WO2004064521A1 - Plant disease controlling agent and method of controlling plant disease using the same - Google Patents

Plant disease controlling agent and method of controlling plant disease using the same Download PDF

Info

Publication number
WO2004064521A1
WO2004064521A1 PCT/JP2004/000217 JP2004000217W WO2004064521A1 WO 2004064521 A1 WO2004064521 A1 WO 2004064521A1 JP 2004000217 W JP2004000217 W JP 2004000217W WO 2004064521 A1 WO2004064521 A1 WO 2004064521A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
plant
bile acids
plant disease
controlling
Prior art date
Application number
PCT/JP2004/000217
Other languages
French (fr)
Japanese (ja)
Inventor
Jinichiro Koga
Kenji Umemura
Shigeki Tanino
Hidetoshi Kubota
Original Assignee
Meiji Seika Kaisha Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd. filed Critical Meiji Seika Kaisha Ltd.
Publication of WO2004064521A1 publication Critical patent/WO2004064521A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N45/00Biocides, pest repellants or attractants, or plant growth regulators, containing compounds having three or more carbocyclic rings condensed among themselves, at least one ring not being a six-membered ring

Definitions

  • the present invention relates to a plant disease controlling agent containing bile acids, having a low environmental load, and safe for users and consumers, and a method for controlling plant diseases using the controlling agent.
  • Methods for controlling disease on agricultural crops include controlling pesticides by directly acting on phytopathogenic bacteria such as fungicides, and controlling crop diseases by increasing the disease resistance of the plants themselves (resistance-inducing pesticides). ) Is used.
  • pesticides that are allowed to label organic agricultural products for the purpose of inducing plant disease resistance are limited to probenazole and benzobenzolaru S-methyl, which are registered as rice blast control agents. These pesticides for the purpose of inducing disease resistance do not act directly on plant pathogens, but show various crop disease control effects by inducing plant resistance. No emergence of resistant mutants has been reported. However, they are all chemically synthesized pesticides, and it is considered preferable to avoid excessive dependence on the environment and other factors.
  • natural product-derived disease resistance inducers include polysaccharide degradation products (see, for example, JP-A-5-331016) and celeb mouthsides (see, for example, Japanese Patent No. 2846610). Publications, International Publication No.
  • bile acids are known to have various effects on animals, but very little is known about the effects on microorganisms and plants.
  • bile acids especially deoxycholic acid.
  • cholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid at a concentration of 0.4% or more have a fungal effect on Candida yeast (for example, Refer to the official gazette of Japanese Patent Application Publication No. 4_7 8 6 16).
  • bile acids which are substances originally derived from vertebrates, induce disease resistance in rice. I discovered that. That is, it has been discovered that treatment with the substance induces phytoalexin (phytosan), an antibacterial substance, a lytic enzyme; 6-1,3-dalcanase, to rice.
  • phytoalexin phytoalexin
  • 6-1,3-dalcanase a lytic enzyme
  • the present inventors have also found that by treating plants such as rice, tomato, and lettuce with bile acids before the onset of the disease, a control effect on the disease can be obtained. Furthermore, bile acids were found to have a high control effect at surprisingly low concentrations of 1-20 O mg ZL.
  • the present invention has been made based on the above findings, and provides a plant disease controlling agent comprising one or more selected from bile acids and derivatives thereof.
  • the present invention also provides the bile acids, wherein the bile acids are cholic acid, arocholic acid, chenodeoxycholic acid, lithocholic acid, deoxycholic acid, hyocholic acid, muricholic acid, hydoxycholic acid, ursodeoxycholic acid, taurocholic acid, glycochol. Acid, tauroglycocholic acid, taurochenedoxycholic acid, taurodeoxycholic acid, taurolithocholic acid, glycochenodeoxycholic acid, glycodoxycholic acid, glycolicocholic acid, oxolitocolic acid, and the like
  • the above-mentioned plant disease controlling agent comprising one or more selected from salts of the above.
  • the present invention also provides the plant disease controlling agent, wherein the concentration of the bile acid or a derivative thereof is 0.1 to 100 mg / L as applied to a plant.
  • the present invention also provides use of one or more selected from bile acids and derivatives thereof in the production of a plant disease controlling agent.
  • the present invention also provides a method for controlling plant diseases, comprising a step of treating a cultivated plant with the plant disease controlling agent.
  • the present invention further provides a method for controlling plant diseases, which comprises inducing disease resistance in the plant by treating the cultivated plant with the plant disease controlling agent.
  • bile acids have been found to contain fungi and filaments at very high concentrations,> 4 g ZL. It is known that it has antibacterial activity against fungi. Indeed, also in the present invention, an extremely high bile acid concentration of 5 g / L or more showed an effect of suppressing the growth of pathogenic bacteria.
  • an extremely high bile acid concentration of 5 g / L or more showed an effect of suppressing the growth of pathogenic bacteria.
  • by treating rice with bile acids at a concentration 25 to 500 times lower than the concentration at which bile acids exhibit antibacterial activity against pathogenic bacteria, before the onset of the disease It is surprising that there is no finding that it has a controlling effect on pathogens.
  • bile acids refer to bile acids, bile salts, conjugated bile acids, and conjugated bile salts, and refer to all bile acids contained in vertebrates such as mammals, birds, and fish.
  • a conjugated bile acid refers to one in which taurine, glycine, or the like is conjugated to the carboxyl group of the bile acid.
  • Specific examples of these bile acids include, for example, cholic acid, arocholic acid, chenodeoxycholic acid, lithocholic acid, deoxycholic acid, hoocholic acid, muricholic acid, hydroxycholic acid, and ursodeoxycholic acid.
  • Bile acids are mainly produced in the liver of higher animals, are stored in the gall bladder, are excreted in the intestine, and are known to help the intestinal absorption by emulsifying fat and activating lipase. Have been.
  • bile acids are primary bile acids synthesized directly in the liver, such as cholic acid and chenodeoxycholic acid, which are dehydrated by intestinal bacteria and are exposed to secondary acids such as lithocholic acid and deoxycholic acid. It becomes the next bile acid.
  • carboxyl groups of these bile acids are conjugated to lindaridicin. Conjugated bile acids are the major components. These bile acids are synthesized in large amounts in the body and are stored like bile, so they are extremely safe for humans, and at the same time, can be easily prepared as natural materials from livestock animals, etc. It is possible.
  • the bile acids are preferably prepared from natural materials, but can be used even if they are chemically synthesized.
  • the derivative of bile acids refers to those synthesized artificially or in the natural world using bile acids as starting materials, such as esterified products, hydroxides, and dehydrated oxides of bile acids.
  • a plant disease resistance inducing activity that is equal to or less than the starting material.
  • the plant disease resistance-inducing activity can be measured from the phytoalexin-inducing ability of rice according to the method described in Example 1.
  • the bile acids and their derivatives can be used alone or in a mixture of two or more.
  • the dosage form of the plant disease control agent, its use form and application method are not particularly limited, but it is preferably liquid when applied.
  • the plant disease controlling agent of the present invention may be any one which can dissolve or dilute in a solvent at the time of use, so that bile acids or their derivatives can be formed into a suitable concentration and in a form suitable for application.
  • the content of bile acids or their derivatives is not particularly limited.
  • the preferred application concentration of the pesticide is bile acids or plant bile acids at the time of application. Is 0.1 to 100 mg / L, more preferably 1 to 100 mg ZL, particularly preferably:! ⁇ 200 mg / L. However, it is preferable to adjust the application concentration to an appropriate concentration according to the type of plant, the growth stage, and the application method.
  • the plant disease controlling agent of the present invention can be prepared by mixing bile acids or their derivatives with an appropriate additive, and preparing a liquid, powder, granule, emulsion, wettable powder, oil, aerosol, flowable, etc. It may be used for. Further, if desired, the pH can be adjusted by adding a buffer or the like, and a surfactant or the like can be added to improve the permeability and spreadability to plants.
  • the method for controlling plant diseases of the present invention includes a step of treating a cultivated plant with the plant disease controlling agent.
  • disease resistance is induced in the plant by treating the cultivated plant with the plant disease controlling agent.
  • Examples of the method of treating a cultivated plant with the plant disease controlling agent of the present invention include spraying or applying to a plant, immersing in a root, and mixing with soil.
  • the method for controlling plant diseases of the present invention is aimed at preventing disease, it is preferable to use the method before the time when the disease occurs.
  • the above object does not mean that the plant disease controlling agent of the present invention does not have an action of promoting disease healing after the disease has occurred.
  • the crops which can be targeted by the plant disease controlling agent of the present invention include all cultivated plants, for example, grasses (rice, corn, wheat, corn, junpa, etc.), solanaceous plants (tomato, eggplant, potato, etc.) ), Periphytes (e.g., cucumber, melon, kabochiya), legumes (e.g., endu, soybean, pingen bean, alfalfa, laccasei, faba bean), cruciferous plants (e.g.
  • radish, Chinese cabbage, beetle, etc. Family plants (strawberry, apple, pear, etc.), croaker (crop, etc.), aoaceae (crop, etc.), apiaceae (carrot, parsley, celery, etc.), asteraceae (burdock, sunflower, chrysanthemum, lettuce, etc.) , Grape family (such as grapes) and so on.
  • preferable ones include grasses, solanaceous plants, and asteraceous plants, and particularly preferable ones include rice, tomato, and lettuce.
  • the general disease resistance response of plants is non-specific to pathogenic bacteria
  • the target diseases of the above crops include all plant diseases caused by fungi, bacteria and viruses.
  • rice blast fungus Magnaporthe grisea
  • rice sesame leaf blight fungus Cochl iobolus miyabeanus
  • shakaimo powdery power disease fungus
  • Spongospora subterranea disease fungus
  • jakai fungus jakai fungus
  • diazbe ica sporamana Sp. Hordei Kom Sentonko; (Eryshiphe graminis f.
  • Sp. Me Ion is, Fusarium oxysporum f. Sp. Lact ucae, and Tomato Tribium Sp. Lycopersici), Fusarium oxysporum f. Sp. Spinaciae, Vert ici 11 iua dahliae, Plasmodiophora brassicae ae), Pythium debaryanum, strawberry gray mold, Botrytys cinerea, Colleiotrichwn phomoides, Pseudomonas syringae pv. syringae)
  • Example 1 Induction of phytoalexin by bile acids in rice
  • Sprout seeds of rice (variety: Akitakomachi) were sown in paddy rice cultivation and cultivated in a glass cultivation case installed in a climate chamber.
  • the climate chamber was set for a cycle consisting of 12 hours at 22 ° C, 30, OOOLux and 12 hours at 18 ° C / 0Lux.
  • 20 samples (2 L per spot) were placed on 10 surfaces of the 4-leaf leaf.
  • the sample (bile acids) was dissolved in a 0.1% Tween 20, 20 mM potassium phosphate buffer (pH 6.0) solution, but the insoluble bile acids were dissolved by adding an appropriate amount of ethanol. I let it.
  • the quantification of phytocasans was determined according to the method of Koga et al. (Koga J. et al., Tetrahedron, 1995, 51, .7907-7918; Koga J. et al., Phytochemistry, 1997, 44, 249-253). Performed by analysis. That is, a TSKgel®DS-120T column (4.6 mm d. X 30 cm; manufactured by Tosoh Corporation) was used under the conditions of 45% acetonitrile, a flow rate of 1.2 mLZmin, and a column temperature of 50 ° C. The sample was poured, and the peaks of phytokasan A and phytokasan B were detected at UV 280 nm.
  • Huaitosan A and B were isolated and purified from rice according to the method of Koga et al., And the amount of Huaitokasan A and Huaitokasan B induced per rice leaf was repeated 5 times. It was calculated as the average value of the reversion test.
  • Sprout seeds of rice (variety: Akitakomachi) were sown on paddy rice cultivation soil and cultivated in a glass cultivation case installed in a climate chamber.
  • the climate chamber was set to cycle at 1 day at 22 ° C / 25, 12 hours at OOOLux and 12 hours at 18 / 0Lux.
  • a 20 L sample (2 L per location) was placed at 10 locations on the surface of the true leaf at the age of 4 leaves.
  • the cholate supplemented group was prepared by dissolving sodium cholate at a concentration of 20 Omg / L in a 0.1% Tween 20, 20 mM potassium phosphate buffer (pH 6.0) solution.
  • curdlan 1% of curdlan (curdlan), put an enzyme solution 0. 2 mL to 5 0 mM N a 2 HP_ ⁇ 4 _ Kuen acid buffer one (PH 5. 0), as a solution of total volume 2 mL, 3 7 X: Shaking reaction was performed for 60 minutes. The amount of reducing sugars generated in the reaction solution was measured by the DNS method (Mi Her GL et al., Anal. Chem., 1959, 31, 426-428) and determined as ⁇ -1,3-dulcanase activity. . The activity unit is defined as 1 U, the amount of enzyme that produces 1 / mo 1 of glucose-reducing sugar per minute, and is induced per leaf; 3-1, 3-dalcanase activity is 5 units. It was determined as the average of repeated tests.
  • Table 2 shows the results. J3_l, 3-Dulcanase, a kind of PR protein (pathogenesis-related proteins), is induced as a bacteriolytic enzyme and is known to be one of the disease resistance of plants. These results clearly show that cholic acid, one of the bile acids, has an activity of inducing rice] 3-1,3-glucanase.
  • Example 3 Effect of Bile Acid Spraying on Infection Control of Rice Blast Fungus
  • Sprout seeds of rice (variety: Akitakomachi) were sown in paddy rice cultivation and cultivated in a glass cultivation case installed in a climate chamber.
  • the climate chamber was set to cycle at 1 day at 22 ° C / 25, 12 hours at OOOLux, and 12 hours at 18 ⁇ 0 LuX.
  • the setting of the climate chamber is 12 hours at 22 ° C / 20, OOOLux, and 12 hours at 18 ° C / 0Lux Changed to cycle conditions.
  • Control value (1 average number of lesions per leaf in each section Z average number of lesions per leaf in control section) X 100 The results are shown in Table 3. From Table 3, it was found that spraying bile acids at a very low concentration of 1 to 20 Omg_L was effective in controlling rice blast fungus.
  • Example 4 Bile acid suppresses germination of rice blast fungus.
  • Conidia of rice blast fungus (scientific name: Magnaporthe grisea race 07 strain) were converted to 0.05% Tween 20%, 4 mM potassium phosphate buffer ( ⁇ H7), and various concentrations of cholic acid. The mixture was suspended and mixed in a solution of Na and incubated at 28 ° C. for 16 hours. Then, the number of spores that had germinated and the number of spores that had not germinated were counted, and the spore germination rate of the blast fungus was determined. The spore germination rate of the blast fungus was calculated by the following formula, and calculated as an average value of five repeated tests.
  • Sprout seeds of rice (variety: Akitakomachi) were sown in paddy rice cultivation and cultivated in a glass cultivation case installed in a climate chamber.
  • the climate chamber was set for a cycle consisting of 22 hours at 22 ° CZ25, 12 hours at OOOLux, and 12 hours at 18 ° C / 0 Lux.
  • the setting of the climate chamber is set at 22 ° C / 20, OOOh lux for 12 hours, and 18 ⁇ / 0 lux for 12 hours. Changed to conditions.
  • Control value (1 average number of lesions per leaf in each section Z average number of lesions per leaf in section without addition of cholic acid) X 100
  • Table 5 The results are shown in Table 5. As is clear from the results, it was found that under the above conditions, even if cholic acid was sprayed immediately before infection with the rice blast fungus, there was no infection control effect in the concentration range of 1 to 200 OmgZL. On the other hand, as shown in Example 3, spraying bile acids two days before infection with the blast fungus, even at a concentration as low as 1 to 200 mg / L, has an effect of controlling infection. It was found that bile acids, not the activity, induced the resistance to the plant by inducing resistance to the plant. Table 5
  • Sprout seeds of rice (variety: Akitakomachi) were sown on paddy rice cultivation soil and cultivated in a glass cultivation case installed in a climate chamber. Artificial weather room is 22 ° C / 2 a day 5.
  • the cycle condition was set to consist of 12 hours with OOOLux and 12 hours with 180Lux.
  • the setting of the climate chamber is changed to the condition of 222 hours, 12 hours at OOOLux, and 12 hours at 18 ° CZ 0Lux. did.
  • the true leaf at the age of 5 leaves expanded to 10% to 20% the rice plants were immersed together with the pots in solutions containing various concentrations of cholate Na to allow bile acids to be absorbed from the roots.
  • infection treatment was carried out by spraying and inoculating a conidia spore suspension of the rice blast fungus (scientific name: MagnaporiAe grisea race 007). After the spray inoculation, the blast fungus was infected by leaving for 36 hours in the dark and in a humidified condition. After that, the plants were transferred to the artificial weather chamber and cultivated, and the control value was calculated by measuring the number of diseased lesions on the fourth true leaf of each section 6 days after inoculation. 200 rice plants were infected in each zone, and the control value was calculated by the following formula.
  • Control value (1—average number of lesions per leaf in each section / average number of lesions per leaf in section without cholate) X 100 The results are shown in Table 6. As is clear from Table 6, the bile acids at a very low concentration of 5 to 5 OmgZL have an effect of controlling rice blast infection not only by spraying but also by immersion. Table 6
  • Example 7 Control effect of bile acid on lettuce root rot
  • Seedlings of lettuce (cultivar: Patriot) in which three true leaves have been developed are immersed in a solution containing various concentrations (10, 5 Omg / L) of cholic acid Na for 24 hours to remove bile acids from the roots.
  • lettuce root rot fungus (Fusarium oxysporum f. Sp. Laciucae race SB 1-1) contaminated soil (dilution plate method to determine bacterial density was 2 X 10 3 C FUZg soil) ) was transplanted for infection treatment.
  • Control value (average disease incidence in control plots-average disease incidence in test plots) / (average disease incidence in control plots) X 100 The results are shown in Table 7. As is evident from Table 7, it was found that immersion treatment of bile acids at a very low concentration of 10 to 5 Omg / L was effective in controlling lettuce root rot infection.
  • Example 8 Effect of controlling bile acid on tomato wilt
  • Tomato seedlings (cultivar: Ponterosa) with two true leaves developed are immersed in a solution containing various concentrations (10, 5 Omg / L) of colic acid Na for 72 hours to remove bile acids from the roots. After being absorbed from the soil, the bacterial infection of tomato wilt (Fi / sarii / ffl oxysporuffl ⁇ ⁇ sp. Lycopersic i race J_l) is transferred to a contaminated soil of 5 ⁇ 10 4 C FUZg soil for infection treatment. went.
  • Control value (average disease incidence in control plot-average disease incidence in test plot) / (average disease incidence in control plot) X 100
  • Table 8 As is evident from Table 8, it was found that the immersion treatment of bile acids at a very low concentration of 10 to 5 Omg / L was effective in controlling the infection of tomato wilt fungi.
  • the present invention relates to a plant disease controlling agent comprising a bile acid or a derivative thereof, which has a low environmental load, and exhibits a high controlling effect against a disease of a cultivated plant by applying the controlling agent.
  • a plant disease controlling agent comprising a bile acid or a derivative thereof, which has a low environmental load, and exhibits a high controlling effect against a disease of a cultivated plant by applying the controlling agent.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

By treating a cultivated plant with a plant disease controlling agent containing bile acids or derivatives thereof, resistance to diseases is induced and thus infection with pathogenic microorganisms is prevented.

Description

明細書 植物病害防除剤およびその剤を用いた植物病害防除法 技術分野  Description Plant disease controlling agent and plant disease controlling method using the agent
本発明は、 胆汁酸類を含有し、 環境負荷が少なく、 かつ使用者および消費者に とって安全な植物病害防除剤、 およびその防除剤による植物病害防除法に関する。 背景技術  The present invention relates to a plant disease controlling agent containing bile acids, having a low environmental load, and safe for users and consumers, and a method for controlling plant diseases using the controlling agent. Background art
農作物の病害防除方法としては、 殺菌剤など植物病原菌に直接作用することで 病害を防除する他に、 植物自体が有する病害抵抗性を高めることで作物の病害を 防除する農薬 (抵抗性誘導型農薬) が使用されている。  Methods for controlling disease on agricultural crops include controlling pesticides by directly acting on phytopathogenic bacteria such as fungicides, and controlling crop diseases by increasing the disease resistance of the plants themselves (resistance-inducing pesticides). ) Is used.
殺菌剤など植物病原菌に対して直接作用するタイプの農薬は、 病原菌に対して 殺菌効果を示すものが多く、 継続的な使用により薬剤に対する耐性変異株が出現 する場合がほとんどである。 他方、 抵抗性誘導型農薬は、 直接病原菌に作用する のではなく、 植物の抵抗性を誘導することで病害感染を防除することから、 これ までにこれら薬剤の耐性変異株が出現した事例は認められていない。 さらに、 抵 抗性誘導型農薬は、 生物に対する殺菌作用が少ないために、 植物以外の生物を含 めた環境への負荷は比較的少ないと考えられている。  Many pesticides that act directly on plant pathogens, such as fungicides, show a bactericidal effect on pathogenic bacteria, and in most cases, their use leads to the emergence of drug-resistant mutants. On the other hand, resistance-inducing pesticides do not act directly on pathogens, but control plant disease by inducing plant resistance.Therefore, there have been cases where resistant mutants of these drugs have appeared. Not been. Furthermore, resistance-inducing pesticides are considered to have a relatively low impact on the environment, including non-plant organisms, due to their low fungicidal activity on organisms.
現在、 農業生産においては、 持続可能な農業生産技術を確立することが求めら れており、 その目的を達成するために環境調和型の農業資材の開発が重要な課題 となっている。 また、 近年の消費者の食品に対する安全性志向の高まりにより、 農業の自然循環機能を活かして栽培された有機農産物の需要が増加してきている。 有機農産物の表示に関しては、 農林水産省が示すガイ ドラインにより、 天然の有 用鉱物資材、 植物、 動物及びそれらから摘出、 抽出又は調製した天然物質を病害 虫防除等農薬としての目的で使用する場合は、 当該農薬が農薬取締法に基づき登 録されたものであるときに限られ、 抗生物質の使用は認められないことが示され ている。 従って、 前述の予防的に防除する抵抗性誘導型の病害防除効果を有し、 かつ天然物由来の農業資材を供給することができれば、 使用者である農業生産者 および消費者に対して安全な農薬であるとともに、 環境負荷の低減化を計ること ができる。 At present, in agricultural production, it is required to establish sustainable agricultural production technology, and the development of environmentally friendly agricultural materials has become an important issue in order to achieve that goal. In addition, demand for organic agricultural products cultivated by taking advantage of the natural circulation function of agriculture has been increasing due to the recent increase in consumer-oriented food safety. Regarding the labeling of organic agricultural products, use of natural useful mineral materials, plants, animals and natural substances extracted, extracted or prepared from them for the purpose of pesticides, such as pest control, according to the guidelines provided by the Ministry of Agriculture, Forestry and Fisheries Indicates that the use of antibiotics is not allowed only when the pesticide is registered under the Pesticide Control Law. Therefore, if it has the aforementioned resistance-induced disease control effect of preventive control and can supply agricultural materials derived from natural products, the agricultural producer who is the user In addition, it is a pesticide that is safe for consumers and can reduce the environmental burden.
これまで植物の病害抵钪性誘導を目的とし、 有機農産物の表示を許されている 農薬は、 イネいもち病防除剤として登録されているプロべナゾールとァシベンゾ ラルー S—メチルに限られている。 これら病害抵抗性誘導を目的とした農薬は、 植物病原菌に対して直接作用するのではなく、 植物の抵抗性を誘導することで様 々な作物病害防除効果を示すため、 これまでにこれらの薬剤に対する耐性変異株 の出現は報告されていない。 しかしながら、 いずれも化学合成の農薬であり、 環 境等への影響を考慮すると、 過度の依存は避けることが好ましいと考えられる。 天然物由来の病害抵抗性誘導物質では、 多糖体分解物 (例えば、 特開平 5 - 3 3 1 0 1 6号公報参照) 、 セレブ口シド類 (例えば、 特許第 2 8 4 6 6 1 0号公 報、 国際公開 9 8/4 7 3 6 4号パンフレツト及び Koga J. et al., J. Biol. C hem., 1998, 48, 27, p.31985— 31991参照。 ) 、 ジャスモン酸 (例えば、 特開平 1 1 _ 2 9 4 1 2号公報及び Nojiri H. et al., Plant Physiol. , 1996, 110, p.387-3 92参照。 ) 、 キチンオリゴ糖 (例えば、 Yamada A. et al. , Biosci. Biotech. Bio (:1^111.,1993, 57,3,0.405— 409参照。 ) 、 /3 - 1 , 3および /3- 1, 6-グルカンォ リゴ糖 (例えば、 Sharp J. K. et al., J. Biol. Chem. , 1984, 259, p.11312-113 20、 Sharp J. K. et al. , J. Biol. Chem., 1984, 259,p.11321— 11336及び Yamagu chi T. et al., Plant Cell, 2000, 12, p.817— 826参照。 ) などが報告されている。 これらの物質はエリシターと呼ばれており、 病原菌に対して抗菌活性をもつファ イトァレキシン (phytoalexins) や、 病原菌の細胞壁を溶解するキチナーゼ、 β - 1 , 3-グルカナーゼなどの PR タンパク (pathogenesis- related proteins) 、 あるいは過敏感細胞死 (hypersensitive cell death) を植物に誘導させること によって病害抵抗性を確立することが知られている (例えば、 Yamada A. et al., Biosci. Biotech. Biochem. , 1993, 57, 3, p.405— 409及び Keen N. T., Plant Mol. Biol., 1992, 19, p.109— 122参照。 ) 。  Until now, pesticides that are allowed to label organic agricultural products for the purpose of inducing plant disease resistance are limited to probenazole and benzobenzolaru S-methyl, which are registered as rice blast control agents. These pesticides for the purpose of inducing disease resistance do not act directly on plant pathogens, but show various crop disease control effects by inducing plant resistance. No emergence of resistant mutants has been reported. However, they are all chemically synthesized pesticides, and it is considered preferable to avoid excessive dependence on the environment and other factors. Examples of natural product-derived disease resistance inducers include polysaccharide degradation products (see, for example, JP-A-5-331016) and celeb mouthsides (see, for example, Japanese Patent No. 2846610). Publications, International Publication No. 98/47364, pamphlet and Koga J. et al., J. Biol. Chem., 1998, 48, 27, p. 31985-31991.), Jasmonic acid (for example, JP-A-11-29412 and Nojiri H. et al., Plant Physiol., 1996, 110, p.387-392.), Chitin oligosaccharides (for example, Yamada A. et al.) , Biosci. Biotech. Bio (see: 1 ^ 111., 1993, 57, 3, 0.405-409), / 3-1,3 and / 3-1,6-glucanoligosaccharides (eg, Sharp JK et al.). al., J. Biol. Chem., 1984, 259, p.11312-11320, Sharp JK et al., J. Biol. Chem., 1984, 259, p.11321-11336 and Yamaguchi T. et al. , Plant Cell, 2000, 12, p.817-826.) These substances are called elicitors. Phytoalexins, which have antibacterial activity against pathogenic bacteria, chitinase that dissolves the cell walls of pathogenic bacteria, PR proteins (pathogenesis-related proteins) such as β-1,3-glucanase, or hypersensitive cell death (Hypersensitive cell death) is known to establish disease resistance by inducing plants (eg, Yamada A. et al., Biosci. Biotech. Biochem., 1993, 57, 3, p. 405). — See 409 and Keen NT, Plant Mol. Biol., 1992, 19, p.109—122.)
また、 これらエリシタ一は糸状菌、 細菌、 植物には少量しか含まれていないた めに、 病害抵抗性誘導剤としての実用化は、 多量の糸状菌体、 細菌体や植物体か ら精製、 抽出しなければならないというコスト的な困難性によって妨げられてき た。 したがって、 実用化レベルに見合う病害抵抗性誘導剤を提供するためには、 天然から容易に且つ多量に調製でき、 しかも病害抵抗誘導活性が強いものが必要 とされていた。 In addition, since these elicitors are contained only in small amounts in filamentous fungi, bacteria, and plants, their practical use as disease resistance inducers requires purification from a large amount of filamentous fungi, bacteria, and plants. Hampered by the cost difficulty of having to extract Was. Therefore, in order to provide a disease resistance inducer suitable for practical use, it was necessary to prepare a disease resistance inducer that can be easily prepared in large quantities from nature and that has a strong disease resistance induction activity.
一般に、 前述の天然由来のエリシタ一は、 糸状菌、 細菌、 植物由来のものがほ とんどであり、 動物由来のものがあるという報告は全くない (例えば、 Cheong J. - J. ei al. , Plant Cell, 1991, 3, p.127— 136参照。 ) 。  In general, most of the above-mentioned naturally occurring elicitors are derived from filamentous fungi, bacteria, and plants, and there are no reports that they are derived from animals (eg, Cheong J.-J. ei al.). , Plant Cell, 1991, 3, p.127-136.)).
ところで、 胆汁酸は、 動物に対して様々な効果があることが知られているが、 微生物や植物に対する効果についての知見は極めて少ない。 しかしながら、 真菌、 糸状菌については、 高濃度の胆汁酸、 特に、 デォキシコール酸の添加により生育 が抑制されるといういくつかの知見がある。 例えば、 0. 4%以上の濃度のコー ル酸、 ケノデォキシコール酸、 デォキシコール酸、 リトコール酸にキャンディダ (Candida) 属酵母に対する钪真菌効果があることが知られている (例えば、 特 公平 4 _ 7 8 6 1 6号公報参照。 ) 。  By the way, bile acids are known to have various effects on animals, but very little is known about the effects on microorganisms and plants. However, there are some findings that the growth of fungi and filamentous fungi is suppressed by the addition of high concentrations of bile acids, especially deoxycholic acid. For example, it is known that cholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid at a concentration of 0.4% or more have a fungal effect on Candida yeast (for example, Refer to the official gazette of Japanese Patent Application Publication No. 4_7 8 6 16).
また、 0. 0 3〜0. 1 %のデォキシコール酸に植物病原糸状菌に対して生育 抑制効果があることが知られている (Ampuero E. et al., Adv. Front. Plant S ci., 1966, 16, p.85— 90参照。 ) 。  It is also known that 0.03-0.1% of deoxycholic acid has a growth inhibitory effect on plant pathogenic fungi (Ampuero E. et al., Adv. Front. Plant Sci., 1966, 16, p.85-90.)).
他方、 1 9 3 0年以前に、 乳液を植物体に散布すると、 植物表面に皮膜を作る ことによって植物病原菌からの感染を防ぐことが知られている。 そこで、 胆汁酸 を乳液に加えて植物体に散布すると、 胆汁酸が乳液による一様な被覆を実現させ、 その皮膜を長持ちさせることによって、 感染防除効果の持続力を強めることが示 されている (例えば、 独国特許第 5 5 3 6 1 1号公報参照。 ) 。 しかし、 胆汁酸 が乳液による感染防除効果を改善する補助的な役割であるとの記載はあっても、 胆汁酸単独で植物の感染防除効果があるとの記載は一切ない。  On the other hand, before 1930, it has been known that the application of latex to plants prevents the transmission of phytopathogenic bacteria by forming a film on the plant surface. Therefore, it has been shown that when bile acid is added to milky lotion and sprayed on plants, the bile acid achieves uniform coating with the milky lotion and makes the film last longer, thereby enhancing the sustainability of the infection control effect. (For example, see German Patent No. 5 336 11). However, although there is a description that bile acid plays an auxiliary role in improving the infection control effect of emulsion, there is no description that bile acid alone has a plant infection control effect.
このように胆汁酸の作用についてのいくつかの知見があるものの、 今までに胆 汁酸類単独で植物に作用することによって、 植物の病害を防除するという知見は ない。 ましてや、 胆汁酸類が植物の病害抵抗性を誘導するという知見などは全く ない。 発明の開示 本発明者らは、 植物病害抵抗性誘導物質を、 広く天然物を対象として探索した ところ、 驚くべきことに、 本来、 脊椎動物由来の物質である胆汁酸類がイネの病 害抵抗性を誘導することを発見した。 すなわち、 該物質で処理することによって、 抗菌物質であるファイトァレキシン (ファイト力サン) ゃ溶菌酵素である ;6 — 1 , 3—ダルカナーゼをイネに誘導することを発見した。 Thus, although there is some knowledge about the action of bile acids, there is no knowledge to date that bile acids alone act on plants to control plant diseases. Furthermore, there is no finding that bile acids induce plant disease resistance. Disclosure of the invention The present inventors have searched for a plant disease resistance-inducing substance for a wide range of natural products, and surprisingly, bile acids, which are substances originally derived from vertebrates, induce disease resistance in rice. I discovered that. That is, it has been discovered that treatment with the substance induces phytoalexin (phytosan), an antibacterial substance, a lytic enzyme; 6-1,3-dalcanase, to rice.
本発明者らはまた、 病害発生前に、 胆汁酸類でイネ、 トマト、 レタスなどの植 物を処理することによって、 病害に対して防除効果が得られることを見出した。 さらに、 胆汁酸類は 1〜2 0 O m g Z Lという驚くべき低い濃度で高い防除効果 を有することを見出した。  The present inventors have also found that by treating plants such as rice, tomato, and lettuce with bile acids before the onset of the disease, a control effect on the disease can be obtained. Furthermore, bile acids were found to have a high control effect at surprisingly low concentrations of 1-20 O mg ZL.
本発明は、 上記知見に基づいてなされたものであり、 胆汁酸類、 及びそれらの 誘導体から選ばれる 1種または 2種以上を含んでなる、 植物病害防除剤を提供す る。  The present invention has been made based on the above findings, and provides a plant disease controlling agent comprising one or more selected from bile acids and derivatives thereof.
本発明はまた、 前記胆汁酸類が、 コール酸、 ァロコール酸、 ケノデォキシコー ル酸、 リトコール酸、 デォキシコール酸、 ヒォコール酸、 ムリコール酸、 ヒォデ ォキシコ一ル酸、 ウルソデォキシコール酸、 タウロコール酸、 グリココール酸、 タウログリココール酸、 タウロケノデォキシコール酸、 タウロデオキシコール酸、 タウロリトコール酸、 グリコケノデォキシコール酸、 グリコデォキシコール酸、 グリコリトコール酸、 ォキゾリトコ一ル酸、 及びそれらの塩から選ばれる 1種ま たは 2種以上を含んでなる、 前記植物病害防除剤を提供する。  The present invention also provides the bile acids, wherein the bile acids are cholic acid, arocholic acid, chenodeoxycholic acid, lithocholic acid, deoxycholic acid, hyocholic acid, muricholic acid, hydoxycholic acid, ursodeoxycholic acid, taurocholic acid, glycochol. Acid, tauroglycocholic acid, taurochenedoxycholic acid, taurodeoxycholic acid, taurolithocholic acid, glycochenodeoxycholic acid, glycodoxycholic acid, glycolicocholic acid, oxolitocolic acid, and the like The above-mentioned plant disease controlling agent comprising one or more selected from salts of the above.
また本発明は、 植物への施用濃度が、 胆汁酸類またはそれらの誘導体の含量と して 0 . 1〜 1 0 0 0 O m g / Lである、 前記植物病害防除剤を提供する。  The present invention also provides the plant disease controlling agent, wherein the concentration of the bile acid or a derivative thereof is 0.1 to 100 mg / L as applied to a plant.
また本発明は、 植物病害防除剤の製造における、 胆汁酸類、 及びそれらの誘導 体から選ばれる 1種または 2種以上の使用を提供する。  The present invention also provides use of one or more selected from bile acids and derivatives thereof in the production of a plant disease controlling agent.
本発明はまた、 前記植物病害防除剤により栽培植物を処理する工程を含んでな る、 植物病害の防除方法を提供する。  The present invention also provides a method for controlling plant diseases, comprising a step of treating a cultivated plant with the plant disease controlling agent.
本発明はさらに、 植物病害の防除方法において、 前記植物病害防除剤により栽 培植物を処理することにより、 前記植物に病害抵抗性を誘導することを特徴とす る方法を提供する。  The present invention further provides a method for controlling plant diseases, which comprises inducing disease resistance in the plant by treating the cultivated plant with the plant disease controlling agent.
今までに、 ある種の胆汁酸は、 4 g Z L以上という非常に高い濃度で真菌や糸 状菌に対して抗菌活性があることが知られている。 確かに本発明においても、 5 g / L以上という非常に高い胆汁酸濃度に、 病原菌の生育抑制効果が認められた。 しかしながら、 本発明のように、 胆汁酸が病原菌に対して抗菌活性を示す濃度よ りもさらに 2 5〜 5 0 0 0倍低い濃度の胆汁酸で、 病害発生前にイネを処理する ことによって、 病原菌に対する防除効果があるという知見は、 今までに全く無く、 驚くべきことである。 さらに、 この知見と、 胆汁酸類を病原菌の感染の直前にィ ネに処理しても、 全く防除効果が見い出されなかったという本発明により見出さ れた事実は、 胆汁酸による防除効果が坊菌活性によるものではなく、 植物に病害 抵抗性を誘導することによることを示している。 To date, some bile acids have been found to contain fungi and filaments at very high concentrations,> 4 g ZL. It is known that it has antibacterial activity against fungi. Indeed, also in the present invention, an extremely high bile acid concentration of 5 g / L or more showed an effect of suppressing the growth of pathogenic bacteria. However, as described in the present invention, by treating rice with bile acids at a concentration 25 to 500 times lower than the concentration at which bile acids exhibit antibacterial activity against pathogenic bacteria, before the onset of the disease, It is surprising that there is no finding that it has a controlling effect on pathogens. Furthermore, this finding and the fact that no control effect was found even when bile acids were treated with rice immediately before infection with pathogenic bacteria were found by the present invention, indicating that the control effect of bile acids was not significant. It is not due to induction of disease resistance in plants, but to plants.
殺菌剤など植物病原菌に対して直接作用するタイプの農薬は、 病原菌に対して 殺菌効果を示すものが多く、 継続的な使用により薬剤に対する耐性変異株が出現 する。 他方、 抵抗性誘導型農薬は、 薬剤の耐性変異株が出現しにくく、 長期間に わたる使用が可能であることが知られている。 このようなことから、 胆汁酸類が 抗菌活性ではなく、 病害抵抗性を誘導することによって病原菌の感染を防ぐとい うことは、 耐性変異株が出現しにくく、 長期間にわたる使用が可能であるために、 産業上極めて有用である。  Many pesticides, such as fungicides, that act directly on plant pathogens show a bactericidal effect on the pathogenic bacteria, and drug resistant mutants emerge after continuous use. On the other hand, resistance-induced pesticides are known to be resistant to drug-resistant mutants and can be used for long periods of time. Thus, preventing bile acids from infecting pathogenic bacteria by inducing disease resistance rather than antibacterial activity means that resistant mutants are unlikely to appear and can be used for a long period of time. It is extremely useful in industry.
また、 前記のとおり、 胆汁酸を乳液に加えて植物体に散布すると、 胆汁酸が乳 液による一様な被覆を実現させ、 その皮膜を長持ちさせることによって、 感染防 除効果の持続力を強めることが知られているが、 本発明のように、 乳液を加えな くても胆汁酸類自体に植物病害防除活性があるという発見は全く新しいものであ る。 発明を実施するための最良の形態  In addition, as described above, when bile acids are added to milky lotion and sprayed on plants, the bile acids realize uniform coating with the emulsion, and the film lasts longer, thereby enhancing the sustainability of the infection control effect. However, the discovery that bile acids themselves have a plant disease controlling activity without adding an emulsion as in the present invention is completely new. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において胆汁酸類とは、 胆汁酸、 胆汁酸塩、 抱合胆汁酸、 抱合胆汁酸塩 を言い、 哺乳類、 鳥類、 魚類などの脊椎動物に含まれている全ての胆汁酸類を指 す。 ここで、 抱合胆汁酸とは、 胆汁酸のカルボキシル基にタウリンやグリシンな どが抱合を受けているものを言う。 これらの胆汁酸類は具体的には、 例えばコー ル酸、 ァロコール酸、 ケノデォキシコール酸、 リトコール酸、 デォキシコール酸、 ヒォコール酸、 ムリコール酸、 ヒォデォキシコール酸、 ウルソデォキシコール酸、 タウロコール酸、 グリココール酸、 タウログリココール酸、 タウロケノデォキシ コール酸、 タウロデオキシコ一ル酸、 タウロリトコール酸、 グリコケノデォキシ コール酸、 グリコデォキシコール酸、 グリコリトコ一ル酸、 ォキソリトコール酸、 またはそれら塩のなどが挙げられる。 In the present invention, bile acids refer to bile acids, bile salts, conjugated bile acids, and conjugated bile salts, and refer to all bile acids contained in vertebrates such as mammals, birds, and fish. Here, a conjugated bile acid refers to one in which taurine, glycine, or the like is conjugated to the carboxyl group of the bile acid. Specific examples of these bile acids include, for example, cholic acid, arocholic acid, chenodeoxycholic acid, lithocholic acid, deoxycholic acid, hoocholic acid, muricholic acid, hydroxycholic acid, and ursodeoxycholic acid. , Taurocholic acid, glycocholic acid, tauroglycocholic acid, taurokenodeoxycholic acid, taurodeoxycolic acid, taurolithocholic acid, glycochenodeoxycholic acid, glycodoxycholic acid, glycolitolcholic acid Oxolithocholic acid or a salt thereof.
胆汁酸は主に高等動物の肝臓で作られ、 胆のうに貯蔵されたのち、 腸内に排出 され、 脂肪の乳化、 リパーゼの活性化などによって、 腸管からの吸収を助ける働 きがあることが知られている。 ヒトでは、 胆汁酸は肝臓で直接合成される一次胆 汁酸としてコール酸、 ケノデォキシコール酸とがあり、 これらは腸内細菌による 脱水酸を受けてリ トコール酸、 デォキシコール酸などの二次胆汁酸となる。 生体 内ではこれら胆汁酸のカルボキシル基に夕ゥリンゃダリシンが抱合を受けている 抱合胆汁酸が主要成分である。 これら胆汁酸は生体内では大量に合成され、 胆の うに貯蔵されることから、 ヒトに対しては極めて安全な物質であると同時に、 天 然物資材として、 家畜動物などから容易に多量調製することが可能である。  Bile acids are mainly produced in the liver of higher animals, are stored in the gall bladder, are excreted in the intestine, and are known to help the intestinal absorption by emulsifying fat and activating lipase. Have been. In humans, bile acids are primary bile acids synthesized directly in the liver, such as cholic acid and chenodeoxycholic acid, which are dehydrated by intestinal bacteria and are exposed to secondary acids such as lithocholic acid and deoxycholic acid. It becomes the next bile acid. In vivo, carboxyl groups of these bile acids are conjugated to lindaridicin. Conjugated bile acids are the major components. These bile acids are synthesized in large amounts in the body and are stored like bile, so they are extremely safe for humans, and at the same time, can be easily prepared as natural materials from livestock animals, etc. It is possible.
本発明において、 胆汁酸類は、 天然物資材から調製されたものが好ましいが、 化学合成されたものであっても使用することができる。  In the present invention, the bile acids are preferably prepared from natural materials, but can be used even if they are chemically synthesized.
また、 本発明において胆汁酸類の誘導体とは、 胆汁酸類のエステル化物、 水酸 化物、 脱水酸化物など、 胆汁酸類を出発原料として人為的もしくは天然界におい て合成されたものであって、 しかもその植物病害抵抗誘導活性がその出発原料と 同等か、 それ以下であるものを言う。 このとき、 その植物病害抵抗誘導活性とは、 実施例 1記載の方法に従い、 イネのファイトァレキシン誘導能から測定すること ができる。  In the present invention, the derivative of bile acids refers to those synthesized artificially or in the natural world using bile acids as starting materials, such as esterified products, hydroxides, and dehydrated oxides of bile acids. A plant disease resistance inducing activity that is equal to or less than the starting material. At this time, the plant disease resistance-inducing activity can be measured from the phytoalexin-inducing ability of rice according to the method described in Example 1.
本発明においては、 上記胆汁酸類、 及びそれらの誘導体は、 単独でも、 また、 任意の 2種以上の混合物でも、 使用することができる。  In the present invention, the bile acids and their derivatives can be used alone or in a mixture of two or more.
本発明において植物病害防除剤の剤型、 その使用形態、 施用方法は特に限定さ れるものではないが、 施用時には液体であることが好ましい。 本発明の植物病害 防除剤は、 使用時に溶剤に溶解又は希釈するなどして、 胆汁酸類又はそれらの誘 導体を好適な濃度、 かつ、 施用に適した形態にすることができるものであれば、 胆汁酸類又はそれらの誘導体の含量は特に制限されない。  In the present invention, the dosage form of the plant disease control agent, its use form and application method are not particularly limited, but it is preferably liquid when applied. The plant disease controlling agent of the present invention may be any one which can dissolve or dilute in a solvent at the time of use, so that bile acids or their derivatives can be formed into a suitable concentration and in a form suitable for application. The content of bile acids or their derivatives is not particularly limited.
防除剤の好ましい施用濃度は、 施用時の植物病害防除剤に対する胆汁酸類また はそれら誘導体の含量として 0 . l〜 1 0 0 0 0 m g / L、 さらに好ましくは 1 〜 1 0 0 O m g Z L、 特に好ましくは:!〜 2 0 0 m g / Lとすることができる。 ただし、 施用濃度は植物の種類、 生育ステージ、 施用方法により適切な濃度に調 整することが好ましい。 The preferred application concentration of the pesticide is bile acids or plant bile acids at the time of application. Is 0.1 to 100 mg / L, more preferably 1 to 100 mg ZL, particularly preferably:! ~ 200 mg / L. However, it is preferable to adjust the application concentration to an appropriate concentration according to the type of plant, the growth stage, and the application method.
本発明の植物病害防除剤は、 胆汁酸類、 あるいはそれら誘導体を適当な添加物 と混合して液剤、 粉剤、 粒剤、 乳剤、 水和剤、 油剤、 エアゾール、 フロアブル剤 などのいずれの形態で植物に使用しても良い。 さらに、 所望により、 緩衝液など を加えて p Hを調整し、 界面活性剤などを加えて、 植物への浸透性、 展着性など の改良を図ることもできる。  The plant disease controlling agent of the present invention can be prepared by mixing bile acids or their derivatives with an appropriate additive, and preparing a liquid, powder, granule, emulsion, wettable powder, oil, aerosol, flowable, etc. It may be used for. Further, if desired, the pH can be adjusted by adding a buffer or the like, and a surfactant or the like can be added to improve the permeability and spreadability to plants.
本発明の植物病害の防除方法は、 前記植物病害防除剤により栽培植物を処理す る工程を含む。 本発明の好ましい態様においては、 前記植物病害防除剤により栽 培植物を処理することにより、 前記植物に病害抵抗性が誘導される。 本発明の植 物病害防除剤により栽培植物を処理する方法の例としては、 植物体への散布また は塗布処理や根への浸漬処理、 土壌への混合処理などが挙げられる。  The method for controlling plant diseases of the present invention includes a step of treating a cultivated plant with the plant disease controlling agent. In a preferred aspect of the present invention, disease resistance is induced in the plant by treating the cultivated plant with the plant disease controlling agent. Examples of the method of treating a cultivated plant with the plant disease controlling agent of the present invention include spraying or applying to a plant, immersing in a root, and mixing with soil.
また、 本発明の植物病害防除法は、 病害の予防を目的としているため、 病害が 発生する時期に先駆けて使用することが好ましい。 しかし、 前記目的は、 本発明 の植物病害防除剤が、 病害発生後に病害治癒を促進する作用を有さないことを意 味するものではない。  Further, since the method for controlling plant diseases of the present invention is aimed at preventing disease, it is preferable to use the method before the time when the disease occurs. However, the above object does not mean that the plant disease controlling agent of the present invention does not have an action of promoting disease healing after the disease has occurred.
本発明の植物病害防除剤の対象となる作物は、 栽培植物すべてが挙げられ、 例 えば、 イネ科植物 (イネ、 ォォムギ、 コムギ、 トウモロコシ、 ェンパクなど) 、 ナス科植物 (トマト、 ナス、 ジャガイモなど) 、 ゥリ科植物 (キユウリ、 メロン、 カボチヤなど) 、 マメ科植物 (エンドゥ、 ダイズ、 ィンゲンマメ、 アルファルフ ァ、 ラッカセィ、 ソラマメなど) 、 アブラナ科植物 (ダイコン、 ハクサイ、 キヤ べッなど) 、 パラ科植物 (イチゴ、 リンゴ、 ナシなど) 、 クヮ科 (クヮなど) 、 ァオイ科 (ヮ夕など) 、 セリ科 (ニンジン、 パセリ、 セロリ一など) 、 キク科 (ゴボウ、 ヒマヮリ、 キク、 レタスなど) 、 ブドウ科 (ブドウなど) などである。 これらの植物のうち、 好ましいものとしてはイネ科植物、 ナス科植物、 及びキ ク科植物が挙げられ、 特に好ましくは、 イネ、 トマト及びレタスが挙げられる。 また、 植物の一般的な病害抵抗反応は病原菌に対して非特異的であることから、 上記作物の対象病害としては、 糸状菌、 細菌、 ウィルスを原因とする植物病害す ベてが含まれる。 例えば、 イネいもち病菌 (Magnaporthe grisea) 、 イネごま葉 枯病菌 (Cochl iobolus miyabeanus) 、 シャカイモ粉状てつ力、病菌 (Spongospora subterranea) 、 ジャカイ ΐ疫病菌 (Phytophthora infestans) 、 ダィズベと病 菌 (Peronospora manshurica) 、 ォォム千つとんこ;)丙菌 (Eryshiphe graminis f . sp. hordei) 、 コム千つとんこ; (丙菌 (Eryshiphe graminis f . sp. tritici) 、 ムギ類赤かび病菌 (Gibberelia zeae) 、 エンドゥ褐紋病菌 (Mycosphaerel la pi nodes) 、 ムギ類雪腐大粒菌核病菌 (Sclerotinia borealis) 、 コムギ赤さび病 菌 (Puccinia recondita) 、 トウモロコシ黒穂病菌 (Ustilago way d is) 、 ォォ Λ^¾ ·(¾¾ (Ceratobasi iuE gramineuE) , ジャガイモ黒あさ、、病茵 (Rhizoctoni a solani) 、 イネ紋枯れ病 (Rhizoctonia solani) 、 ジャガイモ夏疫病菌 (Alte rnaria solani) 、 ダイズ紫斑病菌 Cercospora kikuchii) 、 サツマィモつる割 ί)丙菌 (Fusarium oxysporuin f . sp. batatas) 、 メ Dンっる害 ij病菌 {Fusarium ox ysporum f . sp. me Ion is) 、 レタス根腐病菌 (Fusarium oxysporum f . sp. lact ucae) 、 卜マ卜菱调病菌 (Fusarium oxysporum f . sp. lycopersici) 、 ホウレ ンソゥ萎凋病菌 (Fusarium oxysporum f . sp. spinaciae) 、 卜マ卜半身萎凋病 菌 (Vert ici 11 iua dahliae) 、 アフラナ科根こぶ病菌 (Plasmodiophora brass ic ae) 、 キユウリ苗立枯病菌 (Pythiwn debaryanum) 、 イチゴ灰色かび病菌 (Botr ytis cinerea) 、 卜マ卜炭そ病菌 Col leiotrichwn phomoides) 、 才才ム十、 コ ムギ黒節丙菌 (Pseudomonas syringae pv. syringae) 、 ジャ刀ィモ黒めし病菌The crops which can be targeted by the plant disease controlling agent of the present invention include all cultivated plants, for example, grasses (rice, corn, wheat, corn, junpa, etc.), solanaceous plants (tomato, eggplant, potato, etc.) ), Periphytes (e.g., cucumber, melon, kabochiya), legumes (e.g., endu, soybean, pingen bean, alfalfa, laccasei, faba bean), cruciferous plants (e.g. radish, Chinese cabbage, beetle, etc.) Family plants (strawberry, apple, pear, etc.), croaker (crop, etc.), aoaceae (crop, etc.), apiaceae (carrot, parsley, celery, etc.), asteraceae (burdock, sunflower, chrysanthemum, lettuce, etc.) , Grape family (such as grapes) and so on. Among these plants, preferable ones include grasses, solanaceous plants, and asteraceous plants, and particularly preferable ones include rice, tomato, and lettuce. Also, the general disease resistance response of plants is non-specific to pathogenic bacteria, The target diseases of the above crops include all plant diseases caused by fungi, bacteria and viruses. For example, rice blast fungus (Magnaporthe grisea), rice sesame leaf blight fungus (Cochl iobolus miyabeanus), shakaimo powdery power, disease fungus (Spongospora subterranea), jakai fungus (Phytophthora infestans), and diazbe ica sporamana Sp. Hordei), Kom Sentonko; (Eryshiphe graminis f. Sp.tritici), Wheat red mold (Gibberelia zeae), Endo brown spot fungus (Mycosphaerel la pi nodes), wheat (Sclerotinia borealis), wheat rust (Puccinia recondita), corn smut (Ustilago way d is), oo ォ ^ ¾ ¾¾ (Ceratobasi iuE gramineuE), potato black asa, rhizoctoni a solani, rice sheath blight (Rhizoctonia solani), potato summer blight fungus (Alte rnaria solani), soybean spot rot fungus Cercospora kikuchii ) Sp.batatas), Fusarium ox ysporum f. Sp. Me Ion is, Fusarium oxysporum f. Sp. Lact ucae, and Tomato Tribium Sp. Lycopersici), Fusarium oxysporum f. Sp. Spinaciae, Vert ici 11 iua dahliae, Plasmodiophora brassicae ae), Pythium debaryanum, strawberry gray mold, Botrytys cinerea, Colleiotrichwn phomoides, Pseudomonas syringae pv. syringae)
(Erwinia subsp. atrosept ica) 、 イネ白葉枯病菌 (Xanthomonas c卿 est r is p v. oryzae) 、 ジャガイモそうか病菌 (Streptomyces scabies) 、 ムギ類萎縮ゥ イ レス (Soil— borne wheat mosaic virus) 、 ダイズ ザィクウィ レス (Soybean mosaic virus) 、 アルファ レファモサイクウィルス (Al fal fa mosaic virus 、 ジャガイモ葉巻ウィルス (Potato leafroll virus) による病害などが挙げられ る。 実施例 (Erwinia subsp. Atrosept ica), Rice leaf blight fungus (Xanthomonas c estr is p v. Oryzae), potato scab fungus (Streptomyces scabies), wheat atrophy (Soil— borne wheat mosaic virus), soybean Diseases caused by soybean mosaic virus, Alfalfa mosaic virus, potato leafroll virus, etc.
以下、 実施例をもって本発明をさらに具体的に説明するが、 本発明はこれら実 施例に限定されるものではない。 実施例 1 :イネにおける胆汁酸類によるフアイトァレキシンの誘導 Hereinafter, the present invention will be described more specifically with reference to Examples. It is not limited to the embodiment. Example 1: Induction of phytoalexin by bile acids in rice
イネ (品種: あきたこまち) の催芽種子を水稲用培土に播種して、 人工気象室 の中に設置したガラス栽培ケース内で栽培した。 人工気象室は、 1日を、 22°C 30, O O O L u xで 1 2時間、 1 8°C/0 L u xで 1 2時間からなるサイ クルの条件に設定した。 本葉 5葉齢が 60〜70 %展開したときに、 本葉 4葉齢 の表面 10ケ所に 20 の試料 (1ケ所あたり 2 L) をのせた。 試料 (胆汁 酸類) は 0. 1 %の Twe e n 20、 20 mMリン酸カリウムバッファー (p H 6. 0) の溶液に溶解したが、 溶解しない胆汁酸類については適当量のエタノー ルを加えて溶解させた。 試料を適用後、 イネを人工気象室内で 2日間栽培し、 試 料を適用した部分の葉 6枚を切り取り、 酢酸ェチル溶液 5 mLと 0. 2M N a C〇3溶液 (ρΗ Ι Ο. 8) 5mLを加えて混合することにより、 葉に含まれて いるファイトァレキシンを抽出した。 抽出後、 酢酸ェチル層を乾固させてから、 1. 6mLのエタノールを加えて溶解後、 さらに 2. 4mLの 0. 02M HC 1を加えて混合した。 この試料を遠心した上清液 0. 2 mLを H PLC分析に供 し、 イネのファイトァレキシンであるファイト力サンを定量した。 ファイトカサ ンの定量は Kogaらの方法 (Koga J. et al. , Tetrahedron , 1995, 51, .7907- 7918; Koga J. et al., Phytochemistry,1997, 44, 249-253) に従い、 HP L C分析により行った。 すなわち、 TSKg e l 〇DS— 1 20 T カラム (4. 6mm に d. X 30 c m;東ソ一株式会社製)に、 ァセトニトリル 45 %、 流 速 1. 2mLZm i n、 カラム温度 50 °Cの条件で試料を流し、 UV 280 nm でフアイトカサン Aとフアイトカサン Bのピークを検出した。 フアイ卜力サン A と Bの標品は前記 Kogaらの方法に従ってイネから単離精製したものを用い、 稲の 葉 1枚あたりに誘導されるフアイトカサン Aとフアイトカサン Bの量を 5回の繰 り返し試験の平均値として求めた。 Sprout seeds of rice (variety: Akitakomachi) were sown in paddy rice cultivation and cultivated in a glass cultivation case installed in a climate chamber. The climate chamber was set for a cycle consisting of 12 hours at 22 ° C, 30, OOOLux and 12 hours at 18 ° C / 0Lux. When the 5-leaf leaf was 60 to 70% developed, 20 samples (2 L per spot) were placed on 10 surfaces of the 4-leaf leaf. The sample (bile acids) was dissolved in a 0.1% Tween 20, 20 mM potassium phosphate buffer (pH 6.0) solution, but the insoluble bile acids were dissolved by adding an appropriate amount of ethanol. I let it. After applying the sample, rice was cultivated for 2 days in a climate chamber, cut six leaf portions applying the specimen, acetate Echiru solution 5 mL and 0. 2M N a C_〇 3 solution (ρΗ Ι Ο. 8 Phytoalexin contained in the leaves was extracted by adding 5 mL and mixing. After the extraction, the ethyl acetate layer was evaporated to dryness, 1.6 mL of ethanol was added to dissolve, and 2.4 mL of 0.02M HC1 was further added and mixed. 0.2 mL of the supernatant obtained by centrifuging this sample was subjected to HPLC analysis to determine phytosan, a rice phytoalexin. The quantification of phytocasans was determined according to the method of Koga et al. (Koga J. et al., Tetrahedron, 1995, 51, .7907-7918; Koga J. et al., Phytochemistry, 1997, 44, 249-253). Performed by analysis. That is, a TSKgel®DS-120T column (4.6 mm d. X 30 cm; manufactured by Tosoh Corporation) was used under the conditions of 45% acetonitrile, a flow rate of 1.2 mLZmin, and a column temperature of 50 ° C. The sample was poured, and the peaks of phytokasan A and phytokasan B were detected at UV 280 nm. The preparations of Huaitosan A and B were isolated and purified from rice according to the method of Koga et al., And the amount of Huaitokasan A and Huaitokasan B induced per rice leaf was repeated 5 times. It was calculated as the average value of the reversion test.
その結果を表 1に示した。 ファイト力サンなどのファイトァレキシンは、 いも ち病菌ゃ紋枯れ病菌などのイネの病害糸状菌に強い抗菌活性があることが確かめ られており (Koga J. et al. , Tetrahedron , 1995 , 51, .7907-7918) 、 イネ の病害抵抗性の要因の 1つであることが知られている。 表 1の結果から、 胆汁酸 類および、 その誘導体であるコール酸メチルエステルにイネのフアイトァレキシ ンを誘導する活性があることが判明した。 また、 ここでは、 胆汁酸類を含む溶液 に、 展着剤として 0. 1 %の Twe e n 20を、 p H調整剤として 20 mMリン 酸カリウムバッファ一 (pH6. 0) を加えているが、 この両者を加えなくても、 胆汁酸類単独でフアイトカサン誘導能が認められた。 The results are shown in Table 1. It has been confirmed that phytoalexins such as phytosan, etc. have strong antibacterial activity against disease fungi on rice such as blast fungus and sheath blight fungus (Koga J. et al., Tetrahedron, 1995, 51, .7907-7918), rice It is known to be one of the factors of disease resistance. From the results in Table 1, it was found that bile acids and their derivatives, cholic acid methyl ester, have an activity of inducing rice phytoalexin. Here, 0.1% Tween 20 as a spreading agent and 20 mM potassium phosphate buffer (pH 6.0) as a pH adjusting agent were added to the solution containing bile acids. Even without adding both, bile acids alone were able to induce phytocasan.
表 1 table 1
胆汁酸類の種類 胆汁酸類濃度 フアイトカサン誘導量 Z葉)  Type of bile acids Bile acid concentration Huytokasan induced amount Z leaf)
( g/ m L; フアイトカサン A フアイ卜力サン B 無添加 0 0. 04 0. 02 コール酸 25 0. 12 0. 06 コール酸 50 0. 1 9 0. 09 コール酸 100 0. 28 0. 1 1 デォキシコール酸 400 0. 28 0. 10 ケノデォキシコール酸 200 0. 29 0. 1 0 コール酸メチルエステル 400 0. 22 0. 10 ヒォデォキシコール酸 800 0. 12 0. 05 タウロコール酸、 200 0. 32 0. 20 グリココール酸 200 0. 16 0. 08 タウログリココール酸 200 0. 2 1 0. 08 実施例 2 :イネにおける胆汁酸による 3_ 1, 3—ダルカナーゼの誘導  (g / mL; phytocasan A phytosan B) 0 0. 04 0.02 cholic acid 25 0.12 0.06 cholic acid 50 0.19 0.09 cholic acid 100 0.28 0.1 1 Deoxycholic acid 400 0.28 0.10 Chenodeoxycholic acid 200 0.29 0.10 Cholic acid methyl ester 400 0.22 0.10 Hydoxycholic acid 800 0.12 0.05 Taurocholic acid , 200 0.32 0.20 Glycocholate 200 0.16 0.08 Tauroglycocholate 200 0.2 1 0.08 Example 2: Induction of 3_1,3-dalcanase by bile acids in rice
イネ (品種:あきたこまち) の催芽種子を水稲用培土に播種して、 人工気象室 の中に設置したガラス栽培ケース内で栽培した。 人工気象室は、 1日を 22°C/ 25、 O O O L u xで 12時間、 18 / 0 L u xで 1 2時間からなるサイクル の条件に設定した。 本葉 5葉齢が 60〜70%展開したときに、 本葉 4葉齢の表 面に 1 0ケ所に 20 Lの試料 ( 1ケ所あたり 2 L) をのせた。 コール酸添加 区は、 コール酸 Naを 0. 1 %の Twe e n 20、 20 mMリン酸カリウムバッフ ァー (pH6. 0) の溶液に 20 Omg/Lの濃度で溶解したものを、 対照区は 0. 1 %の Twe e n 20、 20 mMリン酸カリウムバッファ一 ( ρ H 6. 0 ) の溶液のみを用いた。 試料を適用後、 イネを人工気象室内で 2日間栽培し、 試料 を適用した部分の葉 6枚を切り取った。 この葉を予め冷やしておいた 0. 3 %の T r i t o n X- 1 00、 5 OmM酢酸バッファー (pH 5. 0) 溶液 5mLの 中に入れ、 ポリ トロンにてホモジナイズ抽出し、 その遠心上清液を酵素活性測定 に供した。 )3— 1, 3—ダルカナーゼ活性は Inuiらの方法 (Inui H. et al., Bi osci. Biotech. Biochem. , 1997, 61, 6, p.975-978) に従い行った。 すなわち、 1 %のカードラン (curdlan) を含む、 5 0mM N a 2H P〇 4_ クェン酸バッファ 一 (PH 5. 0) に酵素液 0. 2mLを入れ、 全量 2 mLの溶液として、 3 7 X: にて 6 0分間振とう反応させた。 反応液中に生成される還元糖量を DNS法 (Mi Her G.L. et al., Anal. Chem. , 1959, 31, 426- 428)により測定し、 β— 1 , 3—ダルカナ一ゼ活性とした。 活性単位は、 1分間に 1 /mo 1のグルコース相 当の還元糖を生成する酵素量を 1 Uと定義し、 葉 1枚あたりに誘導される ;3— 1, 3—ダルカナーゼ活性を、 5回の繰り返し試験の平均値として求めた。 Sprout seeds of rice (variety: Akitakomachi) were sown on paddy rice cultivation soil and cultivated in a glass cultivation case installed in a climate chamber. The climate chamber was set to cycle at 1 day at 22 ° C / 25, 12 hours at OOOLux and 12 hours at 18 / 0Lux. When the true leaf at the age of 5 leaves expanded from 60 to 70%, a 20 L sample (2 L per location) was placed at 10 locations on the surface of the true leaf at the age of 4 leaves. The cholate supplemented group was prepared by dissolving sodium cholate at a concentration of 20 Omg / L in a 0.1% Tween 20, 20 mM potassium phosphate buffer (pH 6.0) solution. Only a 0.1% Tween 20, 20 mM potassium phosphate buffer (ρH 6.0) solution was used. After applying the sample, the rice was cultivated for 2 days in a climate chamber, and 6 leaves were cut off from the area where the sample was applied. 0.3% of pre-chilled leaves The solution was placed in 5 mL of Triton X-100, 5 OmM acetate buffer (pH 5.0) solution, homogenized with a polytron, and the centrifuged supernatant was subjected to enzyme activity measurement. ) The 3-1 and 3-dalcanase activities were performed according to the method of Inui et al. (Inui H. et al., Biosci. Biotech. Biochem., 1997, 61, 6, p. 975-978). That is, 1% of curdlan (curdlan), put an enzyme solution 0. 2 mL to 5 0 mM N a 2 HP_〇 4 _ Kuen acid buffer one (PH 5. 0), as a solution of total volume 2 mL, 3 7 X: Shaking reaction was performed for 60 minutes. The amount of reducing sugars generated in the reaction solution was measured by the DNS method (Mi Her GL et al., Anal. Chem., 1959, 31, 426-428) and determined as β-1,3-dulcanase activity. . The activity unit is defined as 1 U, the amount of enzyme that produces 1 / mo 1 of glucose-reducing sugar per minute, and is induced per leaf; 3-1, 3-dalcanase activity is 5 units. It was determined as the average of repeated tests.
その結果を表 2に示した。 PRタンパク (pathogenesis-related proteins) の 1種である j3 _ l, 3—ダルカナーゼは、 病害菌溶菌酵素として誘導され、 植 物の病害抵扰性の 1つであることが知られている。 この結果から明らかなように、 胆汁酸類の 1種であるコール酸に、 イネの ]3— 1, 3—グルカナーゼを誘導する 活性があることが判明した。 表 2
Figure imgf000012_0001
実施例 3 :胆汁酸類散布処理によるイネいもち病菌の感染防除効果
Table 2 shows the results. J3_l, 3-Dulcanase, a kind of PR protein (pathogenesis-related proteins), is induced as a bacteriolytic enzyme and is known to be one of the disease resistance of plants. These results clearly show that cholic acid, one of the bile acids, has an activity of inducing rice] 3-1,3-glucanase. Table 2
Figure imgf000012_0001
Example 3: Effect of Bile Acid Spraying on Infection Control of Rice Blast Fungus
イネ (品種: あきたこまち) の催芽種子を水稲用培土に播種して、 人工気象室 の中に設置したガラス栽培ケース内で栽培した。 人工気象室は 1日を 22°C/2 5、 O O O L u xで 1 2時間、 1 8Τ Ζ0 L u Xで 1 2時間からなるサイクルの 条件に設定した。 本葉 3葉齢が 1 0 0 %展開した時に、 人工気象室の設定を、 2 2°C/2 0 , O O O L u xで 1 2時間、 1 8 °C/ 0 L u xで 1 2時間からなるサ ィクルの条件に変更した。 本葉 5葉齢が 1 0〜2 0 %展開したときに、 0. 0 1 %の Twe e n 2 0、 4mMリン酸カリウムバッファ一 (pH6. 2) の溶液に 溶解した各種濃度のコール酸 N a、 ケノデォキシコール酸 N a、 タウロコール酸 N a溶液をイネの葉全体にスプレーした。 対照区は、 0. 0 1 %の Twe e n 2 0、 4mMリン酸カリウムバッファー (pH6. 2) の溶液のみを散布した。 再 び人工気象室にて 2日間栽培した後、 イネいもち病菌 (学名 : Magnaporthe gris ea レース 0 0 7株) の分生胞子懸濁液の噴霧接種による感染処理を行った。 噴 霧接種後、 暗所、 加湿条件下に 3 6時間放置することにより、 いもち病菌を感染 させた。 その後、 人工気象室に移して栽培し、 接種 6日後に各区の第 4本葉に発 生した罹病性病斑数を測定することにより防除価を算出した。 各区 2 0 0本のィ ネを感染させ、 防除価の算出は、 下記式により求めた。 防除価 = ( 1一各区の 1葉あたりの平均病斑数 Z対照区の 1葉あたりの平均病斑 数) X 1 0 0 その結果を表 3に示した。 表 3から、 1〜20 Omg_ Lという非常に低い濃 度の胆汁酸類を散布することによって、 イネいもち病菌の感染防除効果があるこ とが判明した。 また、 ここでは、 胆汁酸類を含む溶液に、 展着剤として 0. 0 1 %の Twe e n 2 0を、 p H調整剤として 4 mMリン酸カリウムバッファー (p H 6. 2) を加えているが、 この両者を加えなくても、 胆汁酸類単独でイネいも ち病菌の感染防除効果が認められた。 Sprout seeds of rice (variety: Akitakomachi) were sown in paddy rice cultivation and cultivated in a glass cultivation case installed in a climate chamber. The climate chamber was set to cycle at 1 day at 22 ° C / 25, 12 hours at OOOLux, and 12 hours at 18Τ0 LuX. When the true leaf 3 leaf age is 100% expanded, the setting of the climate chamber is 12 hours at 22 ° C / 20, OOOLux, and 12 hours at 18 ° C / 0Lux Changed to cycle conditions. When the true leaf 5 leaf age is expanded to 10 to 20%, 0.01 % Tween 20 and 4 mM potassium phosphate buffer (pH 6.2) solutions of various concentrations of cholate Na, chenodeoxycholic acid Na and taurocholic acid Na dissolved in rice leaves Sprayed. For the control, only a solution of 0.01% Tween 20 and 4 mM potassium phosphate buffer (pH 6.2) was sprayed. After cultivation again in the climate chamber for 2 days, infection treatment was performed by spraying and inoculating a conidia suspension of rice blast fungus (scientific name: Magnaporthe gris ea race 07 strain). After inoculation, the blast fungus was infected by leaving for 36 hours in a dark place and in a humidified condition. After that, the plants were transferred to a climate chamber and cultivated. After 6 days from the inoculation, the control value was calculated by measuring the number of diseased lesions that had developed on the fourth true leaf of each plot. 200 rice plants in each section were infected, and the control value was calculated by the following formula. Control value = (1 average number of lesions per leaf in each section Z average number of lesions per leaf in control section) X 100 The results are shown in Table 3. From Table 3, it was found that spraying bile acids at a very low concentration of 1 to 20 Omg_L was effective in controlling rice blast fungus. Here, 0.01% Tween 20 was added as a spreading agent and 4 mM potassium phosphate buffer (pH 6.2) was added as a pH adjusting agent to a solution containing bile acids. However, even without the addition of both, bile acids alone were effective in controlling rice blast fungus.
表 3 Table 3
Figure imgf000014_0001
実施例 4 :胆汁酸によるイネいもち病菌の発芽抑制効果 .
Figure imgf000014_0001
Example 4: Bile acid suppresses germination of rice blast fungus.
イネいもち病菌 (学名: Magnaporthe grisea レース 0 0 7株) の分生胞子を、 0. 0 1 5 %の Twe e n 2 0、 4mMリン酸カリゥムバッファー (ρ H 7) 、 各種濃度のコール酸 N aの溶液に懸濁混合し、 28°Cで 1 6時間インキュベーシ ヨンした。 その後、 発芽している胞子数と発芽していない胞子数を数え、 いもち 病菌の胞子発芽率を求めた。 いもち病菌の胞子発芽率は、 下記式により算出し、 5回の繰り返し試験の平均値として求めた。 いもち病菌の胞子発芽率 = (発芽している胞子数 Z全胞子数) X I 0 0 その結果を表 4に示した。 表 4から明らかなように、 5 0 0 0mgZL以上と いう高い濃度のコール酸では、 いもち病菌の発芽抑制効果が認められたが、 2 0 0 Omg/L以下の濃度のコール酸では、 いもち病菌の発芽抑制効果が全く認め られなかった。 このことから、 1〜2 0 OmgZLという非常に低い濃度の胆汁 酸類の散布によるイネいもち病菌の感染防除効果は、 胆汁酸類の抗菌活性による ものでないことが判明した。 表 4 Conidia of rice blast fungus (scientific name: Magnaporthe grisea race 07 strain) were converted to 0.05% Tween 20%, 4 mM potassium phosphate buffer (ρH7), and various concentrations of cholic acid. The mixture was suspended and mixed in a solution of Na and incubated at 28 ° C. for 16 hours. Then, the number of spores that had germinated and the number of spores that had not germinated were counted, and the spore germination rate of the blast fungus was determined. The spore germination rate of the blast fungus was calculated by the following formula, and calculated as an average value of five repeated tests. Spore germination rate of blast fungus = (number of germinated spores Z total number of spores) XI 0 0 The results are shown in Table 4. As is clear from Table 4, a high concentration of cholic acid of 500 mg ZL or more exhibited an effect of inhibiting the germination of the blast fungus, while a choline having a concentration of 200 mg / L or less produced the blast fungus. No germination inhibitory effect was observed. From this, it was found that the effect of spraying bile acids at a very low concentration of 1 to 20 OmgZL on the control of rice blast infection was not due to the antibacterial activity of bile acids. Table 4
Figure imgf000015_0001
実施例 5 :イネいもち病菌の感染直前に胆汁酸を散布処理したときの感染防除効 果
Figure imgf000015_0001
Example 5: Effect of Bile Acid Spraying Immediately before Infection with Rice Blast Infection Control Effect
イネ (品種: あきたこまち) の催芽種子を水稲用培土に播種して、 人工気象室 の中に設置したガラス栽培ケース内で栽培した。 人工気象室は 1日を 22°CZ2 5、 O O O L u xで 1 2時間、 1 8°C/0 L u Xで 1 2時間からなるサイクルの 条件に設定した。 本葉 3葉齢が 1 0 0 %展開した時に、 人工気象室の設定を、 2 2°C/2 0、 O O O L u xで 1 2時間、 1 8 ^/ 0 L u xで 1 2時間のサイクル の条件に変更した。 本葉 5葉齢が 40〜50 %展開したときに、 0. 0 1 %の丁 we e n 2 0、 4mMリン酸カリウムバッファ一 (pH6. 2) の溶液に溶解し た各種濃度のコール酸 N aをイネの葉全体にスプレーした。 そしてその 1時間後 に、 イネいもち病菌 (学名 ·· Magnaporthe grisea レース 0 0 7株) の分生胞子 懸濁液の噴霧接種による感染処理を行った。 噴霧接種後、 暗所、 加湿条件下に 3 6時間放置することにより、 いもち病菌を感染させた。 その後、 人工気象室に移 して栽培し、 接種 6日後に各区の第 4本葉に発生した罹病性病斑数を測定するこ とにより防除価を算出した。 各区 200本のイネを感染させ、 防除価の算出は、 下記式により求めた。 防除価 = ( 1一各区の 1葉あたりの平均病斑数 Zコール酸無添加区の 1葉あたり の平均病斑数) X 100 その結果を表 5に示した。 この結果から明らかなように、 上記条件では、 イネ いもち病菌感染直前にコール酸を散布しても、 1〜200 OmgZLという濃度 範囲で、 全く感染防除効果がないことが判明した。 これに対して、 実施例 3にあ るように、 いもち病菌感染 2日前に胆汁酸類を散布すると l〜200mg/Lと いう低い濃度でも、 感染防除効果があるということは、 胆汁酸類そのものの抗菌 活性ではなく、 胆汁酸類が植物体に対して抵抗性を誘導することによって、 いも ち病菌の防除効果を発揮しているということが判明した。 表 5 Sprout seeds of rice (variety: Akitakomachi) were sown in paddy rice cultivation and cultivated in a glass cultivation case installed in a climate chamber. The climate chamber was set for a cycle consisting of 22 hours at 22 ° CZ25, 12 hours at OOOLux, and 12 hours at 18 ° C / 0 Lux. When the true leaf 3 leaf age is expanded to 100%, the setting of the climate chamber is set at 22 ° C / 20, OOOh lux for 12 hours, and 18 ^ / 0 lux for 12 hours. Changed to conditions. When the true leaf 5 leaf age develops 40-50%, various concentrations of cholic acid N dissolved in a solution of 0.01% D-ween 20 and 4 mM potassium phosphate buffer (pH 6.2) a was sprayed on the whole rice leaf. One hour later, infection treatment was performed by spraying a conidia suspension of a rice blast fungus (scientific name: Magnaporthe grisea race 07 strain). After the spray inoculation, the blast fungus was infected by leaving for 36 hours in a dark place and in a humidified condition. After that, the plants are transferred to the artificial climate room and cultivated.After 6 days from the inoculation, the number of diseased lesions on the fourth true leaf of each section is measured. And the control value was calculated. 200 rice plants were infected in each zone, and the control value was calculated by the following formula. Control value = (1 average number of lesions per leaf in each section Z average number of lesions per leaf in section without addition of cholic acid) X 100 The results are shown in Table 5. As is clear from the results, it was found that under the above conditions, even if cholic acid was sprayed immediately before infection with the rice blast fungus, there was no infection control effect in the concentration range of 1 to 200 OmgZL. On the other hand, as shown in Example 3, spraying bile acids two days before infection with the blast fungus, even at a concentration as low as 1 to 200 mg / L, has an effect of controlling infection. It was found that bile acids, not the activity, induced the resistance to the plant by inducing resistance to the plant. Table 5
Figure imgf000016_0001
実施例 6 :胆汁酸の浸根処理によるイネいもち病菌の感染防除効果
Figure imgf000016_0001
Example 6: Effect of Bile Acid Root Treatment on Infection Control of Rice Blast Fungus
イネ (品種:あきたこまち) の催芽種子を水稲用培土に播種して、 人工気象室 の中に設置したガラス栽培ケース内で栽培した。 人工気象室は 1日を 22°C/2 5、 O O O L u xで 1 2時間、 1 8 0 L u xで 1 2時間からなるサイクルの 条件に設定した。 本葉 3葉齢が 1 0 0 %展開した時に、 人工気象室の設定を、 2 2 2 0、 O O O L u xで 1 2時間、 1 8 °CZ 0 L u xで 1 2時間のサイクル の条件に変更した。 本葉 5葉齢が 1 0〜20 %展開したときに、 イネ植物体をポ ットごと各種濃度のコール酸 N aを含む溶液に浸漬し、 胆汁酸類を根から吸収さ せた。 Sprout seeds of rice (variety: Akitakomachi) were sown on paddy rice cultivation soil and cultivated in a glass cultivation case installed in a climate chamber. Artificial weather room is 22 ° C / 2 a day 5. The cycle condition was set to consist of 12 hours with OOOLux and 12 hours with 180Lux. When the true leaf 3 leaf age is expanded to 100%, the setting of the climate chamber is changed to the condition of 222 hours, 12 hours at OOOLux, and 12 hours at 18 ° CZ 0Lux. did. When the true leaf at the age of 5 leaves expanded to 10% to 20%, the rice plants were immersed together with the pots in solutions containing various concentrations of cholate Na to allow bile acids to be absorbed from the roots.
再び人工気象室にて 2日間栽培した後、 イネいもち病菌 (学名 : MagnaporiAe grisea レース 007株) の分生胞子懸濁液の噴霧接種による感染処理を行った。 噴霧接種後、 暗所、 加湿条件下に 3 6時間放置することにより、 いもち病菌を 感染させた。 その後、 人工気象室に移して栽培し、 接種 6日後に各区の第 4本葉 に発生した罹病性病斑数を測定することにより防除価を算出した。 各区 200本 のイネを感染させ、 防除価の算出は、 下記式により求めた。 防除価 = (1—各区の 1葉あたりの平均病斑数/コール酸無添加区の 1葉あたり の平均病斑数) X 1 00 その結果を表 6に示した。 表 6から明らかなように、 散布処理のみならず、 浸 漬処理によっても、 5〜5 OmgZLという非常に低い濃度の胆汁酸類によって、 イネいもち病菌の感染防除効果があることが判明した。 表 6  After cultivation again in the artificial climate room for 2 days, infection treatment was carried out by spraying and inoculating a conidia spore suspension of the rice blast fungus (scientific name: MagnaporiAe grisea race 007). After the spray inoculation, the blast fungus was infected by leaving for 36 hours in the dark and in a humidified condition. After that, the plants were transferred to the artificial weather chamber and cultivated, and the control value was calculated by measuring the number of diseased lesions on the fourth true leaf of each section 6 days after inoculation. 200 rice plants were infected in each zone, and the control value was calculated by the following formula. Control value = (1—average number of lesions per leaf in each section / average number of lesions per leaf in section without cholate) X 100 The results are shown in Table 6. As is clear from Table 6, the bile acids at a very low concentration of 5 to 5 OmgZL have an effect of controlling rice blast infection not only by spraying but also by immersion. Table 6
Figure imgf000017_0001
実施例 7 :胆汁酸によるレタス根腐れ病防除効果
Figure imgf000017_0001
Example 7: Control effect of bile acid on lettuce root rot
本葉が 3枚展開したレタス (品種:パトリオット) の苗を、 各種濃度 (1 0、 5 Omg/L) のコール酸 N aを含む溶液に 24時間浸漬し、 胆汁酸類を根か ら吸収させた後、 レタス根腐れ病菌 (Fusarium oxysporum f. sp. laciucae レース S B 1— 1) の汚染土 (希釈平板法による菌密度を測定した結果は 2 X 1 03C FUZg土であった) に移植して感染処理を行った。 Seedlings of lettuce (cultivar: Patriot) in which three true leaves have been developed are immersed in a solution containing various concentrations (10, 5 Omg / L) of cholic acid Na for 24 hours to remove bile acids from the roots. After absorption, lettuce root rot fungus (Fusarium oxysporum f. Sp. Laciucae race SB 1-1) contaminated soil (dilution plate method to determine bacterial density was 2 X 10 3 C FUZg soil) ) Was transplanted for infection treatment.
移植 2 8日後、 外部病徴による発病調査を実施した。 外部病徴の発病度の基 準は、 健全葉を 0、 下位の 1〜 2葉に病徴がある場合を 1、 外葉全てに病徴が あるものを 2、 半数程度の葉に病徴があるものを 3、 ほとんどの葉に病徴があ り落葉もみられるものを 4、 株が枯死したものを 5との指数を与えて評価した。 防除価の算出は、 下記式により求めた。 防除価 = (対照区の平均発病度一試験区の平均発病度) / (対照区の平均発病 度) X 1 0 0 その結果を表 7に示した。 表 7から明らかなように、 1 0〜 5 Omg/Lと いう非常に低い濃度の胆汁酸類の浸漬処理によって、 レタス根腐れ病菌の感染 防除効果があることが判明した。  Twenty-eight days after transplantation, an onset of external symptoms was investigated. The criteria for the severity of the external symptom are 0 for healthy leaves, 1 for cases where the lower 1-2 leaves have a symptom, 2 for cases where all outer leaves have a symptom, and about half of the leaves 3 were evaluated for the presence of a symptom, 4 for those with a symptom on most of the leaves and deciduous leaves, and 5 for those in which the plants died. The control value was calculated by the following formula. Control value = (average disease incidence in control plots-average disease incidence in test plots) / (average disease incidence in control plots) X 100 The results are shown in Table 7. As is evident from Table 7, it was found that immersion treatment of bile acids at a very low concentration of 10 to 5 Omg / L was effective in controlling lettuce root rot infection.
Figure imgf000018_0001
実施例 8 :胆汁酸によるトマト萎凋病防除効果
Figure imgf000018_0001
Example 8: Effect of controlling bile acid on tomato wilt
本葉が 2枚展開したトマト苗 (品種:ポンテローザ) の苗を、 各種濃度 (1 0、 5 Omg/L) のコ一ル酸 N aを含む溶液に 7 2時間浸潰し、 胆汁酸類を 根から吸収させた後、 トマト萎凋病 (Fi/sarii/ffl oxysporuffl ί· sp. lycopersic i レース J_l) の菌密度が 5 X 1 04C FUZg土の汚染土に移植することによ り感染処理を行った。 Tomato seedlings (cultivar: Ponterosa) with two true leaves developed are immersed in a solution containing various concentrations (10, 5 Omg / L) of colic acid Na for 72 hours to remove bile acids from the roots. After being absorbed from the soil, the bacterial infection of tomato wilt (Fi / sarii / ffl oxysporuffl ί · sp. Lycopersic i race J_l) is transferred to a contaminated soil of 5 × 10 4 C FUZg soil for infection treatment. went.
移植 3 7日後、 外部病徴による発病調査により防除効果を調べた。 外部病徴 の発病度の基準は、 健全葉を 0、 下位の 1〜 2葉に病徴がある場合を 1、 半数 程度の葉に病徴があるものを 2、 ほとんどの葉に病徴があり落葉もみられるも のを 3、 株が枯死したものを 4との指数を与えて評価した。 防除価の算出は、 下記式により求めた。 防除価 == (対照区の平均発病度 -試験区の平均発病度) / (対照区の平均発病 度) X 1 0 0 その結果を表 8に示した。 表 8から明らかなように、 1 0〜 5 O m g / Lと いう非常に低い濃度の胆汁酸類の浸漬処理によって、 トマト萎凋病菌の感染防 除効果があることが判明した。 37 days after transplantation, the control effect was examined by investigating the onset of external symptoms. The criteria for the severity of external symptom are 0 for healthy leaves, 1 when there are symptom in lower 1-2 leaves, and half The evaluation was given by giving an index of 2 for those with a symptom on the leaf, 3 for those with a symptom on most of the leaves and deciduous leaves, and 4 for the dead plant. The control value was calculated by the following formula. Control value == (average disease incidence in control plot-average disease incidence in test plot) / (average disease incidence in control plot) X 100 The results are shown in Table 8. As is evident from Table 8, it was found that the immersion treatment of bile acids at a very low concentration of 10 to 5 Omg / L was effective in controlling the infection of tomato wilt fungi.
Figure imgf000019_0001
産業上の利用の可能性
Figure imgf000019_0001
Industrial potential
本発明は環境への負荷が少ない、 胆汁酸類またはそれら誘導体を含んでなる、 植物病害防除剤であって、 本防除剤を施用することで栽培植物の病害に対して、 高い防除効果を示すことができる。  The present invention relates to a plant disease controlling agent comprising a bile acid or a derivative thereof, which has a low environmental load, and exhibits a high controlling effect against a disease of a cultivated plant by applying the controlling agent. Can be.

Claims

請求の範囲 The scope of the claims
1 . 胆汁酸類、 またはそれらの誘導体から選ばれる 1種または 2種以上を含 んでなる、 植物病害防除剤。 1. A plant disease controlling agent comprising one or more selected from bile acids or derivatives thereof.
2 . 胆汁酸類が、 コール酸、 ァロコール酸、 ケノデォキシコール酸、 リトコ ール酸、 デォキシコール酸、 ヒォコール酸、 ムリコール酸、 ヒォデォキシコール 酸、 ウルソデォキシコール酸、 タウロコール酸、 グリココール酸、 タウログリコ コール酸、 タウロケノデォキシコール酸、 タウロデオキシコール酸、 タウロリト コール酸、 グリコケノデォキシコール酸、 グリコデォキシコール酸、 グリコリト コール酸、 ォキソリトコール酸、 またはそれらの塩から選ばれる 1種または 2種 以上を含んでなる、 請求項 1記載の植物病害防除剤。 2. The bile acids are cholic acid, valocholic acid, chenodeoxycholic acid, lithocholic acid, deoxycholic acid, hyocholic acid, muricholic acid, hydoxycholic acid, ursodeoxycholic acid, taurocholic acid, Glycocholate, Tauroglycocholic acid, Taurochenedoxycholic acid, Taurodeoxycholic acid, Taurolithocholic acid, Glycochenedoxycholic acid, Glycodoxycholic acid, Glycolycholic acid, Oxolitocholic acid, or a mixture thereof The plant disease controlling agent according to claim 1, comprising one or more selected from salts.
3 . 植物への施用濃度が、 胆汁酸類またはそれらの誘導体の含量として 0 .3. The concentration applied to the plant is 0, as the content of bile acids or their derivatives.
1〜 1 0 0 0 O m g Z Lである、 請求項 1または 2のいずれか 1項に記載の植物 病害防除剤。 The plant disease control agent according to any one of claims 1 and 2, wherein the agent is 1 to 100 mg OgZL.
4 . 植物病害防除剤の製造における、 胆汁酸類、 及びそれらの誘導体から選ば れる 1種または 2種以上の使用。 4. Use of one or more selected from bile acids and their derivatives in the manufacture of plant disease control agents.
5 . 請求項 1〜 3のいずれか 1項に記載の植物病害防除剤により栽培植物を 処理する工程を含んでなる、 植物病害の防除方法。 5. A method for controlling plant diseases, comprising a step of treating a cultivated plant with the plant disease controlling agent according to any one of claims 1 to 3.
6 . 請求項 5に記載の植物病害の防除方法において、 前記植物病害防除剤に より栽培植物を処理することにより、 前記植物に病害抵抗性を誘導することを特 徴とする方法。 6. The method for controlling a plant disease according to claim 5, wherein a disease resistance is induced in the plant by treating a cultivated plant with the plant disease controlling agent.
PCT/JP2004/000217 2003-01-17 2004-01-15 Plant disease controlling agent and method of controlling plant disease using the same WO2004064521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003009270A JP2006219372A (en) 2003-01-17 2003-01-17 Plant disease injury control agent and method for controlling plant disease injury using the same agent
JP2003-009270 2003-01-17

Publications (1)

Publication Number Publication Date
WO2004064521A1 true WO2004064521A1 (en) 2004-08-05

Family

ID=32767215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000217 WO2004064521A1 (en) 2003-01-17 2004-01-15 Plant disease controlling agent and method of controlling plant disease using the same

Country Status (3)

Country Link
JP (1) JP2006219372A (en)
TW (1) TW200503624A (en)
WO (1) WO2004064521A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088074A1 (en) 2008-01-11 2009-07-16 Ajinomoto Co., Inc. Disease resistance enhancer for plants and method of controlling plant disease by using the same
EP2524597B1 (en) 2010-01-13 2016-03-16 Ajinomoto Co., Inc. Use of an agent for enhancing resistance to disease of cucurbitaceae plant and a method for controlling plant disease using the agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236909A (en) * 1997-02-27 1998-09-08 Hiroshi Kawai Rice blast control and composition therefor
WO1998047364A1 (en) * 1997-04-21 1998-10-29 Plant Biological Defense System Laboratories Method of screening elicitor inducing the production of phytoalexin in rice and rice disease controlling agent containing elicitor as the active ingredient
JPH1129412A (en) * 1997-07-09 1999-02-02 Kagaku Gijutsu Shinko Jigyodan Phytoalexin inducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236909A (en) * 1997-02-27 1998-09-08 Hiroshi Kawai Rice blast control and composition therefor
WO1998047364A1 (en) * 1997-04-21 1998-10-29 Plant Biological Defense System Laboratories Method of screening elicitor inducing the production of phytoalexin in rice and rice disease controlling agent containing elicitor as the active ingredient
JPH1129412A (en) * 1997-07-09 1999-02-02 Kagaku Gijutsu Shinko Jigyodan Phytoalexin inducer

Also Published As

Publication number Publication date
TW200503624A (en) 2005-02-01
JP2006219372A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
Huang et al. Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections
CA2988782C (en) Antifungal methylobacterium compositions and methods of use
Guo et al. Germination induces accumulation of specific proteins and antifungal activities in corn kernels
Rojo et al. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions
RU2621554C2 (en) Application of lipochitooligosaccharides and / or chitooligosaccharides in combination with microorganisms giving solubility to phosphates, to enhance plant growth
Yang et al. Hydroxycoumarins: New, effective plant-derived compounds reduce Ralstonia pseudosolanacearum populations and control tobacco bacterial wilt
Islam et al. Agricultural uses of juglone: Opportunities and challenges
Bakan et al. Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels
BR122018073867B1 (en) method for increasing the growth and / or yield of a leguminous plant other than soybean
Pajot et al. Phytogard® and DL-β-amino butyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L)
Prashar et al. Biocontrol of plant pathogens using plant growth promoting bacteria
Lewandowski et al. Bifunctional quaternary ammonium salts based on benzo [1, 2, 3] thiadiazole-7-carboxylate as plant systemic acquired resistance inducers
Suryadi et al. Management of plant diseases by PGPR-mediated induced resistance with special reference to tea and rice crops
Faessel et al. Chemically-induced resistance on soybean inhibits nodulation and mycorrhization
Shifa et al. Management of late leaf spot (Phaeoisariopsis personata) and root rot (Macrophomina phaseolina) diseases of groundnut (Arachis hypogaea L.) with plant growth-promoting rhizobacteria, systemic acquired resistance inducers and plant extracts
Lu et al. Bioactivity of essential oil from Ailanthus altissima bark against 4 major stored-grain insects
Grellet Bournonville et al. Strawberry fatty acyl glycosides enhance disease protection, have antibiotic activity and stimulate plant growth
Siddiqui et al. Role of zinc in rhizobacteria‐mediated suppression of root‐infecting fungi and root‐knot nematode
da Silva et al. Purification, characterization, and assessment of antimicrobial activity and toxicity of Portulaca elatior leaf lectin (PeLL)
Fernández et al. Peptides derived from the α-core and γ-core regions of a putative Silybum marianum flower defensin show antifungal activity against Fusarium graminearum
Qi et al. Natural products-based botanical bactericides discovery: novel abietic acid derivatives as anti-virulence agents for plant disease management
Yadav et al. Evaluation of fungicidal efficacy of Moringa oleifera Lam. leaf extract against Fusarium wilt in wheat
Pal et al. Seed endophytic bacterium Bacillus velezensis and its lipopeptides acts as elicitors of defense responses against Fusarium verticillioides in maize seedlings
WO2004064521A1 (en) Plant disease controlling agent and method of controlling plant disease using the same
CN105418504B (en) The pyrazolecarboxamide compounds of the base containing diaryl-amine and its application in agricultural chemicals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP