10b is partitioned into two diaphragm chambers by an elastic diaphragm 12. ing. Reference numeral 14 denotes a permanent magnet fixed to a central portion in the plane of each of the diaphragms 12, and 16 denotes an electromagnet arranged in the middle of the pump chambers 10a and 10b.
電磁石 1 6はコイルに交流電源を通電することにより、 磁石の両端の極性を N 極と S極に交互に変化させ、 電磁石 1 6とダイアフラム 1 2に固定された永久磁 石 1 4との間で生じる磁力によりダイアフラム 1 2を互いに反発させあるいは吸 引させる。 ダイアフラム 1 2によつて仕切られた各々のダイアフラ厶室には吸気 弁 1 8と排気弁 1 9が設けられており、 ダイアフラム 1 2が駆動されることによ つてダイアフラム室に空気が吸引され排気されて所要のポンプ作用をなす。 上記吸気弁 1 8の構造は図 1 3に示すものが考えられる。  The electromagnet 16 changes the polarity of both ends of the magnet alternately between N pole and S pole by applying AC power to the coil, so that the electromagnet 16 and the permanent magnet 14 fixed to the diaphragm 12 are alternated. The magnetic force generated in the step causes the diaphragms 12 to repel or suck each other. Each diaphragm chamber partitioned by the diaphragm 12 is provided with an intake valve 18 and an exhaust valve 19, and when the diaphragm 12 is driven, air is sucked into the diaphragm chamber and exhausted. The required pump action is performed. The structure of the intake valve 18 shown in FIG. 13 can be considered.
1 1は、 流路 1 3中に介挿され、 一端の回動軸 1 1 aを中心として回動自在に 設けられた弁体である。 1 5はストッパ、 1 7は弁座である。 弁体 1 1は、 弁座 1 7に当接する、 流路 1 3に直交する位置(実線位置) から、 ストッパ 1 5に当接する、流路 1 3に対してほぼ 4 5 °の角度で傾斜する位置(破 線位置) まで、 回転軸 1 1 aを中心として回動する。 Reference numeral 11 denotes a valve inserted in the flow path 13 and provided rotatably around a rotation shaft 11a at one end. 15 is a stopper, and 17 is a valve seat. The valve element 11 comes into contact with the valve seat 17, from the position perpendicular to the flow path 13 (solid line position), to the stopper 15, and is inclined at an angle of approximately 45 ° to the flow path 13 (The broken line position) around the rotation axis 11a.
空気が矢印の方向に吸引される際には、 負圧により、 弁体 1 1は破線位置まで 回動して流路 1 3を開き、 これにより空気がダイアフラム室に吸引される。 この とき排気弁 1 9は閉じられる。  When the air is sucked in the direction of the arrow, the valve body 11 rotates to the position indicated by the broken line and opens the flow path 13 due to the negative pressure, whereby the air is sucked into the diaphragm chamber. At this time, the exhaust valve 19 is closed.
空気がダイアフラム室から排気される際には、 正圧により、 弁体 1 3が実線位 置まで回動して弁座 1 7に当接し、 流路 1 3を遮断する。 このとき排気弁 1 9が 開き、 空気が排出され、 ポンプ作用がなされる。 排気弁 1 9も吸気弁 1 8と同様 の構造に形成されている。  When the air is exhausted from the diaphragm chamber, the valve body 13 rotates to the position indicated by the solid line by the positive pressure and contacts the valve seat 17 to block the flow path 13. At this time, the exhaust valve 19 is opened, air is exhausted, and a pump action is performed. The exhaust valve 19 has the same structure as the intake valve 18.
ところで、 上記容積ポンプのバルブ構造には次のような課題がある。  By the way, the valve structure of the positive displacement pump has the following problems.
すなわち、 空気 (流体) が吸引 (あるいは排気、 送出) される際、 弁体 1 1が 押し開かれるのであるが、 弁体 1 1が流路 1 3に直交して設けられているため、 特に弁体 1 1が流路 1 3を開放する初期の状態において、 弁体 1 1を押し開くた めに大きな力を要し、 圧力損失が大きくなり、 ポンプ効率が悪いという課題があ る。 また、 弁体 1 1の応答速度も遅いという課題がある。  That is, when air (fluid) is sucked (or exhausted or sent out), the valve body 11 is pushed open. However, since the valve body 11 is provided orthogonal to the flow path 13, particularly, In the initial state in which the valve element 11 opens the flow path 13, a large force is required to open the valve element 11, resulting in a large pressure loss and poor pump efficiency. There is also a problem that the response speed of the valve body 11 is slow.
また、 弁体 1 1がストッパ 1 5に当接して、 流路 1 3を開放した場合にあって も、弁体 1 1が流路 1 3に約 4 5 °の角度をなし、流路が大きく曲がる状況となる ため、 流路抵抗が高いという課題があった。  Even when the valve body 11 contacts the stopper 15 to open the flow path 13, the valve body 11 forms an angle of about 45 ° with the flow path 13, and the flow path is There was a problem that the flow path resistance was high due to the large bending situation.
そこで、 本発明はこれらの課題を解決すべくなされたものであり、 流路抵抗を 低減し、 ポンプの効率を上げることのできるバルブ構造および容積型ポンプを提 供することを目的とする。 発明の開示  Therefore, the present invention has been made to solve these problems, and an object of the present invention is to provide a valve structure and a positive displacement pump capable of reducing flow path resistance and increasing pump efficiency. Disclosure of the invention
本発明は上記目的を達成するため、 次の構成を備える。  The present invention has the following configuration to achieve the above object.
すなわち、 本発明に係るバルブ構造は、 容積型ポンプに用いられるバルブであ つて、 ポンプ室へ流体が吸引されるときには開き、 ポンプ室から流体が送出され る際には閉じる吸引用バルブ、またはポンプ室へ流体が吸引されるときには閉じ、 ポンプ室から流体が送出される際には開く送出用バルブのバルブ構造において、 流路を開閉する弁体を備え、 該弁体は、 弁座への当接位置において、 前記流路に 対して傾斜して配設されていることを特徴とする。 That is, the valve structure according to the present invention is a valve used for a positive displacement pump, which opens when a fluid is sucked into a pump chamber and closes when a fluid is sent from the pump chamber, or a pump for suction. In the valve structure of the delivery valve which closes when the fluid is sucked into the chamber and opens when the fluid is delivered from the pump chamber, A valve element for opening and closing the flow path is provided, and the valve element is disposed to be inclined with respect to the flow path at a contact position with a valve seat.
また、前記弁体が、前記流路に対して 3 0 °以上傾斜するように配設されている ことを特徴とする。  Further, the valve body is provided so as to be inclined at least 30 ° with respect to the flow path.
また、 前記弁体は、 一端側に設けた回動軸を中心に回動して前記流路を開閉す る弁体に形成され、 該弁体が、 弁座への当接状態において、 前記回動軸が設けら れた一端側とは反対側となる他端側が該一端側に対して、 流体の流れ方向後方側 に位置するように傾斜して配設されていることを特徴とする。  Further, the valve body is formed as a valve body that opens and closes the flow path by rotating about a rotation shaft provided at one end side, and the valve body is in contact with a valve seat. The other end, which is opposite to the one end provided with the rotation shaft, is inclined with respect to the one end so as to be located on the rear side in the fluid flow direction. .
また、 前記弁体が流体の流れ込み方向に所要角度回動した際、 該弁体のそれ以 上の回動を規制するストッパを設けると好適である。  It is also preferable to provide a stopper for restricting further rotation of the valve body when the valve body rotates by a required angle in the direction of fluid flow.
この場合に、 前記ストッパを、 前記弁体が、 前記流路に直交する位置よりも流 体の流れ込み方向後方側に 4 5 °以上開いた位置で回動を規制するように設定す ると好適である。  In this case, it is preferable that the stopper is set so as to regulate the rotation at a position where the valve body is opened by 45 ° or more behind the position perpendicular to the flow path in the flow direction of the fluid. It is.
また、 前記ストッパを、 前記弁体が最大に開いたときに流路方向から見た弁体 の投影エリア内に位置するように設けると、 流路抵抗を減じることができ、 好適 である。  Further, it is preferable that the stopper is provided so as to be located within the projection area of the valve element viewed from the flow path direction when the valve element is opened to the maximum, so that the flow path resistance can be reduced.
また、 前記弁体の、 前記回動軸とその軸受との間に、 前記回動軸が回動軸の軸 線と交差する方向に揺動して前記弁体が前記弁座に密接可能なように所要のクリ ァランスを設けるようにすると好適である。  In addition, the rotating shaft swings in a direction intersecting the axis of the rotating shaft between the rotating shaft and the bearing of the valve body so that the valve body can be in close contact with the valve seat. It is preferable to provide the required clearance as described above.
この場合、前記回動軸を軸受の軸線に対して 2。以上揺動可能なクリアランスに 設定すると好適である。  In this case, the rotation axis is 2 with respect to the axis of the bearing. It is preferable to set the clearance so that it can swing.
また、 本発明に係る容積型ポンプは、 ポンプ室へ流体が吸引されるときには開 き、 ボンプ室から流体が送出される際には閉じる吸引用ノ ルブと、 ボンプ室へ流 体が吸引されるときには閉じ、 ポンプ室から流体が送出される際には開く送出用 バ>レブとを有する容積型ポンプにおいて、 前記吸引用バルブもしくは前記送出用 バルブ、 または前記吸引用バルブおよび前記送出用バルブの双方に、 上記いずれ かのバルブ構造を用いたことを特徴とする。  Further, the positive displacement pump according to the present invention opens when the fluid is sucked into the pump chamber, and closes when the fluid is sent out from the pump chamber, and sucks the fluid into the pump chamber. A positive displacement pump having a delivery valve which is sometimes closed and opened when a fluid is delivered from the pump chamber, wherein the suction valve or the delivery valve, or both the suction valve and the delivery valve are provided. In addition, any one of the above valve structures is used.
さらに、 本発明に係るダイアフラムポンプは、 外周縁部をフレーム体に固定し て、 フレーム体にダイァフラムを取り付けることにより該ダイァフラムとフレー ム体との間にダイアフラム室を設け、 該ダイアフラム室に連通して吸引用バルブ と送出用バルブとを設け、 前記ダイァフラムを駆動する駆動手段を設けたダイァ フラムポンプにおいて、 前記吸引用バルブもしくは前記送出用バルブ、 または前 記吸引用バルブおよび前記送出用バルブの双方に、 上記いずれかのバルブ構造を 用いたことを特徴とする。 Further, in the diaphragm pump according to the present invention, the outer peripheral edge portion is fixed to the frame body, and the diaphragm is attached to the frame body so that the diaphragm and the A diaphragm chamber provided with the diaphragm body, a suction valve and a delivery valve provided in communication with the diaphragm chamber, and a driving unit for driving the diaphragm. The present invention is characterized in that any one of the valve structures described above is used for a delivery valve or both the suction valve and the delivery valve.
この場合に、 前記駆動手段を、 前記ダイァフラムの外面に取り付けられた永久 磁石と、 該永久磁石に対向し、 前記ダイアフラムを挟んで前記永久磁石とは反対 側となる前記フレーム体の外面に設けられた電磁力の発生手段とで構成できる。 あるいは、 前記駆動手段を、 前記ダイァフラムの外面に取り付けられた電磁力 の発生手段と、 該電磁力の発生手段に対向し、 前記ダイアフラムを挟んで前記電 磁力の発生手段とは反対側となる前記フレーム体の外面に設けられた永久磁石と で構成することができる。  In this case, the driving means is provided on a permanent magnet attached to an outer surface of the diaphragm, and on an outer surface of the frame body facing the permanent magnet and opposite to the permanent magnet with the diaphragm interposed therebetween. And an electromagnetic force generating means. Alternatively, the driving means may include: an electromagnetic force generating means attached to an outer surface of the diaphragm; and the electromagnetic force generating means opposed to the electromagnetic force generating means and opposite to the electromagnetic force generating means with the diaphragm interposed therebetween. And a permanent magnet provided on the outer surface of the frame body.
また、 前記電磁力の発生手段を、 空芯の通電コイルあるいは空芯の鉄心を有す る通電コイルで構成できる。 図面の簡単な説明  Further, the means for generating the electromagnetic force may be constituted by an air-core energizing coil or an air-core energizing coil having an iron core. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係るダイアフラムポンプの内部構成を示す断面図 (ダイァフ ラム上位置) であり、 図 2は、 本発明に係るダイアフラムポンプの内部構成を示 す断面図 (ダイァフラム下位置) であり、 図 3は、 ダイアフラムポンプの第 2の フレーム体を外した状態での上面図であり、 図 4は、 ダイアフラムポンプの底面 図であり、 図 5は、 ダイアフラムポンプの排気部分の構成を示す断面図であり、 図 6は 実施形態のダイアフラム式ポンプを駆動する駆動回路の例を示すプロッ ク図であり、 図 7は、 駆動回路の他の例を示すブロック図であり、 図 8は、 駆動 回路のさらに他の例を示すブロック図であり 図 9は、 吸引バルブの構造を示す 説明図であり、 図 1 0は、 図 9の吸引バルブにおける流路開放時の状態を示す説 明図であり、 図 1 1は、 図 1 0の吸引バルブを流路側から見た説明図であり、 図 1 2は、 電磁式ダイアフラムポンプの従来例を示す説明図であり、 図 1 3は、 従 来の吸気弁の一例を示す説明図である。 発明を実施するための最良の形態 FIG. 1 is a cross-sectional view (upper diaphragm position) showing the internal configuration of the diaphragm pump according to the present invention, and FIG. 2 is a cross-sectional view (lower diaphragm position) showing the internal configuration of the diaphragm pump according to the present invention. Yes, FIG. 3 is a top view of the diaphragm pump with the second frame body removed, FIG. 4 is a bottom view of the diaphragm pump, and FIG. 5 shows a configuration of an exhaust part of the diaphragm pump. FIG. 6 is a cross-sectional view, FIG. 6 is a block diagram showing an example of a drive circuit for driving the diaphragm pump of the embodiment, FIG. 7 is a block diagram showing another example of the drive circuit, and FIG. FIG. 9 is a block diagram showing still another example of the drive circuit. FIG. 9 is an explanatory diagram showing the structure of the suction valve. FIG. 10 is an explanatory diagram showing a state of the suction valve in FIG. 9 when the flow path is opened. And FIG. 11 is an explanatory view of the suction valve of FIG. 10 as viewed from the flow path side, FIG. 12 is an explanatory view of a conventional example of an electromagnetic diaphragm pump, and FIG. 13 is a conventional intake pump. It is explanatory drawing which shows an example of a valve. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態について添付図面とともに詳細に説明する。 図 1、 2は、 容積型ポンプの一例である電磁式のダイアフラムポンプの実施形 態の構成を示す断面図であり、 図 1はダイアフラム 2 0が上位置 (吸気状態) に ある状態、 図 2はダイァフラム 2 0が下位置 (排気状態) にある状態を示す。 なお、 容積型ポンプは電磁式ダイアフラムポンプに限られず、 駆動モータによ つて偏心駆動される偏心力ムにダイアフラムを連結するなどして、 ダイアフラム を機械的に往復駆動するようにしてもよい (図示せず) 。 以下では電磁式のもの で説明する。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIGS. 1 and 2 are cross-sectional views showing the configuration of an embodiment of an electromagnetic diaphragm pump which is an example of a positive displacement pump. FIG. 1 shows a state in which the diaphragm 20 is in an upper position (intake state). Indicates a state in which the diaphragm 20 is at the lower position (exhaust state). The displacement pump is not limited to the electromagnetic diaphragm pump, and the diaphragm may be mechanically reciprocated by connecting the diaphragm to an eccentric force that is eccentrically driven by a drive motor (see FIG. Not shown). In the following, an electromagnetic type will be described.
本実施形態の電磁式ダイアフラムポンプは、 第 1のフレーム体 2 2 aと第 2の フレーム体 2 2 bとから成る本体 (フレーム体) 2 2内にダイアフラム 2 0を可 動に収納する収納空間を設けて組み立てられている。 すなわち、 第 1のフレーム 体 2 2 aと第 2のフレーム体 2 2 bの対向面には、 ダイアフラム 2 0を収納する ための凹部 2 3 a、 2 3 bが各々設けられ、ダイアフラム 2 0はこの凹部 2 3 a、 2 3 bによって形成された空間内で本体 2 2の厚さ方向に可動に支持されてい る。  The electromagnetic diaphragm pump of the present embodiment has a storage space for movably storing the diaphragm 20 in a main body (frame body) 22 composed of a first frame body 22 a and a second frame body 22 b. And is assembled. That is, concave portions 23 a and 23 b for accommodating the diaphragm 20 are provided on the opposing surfaces of the first frame body 22 a and the second frame body 22 b, respectively. The main body 22 is movably supported in the thickness direction of the main body 22 in the space formed by the concave portions 23a and 23b.
2 0 aはダイアフラム 2 0の外周縁に沿って所定幅で設けられたクランプ部で める。  20a is determined by a clamp provided with a predetermined width along the outer peripheral edge of the diaphragm 20.
図 3に第 1のフレーム体 2 2 aにダイアフラム 2 0をセッ卜した状態の平面図 を示す。 図のように、 ダイアフラム 2 0は円形状に形成した部材であり、 クラン プ部 (外周縁部) 2 0 aはダイアフラム 2 0の外周縁部の全周にわたって設けら れている。 すなわち、 ダイアフラム 2 0は、 第 1のフレーム体 2 2 aと第 2のフ レーム体 2 2 bの凹部 2 3 a , 2 3 bの開口縁部に沿って、 その外周縁部の全周 が第 1のフレーム体 2 2 aと第 2のフレーム体 2 2 bによって挟圧されて支持さ れる。 2 4がダイァフラム 2 0を挟圧した状態で、 第 1のフレーム体 2 2 aと第 2のフレーム体 2 2 bとを挟圧して固定する固定ねじである。  FIG. 3 is a plan view showing a state where the diaphragm 20 is set in the first frame body 22a. As shown in the figure, the diaphragm 20 is a member formed in a circular shape, and the clamp portion (outer peripheral edge) 20 a is provided over the entire outer peripheral edge of the diaphragm 20. In other words, the diaphragm 20 is formed such that the entire periphery of the outer peripheral edge is formed along the opening edges of the concave portions 23 a and 23 b of the first frame body 22 a and the second frame body 22 b. The first frame body 22a and the second frame body 22b pinch and support each other. Reference numeral 24 denotes a fixing screw that presses and fixes the first frame body 22a and the second frame body 22b while the diaphragm 20 is pressed.
