WO2004065327A2 - Unshaped refractory products, especially refractory concrete, containing inoxidisable parts - Google Patents

Unshaped refractory products, especially refractory concrete, containing inoxidisable parts Download PDF

Info

Publication number
WO2004065327A2
WO2004065327A2 PCT/EP2004/000255 EP2004000255W WO2004065327A2 WO 2004065327 A2 WO2004065327 A2 WO 2004065327A2 EP 2004000255 W EP2004000255 W EP 2004000255W WO 2004065327 A2 WO2004065327 A2 WO 2004065327A2
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
weight
composition according
grained
component
Prior art date
Application number
PCT/EP2004/000255
Other languages
German (de)
French (fr)
Other versions
WO2004065327A3 (en
Inventor
Dirk Uwe RÜSS
Tadeusz Von Rymon Lipinski
Original Assignee
Esk Ceramics Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10354261A external-priority patent/DE10354261A1/en
Application filed by Esk Ceramics Gmbh & Co. Kg filed Critical Esk Ceramics Gmbh & Co. Kg
Publication of WO2004065327A2 publication Critical patent/WO2004065327A2/en
Publication of WO2004065327A3 publication Critical patent/WO2004065327A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay

Definitions

  • the invention relates to unshaped refractory products, in particular refractory concrete, with non-oxide components.
  • Refractory unshaped products are one of the high-revenue product areas for the steel industry.
  • the proportion of unshaped products in refractory production in the EU is currently around 43%.
  • Japan is a pioneer in this regard, where the masses already account for almost 60%.
  • Unshaped refractory materials account for over 55% of total refractory material production in the United States. Due to the clear technical and economic advantages, refractory masses are becoming increasingly important in industry and are displacing stone deliveries in many areas.
  • Refractory concretes are mixtures of refractory aggregates and binders, mostly delivered dry and processed after the addition of water or another liquid. They are installed by pouring with vibration, pouring without vibration (self-flowing), by poking or, if necessary, by pounding. Binding and hardening take place without heating. After hardening, drying and heating, a furnace lining is created which, in comparison with fireproof masonry, has particularly few joints and is therefore also called “monolithic" (3). Finished parts can also be made from refractory concrete, which are usually thermally pretreated or prebaked.
  • the usual modern liquefied refractory concretes with their low mixing water requirement contain aggregates with grain sizes up to 10 mm, a small proportion of calcium aluminate cement (3 - 5% by weight) of fine-grained additives such as microsilica and / or alumina different rather primary crystal size (specific surface) and fineness, liquefier and setting regulator.
  • Low-cement vibrating refractory concrete with a correct grain structure requires a water addition of 3.5 to 6% by weight. In the case of self-flowing refractory concrete, the water addition is in the range 4.5 to 7% by weight.
  • the calcium aluminate cement used as a binder in the hydraulically bound refractory concretes is often the weakest link in the structure of the refractory concrete.
  • the reason for this is the relatively low-melting eutectics in the CaO-Al 2 0 3 -Si0 2 system .
  • many efforts have been made to reduce the cement content.
  • low-cement refractory concretes or refractory concretes with an extremely low cement content were developed, see above.
  • Parallel to the technological development of refractory concrete based on calcium aluminate the search for new binder systems to replace calcium aluminate cement continues. The technologically relevant developments are:
  • Phosphate binding primarily based on monoaluminium phosphate water glass synthetic resins
  • the fire concrete and door locking compounds are best suited for mechanizing and automating the delivery.
  • the ramming masses and plastic masses, which also belong to the group of unshaped products, are not so cheap in this respect.
  • Modern refractory concrete achieves property values that can exceed that of refractory bricks.
  • Refractory concretes are usually characterized by good corrosion resistance. It is caused, among other things, by a small pore diameter, especially in self-flowing refractory concrete. In many areas of application, for example in the steel industry, this is still not enough, so that people are looking for opportunities for further improvement.
  • One of them is the integration into the material structure of the carbon parts. Primarily graphite and carbon black are used. Similar to shaped stones, the carbon phase brings a significant increase in corrosion resistance. However, due to the poor wettability by water, larger amounts of carbon cannot be easily introduced into a refractory concrete.
  • Carbon-containing concretes also require higher amounts of mixing water, which, however, creates the drying difficulties described above.
  • the use of surface-active substances provides some remedy here.
  • the protection of carbon from burning out of the structure of a refractory concrete has been largely unsolved. After carbon oxidation, pores develop in the material structure, which impair the corrosion resistance.
  • the metallic antioxidants commonly found in molded MAGCARBON (magnesia carbon) stones can only be used to a limited extent. Since the concrete suspensions have a basic character, the metal powders can react with the components and additives dissolved in the mixing water.
  • the resulting hydrogen represents a potential hazard (Hara, T.; Yasuda, N .; Sugiyama, K.; Shimizu, I .: Gas evolution of silicon-containing castables. Taikabutsu Overseas 22 (2002), 2, 114- 117).
  • refractory unshaped masses in particular refractory concrete, which have a significantly improved corrosion resistance compared to conventional products and can be produced on an industrial scale and economically.
  • a refractory mass containing a coarse-grained refractory component (so-called coarse grain) and / or a medium-grained refractory component (so-called medium grain) and / or a fine-grained refractory component (so-called flour) and / or a fine-grained component Refractory component (so-called fine grain) characterized in that the mass is carbon-free and comprises a refractory boron-containing, nitrogen-free component.
  • coarse grain coarse grain
  • medium grain fine-grained refractory component
  • flour fine-grained refractory component
  • fine grain fine grain
  • carbon-free means that no unbound carbon, for example in the form of graphite, carbon black and the like, is present in the material.
  • the invention thus also includes refractory compositions and materials which are produced using a carbon-containing binder, for example resin, tar, pitch. Masses with proportions of chemically bound carbon, such as in refractory carbides, such as silicon carbide, are also part of the invention. All typical, oxidic and non-oxidic, acidic and basic raw materials or their combination are used as coarse-grained, medium-grained, fine-grained and fine-grained refractory components.
  • Basic metal oxides such as sintered, melted magnesia, sintered, melted spinel, sintered dolomite, sintered lime, olivine or forsterite are particularly preferred, and masses based on Al 2 O 3 with variable SiO 2 and / or SiC contents are also advantageous. Combinations of these raw materials can also be present.
  • a particularly suitable fire-resistant boron-containing, nitrogen-free component is a compound selected from the group boron carbide BC, refractory borides and their mixtures.
  • Refractory borides are preferably CaB s , TiB 2 , and ZrB 2 . It has been found that also a mixture of several boron-containing, nitrogen-free compounds can be advantageously used '.
  • the boron-containing, nitrogen-free compound is preferably present in amounts from 0.1 to 30% by weight, particularly preferably from 0.5 to 10.0% by weight.
  • the composition according to the invention preferably comprises an additive.
  • additives are preferably metal powders, non-oxides such as, for example, nitrides, carbides, silicides, oxynitrides, oxycarbides, metal fibers, plastic fibers and carbon fibers, and are preferably metal powders Al, Mg, Si and non-oxides such as SiC , A1N, Si 3 N 4 , AlON, SiAlON.
  • the additives are preferably present in amounts of 0.5 to 30% by weight.
  • coarse-grained is preferably to be understood to mean grains> 1 mm, particularly preferably 1-10 mm. Grains of 0.2 to ⁇ 1 mm, preferably 0.2 to 0.5 mm, are used as the middle grain.
  • fine-grained should preferably be understood to mean grains of 0.02 to ⁇ 0.2 mm, particularly preferably 0.02 to 0.1 mm. This grain fraction is usually called flour in technical parlance. Fines are reactive refractory components with an average grain size ⁇ 15 ⁇ m, preferably ⁇ 5 ⁇ m. For example, calcined clay, reactive clay, finely ground, refractory raw materials, microsilica, refractory clay, binding clay are used.
  • the unshaped refractory compositions according to the invention can be bound hydraulically, chemically or ceramic. All binder systems typical in refractory technology are suitable for this purpose. Hydraulic bonding by means of a refractory cement, preferably a calcium aluminate cement, is preferably used in an amount of up to 25% by weight, preferably 1 to 10% by weight.
  • liquid binders common in the refractory industry are suitable for chemical bonding, ie as binders, both water-free and water-containing, for example resins, tar, pitch.
  • the amount of binder is preferably between 0.1 and 50% by weight, preferably between 1 and 10% by weight.
  • Ceramic bonding occurs in the compositions according to the invention when heated to temperatures> 700 ° C. This process is supported by the use of very fine grain fractions.
  • the masses are mixed with up to 40% by weight, preferably ⁇ 10% by weight, of water.
  • Additive is in the range up to max. 5% by weight, preferably ⁇ 1.5% by weight.
  • the coarse-grained component is preferably present in amounts of ⁇ 90% by weight, particularly preferably in amounts of 15 to 80% by weight.
  • the medium-grain component is preferably present in amounts of ⁇ 40% by weight, particularly preferably in amounts of 3 to 20% by weight.
  • the fine-grained component is preferably present in amounts of ⁇ 95% by weight, particularly preferably in amounts of 5 to 80% by weight.
  • the fine-grain component is preferably present in amounts of ⁇ 50% by weight, particularly preferably in amounts of 0.1 to 35% by weight.
  • special metallic and / or non-oxidic substances can be added to the refractory compositions according to the invention. These are preferably compounds selected from the group of metal powders Al, Mg, Si and non-oxides such as SiC, A1N, Si 3 N 4 , A10N, SiAlON.
  • metal fibers For the purpose of reinforcing the structure and / or improving the drying process, the addition of metal fibers is also advantageous.
  • the carbon-free refractory compositions according to the invention are distinguished by a number of positive properties. Due to the relatively high thermal conductivity of the boron-containing additives, they have an improved thermal shock resistance compared to compositions without additives.
  • the boron-containing compounds Due to the high affinity for oxygen, the boron-containing compounds show good oxidation resistance in the material structure. This behavior is supported by the formation of passivation layers on the surface of the material, which make contact with oxygen more difficult.
  • the added boron-containing substances are poorly wetted by ionic melts, which limits the wetting by molten slags. This improves the corrosion resistance and contributes to increasing the durability of these new refractory compounds.
  • a high compression of the material structure is important for the corrosion resistance of the refractory materials. This can include can be improved by an appropriate grain distribution.
  • the following grain structure has proven to be advantageous for the offset according to the invention:
  • Coarse grain component ⁇ 90% by weight> 0.2 mm. Portions of 15 to 80% by weight of the grain fraction 1-10 mm are preferred.
  • Medium grain component ⁇ 40% by weight of the grain fraction 0.2 to 1 mm. Portions of 3 to 20% by weight of the grain fraction 0.2-0.5 mm are preferred.
  • Fine grain component ⁇ 95% by weight ⁇ 0.2 mm, preferably 5 to 80% by weight
  • Fine grain component ⁇ 50% by weight ⁇ 15 ⁇ m, preferably 0.1 to 35% ⁇ 5 ⁇ m
  • refractory compositions according to the invention are produced at the refractory manufacturer or on-site at the refractory user, preferably in the following steps:
  • additives additives and further homogenization of the batch. If necessary, substances are added to the mixture, which take on certain functions in the finished masses. Examples are metal powder and non-oxide materials such as carbides, nitrides, silicides, metal fibers, plastic fibers, carbon fibers, which further improve the resistance to oxidation, strength, drying behavior, corrosion resistance and the thermal shock resistance of the material.
  • metal powder and non-oxide materials such as carbides, nitrides, silicides, metal fibers, plastic fibers, carbon fibers, which further improve the resistance to oxidation, strength, drying behavior, corrosion resistance and the thermal shock resistance of the material.
  • the homogenized mixture is ready for use and can be made using techniques familiar in refractory technology, e.g. Pouring, vibrating, spraying, door locking, pounding, etc., are processed into a monolithic refractory lining or a functional mass.
  • Prefabricated components can also be produced from the refractory materials according to the invention.
  • the masses produced as described above are brought into a metal, or wood , or plastic mold.
  • the mass can be further compacted by subsequent vibration, pounding, pressing, etc.
  • the component is shaped and dried and / or tempered at 80 to 700 ° C. If necessary, the dried or tempered component can be fired.
  • the firing conditions essentially depend on the chemical and mineralogical composition of the refractory mass as well as the shape and geometry of the component.
  • the prefabricated components according to the invention are ready for use.
  • the unshaped refractory compositions according to the invention can be used in the furnaces and plants of the non-ferrous industry, steel industry, cement industry, glass industry, waste incineration plants, etc.
  • test specimens 50x50 mm were produced from the masses. The The test specimens were produced by pouring them into a plastic mold, curing them at room temperature for 24 hours, and then drying them at 110 ° C. for 24 hours. The dried test specimens were characterized by the determination of the cold compressive strength, KDF, (DIN EN 9935), bulk density, RD, (DIN EN 993) and open porosity, OP, (DIN EN 993). The results obtained are summarized in the table below.
  • a bauxite refractory concrete was made with the following composition:
  • Sintered bauxite (sinter bauxite) is a commercially available product.
  • Sintered corundum T60, calcined alumina CTC 50, alumina cement CA 270 and additives can be obtained, for example, from ALCOA Germany.
  • the mixture was then made into a concrete with 5.7% by weight of mixing water.
  • Cylindrical test crucibles for testing corrosion resistance were made from the concrete. As shown in Example 1, the production was carried out by pouring the liquefied concrete into a plastic mold.
  • the casting mold was constructed in such a way that a round recess with a diameter of 30 mm and a depth of 10 mm was created on one side of the test cylinder.
  • the depression was used to hold a test metal melt.
  • 24 h and drying at 110 ° C, 24 h, 20 g of pure aluminum powder were placed in the well of the crucible.
  • the crucible was then aged at 800 ° C for 72 hours in an electric oven with no air.
  • the test crucible was examined for any signs of corrosion, such as chemical reaction with the metal and infiltration of the metal into the material structure.
  • a crucible test was made from the same refractory concrete without BC addition and examined under the same conditions.
  • the bauxite B 4 C refractory concrete according to the invention showed no infiltration and a significantly better corrosion resistance compared to the Al melt in comparison to the material without boron carbide.
  • the spinel raw materials are a sintered Al 2 0 3 -rich magnesium-aluminum spinel, which is available from ALCOA Germany can be obtained.
  • the other components, calcined spinel / alumina CTC 55, alumina cement and additives can also be obtained from this company.
  • test crucible After cooling, the test crucible was examined for any signs of corrosion, such as chemical reaction with the slag and its infiltration into the material structure. For comparison, a crucible test was made from the same refractory concrete without ZrB 2 and examined under the same conditions.
  • the spinel concrete according to the invention with ZrB 2 addition showed a significantly better infiltration and corrosion resistance compared to the material without addition.
  • the magnesia sinter is a sintered high-purity magnesia, for example from NEDMAG.
  • Titanium boride e.g. titanium di boride
  • the components were dry homogenized and then prepared into a sprayable mass by mixing with 12% by weight Na water glass.
  • the mass was applied to a fired magnesia stone and fired at 1550 ° C for 2 hours. After the fire, the mass adhered very well to the stone surface and showed very good oxidation resistance and corrosion resistance compared to a steel converter slag.
  • the mass is suitable for performing both cold and hot repairs of the refractory deliveries.
  • composition made:
  • Silicon carbide powder ⁇ 45 ⁇ m 12% by weight
  • Sintered corundum raw materials can be obtained from ALCOA Germany.
  • a product from ESK-SiC GmbH was used as silicon carbide powder and a commercially available product was used as silicon powder.
  • the components became dry with 3% by weight of ZrB 2 (from Wacker
  • test crucibles were examined for any signs of corrosion, such as chemical reaction with the slag and its infiltration into the material structure.
  • the Al 2 0 3 SiC ramming mass according to the invention with ZrB 2 showed a significantly better infiltration and corrosion resistance compared to the material without addition.
  • the sources of supply for raw materials, additives and additives are as mentioned in the previous examples.
  • test specimens were determined by determining the cold compressive strength, KDF, (DIN EN 9935), bulk density, RD, (DIN EN 993), open porosity, OP, (DIN EN 993) and thermal shock resistance TWB (DIN EN 993-11). For comparison, test specimens without the addition of steel fibers were produced and examined under the same conditions. After drying, the test specimens had the following characteristic values:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention relates to a refractory material containing a coarse-grained, refractory constituent (coarse grain) and/or a medium-grained, refractory constituent (middle grain) and/or a fine-grained, refractory constituent (powder) and/or a finest-grained, refractory constituent (finest grain). The invention is characterised in that the material is free of carbon and contains a refractory, boronic constituent which is free of nitrogen.

Description

Ungeformte feuerfeste Erzeugnisse, insbesondere Feuerbetone, mit NichtoxidanteilenUnshaped refractory products, especially refractory concrete, with non-oxide components
Die Erfindung betrifft ungeformte feuerfeste Erzeugnisse, ins- besondere Feuerbetone, mit Nichtoxidanteilen.The invention relates to unshaped refractory products, in particular refractory concrete, with non-oxide components.
Feuerfeste ungeformte Erzeugnisse sind einer der umsatzstarken Produktbereiche für die Stahlindustrie. Der Anteil der ungeformten Erzeugnisse an der Feuerfestproduktion in der EU liegt derzeit bei ca. 43 %. Vorreiter in der Hinsicht ist Japan, wo der Anteil der Massen bereits fast 60 % beträgt. Der Anteil der ungeformten feuerfesten Werkstoffe an der Gesamtproduktion feuerfester Werkstoffe in den USA liegt über 55 %. Bedingt durch die eindeutigen technischen und wirtschaftlichen Vorteile gewinnen feuerfeste Massen in der Industrie zunehmend an Bedeutung und verdrängen in vielen Bereichen Steinzustellungen.Refractory unshaped products are one of the high-revenue product areas for the steel industry. The proportion of unshaped products in refractory production in the EU is currently around 43%. Japan is a pioneer in this regard, where the masses already account for almost 60%. Unshaped refractory materials account for over 55% of total refractory material production in the United States. Due to the clear technical and economic advantages, refractory masses are becoming increasingly important in industry and are displacing stone deliveries in many areas.
Die wichtigste Werkstoffgruppe der ungeformten Erzeugnisse stellen Feuerfestbetone (Feuerbetone) dar. Feuerbetone sind Mischungen aus feuerfesten Zuschlagstoffen und Bindemitteln, meist trocken angeliefert und nach der Zugabe von Wasser oder einer anderen Flüssigkeit verarbeitet. Sie werden eingebaut durch Gießen mit Vibration, Gießen ohne Vibration (Selbstflie- ßen) , durch Stochern oder, falls erforderlich, durch Anstampfen. Bindung und Erhärten erfolgen ohne Erwärmung. Nach dem Erhärten, Trocknen und Aufheizen entsteht eine Ofenauskleidung, die im Vergleich mit feuerfestem Mauerwerk besonders fugenarm ist und deshalb auch „monolithisch „ genannt wird (3) . Aus feuerfesten Betonen können auch Fertigteile hergestellt werden, die meist thermisch vorbehandelt oder auch vorgebrannt werden.The most important material group of the unshaped products are refractory concretes (refractory concretes). Refractory concretes are mixtures of refractory aggregates and binders, mostly delivered dry and processed after the addition of water or another liquid. They are installed by pouring with vibration, pouring without vibration (self-flowing), by poking or, if necessary, by pounding. Binding and hardening take place without heating. After hardening, drying and heating, a furnace lining is created which, in comparison with fireproof masonry, has particularly few joints and is therefore also called "monolithic" (3). Finished parts can also be made from refractory concrete, which are usually thermally pretreated or prebaked.
Die üblichen modernen verflüssigten Feuerbetone mit ihrem ge- ringen Anmachwasserbedarf (bis hierunter auf 3,5 Gew.-%) enthalten Zuschlagstoffe mit Korngrößen bis 10 mm, einen geringen Anteil an Calciumaluminatcement (3 - 5 Gew.-%) feinstkörnige Zusatzstoffe wie Microsilica und/oder Tonerden unterschiedli- eher Primärkristallgröße (spezifischer Oberfläche) und Mahlfeinheit, Verflüssiger und Abbinderregulierer . Zementarme Vibrations-Feuerbetone mit einem richtigen Kornaufbau benötigen einen Wasserzusatz von 3,5 bis 6 Gew.-%. Im Falle selbst- fließender Feuerbetone liegt der Wasserzusatz im Bereich 4,5 bis 7 Gew.-%.The usual modern liquefied refractory concretes with their low mixing water requirement (down to 3.5% by weight) contain aggregates with grain sizes up to 10 mm, a small proportion of calcium aluminate cement (3 - 5% by weight) of fine-grained additives such as microsilica and / or alumina different rather primary crystal size (specific surface) and fineness, liquefier and setting regulator. Low-cement vibrating refractory concrete with a correct grain structure requires a water addition of 3.5 to 6% by weight. In the case of self-flowing refractory concrete, the water addition is in the range 4.5 to 7% by weight.
Der in den hydraulisch gebundenen Feuerbetonen als Binder eingesetzte Calciumaluminat-Cement stellt im Gefüge der Feuerbe- tone oft das schwächste Glied dar. Grund dafür sind die relativ niedrigschmelzenden Eutektika im System CaO-Al203-Si02. Um diese negativen Effekte zu reduzieren, wurden viele Anstrengungen unternommen, um den Zementgehalt zu verringern. Als Resultat wurden zementarme Feuerbetone bzw. Feuerbetone mit ei- nem äußerst geringen Zementgehalt entwickelt, s. oben. Parallel zur technologischen Entwicklung der Feuerbetone auf Calci- umaluminat-Basis geht aber die Suche nach neuen Bindersystemen als Ersatz für den Calciumaluminat-Cement weiter. Die technologisch relevanten Entwicklungen sind:The calcium aluminate cement used as a binder in the hydraulically bound refractory concretes is often the weakest link in the structure of the refractory concrete. The reason for this is the relatively low-melting eutectics in the CaO-Al 2 0 3 -Si0 2 system . In order to reduce these negative effects, many efforts have been made to reduce the cement content. As a result, low-cement refractory concretes or refractory concretes with an extremely low cement content were developed, see above. Parallel to the technological development of refractory concrete based on calcium aluminate, the search for new binder systems to replace calcium aluminate cement continues. The technologically relevant developments are:
In basischen Betonen - Mg(OH)2 und Bariumaluminat-Cement Aktives A1203. Sein Einsatz verbessert die Betoneigenschaften wie z.B. Temperaturwechselbeständigkeit (TWB) und Bruchzähigkeit. Kombination von Microsilica mit aktivem A1203 - dies führt zur Bildung von Mullit und damit zur Verbesserung der thermomecha- nischen Eigenschaften und TWBIn basic concretes - Mg (OH) 2 and barium aluminate cement active A1 2 0 3 . Its use improves concrete properties such as resistance to temperature changes (TWB) and fracture toughness. Combination of microsilica with active A1 2 0 3 - this leads to the formation of mullite and thus to an improvement in the thermo-mechanical properties and TWB
Phospatbindung, in erster Linie auf Basis von Monoaluminium- phosphat Wasserglas KunstharzePhosphate binding, primarily based on monoaluminium phosphate water glass synthetic resins
Um die Eigenschaften der Feuerbetone und ihr Einsatzverhalten zu verbessern, kommen diverse Zusätze zur Anwendung. Verbrei- tet ist z.B. der Zusatz von Stahlfasern, die die mechanische Festigkeit und die TWB positiv beeinflussen (Genrong, L.; Hongliang, Z.: Influence of stainless steel fiber addition on flexural strength and thermal shock resistance of refractory castables. Int. Coll. Aachen, 1992). Ein Zr02- und/oder Cr203- Zusatz steigert wiederum die Korrosionsbeständigkeit (Boquan, Z . ; Hongxi, Z.: Study on slag resistance of magnesia/zirconia- based castables. Stahl Eisen (2001), S. 68-70; Miyaji, T . ; Sa- ka oto, S . ; Kudo, E.: Role of Cr203 in Al203-Cr203 castables for waste melting furnaces. Taikabutsu Overseas 22(2002)2, S. 118- 121) .Various additives are used to improve the properties of the refractory concrete and its application behavior. For example, the addition of steel fibers that have a positive effect on mechanical strength and TWB is widespread (Genrong, L .; Hongliang, Z .: Influence of stainless steel fiber addition on flexural strength and thermal shock resistance of refractory castables. Int. Coll. Aachen, 1992). A Zr0 2 and / or Cr 2 0 3 additive in turn increases the corrosion resistance (Boquan, Z .; Hongxi, Z .: Study on slag resistance of magnesia / zirconia-based castables. Stahl Eisen (2001), p. 68- 70; Miyaji, T.; Saka oto, S.; Kudo, E .: Role of Cr 2 0 3 in Al 2 0 3 -Cr 2 0 3 castables for waste melting furnaces. Taikabutsu Overseas 22 (2002) 2, Pp. 118-121).
Der Einsatz monolithischer Feuerfest-Zustellungen bringt fol- gende Vorteile:The use of monolithic refractory linings has the following advantages:
Möglichkeit der Mechanisierung der Zustellung und damit einePossibility of mechanization of delivery and thus a
Verkürzung der MontagezeitShortening the assembly time
Fehlen der Fugen, die die Penetrierung der Zustellung und damit die Korrosion beschleunigen Verbesserung der StahlreinheitLack of joints that accelerate the penetration of the lining and thus the corrosion Improve the steel cleanliness
Reduzierung der Zustellungskosten um bis zu 50 %Reduction of delivery costs by up to 50%
Verringerung des spezifischen VerbrauchsReduction of specific consumption
Unter allen ungeformten Feuerfest-Stoffen eigenen sich die Feuerbetone und Torkretiermassen zur Mechanisierung und Automatisierung der Zustellung am besten. Die Stampfmassen und plastische Massen, die auch zur Gruppe ungeformter Erzeugnisse gehören, sind in der Hinsicht nicht so günstig. Die modernen Feuerbetone erreichen Eigenschaftswerte, die die der Feuer- feststeine übertreffen können.Of all the unshaped refractory materials, the fire concrete and door locking compounds are best suited for mechanizing and automating the delivery. The ramming masses and plastic masses, which also belong to the group of unshaped products, are not so cheap in this respect. Modern refractory concrete achieves property values that can exceed that of refractory bricks.
Die Vorteile der Anwendung monolithischer Zustellungen stellen einen großen Anreiz für ihren verstärkten Einsatz in der Praxis sowohl in der technischen als auch wirtschaftlichen Hin- sieht dar. In der Zwischenzeit haben sich ungeformte feuerfeste Erzeugnisse und die daraus hergestellten Fertigbauteile in praktisch allen Anwendungsbereichen feuerfester Werkstoffe eingeführt und ersetzen z.T. die feuerfesten geformten Werkstoffe oder sind alternative Werkstoffe. In der Eisen- und Stahlindustrie als dem größten Abnehmer feuerfester Produkte ist auch der Verbrauch an Feuerbetonen- am größten. In der gesamten Produktionslinie findet man außer Konverter kaum eine Anlage, in der keine ungeformten Feuerfest-Erzeugnisse eingesetzt werden.The advantages of using monolithic linings are a great incentive for their increased use in practice both in technical and economic terms. In the meantime, unshaped refractory products and the prefabricated components made from them have been introduced in practically all areas of application of refractory materials partly replace the refractory molded materials or are alternative materials. In the iron and steel industry as the largest buyer of refractory products, the consumption of refractory concrete is also greatest. In the entire production line there is hardly any other than converters Plant in which no unshaped refractory products are used.
Diese Entwicklung fordert von der Feuerfest-Industrie die Ent- icklung neuer leistungsfähigerer Werkstoffe und Technologien. Eine der wichtigsten Forderungen und Herausforderungen bei der Herstellung und dem Einsatz einer monolithischen Feuerfest- Zustellung ist die Einstellung eines möglichst niedrigen Anmachwassergehaltes. Ein zu hoher Wassergehalt führt nämlich zur Verschlechterung der Porosität und der Festigkeit der Feuerbetone. Außerdem ist die Trocknung einer monolithisch zugestellten Ausmauerung ein sehr aufwendiges und z.T. kompliziertes Unterfangen. Bei einer nicht sachgerechten Führung können dabei große Schäden z.B. durch Materialexplosion infolge des zu hohen Wasserdampfdruckes auftreten. So ist die Verringerung des Anmachwassergehaltes auch unter diesem Gesichtspunkt eines der Ziele der Weiterentwicklung der Feuerbetone.This development requires the refractory industry to develop new, more powerful materials and technologies. One of the most important requirements and challenges in the manufacture and use of a monolithic refractory delivery is the setting of the lowest possible mixing water content. An excessively high water content leads to a deterioration in the porosity and strength of the refractory concrete. In addition, the drying of a monolithic brick lining is a very complex and sometimes complicated undertaking. In the event of improper guidance, major damage e.g. due to material explosion due to the high water vapor pressure. From this point of view, reducing the mixing water content is one of the goals of the further development of refractory concrete.
Die wichtigste Aufgabe aber ist die Verbesserung der Korrosi- onsbeständigkeit ungeformter Erzeugnisse insbesondere der Feuerbetone. Feuerbetone zeichnen sich in der Regel durch eine gute Korrosionsbeständigkeit aus. Sie wird u.a. durch einen kleinen Porendurchmesser zumal in selbstfließenden Feuerbetonen bedingt. In vielen Anwendungsbereichen z.B. in der Stahl- industrie reicht dies aber immer noch nicht aus, so dass man nach Möglichkeiten der weiteren Verbesserung sucht. Eine davon ist die Integrierung in das Werkstoffgefüge der Kohlenstoffanteile. Zum Einsatz kommen in erster Linie Grafit und Ruß. Ähnlich wie bei geformten Steinen bringt die Kohlenstoffphase ei- ne erhebliche Steigerung der Korrosionsbeständigkeit. Aufgrund der schlechten Benetzbarkeit durch Wasser lassen sich allerdings größere Kohlenstoffmengen in einen Feuerbeton nicht einfach einbringen. Kohlenstoffhaltige Betone benötigen auch höhere Anmachwassermengen, was aber die oben geschilderten Schwierigkeiten bei der Trocknung nach sich zieht. Gewisse Abhilfe schafft hier der Einsatz von oberflächenaktiven Substanzen. Weitestgehend ungelöst ist bis jetzt der Schutz des Kohlenstoffes vor dem Ausbrand aus dem Gefüge eines Feuerbetons. Nach der Kohlenstoffoxidation entstehen im Werkstoffgefüge Poren, die die Korrosionsbeständigkeit beeinträchtigen. Die in geformten MAGCARBON (Magnesia-Kohlenstoff) Steinen üblichen metallischen Antioxidantien sind nur bedingt einsetzbar. Da die Betonsuspensionen einen basischen Charakter haben, können die Metallpulver mit den im Anmachwasser gelösten Bestandteilen und Additiven reagieren. Der dabei entstehende Wasserstoff stellt ein Gefährdungspotential dar (Hara, T . ; Yasuda, N.; Su- giyama, K. ; Shimizu, I.: Gas evolution of silicon-containing castables. Taikabutsu Overseas 22(2002), 2, 114-117).The most important task, however, is to improve the corrosion resistance of unshaped products, especially fire-reinforced concrete. Refractory concretes are usually characterized by good corrosion resistance. It is caused, among other things, by a small pore diameter, especially in self-flowing refractory concrete. In many areas of application, for example in the steel industry, this is still not enough, so that people are looking for opportunities for further improvement. One of them is the integration into the material structure of the carbon parts. Primarily graphite and carbon black are used. Similar to shaped stones, the carbon phase brings a significant increase in corrosion resistance. However, due to the poor wettability by water, larger amounts of carbon cannot be easily introduced into a refractory concrete. Carbon-containing concretes also require higher amounts of mixing water, which, however, creates the drying difficulties described above. The use of surface-active substances provides some remedy here. To date, the protection of carbon from burning out of the structure of a refractory concrete has been largely unsolved. After carbon oxidation, pores develop in the material structure, which impair the corrosion resistance. The metallic antioxidants commonly found in molded MAGCARBON (magnesia carbon) stones can only be used to a limited extent. Since the concrete suspensions have a basic character, the metal powders can react with the components and additives dissolved in the mixing water. The resulting hydrogen represents a potential hazard (Hara, T.; Yasuda, N .; Sugiyama, K.; Shimizu, I .: Gas evolution of silicon-containing castables. Taikabutsu Overseas 22 (2002), 2, 114- 117).
Vor diesem Hintergrund ist es die Aufgabe der vorliegenden Erfindung, feuerfeste ungeformte Massen insbesondere Feuerbetone zur Verfügung zu stellen, die eine, im Vergleich zu herkömmli- chen Erzeugnissen, deutlich verbesserte Korrosionsbeständigkeit aufweisen und großtechnisch und wirtschaftlich hergestellt werden können.Against this background, it is the object of the present invention to provide refractory unshaped masses, in particular refractory concrete, which have a significantly improved corrosion resistance compared to conventional products and can be produced on an industrial scale and economically.
Die Aufgabe wird gelöst durch eine feuerfeste Masse, enthal- tend eine grobkörnige feuerfeste Komponente (sog. Grobkorn) und/oder eine mittelkörnige feuerfeste Komponente (sog. Mittelkorn) und/oder eine feinkörnige feuerfeste Komponente (sog. Mehl) und/oder eine feinstkörnige feuerfeste Komponente (sog. Feinstkorn) dadurch gekennzeichnet, dass die Masse kohlen- stofffrei ist und eine feuerfeste borhaltige, stickstofffreie Komponente umfasst.The object is achieved by a refractory mass containing a coarse-grained refractory component (so-called coarse grain) and / or a medium-grained refractory component (so-called medium grain) and / or a fine-grained refractory component (so-called flour) and / or a fine-grained component Refractory component (so-called fine grain) characterized in that the mass is carbon-free and comprises a refractory boron-containing, nitrogen-free component.
Kohlenstofffrei bedeutet im Sinne der vorliegenden Erfindung, dass kein ungebundener Kohlenstoff, z.B in Form von Grafit, Russ und dergleichen, im Material vorhanden ist. Die Erfindung umfasst somit auch feuerfeste Massen und Materialien, die unter Verwendung eines kohlenstoffhaltigen Binders, z.B. Harz, Teer, Pech hergestellt werden. Auch Massen mit Anteilen an chemisch gebundenem Kohlenstoff, wie z.B. in feuerfesten Car- biden, wie z.B. Siliciumcarbid, sind ein Bestandteil der Erfindung. Als grobkörnige, mittelkörnige, feinkörnige, und feinstkörnige feuerfeste Komponenten kommen alle typischen, oxidischen und nichtoxidischen, saueren und basischen Rohstoffe, bzw. ihre Kombination zur Anwendung. Besonders bevorzugt sind basische Metalloxide wie z.B. Sinter-, Schmelzmagnesia, Sinter-, Schmelzspinell, Sinterdolomit, Sinterkalk, Olivin oder Forste- rit. Vorteilhaft sind auch Massen auf Al203-Basis mit variablen Si02- und/oder SiC-Anteilen. Auch Kombinationen dieser Rohstoffe können vorliegen.For the purposes of the present invention, carbon-free means that no unbound carbon, for example in the form of graphite, carbon black and the like, is present in the material. The invention thus also includes refractory compositions and materials which are produced using a carbon-containing binder, for example resin, tar, pitch. Masses with proportions of chemically bound carbon, such as in refractory carbides, such as silicon carbide, are also part of the invention. All typical, oxidic and non-oxidic, acidic and basic raw materials or their combination are used as coarse-grained, medium-grained, fine-grained and fine-grained refractory components. Basic metal oxides such as sintered, melted magnesia, sintered, melted spinel, sintered dolomite, sintered lime, olivine or forsterite are particularly preferred, and masses based on Al 2 O 3 with variable SiO 2 and / or SiC contents are also advantageous. Combinations of these raw materials can also be present.
Als feuerfeste borhaltige, stickstofffreie Komponente eignen sich besonders gut eine Verbindung ausgewählt aus der Gruppe Borcarbid BC, refraktäre Boride und ihrer Mischungen. Refrak- täre Boride sind bevorzugt CaBs, TiB2, und ZrB2. Es hat sich gezeigt, dass auch eine Mischung aus mehreren borhaltigen, stickstofffreien Verbindungen vorteilhaft eingesetzt werden ' kann. Die borhaltige, stickstofffreie Verbindung liegt vorzugsweise in Mengen von 0,1 bis 30 Gew.-%, besonders bevorzugt von 0,5 bis 10,0 Gew.-% vor.A particularly suitable fire-resistant boron-containing, nitrogen-free component is a compound selected from the group boron carbide BC, refractory borides and their mixtures. Refractory borides are preferably CaB s , TiB 2 , and ZrB 2 . It has been found that also a mixture of several boron-containing, nitrogen-free compounds can be advantageously used '. The boron-containing, nitrogen-free compound is preferably present in amounts from 0.1 to 30% by weight, particularly preferably from 0.5 to 10.0% by weight.
Die erfindungsgemäße Masse umfasst vorzugsweise einen Zusatzstoff. Unter Zusatzstoffen sind im Sinne der Erfindung vorzugsweise Metallpulver, Nichtoxide wie z.B. Nitride, Carbide, Silicide, Oxynitride, Oxycarbide, Metallfasern, Kunststofffa- sern und Carbonfasern zu verstehen, vorzugsweise handelt es sich um die Metallpulver AI, Mg, Si und Nichtoxide wie z.B. SiC, A1N, Si3N4, AlON, SiAlON. Die Zusatzstoffe liegen vorzugsweise in Mengen von 0,5 bis 30 Gew.-% vor.The composition according to the invention preferably comprises an additive. In the context of the invention, additives are preferably metal powders, non-oxides such as, for example, nitrides, carbides, silicides, oxynitrides, oxycarbides, metal fibers, plastic fibers and carbon fibers, and are preferably metal powders Al, Mg, Si and non-oxides such as SiC , A1N, Si 3 N 4 , AlON, SiAlON. The additives are preferably present in amounts of 0.5 to 30% by weight.
Unter grobkörnig sind im Sinne der vorliegenden Erfindung vorzugsweise Körnungen > 1 mm, besonders bevorzugt 1 - 10 mm zu verstehen. Als Mittelkorn kommen Körnungen 0,2 bis <1 mm, bevorzugt 0,2 bis 0,5 mm, zum Einsatz.For the purposes of the present invention, coarse-grained is preferably to be understood to mean grains> 1 mm, particularly preferably 1-10 mm. Grains of 0.2 to <1 mm, preferably 0.2 to 0.5 mm, are used as the middle grain.
Unter feinkörnig sind im Sinne der vorliegenden Erfindung vorzugsweise Körnungen 0,02 bis <0,2 mm, besonders bevorzugt 0,02 bis 0,1 mm zu verstehen. Diese Kornfraktion wird üblicherweise im technischen Sprachgebrauch als Mehl bezeichnet. Als Feinstkorn sind reaktive feuerfeste Komponenten mit einer mittleren Korngröße < 15 μm, bevorzugt < 5 μ , zu verstehen. Zur Anwendung kommen z.B. calcinierte Tonerde, reaktive Toner- de, feinstgemahlene, feuerfeste Rohstoffe, Microsilica, Feuerfestton, Bindeton.For the purposes of the present invention, fine-grained should preferably be understood to mean grains of 0.02 to <0.2 mm, particularly preferably 0.02 to 0.1 mm. This grain fraction is usually called flour in technical parlance. Fines are reactive refractory components with an average grain size <15 μm, preferably <5 μm. For example, calcined clay, reactive clay, finely ground, refractory raw materials, microsilica, refractory clay, binding clay are used.
Die erfindungsgemäßen ungeformten Feuerfest-Massen können hydraulisch, chemisch bzw. keramisch gebunden werden. Zu diesem Zweck eignen sich alle in der Feuerfesttechnologie typischen Bindersysteme. Vorzugsweise kommt eine hydraulische Bindung mittels eines Feuerfest-Cements vorzugsweise eines Calciumalu- minat-Cements in einer Menge bis zu 25 Gew.-%, vorzugsweise 1 bis 10 Gew.-%, zur Anwendung.The unshaped refractory compositions according to the invention can be bound hydraulically, chemically or ceramic. All binder systems typical in refractory technology are suitable for this purpose. Hydraulic bonding by means of a refractory cement, preferably a calcium aluminate cement, is preferably used in an amount of up to 25% by weight, preferably 1 to 10% by weight.
Für die chemische Bindung, d.h. als Binder, eignen sich abhängig von der chemischen Zusammensetzung der Feuerfestrohstoffe alle in der Feuerfestindustrie geläufigen flüssigen Bindemittel sowohl wasserfrei als auch wasserhaltig, z.B. Harze, Teer, Pech. Ligninsulfonat (Sulfitlauge) , Polyvinylalkohol, Phosphate, MgS04-Lösung, Wasserglas, Lävulinsäure . Die Bindermenge liegt vorzugsweise zwischen 0,1 und 50 Gew.-%, vorzugsweise zwischen 1 und 10 Gew.-%.Depending on the chemical composition of the refractory raw materials, all liquid binders common in the refractory industry are suitable for chemical bonding, ie as binders, both water-free and water-containing, for example resins, tar, pitch. Lignin sulfonate (sulfite liquor), polyvinyl alcohol, phosphates, MgS0 4 solution, water glass, levulinic acid. The amount of binder is preferably between 0.1 and 50% by weight, preferably between 1 and 10% by weight.
Keramische Bindung stellt sich in den erfindungsgemäßen Massen bei Aufheizen auf Temperaturen > 700 °C ein. Dieser Vorgang wird durch den Einsatz von Feinstkorn-Anteilen unterstützt.Ceramic bonding occurs in the compositions according to the invention when heated to temperatures> 700 ° C. This process is supported by the use of very fine grain fractions.
Abhängig von der Art der Bindung werden die Massen mit bis zu 40 Gew.-%, vorzugsweise < 10 Gew.-%, Wasser angemacht.Depending on the type of binding, the masses are mixed with up to 40% by weight, preferably <10% by weight, of water.
Um den Wassergehalt zu reduzieren und/oder die rheologischen Eigenschaften der Massen zu verbessern, ist der Einsatz von unterschiedlichen Additiven, wie z.B. Verflüssiger, Abbinde- regulierer, Dispergiermittel, vorteilhaft. Der Anteil dieserIn order to reduce the water content and / or to improve the rheological properties of the masses, the use of different additives, e.g. Liquefier, setting regulator, dispersing agent, advantageous. The share of this
Additive liegt im Bereich bis max. 5 Gew.-% vorzugsweise < 1,5 Gew.-%. Die grobkörnige Komponente liegt vorzugsweise m Mengen < 90 Gew.-% besonders bevorzugt m Mengen von 15 bis 80 Gew.-% vor.Additive is in the range up to max. 5% by weight, preferably <1.5% by weight. The coarse-grained component is preferably present in amounts of <90% by weight, particularly preferably in amounts of 15 to 80% by weight.
Die mittelkornige Komponente liegt vorzugsweise m Mengen < 40 Gew.-%, besonders bevorzugt in Mengen von 3 bis 20 Gew.-% vor.The medium-grain component is preferably present in amounts of <40% by weight, particularly preferably in amounts of 3 to 20% by weight.
Die feinkornige Komponente liegt vorzugsweise in Mengen < 95 Gew.-%, besonders bevorzugt m Mengen von 5 bis 80 Gew.-% vor.The fine-grained component is preferably present in amounts of <95% by weight, particularly preferably in amounts of 5 to 80% by weight.
Die feinstkornige Komponente liegt vorzugsweise in Mengen von < 50 Gew.-%, besonders bevorzugt in Mengen von 0.1 bis 35 Gew.-% vor.The fine-grain component is preferably present in amounts of <50% by weight, particularly preferably in amounts of 0.1 to 35% by weight.
Zur Verstärkung der Wirkung der borhaltigen Komponenten oder zur Verbesserung der Werkstoffeigenschaften können den erfin- dungsgemaßen Feuerfest-Massen als Zusatzstoff spezielle metallische und/oder nichtoxidische Stoffe zugesetzt werden. Dabei handelt es sich vorzugsweise um Verbindungen ausgewählt aus der Gruppe der Metallpulver AI, Mg, Si sowie Nichtoxide wie z.B. SiC, A1N, Si3N4, A10N, SiAlON.To increase the effect of the boron-containing components or to improve the material properties, special metallic and / or non-oxidic substances can be added to the refractory compositions according to the invention. These are preferably compounds selected from the group of metal powders Al, Mg, Si and non-oxides such as SiC, A1N, Si 3 N 4 , A10N, SiAlON.
Zum Zweck der Gefugeverstarkung und/oder der Verbesserung des Trocknungsvorgangs ist auch ein Zusatz von Metallfasern von Vorteil.For the purpose of reinforcing the structure and / or improving the drying process, the addition of metal fibers is also advantageous.
Die erfindungsgemaßen kohlenstofffreien Feuerfest-Massen zeichnen sich durch eine Reihe positiver Eigenschaften aus. Bedingt durch die relativ hohe Wärmeleitfähigkeit der borhaltigen Zusätze besitzen sie im Vergleich zu Massen ohne Zusatz eine verbesserte Temperaturwechselbestandigkeit .The carbon-free refractory compositions according to the invention are distinguished by a number of positive properties. Due to the relatively high thermal conductivity of the boron-containing additives, they have an improved thermal shock resistance compared to compositions without additives.
Bedingt durch die hohe Sauerstoffaffinitat zeigen die borhaltigen Verbindungen gute Oxidationsbestandigkeit im Werkstoff- gefuge. Dieses Verhalten wird durch Bildung von Passivierungs- schichten auf der Materialoberflache, die den Kontakt mit dem Sauerstoff erschweren, unterstutzt. Die zugesetzten borhaltigen Stoffe werden von ionischen Schmelzen schlecht benetzt, wodurch die Benetzung durch geschmolzene Schlacken eingeschränkt wird. Dies verbessert die Korrosionsbeständigkeit und trägt zur Steigerung der Haltbarkeit dieser neuen Feuerfest- Massen bei.Due to the high affinity for oxygen, the boron-containing compounds show good oxidation resistance in the material structure. This behavior is supported by the formation of passivation layers on the surface of the material, which make contact with oxygen more difficult. The added boron-containing substances are poorly wetted by ionic melts, which limits the wetting by molten slags. This improves the corrosion resistance and contributes to increasing the durability of these new refractory compounds.
Auf die Korrosionsbeständigkeit der neuen Massen wirkt sich ebenfalls positiv die Bildung feuerfester, stabiler Oxide in- folge der Reaktion der Boride mit Sauerstoff aus. Da die Reaktionen mit einer z.T. beträchtlichen Volumenzunahme einhergehen, führen sie zu einer Verdichtung des Werkstoffgefüges was wiederum zur Verbesserung der Korrosionsbeständigkeit und der Festigkeit der Zustellung beiträgt. Boride und Borcarbid sind in der Lage die kritischen Bestandteile von metallurgischen Schlacken zu reduzieren und dadurch ihre Aggressivität zu verringern.The formation of refractory, stable oxides due to the reaction of the borides with oxygen also has a positive effect on the corrosion resistance of the new materials. Since the reactions with a partially accompanied by considerable volume increase, they lead to a densification of the material structure, which in turn contributes to improving the corrosion resistance and the strength of the infeed. Borides and boron carbide are able to reduce the critical components of metallurgical slags and thereby reduce their aggressiveness.
Für die Korrosionsbeständigkeit der feuerfesten Werkstoffe ist eine hohe Verdichtung des Werkstoffgefüges wichtig. Diese kann u.a. durch eine entsprechende Kornverteilung verbessert werden. Für den erfindungsgemäßen Versatz hat sich folgender Kornaufbau als vorteilhaft erwiesen:A high compression of the material structure is important for the corrosion resistance of the refractory materials. This can include can be improved by an appropriate grain distribution. The following grain structure has proven to be advantageous for the offset according to the invention:
Grobkornkomponente: < 90 Gew.-% > 0,2 mm. Bevorzugt werden Anteile von 15 bis 80 Gew.-% der Kornfraktion 1 - 10 mm.Coarse grain component: <90% by weight> 0.2 mm. Portions of 15 to 80% by weight of the grain fraction 1-10 mm are preferred.
Mittelkornkomponente: < 40 Gew.-% der Kornfraktion 0.2 bis 1 mm. Bevorzugt werden Anteile von 3 bis 20 Gew.-% der Kornfrak- tion 0,2 - 0,5 mm.Medium grain component: <40% by weight of the grain fraction 0.2 to 1 mm. Portions of 3 to 20% by weight of the grain fraction 0.2-0.5 mm are preferred.
Feinkornkomponente: < 95 Gew.-% < 0,2 mm, vorzugsweise 5 bis 80 Gew.-%Fine grain component: <95% by weight <0.2 mm, preferably 5 to 80% by weight
Feinstkornkomponente: < 50 Gew. % < 15 um, vorzugsweise 0,1 bis 35 % < 5 umFine grain component: <50% by weight <15 µm, preferably 0.1 to 35% <5 µm
Borhaltige, stickstofffreie Verbindung: 0,1 bis 30 Gew.-% -325 mesh (< 45 um), vorzugsweise 0,5 bis 5 Gew.-%. Die Herstellung der erfindungsgemäßen Feuerfest-Massen erfolgt bei dem Feuerfest-Hersteller bzw. vor Ort bei dem Feuerfest- Anwender, vorzugsweise in folgenden Schritten:Boron-containing, nitrogen-free compound: 0.1 to 30% by weight -325 mesh (<45 µm), preferably 0.5 to 5% by weight. The refractory compositions according to the invention are produced at the refractory manufacturer or on-site at the refractory user, preferably in the following steps:
Herstellung einer homogenen Mischung aus den genannten feuerfesten Komponenten in den genannten Gew. -Anteilen.Production of a homogeneous mixture of the refractory components mentioned in the weight percentages mentioned.
Zusatz eines Binders und/oder Additive und/oder Anmachwassers und weitere Homogenisierung des Gemenges.Adding a binder and / or additives and / or mixing water and further homogenizing the batch.
Zusatz von Zuschlagstoffen und weitere Homogenisierung des Gemenges. Nach Bedarf werden der Mischung Stoffe beigemischt, die in den fertigen Massen bestimmte Funktionen übernehmen. Beispiel sind Metallpulver und nichtoxidische Werkstoffe wie Carbide, Nitride, Silizide, Metallfaser, Kunststofffaser, Carbonfaser, welche die Oxidationsbeständigkeit, Festigkeit Trocknungsverhaltens, Korrosionsbeständigkeit und die Temperaturwechselbeständigkeit des Werkstoffes weiter verbessern.Addition of additives and further homogenization of the batch. If necessary, substances are added to the mixture, which take on certain functions in the finished masses. Examples are metal powder and non-oxide materials such as carbides, nitrides, silicides, metal fibers, plastic fibers, carbon fibers, which further improve the resistance to oxidation, strength, drying behavior, corrosion resistance and the thermal shock resistance of the material.
Das homogenisierte Gemisch ist einsatzbereit und kann mittels der in der Feuerfesttechnologie geläufigen Techniken, z.B. Gießen, Vibrieren, Spritzen, Torkretieren, Stampfen usw., zu einer monolithischen Feuerfestauskleidung bzw. einer funktioneilen Masse verarbeitet werden.The homogenized mixture is ready for use and can be made using techniques familiar in refractory technology, e.g. Pouring, vibrating, spraying, door locking, pounding, etc., are processed into a monolithic refractory lining or a functional mass.
Aus den erfindungsgemäßen Feuerfest-Massen können auch Fertigbauteile hergestellt werden. Dazu werden die wie oben beschrieben hergestellten Massen in eine Metall-, bzw. Holz-,, bzw. Kunststoffform gebracht. Durch anschließendes Vibrieren, Stampfen, Pressen usw. kann die Masse zusätzlich verdichtet werden. Nach Aushärten der Masse wird das Bauteil ausgeformt und bei 80 bis 700 °C getrocknet und/oder getempert. Nach Bedarf kann das getrocknete bzw. getemperte Bauteil gebrannt werden. Die Brennbedingungen hängen im wesentlichen von der chemischen und mineralogischen Zusammensetzung der Feuerfest- Masse sowie der Form und Geometrie des Bauteils ab. Nach dem Trocknen bzw. Tempern bzw. Brand sind die erfindungsgemäßen Fertigbauteile einsatzbereit. Die erfindungsgemäßen ungeformten Feuerfestmassen können in den Öfen und Anlagen der Nichteisen-Industrie, Stahlindustrie, Zementindustrie, Glasindustrie Müllverbrennungsanlagen usw. eingesetzt werden.Prefabricated components can also be produced from the refractory materials according to the invention. For this purpose, the masses produced as described above are brought into a metal, or wood , or plastic mold. The mass can be further compacted by subsequent vibration, pounding, pressing, etc. After the mass has hardened, the component is shaped and dried and / or tempered at 80 to 700 ° C. If necessary, the dried or tempered component can be fired. The firing conditions essentially depend on the chemical and mineralogical composition of the refractory mass as well as the shape and geometry of the component. After drying or tempering or firing, the prefabricated components according to the invention are ready for use. The unshaped refractory compositions according to the invention can be used in the furnaces and plants of the non-ferrous industry, steel industry, cement industry, glass industry, waste incineration plants, etc.
Die Herstellung und die Eigenschaften der erfindungsgemäßen Erzeugnisse sei nachstehend an einigen Beispielen erläutert. Bei den Versätzen der Beispiele wird, wie in der Keramik üb- lieh, zunächst ein "Grundversatz" hergestellt, der bereits 100% ergibt. Um Variationen zu erhalten, werden zu diesem Grundversatz Zusatzstoffe in unterschiedlichen Mengen zugegeben. Deren % Angaben" beziehen sich auf den 100% Wert des Grundansatzes .The preparation and the properties of the products according to the invention are explained below using a few examples. In the offsets of the examples, as is customary in ceramics, a "basic offset" is first produced, which is already 100%. In order to obtain variations, additives are added in different amounts to this basic offset. Their% details " refer to the 100% value of the basic approach.
Beispiel 1example 1
Es wurden 4 selbstfließende Korundbetone mit variablen BC- Anteilen hergestellt. Ihre Zusammensetzung und der Kornaufbau waren wie folgt:4 self-flowing corundum concretes with variable BC components were produced. Their composition and grain structure were as follows:
Sinterkorund (T60) 1 - 3 mm 45.0 Gew.-%Sintered corundum (T60) 1 - 3 mm 45.0% by weight
Sinterkorund (T60) 0.5 - 1 mm 10.0 Gew.-%Sintered corundum (T60) 0.5 - 1 mm 10.0% by weight
Sinterkorund (T60) 0 - 0.3 mm 10.0 Gew. -% Sinterkorund (T60) < 45 um 12.0 Gew.-%Sintered corundum (T60) 0 - 0.3 mm 10.0% by weight Sintered corundum (T60) <45 by 12.0% by weight
Calcinierte Tonerde CTC 50 16.0 Gew.-%Calcined alumina CTC 50 16.0% by weight
Calciumaluminat (Tonerdezement CA 270) 5.5 Gew.-%Calcium aluminate (CA 270 alumina cement) 5.5% by weight
Additive: Disperging Aluminas (ADSl + ADW1 im Verhältnis 3:1) 1.5 Gew.-%Additives: Disperging aluminas (ADSl + ADW1 in a ratio of 3: 1) 1.5% by weight
Alle Rohstoffe und Additive sind unter den genannten Bezeichnungen bei der Fa. ALCOA Deutschland erhältlich.All raw materials and additives are available under the names mentioned from ALCOA Germany.
Die Rohstoffe und Additive wurden mit variablen B4C-Anteilen, -325 mesh (< 45 μm) , der Fa. Wacker Chemie GmbH, München und Anmachwasser homogen gemischt. Es zeigte sich, dass mit steigendem BC-Gehalt die benötigte Wassermenge geringer wird. Aus den Massen wurden Standardprüfkörper 50x50 mm hergestellt. Die Herstellung der Prüfkörper erfolgte durch Gießen in eine Kunststoffform, Aushärten bei Raumtemperatur 24 h, und anschleißendes Trocknen bei 110 °C, 24 h. Die getrockneten Prüfkörper wurden durch die Bestimmung der Kaltdruckfestigkeit, KDF, (DIN EN 9935), Rohdichte, RD, (DIN EN 993) und offenen Porosität, OP, (DIN EN 993) charakterisiert. Die erhaltenen Ergebnisse sind in der nachfolgenden Aufstellung zusammenge- fasst .The raw materials and additives were mixed with variable B 4 C components, -325 mesh (<45 μm), from Wacker Chemie GmbH, Munich, and mixing water. It was shown that the amount of water required decreased with increasing BC content. Standard test specimens 50x50 mm were produced from the masses. The The test specimens were produced by pouring them into a plastic mold, curing them at room temperature for 24 hours, and then drying them at 110 ° C. for 24 hours. The dried test specimens were characterized by the determination of the cold compressive strength, KDF, (DIN EN 9935), bulk density, RD, (DIN EN 993) and open porosity, OP, (DIN EN 993). The results obtained are summarized in the table below.
BC-Zusatz Anmachwasser KDF RD OPBC additive mixing water KDF RD OP
(Gew. -%) (Gew. -%) (MPa) (g/cm3) .*.(% By weight) (% by weight) (MPa) (g / cm3). *.
0 5.6 82 3.15 18.90 5.6 82 3.15 18.9
1 4.7 81 3.14 19.11 4.7 81 3.14 19.1
3 4.6 75 3.02 19.93 4.6 75 3.02 19.9
5 4.4 71 2.99 21.15 4.4 71 2.99 21.1
Die Ergebnisse zeigen, dass durch den Zusatz von Borcarbid die Anmachwassermenge in erfindungsgemäßen Betonen reduziert werden kann. Auch Korundbetone mit relativ hohen BC-Anteilen be- sitzen gute Eigenschaftswerte.The results show that the amount of mixing water in the concretes according to the invention can be reduced by adding boron carbide. Corundum concretes with a relatively high BC content also have good property values.
Beispiel 2Example 2
Es wurde ein Bauxit Feuerbeton mit folgender Zusammensetzung ■ hergestellt:A bauxite refractory concrete was made with the following composition:
Sinterbauxit 1 - 3 mm 45.0 Gew.-%Sinter bauxite 1 - 3 mm 45.0% by weight
Sinterbauxit 0 - 1 mm 25.0 Gew.-%Sintered bauxite 0 - 1 mm 25.0% by weight
Sinterkorund T60 < 45 um 12.0 Gew.-%Sintered corundum T60 <45 by 12.0% by weight
Calcinierte Tonerde CTC 50 12.0 Gew.-% Tonerdezement CA 270 5.0 Gew.-%Calcined alumina CTC 50 12.0% by weight CA 270 alumina cement 5.0% by weight
Additive : Disperging Aluminas (ADS1 + ADW1 im Verhältnis 1:1) 1.5 Gew.-%Additives: Disperging aluminas (ADS1 + ADW1 in the ratio 1: 1) 1.5% by weight
Bei dem gesinterten Bauxit (Sinterbauxit) handelt es sich um ein handelübliches Produkt. Sinterkorund T60, Calcinierte Tonerde CTC 50, Tonerdezement CA 270 und Additive können z.B. ü- ber die Fa. ALCOA Deutschland bezogen werden. Dem Gemenge wurden 2 Gew.-% Borcarbid der Fa. Wacker Chemie GmbH, München, beigemischt. Die Mischung wurde dann mit 5.7 Gew.-% Anmachwasser zu einem Beton aufbereitet. Aus dem Beton wurden zylindrische Testtiegel für die Untersuchung der Korro- sionsbeständigkeit hergestellt. Die Herstellung erfolgte, wie im Beispiel 1 dargestellt, durch Eingießen des verflüssigten Betons in eine Kunststoffform. Die Gießform war in der Weise konstruiert, dass an einer Seite des PrüfZylinders eine runde Vertiefung mit einem Durchmesser von 30 mm und einer Tiefe von 10 mm entstand. Die Vertiefung diente der Aufnahme einer Testmetallschmelze. Nach dem Aushärten bei Raumtemperatur, 24 h und Trocknen bei 110 °C, 24 h wurden in die Vertiefung des Tiegels 20 g reinen Äluminiumpulvers platziert. Der Tiegel wurde dann bei 800 °C, 72 h lang in einem Elektroofen unter Luftabschluss ausgelagert. Nach der Abkühlung wurde der Testtiegel nach eventuellen Korrosionserscheinungen, wie chemische Reaktion mit dem Metall und Infiltration des Metalls in das Werkstoffgefüge, untersucht. Zum Vergleich wurde ein Tiegeltest aus gleichem Feuerbeton ohne BC-Zusatz hergestellt und unter gleichen Bedingungen untersucht. Der erfindungsgemäße Bauxit-B4C-Feuerbeton zeigte im Vergleich zum Werkstoff ohne Borcarbid keine Infiltration und einen deutlich besseren Korrosionswiderstand gegenüber der AI-Schmelze.Sintered bauxite (sinter bauxite) is a commercially available product. Sintered corundum T60, calcined alumina CTC 50, alumina cement CA 270 and additives can be obtained, for example, from ALCOA Germany. 2% by weight of boron carbide from Wacker Chemie GmbH, Munich, were added to the mixture. The mixture was then made into a concrete with 5.7% by weight of mixing water. Cylindrical test crucibles for testing corrosion resistance were made from the concrete. As shown in Example 1, the production was carried out by pouring the liquefied concrete into a plastic mold. The casting mold was constructed in such a way that a round recess with a diameter of 30 mm and a depth of 10 mm was created on one side of the test cylinder. The depression was used to hold a test metal melt. After curing at room temperature, 24 h and drying at 110 ° C, 24 h, 20 g of pure aluminum powder were placed in the well of the crucible. The crucible was then aged at 800 ° C for 72 hours in an electric oven with no air. After cooling, the test crucible was examined for any signs of corrosion, such as chemical reaction with the metal and infiltration of the metal into the material structure. For comparison, a crucible test was made from the same refractory concrete without BC addition and examined under the same conditions. The bauxite B 4 C refractory concrete according to the invention showed no infiltration and a significantly better corrosion resistance compared to the Al melt in comparison to the material without boron carbide.
Beispiel 3Example 3
Spinell AR78 0 - 3 mm 40.0 Gew.-%Spinel AR78 0 - 3 mm 40.0% by weight
Spinell AR78 0 - 1 mm 20.0 Gew.-% Spinell AR78 0 - 0.5 mm 10.0 Gew.-%Spinel AR78 0 - 1 mm 20.0% by weight Spinel AR78 0 - 0.5 mm 10.0% by weight
Sipnell AR78 < 45 um 12.0 Gew.-%Sipnell AR78 <45 by 12.0% by weight
Calcinierte Spinell/Tonerde CTC 55 12.0 Gew.-%Calcined spinel / alumina CTC 55 12.0% by weight
Tonerdezement CA 270 5.0 Gew.-% Additive: Disperging Aluminas (ADS1 + ADW1 im Verhältnis 3:1) 1.0 Gew.-%CA 270 alumina cement 5.0% by weight Additives: Disperging aluminas (ADS1 + ADW1 in a ratio of 3: 1) 1.0% by weight
Bei den Spinellrohstoffen handelt es sich um einen gesinterten Al203-reichen Magnesium-Aluminium-Spinell der über die Fa. ALCOA Deutschland bezogen werden kann. Auch die anderen Komponenten, Calcinierte Spinell/Tonerde CTC 55, Tonerdezement sowie Additive können von dieser Firma bezogen werden. Dem Gemenge wurden 3 Gew.-% Zirkonborid der Fa. Wacker Chemie GmbH, München beigemischt. Die Mischung wurde dann mit 5.2The spinel raw materials are a sintered Al 2 0 3 -rich magnesium-aluminum spinel, which is available from ALCOA Germany can be obtained. The other components, calcined spinel / alumina CTC 55, alumina cement and additives can also be obtained from this company. 3% by weight of zirconium boride from Wacker Chemie GmbH, Munich, were added to the mixture. The mixture was then 5.2
Gew.-% Anmachwasser zu einem Beton aufbereitet. Aus dem Beton wurden zylindrische Testtiegel für die Untersuchung der Korrosionsbeständigkeit hergestellt. Zu diesem Zweck wurde der Beton in eine Kunststoffform gefüllt und anschließend auf einem Rütteltisch verdichtet. Die Form war in der Weise konstruiert, dass an einer Seite des PrüfZylinders eine runde Vertiefung mit einem Durchmesser von 30 mm und einer Tiefe von 10 mm entstand. Die Vertiefung diente der Aufnahme einer Testschlacke. Nach dem Aushärten bei Raumtemperatur/24 h und Trocknen bei 110 °C/24 h wurden in die Vertiefung des Tiegels 20 g einer Pfannenschlacke aus der Stahlindustrie platziert. Der Tiegel wurde dann bei 1500 °C, 6 h lang in einem Elektroofen an Luft gebrannt. Nach der Abkühlung wurde der Testtiegel nach eventuellen Korrosionserscheinungen, wie chemische Reaktion mit der Schlacke und ihre Infiltration in das Werkstoffgefüge, untersucht. Zum Vergleich wurde ein Tiegeltest aus gleichem Feuerbeton ohne ZrB2 hergestellt und unter gleichen Bedingungen untersucht. Der erfindungsgemäße Spinell-Beton mit ZrB2-Zusatz zeigte im Vergleich zum Werkstoff ohne Zusatz einen wesentlich besseren Infiltrations- und Korrosionswiderstand.% By weight of mixing water processed into a concrete. Cylindrical test crucibles for testing corrosion resistance were made from the concrete. For this purpose, the concrete was filled into a plastic mold and then compacted on a vibrating table. The shape was constructed in such a way that a round recess with a diameter of 30 mm and a depth of 10 mm was created on one side of the test cylinder. The recess was used to hold a test slag. After curing at room temperature / 24 h and drying at 110 ° C / 24 h, 20 g of a ladle slag from the steel industry were placed in the well of the crucible. The crucible was then fired in air at 1500 ° C for 6 hours in an electric furnace. After cooling, the test crucible was examined for any signs of corrosion, such as chemical reaction with the slag and its infiltration into the material structure. For comparison, a crucible test was made from the same refractory concrete without ZrB 2 and examined under the same conditions. The spinel concrete according to the invention with ZrB 2 addition showed a significantly better infiltration and corrosion resistance compared to the material without addition.
Beispiel 4Example 4
Es wurde eine chemischgebundene, basische Masse mit folgender Zusammensetzung hergestellt:A chemically bound, basic mass with the following composition was produced:
Grobkorn, hochreiner Magnesiasinter 1 - 3 mm 50 Gew.-%Coarse grain, high-purity magnesia sinter 1 - 3 mm 50% by weight
Mittelkorn, hochreiner Magnesiasinter 0,2 - 0,5 mm 5 Gew.-%Medium grain, high-purity magnesia sinter 0.2 - 0.5 mm 5% by weight
Feinkorn, hochreiner Magnesiasinter < 0,1 mm 40 Gew.-% Titanborid < 45 μm 5 Gew.-%Fine grain, high-purity magnesia sinter <0.1 mm 40% by weight titanium boride <45 μm 5% by weight
Bei dem Magnesiasinter handelt es sich um eine gesinterte hoch reine Magnesia, z.B. der Fa. NEDMAG. Titanborid (z.B. Titandi- borid) kann z.B. von der Fa. Wacker Chemie GmbH, München bezogen werden.The magnesia sinter is a sintered high-purity magnesia, for example from NEDMAG. Titanium boride (e.g. titanium di boride) can be obtained, for example, from Wacker Chemie GmbH, Munich.
Die Komponenten wurden trocken homogenisiert und anschließend durch Mischen mit 12 Gew.-% Na-Wasserglas zu einer spritzfähigen Masse aufbereitet. Die Masse wurde auf einen gebrannten Magnesiastein aufgetragen und bei 1550 °C 2h gebrannt. Nach dem Brand haftete die Masse auf der Steinoberfläche sehr gut und zeigte sehr gute Oxidationsbeständigkeit und Korrosionsbe- ständigkeit gegenüber einer Stahlkonverterschlacke. Die Masse eignet sich zur Durchführung von sowohl Kalt- als auch Heißreparaturen der FeuerfestZustellungen.The components were dry homogenized and then prepared into a sprayable mass by mixing with 12% by weight Na water glass. The mass was applied to a fired magnesia stone and fired at 1550 ° C for 2 hours. After the fire, the mass adhered very well to the stone surface and showed very good oxidation resistance and corrosion resistance compared to a steel converter slag. The mass is suitable for performing both cold and hot repairs of the refractory deliveries.
Beispiel 5Example 5
Al203-SiC-Stampfmasse mit PhosphatbindungAl 2 0 3 -SiC ramming mass with phosphate bond
Es wurde eine chemischgebundene Al203-SiC-Masse mit folgenderThere was a chemically bound Al 2 0 3 -SiC mass with the following
Zusammensetzung hergestellt:Composition made:
Grobkorn, Sinterkorund (T60) 1 - 3 mm 45 Gew.-%Coarse grain, sintered corundum (T60) 1 - 3 mm 45% by weight
Mittelkorn, Sinterkorund (T60) 0,2 - 0.6 mm 10 Gew.-% Feinkorn, Sinterkorund (T60) < 0,1 mm 30 Gew.-%Medium grain, sintered aluminum oxide (T60) 0.2 - 0.6 mm 10% by weight fine grain, sintered aluminum oxide (T60) <0.1 mm 30% by weight
Siliciumcarbid-Pulver < 45 μm 12 Gew.-%Silicon carbide powder <45 μm 12% by weight
Silicium-Pulver < 45 μm 3 Gew.-%Silicon powder <45 μm 3% by weight
Sinterkorund-Rohstoffe können von der Firma ALCOA Deutschland bezogen werden.Sintered corundum raw materials can be obtained from ALCOA Germany.
Als Silicumcarbid-Pulver kam ein Produkt der Fa. ESK-SiC GmbH und als Silicum-Pulver ein handelübliches Produkt zum Einsatz. Die Komponenten wurden trocken mit 3 Gew.-% ZrB2 (Fa. WackerA product from ESK-SiC GmbH was used as silicon carbide powder and a commercially available product was used as silicon powder. The components became dry with 3% by weight of ZrB 2 (from Wacker
Chemie GmbH, München) homogenisiert und anschließend durch Mischen mit 6,5 Gew.-% von einer Monoaluminiumphosphat-Lösung (50-%ig) der Fa. BUDENHEIM zu einer Stampfmasse aufbereitet. Aus der Masse wurden durch Stampfen in einer Stahlform Prüf- körper mit Durchmesser 50 mm und Höhe 50 mm hergestellt. An einer Seite des PrüfZylinders wurde beim Pressvorgang zur Aufnahme der Testschlacke eine runde Vertiefung mit einem Durchmesser von 30 mm und einer Tiefe von 10 mm eingepresst. In die Vertiefung wurden 20 g einer Stahlkonverterschlacke platziert. Der Tiegel wurde dann bei 1500 °C 6h lang in einem Elektroofen an Luft 6 h gebrannt. Zum Vergleich wurde ein Tiegel aus dem Versatz ohne ZrB2 hergestellt und unter gleichen Bedingungen getestet. Nach der Abkühlung wurden die Testtiegel nach eventuellen Korrosionserscheinungen, wie chemische Reaktion mit der Schlacke und ihre Infiltration in das Werkstoffgefüge, untersucht. Die erfindungsgemäße Al203-SiC-Stampfmasse mit ZrB2 zeigte im Vergleich zum Werkstoff ohne Zusatz einen wesentlich besseren Infiltrations- und Korrosionswiderstand.Chemie GmbH, Munich) and then processed by mixing with 6.5% by weight of a monoaluminum phosphate solution (50%) from BUDENHEIM into a tamped mass. Test specimens with a diameter of 50 mm and a height of 50 mm were produced from the mass by stamping in a steel mold. A round recess with a diameter of 30 mm and a depth of 10 mm was pressed in on one side of the test cylinder during the pressing process to receive the test slag. In the 20 g of a steel converter slag were placed in the well. The crucible was then fired at 1500 ° C in an electric furnace for 6 hours in air. For comparison, a crucible was made from the offset without ZrB 2 and tested under the same conditions. After cooling, the test crucibles were examined for any signs of corrosion, such as chemical reaction with the slag and its infiltration into the material structure. The Al 2 0 3 SiC ramming mass according to the invention with ZrB 2 showed a significantly better infiltration and corrosion resistance compared to the material without addition.
Beispiel 6Example 6
Es wurde ein selbstfließender Korundbeton B4C- und Stahlfa- sernzusatz mit folgender Zusammensetzung untersucht.A self-flowing corundum concrete B 4 C and steel fiber additive with the following composition was examined.
Sinterkorund (T60) 1 - 3 mm 45.0 Gew.-%Sintered corundum (T60) 1 - 3 mm 45.0% by weight
Sinterkorund (T60) 0.5 - 1 mm 10.0 Gew.-%Sintered corundum (T60) 0.5 - 1 mm 10.0% by weight
Sinterkorund (TβO) 0-0.3 mm 10.0 Gew., -% Sinterkorund TβO < 45 μm 12.0 Gew..-%Sintered corundum (TβO) 0-0.3 mm 10.0% by weight Sintered corundum TβO <45 μm 12.0% by weight
Calcinierte Tonerde CTC 50 15.0 Gew..-%Calcined alumina CTC 50 15.0% by weight
Tonerdezement CA 270 5.0 Gew.-%CA 270 alumina cement 5.0% by weight
B4C, < 45 μm 2.0 Gew.-% Additive Disperging Aluminas (ADS1 + ADW 1 im Vehältnis 1:1) 1.0 Gew.-B4C, <45 μm 2.0% by weight additive dispersing aluminas (ADS1 + ADW 1 in the vehicle 1: 1) 1.0% by weight
Die Bezugsquellen der Rohstoffe, Zusatzstoffe und Additive sind wie in vorangehenden Beispielen genannt.The sources of supply for raw materials, additives and additives are as mentioned in the previous examples.
Die Rohstoffe und Additive wurden mit 2.0 Gew.-% Stahlfasern (D=0.3mm, Länge= 20 mm) trocken vorgemischt und anschließend mit 6.7 Gew.-% Anmachwasser zu einem Beton aufbereitet. Aus dem Beton wurden Standardprüfkörper 50x50 mm hergestellt. Die Herstellung der Prüfkörper erfolgte durch Gießen in eineThe raw materials and additives were dry premixed with 2.0% by weight of steel fibers (D = 0.3mm, length = 20mm) and then processed into a concrete with 6.7% by weight of mixing water. Standard test specimens 50x50 mm were made from the concrete. The test specimens were produced by pouring them into a
Kunststoffform, Aushärten bei Raumtemperatur 24 h, und anschließendes Trocknen bei 110 °C, 24 h. Die getrockneten Prüfkörpern wurden durch die Bestimmung der Kaltdruckfestigkeit, KDF, (DIN EN 9935), Rohdichte, RD, (DIN EN 993), offenen Porosität, OP, (DIN EN 993) und Temperaturwechselbeständigkeit TWB (DIN EN 993-11) charakterisiert. Zum Vergleich wurden unter gleichen Bedingungen Prüfkörper ohne Stahlfaserzusatz herge- stellt und untersucht. Nach dem Trocknen besaßen die Prüfkörper folgende Kennwerte:Plastic mold, curing at room temperature for 24 h, and then drying at 110 ° C, 24 h. The dried test specimens were determined by determining the cold compressive strength, KDF, (DIN EN 9935), bulk density, RD, (DIN EN 993), open porosity, OP, (DIN EN 993) and thermal shock resistance TWB (DIN EN 993-11). For comparison, test specimens without the addition of steel fibers were produced and examined under the same conditions. After drying, the test specimens had the following characteristic values:
mit Stahlfasern Ohne Stahlfaserwith steel fibers without steel fibers
Kaltdruckfestigkeit (MPa) 94 84Cold compressive strength (MPa) 94 84
Rohdichte (g/cm3) 2.91 2.85Bulk density (g / cm3) 2.91 2.85
Offene Porosität (%) 20.8 19.2Open porosity (%) 20.8 19.2
TWB (Zyklen) ' > 20 14' TWB (cycles) ' > 20 14 '
Die Ergebnisse belegen, dass durch den Stahlfaserzusatz die Temperaturwechselbeständigkeit der erfindungsgemäßen Betone verbessert werden kann. The results show that the addition of steel fibers can improve the thermal shock resistance of the concretes according to the invention.

Claims

Patentansprüche claims
1. Feuerfeste Masse, enthaltend eine grobkörnige feuerfeste Komponente (sog. Grobkorn) und/oder eine mittelkörnige feu- erfeste Komponente (sog. Mittelkorn) und/oder eine feinkörnige feuerfeste Komponente (sog. Mehl) und/oder eine feinstkörnige feuerfeste Komponente (sog. Feinstkorn) dadurch gekennzeichnet, dass die Masse kohlenstofffrei ist und eine feuerfeste borhaltige, stickstofffreie Komponente umfasst.1. Refractory mass, containing a coarse-grained refractory component (so-called coarse grain) and / or a medium-grained refractory component (so-called medium grain) and / or a fine-grained refractory component (so-called flour) and / or a fine-grained refractory component (so-called Fine grain) characterized in that the mass is carbon-free and comprises a refractory boron-containing, nitrogen-free component.
2. Masse nach Anspruch 1, dadurch gekennzeichnet, dass die grobkörnige, mittelkörnige, feinkörnige, und feinstkörnige feuerfeste Komponente ausgewählt ist aus der Gruppe der, oxidischen und nichtoxidisehen, saueren oder basischen Rohstoffe.2. Composition according to claim 1, characterized in that the coarse-grained, medium-grained, fine-grained and fine-grained refractory component is selected from the group of, oxidic and non-oxidic, acidic or basic raw materials.
3. Masse nach Anspruch 2, dadurch gekennzeichnet, dass die feuerfesten Komponenten ausgewählt sind aus der Gruppe der basische Metalloxide wie z.B. Sinter-, Schmelzmagnesia,3. Mass according to claim 2, characterized in that the refractory components are selected from the group of basic metal oxides such as Sintered, melted magnesia,
Sinter-, Schmelzspinell, Sinterdolomit, Sinterkalk, Olivin oder Forsterit, der Massen auf Al203-Basis mit einem variablen Si02- und/oder SiC-Anteil und deren Kombinationen.Sintered, melted spinel, sintered dolomite, sintered lime, olivine or forsterite, the masses based on Al 2 0 3 with a variable Si0 2 and / or SiC content and their combinations.
4. Masse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die borhaltige stickstofffreie Komponente ausgewählt ist aus der Gruppe Borcarbid, refraktäre Boride und deren Mischungen.4. Composition according to one of claims 1 to 3, characterized in that the boron-containing nitrogen-free component is selected from the group boron carbide, refractory borides and mixtures thereof.
5. Masse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die borhaltige, stickstofffreie Komponente in Mengen von 0,1 bis 30 Gew.% vorliegt.5. Composition according to one of claims 1 to 4, characterized in that the boron-containing, nitrogen-free component is present in amounts of 0.1 to 30% by weight.
6. Masse nach einem der Ansprüche 1 bis 5, dadurch gekenn- zeichnet, dass sie zudem einen Zusatzstoff umfasst, der- vorzugsweise ausgewählt ist aus der Gruppe Metallpulver, Nichtoxide wie z.B. Nitride, Carbide, Silicide, Oxynitride, Oxycarbide, Metallfasern, Kunststofffasern und Carbonfasern.6. Composition according to one of claims 1 to 5, characterized in that it also comprises an additive which is preferably selected from the group consisting of metal powders, non-oxides such as, for example, nitrides, carbides, silicides, oxynitrides, Oxycarbide, metal fibers, plastic fibers and carbon fibers.
7. Masse nach einem Anspruch 6, dadurch gekennzeichnet, dass der Zusatzstoff in Mengen von 0,5 bis 30 Gew. Anteilen vorliegt .7. Composition according to claim 6, characterized in that the additive is present in amounts of 0.5 to 30 parts by weight.
8. Masse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie zudem einen Binder, vorzugsweise ein in der Feuerfestindustrie geläufiges flüssiges Bindemittel umfasst.8. Composition according to one of claims 1 to 7, characterized in that it also comprises a binder, preferably a liquid binder common in the refractory industry.
9. Masse nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie zudem ein Additiv, vorzugsweise ausge- wählt aus der Gruppe der Verflüssiger, Abbinderegulierer und Dispergiermittel umfasst.9. Composition according to one of claims 1 to 8, characterized in that it also comprises an additive, preferably selected from the group of plasticizers, setting regulators and dispersants.
10. Masse nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die grobkörnigen feuerfeste Komponente in Mengen < 90 Gew.-% vorliegt.10. Composition according to one of claims 1 to 9, characterized in that the coarse-grained refractory component is present in amounts <90% by weight.
11. Masse nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die mittelkörnige feuerfeste Komponente in Mengen von < 40 Gew.-% vorliegt.11. Composition according to one of claims 1 to 10, characterized in that the medium-grain refractory component is present in amounts of <40 wt .-%.
12. Masse nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die feinkörnigen feuerfeste Komponente in Mengen von < 95 Gew.-% vorliegt.12. Composition according to one of claims 1 to 11, characterized in that the fine-grained refractory component is present in amounts of <95 wt .-%.
13. Masse nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die feinstkörnigen feuerfeste Komponente in Mengen von < 50 Gew.-% vorliegt.13. Composition according to one of claims 1 to 12, characterized in that the fine-grained refractory component is present in amounts of <50 wt .-%.
14. Masse nach einem der Ansprüche 1 bis 13, dadurch gekenn- zeichnet, dass sie zudem Wasser, vorzugsweise in einer Menge von bis zu 40 Gew.-% umfasst. 14. Composition according to one of claims 1 to 13, characterized in that it also comprises water, preferably in an amount of up to 40% by weight.
5. Masse nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass sie zudem Additive, wie z.B. Verflüssiger, Abbinderegulierer, Dispergiermittelumfasst . 5. Composition according to one of claims 1 to 14, characterized in that it also contains additives such as e.g. Liquefier, setting regulator, dispersant.
PCT/EP2004/000255 2003-01-23 2004-01-15 Unshaped refractory products, especially refractory concrete, containing inoxidisable parts WO2004065327A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10302609.6 2003-01-23
DE10302609 2003-01-23
DE10354261.2 2003-11-20
DE10354261A DE10354261A1 (en) 2003-01-23 2003-11-20 Unshaped refractory products, especially refractory concrete, with non-oxide components

Publications (2)

Publication Number Publication Date
WO2004065327A2 true WO2004065327A2 (en) 2004-08-05
WO2004065327A3 WO2004065327A3 (en) 2005-03-24

Family

ID=32773156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000255 WO2004065327A2 (en) 2003-01-23 2004-01-15 Unshaped refractory products, especially refractory concrete, containing inoxidisable parts

Country Status (1)

Country Link
WO (1) WO2004065327A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011432A1 (en) * 2011-07-20 2013-01-24 Saint-Gobain Centre De Recherches Et D'etudes Europeen Feeder channel for molten glass
CN102958867A (en) * 2010-04-28 2013-03-06 新日铁住金株式会社 Binder for unshaped refractory, unshaped refractory, and method for working unshaped refractory
CN109553423A (en) * 2017-09-26 2019-04-02 纳米及先进材料研发院有限公司 For producing the component and refractory concrete cob brick of refractory concrete cob brick

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305844A (en) * 1993-04-28 1994-11-01 Kawasaki Steel Corp Mgo-resin-based monolithic refractory
JPH0782002A (en) * 1993-06-23 1995-03-28 Kyushu Refract Co Ltd Magnesia refractory composition
CN1113715C (en) * 2001-08-03 2003-07-09 山西新型炉业集团有限公司 Alkaline dry liner for intermediate ladle of continuous casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 200232 Derwent Publications Ltd., London, GB; Class L02, AN 2002-270234 XP002280573 & CN 1 333 098 A (SHANXI NEW FURNACE GROUP CO LTD) 30. Januar 2002 (2002-01-30) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958867A (en) * 2010-04-28 2013-03-06 新日铁住金株式会社 Binder for unshaped refractory, unshaped refractory, and method for working unshaped refractory
US8835338B2 (en) 2010-04-28 2014-09-16 Nippon Steel & Sumitomo Metal Corporation Binder for monolithic refractories, monolithic refractory, and construction method of monolithic refractories
WO2013011432A1 (en) * 2011-07-20 2013-01-24 Saint-Gobain Centre De Recherches Et D'etudes Europeen Feeder channel for molten glass
FR2978140A1 (en) * 2011-07-20 2013-01-25 Saint Gobain Ct Recherches MELT GLASS FEED CHANNEL
US9550692B2 (en) 2011-07-20 2017-01-24 Saint-Gobain Centre De Recherches Et D'etudes Method of manufacturing a feeder channel for molten glass
EA028258B1 (en) * 2011-07-20 2017-10-31 Сен-Гобен Сантр Де Решерш Э Д'Этюд Эропеэн Method for manufacturing a supply channel for a glassmaking furnace and a block of an infrastructure of such a channel
CN109553423A (en) * 2017-09-26 2019-04-02 纳米及先进材料研发院有限公司 For producing the component and refractory concrete cob brick of refractory concrete cob brick
CN109553423B (en) * 2017-09-26 2021-11-19 纳米及先进材料研发院有限公司 Component for producing refractory concrete brick and refractory concrete brick

Also Published As

Publication number Publication date
WO2004065327A3 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
EP1986978B1 (en) Fire-resistant ordinary ceramic batch, and fire-resistant product therefrom
CA2752856A1 (en) Ceramic product
EP0100306B2 (en) Method of producing refractory non basic and non isolating bricks and masses that contain carbon
EP0940376B1 (en) Free flowing basic casting composition and shaped articles
DE10117029B4 (en) Refractory body or mass material, refractory product thereof, and method of making a refractory product
DE102004010739B4 (en) Process for the preparation of an unshaped or shaped, fired or unfired refractory product
EP1102730B1 (en) Moulding material for the production of a fire-resistant lining, fired formed part, lining and method for the production of a formed part
DE10354261A1 (en) Unshaped refractory products, especially refractory concrete, with non-oxide components
WO1992016472A1 (en) Process for producing a refractory composite material
WO2004065327A2 (en) Unshaped refractory products, especially refractory concrete, containing inoxidisable parts
EP1451127A1 (en) Fired refractory ceramic moulded piece, use and composition thereof for production of moulded pieces
EP0825968A1 (en) Use of a water-containing fire-resistant ceramic casting material
DE10117026B4 (en) Refractory offset, refractory molded article thereof, and method of making the same
RU2140407C1 (en) Refractory concrete mix
Pilli Study on the alumina-silicon carbide-carbon based trough castable
KR100299459B1 (en) Mlagnesia-Carbon Based Castable Having Superior Anti-Oxidation
WO2012062913A1 (en) Lining material for gasification plants consisting of an alkali corrosion-resistant and thermal cycling-resistant chromium oxide- and carbon-free oxide ceramic material and use thereof
EP4352028A1 (en) Cement composition and method for producing a cement element
DE102017124358B4 (en) Use of an offset and / or a shaped or unshaped refractory product for refractory lining of a coal gasification plant, such delivery and coal gasification plant with such delivery
KR100213317B1 (en) Castable refractory composition
JPH07110780B2 (en) Sintered fireproof material
WO2021123363A1 (en) Backfill for producing a basic heavy-clay refractory product, such a product and method for producing same, lining of an industrial furnace, and industrial furnace
DE102021203371A1 (en) Backfill for the production of a refractory, unfired shaped body, such shaped bodies, methods for their production, and lining of a kiln and kiln
DE102020206957A1 (en) Dry backfill and backfill fresh mass for the production of a coarse ceramic, fired refractory product, in particular a pipe protection plate, made of nitride-bonded silicon carbide, such a product and method for its production and waste incineration plant, flue gas desulphurization system and melting tank with such a product
WO2004065326A2 (en) Carbon-free chromium oxide-free refractory brick having non-oxide moieties

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase