WO2004061452A1 - Method of assaying antibody - Google Patents

Method of assaying antibody Download PDF

Info

Publication number
WO2004061452A1
WO2004061452A1 PCT/JP2004/000040 JP2004000040W WO2004061452A1 WO 2004061452 A1 WO2004061452 A1 WO 2004061452A1 JP 2004000040 W JP2004000040 W JP 2004000040W WO 2004061452 A1 WO2004061452 A1 WO 2004061452A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
antigen
protein
binding
binding agent
Prior art date
Application number
PCT/JP2004/000040
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Kojima
Sayaka Oyobe
Yasunori Yamada
Original Assignee
Medical And Biological Laboratories Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medical And Biological Laboratories Co., Ltd. filed Critical Medical And Biological Laboratories Co., Ltd.
Priority to JP2005507959A priority Critical patent/JPWO2004061452A1/en
Publication of WO2004061452A1 publication Critical patent/WO2004061452A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins

Definitions

  • the present invention relates to a method for measuring an antibody.
  • Antibodies are proteins produced by the immune system in order for the body to eliminate foreign substances. Organism, therefore c having antibodies to substances that living body recognizes as foreign, information indicating whether there vivo has antibodies to what is an important information for understanding the state of the living body .
  • infectious pathogens For example, in organisms infected with infectious pathogens or those that cause an allergic reaction to foreign substances (allergens) outside the body, antibodies that recognize antigenic determinants of the pathogens or allergens are produced. Thus, the presence of antibodies to the pathogen's antigens or allergens indicates that the pathogen has been infected.
  • Infectious pathogens can include bacteria, fungi, mycoplasmas, rickettsias, viruses, and the like.
  • antibody detection methods for diagnosing the infection have been put to practical use. 3 Common infectious agents that are routinely tested include, for example, the following pathogens:
  • Hepatitis B virus OffiV Hepatitis C virus 0ICV
  • HIV AIDS virus
  • an antibody against an allergen in the body Indicate the presence of an allergic immune response to this.
  • Allergens include house dust, plant pollen, and proteins in food. Reagents for detecting antibodies to allergens have also been put to practical use.
  • Autoimmune disease is a disease caused by the immune system recognizing and attacking its own tissue as a foreign body. The immune system normally recognizes and eliminates foreign antigens. However, an autoimmune disease is established when, for some reason, the immune system exerts immunity on its own tissue and causes damage. Generally, a disease in which the presence of autoantibodies is considered to be closely related to the establishment of a disease is called an autoimmune disease (Immunology Dictionary, Tokyo Chemical Dojin, published November 15, 1993).
  • Humoral immunity is a mechanism for eliminating foreign substances that depends on the production of antibodies to the foreign substances.
  • Cell '14 immunization is a mechanism for eliminating foreign substances by cytotoxic immune cells. Therefore, when the own tissue is attacked by humoral immunity, there are antibodies against the normal tissue in the living body.
  • Antibodies to normal tissues are called autoantibodies.
  • the antigen recognized by the autoantibody is a self antigen.
  • diagnosis of an autoimmune disease can be made by proving the existence of an antibody against a self antigen.
  • Various autoimmune disease diagnostic methods have been put to practical use using autoantibodies as an index. The following shows autoimmune diseases and autoantigens recognized by antibodies serving as diagnostic indices.
  • Hashimoto's disease rhinoglobulin, thyroid gland / reoxidase
  • Antibodies can be detected using a binding reaction with an antigen.
  • a measurement method utilizing the detection of an antigen-antibody complex formed by binding an antibody and an antigen is referred to as immunoassay.
  • immunoassay A measurement method utilizing the detection of an antigen-antibody complex formed by binding an antibody and an antigen.
  • Various principles are known in Imnoatssey. First, imnoatusei can be classified into two types depending on whether it requires a separation step for the antigen-antibody complex. That is, in a homogenous immunoassay, it is not necessary to separate the antigen-antibody complex. On the other hand, generally heterogenous imnoassay is a technique that requires the separation of an antigen-antibody complex.
  • the binding of the antigen to the antibody can be confirmed by non-competitive or competitive reactions.
  • non-competitive reactions the antigen to be detected
  • the antigen-antibody complex formed by the binding of the corresponding antibody (or antigen) with the (or antibody) is used as an index of the amount of the antigen (or antibody) to be detected.
  • the amount of the antigen primary antibody complex, Mel the amount and directly proportional antigen (or antibody) 0
  • the degree of inhibition of the binding of the antigen (or antibody) to the corresponding antibody (or antigen) by the antigen (or antibody) to be detected is an indicator.
  • the signal obtained is inversely proportional to the amount of antigen (or antibody) in the sample.
  • the amount of an antigen-antibody complex is measured using a labeled reaction component.
  • a labeled antigen is bound to the antibody to be measured.
  • the amount of the antigen-antibody complex can be clarified by using the amount of the antigen that formed the antigen-antibody complex or the amount of the free antigen that was not used for the formation of the complex as an index.
  • Enzymes, coenzymes, luminescent substances, fluorescent substances, colored substances, or radioactive substances are used for labeling.
  • the sample (A) to be measured is first reacted with a substance (B) that specifically binds to this sample (primary reaction). Subsequently, the complex consisting of A and B is separated from the reaction solution and washed. The resulting complex was allowed to react with another substance (C) that specifically reacts with A labeled with the label, and was composed of three components (C)-(A)-(B) Form a complex (secondary reaction). After removing unreacted (C) by washing, it was common to know the amount of A by measuring the amount of labeled C. However, this method requires more than one washing step between reactions. Separation and washing of the reaction solution is a factor that hinders reduction in operation time.
  • Patent Document 1 a method (one-step method) in which A, B, and C are reacted in the same reaction solution to simultaneously perform a primary reaction and a secondary reaction has been devised (Patent Document 1 / Patent Document 1). 1849128).
  • This method can be used when the substance (A) to be measured is an antigen.
  • this method cannot be applied when measuring antibodies.
  • the following method is generally used. First, the sample is reacted with the insoluble carrier to which the antigen is bound (primary reaction). Next, an anti-immunoglobulin antibody (secondary antibody) labeled with a label is reacted (secondary reaction). The amount of the target antibody in the sample is measured by measuring the amount of labeling of the secondary antibody constituting the complex having the following structure formed in this manner.
  • Solid phase one one (antibody to be measured) one (secondary antibody)
  • the blood sample is a mixture of various antibodies. Therefore, if a secondary antibody such as an anti-human antibody is added without washing, unrelated antibodies in the sample will also react with the secondary antibody. As a result, the reaction with the antibody bound to the insoluble carrier to which the secondary antibody is to be bound is inherently inhibited. Go. For these reasons, in the antibody measurement system, it was essential to wash and remove the unreacted antibody after the reaction between the sample and the antigen-bound insoluble carrier.
  • a labeled anti-immunoglobulin antibody (secondary antibody) was used to detect the antibody to be measured.
  • protein A can be used in place of the anti-immunoglobulin antibody. That is, in the secondary reaction, the labeled protein A can be bound to the antibody to be measured.
  • a washing step was required before the secondary reaction. Disclosure of the invention
  • An object of the present invention is to provide a method for measuring an antibody which can minimize the separation and washing operations.
  • protein A binds specifically to the Fc portion of various immunoglobulins. Binding of protein A to the Fc portion is said to have no effect on the antigen-binding activity of immunoglobulin. Furthermore, because of the specific and stable binding of immunoglobulin and protein A, protein A is widely used as a tool for separating and immobilizing immunoglobulin or detecting IgG. The present inventors thought that the use of a substance having a selective binding activity for an antibody having formed an immune complex would allow the antibody to be measured more easily. We focused on protein A as a protein having such properties. It has been reported that the affinity between IgG and protein A is increased several hundred times by binding of IgG to an antigen to form an immune complex (Langone, JJ; J Immunol Methods, 51 (1982)). 3-22).
  • protein A also has a strong affinity for antibodies that do not bind to the antigen.
  • the binding affinity for the antibody has also been used for the purification of free antibody. Therefore, it was thought that it would be difficult to selectively bind Protein A to an antibody that reacted with an antigen in the presence of a free antibody.
  • the present inventors have found that, in practice, the antibody can be measured in the presence of a free antibody by utilizing the binding activity of protein A to the antibody bound to the antigen. Further, the present invention has been clarified that a high signal can be expected without using a washing operation after the primary reaction by using a protein such as protein A. That is, the present invention relates to the following method for measuring an antibody.
  • a method for measuring an antibody comprising the following steps.
  • the binding agent that recognizes and binds to the antibody that has formed the antigen-antibody complex is selected from the group consisting of protein, protein G, and complement, or a protein functionally equivalent thereto The method according to [1], which is any protein.
  • V of the binding agent that recognizes and binds to the antigen and the antibody forming the antigen-antibody complex is immobilized or has a modification that allows immobilization (1) The method described in.
  • the binding agent that recognizes and binds to the antibody forming the antigen-antibody complex has a label or has a modification capable of binding the label.
  • the solid phase is particles, including a step of counting particles having a label on the solid phase,
  • [8] including a step of detecting the particles and the label bound to the particles by a flow meter
  • a plurality of types of particles to which different antigens are bound have signals that can be distinguished from each other, and the method includes a step of identifying the antigen to which the antibody is bound based on the signal of the particles for which the label is detected (8) The method described in.
  • [11] a step of detecting the binding between the antigen-antibody complex and the binding agent after the reaction with the antibody, antigen, and binding agent to be measured, and further adding a reaction terminator, The described method.
  • the concentration of formaldehyde in the reaction solution is 0.1 to 0.5% v / v.
  • an antigen bound by the antibody to be measured and a binding agent that recognizes and binds to the antibody forming the antigen-antibody complex, either one of which is immobilized or immobilized
  • a kit for measuring an antibody which has a modification that can be converted, and the other has a label or a modification that can be labeled.
  • reaction terminator is formaldehyde and / or dodecyl sulfate.
  • the antibody to be measured can be a population of various antibody molecules having different antigen-binding activities.
  • a blood sample collected from a living body for diagnosis of a disease is a collection of antibodies having various reactivity. Therefore, the antibody contained in the blood sample is suitable as the antibody to be measured in the present invention.
  • Blood samples include whole blood as well as serum and plasma that can be separated from whole blood. Whole blood may be lysed red blood cells.
  • the blood sample is not limited to a human sample. Therefore, the antibody of the immunized animal can be measured according to the present invention. Alternatively, antibodies contained in the blood of transgenic animals that produce human antibodies can be measured.
  • a biological material other than a blood sample can be used as a sample.
  • saliva and mucous membranes are known to secrete antibodies.
  • Milk contains maternal IgG.
  • antibodies generated by culturing B cells taken out of a living body can also be measured in the present invention. Methods for collecting these biological samples and preparing samples for immunological measurement methods are known.
  • the biological sample is preferably taken from a living organism and measured ex vivo by the method of the present invention.
  • the method for measuring an antibody according to the present invention includes the following steps (1) to (3).
  • step (1) is performed by adding an antigen to the sample.
  • Any antigenic substance having an antigenic determinant recognized by the antibody to be detected can be used as the antigen. Therefore, not only a complete antigen molecule but also a partial structure of an antigen containing an antigenic determinant can be used as an antigen. Furthermore, molecules that mimic the antigen structure are also useful as antigens.
  • An anti-idiotype antibody can be shown as a molecule that mimics the structure of an antigen.
  • an antigen constituting the microorganism, cells infected by the microorganism, or a fraction thereof can be used as the antigen.
  • substances that can be allergens and extracts thereof can be used as antigens.
  • an antibody against an own tissue autoantibody
  • an antigen derived from that kind of tissue is used.
  • the antigen not only a naturally-occurring substance, but also a recombinant or a chemically synthesized oligopeptide or oligosaccharide can be used.
  • the antibody bound to the antigen is reacted with a binding agent.
  • a binding agent any substance that recognizes and binds to an antibody that has formed an antigen-antibody complex in the presence of free immunoglobulin can be used.
  • Free Imnog Oral Purine refers to Imnoglobulin that has not formed a complex with the antigen.
  • preferred binding agents include protein A, protein G, and proteins functionally equivalent thereto. Protein A and protein G are particularly preferred binders in the present invention.
  • complement can be used as a binder in the present invention. Methods for obtaining these binders are known. For example, protein A and protein G are commercially available.
  • a functionally equivalent protein includes a protein capable of selectively binding an antibody that has formed a complex with an antigen in the presence of free immunoglobulin.
  • Selective binding to an antibody that has formed an antigen-antibody complex means that it is substantially free of interference with coexisting free immunoglobulin.
  • Substantially no interference of free immunoglobulin can be confirmed as follows. That is, if the amount of binding between the antibody forming the antigen-antibody complex and the protein does not show a significant change when the amount of coexisting free immunoglobulin is changed, the protein is not immunogenic. It can be said that it is selectively bound to the complex.
  • protein A and protein G are proteins having a strong binding affinity for the Fc portion of various immunoglobulins. However, since these proteins also have strong binding affinity to free immunoglobulin, it was thought that they could not selectively bind an antibody that formed an antigen-antibody complex. However, in fact, it has been found by the present inventors that these proteins selectively bind the antigen-antibody complex and enable measurement of the antibody.
  • the antibody to which the binding agent binds includes any immunoglobulin.
  • IgG IgA, IgM, IgD, or IgE can be indicated as imnoglobulin.
  • Protein G It can bind to any of the phosphorus.
  • infectious diseases and autoimmune diseases most of the antibodies produced constantly are IgG. Therefore, it can be said that IgG is one of the important antibodies in the antibody measuring method of the present invention.
  • large amounts of IgM are often produced transiently during the early stages of infection.
  • IgE production is an important indicator in allergic immune responses.
  • steps (1) and (2) can be performed separately or simultaneously. That is, a binder may be added after reacting the antigen and the antibody, or the antigen and the binder may be simultaneously added to the sample.
  • the order of adding the sample, the antigen, and the binding agent is arbitrary. Therefore, if a reagent in which an antigen and a binding agent are mixed is prepared, steps (1) and (2) can be started only by adding a sample. Samples that contain high concentrations of antibody may require dilution of the sample to measure the antibody. For example, blood samples contain high concentrations of antibodies. By preparing a reagent in which a diluting solution is prepared in advance for such a sample, dilution and measurement of antibodies can be performed simply by adding the sample to the reagent.
  • step (2) when the step (2) is performed after the step (1), a step of separating free antibody between the steps is unnecessary.
  • substantially simultaneously means that other components are added to the reaction system without separating components that did not participate in the reaction between the components constituting the reaction. Therefore, even when the reaction is not performed completely simultaneously in terms of time, the case where components necessary for the reaction are sequentially mixed without separation or washing is also included in performing the reaction substantially simultaneously.
  • the method of the present invention includes a step of detecting the binding between the antigen-antibody complex formed in step (2) and a binding agent.
  • the binding between the two can be easily detected by labeling either the antigen or the binding agent.
  • an enzyme, a fluorescent substance, a luminescent substance, a radioactive substance, a coloring substance and the like can be shown.
  • Methods for binding these labeling substances to antigens and binding agents are known.
  • a labeling substance can be chemically bonded.
  • biotin into an antigen or a binding agent and then binding labeled avidin, a labeled substance can be bound indirectly.
  • the labeling substance is a protein
  • a fusion protein of the labeling substance and an antigen protein or a binding agent can be obtained by using gene recombination technology.
  • the solid phase it is possible to use a general solid phase used for a well-known heterogeneous system such as fine particles, beads, or the inner wall of a container. Methods for binding an antigen or a binding agent to these solid phases are also known.
  • commercially available protein A or protein G in a state of being bound to a solid phase can also be used in the present invention. For example, gels such as agarose and sepharose, colored particles such as colloidal gold, and protein A immobilized on ELISA plates are sold.
  • a directly detectable signal is a signal that does not require an additional reaction to detect the signal.
  • signals such as fluorescent signals from fluorescent dyes and colored signals from colored dyes can be detected without additional reaction. Therefore, these signals are included in the directly detectable signals.
  • enzyme labels generally cannot produce a signal without going through an enzymatic reaction.
  • a detection system that does not require a washing step will be specifically described. A system that can analyze fine particles one by one using a single system has been put into practical use.
  • Luminex (trade name; manufactured by Luminex Corp.) can detect a fluorescent label bound to one fine particle.
  • Luminex, Flowmet The fine particles and the fluorescent material bound to the fine particles are detected by separate sensors while flowing the fine particles one by one by Lee.
  • a preferred combination in the present invention is a method in which fine particles are used as a solid phase and a labeling substance that generates a signal directly detectable on a label is used.
  • the fine particles refer to particles having a size that can be flowed one by one by a flow system and that can be distinguished from other fine particles mixed by a sensor.
  • particles having a particle size of about 0.2 to 200 / im can be flowed one by one by a flow system, and can be easily identified by a sensor.
  • fine particles that generate a signal can be used. By giving signals to fine particles that are solid phases in addition to labeling substances, simultaneous measurement of multiple items becomes possible. The multi-item simultaneous measurement is described below.
  • the measurement method of the present invention will be described using an example in which an antigen is immobilized on fine particles and a binder is labeled.
  • different antigens are immobilized on fine particles. Fine particles should generate different signals for each antigen.
  • different signals can be given to fine particles by incorporating different fluorescent dyes into the fine particles.
  • different signals can be given by changing the mixing ratio of a plurality of dyes having different fluorescence wavelengths.
  • the method for binding the antigen to the fine particles is arbitrary.
  • polystyrene beads A protein can be immobilized on a hydrophobic surface by physical adsorption.
  • Luminex beads which are fine particles commercially available for Luminex®, have functional groups on the surface. Using this functional group, the antigen can be immobilized on a solid phase by covalent bond.
  • a modification that allows immobilization can be added to the antigen (or binder) to be immobilized.
  • modification that can be immobilized refers to a modification of an antigen or a binding agent with a substance having binding affinity.
  • a substance with binding affinity can be captured by a binding partner of the substance.
  • biotin-modified antigen is captured by immobilized avidin.
  • the same label may be used regardless of the type of antibody.
  • protein A labeled with a commercially available fluorescent dye can be used.
  • Fluorescein isothiocyanate (FITC) or R-Phycoerythrin (PE) is used as the fluorescent dye.
  • FITC Fluorescein isothiocyanate
  • PE R-Phycoerythrin
  • hepatitis B virus HBV
  • hepatitis C virus hepatitis C virus
  • AIDS virus AIDS virus
  • syphilis antibodies against hepatitis B virus (HBV), hepatitis C virus), AIDS virus), or syphilis.
  • HBV hepatitis B virus
  • hepatitis C virus hepatitis C virus
  • AIDS virus AIDS virus
  • syphilis syphilis
  • these antibodies can be measured simultaneously. That is, the antigen of each pathogenic microorganism is immobilized on fine particles that generate different signals. The sample is allowed to react with the fine particles together with the labeled binder, and the binder is labeled for each fine particle. It is only necessary to detect intellect. If these antibody screenings are performed at the same time, the time and cost required for the screening can be significantly reduced.
  • the method of the present invention is also useful for confirming the presence of antibodies in a sample against various types of allergens.
  • the number of potential allergens is growing. Therefore, the identification of substances responsible for an allergic immune response has become increasingly difficult tests.
  • antibodies to various kinds of antigenic substances can be detected simultaneously and rapidly. That is, various allergens are immobilized on fine particles that generate different signals.
  • the sample may be reacted with the fine particles together with the labeled binder, and the label of the binder may be detected for each fine particle.
  • Luminex offers microphone mouth beads that generate 100 different signals. This means that 100 different antibodies can be simultaneously measured by the present invention.
  • multi-item simultaneous measurement of antigen using antibody-bound fine particles is already known. Therefore, by combining the multi-item simultaneous measurement of the known antigen and the multi-item simultaneous measurement of the antibody according to the present invention, it has become possible to simultaneously perform the measurement operation based on all immunological measurement principles. When a large number of samples are screened, the ability to perform the immunoassays simultaneously in a single system has significant time and cost savings. In the measurement method of the present invention, it is preferable to perform the step (3) after adding the reaction terminator. When measuring a large number of samples at the same time, the reaction time for each sample may differ.
  • a difference in reaction time may cause a decrease in measurement accuracy. Then, after a predetermined reaction time has elapsed, the reaction is stopped once by adding a reaction terminator, and then the step (3) can be performed.
  • the reaction terminator may be formaldehyde.
  • the used concentration of formaldehyde is usually 0.1 to 5.0% v / v, for example, 0.25 to 2.0% v / v, preferably 0.5 to 1% v / v in the reaction solution.
  • dodecyl sulfate can be used as the reaction terminator in the present invention.
  • dodecyl sulfate examples include sodium dodecyl sulfate and lithium dodecyl sulfate.
  • sodium dodecyl sulfate (SDS) is a desirable reaction terminator in the present invention.
  • concentration of dodecyl sulfate used is usually 0.1 to 5.0% w / v in the reaction solution, for example 0.25 to 2.0% w / v, preferably 0.5 to 1% w / v. It is.
  • Formaldehyde or dodecyl sulfate can effectively stop an immune reaction or a reaction involving a binder by a denaturing effect of the protein.
  • Formaldehyde and dodecyl sulfate can be used as a reaction terminator in the present invention either individually or as a mixture of both.
  • the present invention relates to any one selected from the group consisting of protein A, protein G, or a protein functionally equivalent thereto under the condition that an antibody constituting an antigen-antibody complex and free immunoglobulin coexist.
  • a method for separating an antigen-antibody complex comprising a step of binding the binding agent comprising the protein with the antibody constituting the antigen-antibody complex.
  • a binding agent capable of selectively binding an antibody which has formed an antigen-antibody complex in the presence of free immunoglobulin can be used as an antigen-antibody complex under the condition that free immunoglobulin coexists with protein A, protein G, or any protein selected from the group consisting of proteins functionally equivalent thereto. It is a binding agent for selectively binding antibodies that compose the body. Such a binding agent is useful as a separating agent for an antibody that has formed an immune complex.
  • the binding agent in the present invention can be immobilized or labeled.
  • the present invention further includes an antigen bound by the antibody to be measured, and a binding agent that recognizes and binds to the antibody that has formed the antigen-antibody complex, either one of which is immobilized or immobilized.
  • the present invention relates to a kit for measuring an antibody, wherein the kit has a modification that can be converted, and the other has a label or a modification that can be labeled.
  • the antigen bound by the antibody to be measured and the binding agent that recognizes and binds to the antibody forming the antigen-antibody complex may be mixed in advance.
  • the kit of the present invention may further comprise a reaction terminator. Formaldehyde can be used as the reaction terminator.
  • kits according to the present invention in which a plurality of types of antigens are immobilized on fine particles each generating a different signal, is useful as a kit for simultaneously measuring a plurality of types of antibodies. If the microparticles produce an identifiable signal, the label of the binder may be common.
  • FIG. 1 is a diagram showing the measurement results of anti-SS-B antibodies when PE-labeled protein A was reacted without a washing step after the reaction between the beads and the sample.
  • the vertical axis shows the fluorescence intensity measured by Luminex®, and the horizontal axis shows the sample dilution factor.
  • Conj. Dilution shows the dilution of PE-labeled protein A.
  • FIG. 2 is a diagram showing the measurement results of anti-SS-B antibodies when a PE-labeled anti-human IgG antibody was reacted without a washing step after the reaction between the beads and the sample.
  • the vertical axis shows the fluorescence intensity measured by Luminex®, and the horizontal axis shows the sample dilution factor.
  • Conj. Dilution indicates the dilution of the PE-labeled anti-human IgG antibody.
  • FIG. 3 is a diagram showing the results of measuring anti-SS-B antibodies when PE ⁇ protein G (Biomeda) was reacted without a washing step after the reaction between the beads and the sample.
  • the vertical axis shows the fluorescence intensity measured by Luminex®, and the horizontal axis shows the sample dilution factor.
  • Conj. Dilution factor indicates the dilution factor of PE-labeled protein G (manufactured by Biomeda).
  • FIG. 4 is a diagram showing the results of anti-SS-B antibody measurement when PE ⁇ protein G (Biogenesis) was reacted without a washing step after the reaction between the beads and the sample.
  • the vertical axis is Lumi
  • the fluorescence intensity measured by nex® is shown on the horizontal axis, which is the sample dilution factor.
  • Con j. Dilution factor indicates the dilution factor of PE ⁇ protein G (manufactured by Biogenesis).
  • FIG. 5 is a graph showing the effect of a reaction stop solution on the measurement of anti-SS-B antibody using PE-labeled protein A.
  • the vertical axis shows the fluorescence intensity measured by Luminex®, and the horizontal axis shows the elapsed time (minutes) after addition of the reaction stop solution.
  • FIG. 6 is a diagram showing the measurement results of anti-SS-B antibodies when POD-labeled protein A was reacted without a washing step after the reaction between the ELISA plate and the sample.
  • the vertical axis shows the absorbance at 450 nm, and the horizontal axis shows the sample dilution factor.
  • FIG. 7 is a diagram showing the measurement results of anti-SS-B antibodies when a POD-labeled anti-human IgG antibody was reacted without a washing step after the reaction between the ELISA plate and the sample.
  • the vertical axis shows the absorbance at 450 nm, and the horizontal axis shows the sample dilution factor.
  • FIG. 8 is a diagram showing the measurement results of anti-SS-B antibodies when POD-labeled protein A was reacted after washing after the reaction between the ELISA plate and the sample.
  • the vertical axis shows the absorbance at 450 nm, and the horizontal axis shows the sample dilution factor.
  • FIG. 9 is a diagram showing the measurement results of the anti-SS-B antibody when the POD-labeled anti-human IgG antibody was reacted after washing after the reaction between the ELISA plate and the sample.
  • the vertical axis shows the absorbance at 450 nm, and the horizontal axis shows the sample dilution factor.
  • FIG. 10 is a diagram showing the stability after the reaction was stopped when SDS was used as the reaction stopping solution.
  • the vertical axis indicates the fluorescence intensity, and the horizontal axis indicates the final concentration (%) of SDS.
  • FIG. 11 is a diagram showing the stability after termination of the reaction when SDS was used as the reaction termination solution.
  • the vertical axis shows the fluorescence intensity, and the horizontal axis shows the elapsed time (minutes) after the addition of SDS.
  • Anti-SS-B antibody is selected as the antibody to be measured, and the antibody measurement method according to the present invention is constructed. did.
  • Anti-SS-B antibody is an autoantibody found in the serum of patients with Siedalen syndrome and is also called La antibody. By double immunodiffusion, three different autoantibodies were found in the sera of patients with Sjoegren Syndrome, which were named SS-A, SS-B, and SS-C antibodies, respectively (E Williams St. et al .: Qu antitative immunoassay of anti La anibodies using purified recombinant La antigen. Arthritis Rheum., 31: 506, 1988).
  • the SS-B antigen which is an antigen recognized by the SS-B antibody, has been identified and its structure has been determined (Japanese Patent Application Laid-Open No. 9-166965, "Method for determining the presence of autoimmune autoantibodies").
  • the SS-B antigen (La antigen) required for the detection of SS-B antibody is commercially available.
  • DIARECT AG Germany markets a recombinant La antigen (catalog number 12800).
  • Purified La antigen is also commercially available (Immunovision, USA).
  • the activated beads were centrifuged at 10, OOOg for 2 minutes to separate the supernatant, and the mixture was dispersed well by adding a coupling buffer (PH7.3 PBS), and the supernatant was discarded and washed. After the washing operation was repeated twice, 10 ⁇ g / mL of a recombinant SS-B antigen solution (250 / zL) was added, and the mixture was stirred by stirring at room temperature for 2 hours in the dark to bind. Then, the plate was washed twice with 500 ⁇ L of a washing buffer ( ⁇ 7.3 PBS, 0.05% Tween20).
  • a washing buffer ⁇ 7.3 PBS, 0.05% Tween20
  • blocking Z preservation buffer pH 7.3 PBS, lmg / mL BSA, 0.05% Sodium Azide
  • Luminex® Luminex automatic analyzer
  • a 100-fold diluted sample L and bead suspension 50; zL are added to the wells of a 96-well filtration plate (Millipore MultiScreen Assay System). After stirring for 30 seconds, the mixture was allowed to react by standing at 25 ° C for 30 minutes, and the solution was removed by suction.
  • the MESACUP-2 test (manufactured by the Institute of Medical Biology Co., Ltd.) After washing twice, add 100 L of wash buffer and AIOO L of fluorescently-labeled antibody or fluorescently-labeled protein, stir for 30 seconds, and let stand at 25 ° C for 30 minutes to react. And the fluorescence intensity was measured.
  • the sample was diluted regardless of whether a fluorescent-labeled anti-human IgG antibody or fluorescent-labeled protein A was used. The increase of the fluorescence intensity according to was observed.
  • reaction stop solution was examined, and it was found that the reaction could be stopped by adding formaldehyde. Therefore, the concentration of formaldehyde and the stability after stopping were examined.
  • An antibody measurement system based on the present invention was constructed using a microplate generally used as a reaction vessel for ELISA.
  • the microplate used was an antigen-binding microplate for MESACUP2 test “SS-B” manufactured by Medical Biology Laboratories.
  • a peroxidase-labeled anti-human IgGfet compound (manufactured by Medical Biology Laboratory Co., Ltd., product number 208) was similarly diluted 200-fold to 25600-fold, and the same operation was performed to confirm the change in color development. In addition, normal two-step measurement was also performed at the same time, and changes in color development were compared.
  • peroxidase-labeled protein A Fig. 8
  • the concentration was 30 times higher, but the same color was obtained. I got it.
  • the concentration was 30 times higher, but the same color was obtained. I got it.
  • the absorbance increased in a concentration-dependent manner from 12800 to 200 times. It was confirmed that the antibody measurement method according to the present invention was also possible using an ELISA plate.
  • a method for measuring an antibody that can be expected to have high measurement sensitivity without a washing step after the primary reaction has been provided. Further, in a desirable embodiment of the present invention, even a method for measuring an antibody which does not require the production of a free antibody and an antigen-antibody complex can be realized. For example, an imnoatssay using a system for counting microparticles to which a label is bound is known. The antibody captured by the fine particles can be labeled by the method of the present invention. Labeled microparticles are counted by such a system. That is, by applying this type of system to the present invention, BZF separation in antibody measurement becomes unnecessary.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

It is intended to provide a method of assaying an antibody involving the step of allowing a protein, which recognizes an antigen-antibody complex and binds thereto, to bind to the antigen-antibody complex. As the protein recognizing an antigen-antibody complex and binding thereto, use can be made of protein A, etc. Such a protein selectively binding to an antigen-antibody complex recognizes the antigen-antibody complex without being interfered by free antibodies. Thus, a method of assaying an antibody without resort to B/F separation can be achieved. According to this method, an antibody can be conveniently and quickly assayed.

Description

抗体の測定方法 技術分野  Antibody assay method
本発明は、 抗体の測定方法に関する。 背景技術  The present invention relates to a method for measuring an antibody. Background art
抗体は、 生体が異物を排除するために免疫システムによって産生される蛋白質 である。 生体は、 その生体が異物として認識した物質に対する抗体を有している c そのため、 ある生体が何に対する抗体を有しているのかという情報は、 その生体 の状態を知る上で重要な情報である。 Antibodies are proteins produced by the immune system in order for the body to eliminate foreign substances. Organism, therefore c having antibodies to substances that living body recognizes as foreign, information indicating whether there vivo has antibodies to what is an important information for understanding the state of the living body .
たとえば、 感染性の病原体に感染した生体や、 生体外の異物 (アレルゲン) に 対してアレルギー反応を引き起こす生体においては、 病原体やアレルゲンの抗原 決定基を認識する抗体が産生されている。 したがって、 病原体の抗原やアレルゲ ンに対する抗体の存在は、 その病原体の感染があったことを示す。 感染性病原体 としては、 細菌、 真菌、 マイコプラズマ、 リケッチア、 およびウィルス等を示す ことができる。 多くの感染性病原体について、 その感染を診断するための抗体検 出方法が実用化されている。 3常的に検査の対象とされている一般的な感染性病 原体として、 たとえば次のような病原体を示すことができる。  For example, in organisms infected with infectious pathogens or those that cause an allergic reaction to foreign substances (allergens) outside the body, antibodies that recognize antigenic determinants of the pathogens or allergens are produced. Thus, the presence of antibodies to the pathogen's antigens or allergens indicates that the pathogen has been infected. Infectious pathogens can include bacteria, fungi, mycoplasmas, rickettsias, viruses, and the like. For many infectious agents, antibody detection methods for diagnosing the infection have been put to practical use. 3 Common infectious agents that are routinely tested include, for example, the following pathogens:
B型肝炎ゥィルス OffiV) C型肝炎ゥィルス 0ICV)  Hepatitis B virus OffiV) Hepatitis C virus 0ICV)
エイズウイルス(HIV) 風疼ゥィルス  AIDS virus (HIV) wind pain virus
結核菌 溶血性連鎖球菌  Mycobacterium tuberculosis Hemolytic streptococci
クラミジァ マイコプラズマ  Chlamydia mycoplasma
梅毒スピロ^ タ  Syphilis Spiro ^
あるいは、 生体におけるアレルゲンに対する抗体の存在は、 そのアレルゲンに 対するアレルギー性の免疫応答の存在を示している。 アレルゲンとしてはハウス ダストや植物花粉、 あるいは食物中の蛋白質等を示すことができる。 アレルゲン に対する抗体を検出するための試薬も実用化されている。 Alternatively, the presence of an antibody against an allergen in the body Indicate the presence of an allergic immune response to this. Allergens include house dust, plant pollen, and proteins in food. Reagents for detecting antibodies to allergens have also been put to practical use.
病原体に対する抗体産生が生体の正常な免疫応答の結果であるのに対して、 抗 体の存在そのものが病因となっている疾患が存在する。 自己免疫疾患(autoimmune disease)は、 免疫システムが自己の組織を異物として認識し、 攻撃することによ つてもたらされる疾患である。 免疫システムは、 本来ならば外来抗原を認識し排 除する。 しかし、 なんらかの原因によって自己の組織に対して免疫作用が及んで 障害をもたらすとき、 自己免疫疾患が成立する。 一般には、 自己抗体の存在が病 変の成立と密接に関連していると考えられる疾患が、 自己免疫疾患と呼ばれてい る (免疫学辞典、 東京化学同人、 1993. 11/15発行) 。  Whereas the production of antibodies to pathogens is the result of the body's normal immune response, there are diseases in which the very presence of the antibodies is the etiology. Autoimmune disease is a disease caused by the immune system recognizing and attacking its own tissue as a foreign body. The immune system normally recognizes and eliminates foreign antigens. However, an autoimmune disease is established when, for some reason, the immune system exerts immunity on its own tissue and causes damage. Generally, a disease in which the presence of autoantibodies is considered to be closely related to the establishment of a disease is called an autoimmune disease (Immunology Dictionary, Tokyo Chemical Dojin, published November 15, 1993).
免疫システムが異物を攻撃し排除する機構は、 液性免疫と細胞性免疫とに大別 される。 液性免疫は異物に対する抗体の産生に依存する異物の排除機構である。 細胞' 14免疫は、 細胞障害性の免疫細胞によって異物を排除する機構である。 した がって液性免疫によって自己の組織が攻撃されている場合には、 その生体中には 正常組織に対する抗体が存在する。  The mechanism by which the immune system attacks and eliminates foreign substances is roughly divided into humoral immunity and cellular immunity. Humoral immunity is a mechanism for eliminating foreign substances that depends on the production of antibodies to the foreign substances. Cell '14 immunization is a mechanism for eliminating foreign substances by cytotoxic immune cells. Therefore, when the own tissue is attacked by humoral immunity, there are antibodies against the normal tissue in the living body.
正常組織に対する抗体は、 自己抗体と呼ばれている。 自己抗体によって認識さ れる抗原は自己抗原である。 したがって自己抗原に対する抗体の存在を証明する ことによって、 自己免疫疾患の診断が可能である。 自己抗体を指標として様々な 自己免疫疾患の診断方法が実用化されている。 以下に、 自己免疫疾患とその診断 指標となる抗体が認識する自己抗原を示す。  Antibodies to normal tissues are called autoantibodies. The antigen recognized by the autoantibody is a self antigen. Thus, the diagnosis of an autoimmune disease can be made by proving the existence of an antibody against a self antigen. Various autoimmune disease diagnostic methods have been put to practical use using autoantibodies as an index. The following shows autoimmune diseases and autoantigens recognized by antibodies serving as diagnostic indices.
橋本病:サイ口グロプリン、 甲状腺べ/レオキシダーゼ  Hashimoto's disease: rhinoglobulin, thyroid gland / reoxidase
パセドウ病:サイロトロピン受容体  Graves' disease: thyrotropin receptor
重症筋無力症:ァセチルコリン受容体  Myasthenia gravis: acetylcholine receptor
インスリン依存性糖尿病:膝ランゲルハンス島  Insulin-dependent diabetes mellitus: Klangerhans Island
全身性ェリテマトーデス: DNA (細胞核) 慢性関節リウマチ: IgG Systemic erythematosus: DNA (cell nucleus) Rheumatoid arthritis: IgG
自己免疫性溶血性貧血:赤血球膜抗原  Autoimmune hemolytic anemia: red blood cell membrane antigen
抗体は、 抗原との結合反応を利用して検出することができる。 抗体と抗原が結 合して形成される抗原一抗体複合体の検出を利用した測定方法は、 ィムノアッセ ィと呼ばれる。 ィムノアツセィには様々な原理が知られている。 まず、 抗原ー抗 体複合体の分離工程を必要とする力 どうかによって、 ィムノアツセィは 2つに分 類される。 すなわち均一系(homogenious)ィムノアッセィにおいては抗原一抗体複 合体の分離は不要である。 一方、 一般に不均一系 (heterogenious)ィムノアッセィ は、 抗原一抗体複合体の分離を必要とする技術である。  Antibodies can be detected using a binding reaction with an antigen. A measurement method utilizing the detection of an antigen-antibody complex formed by binding an antibody and an antigen is referred to as immunoassay. Various principles are known in Imnoatssey. First, imnoatusei can be classified into two types depending on whether it requires a separation step for the antigen-antibody complex. That is, in a homogenous immunoassay, it is not necessary to separate the antigen-antibody complex. On the other hand, generally heterogenous imnoassay is a technique that requires the separation of an antigen-antibody complex.
ィムノアッセィにおいては、 抗原と抗体との結合は、 非競合的な、 または競合 的な反応によって確認することができる。 非競合的な反応では、 検出すべき抗原 In Imnoassay, the binding of the antigen to the antibody can be confirmed by non-competitive or competitive reactions. In non-competitive reactions, the antigen to be detected
(または抗体) と対応する抗体 (または抗原) の結合によって形成される抗原一 抗体複合体を検出すべき抗原 (または抗体) の量の指標とする。 非競合的な反応 においては、 抗原一抗体複合体の量は、 抗原 (または抗体) の量と正比例の関係 にめる 0 The antigen-antibody complex formed by the binding of the corresponding antibody (or antigen) with the (or antibody) is used as an index of the amount of the antigen (or antibody) to be detected. In the non-competitive reaction, the amount of the antigen primary antibody complex, Mel the amount and directly proportional antigen (or antibody) 0
一方競合的な反応では、 抗原 (または抗体) と対応する抗体 (または抗原) の 結合に対する、 検出すべき抗原 (または抗体) による阻害の程度が指標となる。 したがって競合的な反応においては、 得られるシグナルは、 検体中の抗原 (また は抗体) の量と逆比例する。  In a competitive reaction, on the other hand, the degree of inhibition of the binding of the antigen (or antibody) to the corresponding antibody (or antigen) by the antigen (or antibody) to be detected is an indicator. Thus, in a competitive reaction, the signal obtained is inversely proportional to the amount of antigen (or antibody) in the sample.
一般に不均一系のィムノアッセィにおいては、 標識された反応成分を利用して 抗原一抗体複合体の量を測定している。 たとえば抗体を測定するためには、 標識 された抗原を、 測定すべき抗体に結合させる。 次いで、 抗原一抗体複合体を形成 した抗原の標識量、 または複合体の形成に使われなかった遊離の抗原の標識量を 指標として、 抗原一抗体複合体の量を明らかにすることができる。 標識には、 酵 素、 補酵素、 発光物質、 蛍光物質、 着色物質、 あるいは放射性物質などが利用さ れる。 一般的な不均一系のィムノアッセィにおいては、 まず測定しょうとする検体 (A) を含む と、 この検体に対して特異的に結合する物質 (B) とを反応さ せる (一次反応) 。 続いて反応液から Aと Bからなる複合体を分離し洗浄する。 得られた複合体に、 標識物で標識された Aと特異的に反応する別の物質 (C) を 反応させて、 (C) 一 (A) 一 (B) の 3つの成分で構成された複合体を形成さ せる (二次反応) 。 未反応の (C) を洗浄によって除いた後、 Cの標識物の量を 測定することにより Aの存在量を知る方法が一般的であった。 しかし、 この方法 では、 反応の間に 2回以上の洗浄工程が必要である。 反応液の分離や洗浄は、 操 作時間の短縮を妨げる要因である。 Generally, in a heterogeneous Imnoassay, the amount of an antigen-antibody complex is measured using a labeled reaction component. For example, to measure an antibody, a labeled antigen is bound to the antibody to be measured. Next, the amount of the antigen-antibody complex can be clarified by using the amount of the antigen that formed the antigen-antibody complex or the amount of the free antigen that was not used for the formation of the complex as an index. Enzymes, coenzymes, luminescent substances, fluorescent substances, colored substances, or radioactive substances are used for labeling. In a general heterogeneous Imnoassay, the sample (A) to be measured is first reacted with a substance (B) that specifically binds to this sample (primary reaction). Subsequently, the complex consisting of A and B is separated from the reaction solution and washed. The resulting complex was allowed to react with another substance (C) that specifically reacts with A labeled with the label, and was composed of three components (C)-(A)-(B) Form a complex (secondary reaction). After removing unreacted (C) by washing, it was common to know the amount of A by measuring the amount of labeled C. However, this method requires more than one washing step between reactions. Separation and washing of the reaction solution is a factor that hinders reduction in operation time.
この問題を解決するため、 A、 B、 および Cを同一の反応液中で反応させ、 一 次反応と二次反応を同時に行う方法 (ワンステップ法) が考案された (特許文献 1 /特許第 1849128号) 。 測定すべき物質 (A) が抗原の場合には、 この方法を利 用することができる。 しかし抗体を測定対象とするときには、 この方法を応用す ることはできない。  In order to solve this problem, a method (one-step method) in which A, B, and C are reacted in the same reaction solution to simultaneously perform a primary reaction and a secondary reaction has been devised (Patent Document 1 / Patent Document 1). 1849128). This method can be used when the substance (A) to be measured is an antigen. However, this method cannot be applied when measuring antibodies.
不均一系のィムノアツセィを利用して、 自己抗体やウィルス抗体等の検体中の 抗体を測定する方法としては、 たとえば次のような方法が一般的である。 まず抗 原を結合した不溶性担体と検体を反応させる (一次反応) 。 次に標識物で標識し た抗ィムノグロプリン抗体 (2次抗体) を反応させる (二次反応) 。 こうして形 成される次の構造を有する複合体を構成する 2次抗体の標識量を測定することに よって、 検体中における測定対象となる抗体の量を測定する。  As a method for measuring antibodies in a sample such as an autoantibody or a virus antibody by using a heterogeneous Immonoassay, for example, the following method is generally used. First, the sample is reacted with the insoluble carrier to which the antigen is bound (primary reaction). Next, an anti-immunoglobulin antibody (secondary antibody) labeled with a label is reacted (secondary reaction). The amount of the target antibody in the sample is measured by measuring the amount of labeling of the secondary antibody constituting the complex having the following structure formed in this manner.
固相一 (抗原) 一 (測定すべき抗体) 一 (2次抗体)  Solid phase one (antigen) one (antibody to be measured) one (secondary antibody)
上記のような反応においては、 検体と抗原結合不溶化担体との反応 (一次反 応) の後の反応液の分離と洗浄は必須である。 検体とする血 料は、 多様な抗 体の混合物である。 したがって洗浄を行わないで抗ヒト抗体のような二次抗体を 添加すると、 検体中の無関係な抗体も二次抗体と反応してしまう。 その結果、 本 来二次抗体を結合させるべき不溶ィ匕担体に結合した抗体との反応は阻害されてし まう。 このような理由のため、 抗体測定系においては検体と抗原結合不溶化担体 との反応の後に、 未反応の抗体を洗浄して除去することが必須の操作であった。 ここで述べた抗体測定系においては、 測定すべき抗体を検出するために標識さ れた抗ィムノグロブリン抗体 (二次抗体) を用いた。 抗体を認識して結合する物 質としては、 抗ィムノグロプリン抗体に代えてプロティン Aを使用することもで きる。 すなわち、 二次反応において、 標識したプロテイン Aを測定すべき抗体に 結合させることもできる。 しかしプロテイン Aを用いても、 共存する無関係な抗 体の干渉は避けられないと考えられていた。 したがって、 二次反応の前には洗浄 工程が必要とされていた。 発明の開示 In the above reaction, separation and washing of the reaction solution after the reaction (primary reaction) between the sample and the antigen-binding insolubilized carrier is essential. The blood sample is a mixture of various antibodies. Therefore, if a secondary antibody such as an anti-human antibody is added without washing, unrelated antibodies in the sample will also react with the secondary antibody. As a result, the reaction with the antibody bound to the insoluble carrier to which the secondary antibody is to be bound is inherently inhibited. Go. For these reasons, in the antibody measurement system, it was essential to wash and remove the unreacted antibody after the reaction between the sample and the antigen-bound insoluble carrier. In the antibody measurement system described here, a labeled anti-immunoglobulin antibody (secondary antibody) was used to detect the antibody to be measured. As a substance that recognizes and binds to the antibody, protein A can be used in place of the anti-immunoglobulin antibody. That is, in the secondary reaction, the labeled protein A can be bound to the antibody to be measured. However, it was thought that protein A would inevitably interfere with coexisting unrelated antibodies. Therefore, a washing step was required before the secondary reaction. Disclosure of the invention
本発明の課題は、 分離や洗浄操作をできるだけ少なくすることができる抗体の 測定方法の提供である。  An object of the present invention is to provide a method for measuring an antibody which can minimize the separation and washing operations.
プロティン Aが各種のィムノグロプリンの Fc部分に特異的に結合することは知 られている。 Fc部分へのプロテイン Aの結合は、 ィムノグロプリンの抗原結合活 性には影響を与えないとされている。 更に、 ィムノグロブリンとプロテイン Aの 結合が特異的で、 しかも安定であることから、 プロテイン Aはィムノグロブリン の分離や固定、 あるいは IgGの検出のためのツールとして幅広く利用されている。 本発明者らは、 免疫複合体を形成した抗体に対して選択的な結合活性を有する 物質を利用すれば、 より簡便に抗体を測定することができると考えた。 そしてこ のような特性を有する蛋白質として、 プロテイン Aに着目した。 IgGとプロテイン Aの親和性は、 IgGが抗原と結合して免疫複合体を形成することにより数百倍も高 くなることが報告されている(Langone, J. J. ; J Immunol Methods, 51 (1982) 3 - 22)。  It is known that protein A binds specifically to the Fc portion of various immunoglobulins. Binding of protein A to the Fc portion is said to have no effect on the antigen-binding activity of immunoglobulin. Furthermore, because of the specific and stable binding of immunoglobulin and protein A, protein A is widely used as a tool for separating and immobilizing immunoglobulin or detecting IgG. The present inventors thought that the use of a substance having a selective binding activity for an antibody having formed an immune complex would allow the antibody to be measured more easily. We focused on protein A as a protein having such properties. It has been reported that the affinity between IgG and protein A is increased several hundred times by binding of IgG to an antigen to form an immune complex (Langone, JJ; J Immunol Methods, 51 (1982)). 3-22).
しかしプロテイン Aは、 抗原と結合していない抗体に対しても強い親和性を有 する。 その抗体に対する結合親和性は、 遊離の抗体の精製にも利用されている。 したがって、 遊離の抗体の存在下では、 プロテイン Aを抗原と反応した抗体に選 択的に結合させることは難しいと考えられていた。 ところが実際には、 抗原と結 合した抗体に対するプロティン Aの結合活性を利用して、 遊離の抗体の共存下で の、 抗体の測定が可能であることを本発明者らは見出した。 更に、 プロテイン A などの蛋白質の利用によって、 一次反応後の洗浄操作を行わなくても高いシグナ ルが期待できることを明らかにして本発明を完成した。 すなわち本発明は、 以下 の抗体の測定方法に関する。 However, protein A also has a strong affinity for antibodies that do not bind to the antigen. The binding affinity for the antibody has also been used for the purification of free antibody. Therefore, it was thought that it would be difficult to selectively bind Protein A to an antibody that reacted with an antigen in the presence of a free antibody. However, the present inventors have found that, in practice, the antibody can be measured in the presence of a free antibody by utilizing the binding activity of protein A to the antibody bound to the antigen. Further, the present invention has been clarified that a high signal can be expected without using a washing operation after the primary reaction by using a protein such as protein A. That is, the present invention relates to the following method for measuring an antibody.
〔1〕 次の工程を含む、 抗体の測定方法。  [1] A method for measuring an antibody, comprising the following steps.
( 1 ) 試料中に含まれる抗体を該抗体が認識する抗原と結合させる工程 (1) Step of binding an antibody contained in a sample to an antigen recognized by the antibody
( 2 ) 遊離のィムノグロプリンの存在下で (1 ) で形成された抗原一抗体複 合体に、 抗原一抗体複合体を形成した抗体を認識して結合する結合剤 を反応させる工程、 および (2) reacting the antigen-antibody complex formed in (1) with a binding agent that recognizes and binds to the antibody that has formed the antigen-antibody complex in the presence of free immunoglobulin; and
( 3 ) 抗原一抗体複合体と結合剤との結合を検出する工程  (3) Step of detecting the binding between the antigen-antibody complex and the binding agent
〔2〕 抗原一抗体複合体を形成した抗体を認識して結合する結合剤が、 プロティ ン入、 プロテイン G、 および補体、 またはそれらと機能的に同等な蛋白質 力 らなる群から選択されるいずれかの蛋白質である 〔1〕 に記載の方法。 (2) The binding agent that recognizes and binds to the antibody that has formed the antigen-antibody complex is selected from the group consisting of protein, protein G, and complement, or a protein functionally equivalent thereto The method according to [1], which is any protein.
〔3〕 抗原および抗原一抗体複合体を形成した抗体を認識して結合する結合剤の V、ずれかが、 固相化されているかまたは固相化可能な修飾を有している 〔1〕 に記載の方法。 (3) V of the binding agent that recognizes and binds to the antigen and the antibody forming the antigen-antibody complex is immobilized or has a modification that allows immobilization (1) The method described in.
〔4〕 抗原が固相化されているかまたは固相化可能な修飾を有している 〔3〕 に 記載の方法。  [4] The method according to [3], wherein the antigen is immobilized or has an immobilizable modification.
〔 5〕 抗原おょぴ抗原ー抗! «合体を形成した抗体を認識して結合する結合剤の いずれかが、 検出可能なシグナルを生成する標識を有しているかまたは標 識を結合できる修飾を有している 〔3〕 に記載の方法。  [5] Antigen-antigen-anti-! Any of the binding agents that recognize and bind to the combined antibody have a label that generates a detectable signal or a modification that can bind the label The method according to [3], comprising:
〔6〕 抗原一抗体複合体を形成した抗体を認識して結合する結合剤が、 標識を有 しているかまたは標識を結合できる修飾を有している 〔5〕 に記載の方法。 〔7〕 固相が粒子であり、 固相に標識を有する粒子を計数する工程を含む、[6] The method according to [5], wherein the binding agent that recognizes and binds to the antibody forming the antigen-antibody complex has a label or has a modification capable of binding the label. (7) the solid phase is particles, including a step of counting particles having a label on the solid phase,
〔3〕 に記載の方法。 The method according to [3].
〔 8〕 フローメ一ターで粒子と粒子に結合した標識とを検出する工程を含む [8] including a step of detecting the particles and the label bound to the particles by a flow meter
〔7〕 に記載の方法。  The method according to [7].
〔9〕 異なる抗原を結合した複数種類の粒子がそれぞれ識別可能なシグナルを有 しており、 標識が検出された粒子のシグナルに基づいて、 抗体が結合した 抗原を特定する工程を含む 〔8〕 に記載の方法。  (9) a plurality of types of particles to which different antigens are bound have signals that can be distinguished from each other, and the method includes a step of identifying the antigen to which the antibody is bound based on the signal of the particles for which the label is detected (8) The method described in.
〔1 0〕 試料中に含まれる抗体、 該抗体が認識する抗原、 および抗原一抗体複合 体を形成した抗体を認識して結合する結合剤を実質的に同時に反応させ る 〔1〕 に記載の方法。 [10] The antibody according to [1], wherein the antibody contained in the sample, the antigen recognized by the antibody, and the binding agent that recognizes and binds to the antibody forming the antigen-antibody complex are reacted substantially simultaneously. Method.
〔1 1〕 測定すべき抗体、 抗原、 および結合剤との反応後、 更に反応停止剤を添 加した後に抗原一抗体複合体と結合剤との結合を検出する工程を含む、 〔1〕 に記載の方法。 [11] a step of detecting the binding between the antigen-antibody complex and the binding agent after the reaction with the antibody, antigen, and binding agent to be measured, and further adding a reaction terminator, The described method.
〔1 2〕 反応停止剤がホルムアルデヒドである ύ 1〕 に記載の方法。 [12] The method according to [1], wherein the reaction terminator is formaldehyde.
〔1 3〕 反応液中のホルムアルデヒドの濃度が、 0 . 1〜 0 . 5 %ν/νである [: 1[13] The concentration of formaldehyde in the reaction solution is 0.1 to 0.5% v / v.
2〕 に記載の方法。 2].
〔1 4〕 反応停止剤がドデシル硫酸塩である 〔1 1〕 に記載の方法。 [14] The method according to [11], wherein the reaction terminator is dodecyl sulfate.
〔1 5〕 ドデシル硫酸塩がドデシル硫酸ナトリウムである 〔1 4〕 に記載の方法。 〔1 6〕 ドデシル硫酸塩の濃度が、 0 . 5〜l %w/vである 〔1 4〕 に記載の方法。 〔1 7〕 抗原一抗体複合体を構成した抗体と、 遊離のィムノグロプリンが共存す る条件において、 プロテイン A、 プロテイン G、 またはそれらと機能的に 同等な蛋白質からなる群から選択されるいずれかの蛋白質からなる結合剤 と前記抗原一抗体複合体を構成した抗体を結合させる工程を含む、 抗原一 抗体複合体の分離方法。 [15] The method according to [14], wherein the dodecyl sulfate is sodium dodecyl sulfate. [16] The method according to [14], wherein the concentration of dodecyl sulfate is 0.5 to 1% w / v. [17] Any one selected from the group consisting of protein A, protein G, and proteins functionally equivalent thereto under the condition that the antibody constituting the antigen-antibody complex and free immunoglobulin coexist. A method for separating an antigen-antibody complex, comprising a step of binding a binding agent composed of a protein and an antibody constituting the antigen-antibody complex.
〔1 8〕 結合剤が、 固相化されているかまたは固相化が可能な修飾を有している 〔1 7〕 に記載の分離方法。 〔1 9〕 プロテイン A、 プロテイン G、 またはそれらと機能的に同等な蛋白質か らなる群から選択されるいずれかの蛋白質を含む、 遊離のィムノグロプリ ンが共存する条件において、 抗原一抗体複合体を構成した抗体を選択的に 結合するための結合剤。 [18] The separation method according to [17], wherein the binding agent is immobilized or has a modification that allows immobilization. [19] An antigen-antibody complex containing free immunoglobulin containing protein A, protein G, or any protein selected from the group consisting of proteins functionally equivalent thereto, Binder for selectively binding the composed antibody.
〔2 0〕 結合剤が、 固相化されているかまたは固相化が可能な修飾を有している 〔1 9〕 に記載の結合剤。  [20] The binder according to [19], wherein the binder is immobilized or has a modification that allows immobilization.
〔2 1〕 測定すべき抗体によって結合される抗原、 および抗原一抗体複合体を形 成した抗体を認識して結合する結合剤とを含み、 いずれか一方が固相化さ れるかまたは固相化することができる修飾を有し、 他方が標識を有するか または標識することができる修飾を有する、 抗体の測定用キット。  [21] an antigen bound by the antibody to be measured, and a binding agent that recognizes and binds to the antibody forming the antigen-antibody complex, either one of which is immobilized or immobilized A kit for measuring an antibody, which has a modification that can be converted, and the other has a label or a modification that can be labeled.
〔2 2〕 測定すべき抗体によって結合される抗原、 および抗原一抗体複合体を形 成した抗体を認識して結合する結合剤とが混合されている 〔2 1〕 に記載 のキット。  [22] The kit of [21], wherein an antigen bound by the antibody to be measured and a binding agent that recognizes and binds to the antibody forming the antigen-antibody complex are mixed.
〔2 3〕 更に付加的に反応停止剤を含む 〔2 2〕 に記載のキット。  [23] The kit according to [22], further comprising a reaction terminator.
〔2 4〕 反応停止剤がホルムアルデヒドおよぴドデシル硫酸塩のいずれかまたは 両方である 〔2 3〕 に記載のキット。  [24] The kit according to [23], wherein the reaction terminator is formaldehyde and / or dodecyl sulfate.
本発明において、 測定すべき抗体は、 異なる抗原結合活性を有する多様な抗体 分子の集団であることができる。 たとえば、 通常、 疾患の診断のために生体から 採取される血液試料は、 多様な反応性を有する抗体の集合体である。 したがって、 血液試料に含まれる抗体は、 本発明における測定すべき抗体として好適である。 血液試料には、 全血、 ならびに全血から分離することができる血清や血漿等が含 まれる。 全血は、 赤血球を溶血させたものであっても良い。  In the present invention, the antibody to be measured can be a population of various antibody molecules having different antigen-binding activities. For example, usually, a blood sample collected from a living body for diagnosis of a disease is a collection of antibodies having various reactivity. Therefore, the antibody contained in the blood sample is suitable as the antibody to be measured in the present invention. Blood samples include whole blood as well as serum and plasma that can be separated from whole blood. Whole blood may be lysed red blood cells.
血液試料は、 ヒトに由来するものこ限定されない。 したがって本発明によって 免疫動物の抗体を測定することもできる。 あるいは、 ヒト抗体を産生する遺伝子 組み換え動物の血液中に含まれる抗体を測定することもできる。  The blood sample is not limited to a human sample. Therefore, the antibody of the immunized animal can be measured according to the present invention. Alternatively, antibodies contained in the blood of transgenic animals that produce human antibodies can be measured.
本発明においては、 血液試料以外の生物学的材料を試料とすることができる。 たとえば、 唾液や粘膜には、 抗体が分泌されていることが知られている。 また乳 汁中には、 母体に由来する IgGが含まれている。 更に、 生体外に取り出した B細胞 の培養によって生成された抗体も、 本発明における測定対象とすることができる。 これらの生物学的試料の採取、 ならぴに免疫学的測定方法のための試料の調製方 法は公知である。 生物学的試料は、 好ましくは、 生体から採取され、 生体外にお いて、 本発明の方法によって測定される。 In the present invention, a biological material other than a blood sample can be used as a sample. For example, saliva and mucous membranes are known to secrete antibodies. Milk contains maternal IgG. Furthermore, antibodies generated by culturing B cells taken out of a living body can also be measured in the present invention. Methods for collecting these biological samples and preparing samples for immunological measurement methods are known. The biological sample is preferably taken from a living organism and measured ex vivo by the method of the present invention.
本発明による抗体の測定方法は、 次の工程 ( 1 ) 〜 (3 ) を含む。  The method for measuring an antibody according to the present invention includes the following steps (1) to (3).
( 1 ) 試料中に含まれる抗体を該抗体が認識する抗原と結合させる工程、  (1) binding an antibody contained in the sample to an antigen recognized by the antibody,
( 2 ) 遊離のィムノグロプリンの存在下で (1 ) で形成された抗原一抗体複合 体に、 抗原一抗体複合体を形成した抗体を認識して結合する結合剤を反 応させる工程、 および  (2) reacting the antigen-antibody complex formed in (1) with a binding agent that recognizes and binds to the antibody that has formed the antigen-antibody complex, in the presence of free immunoglobulin; and
( 3 ) 抗原一抗体複合体と結合剤との結合を検出する工程  (3) Step of detecting the binding between the antigen-antibody complex and the binding agent
本発明において、 工程 (1 ) は試料に抗原を加えることによって実施される。 抗原には、 検出しょうとする抗体によって認識される抗原決定基を備えた、 任意 の抗原性物質を利用することができる。 したがって、 完全な抗原分子のみならず、 抗原決定基を含む抗原の部分構造を抗原として利用することもできる。 更に抗原 構造を模倣した分子も、 抗原として有用である。 抗原の構造を模倣した分子とし て、 抗ィディォタイプ抗体を示すことができる。  In the present invention, step (1) is performed by adding an antigen to the sample. Any antigenic substance having an antigenic determinant recognized by the antibody to be detected can be used as the antigen. Therefore, not only a complete antigen molecule but also a partial structure of an antigen containing an antigenic determinant can be used as an antigen. Furthermore, molecules that mimic the antigen structure are also useful as antigens. An anti-idiotype antibody can be shown as a molecule that mimics the structure of an antigen.
より具体的には、 微生物病原体に対する抗体を検出する場合には、 微生物を構 成する抗原や、 微生物が感染した細胞、 あるいはそれらの分画が抗原として利用 できる。 またアレルギー性の抗体の検出においては、 アレルゲンとなりうる物質 やその抽出物を抗原として利用することができる。 更に、 自己免疫疾患において は自己の組織に対する抗体 (自己抗体) が検出される。 自己抗体を検出対象とす る場合には、 その種の組織に由来する抗原が用いられる。 抗原は、 天然由来の物 質のみならず、 遺伝子組み換え体、 あるいは化学的に合成されたオリゴペプチド やオリゴサッ力ライドなどを用いることもできる。 本発明においては、 抗原と結合した抗体は、 結合剤と反応させられる。 本発明 における結合剤は、 遊離のィムノグロプリンの存在下で抗原一抗体複合体を形成 した抗体を認識して結合する任意の物質を用いることができる。 遊離のィムノグ 口プリンとは、 抗原との複合体を形成していないィムノグロプリンを言う。 本発 明において、 好ましい結合剤として、 プロテイン A、 プロテイン G、 およびこれ らと機能的に同等な蛋白質を示すことができる。 プロテイン Aおよびプロテイン Gは、 本発明における特に好ましい結合剤である。 その他に、 補体を本発明にお ける結合剤として用いることもできる。 これらの結合剤を得る方法は公知である。 たとえばプロティン Aやプロティン Gは市販されている。 More specifically, when detecting an antibody against a microbial pathogen, an antigen constituting the microorganism, cells infected by the microorganism, or a fraction thereof can be used as the antigen. In the detection of allergic antibodies, substances that can be allergens and extracts thereof can be used as antigens. Furthermore, in an autoimmune disease, an antibody against an own tissue (autoantibody) is detected. When an autoantibody is to be detected, an antigen derived from that kind of tissue is used. As the antigen, not only a naturally-occurring substance, but also a recombinant or a chemically synthesized oligopeptide or oligosaccharide can be used. In the present invention, the antibody bound to the antigen is reacted with a binding agent. As the binder in the present invention, any substance that recognizes and binds to an antibody that has formed an antigen-antibody complex in the presence of free immunoglobulin can be used. Free Imnog Oral Purine refers to Imnoglobulin that has not formed a complex with the antigen. In the present invention, preferred binding agents include protein A, protein G, and proteins functionally equivalent thereto. Protein A and protein G are particularly preferred binders in the present invention. In addition, complement can be used as a binder in the present invention. Methods for obtaining these binders are known. For example, protein A and protein G are commercially available.
本発明において機能的に同等な蛋白質とは、 遊離のィムノグロプリンの存在下 で抗原との複合体を形成した抗体を選択的に結合しうる蛋白質が含まれる。 抗原 一抗体複合体を形成した抗体との選択的な結合とは、 共存する遊離のィムノグロ プリンの干渉を実質的に受けないことを言う。 遊離のィムノグロブリンの干渉を 実質的に受けないことは、 次のようにして確認することができる。 すなわち、 抗 原一抗体複合体を形成した抗体と当該蛋白質の結合量が、 共存する遊離のィムノ グロブリンの量を変化させたときに、 有意な変化が認められなければ、 当該蛋白 質は、 免疫複合体に対して選択的に結合していると言える。  In the present invention, a functionally equivalent protein includes a protein capable of selectively binding an antibody that has formed a complex with an antigen in the presence of free immunoglobulin. Selective binding to an antibody that has formed an antigen-antibody complex means that it is substantially free of interference with coexisting free immunoglobulin. Substantially no interference of free immunoglobulin can be confirmed as follows. That is, if the amount of binding between the antibody forming the antigen-antibody complex and the protein does not show a significant change when the amount of coexisting free immunoglobulin is changed, the protein is not immunogenic. It can be said that it is selectively bound to the complex.
プロテイン Aやプロテイン Gが、 各種のィムノグロプリンの Fc部分に対する強 い結合親和性を有する蛋白質であることは公知である。 しカゝし、 これらの蛋白質 は遊離のィムノグロプリンに対しても強い結合親和性を有するため、 抗原一抗体 複合体を形成した抗体を選択的に結合することはできないと考えられていた。 し かし実際には、 これらの蛋白質によって抗原一抗体複合体を選択的に結合し、 抗 体の測定が可能となることが、 本発明者らによって見出された。  It is known that protein A and protein G are proteins having a strong binding affinity for the Fc portion of various immunoglobulins. However, since these proteins also have strong binding affinity to free immunoglobulin, it was thought that they could not selectively bind an antibody that formed an antigen-antibody complex. However, in fact, it has been found by the present inventors that these proteins selectively bind the antigen-antibody complex and enable measurement of the antibody.
更に本発明において、 結合剤が結合する抗体には、 任意のィムノグロブリンが 含まれる。 具体的には、 IgGのほか、 IgA、 IgM、 IgD、 あるいは IgEをィムノグロブ リンとして示すことができる。 たとえばプロテイン Gは、 これらのィムノク'ロブ リンのいずれとも結合することができる。 感染症や自己免疫疾患において、 恒常 的に産生される抗体の多くは IgGである。 したがって、 IgGは本発明の抗体の測定 方法における重要な抗体の一つであると言える。 また、 感染症の感染初期には、 大量の IgMが一過性に産生されることが多い。 更に、 アレルギー性の免疫応答にお いては、 IgEの産生が重要な指標となる。 Further, in the present invention, the antibody to which the binding agent binds includes any immunoglobulin. Specifically, in addition to IgG, IgA, IgM, IgD, or IgE can be indicated as imnoglobulin. For example, Protein G It can bind to any of the phosphorus. In infectious diseases and autoimmune diseases, most of the antibodies produced constantly are IgG. Therefore, it can be said that IgG is one of the important antibodies in the antibody measuring method of the present invention. Also, large amounts of IgM are often produced transiently during the early stages of infection. Furthermore, IgE production is an important indicator in allergic immune responses.
上記工程のうち (1 ) および (2 ) は、 別に行うこともできるし、 同時に行う こともできる。 すなわち、 抗原と抗体を反応後に結合剤を加えても良いし、 抗原 と結合剤とを同時に試料に加えることもできる。 試料、 抗原、 およぴ結合剤の添 加順序は任意である。 したがって抗原と結合剤を混合した試薬を用意しておけば、 試料を加えるだけで工程 ( 1 ) および (2 ) を開始することができる。 高濃度の 抗体を含む試料は、 抗体の測定のために試料の希釈が必要な場合がある。 たとえ ば血液試料は、 高濃度の抗体を含んでいる。 このような試料に対して、 予め希釈 液を配合した試薬を用意しておけば、 試薬に試料を添加するだけで、 希釈と抗体 の測定が可能となる。 本発明において、 工程 ( 1 ) の後に工程 (2 ) を行う場合、 工程間に遊離の抗体を分離する工程は不要である。 本発明において、 実質的に同 時とは、 反応を構成する各成分間の反応に参加しなかった成分を分離しないまま 他の成分を反応系に添加することを言う。 したがって、 時間的に完全に同時に反 応させない場合であっても、 分離や洗浄を行うことなく反応に必要な成分を順次 混合する場合も、 実質的に同時に反応させることに含まれる。  Of the above steps, (1) and (2) can be performed separately or simultaneously. That is, a binder may be added after reacting the antigen and the antibody, or the antigen and the binder may be simultaneously added to the sample. The order of adding the sample, the antigen, and the binding agent is arbitrary. Therefore, if a reagent in which an antigen and a binding agent are mixed is prepared, steps (1) and (2) can be started only by adding a sample. Samples that contain high concentrations of antibody may require dilution of the sample to measure the antibody. For example, blood samples contain high concentrations of antibodies. By preparing a reagent in which a diluting solution is prepared in advance for such a sample, dilution and measurement of antibodies can be performed simply by adding the sample to the reagent. In the present invention, when the step (2) is performed after the step (1), a step of separating free antibody between the steps is unnecessary. In the present invention, “substantially simultaneously” means that other components are added to the reaction system without separating components that did not participate in the reaction between the components constituting the reaction. Therefore, even when the reaction is not performed completely simultaneously in terms of time, the case where components necessary for the reaction are sequentially mixed without separation or washing is also included in performing the reaction substantially simultaneously.
工程 ( 1 ) と (2 ) を同時に行うことによって、 反応時間を短縮させることが できる。  By performing steps (1) and (2) simultaneously, the reaction time can be reduced.
本発明の方法は、 工程 ( 2 ) で形成された抗原一抗体複合体と結合剤との結合 を検出する工程を含む。 両者の結合は、 抗原または結合剤のいずれかを標識して おくことによって、 容易に検出することができる。 標識としては、 酵素、 蛍光物 質、 発光物質、 放射活性物質、 着色物質などを示すことができる。 抗原や結合剤 に、 これらの標識物質を結合する方法は公知である。 たとえば、 2官能性試薬に よって化学的に標識物質を結合することができる。 また抗原や結合剤にビォチン を導入しておき、 更に標識アビジンを結合させることによって、 間接的に標識物 質を結合させることもできる。 あるいは標識物質が蛋白質であれば、 遺伝子組み 換え技術を利用して、 標識物質と抗原蛋白質や結合剤との融合たんぱく質を得る こともできる。 The method of the present invention includes a step of detecting the binding between the antigen-antibody complex formed in step (2) and a binding agent. The binding between the two can be easily detected by labeling either the antigen or the binding agent. As the label, an enzyme, a fluorescent substance, a luminescent substance, a radioactive substance, a coloring substance and the like can be shown. Methods for binding these labeling substances to antigens and binding agents are known. For example, for bifunctional reagents Therefore, a labeling substance can be chemically bonded. In addition, by introducing biotin into an antigen or a binding agent and then binding labeled avidin, a labeled substance can be bound indirectly. Alternatively, when the labeling substance is a protein, a fusion protein of the labeling substance and an antigen protein or a binding agent can be obtained by using gene recombination technology.
標識の検出を容易に行うために、 抗原と結合剤のいずれかを固相化しておくの が好ましい。 つまり、 抗原と結合剤のいずれか一方を標識し、 他方を固相化する ことによって、 抗原一抗体複合体と結合剤との結合を容易に検出することができ る。 固相としては、 微細粒子、 ビーズ、 あるいは容器内壁等の、 公知の不均一系 ィムノアッセィに利用されている一般的な固相を利用することができる。 これら の固相に、 抗原、 あるいは結合剤を結合する方法も公知である。 あるいは、 固相 に結合された状態で市販されているプロテイン Aやプロテイン Gを本発明に用い ることもできる。 たとえば、 ァガロースゃセファロースなどのゲル、 金コロイド などの着色粒子、 あるいは ELISAプレートなどに固相化されたプロテイン Aが販売 されている。  In order to easily detect the label, it is preferable to immobilize either the antigen or the binder. That is, by labeling one of the antigen and the binding agent and immobilizing the other, the binding between the antigen-antibody complex and the binding agent can be easily detected. As the solid phase, it is possible to use a general solid phase used for a well-known heterogeneous system such as fine particles, beads, or the inner wall of a container. Methods for binding an antigen or a binding agent to these solid phases are also known. Alternatively, commercially available protein A or protein G in a state of being bound to a solid phase can also be used in the present invention. For example, gels such as agarose and sepharose, colored particles such as colloidal gold, and protein A immobilized on ELISA plates are sold.
固相として微細粒子を用い、 標識が直接検出可能なシグナルを生成する場合に は、 抗原一抗体複合体と結合剤との結合を、 洗浄工程無しで検出することができ る。 直接検出可能なシグナルとは、 シグナルの検出のために付加的な反応を必要 としないシグナルを言う。 たとえば、 蛍光色素による蛍光シグナル、 着色色素に よる着色シグナルのようなシグナルは、 付加的な反応無しで検出することができ る。 したがってこれらのシグナルは、 直接検出可能なシグナルに含まれる。 直接 検出可能なシグナルに対して、 酵素標識は、 一般に酵素反応を経なければシグナ ルを生成できない。 以下に、 洗浄工程の不要な検出系について具体的に説明する。 フ口一システムを利用して、 微細粒子を 1つづ解析することができるシステム が実用化されている。 たとえば Luminex (商品名;ルミネックス Corp.製) は、 1個 の微細粒子に結合した蛍光標識を検知することができる。 Luminexは、 フローメト リーによつて微細粒子を 1つづつ流しながら、 微細粒子と微細粒子に結合した蛍 光物質とを別々のセンサーで検出する。 このようなシステムを利用すれば、 微細 粒子に結合しなかった遊離の標識物質が混在している条件であっても、 微細粒子 に結合した標識物質のみを特異的に検出することができる。 In the case where the fine particles are used as the solid phase and the label generates a directly detectable signal, the binding between the antigen-antibody complex and the binding agent can be detected without a washing step. A directly detectable signal is a signal that does not require an additional reaction to detect the signal. For example, signals such as fluorescent signals from fluorescent dyes and colored signals from colored dyes can be detected without additional reaction. Therefore, these signals are included in the directly detectable signals. For directly detectable signals, enzyme labels generally cannot produce a signal without going through an enzymatic reaction. Hereinafter, a detection system that does not require a washing step will be specifically described. A system that can analyze fine particles one by one using a single system has been put into practical use. For example, Luminex (trade name; manufactured by Luminex Corp.) can detect a fluorescent label bound to one fine particle. Luminex, Flowmet The fine particles and the fluorescent material bound to the fine particles are detected by separate sensors while flowing the fine particles one by one by Lee. By using such a system, it is possible to specifically detect only the labeling substance bound to the fine particles even under the condition where free labeling substances not bound to the fine particles are mixed.
したがって、 固相として微細粒子を利用し、 標識に直接検出可能なシグナルを 生成する標識物質を利用する方法は、 本発明における好ましい組み合せである。 このような組み合せを利用することによって、 抗原一抗体複合体の形成の後の洗 浄、 および抗原一抗体複合体と結合剤の反応の後の洗浄のいずれをも省略するこ とができる。 洗浄工程を不要とすることは、 反応時間の短縮において、 たいへん 効果的である。  Therefore, a preferred combination in the present invention is a method in which fine particles are used as a solid phase and a labeling substance that generates a signal directly detectable on a label is used. By using such a combination, both the washing after the formation of the antigen-antibody complex and the washing after the reaction between the antigen-antibody complex and the binder can be omitted. Eliminating the washing step is very effective in reducing the reaction time.
本発明において、 微細粒子とは、 フローシステムによって 1つづ流すことがで き、 かつセンサーによって混在する他の微細粒子との識別が可能な大きさを有す る粒子を言う。 一般に、 粒径 0 . 2〜2 0 0 /i m程度の大きさを有する粒子は、 フ ローシステムによって 1つづつ流すことが可能であり、 かつセンサーによる識別 も容易である。 本発明に用いる微細粒子には、 シグナルを生成する微細粒子を用 いることができる。 標識物質に加えて、 固相である微細粒子にもシグナルを与え ることによって、 多項目同時測定が可能となる。 以下に、 多項目同時測定につい て説明する。  In the present invention, the fine particles refer to particles having a size that can be flowed one by one by a flow system and that can be distinguished from other fine particles mixed by a sensor. In general, particles having a particle size of about 0.2 to 200 / im can be flowed one by one by a flow system, and can be easily identified by a sensor. As the fine particles used in the present invention, fine particles that generate a signal can be used. By giving signals to fine particles that are solid phases in addition to labeling substances, simultaneous measurement of multiple items becomes possible. The multi-item simultaneous measurement is described below.
たとえば、 微細粒子に抗原を固相化し、 結合剤を標識した場合を例に、 本発明 の測定方法について説明する。 本発明によって複数種類の抗体を測定するために、 微細粒子には異なる抗原を固相化する。 微細粒子は、 抗原毎に異なるシグナルを 生成するようにしておく。 たとえば異なる蛍光色素を微細粒子中に配合すること によって、 微細粒子に異なるシグナルを与えることができる。 その他、 蛍光波長 の異なる複数の色素の配合比率を変えることによって、 異なるシグナルを与える こともできる。  For example, the measurement method of the present invention will be described using an example in which an antigen is immobilized on fine particles and a binder is labeled. In order to measure a plurality of types of antibodies according to the present invention, different antigens are immobilized on fine particles. Fine particles should generate different signals for each antigen. For example, different signals can be given to fine particles by incorporating different fluorescent dyes into the fine particles. In addition, different signals can be given by changing the mixing ratio of a plurality of dyes having different fluorescence wavelengths.
抗原を微細粒子に結合させる方法は任意である。 たとえばポリスチレンビーズ のような疎水性表面には、 蛋白質を物理吸着によって固相化することができる。 あるいは Luminex®用に市販されている微細粒子である Luminex beadsは、 表面に官 能基を有している。 この官能基を利用して、 抗原を共有結合によって固相化する ことができる。 更に、 固相化すべき抗原 (あるいは結合剤) には、 固相化が可能 な修飾を付加することができる。 固相化が可能な修飾とは、 結合親和性を有する 物質による抗原あるいは結合剤の修飾を言う。 結合親和性を有する物質は、 その 物質の結合パートナ一で捕捉することができる。 たとえば、 ビォチン修飾した抗 原は、 固相化アビジンによって捕捉される。 The method for binding the antigen to the fine particles is arbitrary. For example, polystyrene beads A protein can be immobilized on a hydrophobic surface by physical adsorption. Alternatively, Luminex beads, which are fine particles commercially available for Luminex®, have functional groups on the surface. Using this functional group, the antigen can be immobilized on a solid phase by covalent bond. Furthermore, a modification that allows immobilization can be added to the antigen (or binder) to be immobilized. The term “modification that can be immobilized” refers to a modification of an antigen or a binding agent with a substance having binding affinity. A substance with binding affinity can be captured by a binding partner of the substance. For example, biotin-modified antigen is captured by immobilized avidin.
—方結合剤は、 抗体の種類に関わらず同じ標識で良い。 たとえば、 市販の蛍光 色素で標識されたプロテイン Aを用いることができる。 蛍光色素としては、 Fluor escein isothiocyanate (FITC) あるいは R - Phycoerythrin (PE)等が用いられる。 試料に、 抗原を結合した微細粒子と結合剤とが混合され、 微細粒子に固相化され た抗原が試料中の抗体と反応して抗原一抗体複合体が形成される。 更に抗原一抗 体複合体は、 結合剤と反応する。  The same label may be used regardless of the type of antibody. For example, protein A labeled with a commercially available fluorescent dye can be used. Fluorescein isothiocyanate (FITC) or R-Phycoerythrin (PE) is used as the fluorescent dye. The sample is mixed with the antigen-bound fine particles and the binder, and the antigen immobilized on the fine particles reacts with the antibodies in the sample to form an antigen-antibody complex. Further, the antigen-antibody complex reacts with the binding agent.
異なる抗原が固相化された微細粒子が混合されている場合、 混合された状態の ままではどの抗原に対する抗体が検出されるか不明である。 ここで、 先に述べた L uminexのようなシステムが利用される。 つまり微細粒子を 1つづつ識別できるシ ステムを利用し、 どの微細粒子に結合剤の標識が検出されるのかが識別できれば、 異なる微細粒子が混合されていても抗原毎に抗体の有無を知ることができるので ある。  When fine particles having different antigens immobilized thereon are mixed, it is unclear which antigen is to be detected in the mixed state. Here, a system such as Luminex described above is used. In other words, using a system that can identify fine particles one by one, if it is possible to identify which fine particles the label of the binder is detected, it is possible to know the presence or absence of antibodies for each antigen even if different fine particles are mixed You can do it.
たとえば、 献血された血液は、 感染症のスクリーニングのために、 複数種類の 抗体の存在を検査する必要がある。 具体的には、 B型肝炎ウィルス(HBV)、 C型肝炎 ウィルス ば)、 エイズウイルス ば)、 あるいは梅毒等に対する抗体が測定され ている。 本発明を利用すれば、 これらの抗体を同時に測定することができる。 す なわち、 各病原微生物の抗原を異なるシグナルを生成する微細粒子に固相化する。 試料を標識された結合剤とともに微細粒子と反応させ、 微細粒子毎に結合剤の標 識を検出すれば良いのである。 これらの抗体スクリーユングを同時に行えば、 ス クリーユングに要する時間とコストを大幅に抑制することができる。 For example, donated blood needs to be tested for the presence of multiple antibodies for screening for infection. Specifically, antibodies against hepatitis B virus (HBV), hepatitis C virus), AIDS virus), or syphilis have been measured. By utilizing the present invention, these antibodies can be measured simultaneously. That is, the antigen of each pathogenic microorganism is immobilized on fine particles that generate different signals. The sample is allowed to react with the fine particles together with the labeled binder, and the binder is labeled for each fine particle. It is only necessary to detect intellect. If these antibody screenings are performed at the same time, the time and cost required for the screening can be significantly reduced.
あるいは、 多種類のァレルゲンに対する検体中の抗体の存在を確認する こ も、 本発明の方法は有用である。 アレルゲンとなりうる物質の数は、 増えつづけ ている。 したがってアレルギー性の免疫応答の原因となっている物質の同定は、 しだいに困難な検査となってきている。 本発明を利用すれば、 多種類の抗原性物 質に対する抗体を、 同時に、 かつ迅速に検出することができる。 すなわち、 様々 なアレルゲンを異なるシグナルを生成する微細粒子に固相化する。 試料を標識さ れた結合剤とともに微細粒子と反応させ、 微細粒子毎に結合剤の標識を検出すれ ば良いのである。  Alternatively, the method of the present invention is also useful for confirming the presence of antibodies in a sample against various types of allergens. The number of potential allergens is growing. Therefore, the identification of substances responsible for an allergic immune response has become increasingly difficult tests. By using the present invention, antibodies to various kinds of antigenic substances can be detected simultaneously and rapidly. That is, various allergens are immobilized on fine particles that generate different signals. The sample may be reacted with the fine particles together with the labeled binder, and the label of the binder may be detected for each fine particle.
たとえば Luminexには、 1 0 0種類の異なるシグナルを生成するマイク口ビーズ が提供されている。 このことは、 本発明によって 1 0 0種類の異なる抗体を同時 に測定できることを意味している。 あるいは、 抗体を結合した微細粒子を利用し た抗原の多項目同時測定は既に公知である。 したがって、 公知の抗原の多項目同 時測定と、 本発明による抗体の多項目同時測定を組み ることによって、 あら ゆる免疫学的な測定原理に基づく測定操作を同時に行うことが可能となった。 大 量の検体についてスクリーニングが行われる場合には、 免疫学的測定方法を単一 のシステムで同時に実施できることは、 時間とコストの抑制効果が非常に大きい。 本発明の測定方法においては、 反応停止剤の添加の後に、 工程 (3 ) を実施す るのが好ましい。 大量の試料を同時に測定するときには、 試料毎の反応時間に違 いが生じる場合がある。 本発明において、 反応時間の違いは測定精度の低下の原 因となる可能性がある。 そこで、 所定の反応時間を経過した後に、 いったん反応 停止剤を添加して反応を停止させた後に、 工程 (3 ) を実施することができる。 本発明において、 反応停止剤としては、 ホルムアルデヒドを示すことができる。 ホルムアルデヒドの使用濃度は、 通常、 反応液中 0 . 1〜5 . 0 %ν/ν たとえば 0 . 2 5〜2 . 0 %v/v、 好ましくは 0 . 5〜1 %ν/νである。 あるいはドデシル硫酸塩を本発明における反応停止剤として利用することもで きる。 ドデシル硫酸塩としては、 たとえばドデシル硫酸ナトリウム、 あるいはド デシル硫酸リチウムなどを示すことができる。 特にドデシル硫酸ナトリウム(Sodi um Dodecyl Sulfate; SDS)は本発明における望ましい反応停止剤である。 ドデシル 硫酸塩の使用濃度は、 通常、 反応液中 0 . 1〜5 . 0 %w/v、 たとえば 0 . 2 5〜 2 . 0 %w/v、 好ましくは 0 . 5〜l %w/vである。 Luminex, for example, offers microphone mouth beads that generate 100 different signals. This means that 100 different antibodies can be simultaneously measured by the present invention. Alternatively, multi-item simultaneous measurement of antigen using antibody-bound fine particles is already known. Therefore, by combining the multi-item simultaneous measurement of the known antigen and the multi-item simultaneous measurement of the antibody according to the present invention, it has become possible to simultaneously perform the measurement operation based on all immunological measurement principles. When a large number of samples are screened, the ability to perform the immunoassays simultaneously in a single system has significant time and cost savings. In the measurement method of the present invention, it is preferable to perform the step (3) after adding the reaction terminator. When measuring a large number of samples at the same time, the reaction time for each sample may differ. In the present invention, a difference in reaction time may cause a decrease in measurement accuracy. Then, after a predetermined reaction time has elapsed, the reaction is stopped once by adding a reaction terminator, and then the step (3) can be performed. In the present invention, the reaction terminator may be formaldehyde. The used concentration of formaldehyde is usually 0.1 to 5.0% v / v, for example, 0.25 to 2.0% v / v, preferably 0.5 to 1% v / v in the reaction solution. Alternatively, dodecyl sulfate can be used as the reaction terminator in the present invention. Examples of dodecyl sulfate include sodium dodecyl sulfate and lithium dodecyl sulfate. In particular, sodium dodecyl sulfate (SDS) is a desirable reaction terminator in the present invention. The concentration of dodecyl sulfate used is usually 0.1 to 5.0% w / v in the reaction solution, for example 0.25 to 2.0% w / v, preferably 0.5 to 1% w / v. It is.
ホルムアルデヒドあるいはドデシル硫酸塩は、 その蛋白質の変性作用によって、 免疫反応、 あるいは結合剤が関与する反応を効果的に停止することができる。 ホ ルムアルデヒドおよぴドデシル硫酸塩は、 それぞれ単独で、 あるいは両者を混合 して、 本発明における反応停止剤として利用することができる。  Formaldehyde or dodecyl sulfate can effectively stop an immune reaction or a reaction involving a binder by a denaturing effect of the protein. Formaldehyde and dodecyl sulfate can be used as a reaction terminator in the present invention either individually or as a mixture of both.
また本発明は、 抗原一抗体複合体を構成した抗体と、 遊離のィムノグロブリン が共存する条件において、 プロテイン A、 プロテイン G、 またはそれらと機能的 に同等な蛋白質からなる群から選択されるいずれかの蛋白質からなる結合剤と前 記抗原一抗体複合体を構成した抗体を結合させる工程を含む、 抗原一抗体複合体 の分離方法に関する。 本発明によって、 遊離のィムノグロプリンの存在下で、 抗 原一抗体複合体を形成した抗体を、 選択的に結合することができる結合剤が提供 された。 本発明の結合剤は、 プロテイン A、 プロテイン G、 またはそれらと機能 的に同等な蛋白質からなる群から選択されるいずれかの蛋白質を含む、 遊離のィ ムノグロプリンが共存する条件において、 抗原一抗体複合体を構成した抗体を選 択的に結合するための結合剤である。 このような結合剤は、 免疫複合体を形成し た抗体の分離剤として有用である。 本発明における結合剤は、 固相化するか、 あ るいは標識しておくことができる。  In addition, the present invention relates to any one selected from the group consisting of protein A, protein G, or a protein functionally equivalent thereto under the condition that an antibody constituting an antigen-antibody complex and free immunoglobulin coexist. A method for separating an antigen-antibody complex, comprising a step of binding the binding agent comprising the protein with the antibody constituting the antigen-antibody complex. According to the present invention, there is provided a binding agent capable of selectively binding an antibody which has formed an antigen-antibody complex in the presence of free immunoglobulin. The binding agent of the present invention can be used as an antigen-antibody complex under the condition that free immunoglobulin coexists with protein A, protein G, or any protein selected from the group consisting of proteins functionally equivalent thereto. It is a binding agent for selectively binding antibodies that compose the body. Such a binding agent is useful as a separating agent for an antibody that has formed an immune complex. The binding agent in the present invention can be immobilized or labeled.
更に本発明は、 測定すべき抗体によって結合される抗原、 および抗原一抗体複 合体を形成した抗体を認識して結合する結合剤とを含み、 いずれか一方が固相化 されるかまたは固相化することができる修飾を有し、 他方が標識を有するかまた は標識することができる修飾を有する、 抗体の測定用キットに関する。 本発明のキットにおいては、 測定すべき抗体によって結合される抗原、 および 抗原一抗体複合体を形成した抗体を認識して結合する結合剤とは、 予め混合され ていても良い。 本発明のキットには、 更に付加的に反応停止剤を組み合せること ができる。 反応停止剤には、 ホルムアルデヒドを用いることができる。 The present invention further includes an antigen bound by the antibody to be measured, and a binding agent that recognizes and binds to the antibody that has formed the antigen-antibody complex, either one of which is immobilized or immobilized. The present invention relates to a kit for measuring an antibody, wherein the kit has a modification that can be converted, and the other has a label or a modification that can be labeled. In the kit of the present invention, the antigen bound by the antibody to be measured and the binding agent that recognizes and binds to the antibody forming the antigen-antibody complex may be mixed in advance. The kit of the present invention may further comprise a reaction terminator. Formaldehyde can be used as the reaction terminator.
既に述べたように、 本発明の方法における固相として、 異なるシグナルを生成 する微細粒子を応用することによって、 多項目同時測定が可能となる。 したがつ て本発明によるキットとして、 複数種類の抗原をそれぞれ異なるシグナルを生成 する微細粒子に固相化したキットは、 複数種の抗体を同時測定するためのキット として有用である。 微細粒子が識別可能なシグナルを生成する場合には、 結合剤 の標識は共通であってもよい。 図面の簡単な説明  As described above, by applying fine particles that generate different signals as the solid phase in the method of the present invention, multiple items can be measured simultaneously. Therefore, a kit according to the present invention, in which a plurality of types of antigens are immobilized on fine particles each generating a different signal, is useful as a kit for simultaneously measuring a plurality of types of antibodies. If the microparticles produce an identifiable signal, the label of the binder may be common. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ビーズと検体の反応後に洗浄工程無しで PE標識プロティン Aを反応さ せたときの、 抗 SS-B抗体の測定結果を示す図である。 縦軸は Luminex®によつて測 定された蛍光強度を、 横軸は検体希釈倍数を示す。 Conj.希釈倍数は、 PE標識プロ ティン Aの希釈倍数を示している。  FIG. 1 is a diagram showing the measurement results of anti-SS-B antibodies when PE-labeled protein A was reacted without a washing step after the reaction between the beads and the sample. The vertical axis shows the fluorescence intensity measured by Luminex®, and the horizontal axis shows the sample dilution factor. Conj. Dilution shows the dilution of PE-labeled protein A.
図 2は、 ビーズと検体の反応後に洗浄工程無しで PE標識抗ヒト IgG抗体を反応さ せたときの、 抗 SS-B抗体の測定結果を示す図である。 縦軸は Luminex®によつて測 定された蛍光強度を、 横軸は検体希釈倍数を示す。 Conj.希釈倍数は、 PE標識抗ヒ ト IgG抗体の希釈倍数を示している。  FIG. 2 is a diagram showing the measurement results of anti-SS-B antibodies when a PE-labeled anti-human IgG antibody was reacted without a washing step after the reaction between the beads and the sample. The vertical axis shows the fluorescence intensity measured by Luminex®, and the horizontal axis shows the sample dilution factor. Conj. Dilution indicates the dilution of the PE-labeled anti-human IgG antibody.
図 3は、 ビーズと検体の反応後に洗浄工程無しで PE^識プロティン G (Biomeda 製) を反応させたときの、 抗 SS-B抗体の測定結果を示す図である。 縦軸は Luminex ®によって測定された蛍光強度を、 横軸は検体希釈倍数を示す。 Conj.希釈倍数は、 PE標識プロテイン G (Biomeda製) の希釈倍数を示している。  FIG. 3 is a diagram showing the results of measuring anti-SS-B antibodies when PE ^ protein G (Biomeda) was reacted without a washing step after the reaction between the beads and the sample. The vertical axis shows the fluorescence intensity measured by Luminex®, and the horizontal axis shows the sample dilution factor. Conj. Dilution factor indicates the dilution factor of PE-labeled protein G (manufactured by Biomeda).
図 4は、 ビーズと検体の反応後に洗浄工程無しで PE^識プロティン G (Biogene sis製) を反応させたときの、 抗 SS - B抗体の測定結果を示す図である。 縦軸は Lumi nex®によって測定された蛍光強度を、 横軸は検体希釈倍数を示す。 Con j.希釈倍数 は、 PE^識プロテイン G (Biogenesis製) の希釈倍数を示している。 FIG. 4 is a diagram showing the results of anti-SS-B antibody measurement when PE ^ protein G (Biogenesis) was reacted without a washing step after the reaction between the beads and the sample. The vertical axis is Lumi The fluorescence intensity measured by nex® is shown on the horizontal axis, which is the sample dilution factor. Con j. Dilution factor indicates the dilution factor of PE ^ protein G (manufactured by Biogenesis).
図 5は、 PE標識プロティン Aを用いた抗 SS-B抗体の測定における反応停止液の 効果を示す図である。 縦軸は Luminex®によって測定された蛍光強度を、 横軸は反 応停止液添加後の経過時間 (分) を示す。  FIG. 5 is a graph showing the effect of a reaction stop solution on the measurement of anti-SS-B antibody using PE-labeled protein A. The vertical axis shows the fluorescence intensity measured by Luminex®, and the horizontal axis shows the elapsed time (minutes) after addition of the reaction stop solution.
図 6は、 ELISAプレートと検体の反応後に洗浄工程無しで POD標識プロティン A を反応させたときの、 抗 SS-B抗体の測定結果を示す図である。 縦軸は 4 5 0 nmに おける吸光度を、 横軸は検体希釈倍数を示す。  FIG. 6 is a diagram showing the measurement results of anti-SS-B antibodies when POD-labeled protein A was reacted without a washing step after the reaction between the ELISA plate and the sample. The vertical axis shows the absorbance at 450 nm, and the horizontal axis shows the sample dilution factor.
図 7は、 ELISAプレートと検体の反応後に洗浄工程無しで POD標識抗ヒト IgG抗体 を反応させたときの、 抗 SS-B抗体の測定結果を示す図である。 縦軸は 4 5 0 nmに おける吸光度を、 横軸は検体希釈倍数を示す。  FIG. 7 is a diagram showing the measurement results of anti-SS-B antibodies when a POD-labeled anti-human IgG antibody was reacted without a washing step after the reaction between the ELISA plate and the sample. The vertical axis shows the absorbance at 450 nm, and the horizontal axis shows the sample dilution factor.
図 8は、 ELISAプレートと検体の反応後に洗浄した後に POD標識プロティン Aを 反応させたときの、 抗 SS - B抗体の測定結果を示す図である。 縦軸は 4 5 0 nmにお ける吸光度を、 横軸は検体希釈倍数を示す。  FIG. 8 is a diagram showing the measurement results of anti-SS-B antibodies when POD-labeled protein A was reacted after washing after the reaction between the ELISA plate and the sample. The vertical axis shows the absorbance at 450 nm, and the horizontal axis shows the sample dilution factor.
図 9は、 ELISAプレートと検体の反応後に洗浄した後に POD標識抗ヒト IgG抗体を 反応させたときの、 抗 SS-B抗体の測定結果を示す図である。 縦軸は 4 5 0 nmにお ける吸光度を、 横軸は検体希釈倍数を示す。  FIG. 9 is a diagram showing the measurement results of the anti-SS-B antibody when the POD-labeled anti-human IgG antibody was reacted after washing after the reaction between the ELISA plate and the sample. The vertical axis shows the absorbance at 450 nm, and the horizontal axis shows the sample dilution factor.
図 1 0は、 反応停止液として SDSを用いたときの、 反応停止後の安定性を示す図 である。 縦軸は蛍光強度を、 横軸は SDSの最終濃度 (%)を示す。  FIG. 10 is a diagram showing the stability after the reaction was stopped when SDS was used as the reaction stopping solution. The vertical axis indicates the fluorescence intensity, and the horizontal axis indicates the final concentration (%) of SDS.
図 1 1は、 反応停止液として SDSを用いたときの、 反応停止後の安定性を示す図 である。 縦軸は蛍光強度を、 横軸は SDS添加後の経過時間 (分) を示す。 発明を実施するための最良の形態  FIG. 11 is a diagram showing the stability after termination of the reaction when SDS was used as the reaction termination solution. The vertical axis shows the fluorescence intensity, and the horizontal axis shows the elapsed time (minutes) after the addition of SDS. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例に基づいて本発明を更に具体的に説明する。  Hereinafter, the present invention will be described more specifically based on examples.
[実施例 1 ] Luminex®系における測定系の構築  [Example 1] Construction of measurement system in Luminex® system
測定すべき抗体として抗 SS-B抗体を選び、 本発明による抗体の測定方法を構築 した。 抗 SS- B抗体は、 はシエーダレン症候群の患者血清中に見いだされる自己抗 体で、 La抗体とも呼ばれている。 二重免疫拡散法によって、 シエーダレン症候群 (Sjoegren Syndrome)の患者血清中に 3種の異なる自己抗体が認められ、 それぞれ SS - A抗体、 SS-B抗体、 および SS - C抗体と命名された(E. Williams St. et al. : Qu antitative immunoassay of anti La anibodies using purified recombinant La antigen. Arthritis Rheum. , 31 : 506, 1988)。 SS-B抗体が認識する抗原である SS- B抗原は同定され、 構造も決定されている(特開平 9一 1 6 6 5 9 6 「自己免疫 自己抗体の存在決定方法」 )。 SS- B抗体の検出に必要な SS- B抗原 (La抗原) は市販 されている。 たとえば DIARECT AG (ドイツ) は、 リコンビナント La抗原を市販し ている (カタログ番号 12800) 。 また精製 La抗原も商業的に供給されている (ィム ノビジョン社、 アメリカ) 。 Anti-SS-B antibody is selected as the antibody to be measured, and the antibody measurement method according to the present invention is constructed. did. Anti-SS-B antibody is an autoantibody found in the serum of patients with Siedalen syndrome and is also called La antibody. By double immunodiffusion, three different autoantibodies were found in the sera of patients with Sjoegren Syndrome, which were named SS-A, SS-B, and SS-C antibodies, respectively (E Williams St. et al .: Qu antitative immunoassay of anti La anibodies using purified recombinant La antigen. Arthritis Rheum., 31: 506, 1988). The SS-B antigen, which is an antigen recognized by the SS-B antibody, has been identified and its structure has been determined (Japanese Patent Application Laid-Open No. 9-166965, "Method for determining the presence of autoimmune autoantibodies"). The SS-B antigen (La antigen) required for the detection of SS-B antibody is commercially available. For example, DIARECT AG (Germany) markets a recombinant La antigen (catalog number 12800). Purified La antigen is also commercially available (Immunovision, USA).
1 . 不溶性担体への抗原の結合 1. Binding of antigen to insoluble carrier
不: ^性担体 (Luminex Corporation^ Carboxylated Microspheres Regionsl24、 メーカー品番 L100-C124 - 01;以下 「ビーズ」 という) 200 Lを超音波で分散させ た後、 10, 000gで 2分間遠心して上清を除いた。 ビーズに、 以下の(i)〜(iii)を加 え、 B音所で 20分間静置して活性ィ匕した。  Not: ^ Carrier (Luminex Corporation ^ Carboxylated Microspheres Regionsl24, manufacturer part number L100-C124-01; hereinafter referred to as "beads") After dispersing 200 L with ultrasonic waves, centrifuge at 10,000 g for 2 minutes to remove the supernatant. Was. The following (i) to (iii) were added to the beads, and the beads were left standing for 20 minutes in the B sound place to activate.
(1) Activation Buffer (0. 1M リン酸ナトリウム、 pH6. 1) 400 / L、  (1) Activation Buffer (0.1 M sodium phosphate, pH 6.1) 400 / L,
Ui) 50mg/mLC >Sulf o-NHS (N-Hydroxysulfosuccinimide sodium salt) 50 お ょぴ  Ui) 50mg / mLC> Sulf o-NHS (N-Hydroxysulfosuccinimide sodium salt) 50
(iii) 50mg/mLの 1 - Ethyl - 3- (3 - dimethylaminopropyl) Carbodiimide hydrochlor ide 50^ L  (iii) 50 mg / mL of 1-Ethyl-3- (3-dimethylaminopropyl) Carbodiimide hydrochloride 50 ^ L
活性ィ匕されたビーズを 10, OOOgで 2分間遠心して上清を分離し、 カツプリングパ ッファー (PH7. 3 PBS) を加えて良く分散させ、 遠心して上清を捨て、 洗浄した。 洗浄操作を 2回繰り返した後、 10 μ g/mLのリコンビナント SS-B抗原溶液 250 /z Lを 加えて室温、 暗所で 2時間撹拌して結合させた後、 同様に遠心して上清を除き、 5 00 μ Lの洗浄用パッファー (ρΗ7. 3 PBS, 0. 05% Tween20) で 2回洗浄した。 洗浄用バッファーを除いた後 500 /i Lのブロッキング Z保存パッファー (pH7. 3 PB S, lmg/mL BSA, 0. 05% Sodium Azide) 500 Lを加えて 30分以上静置してプロツキ ングを行った後、 プロッキングノ保存バッファ一を除いて、 のブロッキン グ Z保存パッファー中に懸濁して保存した。 The activated beads were centrifuged at 10, OOOg for 2 minutes to separate the supernatant, and the mixture was dispersed well by adding a coupling buffer (PH7.3 PBS), and the supernatant was discarded and washed. After the washing operation was repeated twice, 10 μg / mL of a recombinant SS-B antigen solution (250 / zL) was added, and the mixture was stirred by stirring at room temperature for 2 hours in the dark to bind. Then, the plate was washed twice with 500 μL of a washing buffer (ρΗ7.3 PBS, 0.05% Tween20). After removing the washing buffer, add 500 L of blocking Z preservation buffer (pH 7.3 PBS, lmg / mL BSA, 0.05% Sodium Azide) and add 500 L of blocking buffer. After carrying out the procedure, except for the blocking buffer, the cells were suspended in a blocking Z storage buffer and stored.
2 . 測 作  2. Measurement
以下の(i) - (iii〉を混合し、 30秒間撹拌した後 25°Cで 1時間静置して反応させた。 反応後、 Luminex社製自動分析機 (以下 Luminex®という) の操作法に従い、 検体中 の抗 SS - B抗体により得られる蛍光強度を測定した。  The following (i)-(iii) were mixed, stirred for 30 seconds, and allowed to react for 1 hour at 25 ° C: After the reaction, how to operate a Luminex automatic analyzer (hereinafter referred to as Luminex®) According to the above, the fluorescence intensity obtained by the anti-SS-B antibody in the sample was measured.
(i) 100倍希釈した検体 50 L、  (i) 50 L of sample diluted 100 times,
(i i)上記によつて作製したビーズを 2 5 0倍希釈した懸濁液 50 μ L、 及ぴ  (i i) 50 μL of a suspension prepared by diluting the beads prepared above by 250 times, and
(iii)蛍光標識抗体 (ィムノテック社製ブイコエリスリン標識抗ヒト IgG抗体  (iii) Fluorescence-labeled antibody (bucoerythrin-labeled anti-human IgG antibody manufactured by Imnotec
(ャギ) コード番号 IM0550、 フィコビリプロテイン濃度 0. 5mg/mL) 若しく は蛍光標識プロテイン A (biomeda社製 PHYCOPROBE PE PROTEIN A、 lmg/m L) lOO^ L  (Goat) Code number IM0550, phycobiliprotein concentration 0.5 mg / mL) or fluorescently labeled protein A (PHYCOPROBE PE PROTEIN A, manufactured by biomeda, lmg / ml) lOO ^ L
一方、 検体とビーズを反応させた後に洗浄を行うため、 96穴フィルトレーショ ンプレート(Millipore MultiScreen Assay System)のゥエルに 100倍希釈した検体 Lとビーズの懸濁液 50;z Lを加えて 30秒間撹拌した後 25°Cで 30分間静置して反 応させ、 吸引によって液を除き、 (株) 医学生物学研究所製 MESACUP - 2 テスト 「S S - B」 の洗浄用緩衝液で 3回洗浄した後、 洗浄用緩衝液 100 Lと蛍光標識抗体若し くは蛍光標識プロティン AIOO Lを加えて 30秒間撹拌した後 25°Cで 30分間静置し て反応させ、 Luminex®にて同様に操作し、 蛍光強度を測定した。  On the other hand, in order to perform washing after reacting the sample with the beads, a 100-fold diluted sample L and bead suspension 50; zL are added to the wells of a 96-well filtration plate (Millipore MultiScreen Assay System). After stirring for 30 seconds, the mixture was allowed to react by standing at 25 ° C for 30 minutes, and the solution was removed by suction. The MESACUP-2 test (manufactured by the Institute of Medical Biology Co., Ltd.) After washing twice, add 100 L of wash buffer and AIOO L of fluorescently-labeled antibody or fluorescently-labeled protein, stir for 30 seconds, and let stand at 25 ° C for 30 minutes to react. And the fluorescence intensity was measured.
3 . 測定結果  3. Measurement results
測定結果は図 1〜図 2に示すとおりである。 検体とビーズの反応の後、 標識物 との反応の前に洗浄を行わなかった場合、 および蛍光標識抗ヒト Ig(¾t体を用いた 場合では、 抗原の濃度の上昇に伴って蛍光強度の低下が見られた (図 2 ) 。 つま り、 蛍光標識抗 IgG抗体は遊離のィムノグロプリンの干渉を受けていると考えられ た。 一方蛍光標識プロテイン Aを用いた場合には、 標識物の希釈条件が適切な場 合には、 抗原の希釈倍数 12800倍から 400倍まで蛍光強度の増加が見られた (図 1 ) 。 プロテイン Aが抗原一抗体複合体に選択的に結合した結果、 遊離の抗体の 共存下でも干渉を受けない測定が可能であることを示している。 The measurement results are as shown in FIGS. In the case where washing was not performed after the reaction between the sample and the beads and before the reaction with the labeled substance, and in the case of using a fluorescently labeled anti-human Ig (¾t form), the fluorescence intensity decreased as the antigen concentration increased. (Fig. 2) This suggests that the fluorescently labeled anti-IgG antibody was interfered by free immunoglobulin. Was. On the other hand, when the fluorescently labeled protein A was used, the fluorescence intensity increased from a dilution factor of 12800 to 400 times of the antigen when the dilution conditions of the labeled substance were appropriate (Fig. 1). As a result of the selective binding of protein A to the antigen-antibody complex, it was demonstrated that interference-free measurement was possible even in the presence of free antibody.
一方、 検体とビーズを反応させた後、 標識物との反応前に洗浄を行った系では、 蛍光標識抗ヒト IgG抗体を用いた場合でも、 蛍光標識プロテイン Aを用いた場合で も検体の希釈に従った蛍光強度の増加が観察された。 また、 蛍光標識プロテイン On the other hand, in a system in which the sample was reacted with the beads and washed before the reaction with the labeled substance, the sample was diluted regardless of whether a fluorescent-labeled anti-human IgG antibody or fluorescent-labeled protein A was used. The increase of the fluorescence intensity according to was observed. In addition, fluorescently labeled protein
Aを用いた場合には、 洗浄を行わない系においてより強い蛍光強度が観察された。When A was used, a stronger fluorescence intensity was observed in the system without washing.
4 . プロテイン Gの検討 4. Examination of protein G
プロティン Aと同様にィムノグロプリンに親和性を示すプロティン Gを用いた 場合にも洗浄操作を行わずに測定が可能である力否かを検討した。 操作はプロテ イン G (Biomeda社製または Biogenesis製) を用いて上記のプロテイン Aの場合と 同様に行った。 結果は図 3〜図 4に示すとおり、 プロテイン Gを用いた場合にも プロテイン Aと同様に反応中の洗浄操作を必要とせず、 検体の希釈倍数に従って 蛍光強度の上昇が認められた。  In the case of using Protein G, which has an affinity for immunoglobulin as well as Protein A, it was examined whether the force could be measured without performing a washing operation. The operation was carried out using Protein G (manufactured by Biomeda or Biogenesis) in the same manner as for Protein A described above. As shown in FIGS. 3 and 4, when Protein G was used, the washing procedure during the reaction was not required similarly to Protein A, and an increase in the fluorescence intensity was observed in accordance with the dilution factor of the sample.
5 . 反応停止液の検討  5. Examination of reaction stop solution
標識体との反応前に洗浄を行わず、 未反応の検体との分離を行わなかった場合 には、 反応が持続し、 多数検体を測定した場合には測定の初めと終わりで反応の 時間が異なるために測定値に誤差を生じる可能性がある。 そこで、 反応を停止さ せるため、 反応停止液の検討を行ったところ、 ホルムアルデヒドを添加すること により反応を停止させることが可能であることを見出した。 そこで、 ホルムアル デヒドの濃度と停止後の安定性について検討した。  If washing was not performed before the reaction with the label, and separation from the unreacted sample was not performed, the reaction would continue.If a large number of samples were measured, the reaction time would be longer at the beginning and end of the measurement. Differences can cause errors in measurements. Therefore, in order to stop the reaction, a reaction stop solution was examined, and it was found that the reaction could be stopped by adding formaldehyde. Therefore, the concentration of formaldehyde and the stability after stopping were examined.
結果は図 5に示した。 PBSにホルムアルデヒドを 1%以上の濃度で含む液を反応停 止液とした場合に、 蛍光強度は安定して維持された。 より確実に反応を停止する ために 2%のホルムアルデヒドを含む PBSを反応停止液とした。 マイクロプレート のゥエルの容量を考慮し、 ビーズの懸濁液、 検体、 標識体の容量を各 50 / Lとし、 これらを室温、 B音所で 1時間反応させた後、 上記反応停止液 50^ Lを加えて Lumine X®で経時的に蛍光強度を測定したところ、 反応停止後 1時間は安定して測定でき ることが確認された。 The results are shown in FIG. When a solution containing formaldehyde at a concentration of 1% or more in PBS was used as the reaction stop solution, the fluorescence intensity was stably maintained. In order to more reliably stop the reaction, PBS containing 2% formaldehyde was used as a reaction stop solution. Considering the volume of the microplate, the volume of the bead suspension, sample, and label should be 50 / L each. After reacting them for 1 hour at room temperature and in the B-sound place, adding 50 ^ L of the above-mentioned reaction stop solution and measuring the fluorescence intensity over time using Lumine X®, the measurement was stable for 1 hour after the reaction was stopped. Was confirmed.
[実施例 2 ] マイクロプレート系における測定系の構築  [Example 2] Construction of measurement system in microplate system
1 . マイクロプレートへの抗原の結合  1. Binding of antigen to microplate
ELISA用の反応容器として一般に用いられているマイクロプレートを利用して、 本発明に基づく抗体測定系を構築した。 マイクロプレートは (株) 医学生物学研 究所社製 MESACUP2テスト 「SS- B」 用の抗原結合マイクロプレートを用いた。  An antibody measurement system based on the present invention was constructed using a microplate generally used as a reaction vessel for ELISA. The microplate used was an antigen-binding microplate for MESACUP2 test “SS-B” manufactured by Medical Biology Laboratories.
2 . 測定系  2. Measurement system
測定は以下の手順に従った。 まず、 抗原結合マイクロプレートに、 次の(i)およ ぴ (ii)を加え、 室温 (20〜25°C) で 1時間反応させた。  The measurement followed the following procedure. First, the following (i) and (ii) were added to the antigen-binding microplate, and reacted at room temperature (20 to 25 ° C) for 1 hour.
(i) (株) 医学生物学研究所社製 MESACUP2テスト 「SS- B」 用酵素標識物希釈液で 100倍〜 12800倍まで倍々希釈した検体 50 L、 および (i) (Ltd.) Medical and Biological Laboratories Co., Ltd. MESACUP2 test "SS- B" in the enzyme label diluted solution up to 100-fold to 1 28 00 times for Bye Bye diluted specimen 50 L, and
(ii) MESACUP2テスト 「SS- B」 用酵素標識物希釈液で 200倍〜 25600倍まで倍々希 釈した 50 μ Lのペルォキシダーゼ標識プロティン A  (ii) MESACUP2 test 50 μL of peroxidase-labeled protein A diluted 200-fold to 25600-fold with enzyme diluent for SS-B
反応後、 MESACUP- 2テスト 「SS- B」 用洗浄液で 4回洗浄し、 ペーパータオル上で マイクロプレートをはたいて余分な洗浄液を除いた後、 MESACUP- 2テスト 「SS - B」 用発色基質 100 /z Lを添加して室温 (20〜25。C) で 30分間反応させ、 発色させた。 マイクロプレートの各ゥエルに 1規定硫酸 100 μ Lを加えて発色反応を停止し、 撹拌してマイクロプレートリ一ダーを用いて各ゥエルの波長 450nmにおける吸光度 を測定した。 対照として、 ペルォキシダーゼ標識抗ヒト IgGfet体 ( (株) 医学生物 学研究所製、 製品番号 208) を同様に 200倍〜 25600倍まで倍々希釈して同様に操作 して発色の変化を確認した。 また、 通常の 2ステップでの測定も同時に行い、 発 色の変化を比較した。  After the reaction, wash four times with the washing solution for MESACUP-2 test “SS-B”, remove the excess washing solution by tapping a microplate on a paper towel, and then develop the color substrate for MESACUP-2 test “SS-B” 100 / zL was added and reacted at room temperature (20-25.C) for 30 minutes to develop color. 100 μL of 1N sulfuric acid was added to each well of the microplate to stop the color reaction, and the mixture was stirred. The absorbance of each well at a wavelength of 450 nm was measured using a microplate reader. As a control, a peroxidase-labeled anti-human IgGfet compound (manufactured by Medical Biology Laboratory Co., Ltd., product number 208) was similarly diluted 200-fold to 25600-fold, and the same operation was performed to confirm the change in color development. In addition, normal two-step measurement was also performed at the same time, and changes in color development were compared.
3 . 測定結果  3. Measurement results
測定結果は図 6〜図 9に示した。 通常の 2ステップ (洗浄有り) で測定を行つ た場合には標識物を抗ヒト IgG抗体とした場合 (図 9 ) に比較してペルォキシダー ゼ標識プロテイン Aを用いた場合 (図 8 ) には 30倍濃い濃度が必要であるものの、 同じ発色を得ることができた。 一方、 1ステップ (洗浄無し) で測定した場合に、 標識物として抗ヒト IgG抗体を用いた場合 (図 7 ) には全く発色が得られず、 測定 を行うことはできなかったが、 ペルォキシダーゼ標識プロティン Aを用いた場合 (図 6 ) には 12800倍〜 200倍まで標識物の濃度依存的に吸光度の上昇を認めた。 E LISAプレートを用いても本発明に基づく抗体の測定方法が可能であることが確認 された。 The measurement results are shown in FIGS. Performs measurement in two normal steps (with washing) When using peroxidase-labeled protein A (Fig. 8) as compared with the case where the labeled substance was an anti-human IgG antibody (Fig. 9), the concentration was 30 times higher, but the same color was obtained. I got it. On the other hand, when measurement was performed in one step (without washing), no color was obtained when an anti-human IgG antibody was used as the label (FIG. 7), and the measurement could not be performed. When protein A was used (FIG. 6), the absorbance increased in a concentration-dependent manner from 12800 to 200 times. It was confirmed that the antibody measurement method according to the present invention was also possible using an ELISA plate.
[実施例 3 ] 反応停止液の検討  [Example 3] Examination of reaction stop solution
本発明において、 ドデシル硫酸ナトリゥム(SDS)が反応停止液として使用できる ことを確認した。 ホルムアルデヒドの場合 (実施例 1 ) と同様に、 反応後の  In the present invention, it was confirmed that sodium dodecyl sulfate (SDS) can be used as a reaction stopping solution. As in the case of formaldehyde (Example 1),
Luninex試薬に、 PBSで希釈した SDSの希釈系列を 50 μ L添加した。 SDS添加後の時間 経過に伴う蛍光強度を測定し、 反応停止作用を検討した。 Luninex試薬には SS - Αを 結合させたビーズを用いた。 健常者血清おょぴ抗 SS- A抗体陽性患者の血清を検体 として、 Luninex試薬によって抗体を測定した。 50 μL of a dilution series of SDS diluted with PBS was added to the Luninex reagent. The fluorescence intensity over time after the addition of SDS was measured, and the reaction termination effect was examined. Beads to which SS-II was bound were used as the Luninex reagent. Antibodies were measured by the Luninex reagent using the serum of a healthy individual and the serum of an anti-SS-A antibody-positive patient as a sample.
結果は表 1、 図 1 0、 およぴ図 1 1に示した。  The results are shown in Table 1, FIG. 10 and FIG.
表 1  table 1
Figure imgf000025_0001
Figure imgf000025_0001
最終濃度 0. 625%を加えたとき、 反応後の蛍光強度は時間の経過によって変化せ ず安定していた。 0. 3125%以下では反応が安定せず蛍光強度が時間経過と共に増加 する傾向にあった。 また、 1. 25%以上では蛍光強度が小さすぎて安定した測定値は 得られなかった。 この結果から、 SDSを反応停止液として添加する場合には、 最終 濃度 0. 5〜 1 %が望ましいと考えられた。 産業上の利用の可能性 When a final concentration of 0.625% was added, the fluorescence intensity after the reaction was stable without change over time. At 0.3125% or less, the reaction was not stable and the fluorescence intensity tended to increase with time. At 1.25% or more, the fluorescence intensity was too small to obtain a stable measurement value. From this result, when adding SDS as a reaction stop solution, A concentration of 0.5-1% was considered desirable. Industrial potential
本発明により、 一次反応後の洗浄工程無しでも、 高い測定感度を期待できる抗 体の測定方法が提供された。 更に本発明の望ま'しい態様においては、 遊離の抗体 と抗原一抗体複合体との分,作を必要としない、 抗体の測定方法さえ実現する ことができる。 たとえば、 標識が結合した微細粒子を計数するシステムを利用し たィムノアツセィが公知である。 微細粒子に捕捉された抗体は、 本発明の方法に よって標識することができる。 標識が結合した微細粒子は、 このようなシステム によって計数される。 すなわち、 この種のシステムを本発明に応用することによ つて、 抗体測定における BZF分離は不要となる。  According to the present invention, a method for measuring an antibody that can be expected to have high measurement sensitivity without a washing step after the primary reaction has been provided. Further, in a desirable embodiment of the present invention, even a method for measuring an antibody which does not require the production of a free antibody and an antigen-antibody complex can be realized. For example, an imnoatssay using a system for counting microparticles to which a label is bound is known. The antibody captured by the fine particles can be labeled by the method of the present invention. Labeled microparticles are counted by such a system. That is, by applying this type of system to the present invention, BZF separation in antibody measurement becomes unnecessary.
遊離の免疫学的な成分と、 固相に捕捉した成分との分離操作 (B_ F分離) を 自動化するためには、 測定システムは複雑な機構を装備する必要があった。 また BZF分離に伴う洗浄工程は、 測定時間の短縮を困難にしていた。 したがって、 B/F分離が不要な測定技術の提供は、 .単に測定操作の簡略化をもたらすのみな らず、 測定作業の自動化を容易にする。  To automate the separation operation (B_F separation) between the free immunological components and the components captured on the solid phase, the measurement system had to be equipped with complicated mechanisms. The washing process associated with BZF separation made it difficult to reduce the measurement time. Therefore, providing measurement technology that does not require B / F separation not only simplifies the measurement operation, but also facilitates the automation of the measurement operation.
たとえば、 大量の血液試料について、 抗体を測定しなければならないときには、 測定操作の自動化は必須である。 更に、 試料が増えるほど、 測定時間の短縮効果 も大きくなる。 たとえば輸血や血液製剤の原料に用いられる血液は、 全ての血液 試料について、 HIV、 HBV、 およひ IICVなどの感染症のスクリーニングテストが行わ れている。 これらの感染症の検查は、 抗体の検出に基づいている。 粒子計数を利 用した Luminex (商品名;ルミネックス Corp.製) のようなシステムは、 きわめて 迅速な測定を可能とするシステムである。 本発明の方法とこのようなシステムを 利用すれば、 感染症やアレルゲンのスクリーニングを高度に迅速化することがで きる。  For example, when antibodies must be measured in a large amount of blood sample, automation of the measurement operation is essential. In addition, the more samples, the greater the effect of reducing the measurement time. For example, blood used for blood transfusions and blood products is screened for infectious diseases such as HIV, HBV, and IICV on all blood samples. Detection of these infections is based on antibody detection. Systems such as Luminex (trade name; manufactured by Luminex Corp.) that use particle counting are systems that enable extremely rapid measurement. By using the method of the present invention and such a system, screening for infectious diseases and allergens can be highly accelerated.

Claims

請求の範囲 次の工程を含む、 抗体の測定方法。 ( 1 ) 試料中に含まれる抗体を該抗体が認識する抗原と結合させる工程、( 2 ) 遊離のィムノグロプリンの存在下で (1 ) で形成された抗原一抗体複 合体に、 抗原一抗体複合体を形成した抗体を認識して結合する結合剤 を反応させる工程、 および ( 3 ) 抗原一抗体複合体と結合剤との結合を検出する工程 抗原一抗体複合体を形成した抗体を認識して結合する結合剤が、 プロテイン A、 プロテイン G、 およぴ補体、 またはそれらと機能的に同等な蛋白質から なる群から選択されるいずれかの蛋白質である請求項 1に記載の方法。 抗原および抗原一抗体複合体を形成した抗体を認識して結合する結合剤のい ずれかが、 固相化されているかまたは固相化可能な修飾を有している請求項 1に記載の方法。 抗原が固相化されているかまたは固相化可能な修飾を有している請求項 3に 記載の方法。 抗原および抗原一抗体複合体を形成した抗体を認識して結合する結合剤のい ずれかが、 検出可能なシグナルを生成する標識を有しているかまたは標識を 結合できる修飾を有している請求項 3に記載の方法。 抗原一抗体複合体を形成した抗体を認識して結合する結合剤が、 標識を有し ているかまたは標識を結合できる修飾を有している請求項 5に記載の方法。 固相が粒子であり、 固相に標識を有する粒子を計数する工程を含む、 請求項 3に記載の方法。 フローメ一ターで粒子と粒子に結合した標識とを検出する工程を含む請求項 7に記載の方法。 異なる抗原を結合した複数種類の粒子がそれぞれ識別可能なシグナルを有し ており、 標識が検出された粒子のシグナルに基づいて、 抗体が結合した抗原 を特定する工程を含む請求項 8に記載の方法。. 試料中に含まれる抗体、 該抗体が認識する抗原、 および抗原一抗体複合体 を形成した抗体を認識して結合する結合剤を実質的に同時に反応させる請 求項 1に記載の方法。. 測定すべき抗体、 抗原、 および結合剤との反応後、 更に反応停止剤を添加 した後に抗原一抗体複合体と結合剤との結合を検出する工程を含む、 請求 項 1に記載の方法。. 反応停止剤がホルムアルデヒドである請求項 1 1に記載の方法。 . 反応液中のホルムアルデヒドの濃度が、 0 . 1〜 0 · 5 %v/vである請求項1 2に記載の方法。. 反応停止剤がドデシル硫酸塩である請求項 1 1に記載の方法。 . ドデシル硫酸塩がドデシル硫酸ナトリゥムである請求項 1 4に記載の方法。. ドデシル硫酸塩の濃度が、 0 . 5〜: l %w/vである請求項 1 4に記載の方法。. 抗原一抗体複合体を構成した抗体と、 遊離のィムノグロプリンが共存する 条件において、 プロテイン A、 プロテイン G、 またはそれらと機能的に同 等な蛋白質からなる群から選択されるいずれかの蛋白質からなる結合剤と 前記抗原一抗体複合体を構成した抗体を結合させる工程を含む、 抗原ー抗 体複合体の分離方法。. 結合剤が、 固相化されているかまたは固相化が可能な修飾を有している請 求項 1 7に記載の分離方法。. プロテイン A、 プロテイン G、 またはそれらと機能的に同等な蛋白質から なる群から選択されるいずれかの蛋白質を含む、 遊離のィムノグロプリン が共存する条件において、 抗原一抗体複合体を構成した抗体を選択的に結 合するための結合剤。. 結合剤が、 固相化されているかまたは固相化が可能な修飾を有している請 求項 1 9に記載の結合剤。 Claims A method for measuring an antibody, comprising the following steps. (1) a step of binding an antibody contained in a sample to an antigen recognized by the antibody; (2) an antigen-antibody complex formed in (1) in the presence of free immunoglobulin; Reacting a binding agent that recognizes and binds to the antibody that has formed, and (3) detecting the binding between the antigen-antibody complex and the binding agent, recognizing and binding the antibody that has formed the antigen-antibody complex 2. The method according to claim 1, wherein the binding agent is a protein selected from the group consisting of protein A, protein G, complement, and proteins functionally equivalent thereto. The method according to claim 1, wherein one of the binding agent that recognizes and binds to the antigen and the antibody forming the antigen-antibody complex is immobilized or has a modification that allows immobilization. . 4. The method according to claim 3, wherein the antigen is immobilized or has a modification that can be immobilized. Any of the binding agents that recognize and bind the antigen and the antibody that formed the antigen-antibody complex have a label that produces a detectable signal or have a modification that can bind the label Item 3. The method according to item 3. 6. The method according to claim 5, wherein the binding agent that recognizes and binds to the antibody that has formed the antigen-antibody complex has a label or has a modification capable of binding the label. 4. The method according to claim 3, wherein the solid phase is a particle, and comprising the step of counting particles having a label on the solid phase. The method according to claim 7, comprising a step of detecting the particles and the label bound to the particles by a flow meter. The method according to claim 8, further comprising a step of identifying the antigen to which the antibody is bound based on the signal of the particle from which the label is detected, wherein the plurality of types of particles each having a different antigen bound thereto have a discriminable signal. Method. The method according to claim 1, wherein the antibody contained in the sample, the antigen recognized by the antibody, and the binding agent that recognizes and binds to the antibody forming the antigen-antibody complex are reacted substantially simultaneously. The method according to claim 1, comprising a step of detecting the binding between the antigen-antibody complex and the binding agent after the reaction with the antibody to be measured, the antigen, and the binding agent, and further after adding a reaction terminator. The method according to claim 11, wherein the reaction terminator is formaldehyde. The method according to claim 12, wherein the concentration of formaldehyde in the reaction solution is 0.1 to 0.5% v / v. The method according to claim 11, wherein the reaction terminator is dodecyl sulfate. The method according to claim 14, wherein the dodecyl sulfate is sodium dodecyl sulfate. The method according to claim 14, wherein the concentration of dodecyl sulfate is 0.5 to: l% w / v. It is composed of protein A, protein G, or any protein selected from the group consisting of proteins functionally equivalent thereto under the condition that the antibody constituting the antigen-antibody complex and free immunoglobulin coexist. A method for separating an antigen-antibody complex, comprising a step of binding a binding agent and an antibody constituting the antigen-antibody complex. 18. The separation method according to claim 17, wherein the binding agent is immobilized or has a modification that allows immobilization. Select an antibody that forms an antigen-antibody complex under the condition that free immunoglobulin coexists, including any protein selected from the group consisting of protein A, protein G, and proteins functionally equivalent thereto. A binder for the purpose of binding. The binding agent according to claim 19, wherein the binding agent is immobilized or has a modification that allows immobilization.
1 . 測定すべき抗体によって結合される抗原、 および抗原一抗体複合体を形成 した抗体を認識して結合する結合剤とを含み、 いずれか一方が固相化され るかまたは固相化することができる修飾を有し、 他方が標識を有するかま たは標識することができる修飾を有する、 抗体の測定用キット。 1. Includes an antigen bound by the antibody to be measured and a binding agent that recognizes and binds to the antibody that has formed the antigen-antibody complex, either of which is immobilized or immobilized A kit for measuring an antibody, wherein the kit has a modification that can be labeled, and the other has a label or a modification that can be labeled.
2 . 測定すべき抗体によって結合される抗原、 および抗原一抗体複合体を形成 した抗体を認識して結合する結合剤とが混合されている請求項 2 1に記載 のキット。 2. The kit according to claim 21, wherein an antigen bound by the antibody to be measured and a binding agent that recognizes and binds to the antibody forming the antigen-antibody complex are mixed.
3 . 更に付加的に反応停止剤を含む請求項 2 2に記載のキット。 3. The kit according to claim 22, further comprising a reaction terminator.
4. 反応停止剤がホルムアルデヒドおよぴドデシル硫酸塩のいずれかまたは両 方である請求項 2 3に記載のキット。 4. The kit according to claim 23, wherein the reaction terminator is formaldehyde and / or dodecyl sulfate.
PCT/JP2004/000040 2003-01-07 2004-01-07 Method of assaying antibody WO2004061452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005507959A JPWO2004061452A1 (en) 2003-01-07 2004-01-07 Antibody measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-001620 2003-01-07
JP2003001620 2003-01-07

Publications (1)

Publication Number Publication Date
WO2004061452A1 true WO2004061452A1 (en) 2004-07-22

Family

ID=32708824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000040 WO2004061452A1 (en) 2003-01-07 2004-01-07 Method of assaying antibody

Country Status (2)

Country Link
JP (1) JPWO2004061452A1 (en)
WO (1) WO2004061452A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1653233A1 (en) * 2004-10-30 2006-05-03 Roche Diagnostics GmbH Method for determining antibodies of a particular class using an immune complex-specific antibody
WO2007072922A1 (en) * 2005-12-22 2007-06-28 Rohm Co., Ltd. Immunoassay apparatus and method
JP2012122868A (en) * 2010-12-09 2012-06-28 Panasonic Corp Method of separating antigen-antibody complex
CN111273007A (en) * 2020-03-13 2020-06-12 内江师范学院 Kit and detection method for rapidly detecting fish Edwardsiella ictaluri

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022662A (en) * 1974-05-20 1985-02-05 テクニコン、インストルメンツ、コ−ポレ−シヨン Reagent for analyzing antibody, antigen or antibody:antigen complex
JPS6395357A (en) * 1986-10-13 1988-04-26 Showa Denko Kk Assay of fine particle by fluorescence intensity measurement
JPH04249769A (en) * 1991-01-08 1992-09-04 Konica Corp Immunoassay
JPH05126829A (en) * 1991-04-03 1993-05-21 Syntex Usa Inc Immunoassay of immunogloblin
JPH11295311A (en) * 1998-04-14 1999-10-29 Otsuka Pharmaceut Co Ltd Antibody measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022662A (en) * 1974-05-20 1985-02-05 テクニコン、インストルメンツ、コ−ポレ−シヨン Reagent for analyzing antibody, antigen or antibody:antigen complex
JPS6395357A (en) * 1986-10-13 1988-04-26 Showa Denko Kk Assay of fine particle by fluorescence intensity measurement
JPH04249769A (en) * 1991-01-08 1992-09-04 Konica Corp Immunoassay
JPH05126829A (en) * 1991-04-03 1993-05-21 Syntex Usa Inc Immunoassay of immunogloblin
JPH11295311A (en) * 1998-04-14 1999-10-29 Otsuka Pharmaceut Co Ltd Antibody measurement method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1653233A1 (en) * 2004-10-30 2006-05-03 Roche Diagnostics GmbH Method for determining antibodies of a particular class using an immune complex-specific antibody
US8664007B2 (en) 2004-10-30 2014-03-04 Roche Diagnostics Operations, Inc. Immune complex-specific antibodies for increased sensitivity in immunoassay array tests
WO2007072922A1 (en) * 2005-12-22 2007-06-28 Rohm Co., Ltd. Immunoassay apparatus and method
JPWO2007072922A1 (en) * 2005-12-22 2009-06-04 ローム株式会社 Immunoassay apparatus and method
JP5097557B2 (en) * 2005-12-22 2012-12-12 ローム株式会社 Immunoassay apparatus and method
JP2012122868A (en) * 2010-12-09 2012-06-28 Panasonic Corp Method of separating antigen-antibody complex
CN111273007A (en) * 2020-03-13 2020-06-12 内江师范学院 Kit and detection method for rapidly detecting fish Edwardsiella ictaluri
CN111273007B (en) * 2020-03-13 2023-08-01 内江师范学院 Kit for rapidly detecting Edwardsiella ictaluri and detection method

Also Published As

Publication number Publication date
JPWO2004061452A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
US20050101031A1 (en) Allergen-microarray assay
WO2007081778A2 (en) Multiplexed detection of anti-red cell alloantibodies
JPS63229367A (en) Immuno-reactive reagent, manufacture thereof and application thereof for measuring immuno-reactive specy
KR0126236B1 (en) Immunometric assay kit and method applicable to whole cells
EP0194156B1 (en) Method of measuring the amount of immune antibody in serum
JPH01248061A (en) Washing liquid, test kit and measurement of immunological ligand
EP0835449A1 (en) Method for the simultaneous detection of different antibodies and/or antigens
JPWO2009084369A1 (en) Reagent for detection of HIV-1 antigen and detection method
CN109142743B (en) Multiple detection kit for self-immune liver antibody
US5494800A (en) Analyte detection in particulate-containing samples
WO2004061452A1 (en) Method of assaying antibody
JPH09507577A (en) Reaction column and method for multi-target simultaneous measurement
JP2549305B2 (en) Independent multiplex immunoassay diagnostic system
RU2327170C2 (en) Method of complex diagnostics of viral hepatitis type b, viral hepatitis type c, hiv and syphilis
RU2283497C1 (en) IMMUNOENZYMATIC TEST SYSTEM FOR IDENTIFYING THE SPECTRUM OF ANTIBODIES TO HIV 1 AND 2 AND DETECTING ANTIGEN HIV 1 (p24) NAMED "DS-IEA-ANTI-HIV 1 AND 2, HIV 1 GROUP O-SPECTRUM+AG p24 HIV 1"
JPH11507635A (en) Peptides for detecting HIV
US10161942B2 (en) Crossmatching blood samples
JP2716227B2 (en) Immunological measurement method using magnetic marker particles
JPH08114595A (en) Specific bonding measuring method
JP2010078374A (en) Method of detecting anti-erythrocyte antibody
JP3493543B2 (en) Antibody measurement method
JP3936678B2 (en) Anti-syphilis treponema antibody measurement reagent and anti-syphilis treponema antibody measurement method
JPH0614047B2 (en) Agglutination reagent and method for producing the same
Schmitz 14 Serologic Testing for Infectious Diseases
JPH02287258A (en) Measuring method of antibody against infectious disease causing living being in body fluid and agent for the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507959

Country of ref document: JP

122 Ep: pct application non-entry in european phase