図 1で、 ダイァフラム 2 0とダイアフラム 2 0に対向して配置される第 1のフ レーム体 2 2 aとがダイアフラム室 2 6を構成し、 第 1のフレーム体 2 2 aが固 定壁、 ダイアフラム 2 0が可動壁に相当する。 2 5は第 1のフレーム体 2 2 aの 中央部に開口して設けた吸気孔 (流路) 、 2 7は吸気孔 2 5とダイアフラム室 2 6との連通を制御する弁体である。 吸気孔 (流路) 2 5、 弁体 2 7等で吸引用バ ルブ 4 1を構成する。 弁体 2 7は外気が吸気孔 2 5からダイアフラム室 2 6内に 流入する際に吸気孔 2 5を開放し、 逆に、 ダイアフラム室 2 6から空気が外部に 流出する際には吸気孔 2 5を閉塞して空気の流れを遮断するように作用する。 一方、 第 2のフレーム体 2 2 bは中央部に開口部 2 8が設けられ、 開口部 2 8 を介して第 2のフレーム体 2 2 bの内外で空気が流通可能に設けられている。 ダイァフラム 2 0は第 1のフレーム体 2 2 aと第 2のフレーム体 2 2 bとによ り外周縁部がクランプされた状態で本体 (フレーム体) 2 2の厚さ方向に往復動 するものであり、ゴム等の一定の弾性と耐久性を有する素材によつて形成される。 ダイアフラム 2 0の材質には E P D M等のゴムが好適であるが、 所要の柔軟性、 耐久性を有する素材であればとくに材質が限定されるものではない。 In FIG. 1, the diaphragm 20 and a first frame body 22 a arranged opposite to the diaphragm 20 constitute a diaphragm chamber 26, and the first frame body 22 a is a fixed wall, The diaphragm 20 corresponds to a movable wall. 2 5 is the first frame body 2 2 a An intake hole (flow path) 27 opened in the center is a valve body for controlling communication between the intake hole 25 and the diaphragm chamber 26. The suction valve (flow path) 25, the valve element 27, etc. constitute the suction valve 41. The valve body 27 opens the intake hole 25 when outside air flows into the diaphragm chamber 26 from the intake hole 25, and conversely, the intake hole 2 when air flows out of the diaphragm chamber 26 to the outside. It acts to block 5 and shut off the air flow. On the other hand, the second frame body 22b is provided with an opening 28 at the center, and air is allowed to flow through the opening 28 inside and outside the second frame body 22b. The diaphragm 20 reciprocates in the thickness direction of the main body (frame body) 22 with the outer peripheral edge portion clamped by the first frame body 22 a and the second frame body 22 b. And made of a material having a certain elasticity and durability such as rubber. Rubber such as EPDM is suitable for the material of the diaphragm 20, but the material is not particularly limited as long as it has the required flexibility and durability.
本実施形態の電磁式ダイァフラムポンプでは、 ダイアフラム室 2 6の外部とな るダイアフラム 2 0の外面に永久磁石 3 0を取り付ける。 本実施形態では、 図 3 に示すように、 矩形の平板状に形成した永久磁石 3 0を使用しているが、 円形等 の適宜形状の永久磁石を使用することができる。 永久磁石 3 0はダイアフラム 2 0の中央に固定する。 永久磁石 3 0は厚さ方向に磁化しており、 N— S極の極性 はどちらでもかまわない。  In the electromagnetic diaphragm pump of the present embodiment, a permanent magnet 30 is attached to the outer surface of the diaphragm 20 outside the diaphragm chamber 26. In the present embodiment, as shown in FIG. 3, the permanent magnet 30 formed in a rectangular flat plate shape is used, but a permanent magnet having an appropriate shape such as a circle can be used. The permanent magnet 30 is fixed to the center of the diaphragm 20. The permanent magnet 30 is magnetized in the thickness direction, and the polarity of the N-S pole may be either.
3 2はダイアフラム 2 0の外面に固定して設けた支持プレー卜である。 永久磁 石 3 0はこの支持プレート 3 2の中央に設けた開口部内に固定して取り付けられ る。 '  32 is a support plate fixedly provided on the outer surface of the diaphragm 20. The permanent magnet 30 is fixedly mounted in an opening provided at the center of the support plate 32. '
支持プレー卜 3 2はダイァフラム 2 0のクランプ部 (外周縁部) 2 0 aとの間 (外周縁部の内側) に所定幅のリング状部 (可動部) 2 O bを残して、 ダイァフ ラム 2 0の外面を覆うように設けられる。 支持プレート 3 2はダイアフラム 2 0 が平坦面を保持して本体 2 2の厚さ方向に平行に駆動されるようにダイァフラム 2 0を支持する作用をなす。 こうして、 ダイアフラム 2 0は支持プレート 3 2と クランプ部 2 0 aとで挟まれたリング状部 2 0 bの部分のみ変形して押動される ことになる。  The support plate 32 has a ring-shaped portion (movable portion) 2 Ob having a predetermined width between the clamp portion (outer peripheral edge) 20 a of the diaphragm 20 (inside the outer peripheral edge) and the diaphragm. It is provided so as to cover 20 outer surfaces. The support plate 32 functions to support the diaphragm 20 such that the diaphragm 20 is driven in parallel with the thickness direction of the main body 22 while maintaining a flat surface. Thus, the diaphragm 20 is deformed and pushed only by the ring-shaped portion 20b sandwiched between the support plate 32 and the clamp portion 20a.
このようにダイアフラム 2 0の全体を変形させず、 ダイアフラム 2 0のクラン プ部 2 0 aに沿ったリング状部 2 0 bのみを変形させる構成とすることでダイァ フラム 2 0の耐久性が向上し長寿命化を図ることができる。 本実施形態では、 リ ング状 2 0 bをダイアフラム 2 0の他の部位よりも若千薄厚に形成してダイァフ ラム 2 0の応答性を良好にし、また、ダイアフラム 2 0が下位置に移動した際に、 第 1のフレーム体 2 2 aに設けた凹部 2 3 aの内面 (テ一パ面) との間が若干離 間して流通空間が形成されるようにしている。 In this way, the entire diaphragm 20 is not deformed, and the diaphragm 20 By adopting a configuration in which only the ring-shaped portion 20b along the loop portion 20a is deformed, the durability of the diaphragm 20 is improved and the life can be extended. In the present embodiment, the ring shape 20b is formed to be thinner than other parts of the diaphragm 20 to improve the response of the diaphragm 20, and the diaphragm 20 is moved to the lower position. At this time, a flow space is formed with a slight gap between the inner surface (taper surface) of the concave portion 23a provided in the first frame body 22a.
支持プレート 3 2には所定配置で貫通孔 3 2 aが設けられ、 この貫通孔 3 2 a にダイアフラム 2 0の外面に、 ダイァフラム 2 0と一体に形成されたストッパ突 起 2 0 cが嵌入する。 ストッパ突起 2 0 cは、 ダイアフラム 2 0が第 2のフレー ム体 2 2 bの内面に衝突する際にダイアフラム 2 0の衝撃を緩衝させるために設 けたものであり、 図 1に示すように、 支持プレート 3 2の外面よりも端面が突出 するように設けられている。 本実施形態では、 ストッパ突起 2 0 cを、 図 3に示 すように、 周方向に均等間隔となる 4個所に設けているが、 ストツバ突起 2 0 c の配置数等は適宜選択可能である。  The support plate 32 is provided with a through hole 32 a in a predetermined arrangement, and a stopper protrusion 20 c integrally formed with the diaphragm 20 is fitted into the through hole 32 a on the outer surface of the diaphragm 20. . The stopper projection 20c is provided to buffer the impact of the diaphragm 20 when the diaphragm 20 collides with the inner surface of the second frame body 22b, as shown in FIG. The support plate 32 is provided so that the end surface protrudes from the outer surface. In the present embodiment, the stopper projections 20c are provided at four locations that are equally spaced in the circumferential direction as shown in FIG. 3, but the number of the stopper projections 20c can be appropriately selected. .
図 1で、 3 4は永久磁石の背面に設けたバックヨークである。 このバックョ一 ク 3 4は永久磁石に磁界が効率的に作用するように設けたもので、 鉄等の磁性体 によって形成される。 本実施形態では、 永久磁石 3 0と同形の平板状にバックョ ーク 3 4を形成し、 永久磁石 3 0に重ねてバックヨーク 3 4を取り付けている。 また、 図 1において、 4 0は第 1のフレーム体 2 2 aの外面に取り付けた通電 コイルである。 この通電コイル 4 0は永久磁石 3 0に磁力を作用させてダイァフ ラム 2 0を駆動するためのものである。 図のように、 通電コイル 4 0は第 1のフ レーム体 2 2 aの中央に配置した吸気バルブ 2 7の周囲を巻回するように設け る。 こうして、 通電コイル 4 0はダイアフラム 2 0に対向する配置で第 1のフレ ー厶体 2 2 aに取り付けられる。 なお、 通電コィル 4 0は第 1のフレーム体 2 2 aに収納できるように、できるだけ巻き線の厚さが薄くなるようにするのがよい。 図 4に、 第 1のフレーム体 2 2 aを下面側から見た状態を示す。 第 1のフレー ム体 2 2 aの中央に吸気孔 (流路) 2 5が開口し、 吸引用バルブ 4 1の周囲に通 電コイル 4 0が配置されている。  In FIG. 1, reference numeral 34 denotes a back yoke provided on the back of the permanent magnet. The backpack 34 is provided so that a magnetic field acts efficiently on the permanent magnet, and is formed of a magnetic material such as iron. In the present embodiment, the back yoke 34 is formed in a flat plate shape having the same shape as the permanent magnet 30, and the back yoke 34 is attached so as to overlap the permanent magnet 30. In FIG. 1, reference numeral 40 denotes an energizing coil attached to the outer surface of the first frame body 22a. The current-carrying coil 40 drives the diaphragm 20 by applying a magnetic force to the permanent magnet 30. As shown in the figure, the energizing coil 40 is provided so as to wind around the intake valve 27 arranged at the center of the first frame body 22a. In this way, the current-carrying coil 40 is attached to the first frame body 22a in an arrangement facing the diaphragm 20. It is preferable that the thickness of the winding be as small as possible so that the energizing coil 40 can be stored in the first frame body 22a. FIG. 4 shows a state where the first frame body 22a is viewed from the lower surface side. An intake hole (flow path) 25 is opened at the center of the first frame body 22 a, and a conduction coil 40 is arranged around the suction valve 41.
なお、 本実施形態においては永久磁石 3 0に電磁力を作用させる電磁力の発生 手段として空芯の通電コイル 4 0を使用したが、 電磁力の発生手段は必ずしも空 芯の通電コイル 4 0に限定されるものではない。 鉄心を備えた通電のコイルであ つても空芯の鉄心を使用することで本実施形態と同様な配置とすることができ る。 また、 本実施形態では通電コイル 4 0の巻線領域内の中央に吸引用バルブ 4 1を配置したが、 吸引用バルブ 4 1を配置する位置も通電コイル 4 0の巻線領域 内に限らず、 第 1のフレーム体 2 2 aで適宜位置を選択することができる。 In the present embodiment, generation of an electromagnetic force for applying an electromagnetic force to the permanent magnet 30 is performed. Although the air-core energizing coil 40 is used as the means, the electromagnetic force generating means is not necessarily limited to the air-core energizing coil 40. Even a current-carrying coil having an iron core can be arranged in the same manner as in the present embodiment by using an air-core iron core. In the present embodiment, the suction valve 41 is arranged at the center of the winding area of the energizing coil 40. However, the position where the suction valve 41 is arranged is not limited to the winding area of the energizing coil 40. The position of the first frame body 22a can be appropriately selected.
3 6は第 1のフレーム体 2 2 aの下面に取り付けた制御用基板である。 本実施 形態では、 第 1のフレーム体 2 2 aの下面で通電コイル 4 0が配置されている領 域を除いた一半部に制御用基板 3 6を取り付けている。 制御用基板 3 6は通電コ ィル 4 0に通電する時間、 極性等を制御する駆動回路を搭載したものであり、 こ れによつて電磁式ダイァフラムポンプをモジュールィ匕したユニットとして適宜商 品に搭載することが可能となる。 図 1に示すように、 制御用基板 3 6も第 1のフ レーム体 2 2 aの厚さ内に収納することによって、 ダイアフラムポンプを駆動す る所要のモジュールがすべて本体 2 2内に収納され、 きわめてコンパクトな電磁 式ダイアフラムボンプが構成される。  36 is a control board attached to the lower surface of the first frame body 22a. In the present embodiment, the control board 36 is attached to one half of the lower surface of the first frame body 22a except for the area where the energizing coil 40 is arranged. The control board 36 is provided with a drive circuit for controlling the time, polarity, and the like for energizing the energizing coil 40, whereby the electromagnetic diaphragm pump is appropriately mounted as a unit obtained by modularizing the electromagnetic diaphragm pump. It can be mounted on products. As shown in FIG. 1, the control board 36 is also housed within the thickness of the first frame body 22a, so that all necessary modules for driving the diaphragm pump are housed in the main body 22. An extremely compact electromagnetic diaphragm pump is constructed.
なお、 上記実施の形態とは逆に、 永久磁石 3 0を第 1のフレーム体 2 2 aの外 面に、 通電コイル 4 0をダイアフラム 2 0の外面に取り付けるようにしてもよい Note that, contrary to the above embodiment, the permanent magnet 30 may be attached to the outer surface of the first frame body 22a, and the energizing coil 40 may be attached to the outer surface of the diaphragm 20.
(図示せず) 。 この場合、 通電コイル 4 0はダイアフラム 2 0と共に動くので、 制御用基板と通電コイル 4 0との間はフレキシブルなワイヤによって電気的に接 続するようにする (図示せず) 。 (Not shown). In this case, the energizing coil 40 moves together with the diaphragm 20, so that the control board and the energizing coil 40 are electrically connected by a flexible wire (not shown).
図 4において、 3 8は第 1のフレーム体 2 2 aから延設した排気管 (流路) を 示す。 第 1のフレーム体 2 2 aの内部には排気管 3 8とダイアフラム室 2 6とを 連通する流路 3 8 aが設けられている。  In FIG. 4, 38 denotes an exhaust pipe (flow path) extending from the first frame body 22a. Inside the first frame body 22a, a flow path 38a for communicating the exhaust pipe 38 and the diaphragm chamber 26 is provided.
図 5に第 1のフレーム体 2 2 aの内部に設けられている流路 3 8 aを示す。 流 路 3 8 aの端部は、 第 1のフレーム体 2 2 aに形成された凹部 2 3 aの周縁部に 設けられているテーパ面内で開口する。 これによつて、 流路 3 8 aがダイアフラ ム室 2 6に連通するとともに、 ダイアフラム 2 0が下位置にまで移動した際にお いてもダイアフラム室 2 6と流路 3 8 aとの連通が維持される。  FIG. 5 shows a flow path 38a provided inside the first frame body 22a. The end of the channel 38a opens in a tapered surface provided on the peripheral edge of the recess 23a formed in the first frame body 22a. As a result, the flow path 38a communicates with the diaphragm chamber 26, and the communication between the diaphragm chamber 26 and the flow path 38a also occurs when the diaphragm 20 moves to the lower position. Will be maintained.
排気管 3 8と流路 3 8 aとの中途には弁体 3 9が取り付けられている。 この弁 体 3 9はダイアフラム室 2 6から外部に空気が流出する際には開放し、 逆に、 排 気管 3 8からダイアフラム室 2 6に空気が流入する際には空気の流れを遮断する 作用をなす。 流路 3 8、 3 8 a , 弁体 3 9等で送出用バルブ 4 2を構成する。 図 9〜図 1 1に、 上記吸引用バルブ 4 1と送出用バルブ 4 2のバルブ機構の一 例をさらに詳細に示す。 なお、 両バルブは同一の構成をなすので、 吸引用バルブ 4 1を例として説明する。 A valve element 39 is attached in the middle of the exhaust pipe 38 and the flow path 38a. This valve The body 39 opens when air flows out of the diaphragm chamber 26 to the outside, and conversely blocks air flow when air flows into the diaphragm chamber 26 from the exhaust pipe 38. . The delivery valves 42 are composed of the flow paths 38, 38a, the valve body 39, and the like. 9 to 11 show an example of the valve mechanism of the suction valve 41 and the delivery valve 42 in more detail. Since both valves have the same configuration, the suction valve 41 will be described as an example.
2 5は前記の吸気孔 (流路) であり、 下流側でダイアフラム室 2 6に通じてい る。 吸気孔 2 5内に弁座 4 3が形成されている。 この弁座 4 3の、 弁体 2 7が当 接する弁座面は図示のように吸気孔 (流路) 2 5に対して傾斜して設けられてい る。  Reference numeral 25 denotes the above-described intake hole (flow path), which communicates with the diaphragm chamber 26 on the downstream side. A valve seat 43 is formed in the intake hole 25. The valve seat surface of the valve seat 43 with which the valve element 27 abuts is provided to be inclined with respect to the intake hole (flow path) 25 as shown in the figure.
弁体 2 7は、 一端側に設けた回動軸 2 7 aを中心に回動して、 弁座 4 3に当接 し、 吸気孔 (流路) 2 5を開閉する。  The valve element 27 rotates around a rotation shaft 27 a provided on one end side, contacts the valve seat 43, and opens and closes the intake hole (flow path) 25.
弁体 2 7は、 その可動部側 (回動軸 2 7 aと反対側) が、 弁座 4 3への当接位 置において、 回動軸 2 7 a側よりも空気 (流体) の流れ込み方向後方側に位置す るように傾斜して配設されている。  In the valve element 27, the movable part side (the side opposite to the rotating shaft 27 a) has a more inflow of air (fluid) than the rotating shaft 27 a side at the contact position with the valve seat 43. It is arranged at an angle so as to be located on the rear side in the direction.
上記弁体 2 7の傾斜角度は、 流路 2 5に対して 1 0 °〜 8 0 °、 好ましくは 3 0 ° 以上傾斜する角度に設定するとよい。  The inclination angle of the valve element 27 is set to be 10 ° to 80 °, preferably 30 ° or more with respect to the flow path 25.
4 4はストッパであり、 空気 (流体) の吸引時、 弁体 2 7が流体の流れ込み方 向に所要角度回動した際、 弁体 2 7のそれ以上の回動を規制する。 ストッパ 4 4 は、 弁体 2 7が、 流路 2 5に直交する位置よりも流体の流れ込み方向後方側に 4 5 °以上開いた位置で回動を規制するようにすると好適である。  Reference numeral 4 denotes a stopper, which restricts further rotation of the valve element 27 when the valve element 27 rotates by a required angle in the direction of fluid flow during suction of air (fluid). It is preferable that the stopper 44 regulates the rotation at a position where the valve element 27 is opened by 45 ° or more behind the position orthogonal to the flow path 25 in the fluid flowing direction.
また、 図 1 0に示すように、 ストッパ 4 4を、 弁体 2 7が最大に開いたときに 流路方向から見た弁体 2 7の投影ェリァ内に位置するように設けると好適であ る。 これにより、 ストツパ 4 4に起因する流路抵抗の上昇を防止できる。  Further, as shown in FIG. 10, it is preferable that the stopper 44 be provided so as to be located in the projection area of the valve element 27 viewed from the flow path direction when the valve element 27 is opened to the maximum. You. As a result, an increase in the flow path resistance due to the stopper 44 can be prevented.
弁体 2 7の回動軸 2 7 aは、 図示のように円柱状に形成され、 この回動軸 2 7 aが、 弁座 4 3の基部側に設けた軸受孔 4 5に回動自在に嵌入されている。 そし て弁体 2 7は、 回動軸 2 7 aとその軸受 4 5との間に、 回動軸 2 7 aが回動軸 2 7 aの軸線と交差する方向に揺動して弁体 2 7が弁座 (面) 4 3に密接可能なよ うに所要のクリアランスが設けられている。 本実施の形態では、 軸受孔 4 5を回 動軸 2 7 aの径ょりも大きな孔径にすることで、 回動軸 2 7 aが軸受孔 4 5内で 揺動可能にしている。これにより、弁体 2 7の製造上、回動軸 2 7 aと弁体面(弁 座への当接面) との間に捩れが生じていても、 弁体 2 7が確実に弁座 (面) 4 3 に当接するので、 逆止時における流体の漏れを防止でき、 ポンプ効率を向上させ 得る。 The rotating shaft 27 a of the valve element 27 is formed in a columnar shape as shown in the figure, and the rotating shaft 27 a is rotatable in a bearing hole 45 provided on the base side of the valve seat 43. It is inserted in. Then, the valve body 27 swings between the rotating shaft 27a and its bearing 45 in a direction in which the rotating shaft 27a intersects the axis of the rotating shaft 27a, and the valve body 27 The required clearance is provided so that 27 can be in close contact with the valve seat (surface) 43. In the present embodiment, the bearing holes 45 are rotated. The diameter of the moving shaft 27a is also made large so that the rotating shaft 27a can swing in the bearing hole 45. As a result, even when a twist is generated between the rotating shaft 27a and the valve body surface (the contact surface with the valve seat) in manufacturing the valve body 27, the valve body 27 can be surely secured to the valve seat ( (4) Since it comes into contact with 4 3, it is possible to prevent fluid leakage at the time of check, and to improve pump efficiency.
上記クリアランスは、回動軸 2 7 aが軸受孔 4 5の軸線に対して 2。以上揺動可 能にすると好適である。 なお、 回動軸 2 7 aと軸受 4 5の構造は上記例に限定さ れない。 例えば、 軸受側をピンにし、 回動軸はこのピンが進入する軸孔であって もよい。  The above clearance is such that the rotation shaft 27 a is 2 with respect to the axis of the bearing hole 45. It is preferable to make the swingable as described above. The structure of the rotating shaft 27a and the bearing 45 is not limited to the above example. For example, the bearing side may be a pin, and the rotating shaft may be a shaft hole into which the pin enters.
なお、 上記実施の形態では、 弁体 2 7を、 回動軸 2 7 aを中心として回動する ように構成したが、 弁体 2 7を、 弁座に対して平行移動して流路を開閉するよう に構成してもよい (図示せず) 。 この場合にあっても、 弁体 2 7を弁座に当接し た状態において、 流路に対して傾斜するように配設するのである。  In the above-described embodiment, the valve element 27 is configured to rotate about the rotation shaft 27a. However, the valve element 27 is moved in parallel with respect to the valve seat so that It may be configured to open and close (not shown). Even in this case, the valve body 27 is disposed so as to be inclined with respect to the flow path when the valve body 27 is in contact with the valve seat.
続いて、 上記実施形態の電磁式ダイァフラムポンプの作用について説明する。 図 1は、 ダイアフラム 2 0が上位置にある状態で、 ダイアフラム室 2 6に吸気 された状態である。 すなわち、 通電コイル 4 0に永久磁石 3 0を反発させる向き の電流が通電されると、 磁力によって永久磁石 3 0が反発し、 ダイアフラム 2 0 が第 2のフレーム体 2 2 bに向けて移動開始する。 この動作は吸気操作であり、 弁体 3 9が排気管 (流路) 3 8を閉じ、 弁体 2 7が吸気孔 (流路) 2 5を開放し てダイアフラム室 2 6に外気が流入しはじめる。 そして、 通電コイル 4 0に対す る通電が継続することによりダイアフラム 2 0は第 2のフレーム体 2 2 bの内面 に当接するまで移動し、 ダイアフラム室 2 6に外気が導入される。  Subsequently, the operation of the electromagnetic diaphragm pump of the above embodiment will be described. FIG. 1 shows a state in which the diaphragm 20 is in the upper position and the air is sucked into the diaphragm chamber 26. That is, when a current in a direction that repels the permanent magnet 30 is applied to the energizing coil 40, the permanent magnet 30 repels due to the magnetic force, and the diaphragm 20 starts moving toward the second frame body 22b. I do. This operation is an intake operation. The valve element 39 closes the exhaust pipe (flow path) 38, the valve element 27 opens the intake hole (flow path) 25, and outside air flows into the diaphragm chamber 26. Get started. Then, by continuing the energization of the energizing coil 40, the diaphragm 20 moves until it comes into contact with the inner surface of the second frame body 22b, and outside air is introduced into the diaphragm chamber 26.
弁体 2 7が吸気孔 (流路) を開放する動作は、 弁体 2 7力 上記のように, 吸 気孔 (流路). 2 5に対して傾斜して配設されているので、 弁体 2 7による流路の 開放初期の段階から流体 (空気) が流路に対し斜め (図示の例では流路に対して ほぼ 3 0 °) に曲折して進入するので、 流路抵抗がそれ程大きくなく、圧力損失が 少なくなり、 それだけポンプ効率を高めることができる。 また、 流路開閉の応答 性もよい。 因みに、 弁体が流路に直交して流路を閉塞している従来タイプでは、 弁体による流路の開放初期の段階では、 流体が流路に対してほぼ直角に曲げられ るから、 流路抵抗が極めて大きくなり、 圧力損失もそれだけ大きくなる。 また流 路開閉の応答性もよくない。 The operation of the valve body 27 to open the intake hole (flow path) is as follows. The valve body 27 is inclined with respect to the intake hole (flow path). From the initial stage of opening of the flow path by the body 27, the fluid (air) bends into the flow path obliquely (approximately 30 ° with respect to the flow path in the illustrated example) and enters the flow path. Not large, pressure loss is reduced, and pump efficiency can be increased accordingly. Also, the responsiveness of opening and closing the flow path is good. By the way, in the conventional type, in which the valve element closes the flow path perpendicular to the flow path, the fluid is bent almost at right angles to the flow path in the initial stage of opening the flow path by the valve element. Therefore, the flow path resistance becomes extremely large, and the pressure loss also increases accordingly. Also, the responsiveness of opening and closing the channel is not good.
ダイアフラム 2 0はストッパ突起 2 0 cの端面が第 2のフレーム体 2 2 bの内 面に当接することによって停止する。 ダイアフラム 2 0の動作は制御用基板 3 6 に搭載されている駆動回路によって制御され、 ダイアフラム 2 0の移動ストロー ク量を考慮して、 実際にはダイアフラム 2 0が高速で第 2のフレーム体 2 2 bの 内面に衝突したりしないように制御されるが、 本実施形態の電磁式ダイアフラム ポンプでは、 ストツバ突起 2 0 cを第 2のフレーム体 2 2 bの内面に当接させる ようにすることで騒音の発生を防止している。 ストツパ突起 2 0 cはゴム等の柔 軟性を有するダイアフラム 2 0と一体に形成されているから、 第 2のフレーム体 2 2 bと当接した際の騒音は小さくなる。 なお、 静音化を図るためにストッパ突 起 2 0 cに緩衝性の高い別部材を取り付けることも可能である。  The diaphragm 20 is stopped when the end face of the stopper projection 20c abuts on the inner face of the second frame body 22b. The operation of the diaphragm 20 is controlled by a drive circuit mounted on the control board 36. In consideration of the moving stroke amount of the diaphragm 20, the diaphragm 20 is actually operated at a high speed and the second frame 2 The electromagnetic diaphragm pump according to the present embodiment is controlled so that it does not collide with the inner surface of the second frame body 2b, so that the stopper projection 20c is brought into contact with the inner surface of the second frame body 22b. To prevent noise. Since the stopper projection 20c is formed integrally with the diaphragm 20 having flexibility such as rubber, noise when the stopper 20c contacts the second frame body 22b is reduced. In addition, it is also possible to attach another member having a high cushioning property to the stopper protrusion 20 c in order to reduce noise.
次いで、 通電コイル 4 0に逆向きの電流が通電開始されると、 永久磁石 3 0が 通電コイル 4 0側に吸引され、 ダイアフラム 2 0が第 1のフレーム体 2 2 aに向 けて移動開始する。 この動作が排気操作であり、 このときは弁体 2 7により吸気 孔 2 5が遮断され、 弁体 3 9が排気管 (流路) 3 8を開放して、 ダイアフラム室 2 6内の空気が排気管 3 8から排出されはじめる。  Next, when a current in the opposite direction is started to flow through the energizing coil 40, the permanent magnet 30 is attracted to the energizing coil 40 side, and the diaphragm 20 starts moving toward the first frame body 22a. I do. This operation is an exhaust operation. At this time, the intake hole 25 is shut off by the valve element 27, the valve element 39 opens the exhaust pipe (flow path) 38, and the air in the diaphragm chamber 26 is released. It begins to be discharged from the exhaust pipe 38.
この時の、 弁体 3 9による排気管 3 8の開放動作も、 弁体 3 9が流路に対して 傾斜して配設されていることから、 応答性よくスムーズになされ、 また圧力損失 も低減でき、 ポンプ効率を高めることができる。  At this time, the opening operation of the exhaust pipe 38 by the valve body 39 is also smoothly performed with good responsiveness because the valve body 39 is arranged inclined with respect to the flow path, and the pressure loss is also reduced. The pump efficiency can be increased.
図 2は、 ダイアフラム 2 0が第 1のフレーム体 2 2 aに近接する向きに移動し て、 最終的にダイアフラム 2 0が第 1のフレ一ム体 2 2 aの内面に当接した状態 である。 ダイアフラム 2 0が第 1のフレーム体 2 2 aに当接する際には、 ダイァ フラム 2 0自体が第 1のフレーム体 2 2 aに当接するから騒音の問題は回避され る。 通電コイル 4 0の電磁的な吸引力と支持プレート 3 2によってダイアフラム 2 0が平坦状に支持されていることから、 ダイァフラム室 2 6に導入された空気 が効率的に流路 3 8 aを経由して排気管 3 8から排出される。  FIG. 2 shows a state in which the diaphragm 20 has moved in a direction approaching the first frame body 22a, and the diaphragm 20 has finally contacted the inner surface of the first frame body 22a. is there. When the diaphragm 20 comes into contact with the first frame body 22a, the problem of noise is avoided because the diaphragm 20 itself comes into contact with the first frame body 22a. Since the diaphragm 20 is supported flat by the electromagnetic attraction of the energizing coil 40 and the support plate 32, the air introduced into the diaphragm chamber 26 efficiently passes through the flow path 38a. And is discharged from the exhaust pipe 38.
とくに、 本実施形態の電磁式ダイアフラムポンプでは、 ダイアフラム 2 0の外 面に永久磁石 3 0を配置する構成としているから、 ダイアフラム 2 0を完全に第 1のフレーム体 2 2 aの内面に当接する位置まで移動させることができ、 これに よってダイァフラム室 2 6に導入された空気をほぼ完全に排出させることができ る。 In particular, in the electromagnetic diaphragm pump of the present embodiment, since the permanent magnet 30 is arranged on the outer surface of the diaphragm 20, the diaphragm 20 is completely The first frame body 22 a can be moved to a position where it comes into contact with the inner surface thereof, whereby the air introduced into the diaphragm chamber 26 can be almost completely discharged.
また、 ダイアフラム室 2 6の空気を排出する際に、 もっとも大きな排出力を要 するのはダイアフラム室 2 6に残っている空気を最後に排出する時であるが、 本 実施形態の電磁式ダイァフラムポンプの場合は、 ダイアフラム 2 0が第 1のフレ ーム体 2 2 aの内面に当接した時点が、 ダイアフラム 2 0に取り付けた永久磁石 3 0と通電コイル 4 0とが最も接近して磁力がもっとも強くなる時点であり、 ダ ィァフラム室 2 6のエアの排出操作として最も効率的な配置になっている。  When the air in the diaphragm chamber 26 is discharged, the greatest discharge force is required when the air remaining in the diaphragm chamber 26 is discharged last. In the case of a diaphragm pump, the point at which the diaphragm 20 contacts the inner surface of the first frame member 22 a is determined by the fact that the permanent magnet 30 attached to the diaphragm 20 and the energizing coil 40 are closest. This is the point where the magnetic force becomes the strongest, and the arrangement is the most efficient as the air discharge operation of the diaphragm chamber 26.
ダイアフラム室 2 6から空気を排出した後は、 再度、 通電コイル 4 0に対する 通電方向を逆にすることによって、 吸気操作に移る。 こうして、 通電コイル 4 0 に対する通電を制御することにより、 ダイアフラム 2 0による吸排気操作を連続 的に行うことが可能になる。 実際には、 通電コイルに通電する電流、 周波数等を 適宜制御することによってダイァフラム 2 0を駆動制御する。  After the air is exhausted from the diaphragm chamber 26, the operation is switched to the intake operation by reversing the direction of current supply to the current supply coil 40 again. By controlling the energization of the energizing coil 40 in this way, it is possible to continuously perform the intake and exhaust operations by the diaphragm 20. In practice, the drive of the diaphragm 20 is controlled by appropriately controlling the current, frequency, and the like, which flow through the current-carrying coil.
図 6、 7および 8に電磁式ダイァフラムポンプを駆動する駆動回路の例を示す。 図 6に示す駆動回路 5 0は、 制御回路 5 2に駆動指令信号と電流遮断信号とを入 力し、 駆動指令信号が入力された際に通電コイル 4 0に通電してダイアフラム 2 0を駆動するように構成した例である。 この場合、 ダイアフラム 2 0は吸気ある いは排気の一方の位置に自動復帰するように構成され、 通電コイル 4 0に通電さ れた際に、 電磁力が永久磁石 3 0に作用して他方の位置に移動するように制御さ れる。 ダイアフラム 2 0に復帰用のスプリングを装着する等により、 ダイアフラ ム 2 0がー方の位置に自動復帰するように構成することができる。  Figures 6, 7, and 8 show examples of drive circuits for driving the electromagnetic diaphragm pump. The drive circuit 50 shown in FIG. 6 inputs a drive command signal and a current cutoff signal to the control circuit 52, and when the drive command signal is input, energizes the energizing coil 40 to drive the diaphragm 20. This is an example of a configuration in which In this case, the diaphragm 20 is configured to automatically return to one position of the intake or exhaust, and when the energizing coil 40 is energized, the electromagnetic force acts on the permanent magnet 30 to cause the other to return to the other position. It is controlled to move to the position. By attaching a return spring to the diaphragm 20 or the like, the diaphragm 20 can be automatically returned to the negative position.
図 7に示す駆動回路 5 0は、 制御回路 5 2に入力される駆動指令信号と電流遮 断指令信号にしたがって、 通電コイル 4 0に正方向と逆方向に通電させ、 永久磁 石 3 0との間で吸引力と反発力を交互に発生させて駆動するように構成した例で ある。 通電コイル 4 0には交流電流あるいはパルス電流を通電させて制御するこ とができる。  The drive circuit 50 shown in FIG. 7 energizes the energizing coil 40 in the forward and reverse directions according to the drive command signal and the current cutoff command signal input to the control circuit 52, and This is an example in which a suction force and a repulsion force are alternately generated between the two to drive. It is possible to control the energizing coil 40 by applying an alternating current or a pulse current.
図 8に示す駆動回路 5 0は、 通電コイル 4 0に通電して電磁力によりダイァフ ラム 2 0を駆動する際に、 ダイァフラムの位置検出素子 5 4によってダイアフラ ム 2 0の移動位置を検知してダイアフラム 2 0を駆動制御する例である。図 1に、 ダイアフラム 2 0の位置検出素子 5 4として、 第 1のフレーム体 2 2 aに反射式 光センサ一 5 6 aを設け、 反射式光センサー 5 6 aに対向するダイアフラム 2 0 の内面に光反射用コーティング 5 6 bを設けた例を示す。 この場合、 ダイアフラ ム 2 0の移動位置を光学的に検知するため、 第 1のフレーム体 2 2 aは透光性材 料によって形成する必要がある。 図 2は、 ダイァフラムの位置検出素子 5 4とし て、 第 1のフレーム体 2 2 aに磁気検出センサー 5 7 aを設け、 磁気検出センサ 一 5 7 aに対向してダイアフラム 2 0の外面に位置検出用マグネット 5 7 bを取 り付けた例である。 The drive circuit 50 shown in FIG. 8 uses a diaphragm position detecting element 54 to drive the diaphragm 20 by electromagnetic force by energizing the current-carrying coil 40. This is an example in which the movement position of the diaphragm 20 is detected and the drive of the diaphragm 20 is controlled. In FIG. 1, a reflective optical sensor 56a is provided on a first frame body 22a as a position detecting element 54 of the diaphragm 20, and an inner surface of the diaphragm 20 facing the reflective optical sensor 56a. An example in which a light reflecting coating 56b is provided on the rim is shown. In this case, in order to optically detect the moving position of the diaphragm 20, the first frame body 22a needs to be formed of a translucent material. FIG. 2 shows that a magnetic detection sensor 57 a is provided on the first frame body 22 a as a diaphragm position detection element 54, and is located on the outer surface of the diaphragm 20 so as to face the magnetic detection sensor 57 a. This is an example in which the detection magnet 57b is attached.
図 8に示す駆動回路 5 0では、 位置検出素子 5 4によりダイアフラム 2 0の移 動位置を常時検知し、 位置検出素子 5 4の検知信号に基づいて通電コイル 4 0に 対する電流および周波数を制御することによって、 ダイアフラム 2 0の動作を精 度よく制御することが可能である。 たとえば、 ダイアフラム 2 0が第 1のフレー ム体 2 2 aあるいは第 2のフレーム体 2 2 bの内面に衝突する際の衝撃力を和ら げ、 騒音の発生を抑え、 ダイアフラム 2 0を長寿命とするといつた制御が可能で ある。  In the drive circuit 50 shown in FIG. 8, the position of the diaphragm 20 is constantly detected by the position detecting element 54, and the current and frequency of the current-carrying coil 40 are controlled based on the detection signal of the position detecting element 54. By doing so, the operation of the diaphragm 20 can be accurately controlled. For example, the impact force when the diaphragm 20 collides with the inner surface of the first frame body 22a or the second frame body 22b is reduced, the generation of noise is suppressed, and the diaphragm 20 has a long service life. Then, the control can be performed.
電流検出素子 5 8は通電コイル 4 0に流れる電流をモニターすることにより、 駆動指令信号に対してダイアフラム 2 0の動きにずれが生じた際に、 駆動回路か ら通電コイル 4 0に供給する電流を調整し、 的確にずれを補正するために用いら れる。 電流制御によることから応答性が良く、 高精度の制御が可能となる。 本実施形態の電磁式ダイァフラムポンプは、 上述したように、 第 1のフレーム 体 2 2 aと第 2のフレーム体 2 2 bとからなる本体 (フレーム体) 2 2にダイァ フラム 2 0を収納してダイァフラム室 2 6を形成し、 電磁力を利用して吸排気操 作をなすように構成したものである。 図 1、 2に示すようにダイアフラムポンプ の主要部の構成はきわめて簡素であり、 薄型にきわめてコンパク卜に形成される という特徴がある。 また、 ダイアフラム 2 0は薄型に形成された本体 2 2内で大 きな可動領域 (容積) を占有するように設計されているから、 装置全体をコンパ ク卜に形成し、 力つ効率的な吸排気作用がなされるように構成されているという 特徴がある。 本体 2 2を構成する第 1のフレーム体 2 2 aと第 2のフレーム体 2 2 bは、 所 定の強度を有するものであれば、 非磁性金属に限らず、 樹脂等によって形成する ことももちろん可能である。 なお、 本実施形態の電磁式ダイアフラムポンプは、 第 1のフレーム体 2 2 aにじかに通電コイル 4 0を取り付けた構成としているか ら、 通電コイル 4 0から発生する熱が第 1のフレーム体 2 2 aと第 2のフレーム 体 2 2 bに効率的に伝達される。 したがって、 第 1のフレーム体 2 2 aと第 2の フレーム体 2 2 bとを熱伝導の良好な材料によって形成することで、 ダイアフラ ム室 2 6に導入された空気 (流体) を暖めて排出することが可能になる。 The current detection element 58 monitors the current flowing through the current-carrying coil 40 so that when the movement of the diaphragm 20 is deviated from the drive command signal, the current supplied from the drive circuit to the current-carrying coil 40 It is used to adjust the value and correct the deviation accurately. Responsiveness and high-accuracy control are possible because of current control. As described above, the electromagnetic diaphragm pump according to the present embodiment includes the diaphragm 20 in the main body (frame body) 22 including the first frame body 22a and the second frame body 22b. It is housed to form a diaphragm chamber 26, and the intake and exhaust operations are performed using electromagnetic force. As shown in Figs. 1 and 2, the structure of the main part of the diaphragm pump is extremely simple, and it is characterized in that it is thin and extremely compact. In addition, since the diaphragm 20 is designed to occupy a large movable area (volume) in the thin main body 22, the entire apparatus is formed in a compact form, so that power can be efficiently used. It has the characteristic that it is configured to perform the intake and exhaust functions. The first frame body 22a and the second frame body 22b constituting the main body 22 are not limited to non-magnetic metal as long as they have a predetermined strength, and may be formed of resin or the like. Of course it is possible. Since the electromagnetic diaphragm pump of the present embodiment has a configuration in which the energizing coil 40 is directly attached to the first frame body 22 a, the heat generated from the energizing coil 40 generates the first frame body 22. a and the second frame body 22 b are efficiently transmitted. Therefore, by forming the first frame body 22a and the second frame body 22b with a material having good heat conductivity, the air (fluid) introduced into the diaphragm chamber 26 is warmed and discharged. It becomes possible to do.
本実施形態の電磁式ダイアフラムポンプは、 きわめて小型に形成できるから、 ノートパソコンの冷却用、 燃料電池の空気や燃料を供給する装置、 医療器具等の 種々の用途に利用することができる。 燃料電池では空気を温めて供給することに よって電池の反応を促進させることができるという利点がある。 また、 医療用機 器等に使用する際にも流体を温めて供給することで使いやすいポンプとして利用 することが可能になる。  Since the electromagnetic diaphragm pump of the present embodiment can be formed in a very small size, it can be used for various purposes such as cooling of a notebook computer, a device for supplying air or fuel of a fuel cell, and medical equipment. A fuel cell has the advantage that the reaction of the cell can be promoted by supplying warm air. In addition, when used for medical equipment, it is possible to use the pump as an easy-to-use pump by heating and supplying the fluid.
また、 本実施形態の電磁式ダイアフラムポンプでは、 ダイアフラム室 2 6の外 部となるダイアフラム 2 0の外面に永久磁石 3 0を取り付けたことによって、 ダ ィァフラム室 2 6の内部には永久磁石 3 0を取り付けるための留め金具や接着剤 がなく、 したがって、 ダイアフラム室 2 6に吸引された空気、 燃料、 血液を汚染 することがなく、 清浄状態のまま供給することができる。 とくに、 永久磁石や、 留め具、 接着剤等から発生する塵やガスは、 燃料電池に使用されている触媒を被 毒し、 燃料電池の機能低下をひきおこす金属イオン等を含む可能性が高い。 した がって、 ダイァフラム室 2 6内に永久磁石 3 0を設置しない構成とした電磁式ダ ィァフラムボンプを燃料電池に好適に利用することが可能となる。  Further, in the electromagnetic diaphragm pump of the present embodiment, the permanent magnet 30 is attached to the outer surface of the diaphragm 20 which is the outside of the diaphragm chamber 26, so that the permanent magnet 30 is provided inside the diaphragm chamber 26. There are no fasteners or adhesives for attaching the diaphragm, so that the air, fuel and blood sucked into the diaphragm chamber 26 can be supplied in a clean state without contaminating the air, fuel and blood. In particular, dust and gas generated from permanent magnets, fasteners, adhesives, and the like are likely to poison catalysts used in fuel cells and contain metal ions that cause deterioration of fuel cell functions. Therefore, an electromagnetic diaphragm pump in which the permanent magnet 30 is not provided in the diaphragm chamber 26 can be suitably used for a fuel cell.
なお、 上記実施形態においては、 空気の吸排気を例に説明したが、 本発明に係 るダイァフラムポンプは空気等の気体に限らず、 液体等の流体の給排にも利用す ることができる。 また、 上記実施形態においては、 第 1のフレーム体 2 2 aの正 面から吸気して本体 2 2の側面 (第 1のフレーム体 2 2 aの側面あるいはダイァ フラム室 2 6の側面) から排気する構成としたが、 これとは逆に、 本体 2 2の側 面から吸気して第 1のフレーム体 2 2 aから排気する構成とすることも可能であ る。 In the above embodiment, the air intake / exhaust is described as an example. However, the diaphragm pump according to the present invention is not limited to gas such as air, but may be used for supply / discharge of fluid such as liquid. Can be. In the above-described embodiment, air is taken in from the front of the first frame body 22 a and exhausted from the side of the main body 22 (the side of the first frame body 22 a or the side of the diaphragm chamber 26). On the contrary, it is also possible to adopt a configuration in which air is taken in from the side surface of the main body 22 and exhausted from the first frame body 22a. You.
なお、 フレーム体 2 2をさらに薄く形成するには、 フレーム体 2 2の側方から 吸排気するようにバルブ機構を配設するようにするとよい。 発明の効果  In order to make the frame body 22 thinner, a valve mechanism may be provided so as to suck and exhaust air from the side of the frame body 22. The invention's effect
上記のように、 本発明に係るバルブ構造および容積型ポンプによれば、 弁体を 流路に対して傾斜して設けているので、 特に弁体による流路の開放初期の段階に おいて、 流体を流路に対して斜めに曲げて進入させることができ、 直角に曲げら れて進入するのに比し、 流路抵抗を減じ、 圧力損失を低減できて、 ポンプ効率を それだけ高めることができる。 また流路開閉の応答性にも優れる。  As described above, according to the valve structure and the positive displacement pump according to the present invention, since the valve element is provided to be inclined with respect to the flow path, particularly in the initial stage of opening the flow path by the valve element, The fluid can be bent obliquely to the flow path and entered, and the flow resistance can be reduced, the pressure loss can be reduced, and the pump efficiency can be increased as compared to the case where the fluid enters at a right angle. it can. In addition, the responsiveness of opening and closing the flow path is excellent.
また、 ダイアフラムボンプの場合、 上記のように、 ダイアフラムを挟んで永久 磁石と通電コイルとを反対側に設けることによって、 ダイアフラムポンプの小型 化、 薄型化を好適に図ることができ、 ノートパソコン等の小型機器に容易に搭載 して使用することが可能となる。 また、 永久磁石あるいは通電コイルをダイァフ ラム室の外面に取り付ける構成とすることにより、 ダイアフラム室内が常時、 清 浄空間に保持され、 ダイアフラム室から供給される空気や燃料、 血液が汚染され ず、 燃料電池、 医療用機器等に好適に利用することができる。  Also, in the case of a diaphragm pump, by providing the permanent magnet and the current-carrying coil on opposite sides of the diaphragm as described above, the diaphragm pump can be suitably reduced in size and thickness. It can be easily mounted on small devices and used. In addition, by installing a permanent magnet or an energizing coil on the outer surface of the diaphragm chamber, the diaphragm chamber is always kept in a clean space, and the air, fuel, and blood supplied from the diaphragm chamber are not polluted and the fuel is not contaminated. It can be suitably used for batteries, medical equipment, and the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 容積型ポンプに用いられるバルブであって、 ポンプ室へ流体が吸引される ときには開き、 ポンプ室から流体が送出される際には閉じる吸引用バルブ、 また はポンプ室へ流体が吸弓 1されるときには閉じ、 ボンプ室から流体が送出される際 には開く送出用バルブのバルブ構造において、 1. A valve used in a positive displacement pump that opens when fluid is sucked into the pump chamber and closes when fluid is delivered from the pump chamber, or sucks fluid into the pump chamber. When the fluid is delivered from the pump chamber, it is closed when the fluid is delivered, and is opened when the fluid is delivered from the pump chamber.
流路を開閉する弁体を備え、  Equipped with a valve to open and close the flow path,
該弁体は、 弁座への当接位置において、 前記流路に対して傾斜して配設されて いることを特徵とするバルブ構造。  A valve structure, characterized in that the valve body is disposed to be inclined with respect to the flow path at a contact position with a valve seat.
2 . 前記弁体が、前記流路に対して 3 0 °以上傾斜するように配設されているこ とを特徴とする請求項 1記載のバルブ構造。  2. The valve structure according to claim 1, wherein the valve body is disposed so as to be inclined at least 30 ° with respect to the flow path.
3 . 前記弁体は、 一端側に設けた回動軸を中心に回動して前記流路を開閉する 弁体に形成され、  3. The valve body is formed in a valve body that opens and closes the flow path by rotating around a rotation shaft provided on one end side,
該弁体が、 弁座への当接状態において、 前記回動軸が設けられた一端側とは反 対側となる他端側が該一端側に対して、 流体の流れ方向後方側に位置するように 傾斜して配設されていることを特徴とする請求項 1または 2記載のバルブ構造。 When the valve body is in contact with the valve seat, the other end opposite to the one end provided with the rotation shaft is located rearward of the one end with respect to the fluid flow direction. 3. The valve structure according to claim 1, wherein the valve structure is arranged to be inclined.
4. 前記弁体が流体の流れ込み方向に所要角度回動した際、 該弁体のそれ以上 の回動を規制するストッパが設けられていることを特徴とする請求項 3記載のバ ルブ構造。 4. The valve structure according to claim 3, wherein a stopper is provided for restricting further rotation of the valve body when the valve body rotates by a required angle in the direction of fluid flow.
5 . 前記ストッパは、 前記弁体が、 前記流路に直交する位置よりも流体の流れ 込み方向後方側に 4 5 °以上開いた位置で回動を規制することを特徴とする請求 項 4記載のバルブ構造。  5. The stopper according to claim 4, wherein the stopper restricts rotation at a position where the valve body is opened by 45 ° or more behind the position orthogonal to the flow path in the fluid inflow direction. Valve structure.
6 . 前記ストツバは、 前記弁体が最大に開いたときに流路方向から見た弁体の 投影エリア内に位置するように設けられていることを特徴とする請求項 4または 5記載のバルブ構造。  6. The valve according to claim 4, wherein the stop is provided so as to be located within a projection area of the valve element viewed from the flow path direction when the valve element is opened to a maximum. Construction.
7 . 前記弁体は、 前記回動軸とその軸受との間に、 前記回動軸が回動軸の軸線 と交差する方向に揺動して前記弁体が前記弁座に密接可能なように所要のクリァ ランスが設けられていることを特徴とする請求項 3〜 6いずれか 1項記載のバル ブ構造。 7. The valve body is arranged so that the rotating shaft swings in a direction intersecting with the axis of the rotating shaft between the rotating shaft and its bearing so that the valve body can be in close contact with the valve seat. The valve structure according to any one of claims 3 to 6, wherein a required clearance is provided in the valve structure.
8 . 前記回動軸が軸受の軸線に対して 2。以上揺動可能であることを特徴とする 請求項 7記載のバルブ構造。 8. The rotating shaft is 2 with respect to the axis of the bearing. The valve structure according to claim 7, wherein the valve structure is swingable.
9 . ボンプ室へ流体が吸引されるときには開き、 ボンプ室から流体が送出され る際には閉じる吸引用バルブと、 ポンプ室へ流体が吸引されるときには閉じ、 ポ ンプ室から流体が送出される際には開く送出用バルブとを有する容積型ポンプに おいて  9. Suction valve that opens when fluid is sucked into the pump chamber and closes when fluid is sent from the pump chamber, and closes when fluid is sucked into the pump chamber, and fluid is sent from the pump chamber A positive displacement pump with an open delivery valve
前記吸引用バルブもしくは前記送出用バルブ、 または前記吸引用バルブおよび 前記送出用バルブの双方に、 請求項 1〜 8いずれか 1項記載のバルブ構造を用い たことを特徴とする容積型ボンプ。  9. A positive displacement pump comprising the valve structure according to any one of claims 1 to 8 used for the suction valve or the delivery valve, or for both the suction valve and the delivery valve.
1 0 . 外周縁部をフレーム体に固定して、 フレーム体にダイアフラムを取り付 けることにより該ダイァフラムとフレーム体との間にダイァフラム室を設け、 該 ダイアフラム室に連通して吸引用バルブと送出用バルブとを設け、  10. A diaphragm chamber is provided between the diaphragm and the frame body by fixing the outer peripheral edge to the frame body, and a diaphragm is attached to the frame body, and communicates with the diaphragm chamber to send out a suction valve. And a valve for
前記ダイアフラムを駆動する駆動手段を設けたダイアフラムポンプにおいて、 前記吸引用バルブもしくは前記送出用バルブ、 または前記吸引用バルブおよび 前記送出用バルブの双方に、 請求項 1〜 8いずれか 1項記載のバルブ構造を用い たことを特徴とするダイアフラムポンプ。 The diaphragm pump provided with a driving unit for driving the diaphragm, wherein the suction valve or the delivery valve, or both the suction valve and the delivery valve, the valve according to any one of claims 1 to 8. A diaphragm pump characterized by using a structure.
1 1 . 前記駆動手段が、  1 1. The driving means comprises:
前記ダイァフラムの外面に取り付けられた永久磁石と、  A permanent magnet mounted on the outer surface of the diaphragm;
該永久磁石に対向し、 前記ダイアフラムを挟んで前記永久磁石とは反対側とな る前記フレーム体の外面に設けられた電磁力の発生手段とを具備することを特徴 とする請求項 1 0記載のダイアフラムポンプ。  10. The apparatus according to claim 10, further comprising: an electromagnetic force generating means provided on an outer surface of the frame body facing the permanent magnet and opposite to the permanent magnet across the diaphragm. Diaphragm pump.
1 2 . 前記駆動手段が、  1 2. The driving means,
前記ダイァフラムの外面に取り付けられた電磁力の発生手段と、  Means for generating an electromagnetic force attached to the outer surface of the diaphragm;
該電磁力の発生手段に対向し、 前記ダイアフラムを挟んで前記電磁力の発生手 段とは反対側となる前記フレーム体の外面に設けられた永久磁石とを具備するこ とを特徴とする請求項 1 0記載のダイアフラムポンプ。  A permanent magnet provided on an outer surface of the frame body facing the means for generating the electromagnetic force and opposite to the means for generating the electromagnetic force with the diaphragm interposed therebetween. Item 10. The diaphragm pump according to Item 10.
1 3 . 前記電磁力の発生手段が、 空芯の通電コイルあるいは空芯の鉄心を有す る通電コイルであることを特徴とする請求項 1 1または 1 2記載のダイアフラム ポンプ。  13. The diaphragm pump according to claim 11, wherein the electromagnetic force generating means is an air-core energizing coil or an air-core energizing coil having an iron core.
PCT/JP2003/017013 2003-01-31 2003-12-26 Valve structure and positive displacement pump using the valve structure WO2004067965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003292653A AU2003292653A1 (en) 2003-01-31 2003-12-26 Valve structure and positive displacement pump using the valve structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-24864 2003-01-31
JP2003024864A JP2004060640A (en) 2002-06-06 2003-01-31 Valve structure and displacement type pump using the same

Publications (1)

Publication Number Publication Date
WO2004067965A1 true WO2004067965A1 (en) 2004-08-12

Family

ID=32820776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/017013 WO2004067965A1 (en) 2003-01-31 2003-12-26 Valve structure and positive displacement pump using the valve structure

Country Status (2)

Country Link
AU (1) AU2003292653A1 (en)
WO (1) WO2004067965A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525548A (en) * 2009-04-28 2012-10-22 プレットル,ロルフ Check valve
WO2022204507A1 (en) * 2021-03-25 2022-09-29 Warren Rupp, Inc. Flap valve for diaphragm pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647279U (en) * 1979-09-20 1981-04-27
JPS5846276A (en) * 1981-09-16 1983-03-17 Honda Motor Co Ltd Double reed valve
JPS6154566U (en) * 1984-09-14 1986-04-12
JPH0318783Y2 (en) * 1985-07-17 1991-04-19
JPH0618076Y2 (en) * 1987-11-25 1994-05-11 サンデン株式会社 Reciprocating pump
WO1996034184A1 (en) * 1995-04-28 1996-10-31 Monika Paszkowska Thermodynamical aspiration valve
JP6056150B2 (en) * 2011-04-08 2017-01-11 日亜化学工業株式会社 Semiconductor light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647279U (en) * 1979-09-20 1981-04-27
JPS5846276A (en) * 1981-09-16 1983-03-17 Honda Motor Co Ltd Double reed valve
JPS6154566U (en) * 1984-09-14 1986-04-12
JPH0318783Y2 (en) * 1985-07-17 1991-04-19
JPH0618076Y2 (en) * 1987-11-25 1994-05-11 サンデン株式会社 Reciprocating pump
WO1996034184A1 (en) * 1995-04-28 1996-10-31 Monika Paszkowska Thermodynamical aspiration valve
JP6056150B2 (en) * 2011-04-08 2017-01-11 日亜化学工業株式会社 Semiconductor light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525548A (en) * 2009-04-28 2012-10-22 プレットル,ロルフ Check valve
WO2022204507A1 (en) * 2021-03-25 2022-09-29 Warren Rupp, Inc. Flap valve for diaphragm pump
US11905944B2 (en) 2021-03-25 2024-02-20 Warren Rupp, Inc. Flap valve for diaphragm pump

Also Published As

Publication number Publication date
AU2003292653A1 (en) 2004-08-23

Similar Documents

Publication Publication Date Title
US7537437B2 (en) Linear actuator, and valve device and pump device using the same
US9360003B2 (en) Magnetically actuated disposable cartridge pump, a pump system, and a method of pumping
TW200307785A (en) Piezoelectrically driven fluid pump
WO2017140180A1 (en) Diaphragm pump and electric sprayer
WO2004067965A1 (en) Valve structure and positive displacement pump using the valve structure
WO2009106233A1 (en) Electrically actuated valve with a ball sealing element
JP2004060640A (en) Valve structure and displacement type pump using the same
US20060008367A1 (en) Actuator and pump device
JP2004060641A (en) Solenoid operated diaphragm pump
WO2004076862A1 (en) Electromagnetic diaphragm pump
JP4406556B2 (en) Electromagnetic pump
JP2004257337A (en) Diaphragm pump and diaphragm for pump
CN115427686A (en) Pump and air supply device
JP2004340097A (en) Small pump
JP2004092588A (en) Pump
JP4206248B2 (en) Electromagnetic pump
JPH09144662A (en) Fluid pump
WO2005090786A1 (en) Electromagnetic pump
WO2011136257A1 (en) Positive-displacement pump and check valve
JP2017044178A (en) Electromagnetic pump
JP3975886B2 (en) Pump and ink jet recording apparatus equipped with pump
JP5653285B2 (en) Positive displacement pump
JP2004092587A (en) Pump
US20070243089A1 (en) Check Valve for Displacement-Type Pump
CN110578683B (en) Diaphragm pump and valve plate thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase