WO2004066651A1 - Method and device for searching and selecting cell - Google Patents

Method and device for searching and selecting cell Download PDF

Info

Publication number
WO2004066651A1
WO2004066651A1 PCT/CN2003/000063 CN0300063W WO2004066651A1 WO 2004066651 A1 WO2004066651 A1 WO 2004066651A1 CN 0300063 W CN0300063 W CN 0300063W WO 2004066651 A1 WO2004066651 A1 WO 2004066651A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
output
signal
energy
input
Prior art date
Application number
PCT/CN2003/000063
Other languages
French (fr)
Chinese (zh)
Inventor
Chen Ji
Liwen Shi
Original Assignee
Linkair Communications, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linkair Communications, Inc. filed Critical Linkair Communications, Inc.
Priority to AU2003207222A priority Critical patent/AU2003207222A1/en
Priority to CN03805478.7A priority patent/CN1640165A/en
Priority to PCT/CN2003/000063 priority patent/WO2004066651A1/en
Publication of WO2004066651A1 publication Critical patent/WO2004066651A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7083Cell search, e.g. using a three-step approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/70735Code identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/007LAS, i.e. LA, LS and LAS codes

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a technology for performing a cell search and detecting a cell ID (Cell ID) when a mobile station in an idle mode (connected mode) and a connected mode (connected mode) in a CDMA system.
  • Cell ID cell ID
  • the purpose of cell search is to find all cells / sectors with sufficient signal strength, and establish downlink synchronization with the selected cell.
  • the business channels of different cells use different LS spreading code groups and different LA intervals. .
  • the mobile station In order for a mobile station to correctly demodulate the signal of a certain cell / sector and establish communication, it must obtain the information of the LS code group and LA interval arrangement of the cell / sector traffic channel. Therefore, in the cell search, the mobile station must search all possible cell ID sequences in the downlink synchronization physical channel, detect all cells / sectors with sufficient signal strength, and further obtain the target cell / sector usage. LS interval information.
  • An object of the present invention is to provide a cell search and selection method and device, which are used to search all possible cell ID sequences, detect all cells / sectors with sufficient signal strength, and obtain a target cell I Information about the LS code group and LA interval used by the sector.
  • a method for cell search and selection which is characterized by including the following steps:
  • the LS matching and filtering signals are respectively processed for LA polarity matching, squaring and LA energy combining, and the processed signals are subjected to energy distribution processing (power prof i le gen);
  • the LS matched filtering includes: If defined ⁇ - ⁇ ;
  • shock response function of LS matched filtering is:
  • the matched filtered output signal of LS is:
  • the output signal is:. 'For the complex number ⁇ + _ / ⁇ &, .
  • the process of performing LA polarity matching on the LS-matched and filtered signals, and combining the squared and LA energy refers to:
  • LA polarity matching and squaring can be performed on the LS matched filtered signals respectively; and squared and LA polarity matching can be performed on the LS matched filtered signals.
  • the LA polarity matching is a delay line with a length of 3 ⁇ 4 channel length of the downlink synchronization object. After LA multiplication, it is multiplied with the LA polarity sequence [, a 2 , ... a 8 ], and then the LS symbol is used.
  • Several adders are used to achieve LA polarity matching, where the number of LS symbols is the number of LS codes included in the downlink synchronization physical channel.
  • the LA energy combining is the squaring of the signal, through a delay line of the length of the downlink synchronization physical channel, and using an adder to achieve the energy combining of the LS symbols.
  • the energy distribution processing includes: if the input of ⁇ i LS matched filters (MF) after the square operation is greater than the input from K * LA combining, then the corresponding i-th output is the i-th LS matched filter (MF) Input after squaring operation, otherwise ⁇ i output is 0, where K is preset parameter.
  • the peak detection includes: Within each frame time, according to the initial frame boundary position obtained from the initial frame boundary detection, the search time window of the downlink synchronization physical channel is determined, and within the search time window, the peak signal strength (s k ) of the matched filter output and the corresponding Position x k
  • the determination of the search time window is as follows:
  • the oversampling rate of each chip of the baseband digital signal is Fs.
  • the search time window length is Nw chips
  • the LS code length is Nls chips. chip
  • the LA code length is Nla chips.
  • the energy profile processing (Power Profile Gen) unit outputs a total of Fs * Nc samples within a superframe time, and is recorded as PowerProfile [l .. Fs * Nc];
  • the number of corresponding peak positions is counted as C i;
  • Step 3 Move the sliding window to the right by one position and repeat the first step.
  • the channel selection will select one of all detected sectors as the active sector, and the mobile station will demodulate and multipath receive the signal of this sector; which sector the mobile station chooses as the active sector is
  • the upper layer decides that the physical layer simply reports the measurement results to the upper layer
  • the physical layer After receiving the indication of which sector in the upper layer is the active sector, the physical layer uses the corresponding Yc- (Nls + Nla) * Fs as the starting position of the downlink frame timing of the mobile station;
  • the mobile station will perform multipath search, RAKE reception, and timing tracking according to the starting position of the frame timing.
  • the invention also provides a device for cell search and selection, which includes: LS matched filter, LA polarity matching unit, square unit, LA energy combining unit, energy distribution processing unit, peak detector, channel detector, channel Selector;
  • the output signals of the LS matched filter are input to the LA polarity matching unit, the square unit and the LA energy combining unit, respectively; the output signal of the square unit and the output signal of the LA energy combining unit are input to the energy distribution processing unit;
  • the output signal of the energy distribution processing unit is input to the peak detector; the output signal of the peak detector is input to the channel detector;
  • the output signal of the channel detector is input to the channel selector; the output signal of the channel selector.
  • the LS matched filter includes:
  • the output signal of the matched filter of LS is:
  • the output signal is:
  • the output signals of the LS matched filter are input to the LA polarity matching unit, respectively.
  • the square unit and the LA energy combining unit include:
  • the output signal of the LS matched filter is input to each different LA polarity matching unit; the output signal of each different LA polarity matching unit is respectively input to each square unit;
  • the output signal of the LS matched filter is inputted into a square unit and a LA energy combining unit connected to the square unit.
  • the LA polarity matching unit includes: a delay line with a long downlink synchronization physical channel length, a tap multiplier, and an adder.
  • the LA energy combining unit includes: a delay line having a length of a downlink synchronization physical channel, and an adder.
  • the energy distribution processing unit includes: if the input of the i-th LS matched filter (MF) after the square operation is greater than the input from K * combining, then the corresponding i-th output is the i-th LS matched filter (MF) Input after squaring, otherwise the i-th output is 0, where K is the preset parameter.
  • the peak detector includes: determining, within each frame time, a search time window of a downlink synchronization physical channel according to an initial frame boundary position obtained by detecting an initial frame boundary, and finding a matched filter output within the search time window.
  • the peak signal strength ( Sk ) and the corresponding position Xk are compared to determine, within each frame time, a search time window of a downlink synchronization physical channel according to an initial frame boundary position obtained by detecting an initial frame boundary.
  • the channel detector includes:
  • the channel selector outputs signals to a multi-channel detector and a D-DPCH receiver.
  • the LA polarity matching unit may be composed of adders of LS symbols.
  • the LA energy combining unit may be composed of adders of LS symbols.
  • the beneficial effect of the present invention is that by providing a cell search and selection method and device for searching all possible cell ID sequences, detecting all cells / sectors with sufficient signal strength, we obtain Information about the LS code group and LA interval used by the destination cell / sector. Downlink synchronization with the selected cell is established.
  • FIG. 1 is a subframe structure diagram of a downlink synchronization channel
  • FIG. 2 is a block diagram of a cell searcher
  • Figure 3 is a structural block diagram of the LS matched filter
  • Figure 4 is a schematic diagram of a LA polarity matching unit
  • Figure 5 is a schematic diagram of LA energy combining.
  • the present invention provides a method and device for cell search and selection.
  • the process and algorithm of performing a cell search and detecting a cell ID (Cel l ID) when the mobile station is in idle mode and connected mode is described in detail below with reference to the accompanying drawings.
  • the structure of the downlink synchronization channel is shown in Figure 1.
  • the downlink synchronization physical channels of all cells use the same LS spreading code (see Table 1), and different modulation symbol code groups are used to distinguish the cells.
  • Each time slot transmits a downlink synchronization pulse with a length of 72 Chips.
  • the downlink synchronization pulse is transmitted at the beginning of each time slot.
  • the LS code used for the downlink synchronization channel is complex digital, and the corresponding spreading and decoding Spreading is similar to QPSK, as shown in Table 4.
  • the 8 slots of the downlink synchronization subframe can transmit 8 modulation symbols, and a total of 8 bipolar mutually orthogonal code sequences can be obtained, such as each row or column of an 8 x 8 Walsh matrix, in a TD-LAS quasi-commercial system
  • code sequences are called LA polar sequences (see Table 3).
  • 8 orthogonal LA polar sequences can support the networking of 8 cells / sectors. To support a larger network size, consider combining with other cell identification methods such as continuous pilot cell identification, or you can use Different cell / sector clusters use different LA guard intervals to expand the D-SYNPCH signal set. Table 1.
  • the purpose of cell search is to find all cells / sectors with sufficient signal strength, and select Cell establishes downlink synchronization.
  • the traffic channels of different cells use different LS spreading code groups and different LA intervals.
  • the mobile station In order for a mobile station to correctly demodulate the signal of a certain cell / sector and establish communication, it must obtain the information of the LS code group and LA interval arrangement of the cell / sector traffic channel. Therefore, in the cell search, the mobile station must search all possible cell ID sequences in the downlink synchronization physical channel, detect all cells / sectors with sufficient signal strength, and further obtain the target cell / sector usage. Information arranged in LS code group and LA interval.
  • the impulse response function of the LS matched filter is
  • the output signal is
  • the LA polarity matching unit is a delay line with a total length of 811Tc in the downlink synchronization physical channel. After LA multiplication, it is multiplied with the LA polarity sequence a 2 , ... a 8 ], and then 8 adders are used to Achieve U polarity matching. Its structure is shown in Figure 4:
  • the output of the LA matched filter after the square operation is the signal strength at each sampling point (here, the sampling rate is 1 / 4Tc).
  • the function of the LA energy combining unit is to combine the energy on each time slot of the downlink synchronization channel.
  • LA energy combining unit (LA Eng combining) is a delay line with a total length of 811Tc for the downlink synchronous physical channel, and uses eight adders to achieve the energy combining of the LS symbols. Its structure is shown in Figure 5.
  • K is the preset parameter.
  • a search time window of the downlink synchronization physical channel is determined, and the peak signal strength (S k ) of the matched filter output and the corresponding Position X k
  • the search time window is determined as follows:
  • Energy distribution Gen unit (Power Prof i le Gen unit) outputs a total of 4 * 30720 samples in a superframe time, recorded as PowerProf i le tl.. 30720 * 4]
  • FrameBoundaryLoc Record the initial frame boundary position obtained by the initial frame boundary detection as FrameBoundaryLoc, and determine the search time window as PowerProf i le [FraraeBoundaryLoc + 72 * 4 + 811 * 4-40 * 4.. FrameBoundaryLoc + 72 * 4 + 811 * 4 + 40 * 4]
  • Step 3 Move the sliding window to the right by one position and repeat the first step.
  • Xt is the peak energy position input of the current frame
  • St is the peak energy input for the current frame.
  • Yc is output for the start position of this superframe
  • Sc is the energy output of the downlink synchronous physical channel.
  • the channel selector will select one of the detected sectors as the active sector, and the mobile station will demodulate and multipath receive the signals in this sector. Which sector the mobile station chooses as the active sector is determined by the upper layer, and the physical layer simply reports the measurement result to the upper layer. After receiving the indication of which sector in the upper layer is the active sector, the physical layer
  • Yc-72 * 4- 811 * 4 is used as the starting position of the downlink frame timing of the mobile station.
  • the mobile station will perform multipath search, RAKE reception, and timing tracking functions according to the starting position of the frame timing.
  • Input signal output of baseband filter, signal rate 4fc;
  • Output signal the signal energy and frame start position ⁇ Yc, Sc ⁇ of all detected downlink downlink physical channels
  • the beneficial effect of the present invention is that by providing a cell search and selection method and device for searching all possible cell ID sequences, and detecting all cells / sectors with sufficient signal strength, we obtain Information about the LS code group and interval used by the destination cell / sector. Downlink synchronization with the selected cell is established.

Abstract

The present invention provides a method and device for searching and selecting cell, by LS matching filter for input signals; LA polarity matching is processed after LS matching filter, and square and LA power combining is processed, the processed signals are processed by power profile gen; the signals of processed by power profile gen are processed by peak detection and channel detection; channel selecting is processed for the signals of channel detecting; searching and selecting cell is completed. It provides for searching whole possible cell ID sequence, detecting whole enough signals intensity cell (or section), getting the information of LS code blocks and LA interval permutation employed by objective cell (or section).

Description

一种小区搜索和选择的方法及装置  Method and device for community search and selection
技术领域 Technical field
本发明涉及无线通信技术领域, 特别涉及 CDMA系统中移动台在空闲模 式(idle mode )和连接模式( connected mode )时, 进行小区搜索并检测小 区标识(Cell ID)的技术, 具体的讲是一种小区搜索和选择的方法及装置。 背景技术  The present invention relates to the field of wireless communication technologies, and in particular, to a technology for performing a cell search and detecting a cell ID (Cell ID) when a mobile station in an idle mode (connected mode) and a connected mode (connected mode) in a CDMA system. Method and device for cell search and selection. Background technique
在 CDMA 系统中, 小区搜索的目的是搜索到所有足够信号强度的小区 / 扇区, 并且和选择的小区建立下行同步, 不同小区的业务信道使用不同的 LS扩频码组和不同的 LA间隔排列。 移动台要正确解调某一小区 /扇区的信 号, 并建立通信, 就必须得到这个小区 /扇区业务信道的 LS码组和 LA间隔 排列的信息。 因此在小区搜索中, 移动台必须在下行同步物理信道中, 搜 索所有可能的小区标志序列(cell ID sequence) , 检测到所有足够信号强度的 小区 /扇区, 进一步得到目的小区 /扇区使用的 LS 间隔 的信息。 发明内容  In the CDMA system, the purpose of cell search is to find all cells / sectors with sufficient signal strength, and establish downlink synchronization with the selected cell. The business channels of different cells use different LS spreading code groups and different LA intervals. . In order for a mobile station to correctly demodulate the signal of a certain cell / sector and establish communication, it must obtain the information of the LS code group and LA interval arrangement of the cell / sector traffic channel. Therefore, in the cell search, the mobile station must search all possible cell ID sequences in the downlink synchronization physical channel, detect all cells / sectors with sufficient signal strength, and further obtain the target cell / sector usage. LS interval information. Summary of the Invention
本发明的目的在于, 提供一种小区搜索和选择的方法及装置, 用以搜 索所有可能的小区标志序列(cel l ID sequence) , 检测到所有足够信号强 度的小区 /扇区, 得到目的小区 I扇区使用的 LS码組和 LA间隔排列的信息。  An object of the present invention is to provide a cell search and selection method and device, which are used to search all possible cell ID sequences, detect all cells / sectors with sufficient signal strength, and obtain a target cell I Information about the LS code group and LA interval used by the sector.
本发明的技术方案为:  The technical solution of the present invention is:
一种小区搜索和选择的方法, 其特征在于包括以下步驟:  A method for cell search and selection, which is characterized by including the following steps:
对输入信号进行 LS匹配滤波;  Perform LS matching filtering on the input signal;
将 LS匹配滤波后的信号分别进行 LA极性匹配, 平方和 LA能量合并的 处理, 并将处理后的信号进行能量分布处理(power prof i le gen );  The LS matching and filtering signals are respectively processed for LA polarity matching, squaring and LA energy combining, and the processed signals are subjected to energy distribution processing (power prof i le gen);
将能量分布处理后的信号进行锋值检测和信道检测;  Perform peak value detection and channel detection on the signal after energy distribution processing;
对信道检测后的信号进行信道选择; 实现小区搜索和选择。  Perform channel selection on the signal after channel detection; realize cell search and selection.
所述的 LS匹配滤波包括: 如果定义^ -^; The LS matched filtering includes: If defined ^-^;
且设 LS码波形为 (0 = cRe (t) + jclm(t) , 0≤t < LTc , 这里取 Z为 LS码的长 度; Let the waveform of the LS code be (0 = c Re (t) + jc lm (t), 0≤t <LT c , where Z is the length of the LS code;
则 LS 匹配滤波的冲击响应函数为:  Then the shock response function of LS matched filtering is:
h (t) = ¾Re( + Am( =
Figure imgf000004_0001
= cRe(T- t) - jclm(T~ t) , 0≤t≤LTc , 这里取 T = LTC ',
h (t) = ¾ Re (+ A m (=
Figure imgf000004_0001
= c Re (T- t)-jc lm (T ~ t), 0≤t≤LT c , where T = LT C ',
对应于输入信号 = sRe (0 + jslm ( ; 有: Corresponds to the input signal = s Re (0 + js lm (; there are:
LS的匹配滤波输出信号为:  The matched filtered output signal of LS is:
Άί) ® ^( = [½e (0 + (01 ® [Ke (0 + Am (01 Άί) ® ^ (= [½ e (0 + (01 ® [K e (0 + Am (01
= ½e (0 ® Ke (t) - Slm (t) ® hlm ( + j[sRe (t) ® (t) + SIm (t) ® hRe (t)]; = ½e (0 ® K e (t)-S lm (t) ® h lm (+ j [s Re (t) ® (t) + S Im (t) ® h Re (t)];
对输出信号进行模平方运算后, 输出信号为: . ' 对复数 β + _/· &,
Figure imgf000004_0002
After performing the modulo-square operation on the output signal, the output signal is:. 'For the complex number β + _ / · &,
Figure imgf000004_0002
.
所述的将 LS匹配滤波后的信号分别进行 LA极性匹配, 平方和 LA能量 合并的处理是指:  The process of performing LA polarity matching on the LS-matched and filtered signals, and combining the squared and LA energy refers to:
可对 LS匹配滤波后的信号分别进行不同的 LA极性匹配及平方处理; 并对 LS匹配滤波后的信号进行平方及 LA极性匹配处理。  Different LA polarity matching and squaring can be performed on the LS matched filtered signals respectively; and squared and LA polarity matching can be performed on the LS matched filtered signals.
所述的 LA极性匹配是一段长度为下行同步物 ¾信道长的延迟线,在 LA 愁头上, 和 LA极性序列 [ , a2, ...a8]相乘后,使用 LS符号数个加法器来实 现 LA极性 配,这里 LS符号数即下行同步物理信道所包含的 LS码的个数。 The LA polarity matching is a delay line with a length of ¾ channel length of the downlink synchronization object. After LA multiplication, it is multiplied with the LA polarity sequence [, a 2 , ... a 8 ], and then the LS symbol is used. Several adders are used to achieve LA polarity matching, where the number of LS symbols is the number of LS codes included in the downlink synchronization physical channel.
所迷的 LA能量合并是信号取模平方后, 通过一段长度为下行同步物理 信道长的延迟线, 并使用加法器来实现 LS符号的能量合并。  The LA energy combining is the squaring of the signal, through a delay line of the length of the downlink synchronization physical channel, and using an adder to achieve the energy combining of the LS symbols.
所述的能量分布处理包括: 如果笫 i个 LS匹配滤波(MF )在平方运算 后的输入大于来自 K*LA合并(combining ) 的输入, 则相应的第 i 路输 出为第 i个 LS匹配滤波(MF )在平方运算后的输入, 否则笫 i路输出为 0, 这里 K为预置参数。  The energy distribution processing includes: if the input of 笫 i LS matched filters (MF) after the square operation is greater than the input from K * LA combining, then the corresponding i-th output is the i-th LS matched filter (MF) Input after squaring operation, otherwise 笫 i output is 0, where K is preset parameter.
所述的峰值检测包括: 在每一帧时间内, 根据初始帧边界检测得到的初始帧边界位置, 确定 下行同步物理信道的搜索时间窗, 在搜索时间窗内找到匹配滤波器输出的 峰值信号强度 (sk)和相应的位置 xk The peak detection includes: Within each frame time, according to the initial frame boundary position obtained from the initial frame boundary detection, the search time window of the downlink synchronization physical channel is determined, and within the search time window, the peak signal strength (s k ) of the matched filter output and the corresponding Position x k
所述的搜索时间窗的确定如下:  The determination of the search time window is as follows:
记基带数字信号的每码片的过采样率为 Fs,—帧时间内共有 Nc个码片 (chip), 搜索时间窗长为 Nw个码片(chip) , LS码长为 Nls个码片(chip) , LA码长为 Nla个码片(chip)。  Note that the oversampling rate of each chip of the baseband digital signal is Fs. There are Nc chips in the frame time, the search time window length is Nw chips, and the LS code length is Nls chips. chip), and the LA code length is Nla chips.
所述的能量分布处理(Power Profile Gen)单元在一个超帧时间内共 输出 Fs*Nc个样点, 记为 PowerProf ile[l.. Fs*Nc];  The energy profile processing (Power Profile Gen) unit outputs a total of Fs * Nc samples within a superframe time, and is recorded as PowerProfile [l .. Fs * Nc];
记初始帧边界检测得到的初始帧边界位置为: FrameBoundaryLoc;  Record the initial frame boundary position obtained by the initial frame boundary detection as: FrameBoundaryLoc;
确定搜索时间窗为 PowerProf ile [FrameBoundaryLoc + ( Nls+Nla-Nw ) *Fs.. FrameBoundaryLoc + ( Nls+Nla + Nw ) *Fs];  Make sure the search time window is PowerProf ile [FrameBoundaryLoc + (Nls + Nla-Nw) * Fs .. FrameBoundaryLoc + (Nls + Nla + Nw) * Fs];
对每一帧搜索时间窗内找到的峰值信号强度(Sk)和相应的位置 Xk, 进 行滑动窗口为 M帧的滑动观测, 得到下行同步物理信道的当前信号强度 Sc 和平均帧起始位置 Yc; 共分为以下 3步: For the peak signal strength (S k ) and the corresponding position X k found in the search time window of each frame, a sliding observation of a sliding window of M frames is performed to obtain the current signal strength Sc of the downlink synchronization physical channel and the average frame start position Yc; is divided into the following 3 steps:
第一步: 取 ¾ : i = 1,2, ..., M}为长度为 M帧滑动观测的峰值信 号位置, ^ : i = 1,2, ..., M}为相应的峰值信号能量, 计算所有满足 和 X;的距离小于等于 d的峰值位置的个数;也就是说,找到所有满足 I Xj - Xi I < d , j = 1,2, ..., Μ 的 Χ』, 并计算 Xj的个数。 对应于 的峰值位置 个数计为 Ci; Step 1: Take ¾: i = 1,2, ..., M} is the peak signal position with sliding observation of M frames, and ^: i = 1,2, ..., M} is the corresponding peak signal. Energy, calculate all satisfies and X; the number of peak positions whose distance is less than or equal to d; that is, find all X that satisfy I Xj-Xi I <d, j = 1,2, ..., Μ ", And calculate the number of Xj. The number of corresponding peak positions is counted as C i;
第二步: 在 M帧观测中找到 Cm = max { , : i = 1,2, …, M} . 取 对应的 1为峰值位置输出; 如果对应于当前帧 XM的峰值位置数 CM大于或 等于 Nthl, 将当前帧峰值能量为峰值信号能量输出, 否则峰值信号能量输 出为- 1; Step 2: Find Cm = max {,: i = 1,2,…, M} in M frame observation. Take the corresponding 1 as the peak position output; if the number of peak positions C M corresponding to the current frame X M is greater than Or equal to Nthl, the peak signal energy of the current frame is the peak signal energy output, otherwise the peak signal energy output is -1;
第三步: 将滑动窗口右移一位, 重复第一步。  Step 3: Move the sliding window to the right by one position and repeat the first step.
所述的信道检测包括: 如果 Nc 大于预置的门限 Nth2 , 就认为检测到相应的下行同步物理信 道, 将 { Yc, Sc} 输出到信号能量测量和信道选择器中; 如果 Nc小于或等 于预置的门限 Nth2 , 就认为没能检测到相应的下行同步物理信道, 置 Yc = -1 , Sc = -1 , 将{ Yc, Sc} 输出到信号能量测量和信道选择器中。 The channel detection includes: If Nc is greater than the preset threshold Nth2, it is considered that the corresponding downlink synchronization physical channel is detected, and {Yc, Sc} is output to the signal energy measurement and channel selector; if Nc is less than or equal to the preset threshold Nth2, it is considered Failed to detect the corresponding downlink synchronization physical channel, set Yc = -1, Sc = -1, and output {Yc, Sc} to the signal energy measurement and channel selector.
所述的信道选择将在所有检测到的扇区中选择一个作为激活扇区 , 移 动台将对这个扇区的信号进行解调和多径接收; 移动台选择哪一个扇区作 为激活扇区由上层决定, 物理层只是将测量结果 告给上层;  The channel selection will select one of all detected sectors as the active sector, and the mobile station will demodulate and multipath receive the signal of this sector; which sector the mobile station chooses as the active sector is The upper layer decides that the physical layer simply reports the measurement results to the upper layer;
物理层在接收到上层哪一个扇区作为激活扇区的指示后, 将其对应的 Yc- ( Nl s+Nla ) *Fs作为移动台下行帧定时的起始位置;  After receiving the indication of which sector in the upper layer is the active sector, the physical layer uses the corresponding Yc- (Nls + Nla) * Fs as the starting position of the downlink frame timing of the mobile station;
移动台将根据帧定时的起始位置进行多径搜索, RAKE接收, 定时跟踪。 本发明还提供了一种小区搜索和选择的装置, 其中包括: LS 匹配滤波 器, LA极性匹配单元, 平方单元, LA能量合并单元, 能量分布处理单元, 峰值检测器, 信道检测器, 信道选择器;  The mobile station will perform multipath search, RAKE reception, and timing tracking according to the starting position of the frame timing. The invention also provides a device for cell search and selection, which includes: LS matched filter, LA polarity matching unit, square unit, LA energy combining unit, energy distribution processing unit, peak detector, channel detector, channel Selector;
输入信号输入 LS匹配滤波器;  Input signal input LS matched filter;
LS 匹配滤波器的输出信号分别输入 LA极性匹配单元, 平方单元和 LA 能量合并单元; 平方单元的输出信号和 LA能量合并单元的输出信号输入能 量分布处理单元;  The output signals of the LS matched filter are input to the LA polarity matching unit, the square unit and the LA energy combining unit, respectively; the output signal of the square unit and the output signal of the LA energy combining unit are input to the energy distribution processing unit;
能量分布处理单元的输出信号输入峰值检测器; 峰值检测器的输出信 号输入信道检测器;  The output signal of the energy distribution processing unit is input to the peak detector; the output signal of the peak detector is input to the channel detector;
信道检测器的输出信号输入信道选择器; 信道选择器输出信号。  The output signal of the channel detector is input to the channel selector; the output signal of the channel selector.
所述的 LS匹配滤波器包括:  The LS matched filter includes:
如果定义 · =  If defined
且设 LS码波形为 a t) = CRe(t) +_/Clm(t) , 0≤t≤LTc , 这里取 Z为 LS码的长 度; Let the waveform of the LS code be at) = CRe (t) + _ / Chem (t), 0≤t≤LT c , where Z is the length of the LS code;
则 LS 匹配滤波器的冲击响应函数为:  Then the impulse response function of the LS matched filter is:
Ht) = (t) + jhIm (t) = c * (Γ - = ¾ (Γ - - JcIm (T - 1) , 0≤t < LTc, 这里取 T = LTC Ht) = (t) + jh Im (t) = c * (Γ-= ¾ (Γ--Jc Im (T-1), 0≤t <LT c , take here T = LT C
对应于输入信号?(t) = sRe(t) + jslm(t); 有: Corresponds to the input signal? (t) = s Re (t) + js lm (t); Yes :
LS的匹配滤波器的输出信号为:  The output signal of the matched filter of LS is:
s(t) ® t) = [5Re (t) + jslm (t)] ® [hRe ( + jhIm (t)] s (t) ® t) = [5 Re (t) + js lm (t)] ® [h Re (+ jh Im (t)]
= SRe( ® ( -¾1( ®¾m( +7[¾e( ®¾m( +¾( ®¾Re( ]; = SRe (® (-¾ 1 (®¾ m (+7 [¾e (®¾ m (+ ¾ (®¾Re (];
对输出信号进行模平方运算后, 输出信号为:  After performing the modulo-square operation on the output signal, the output signal is:
对复数 b, \a + jbf =a2+bzFor the complex number b, \ a + jbf = a 2 + b z .
所述的 LS 匹配滤波器的输出信号分别输入 LA极性匹配单元, 平方单 元和 LA能量合并单元包括:  The output signals of the LS matched filter are input to the LA polarity matching unit, respectively. The square unit and the LA energy combining unit include:
所述的 LS匹配滤波器的输出信号分别输入每个不同 LA极性匹配单元; 每个不同 LA极性匹配单元的输出信号分别输入每个平方单元;  The output signal of the LS matched filter is input to each different LA polarity matching unit; the output signal of each different LA polarity matching unit is respectively input to each square unit;
所述的 LS匹配滤波器的输出信号输入 1个平方单元和与该平方单元连 接的 LA能量合并单元。  The output signal of the LS matched filter is inputted into a square unit and a LA energy combining unit connected to the square unit.
所述的 LA极性匹配单元包括: 长为下行同步物理信道长的延迟线, 抽 头乘法器, 加法器。  The LA polarity matching unit includes: a delay line with a long downlink synchronization physical channel length, a tap multiplier, and an adder.
所述的 LA能量合并单元包括: 长为下行同步物理信道长的延迟线, 加 法器。  The LA energy combining unit includes: a delay line having a length of a downlink synchronization physical channel, and an adder.
所述的能量分布处理单元包括: 如果第 i个 LS匹配滤波(MF)在平方 运算后的输入大于来自 K* 合并(combining) 的输入, 则相应的第 i 路输出为第 i个 LS匹配滤波(MF)在平方运算后的输入, 否则第 i路输出 为 0, 这里 K为预置参数。  The energy distribution processing unit includes: if the input of the i-th LS matched filter (MF) after the square operation is greater than the input from K * combining, then the corresponding i-th output is the i-th LS matched filter (MF) Input after squaring, otherwise the i-th output is 0, where K is the preset parameter.
所述的峰值检测器包括: 可在每一帧时间内, 根据初始帧边界检测得 到的初始帧边界位置, 确定下行同步物理信道的搜索时间窗, 并在搜索时 间窗内找到匹配滤波器输出的峰值信号强度 (Sk)和相应的位置 Xk的模块。 The peak detector includes: determining, within each frame time, a search time window of a downlink synchronization physical channel according to an initial frame boundary position obtained by detecting an initial frame boundary, and finding a matched filter output within the search time window. The peak signal strength ( Sk ) and the corresponding position Xk .
所述的信道检测器包括:  The channel detector includes:
如果 Nc 大于预置的门限 Nth2, 就认为检测到相应的下行同步物理信 道, 将 { Yc, Sc} 输出到信号能量测量器和信道选择器中; 如果 Nc小于或 等于预置的门限 Nth2 ,就认为没能检测到相应的下行同步物理信道,置 Yc = - 1 , Sc = - 1 , 将 { Yc, Sc} 输出到信号能量测量和信道选择器中。 If Nc is greater than the preset threshold Nth2, it is considered that the corresponding downlink synchronization physical signal is detected Channel, output {Yc, Sc} to the signal energy measurer and channel selector; if Nc is less than or equal to the preset threshold Nth2, it is considered that the corresponding downlink synchronization physical channel cannot be detected, and set Yc =-1, Sc =-1, output {Yc, Sc} to the signal energy measurement and channel selector.
所述的信道选择器输出信号给多路检测器和 D-DPCH接收机。  The channel selector outputs signals to a multi-channel detector and a D-DPCH receiver.
所述的 LA极性匹配单元可由 LS符号个个加法器构成。  The LA polarity matching unit may be composed of adders of LS symbols.
所述的 LA能量合并单元可由 LS符号个个加法器构成。  The LA energy combining unit may be composed of adders of LS symbols.
本发明的有益效果在于, 通过提供一种小区搜索和选择的方法及装置, 用以搜索所有可能的小区标志序列(cel l ID sequence) , 检测到所有足够 信号强度的小区 /扇区, 得到了目的小区 / 扇区使用的 LS码组和 LA间隔排 列的信息。 建立了和选择小区的下行同步。  The beneficial effect of the present invention is that by providing a cell search and selection method and device for searching all possible cell ID sequences, detecting all cells / sectors with sufficient signal strength, we obtain Information about the LS code group and LA interval used by the destination cell / sector. Downlink synchronization with the selected cell is established.
附图说明 BRIEF DESCRIPTION OF THE DRAWINGS
图 1为下行同步信道的子帧结构图;  FIG. 1 is a subframe structure diagram of a downlink synchronization channel;
图 2为小区搜索器结构框图;  FIG. 2 is a block diagram of a cell searcher;
图 3为 LS匹配滤波器的结构框图;  Figure 3 is a structural block diagram of the LS matched filter;
图 4为 LA极性匹配单元的示意图;  Figure 4 is a schematic diagram of a LA polarity matching unit;
图 5为 LA 能量合并的示意图。  Figure 5 is a schematic diagram of LA energy combining.
具体实施方式 detailed description
本发明提供了一种小区搜索和选择的方法及装置, 以下结合附图具体 描述移动台在 idle mode和 connected mode时, '进行小区搜索并检测小区 标识(Cel l ID ) 的过程和算法。  The present invention provides a method and device for cell search and selection. The process and algorithm of performing a cell search and detecting a cell ID (Cel l ID) when the mobile station is in idle mode and connected mode is described in detail below with reference to the accompanying drawings.
在 TD- LAS准商用系统中, 下行同步信道的结构如图 1所示; 所有小区 的下行同步物理信道使用相同的 LS 扩频码 (参见表 1), 不同的调制符号 码组来区分小区。 下行同步子帧共有 8 个时隙, 每个时隙长度参照表 2 , 每个时隙传输一个长度为 72Chips的下行同步脉冲, 包含 24chips的 C码 和 24chips的 S码, 中间保留 24chips的保护带, 下行同步脉冲在每个时 隙的起始开始传送。 用于下行同步信道的 LS码是复数码, 相应的扩频和解 扩类似于 QPSK, 如表 4所示。 下行同步子帧的 8个时隙可以传送 8个调制 符号, 总共可以得到 8个双极性相互正交的码序列, 如 8 x 8Walsh矩阵的 每一行或每一列 , 在 TD - LAS准商用系统中称这些码序列为 LA极性序列(参 见表 3)。 8个正交的 LA极性序列可以支持 8小区 /扇区的组网; 要支持更 大的組网规模, 可以考虑和其他小区识别的方法如连续导频小区识别相结 合, 另外也可以使不同的小区 /扇区簇使用不同的 LA保护间隔, 扩大 D - SYNPCH的信号集。 表 1. 下行同步信道的扩频码(LS码) (j = V^T)
Figure imgf000009_0001
其中: A = (+j ++ + -), B = (-]- + + -), C = (-}— +),D = (- - + + -) 表 2. 下行同步信道的子帧时隙长度
Figure imgf000009_0002
表 3. 下行同步信道的 LA极性码
Figure imgf000009_0003
In a TD-LAS quasi-commercial system, the structure of the downlink synchronization channel is shown in Figure 1. The downlink synchronization physical channels of all cells use the same LS spreading code (see Table 1), and different modulation symbol code groups are used to distinguish the cells. There are 8 time slots in the downlink synchronization sub-frame, and the length of each time slot is shown in Table 2. Each time slot transmits a downlink synchronization pulse with a length of 72 Chips. The downlink synchronization pulse is transmitted at the beginning of each time slot. The LS code used for the downlink synchronization channel is complex digital, and the corresponding spreading and decoding Spreading is similar to QPSK, as shown in Table 4. The 8 slots of the downlink synchronization subframe can transmit 8 modulation symbols, and a total of 8 bipolar mutually orthogonal code sequences can be obtained, such as each row or column of an 8 x 8 Walsh matrix, in a TD-LAS quasi-commercial system These code sequences are called LA polar sequences (see Table 3). 8 orthogonal LA polar sequences can support the networking of 8 cells / sectors. To support a larger network size, consider combining with other cell identification methods such as continuous pilot cell identification, or you can use Different cell / sector clusters use different LA guard intervals to expand the D-SYNPCH signal set. Table 1. Spreading code (LS code) of the downlink synchronization channel (j = V ^ T)
Figure imgf000009_0001
Where: A = (+ j ++ +-), B = (-]-+ +-), C = (-) — +), D = (--+ +-) Table 2. Frame slot length
Figure imgf000009_0002
Table 3. LA Polarity Codes for Downlink Synchronization Channels
Figure imgf000009_0003
表 4. 下行同步信道的 LA极性码  Table 4. LA Polarity Codes for Downlink Synchronization Channels
Figure imgf000009_0004
小区搜索的目的是搜索到所有足够信号强度的小区 /扇区, 并且和选择 的小区建立下行同步。 TD-LAS系统中, 不同小区的业务信道使用不同的 LS 扩频码组和不同的 LA间隔排列。 移动台要正确解调某一小区 /扇区的信号, 并建立通信, 就必须得到这个小区 /扇区业务信道的 LS码组和 LA间隔排列 的信息。 因此在小区搜索中, 移动台必须在下行同步物理信道中, 搜索所 有可能的小区标志序列(cell ID sequence) , 检测到所有足够信号强度的小区 /扇区, 进一步得到目的小区 /扇区使用的 LS码组和 LA间隔排列的信息。
Figure imgf000009_0004
The purpose of cell search is to find all cells / sectors with sufficient signal strength, and select Cell establishes downlink synchronization. In the TD-LAS system, the traffic channels of different cells use different LS spreading code groups and different LA intervals. In order for a mobile station to correctly demodulate the signal of a certain cell / sector and establish communication, it must obtain the information of the LS code group and LA interval arrangement of the cell / sector traffic channel. Therefore, in the cell search, the mobile station must search all possible cell ID sequences in the downlink synchronization physical channel, detect all cells / sectors with sufficient signal strength, and further obtain the target cell / sector usage. Information arranged in LS code group and LA interval.
在 TD- LAS准商用系统中, 共有 4个扇区。 所有小区 /扇区的下行同步 物理信道使用相同的 LS码和 LA排列, 但是不同的小区 /扇区具有不同的 LA 调制极性。 所以移动台的小区搜索器只需要使用同一个 LS码匹配滤波器, 再使用不同的 LA极性匹配就可以实现同时对每一个小区 /扇区下行同步物 理信道的匹配滤波。 小区搜索器工作在 速率。 图 2描述了小区搜索器 和下行同步匹配滤波器的结构。  In the TD-LAS quasi-commercial system, there are 4 sectors in total. The downlink synchronization physical channels of all cells / sectors use the same LS code and LA arrangement, but different cells / sectors have different LA modulation polarities. Therefore, the cell searcher of the mobile station only needs to use the same LS code matching filter, and then use different LA polarity matching to achieve matching filtering of the downlink synchronization physical channel of each cell / sector at the same time. The cell searcher works at speed. Figure 2 illustrates the structure of the cell searcher and the downlink synchronous matched filter.
算法描述中的所有计算中均未考虑器件运算处理所用的附加延迟。 下面详细介绍下行同步接收机中的各个模块的定义和结构。  All calculations in the algorithm description do not take into account the additional delays used by device arithmetic processing. The definition and structure of each module in the downlink synchronization receiver are introduced in detail below.
LS匹配滤波器(LS Matched Fi l ter ): LS Matched Filter (LS Matched Fi l ter):
定义 = V^T  Definition = V ^ T
设 LS码波形为?(t) = cRe (t) + jclm (t) , 0≤t≤ 72TC Let the LS code waveform be? (t) = c Re (t) + jc lm (t), 0≤t≤ 72T C
LS 匹配滤波器的冲击响应函数为  The impulse response function of the LS matched filter is
h {t)
Figure imgf000010_0001
, Q≤t≤72Tc , 这里取 Τ = Ί2Ί 。
h (t)
Figure imgf000010_0001
, Q≤t≤72T c , where T = Ί2Ί.
对应于输入信号?(t) = sKe(t) + jslm(t) Corresponds to the input signal? (t) = s Ke (t) + js lm (t)
LS的匹配滤波器输出信号为 S t)® (t)  LS's matched filter output signal is S t) ® (t)
= [¾e (0 + {∞ (t)] <S> [/ e (t) + jhlm (t)] = [¾ e (0 + {∞ (t)] <S> [/ e (t) + jh lm (t)]
= ¾( ® ( -^Im( ®¾m( + i e( ®¾m( + ¾( ®¾e( ] = ¾ (® (-^ Im (®¾ m (+ ie (®¾ m (+ ¾ (®¾e (]
对输出信号进行模平方运算后, 输出信号为  After performing modulo-square operation on the output signal, the output signal is
对复数 jb , |α + jb\2 = a2 + b2 LA极性匹配单元: For complex number jb, α + jb \ 2 = a 2 + b 2 LA polarity matching unit:
LA极性匹配单元是一段长度为下行同步物理信道长共 811Tc 的延迟 线, 在 LA愁头上, 和 LA极性序列 a2, ...a8]相乘后,使用 8个加法器来 实现 U极性匹配。 其结构图如图 4所示: The LA polarity matching unit is a delay line with a total length of 811Tc in the downlink synchronization physical channel. After LA multiplication, it is multiplied with the LA polarity sequence a 2 , ... a 8 ], and then 8 adders are used to Achieve U polarity matching. Its structure is shown in Figure 4:
LA 匹配滤波器在平方运算后的输出为在每一个采样点上的信号强度 (这里取采样率为 l/4Tc )。  The output of the LA matched filter after the square operation is the signal strength at each sampling point (here, the sampling rate is 1 / 4Tc).
LA能量合并单元的作用是合并下行同步信道每一个时隙上的能量。  The function of the LA energy combining unit is to combine the energy on each time slot of the downlink synchronization channel.
LA 能量合并单元(LA Eng combining )是一段长度为下行同步物理 信道长共 811Tc的延迟线, 并使用 8个加法器来实现 LS符号的能量合并。 其结构图如图 5所示。  The LA energy combining unit (LA Eng combining) is a delay line with a total length of 811Tc for the downlink synchronous physical channel, and uses eight adders to achieve the energy combining of the LS symbols. Its structure is shown in Figure 5.
能量分配 Gen单元 ( Power Prof i le Gen )功能如下: The functions of the Power Distribution Gen Unit (Power Prof i le Gen) are as follows:
如果第 i 个 LS MF在平方运算后的输入大于来自 K*LA combining 的 输入, 则相应的第 i路输出为第 i个 LS MF在平方运算后的输入, 否则第 i路输出为 0。 这里 K为预置参数。  If the input of the i-th LS MF after square operation is greater than the input from K * LA combining, then the corresponding i-th output is the input of the i-th LS MF after square operation, otherwise the i-th output is 0. Here K is the preset parameter.
峰值检测器和信道检测器的操作过程如下所述: The operation of the peak detector and channel detector is as follows:
在每一 24ms 时间内, 根据初始帧边界检测得到的初始帧边界位置, 确 定下行同步物理信道的搜索时间窗, 在搜索时间窗内找到匹配滤波器输出 的峰值信号强度 (Sk)和相应的位置 Xk Within each 24ms time, according to the initial frame boundary position obtained from the initial frame boundary detection, a search time window of the downlink synchronization physical channel is determined, and the peak signal strength (S k ) of the matched filter output and the corresponding Position X k
搜索时间窗的确定如下:  The search time window is determined as follows:
能量分配 Gen单元 (Power Prof i le Gen 单元)在一个超帧时间内 共输出 4* 30720个样点, 记为 PowerProf i le tl. . 30720*4]  Energy distribution Gen unit (Power Prof i le Gen unit) outputs a total of 4 * 30720 samples in a superframe time, recorded as PowerProf i le tl.. 30720 * 4]
记初始帧边界检测得到的初始帧边界位置为 FrameBoundaryLoc, 确定 搜索 时 间 窗 为 PowerProf i le [FraraeBoundaryLoc+72*4+811*4-40*4. . FrameBoundaryLoc+72*4+811*4+40*4]  Record the initial frame boundary position obtained by the initial frame boundary detection as FrameBoundaryLoc, and determine the search time window as PowerProf i le [FraraeBoundaryLoc + 72 * 4 + 811 * 4-40 * 4.. FrameBoundaryLoc + 72 * 4 + 811 * 4 + 40 * 4]
对每一帧搜索时间窗内找到的峰值信号强度 (Sk)和相应的位置 Xk, 进行 滑动窗口为 M帧的滑动观测, 得到下行同步物理信道的当前信号强度 Sc和 平均帧起始位置 Yc。 共分为以下 3步: For the peak signal strength (S k ) and the corresponding position X k found in the search time window of each frame, a sliding observation with a sliding window of M frames is performed to obtain the current signal strength Sc and Average frame start position Yc. It is divided into the following 3 steps:
第一步: 取 : i = 1, 2, ..., M}为长度为 M 帧滑动观测的峰值信 号位置, : i = 1,2, ..., M}为相应的峰值信号能量, 计算所有满足 和 的距离小于等于 d的峰值位置的个数;也就是说,找到所有满足 I Χ』一 I, I < d , j = 1, 2, ..., Μ 的 Xj, 并计算 Xj的个数。 对应于 Xi的峰值位置 个数计为 Ci; Step 1: Take: i = 1, 2, ..., M} is the peak signal position of sliding observation of M frames, and i = 1,2, ..., M} is the corresponding peak signal energy, Calculate the number of peak positions where the distance that satisfies the sum is less than or equal to d; that is, find all Xj that satisfy I χ′-I, I <d, j = 1, 2, ..., Μ, and calculate Xj Number of. The number of peak positions corresponding to Xi is counted as C i;
第二步: 在 M帧观测中找到 Cm = max { C, : i = 1, 2, ..., M} . 取 对应的 Xi为峰值位置输出; 如果对应于当前帧 ½的峰值位置数 CM大于或 等于 Nthl, 将当前帧峰值能量为峰值信号能量输出, 否则峰值信号能量输 出为 -1; Step 2: Find Cm = max {C,: i = 1, 2, ..., M} in the M frame observation. Take the corresponding Xi as the peak position output; if it corresponds to the peak position number C of the current frame ½ M is greater than or equal to Nthl, and the peak signal energy of the current frame is output as the peak signal energy, otherwise the peak signal energy is output as -1;
第三步: 将滑动窗口右移一位, 重复第一步。  Step 3: Move the sliding window to the right by one position and repeat the first step.
注: 下面给出了一种计算 Cm的实现算法:  Note: An implementation algorithm for calculating Cm is given below:
取 Count[0: M]为保存 { Ci : i = 0, 1, …, M}的一维数组, X[0:M]为 保存每一帧输出的峰值能量位置的一维数组;  Take Count [0: M] as a one-dimensional array holding {Ci: i = 0, 1,…, M}, and X [0: M] as a one-dimensional array holding the peak energy position of each frame output;
Xt为当前帧峰值能量位置输入;  Xt is the peak energy position input of the current frame;
St为当前帧峰值能量输入。  St is the peak energy input for the current frame.
Yc为本次超帧起始位置输出;  Yc is output for the start position of this superframe;
Sc为本次下行同步物理信道能量输出。  Sc is the energy output of the downlink synchronous physical channel.
〃这里数组 Count [0:M]内单元初始化为 M, , 数组 S[ ]初始化为 0,数 组 X[0:M]初始化为 0  〃Here the elements in the array Count [0: M] are initialized to M,, the array S [] is initialized to 0, and the array X [0: M] is initialized to 0.
〃经过 M帧后输出检测结果  输出 Output detection results after M frames
For i =1 , i < M, i++{  For i = 1, i <M, i ++ {
II将最早一帧的输入和新的输入相比较  II compares the input of the earliest frame with the new input
if I X[i]-X[0] I < d  if I X [i] -X [0] I <d
Count [i] - = 1;  Count [i]-= 1;
} 将数组 Count [ ]和数组 X [ 3从左向右移位, 移出最早的输入。 } Shift the array Count [] and the array X [3 from left to right to remove the oldest input.
Count [M] = 0; 〃计数器置 0  Count [M] = 0; 〃 counter is set to 0
X[M] = Xk; 〃读入最新的输入 X [M] = X k ; 〃 read the latest input
for i = 0, i < M, i++  for i = 0, i <M, i ++
〃将新的输入和前 M- 1帧的输入相比较  〃 Compare the new input with the input of the previous M-1 frame
if |X[i] - X[M] I < d  if | X [i]-X [M] I <d
{  {
Count [i]+ = 1; 〃更新已有的 m-1帧的计数器  Count [i] + = 1; 〃 update the counter of the existing m-1 frame
Count [M]+ =1; 〃置最新一帧的计数器  Count [M] + = 1; Set the counter of the latest frame
}  }
Count [M]—; 〃最新一帧的计数器减一  Count [M] —; 〃 decrement the counter of the latest frame
在计数器数组 {Count [i], i = 1, ..., Μ}中找到最大值 Nc, 和它在 数组内的编号 Ic  Find the maximum value Nc in the counter array {Count [i], i = 1, ..., Μ}, and its number Ic within the array
置这一帧内的峰值位置为 Yc = X[Ic], 峰值能量 St = S[Ic].  Set the peak position in this frame to Yc = X [Ic] and peak energy St = S [Ic].
if Count [M] > Nthl  if Count [M]> Nthl
Sc = St;  Sc = St;
else  else
Sc = 0; 进行下行同步物理信道检测: 如果 Nc 大于预置的门限 Nth2, 就认为 检测到相应的下行同步物理信道, 将 { Yc, Sc} 输出到信号能量测量和信 道选择器中。 如果 Nc 小于或等于预置的门限 Nth2, 就认为没能检测到相 应的下行同步物理信道, 置 Yc = - 1, Sc = -1, 将{ Yc, Sc} 输出到信号 能量测量和信道选择器中。  Sc = 0; Perform downlink synchronization physical channel detection: If Nc is greater than the preset threshold Nth2, it is considered that the corresponding downlink synchronization physical channel is detected, and {{Yc, Sc} is output to the signal energy measurement and channel selector. If Nc is less than or equal to the preset threshold Nth2, it is considered that the corresponding downlink synchronization physical channel cannot be detected. Set Yc =-1, Sc = -1, and output {Yc, Sc} to the signal energy measurement and channel selector. in.
信道选择器将在所有检测到的扇区中选择一个作为激活扇区, 移动台 将对这个扇区的信号进行解调和多径接收。 是移动台选择哪一个扇区作为 激活扇区是由上层决定的, 物理层只是将测量结果艮告给上层。 物理层在接收到上层哪一个扇区作为激活扇区的指示后, 将其对应的The channel selector will select one of the detected sectors as the active sector, and the mobile station will demodulate and multipath receive the signals in this sector. Which sector the mobile station chooses as the active sector is determined by the upper layer, and the physical layer simply reports the measurement result to the upper layer. After receiving the indication of which sector in the upper layer is the active sector, the physical layer
Yc - 72*4- 811*4 作为移动台下行帧定时的起始位置。 移动台将根据帧定时 的起始位置进行多径搜索, RAKE接收, 定时跟踪的功能。 Yc-72 * 4- 811 * 4 is used as the starting position of the downlink frame timing of the mobile station. The mobile station will perform multipath search, RAKE reception, and timing tracking functions according to the starting position of the frame timing.
I/O和参数: I / O and parameters:
输入信号: 基带滤波器的输出, 信号速率 4fc;  Input signal: output of baseband filter, signal rate 4fc;
帧边界位置;  Frame boundary position
输出信号: 所有检测到扇区下行同步物理信道的信号能量和帧起始 位置 { Yc, Sc};  Output signal: the signal energy and frame start position {Yc, Sc} of all detected downlink downlink physical channels;
参数配置: K = 1;  Parameter configuration: K = 1;
M = 10;  M = 10;
Nthl = 3;  Nthl = 3;
Nth2 = 5。  Nth2 = 5.
本发明的有益效果在于, 通过提供一种小区搜索和选择的方法及装置 , 用以搜索所有可能的小区标志序列(cel l ID sequence) , 检测到所有足够 信号强度的小区 /扇区, 得到了目的小区 / 扇区使用的 LS码组和 间隔排 列的信息。 建立了和选择小区的下行同步。  The beneficial effect of the present invention is that by providing a cell search and selection method and device for searching all possible cell ID sequences, and detecting all cells / sectors with sufficient signal strength, we obtain Information about the LS code group and interval used by the destination cell / sector. Downlink synchronization with the selected cell is established.

Claims

权 利 要 求 Rights request
1. 一种小区搜索和选择的方法, 其特征在于包括以下步驟:  1. A method for cell search and selection, comprising the following steps:
对输入信号进行 LS匹配滤波;  Perform LS matching filtering on the input signal;
将 LS匹配滤波后的信号分别进行 LA极性匹配, 平方和 LA能量合并的 处理, 并将处理后的信号进行能量分布处理处理;  The LS matched and filtered signals are respectively processed by LA polarity matching, squared and LA energy combined, and the processed signals are processed by energy distribution processing;
将能量分布处理处理后的信号进行峰值检测和信道检测;  Perform peak detection and channel detection on the signal after energy distribution processing;
对信道检测后的信号进行信道选择; 实现小区搜索和选择。  Perform channel selection on the signal after channel detection; realize cell search and selection.
2. 根据权利要求 1所述的方法, 其特征在于, 所述的 LS 匹配滤波包 括:  2. The method according to claim 1, wherein the LS matched filtering comprises:
如果定义 · = ^;  If defined = = ^;
且设 LS码波形为? (t) = cRe(t) + cIm(t), 0≤t≤LTc, 这里取 Z为 LS码的长 度; . And let the LS code waveform be? (t) = c Re (t) + c Im (t), 0≤t≤LT c , where Z is the length of the LS code;.
则 LS 匹配滤波的冲击响应函数为:  Then the shock response function of LS matched filtering is:
h{t) = K (0 + Am (0 =
Figure imgf000015_0001
= cRe (Γ - - jclm (Τ - 1) ' 0≤t≤LTc , 这里取 T = LTC
h (t) = K (0 + A m (0 =
Figure imgf000015_0001
= c Re (Γ--jc lm (Τ-1) '0≤t≤LT c , where T = LT C
对应于输入信号 ^ + ^^); 有:  (Corresponds to the input signal ^ + ^^);
LS的匹配滤波输出信号为:  The matched filtered output signal of LS is:
® /7( =[¾( + j lm (t)] ® [hRe ( + jhim (ή] 对输出信号进行模平方运算后, 输出信号为: ® / 7 (= [¾ (+ j lm (t)] ® [h Re (+ jh im (ή) After performing modulo-square operation on the output signal, the output signal is:
对复数 b ,
Figure imgf000015_0002
For complex number b,
Figure imgf000015_0002
.
3. 根据权利要求 1所述的方法, 其特征在于, 所述的将 LS 匹配滤波 后的信号分别进行 LA极性匹配, 平方和 LA能量合并的处理是指:  3. The method according to claim 1, wherein the processing of performing LA polarity matching on the LS-matched and filtered signals, and combining the squared and LA energy means:
可对 LS匹配滤波后的信号分别进行不同的 LA极性匹配及平方处理; 并对 LS匹配滤波后的信号进行平方及 LA极性匹配处理。 Different LA polarity matching and squaring processing can be performed on the LS matched filtered signals respectively; and squared and LA polarity matching processing can be performed on the LS matched filtered signals.
4. 根据权利要求 1或 3所述的方法, 其特征在于, 所述的 LA极性匹 配是一段长度为下行同步物理信道长的延迟线, 在 LA愁头上, 和 LA极性 序列 [^, a2, ...¾]相乘后,使用 LS符号数个加法器来实现 LA极性匹配, 这 里 N为 LS符号数, 即下行同步物理信道所包含的 LS码的个数。 4. The method according to claim 1 or 3, wherein the LA polarity matching is a delay line having a length of a downlink synchronization physical channel, and on the LA line, and the LA polarity sequence [^ , A 2 , ... ¾] are multiplied by using LS symbol number adders to achieve LA polarity matching, where N is the number of LS symbols, that is, the number of LS codes included in the downlink synchronization physical channel.
5. 根据权利要求 1 所迷的方法, 其特征在于, 所述的 LA能量合并是 一段长度为下行同步物理信道长共延迟线, 并使用符号数个加法器来实现 LS符号的能量合并。  5. The method according to claim 1, wherein the LA energy combining is a length of a long common delay line of a downlink synchronization physical channel, and the number of adders of the symbols is used to implement the energy combining of the LS symbols.
6. 根据权利要求 1所述的方法, 其特征在于, 所述的能量分布处理包 括: 如果笫 i个 LS 匹配滤波在平方运算后的输入大于来自 K*LA合并的输 入, 则相应的笫 i路输出为笫 i个 LS匹配滤波在平方运算后的输入, 否则 第 i路输出为 0, 这里 K为预置参数。  6. The method according to claim 1, wherein the energy distribution processing comprises: if the input of LSi LS matched filters after squaring operation is greater than the input from K * LA merging, then 相应 i The output of the channel is the input of the 笫 i LS matched filter after the square operation, otherwise the output of the ith channel is 0, where K is the preset parameter.
7. 根据权利要求 1所述的方法, 其特征在于, 所迷的峰值检测包括: 在每一帧时间内, 根据初始帧边界检测得到的初始帧边界位置, 确定 下行同步物理信道的搜索时间窗, 在搜索时间窗内找到匹配滤波器输出的 峰值信号强度 (Sk)和相应的位置 Xk7. The method according to claim 1, wherein the detected peak detection comprises: within each frame time, determining a search time window of a downlink synchronization physical channel according to an initial frame boundary position obtained by initial frame boundary detection. , Find the peak signal strength (S k ) and the corresponding position X k of the output of the matched filter within the search time window;
所述的搜索时间窗的确定如下:  The determination of the search time window is as follows:
记基带数字信号的每码片的过采样率为 Fs,—帧时间内共有 Nc个码片, 搜索时间窗长为 Nw个码片, LS码长为 Nls个码片, LA码长为 Nla个码片。  Note that the oversampling rate of each chip of the baseband digital signal is Fs. There are Nc chips in the frame time, the search time window is Nw chips, the LS code length is Nls chips, and the LA code length is Nla. Chip.
所述的能量分布处理单元在一个超帧时间内共输出 Fs*Nc 个样点, 记 为 PowerProf i le [1. . Fs*Nc];  The energy distribution processing unit outputs a total of Fs * Nc samples within one superframe time, which is denoted as PowerProf i le [1.. Fs * Nc];
记初始帧边界检测得到的初始帧边界位置为: FrameBoundaryLoc; 确定搜索时间窗为 PowerProf i le [FrameBoundaryLoc + ( Nl s+Nla-Nw ) *Fs. . FrameBoundaryLoc + ( Nls+Nla + Nw ) *Fs];  Record the initial frame boundary position obtained from the initial frame boundary detection as: FrameBoundaryLoc; Determine the search time window as PowerProf i le [FrameBoundaryLoc + (Nl s + Nla-Nw) * Fs.. FrameBoundaryLoc + (Nls + Nla + Nw) * Fs] ;
对每一帧搜索时间窗内找到的峰值信号强度(Sk)和相应的位置 Xk, 进 行滑动窗口为 M帧的滑动观测, 得到下行同步物理信道的当前信号强度 Sc 和平均帧起始位置 Yc; 共分为以下 3步: 第一步: 取 : i = 1, 2 , ..., M}为长度为 M帧滑动观测的峰值信 号位'置, : i = 1, 2, ..., M}为相应的峰值信号能量, 计算所有满足 和 的距离小于等于 d的峰值位置的个数;也就是说,找到所有满足 I - I ≤ d , j = 1, 2 , ..., M 的 Χ』, 并计算 X』的个数。 对应于 的峰值位置 个数计为 Ci; . For the peak signal strength (S k ) and the corresponding position X k found in the search time window of each frame, a sliding observation of a sliding window of M frames is performed to obtain the current signal strength Sc of the downlink synchronization physical channel and the average frame start position Yc; is divided into the following 3 steps: Step 1: Take: i = 1, 2, ..., M} is the peak signal position of the sliding observation of M frames, and i = 1, 2, ..., M} is the corresponding peak signal. Energy, calculate the number of peak positions where the distance of all satisfies is less than or equal to d; that is, find all X's that satisfy I-I ≤ d, j = 1, 2, ..., M 'and calculate X' Number of. The number of corresponding peak positions is counted as C i;.
笫二步: 在 M帧观测中找到 Cm = max { Cj : i = 1, 2 , .. ,, M}, 取 对应的 Xi为峰值位置输出; 如果对应于当前帧 XM的峰值位置数 CM大于或 等于 Nthl , 将当前帧峰值能量为峰值信号能量输出, 否则峰值信号能量输 出为- 1 ; 笫 Step 2: Find Cm = max {Cj: i = 1, 2, ..,, M} in the M frame observation, and take the corresponding Xi as the peak position output; if it corresponds to the peak position number C of the current frame X M M is greater than or equal to Nthl, and the peak signal energy of the current frame is output as the peak signal energy, otherwise the peak signal energy is output as -1;
第三步: 将滑动窗口右移一位, 重复笫一步。  Step 3: Move the sliding window to the right by one position and repeat the next step.
8. 根据权利要求 1所述的方法, 其特征在于, 所述的信道检测包括: 如果 Nc 大于预置的门限 Nth2 , 就认为检测到相应的下行同步物理信 道, 将 { Yc, Sc} 输出到信号能量测量和信道选择器中; 如果 Nc小于或等 于预置的门限 Nth2, 就认为没能检测到相应的下行同步物理信道, 置 Yc - -1 , Sc = -1 , 将{ Yc, Sc} 输出到信号能量测量和信道选择器中。  8. The method according to claim 1, wherein the channel detection comprises: if Nc is greater than a preset threshold Nth2, it is considered that a corresponding downlink synchronization physical channel is detected, and output {Yc, Sc} to Signal energy measurement and channel selector; if Nc is less than or equal to the preset threshold Nth2, it is considered that the corresponding downlink synchronization physical channel cannot be detected, set Yc--1, Sc = -1, and set {Yc, Sc} Output to signal energy measurement and channel selector.
9. 根据权利要求 1所述的方法, 其特征在于, 所述的信道选择将在所 有检测到的扇区中选择一个作为激活扇区, 移动台将对这个扇区的信号进 行解调和多径接收; 移动台选择哪一个扇区作为激活扇区由上层决定, 物 理层只是将测量结果寺艮告给上层;  9. The method according to claim 1, wherein, in the channel selection, one of all detected sectors is selected as an active sector, and the mobile station will demodulate and multiply signals in this sector. Path reception; which sector the mobile station chooses as the active sector is determined by the upper layer, and the physical layer simply reports the measurement results to the upper layer;
物理层在接收到上层哪一个扇区作为激活扇区的指示后, 将其对应的 Yc- ( Nl s+Nla ) *Fs作为移动台下行帧定时的起始位置;  After receiving the indication of which sector in the upper layer is the active sector, the physical layer uses the corresponding Yc- (Nls + Nla) * Fs as the starting position of the downlink frame timing of the mobile station;
移动台将根据帧定时的起始位置进行多径搜索, RAKE接收, 定时跟踪。  The mobile station will perform multipath search, RAKE reception, and timing tracking according to the starting position of the frame timing.
10. 一种小区搜索和选择的装置, 其中包括: LS匹配滤波器, LA极性 匹配单元, 平方单元, LA能量合并单元, 能量分布处理单元, 峰值检测器, 信道检测器, 信道选择器;  10. A device for cell search and selection, comprising: an LS matched filter, an LA polarity matching unit, a squaring unit, an LA energy combining unit, an energy distribution processing unit, a peak detector, a channel detector, and a channel selector;
输入信号输入 LS匹配滤波器; LS 匹配滤波器的输出信号分別输入 LA极性匹配单元, 平方单元和 LA 能量合并单元; 平方单元的输出信号和 LA能量合并单元的输出信号输入能 量分布处理单元; Input signal input LS matched filter; The output signals of the LS matched filter are respectively input to the LA polarity matching unit, the square unit and the LA energy combining unit; the output signals of the square unit and the LA energy combining unit are input to the energy distribution processing unit;
能量分布处理单元的输出信号输入峰值检测器; 峰值检测器的输出信 号输入信道检测器;  The output signal of the energy distribution processing unit is input to the peak detector; the output signal of the peak detector is input to the channel detector;
信 it检测器的输出信号输入信道选择器; 信道选择器输出信号。  The output signal of the it detector is input to the channel selector; the channel selector output signal.
11. 根据权利要求 10所述的装置, 其特征在于, 所述的 LS 匹配滤波 器包括:  The device according to claim 10, wherein the LS matched filter comprises:
如果定义_= ^1,  If _ = ^ 1,
且设 LS码波形为?(t) = cRe(0+ jclm{t) , ≤t≤LTc, 这里取 为 LS码的长 度; And let the LS code waveform be? (t) = c Re (0+ jc lm {t), ≤t≤LT c , here is taken as the length of the LS code;
则 LS 匹配滤波器的冲击响应函数为:  Then the impulse response function of the LS matched filter is:
Kt)
Figure imgf000018_0001
(T - 1) , 0≤t≤LTc , 这里取 T二 LTC
Kt)
Figure imgf000018_0001
(T-1), 0≤t≤LT c , where T is LT C ;
对应于输入信号? (0 = (0+ taW; 有: Corresponds to the input signal? (0 = (0+ ta W; yes:
LS的匹配滤波器的输出信号为:  The output signal of the matched filter of LS is:
?( ®¾( = ( + ta( ]®[/%e( +Am( ] ? (®¾ (= (+ ta (] ® [/% e (+ A m (]
= ¾ (0 ® (0 - ¾ (0 ® ( + j[sRe (t) ® h (t) + Slm (0 ® hKe (/)]; = ¾ (0 ® (0-¾ (0 ® (+ j [s Re (t) ® h (t) + Slm (0 ® h Ke (/)];
对输出信号进行模平方运算后, 输出信号为:  After performing the modulo-square operation on the output signal, the output signal is:
对复数
Figure imgf000018_0002
To plural
Figure imgf000018_0002
.
12. 根据权利要求 10所述的装置, 其特征在于, 所述的 LS 匹配滤波 器的输出信号分别输入 LA极性匹配单元, 平方单元和 LA能量合并单元包 括 ··  12. The device according to claim 10, wherein the output signals of the LS matched filter are respectively input to a LA polarity matching unit, and a square unit and a LA energy combining unit include ··
所述的 LS匹配滤波器的输出信号分别输入每个不同 LA极性匹配单元; 每个不同 LA极性匹配单元的输出信号分别输入每个平方单元;  The output signal of the LS matched filter is input to each different LA polarity matching unit; the output signal of each different LA polarity matching unit is respectively input to each square unit;
所述的 LS匹配滤波器的输出信号输入 1个平方单元和与该平方单元连 接的 LA能量合并单元。 The output signal of the LS matched filter is input to a square unit and connected to the square unit. Connected LA energy merger unit.
13. 根据权利要求 10或 12所述的装置, 其特征在于, 所述的 LA极性 匹配单元包括: 长为下行同步物理信道长的延返线, 抽头乘法器, 加法器。  13. The apparatus according to claim 10 or 12, wherein the LA polarity matching unit comprises: a delay line having a length of a downlink synchronization physical channel, a tap multiplier, and an adder.
14. 根据权利要求 10所述的装置, 其特征在于, 所述的 能量合并 单元包括: 长为下行同步物理信道长的延迟线, 加法器。  14. The apparatus according to claim 10, wherein the energy combining unit comprises: a delay line having a length of a downlink synchronization physical channel, and an adder.
15. 根据权利要求 10所述的装置, 其特征在于, 所述的能量分布处理 单元包括: 如果第 i个 LS 匹配滤波在平方运算后的输入大于来自 K*LA合 并的输入,则相应的第 i路输出为第 i个 LS匹配滤波在平方运算后的输入, 否则第 i路输出为 0, 这里 K为预置参数。  15. The device according to claim 10, wherein the energy distribution processing unit comprises: if the input of the i-th LS matched filter after the square operation is greater than the input from the K * LA combination, the corresponding first The output of channel i is the input of the i-th LS matched filter after the square operation, otherwise the output of channel i is 0, where K is the preset parameter.
16. 根据权利要求 10所述的装置, 其特征在于, 所述的峰值检测器包 括: 可在每一帧时间内, 根据初始帧边界检测得到的初始帧边界位置, 确 定下行同步物理信道的搜索时间窗, 并在搜索时间窗内找到匹配滤波器输 出的峰值信号强度 (sk)和相应的位置 xk的模块。 16. The apparatus according to claim 10, wherein the peak detector comprises: determining, within each frame time, a search for a downlink synchronization physical channel according to an initial frame boundary position obtained by initial frame boundary detection. Time window, and find the module of the peak signal strength (s k ) of the matched filter output and the corresponding position x k within the search time window.
17. 根据权利要求 10所述的装置, 其特征在于, 所述的信道检测器包 括: ,  17. The apparatus according to claim 10, wherein the channel detector comprises:
如果 Nc 大于预置的门限 Nth2 , 就认为检测到相应的下行同步物理信 道, 将 { Yc, Sc} 输出到信号能量测量器和信道选择器中; 如果 Nc小于或 等于预置的门限 Nth2 ,就认为没能检测到相应的下行同步物理信道,置 Yc = - 1 , Sc = - 1 , 将 { Yc, Sc) 输出到信号能量测量和信道选择器中。  If Nc is greater than the preset threshold Nth2, it is considered that the corresponding downlink synchronization physical channel is detected, and {Yc, Sc} is output to the signal energy measurer and channel selector; if Nc is less than or equal to the preset threshold Nth2, then It is considered that the corresponding downlink synchronization physical channel cannot be detected. Set Yc =-1 and Sc =-1 and output {Yc, Sc) to the signal energy measurement and channel selector.
18. 根据权利要求 10所述的装置, 其特征在于, 所述的信道选择器输 出信号给多路检测器和 D-DPCH接收机。  18. The apparatus according to claim 10, wherein the channel selector outputs signals to a multi-channel detector and a D-DPCH receiver.
19. ^^据权利要求 13所述的装置, 其特征在于, 所述的 LA极性匹配 单元可由 LS符号数个加法器构成。  19. The device according to claim 13, wherein the LA polarity matching unit is composed of a plurality of adders of LS symbols.
20. 根据权利要求 14所述的装置, 其特征在于, 所述的 LA能量合并 单元可由 LS符号数个加法器构成。  20. The apparatus according to claim 14, wherein the LA energy combining unit may be composed of a plurality of adders of LS symbols.
PCT/CN2003/000063 2003-01-23 2003-01-23 Method and device for searching and selecting cell WO2004066651A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003207222A AU2003207222A1 (en) 2003-01-23 2003-01-23 Method and device for searching and selecting cell
CN03805478.7A CN1640165A (en) 2003-01-23 2003-01-23 Method and device for searching and selecting cell
PCT/CN2003/000063 WO2004066651A1 (en) 2003-01-23 2003-01-23 Method and device for searching and selecting cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2003/000063 WO2004066651A1 (en) 2003-01-23 2003-01-23 Method and device for searching and selecting cell

Publications (1)

Publication Number Publication Date
WO2004066651A1 true WO2004066651A1 (en) 2004-08-05

Family

ID=32739360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000063 WO2004066651A1 (en) 2003-01-23 2003-01-23 Method and device for searching and selecting cell

Country Status (3)

Country Link
CN (1) CN1640165A (en)
AU (1) AU2003207222A1 (en)
WO (1) WO2004066651A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183014A (en) * 1996-10-18 1998-05-27 松下电器产业株式会社 Mobile station
US6185423B1 (en) * 1999-05-28 2001-02-06 3Com Corporation Method and apparatus for selecting a communication channel in a communication network
WO2001095656A1 (en) * 2000-06-05 2001-12-13 Linkair Communications, Inc. Methods for assigning radio resources

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183014A (en) * 1996-10-18 1998-05-27 松下电器产业株式会社 Mobile station
US6185423B1 (en) * 1999-05-28 2001-02-06 3Com Corporation Method and apparatus for selecting a communication channel in a communication network
WO2001095656A1 (en) * 2000-06-05 2001-12-13 Linkair Communications, Inc. Methods for assigning radio resources

Also Published As

Publication number Publication date
CN1640165A (en) 2005-07-13
AU2003207222A1 (en) 2004-08-13

Similar Documents

Publication Publication Date Title
KR100881169B1 (en) Method and apparatus for generating forward link frame, and method and apparatus for searching cell
CN1135725C (en) Search window delay tracking in code division multiple access communication systems
USRE42827E1 (en) Apparatus and method for synchronizing channels in a WCDMA communication system
US8005129B2 (en) Acquisition circuit for low chip rate option for mobile telecommunication system
KR100922857B1 (en) System and method for impulse-radio ultra-wideband receiver
RU2248105C2 (en) System for autonomous control of searching call
EP2680518B1 (en) Method and apparatus of cross-correlation with application to channel estimation and detection
KR100779092B1 (en) Cell search method, forward link frame transmissin method, apparatus using the same and forward link frame structure
JP2010507315A (en) TDM-based cell search method for OFDM cellular system
JP2003037580A (en) Synchronization of mobile station in spread spectrum communication system
SE520542C2 (en) Method and apparatus for coherent communication in a spread-spectrum system
SE516144C2 (en) Time synchronization of a receiver in a digital radio telephone system
EP1619807B1 (en) Chip equalizer for spread spectrum receiver
WO2007010331A1 (en) Preamble detection
WO2004066531A1 (en) A method and apparatus for detecting original frame boundary based on a las-cdma system
CN101640549B (en) Method for detecting activation of terminal code channel of TD-SCDMA system
SE518787C2 (en) Method and receiver for demodulating a received signal
JPH1098446A (en) Parallel capture system utilizing reference matching filter
WO2004066651A1 (en) Method and device for searching and selecting cell
CN103596260B (en) The slotted synchronous method and system of multicarrier gsm system
JP2001036432A (en) Receiver having improved performance for cdma transmission and its method
CN103037411B (en) LTE system secondary synchronization code detection method and device
JP2003283371A (en) Synchronism establishing device of receiver and its method
JPH11266475A (en) Method for identifying code of base station and mobile station
Yan et al. On-off keying assisted acquisition scheme for burst mode DS/SS packet radio

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 20038054787

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC DATED 28-11-2005

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP