WO2004065375A1 - Processes for the preparation of escitalopram and its precursor - Google Patents

Processes for the preparation of escitalopram and its precursor Download PDF

Info

Publication number
WO2004065375A1
WO2004065375A1 PCT/IN2003/000220 IN0300220W WO2004065375A1 WO 2004065375 A1 WO2004065375 A1 WO 2004065375A1 IN 0300220 W IN0300220 W IN 0300220W WO 2004065375 A1 WO2004065375 A1 WO 2004065375A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
preparation
xii
acid
Prior art date
Application number
PCT/IN2003/000220
Other languages
French (fr)
Inventor
Venkaiah Chowdary Nannapaneni
Pulla Reddy Muddasani
Sambashiva Rao Talasila
Srinivasa Rao Nekkanti
Khadgapathi Podile
Original Assignee
Natco Pharma Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natco Pharma Limited filed Critical Natco Pharma Limited
Priority to AU2003242990A priority Critical patent/AU2003242990A1/en
Publication of WO2004065375A1 publication Critical patent/WO2004065375A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages

Definitions

  • the present invention relates to an improved process for the preparation of escitalopram.
  • Escitalopram is one of the enantiomers of the well-known antidepressant drug, citalopram which [l-((3-dimethylamino)propyl)-l-(4 1 -fluorophenyl)-l,3-dihydro-5-iso- benzofurancarbonitrile] has the formula-I given below:
  • This invention also relates to a process for the preparation of an intermediate useful for the preparation of escitalopram.
  • Citalopram is a well-known antidepressant drug available in the market for some years. It is a selective, centrally acting serotonin (5-HT) reuptake inhibitor, is accordingly having the antidepressant activity.
  • the antidepressant activity of citalopram has been reported in several publications, e.g. J. Hyttel, Prog. Neuro-Psychophannacol. & Biol. Psychiat, 1982, 6, 277-295 and A. Gravem, Acta Psychiatr. Scand., 1987, 75, 478-486.
  • the main objective of the present invention is to provide an improved process for the preparation of escitalopram, which is commercially applicable.
  • Another objective of the present invention is to provide an improved process for the preparation of escitalopram avoiding the usage of 5-cyanophthalide thereby making the process simple and economical.
  • Yet another objective of the present invention is to provide an improved process for the preparation of escitalopram avoiding the purification techniques for the intermediates formed in the process thereby making the process further simpler and economical.
  • Still another objective of the present invention is to provide an improved process for the preparation of escitalopram wherein the overall yield is 25-35%.
  • di-magnesium salt derived from 5-cyanophthalide will not crystallize out from the reaction mixture under above-mentioned conditions (usage of non-polar co-solvent in Grignard reaction) for its bromo-analogue.
  • the crystallization property to the di-magnesium salt of the formula-XII seems to be specific.
  • the usage of a co-solvent in the double Grignard reaction on 5- bromophthalide and identification of crystalline property to the resulting di-magnesium salt and its isolation by filtration to get pure compound of the formula- XII is the novelty of the invention. Crystalline property of the resulting di-magnesium salt has not been identified earlier and also it has not been isolated.
  • the Grignard reaction in steps (i) and (ii) may be effected at a temperature in the range of -25°C to 0°C preferably at a temperature in the range of -20°C to -10°C.
  • the non-polar co-solvent used in steps (i) and (ii) may be benzene, toluene, cyclohexane, etc., preferably toluene or cycohexane.
  • the neutralization reagent used in step (iii) may be organic or mineral acid.
  • the organic acid can be acetic acid, propionic acid, oxalic acid, succinic acid, ammonium chloride, etc.
  • the mineral acid can be hydrochloric acid, sulfuric acid, etc.
  • the solvent used in resolution step may be methanol, ethanol, isopropanol, ethyl acetate, acetone, acetonitrile, or a mixture thereof.
  • the solvent used in cyclization step may be methylene chloride, toluene, cyclohexane, tetrahydrofuran, isopropyl ether, ether, acetonitrile, etc.
  • the cyanation step may be done in N,N- dimethylformamide, N,N-dimethylacetamide, pyridine, N-methyl-2-pyrrolidone, etc.
  • the pharmaceutically acceptable oxalate salt formation can be done in solvents like, methanol, ethanol, isopropanol, water, acetone, acetonitrile, or a mixture thereof.
  • the Grignard solution prepared from 90gr of 4-fiuorobromobenzene and 13gr magnesium turnings in 450ml of THF was added drop wise to a suspension of 5- bromophthalide (lOOgr) in THF (400ml) at -15 to -10°C under nitrogen atmosphere. After the addition was completed, the reaction mixture was stirred at same temperature for another 3hrs.
  • the second Grignard reagent prepared from 68gr of 3- (dimethylamino)propyl chloride and 16gr of magnesium turnings in THF (300ml) and toluene (300ml) was added to the above reaction mixture at -15 to 0°C over a period of 2- 3hrs and maintained for additional lhr.
  • the solid di-magnesium compound of formula-XLI obtained above was suspended in 1000ml of water and treated with lOOgr of ammonium chloride. After stirring for 30min, product was extracted into toluene (1 x 500ml, 2 x 200ml) and the combined organic layer treated with lOgr of active charcoal. Toluene was distilled off from the reaction mixture below 60°C and to the residue di-isaopropyl ether was added. The crystalline compound of formula-IV was isolated by filtration to get 130gr (70% based on 5- bromophthalide). Melting point: 118-120°C. Purity by HPLC: 98.5%.
  • the dihydroxy compound of formula-IV (lOOgr) was dissolved in 300ml of isopropyl alcohol at 40-45°C.
  • Solid (+)-di-p-toluoyltartaric acid monohydrate (50gr) was added to the reaction mixture and kept under stirring for overnight at 20-25°C.
  • the crystals formed in the reaction mixture were filtered and washed with 50ml of isopropyl alcohol to get 55gr (74%) of (-)-4-bromo- ⁇ 1 -(4-fluorophenyl)- ⁇ 1 -[3-(dimethylamino)propyl]- 1,2-benzenedimethanol, hemi (+)-di-p-toluoyltartaric acid salt. Melting point: 126-130°C.
  • the Grignard solution prepared from 90gr of 4-fluorobromobenzene and 13gr magnesium turnings in 450ml of THF was added drop wise to a suspension of 5- bromophthalide (lOOgr) in THF (400ml) at -15 to -10°C under nitrogen atmosphere. After the addition was completed, the reaction mixture was stirred at same temperature for another 3hrs.
  • the second Grignard reagent prepared from 68gr of 3- (dimethylamino)propyl chloride and 16gr of magnesium turnings in THF (300ml) and cyclohexane (300ml) was added to the above reaction mixture at -15 to 0°C over a period of 2-3hrs and maintained for additional lhr.
  • the solid di-magnesium compound of formula-XII obtained above was suspended in 1000ml of water and treated with lOOgr of ammonium chloride. After stirring for 30min, product was extracted into ethyl acetate (1 x 500ml, 2 x 200ml) and the combined organic layer treated with lOgr of active charcoal. Ethyl acetate was distilled off from the reaction mixture below 50°C and to the residue di-isopropyl ether and hexane were added. The crystalline compound of formula-IV was isolated by filtration to get 75gr. Melting point: 117-120°C. Purity by HPLC: 98%.
  • the dihydroxy compound of formula-IV (70gr) was dissolved in 210ml of isopropyl alcohol at 40-45°C.
  • Solid (+)-di-p-toluoyltartaric acid monohydrate (35gr) was added to the reaction mixture and kept under stirring for overnight at 20-25°C.
  • the crystals formed in the reaction mixture were filtered and washed with 30ml of isopropyl alcohol to get 30gr (58%) of (-)-4-bromo- 1 -(4-fluorophenyl)- ⁇ 1 -[3-(dimethylamino)propyl]- 1,2-benzenedimethanol, hemi (+)-di-p-toluoyltartaric acid salt. Melting point: 126-130°C.
  • Escitalopram of formula-I can be prepared in a simple and easy to adopt manner without involving any tedious purification steps.
  • Escitalopram of formula-I can be prepared in >25% yield, which is better than the earlier known process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to an improved process for the preparation of escitalopram of the formula-I which consists of a sequential double Grignard reaction on 5-bromophthalide, isolation of di-magnesium salt, neutralization of di-magnesium salt, resolution of dihydroxy compound of the formula-IV and cyclization of resolved compound of the formula-IV, cyanation of compound of the formula-IV using DMF and copper(I)cyanide. The present process utilizes the insoluble property of di-magnesium salt of formula-XII in a mixture of THF and a non-polar organic solvent and separates it from impurities by simple filtration thereby making the isolation and purification process simple.

Description

PROCESSES FOR THE PREPARATION OF ESCITALOPRAM ND ITS PRECURSOR
The present invention relates to an improved process for the preparation of escitalopram. Escitalopram is one of the enantiomers of the well-known antidepressant drug, citalopram which [l-((3-dimethylamino)propyl)-l-(41-fluorophenyl)-l,3-dihydro-5-iso- benzofurancarbonitrile] has the formula-I given below:
Figure imgf000003_0001
This invention also relates to a process for the preparation of an intermediate useful for the preparation of escitalopram.
BACKGROUND OF THE INVENTION:
Citalopram is a well-known antidepressant drug available in the market for some years. It is a selective, centrally acting serotonin (5-HT) reuptake inhibitor, is accordingly having the antidepressant activity. The antidepressant activity of citalopram has been reported in several publications, e.g. J. Hyttel, Prog. Neuro-Psychophannacol. & Biol. Psychiat, 1982, 6, 277-295 and A. Gravem, Acta Psychiatr. Scand., 1987, 75, 478-486.
The process for the preparation of antidepressant citalopram and its pharmaceutoical properties were first disclosed in DE Patent no. 2,657,013 (1977) corresponding to US Patent no. 4,136,193 (1979). Subsequently it was also disclosed in GB patent no.1,526,331 (1978). The basic process for the preparation of citalopram described in the above-referred patents involves two major routes illustrated in Scheme- 1 and Scheme-2. Major difference in these two routes is introduction of dimethylaminopropyl side chain at an early stage (Scheme- 1) or at a later stage (Scheme- 2).
In the first route, 5-bromophthalide of the formula-II is reacted with p-fluorophenyl- magnesium bromide to get a benzophenone derivative of the formula-iπ. This benzophenone derivative is reacted with 3-(dimethylamino)propylmagnesium chloride to
Figure imgf000004_0001
Scheme- 1 Cyclization of the compound of the formula-IV with an acid catalyst resulted in the formation of phthalane derivative of the formula-V. This bromophthalane derivative is reacted with copper (I) cyanide to get the citalopram base of the formula-I.
In the second route, 5-bromophthalide of the formula-II is reacted with p-fluorophenyl- magnesium bromide to get the corresponding benzophenone derivative of the formula-Ill.
Figure imgf000005_0001
Scheme-2 This compound of the formula-Ill is reduced with lithium aluminum hydride to get the dihydroxy compound of the formula-VI, which is cyclized with an acid catalyst to get the phthalane derivative of the formula- VII. The bromo group is replaced with a cyano group and alkylated with the required side chain to get the citalopram base of the formula-I.
Another method for the preparation of citalopram base of the formula-I and an intermediate useful for the preparation of citalopram was described in U S. Pat. No. 4,650,884, according to which 5-cyanophthalide of formula-IX is reacted successively with p-fluorophenylmagnesium bromide and 3-(dimethylamino)propylmagnesium chloride to get the compound of the formula-XI which is reacted with 70% sulfuric acid to get the citalopram base (Scheme-3).
Figure imgf000006_0001
Scheme-3
Process for the preparation of escitalopram is disclosed in U. S. Pat. No. 4,943,590. According to this patent, attempts to crystallize the diastereomeric salts of citalopram enantiomers have failed. In this patent a process for the preparation of escitalopram was described by resolving the intermediate (compound of the formula-XI) of citalopram and ring closure of the resolved intermediate in a stereospecific manner to get the escitalopram (Scheme-4).
Figure imgf000007_0001
(+)-di-p-toluoyltartaric acid
(+)-di-p-toluoyltartaric acid and (-)-XI salt
IPA
Figure imgf000007_0002
Scheme-4 The main drawback in this process is the purity of the intermediate compound of the formula-XI obtained in the Grignard reaction, which is of 80-90% only. The crude compound of formula-XI needs extensive purification before proceeding for resolution. The purification technique given in the above patent process involves repeated charcoal and silica gel treatment to the compound of the formula-XI or its HBr salt. Also, during the HBr salt formation of compound of the formula-XI, the amount of HBr used in the process should be less than the molar quantity to avoid additional impurities formation. As the impurities present in the intermediate compound of the formula-XT have closely related properties such a purification technique is not viable on a commercial scale to make this intermediate and also the escitalopram. Also, the overall yield of escitalopram given in this patent is only 8.8% starting from 5-cyanophthalide of the formula-IX. Therefore such a low yielding process needs to be improved for commercial production of escitalopram.
Keeping in view of the difficulties in commercialization of the above-mentioned process for the preparation of escitalopram, we aimed to develop a simple and economical process for commercial production of escitalopram.
We observed that a promising approach for a process for the preparation of escitalopram will be to (a) avoid the usage of 5-cyanophthalide as starting material (b) avoid the purification of intermediates involved in making escitalopram thereby making the process commercially viable and economical.
Accordingly the main objective of the present invention is to provide an improved process for the preparation of escitalopram, which is commercially applicable.
Another objective of the present invention is to provide an improved process for the preparation of escitalopram avoiding the usage of 5-cyanophthalide thereby making the process simple and economical.
Yet another objective of the present invention is to provide an improved process for the preparation of escitalopram avoiding the purification techniques for the intermediates formed in the process thereby making the process further simpler and economical.
Still another objective of the present invention is to provide an improved process for the preparation of escitalopram wherein the overall yield is 25-35%.
As an alternative process for the preparation of escitalopram disclosed in the above mentioned prior art patent, we looked particularly into the original process developed by Lundbeck for dl-citalopram (Scheme-I above). In this route, the bromo-analogue (compound of the formula-IV) of the intermediate compound of the formula-XI can be separated into its enantiomers by conventional resolution techniques (preferential crystallization of diastereomeric salts) and converted into escitalopram. However, in the original process for the preparation of compound of the formula-IV no purity has been mentioned. It only says that the intermediate compound of the formula-IV is prepared in an analogous manner. The yield given for the analogous compound of the formula-IV is only 55%. Therefore, such a process needs to be improved with respect to the yield of the compound of the formula-IV and its quality for its commercial usage in making escitalopram. Also, the compound of formula-IV is described as an oil.
Surprisingly, we have found that if one does the sequential double Grignard reaction on 5-bromophthalide analogous to 5-cyanophthalide in tetrahydrofuran medium along with a non-polar co-solvent, the resulting magnesium salt (compound of the formula-XII) crystallizes from the reaction mass leaving all the related impurities in the reaction medium. The crystalline magnesium salt can be simply filtered off from the reaction mass and neutralized to get the pure compound of the formula-TV, an analogue of the compound of the formula-XI used in the known process for escitalopram. Although compound of the formula-IV is known, isolation of its magnesium salt in a pure form to get a pure product of the formula-IV is not known. We also found that di-magnesium salt derived from 5-cyanophthalide will not crystallize out from the reaction mixture under above-mentioned conditions (usage of non-polar co-solvent in Grignard reaction) for its bromo-analogue. The crystallization property to the di-magnesium salt of the formula-XII seems to be specific. The usage of a co-solvent in the double Grignard reaction on 5- bromophthalide and identification of crystalline property to the resulting di-magnesium salt and its isolation by filtration to get pure compound of the formula- XII is the novelty of the invention. Crystalline property of the resulting di-magnesium salt has not been identified earlier and also it has not been isolated. Such a crystalline property to the di- magnesium salt of the formula-XII in a mixture of tetrahydrofuran and a non-polar solvent eliminated all the unwanted impurities after filtering off the di-magnesium salt of the compound of formula-XII from the reaction mass. The dihydroxy compound of the formula-IV obtained by this process was found to be pure and crystalline and the yield was 70-75% of theory. The reaction scheme is illustrated below:
Figure imgf000010_0001
lll(not isolated)
Figure imgf000010_0002
XII (Isolated) IV
(+)-di-p-toluoyltartaric acid *- (+)-di-p-toluoyltartaric acid and (-)-IV salt
IPA
Figure imgf000010_0003
Scheme-5 Accordingly the present invention provides an improved process for the preparation of escitalopram of the formula-I,
Figure imgf000011_0001
which comprises:
(i) reacting 5-bromophthalide of the formula-II,
Figure imgf000011_0002
II with p-fluorophenylmagnesium bromide in THF medium with a non-polar co- solvent to get the benzophenone derivative of the formula-Ill,
Figure imgf000011_0003
(ii) reacting the benzophenone derivative of the formula-Ill with 3- (dimethylamino)propylrnagnesium chloride to get the crystalline di- magnesium salt of the formula-XII,
Figure imgf000012_0001
XII
(iii) Isolating the crystalline compound of the formula-XII by filtration and neutralizing the di-magnesium salt to get the dihydroxy compound of the formula-IV,
Figure imgf000012_0002
(iv) Resolving the compound of the formula-IV with (+)-di-p-toluoyltartaric acid by preferential crystallization to get its (-)-enatiomer salt with (+)-di-p- toluoyltartaric acid (v) Neutralizing the diastereomeric salt and reacting the liberated chiral base with methanesulfonyl chloride in basic medium to get the cyclic compound of the formula-V,
Figure imgf000013_0001
(vi) Reacting the compound of the formula-V with copper cynanide to get the chiral compound of the formula-I.
Figure imgf000013_0002
(vii) and if desired converting the compound of the formula-I into its pharmaceutically acceptable salt, like oxalate, etc by conventional methods.
According to another feature of the invention there is provided an improved process for the preparation of the intermediate compound of the formula-XII ,in a crystalline form
Figure imgf000013_0003
XII which comprises:
(i) reacting 5-bromophthalide of the formula-II,
Figure imgf000014_0001
with p-fluorophenylmagnesium bromide in THF medium with a non-polar co- solvent to get the benzophenone derivative of the formula-Ill,
Figure imgf000014_0002
(ii) reacting the benzophenone derivative of the formula-Ill with 3- (dimethylamino)propylmagnesium chloride to get the crystalline di- magnesium salt of formula-XII,
Figure imgf000014_0003
XII
(iii) and Isolating the crystalline compound of the formula-XII by filtration.
The Grignard reaction in steps (i) and (ii) may be effected at a temperature in the range of -25°C to 0°C preferably at a temperature in the range of -20°C to -10°C. The non-polar co-solvent used in steps (i) and (ii) may be benzene, toluene, cyclohexane, etc., preferably toluene or cycohexane. The neutralization reagent used in step (iii) may be organic or mineral acid. The organic acid can be acetic acid, propionic acid, oxalic acid, succinic acid, ammonium chloride, etc. The mineral acid can be hydrochloric acid, sulfuric acid, etc. The solvent used in resolution step may be methanol, ethanol, isopropanol, ethyl acetate, acetone, acetonitrile, or a mixture thereof. The solvent used in cyclization step may be methylene chloride, toluene, cyclohexane, tetrahydrofuran, isopropyl ether, ether, acetonitrile, etc. The cyanation step may be done in N,N- dimethylformamide, N,N-dimethylacetamide, pyridine, N-methyl-2-pyrrolidone, etc.
The pharmaceutically acceptable oxalate salt formation can be done in solvents like, methanol, ethanol, isopropanol, water, acetone, acetonitrile, or a mixture thereof.
The details of the process of the invention are provided in the Examples given below which are provided by way of illustration only and therefore should not be construed to limit the scope of the invention
Example 1
Preparation of escitalopram:
(i) Preparation of di-magnesium salt of formula-XII:
The Grignard solution prepared from 90gr of 4-fiuorobromobenzene and 13gr magnesium turnings in 450ml of THF was added drop wise to a suspension of 5- bromophthalide (lOOgr) in THF (400ml) at -15 to -10°C under nitrogen atmosphere. After the addition was completed, the reaction mixture was stirred at same temperature for another 3hrs. The second Grignard reagent prepared from 68gr of 3- (dimethylamino)propyl chloride and 16gr of magnesium turnings in THF (300ml) and toluene (300ml) was added to the above reaction mixture at -15 to 0°C over a period of 2- 3hrs and maintained for additional lhr. TLC of the reaction mixture showed the absence of starting material. Slowly the reaction mixture was allowed to rise to 10°C and filtered the salts. The wet cake was washed with 200ml of toluene and air dried to get 210gr of free-flowing white crystalline solid di-magnesiufn salt of formula-XII.
(ii) Preparation of dihydroxy compound of formula-IV:
The solid di-magnesium compound of formula-XLI obtained above was suspended in 1000ml of water and treated with lOOgr of ammonium chloride. After stirring for 30min, product was extracted into toluene (1 x 500ml, 2 x 200ml) and the combined organic layer treated with lOgr of active charcoal. Toluene was distilled off from the reaction mixture below 60°C and to the residue di-isaopropyl ether was added. The crystalline compound of formula-IV was isolated by filtration to get 130gr (70% based on 5- bromophthalide). Melting point: 118-120°C. Purity by HPLC: 98.5%. 1H-NMR (CDC13, 200MHz): 7.39-7.44 (m, 2H, ar. H), 7.25-7.34 (m, 3H, ar. H), 6.90-7.00 (m, 2H, ar. H), 4.33 (d, J = 12.0Hz, 1H, -CH2OH), 4.06 (d, J = 11.7Hz, 1H, -CH2OH), 2.46-2.54 (m, 4H, -CH2CH2CH2-), 2.22 (s, 6H, 2 x NCH3), and 1.51-1.75 (m, 2H, -CH2CH2CH2-).
(iii) Resolution of dihydroxy compound of formula-IV:
The dihydroxy compound of formula-IV (lOOgr) was dissolved in 300ml of isopropyl alcohol at 40-45°C. Solid (+)-di-p-toluoyltartaric acid monohydrate (50gr) was added to the reaction mixture and kept under stirring for overnight at 20-25°C. The crystals formed in the reaction mixture were filtered and washed with 50ml of isopropyl alcohol to get 55gr (74%) of (-)-4-bromo-α1-(4-fluorophenyl)- α1-[3-(dimethylamino)propyl]- 1,2-benzenedimethanol, hemi (+)-di-p-toluoyltartaric acid salt. Melting point: 126-130°C.
The above salt (50gr) was suspended in 150ml of isopropyl alcohol and heated to 70°C. The resulting suspension was maintained at 70°C for lhr and cooled to 25-30°C. The solids were filtered off and dried to yield 45gr of above salt. Chiral purity by HPLC is 99.4%. Melting point: 128-130°C. [α]D = +7.49° (c = 1, methanol).
(iv) Cyclization of resolved dihydroxy compound of formula-IV:
To 72gr of (-)-4-bromo- 1-(4-fluorophenyl)- α1-[3-(dimethylamino)propyl]-l,2-benzene- dimethanol, hemi (+)-di-p-toluoyltartaric acid salt in 720ml of water was added a solution of 11.5gr of sodium hydroxide in 140ml of water. After stirring for lhr at 25-30°C product was extracted into toluene (1 x 300ml, 2 x 100ml) and the toluene layer distilled off below 60°C to get 46.0gr (95%) of the (-)-isomer of dihydroxy compound as oil. [O.]D = -50.98° (c = 1, methanol).
To a solution of the above base in toluene (700ml) was added triethylamine (34.2gr) and cooled to -5°C. Methanesulfonyl chloride (17.8gr) was slowly added to the reaction mixture at -5 to 0°C over a period of 3hrs. After maintaining for lhr at same temperature reaction was found to complete by TLC. The reaction mixture was poured into water (350ml) and separated toluene layer. Aqueous layer was extracted with toluene (2 x 50ml) and the combined toluene layer washed with 200ml of water. Toluene was distilled off from the reaction mixture below 60°C to get 40gr (91%). [α]D = +2.0° (c = 1, methanol). Chiral purity by HPLC: 99.2%.
A small sample (5.0gr) was converted to its oxalate salt in acetone medium. Melting point: 160-162°C. [α]D = +2.2° (c = 1, methanol). Chiral purity by HPLC: 99.5%.
(v) Cyanation of bromo compound of formula- VI:
To a solution of bromo compound (lOOgr) of formula- VI in DMF (1000ml) was added copper(I)cyanide (31.0gr) and the reaction mixture heated under nitrogen atmosphere to 145-150°C. After maintaining the reaction mixture at this temperature for 8hrs, reaction mixture was cooled to 25-30°C and poured into water (3000ml). After stirring for lhr, ethylenediamine (100ml) was slowly added to the reaction mixture and maintained for 3hrs under stirring. Toluene (300ml) was added to the reaction mixture and stirred for 30min. Inorganic copper salts were filtered off from the reaction mixture with the aid hiflow. The hiflow bed was washed with 200ml of toluene. Filtrate was taken into a separating funnel and the toluene layer separated. The aqueous layer was extracted with toluene (200ml). The combined organic layer was washed with water. The organic layer was extracted with 10% aqueous acetic acid (200ml and 100ml). The combined acetic acid layer was treated with charcoal (lOgr) and filtered. Aqueous ammonia was added to the filtrate to get a pH of 8.5-9.0. The product was extracted into isopropyl ether (1 x 300ml, 2 x 100ml) and the solvent distilled off to get 60gr (70%) of crude escitalopram base as oil. Purity by HPLC was found to be >97%. Chiral purity by HPLC is 99.2%.
Example 2
Preparation of escitalopram:
(i) Preparation of di-magnesium salt of formula-XII:
The Grignard solution prepared from 90gr of 4-fluorobromobenzene and 13gr magnesium turnings in 450ml of THF was added drop wise to a suspension of 5- bromophthalide (lOOgr) in THF (400ml) at -15 to -10°C under nitrogen atmosphere. After the addition was completed, the reaction mixture was stirred at same temperature for another 3hrs. The second Grignard reagent prepared from 68gr of 3- (dimethylamino)propyl chloride and 16gr of magnesium turnings in THF (300ml) and cyclohexane (300ml) was added to the above reaction mixture at -15 to 0°C over a period of 2-3hrs and maintained for additional lhr. TLC of the reaction mixture showed the absence of starting material. Slowly the reaction mixture was allowed to rise to 10°C and filtered the salts. The wet cake was washed with 200ml of cyclohexane and air dried to get 165gr of free-flowing white crystalline solid di-magnesium salt of formula-XII.
(ii) Preparation of dihydroxy compound of formula-IV:
The solid di-magnesium compound of formula-XII obtained above was suspended in 1000ml of water and treated with lOOgr of ammonium chloride. After stirring for 30min, product was extracted into ethyl acetate (1 x 500ml, 2 x 200ml) and the combined organic layer treated with lOgr of active charcoal. Ethyl acetate was distilled off from the reaction mixture below 50°C and to the residue di-isopropyl ether and hexane were added. The crystalline compound of formula-IV was isolated by filtration to get 75gr. Melting point: 117-120°C. Purity by HPLC: 98%.
(iii) Resolution of dihydroxy compound of formula-IV:
The dihydroxy compound of formula-IV (70gr) was dissolved in 210ml of isopropyl alcohol at 40-45°C. Solid (+)-di-p-toluoyltartaric acid monohydrate (35gr) was added to the reaction mixture and kept under stirring for overnight at 20-25°C. The crystals formed in the reaction mixture were filtered and washed with 30ml of isopropyl alcohol to get 30gr (58%) of (-)-4-bromo- 1-(4-fluorophenyl)- α1-[3-(dimethylamino)propyl]- 1,2-benzenedimethanol, hemi (+)-di-p-toluoyltartaric acid salt. Melting point: 126-130°C.
The above salt (30gr) was suspended in 100ml of isopropyl alcohol and heated to 70°C. The resulting suspension was maintained at 70°C for lhr and cooled to 25-30°C. The solids were filtered off and dried to yield 26gr of above salt. Chiral purity by HPLC is 99.5%. Melting point: 128-130°C. [α]D = +7.4° (c = 1, methanol).
(iv) Cyclization of resolved dihydroxy compound of formula-IV:
To 25gr of (-)-4-bromo-α1-(4-fluorophenyl)- α1-[3-(dimethylamino)propyl]-l,2-benzene- dimethanol, hemi (+)-di-p-toluoyltartaric acid salt in 250ml of water was added a solution of 4.0gr of sodium hydroxide in 50ml of water. After stirring for lhr at 25-30°C product was extracted into toluene (1 x 100ml, 2 x 30ml) and the toluene layer distilled off below 60°C to get 16.5gr of the (-)-isomer of dihydroxy compound as oil. [O.]D = -51.0° (c = 1, methanol).
To a solution of the above base in toluene (200ml) was added triethylamine (11.2gr) and cooled to -5°C. Methanesulfonyl chloride (6.0gr) was slowly added to the reaction mixture at -5 to 0°C over a period of 3hrs. After maintaining for lhr at same temperature reaction was found to complete by TLC. The reaction mixture was poured into water (100ml) and separated toluene layer. Aqueous layer was extracted with toluene (2 x 25ml) and the combined toluene layer washed with 75ml of water. Toluene was distilled off from the reaction mixture below 60°C to get an oil (15.0gr). [α]o = +1.8° (c = 1, methanol). Chiral purity by HPLC: 99.0%.
(v) Cyanation of bromo compound of formula- VI:
To a solution of bromo compound (30gr) of formula- VI in pyridine (25ml) was added copper(I)cyanide (9.0gr) and the reaction mixture heated under nitrogen atmosphere to 145-150°C. After maintaining the reaction mixture at this temperature for 8hrs, reaction mixture was cooled to 25-30°C and poured into water (250ml). After stirring for lhr, ethylenediamine (30ml) was slowly added to the reaction mixture and maintained for 3hrs under stirring. Toluene (100ml) was added to the reaction mixture and stirred for 30min. Inorganic copper salts were filtered off from the reaction mixture with the aid hiflow. The hiflow bed was washed with 100ml of toluene. Filtrate was taken into a separating funnel and the toluene layer separated. The aqueous layer was extracted with toluene (100ml). The combined organic layer was washed with water. The organic layer was extracted with 10% aqueous acetic acid (100ml and 50ml). The combined acetic acid layer was treated with charcoal (5gr) and filtered. Aqueous ammonia was added to the filtrate to get a pH of 8.5-9.0. The product was extracted into isopropyl ether (1 x 100ml, 2 x 50ml) and the solvent distilled off to get the crude escitalopram base (18gr). Purity by HPLC was found to be >96%. Chiral purity by HPLC is 99.0%.
Example 3
Preparation of (-)-isomer of citalopram:
(i) Resolution of dihydroxy compound of formula-TV:
The dihydroxy compound of formula-IV (lOOgr) was dissolved in 300ml of isopropyl alcohol at 40-45°C. Solid (-)-di-p-toluoyltartaric acid monohydrate (50gr) was added to the reaction mixture and kept under stirring for overnight at 20-25°C. The crystals formed in the reaction mixture were filtered and washed with 50ml of isopropyl alcohol to get 50gr (67%) of (+)-4-bromo-α1-(4-fluorophenyl)- α1-[3-(dimethylamino)propyl]- 1,2-benzenedimethanol, hemi (-)-di-p-toluoyltartaric acid salt. Melting point: 126-130°C
The above salt (50gr) was suspended in 150ml of isopropyl alcohol and heated to 70°C. The resulting suspension was maintained at 70°C for lhr and cooled to 25-30°C. The solids were filtered off and dried to yield 40gr of above salt. Chiral purity by HPLC is 99.4%. Melting point: 128-130°C. [α]D = -8.3° (c = 1, methanol).
(ii) Cyclization of resolved dihydroxy compound of formula-IV:
To 40gr of (+)-4-bromo-α1-(4-fluorophenyl)- α1-[3-(dimethylamino)propyl]-l,2- benzene-dimethanol, hemi (-)-di-p-toluoyltartaric acid salt in 400ml of water was added a solution of 3.5gr of sodium hydroxide in 40ml of water. After stirring for lhr at 25-30°C product was extracted into toluene (1 x 100ml, 2 x 50ml) and the toluene layer distilled off below 60°C to get 26gr of the (+)-isomer of dihydroxy compound as oil. [O.]D = +52.0° (c = l, methanol).
To a solution of the above base in toluene (300ml) was added triethylamine (18gr) and cooled to -5°C. Methanesulfonyl chloride (9.1gr) was slowly added to the reaction mixture at -5 to 0°C over a period of 3hrs. After maintaining for lhr at same temperature reaction was found to complete by TLC. The reaction mixture was poured into water (250ml) and separated toluene layer. Aqueous layer was extracted with toluene (2 x 50ml) and the combined toluene layer washed with 100ml of water. Toluene was distilled off from the reaction mixture below 60°C to get an oil (17.0gr). [O.]D = -2.4° (c = 1, methanol). Chiral purity by HPLC: 99.4%.
(iii) Cyanation of bromo compound of formula- VI:
To a solution of bromo compound (lO.Ogr) of formula- VI in DMF (100ml) was added copper(I)cyanide (3.1gr) and the reaction mixture heated under nitrogen atmosphere to 145-150°C. After maintaining the reaction mixture at this temperature for 8hrs, reaction mixture was cooled to 25-30°C and poured into water (300ml). After stirring for lhr, ethylenediamine (10ml) was slowly added to the reaction mixture and maintained for 3hrs under stirring. Toluene (50ml) was added to the reaction mixture and stirred for 30min. Inorganic copper salts were filtered off from the reaction mixture with the aid hiflow. The hiflow bed was washed with 50ml of toluene. Filtrate was taken into a separating funnel and the toluene layer separated. The aqueous layer was extracted with toluene (50ml). The combined organic layer was washed with water. The organic layer was extracted with 10% aqueous acetic acid (50ml). The acetic acid layer was treated with charcoal (2gr) and filtered. Aqueous ammonia was added to the filtrate to get a pH of 8.5-9.0. The product was extracted into isopropyl ether (2 x 50ml) and the solvent distilled off to get the crude (-)-citalopram base (5.0gr). Purity by HPLC was found to be >97%. Chiral purity by HPLC is 99.3%. Advantages of the present invention:
1. Escitalopram of formula-I can be prepared in a simple and easy to adopt manner without involving any tedious purification steps.
2. Escitalopram of formula-I can be prepared in >25% yield, which is better than the earlier known process.
3. An improved process for the preparation of the intermediate compound of the formula-IV.
4. The present process produces pure (>99.8%) enantiomeric forms of the intermediates of the formulae-IV and V or its salts.
5. The present process produces pure (>98%) di-magnesium salt of intermediate compound of the formula-XII, which is not isolated earlier.

Claims

WE CLAIM:
1. An improved process for the preparation of escitalopram of the formula-I,
Figure imgf000023_0001
and its pharmaceutically acceptable salts which comprises: (i) reacting 5-bromophthalide of formula-II,
Figure imgf000023_0002
with p-fluorophenylmagnesium bromide in THF medium with a non-polar co- solvent to get the benzophenone derivative of formula-Ill,
Figure imgf000023_0003
(ϋ) reacting the benzophenone derivative of formula-HI with 3-(dimethylamino)- propylmagnesium chloride to get the crystalline di-magnesium salt of formula-XII,
Figure imgf000024_0001
XII
(iii) Isolating the crystalline compound of the formula-XII by filtration and neutralizing the di-magnesium salt to get the dihydroxy compound of the formula-IV,
Figure imgf000024_0002
(iv) Resolving the compound of the formula-IV with (+)-di-p-toluoyltartaric acid by preferential crystallization to get its (-)-enatiomer salt with (+)-di-p- toluoyltartaric acid
(v) Liberating the chiral base from the diasteromeric salt by neutralization and reacting the liberated chiral base with methanesulfonyl chloride in basic medium to get the cyclic compound of the formula-V,
Figure imgf000025_0001
(vi) Reacting the compound of the formula-V with copper cynanide to get the chiral compound of the formula-I. (vii) and if desired converting the compound of the formula-I into its pharmaceutically acceptable salt, like oxalate, etc by conventional methods.
2. An improved process as claimed in claim 1 wherein the Grignard reaction in steps (i) and (ii) is effected at a temperature in the range of -25°C to 0°C, preferably at -20°C to - 10°C.
3. An improved process as claimed in claims 1 & 2 wherein the non-polar co-solvent used in steps (i) and (ii) is selected from benzene, toluene, cyclohexane, etc, preferably toluene or cyclohexane.
4. An improved process as claimed in claims 1 to 3 wherein the ratio between THF and non-polar co-solvent used in steps (i) and (ii) is in the range of 3 -6 : 1 -3 , preferably 4:1.
5. An improved process as claimed in claim 1 to 4 wherein the neutralization reagent used in step (iii) is selected from acids like acetic acid, propionic acid, oxalic acid, succinic acid, ammonium chloride, etc., preferably acetic acid or ammonium chloride.
6. An improved process as claimed in claim 1 to 5 wherein the mineral acid used for neutralization is selected from hydrochloric acid, hydrobromic acid, sulfuric acid, etc., preferably hydrochloric acid or hydrobromic acid.
7. An improved process as claimed in claim 1 to 6 wherein the solvent used in resolution step is selected from methanol, ethanol, isopropanol, ethyl acetate, acetone, acetonitrile, preferably, ethanol, isopropanol or ethyl acetate.
8. An improved process as claimed in claim 1 to 7 wherein the solvent used in cyclization step is selected from methylene chloride, toluene, cyclohexane, tetrahydrofuran, isopropyl ether, ether, acetonitrile, etc., preferably, methylene chloride, toluene or cyclohexane.
9. An improved process as claimed in claim 1 to 8 wherein the base used in cyclization step is selected from a tertiary amine like, triethylamine, tributylamine, pyridine, etc., preferably, triethylamine or pyridine.
10. An improved process as claimed in claim 1 to 9 wherein the cyanation step is done in N,N-dimethylforrnamide, N,N-dimethylacetamide, pyridine, N-methyl-2-pyrrolidone, etc., preferably, N,N-dimethylformamide, pyridine or N-methyl-2-pyrrolidone.
11. An improved process for the preparation of escitaslopram of formula-I and its pharmaceutically acceptable salts substantially as described herein with reference to the Examples.
12. An improved process for the preparation of the intermediate compound of the formula-XII in a crystalline form
B
Figure imgf000026_0001
XII which comprises:
(i) reacting 5-bromophthalide of the formula-II,
Figure imgf000026_0002
II with p-fluorophenylmagnesium bromide in THF medium with a non-polar co- solvent to get the benzophenone derivative of the formula-ϋl,
Figure imgf000027_0001
(ii) reacting the benzophenone derivative of the formula-Ill with 3- (dimethylamino)propylmagnesium chloride to get the crystalline di- magnesium salt of formula-XII,
Figure imgf000027_0002
XII
(iii) and isolating the crystalline compound of the formula-XII by filtration.
13. A process as claimed in claim 12 wherein the Grignard reaction in steps (i) and (ii) is effected at a temperature in the range of -25°C to 0°C, preferably -20°C to -10°C.
14. A process as claimed in claim 12 and 13 wherein the non-polar co-solvent used in steps (i) and (ii) is selected from benzene, toluene, cyclohexane, etc, preferably toluene or cyclohexane.
15. A process as claimed in claims 12 to 14 wherein the ratio between THF and non- polar co-solvent used in steps (i) and (ii) is in the range of 3-6: 1-3, preferably 4: 1.
16. A process as claimed in claim 12 to 15 wherein the filtration temperature for the isolation of the compound of the formula-XII is in the range of 0-40°C preferably, in the range of 10-25°C.
17. A process for the preparation of both the enantiomers of compound of formula-IV or its acid addition salts as claimed in claim 1 to 11.
18. A process for the preparation of both the enantiomers of compound of formula-V or its acid addition slats as claimed in claim 1 to 11.
19. A process for the preparation of (-)-isomer of compound of formula-I as described in example-3.
20. A Process for the preparation and isolation of compound of the formula-XII, which is an intermediate used in the preparation of escitaslopram of the formula-I, substantially as described in example 1 and 2.
21. A process for the preparation of crystalline compound of formula-IV as claimed in claim 1 to 6.
PCT/IN2003/000220 2003-01-17 2003-06-17 Processes for the preparation of escitalopram and its precursor WO2004065375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003242990A AU2003242990A1 (en) 2003-01-17 2003-06-17 Processes for the preparation of escitalopram and its precursor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN52/MAS/2003 2003-01-17
IN52MA2003 2003-01-17

Publications (1)

Publication Number Publication Date
WO2004065375A1 true WO2004065375A1 (en) 2004-08-05

Family

ID=32750419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2003/000220 WO2004065375A1 (en) 2003-01-17 2003-06-17 Processes for the preparation of escitalopram and its precursor

Country Status (2)

Country Link
AU (1) AU2003242990A1 (en)
WO (1) WO2004065375A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025071A1 (en) * 2004-09-02 2006-03-09 Natco Pharma Limited A process for the preparation of escitalopram
WO2006106531A1 (en) * 2005-04-04 2006-10-12 Jubilant Organosys Ltd Process for the preparation of escitalopram or its acid addition salts
EP2017271A1 (en) * 2007-07-06 2009-01-21 Aurobindo Pharma Limited Process for the preparation of escitalopram
EA012787B1 (en) * 2007-09-11 2009-12-30 Х. Лундбекк А/С Method for the preparation of escitalopram

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136193A (en) * 1976-01-14 1979-01-23 Kefalas A/S Anti-depressive substituted 1-dimethylaminopropyl-1-phenyl phthalans
US4650884A (en) * 1984-08-06 1987-03-17 H. Lundbeck A/S Novel intermediate and method for its preparation
WO2003029236A1 (en) * 2001-09-24 2003-04-10 Pharmachem Technologies Limited Process for the preparation of citalopram

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136193A (en) * 1976-01-14 1979-01-23 Kefalas A/S Anti-depressive substituted 1-dimethylaminopropyl-1-phenyl phthalans
US4650884A (en) * 1984-08-06 1987-03-17 H. Lundbeck A/S Novel intermediate and method for its preparation
WO2003029236A1 (en) * 2001-09-24 2003-04-10 Pharmachem Technologies Limited Process for the preparation of citalopram

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025071A1 (en) * 2004-09-02 2006-03-09 Natco Pharma Limited A process for the preparation of escitalopram
WO2006106531A1 (en) * 2005-04-04 2006-10-12 Jubilant Organosys Ltd Process for the preparation of escitalopram or its acid addition salts
EP2017271A1 (en) * 2007-07-06 2009-01-21 Aurobindo Pharma Limited Process for the preparation of escitalopram
EA012787B1 (en) * 2007-09-11 2009-12-30 Х. Лундбекк А/С Method for the preparation of escitalopram

Also Published As

Publication number Publication date
AU2003242990A1 (en) 2004-08-13

Similar Documents

Publication Publication Date Title
EP1140886B1 (en) Method for the preparation of 5-cyanophthalide
EP1150966B1 (en) Method for the preparation of 5-cyanophthalide
US20090088469A1 (en) Method for the preparation of citalopram
WO2005049596A1 (en) A process for the preparation of high purity escitalopram
JP2002530296A (en) Method for producing citalopram
BG64823B1 (en) Method for the preparation of citalopram
EP1877394A1 (en) Process for the preparation of escitalopram or its acid addition salts
WO2004065375A1 (en) Processes for the preparation of escitalopram and its precursor
WO2006025071A1 (en) A process for the preparation of escitalopram
EP1700851B1 (en) Crystalline citalopram diol intermediate alkali
EP1368330A1 (en) Process for the preparation of citalopram
WO2004016602A1 (en) Process for the preparation of high purity citalopram and its pharmaceutically acceptable salts
AU2003278409A1 (en) Improved process for the manufacture of citalopram hydrobromide
WO2004094399A1 (en) An improved process for the preparation of citalopram hydrobromide
MXPA01005674A (en) Method for the preparation of 5-cyanophthalide
AU2002238824A1 (en) Process for the preparation of citalopram
CN1268129A (en) Method for the preparation of citalopram

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP