WO2004060799A1 - Method and apparatus for producing halogen atom containing fullerene - Google Patents

Method and apparatus for producing halogen atom containing fullerene Download PDF

Info

Publication number
WO2004060799A1
WO2004060799A1 PCT/JP2003/016994 JP0316994W WO2004060799A1 WO 2004060799 A1 WO2004060799 A1 WO 2004060799A1 JP 0316994 W JP0316994 W JP 0316994W WO 2004060799 A1 WO2004060799 A1 WO 2004060799A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
plasma
producing
halogen atom
deposition plate
Prior art date
Application number
PCT/JP2003/016994
Other languages
French (fr)
Japanese (ja)
Inventor
Rikizo Hatakeyama
Takamichi Hirata
Yasuhiko Kasama
Kenji Omote
Original Assignee
Ideal Star Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Star Inc. filed Critical Ideal Star Inc.
Priority to AU2003292705A priority Critical patent/AU2003292705A1/en
Priority to JP2004564555A priority patent/JPWO2004060799A1/en
Publication of WO2004060799A1 publication Critical patent/WO2004060799A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/129Radiofrequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Definitions

  • the present invention relates to a method and an apparatus for producing a halogen-containing fullerene.
  • Non-Patent Document 1 proposes a technique shown in FIG. 3 as a technique for producing an endohedral fullerene.
  • This technology is to produce endohedral fullerenes by injecting fullerenes into a plasma stream in which atoms to be included are ionized in a vacuum vessel and depositing the endohedral fullerenes on a deposition plate located downstream of the plasma stream. .
  • this technique has a problem that the encapsulation rate is not good at the center of the deposition plate.
  • the endohedral fullerene is deposited almost entirely on the radially outer portion of the plasma flow, and the endohedral fullerene is hardly deposited on the radially inner side of the plasma flow.
  • Non-Patent Document 2 proposes a technique of depositing fullerene fluoride on a substrate by generating a plasma by introducing a CF 4 gas into a chamber.
  • the film deposited in this technique is not an endohedral fullerene but a chemically modified fullerene.
  • An object of the present invention is to provide a method and an apparatus for producing a halogen-containing endohedral fullerene that can produce an endohedral fullerene with higher yield. Disclosure of the invention
  • a halogen gas is introduced into a vacuum vessel to generate plasma, form a plasma flow, introduce fullerene into the plasma or plasma flow, and further pass through a magnetic filter. Then, the endohedral fullerenes are deposited on a deposition plate disposed downstream of the plasma flow.
  • An apparatus for producing a halogen atom-containing fullerene according to the present invention includes a vacuum vessel, a gas inlet for introducing a halogen gas into the vacuum vessel, a means for generating plasma containing a negatively charged halogen atom, Means for introducing fullerene into the plasma, a deposition plate for depositing the endohedral fullerene, and a magnetic filter provided between the deposition plate and the plasma.
  • plasma is generated by introducing the fluorocarbon gas (C m F n gas) in the vacuum chamber.
  • fluorocarbon gas C m F n gas
  • CF 4 gas CF 3 + and F— exist in the plasma.
  • a halogen gas or a compound thereof and an inert gas are introduced into a vacuum vessel.
  • the plasma contains a positively charged inert gas and a negatively charged halogen gas.
  • plasma having a high energy component can be obtained by using, for example, an RF (Radio Frequency) antenna.
  • RF Radio Frequency
  • the plasma according to the present invention is an ionized plasma and has a high plasma energy, so that electrons are easily knocked from fullerene.
  • high density fullerene ions eg, C 60 +
  • a permanent magnet or an electromagnet is arranged outside the vacuum vessel to confine the plasma and to provide directionality. This also creates a plasma flow.
  • a magnetic filter is provided between the plasma and the deposition plate. By passing through the magnetic filter, only positively charged fullerene ions and negatively charged halogen ions will flow downstream of the plasma flow.
  • endohedral fullerene can be deposited with a high yield by the interaction of positive and negative ions.
  • the deposition plate be a plurality of divided plates that are concentrically divided.
  • the radius of the central deposition plate is R + 5 mm or less, where R is the radius of the plasma generation hole, and film formation is performed while applying a bias voltage to the central deposition plate. It is preferable for improving the yield.
  • the fullerene is C 6 . It is characterized by being. C 6. C 6 has more C atoms than fullerene, which has a larger diameter. Although encapsulation is difficult, in the present invention, encapsulation can be easily achieved in high yield even with C 60 .
  • the method is characterized in that a bias voltage ⁇ a ⁇ of 120 V ⁇ ⁇ & ⁇ + 5 V is applied to the central deposition plate.
  • a cylinder having a diameter 2.5 to 3.0 times the inner diameter of the plasma flow is provided in the middle of the plasma flow.
  • a cooling means for cooling the wall of the vacuum vessel at least downstream from the downstream end of the cylinder is provided.
  • FIG. 1 is a conceptual view showing an apparatus for producing an endohedral fullerene according to an embodiment of the present invention.
  • FIG. 2 is a front view showing the deposition plate of FIG.
  • FIG. 3 is a conceptual diagram illustrating a conventional technology for producing an endohedral fullerene.
  • FIG. 1 shows an apparatus for producing an endohedral fullerene according to an embodiment of the present invention.
  • a vacuum vessel 501 A vacuum vessel 501, a gas inlet 502 for introducing, for example, a fluorocarbon gas CF 4 into the vacuum vessel 501, a means for generating plasma (RF antenna 503), and A means for introducing fullerene (fullerene oven 504), a deposition plate 505 for depositing the encapsulated fullerene, and a magnetic filter 506 provided between the plate and the plasma.
  • a gas inlet 502 for introducing, for example, a fluorocarbon gas CF 4 into the vacuum vessel 501
  • RF antenna 503 a means for generating plasma
  • a means for introducing fullerene (fullerene oven 504) A means for introducing fullerene (fullerene oven 504)
  • a deposition plate 505 for depositing the encapsulated fullerene
  • a magnetic filter 506 provided between the plate and the plasma.
  • a plasma is generated by discharge fluorocarbon gas CF 4.
  • the generation of plasma ionized by CF 3 + and F— is performed by an RF (Radio Frequency) antenna 503.
  • the RF antenna 503 preferably uses an inductive coupling type.
  • a flat plate such as a spiral type, but in this case, the problem arises that the material of the antenna or attached dirt floats in the vacuum vessel, causing the generation of plasma and the formation of encapsulated fullerenes to deteriorate. I do.
  • the halogen gas or its compound to be included and the inert gas may be introduced from the gas inlet.
  • the RF antenna 503 generates a plasma composed of a positively charged inert gas and a negatively charged halogen gas.
  • B 2-7 kG
  • the charged particles are neutralized and lost when colliding with the inner wall of the vacuum container 501, but the loss of the charged particles can be prevented by providing magnetic force lines near the inner wall.
  • the value obtained by adding the Larmor radius (about 5 mm) of the ions constituting the plasma to the radius of the RF antenna 503 is the radius of the plasma flow. Therefore, the radius of the plasma flow can be arbitrarily selected to an appropriate size according to the size of the apparatus by changing the radius of the RF antenna.
  • a cooling means (not shown) is provided on the outer periphery of the vacuum vessel 501.
  • neutral gas molecules are trapped (adsorbed on the inner surface).
  • a plasma containing no impurities can be generated, and a highly pure endohedral fullerene can be formed on the deposition plate 505.
  • a cylinder 5 13 around the plasma flow.
  • the temperature of the inner wall of the vacuum vessel 501 is preferably equal to or lower than room temperature, and more preferably equal to or lower than o ° C. At such a temperature, trapping of neutral gas molecules is facilitated, and it becomes possible to obtain a higher-purity endohedral fullerene.
  • the cylinder 513 When the cylinder 513 is provided so as to cover the plasma flow in the middle of the plasma flow 508, the cylinder 513 is ripened to 400 to 65 ° C. Fullerene that has not been ionized in the plasma after being introduced into the cylinder 5 13 and adheres to the inner surface of the cylinder is sublimated again. If the temperature of the cylinder 5 13 is lower than 400 ° C, re-sublimation is not performed efficiently, and if the temperature is higher than 65 0 C, C 60 is re-sublimated excessively, so halogen C 60, which does not contribute to the formation of endohedral fullerene by reaction with atoms, increases, and there is a problem that C 60 is not used efficiently. Therefore, it is preferable that the temperature of the cylinder 513 is set at 400 to 65 ° C.
  • the temperature is 480 to 62 ° C.
  • the temperature is lower than 480 ° C, the density of fullerene ions decreases, and the yield of endohedral fullerene decreases.
  • Exceeds 62 ° C The amount of neutral fullerene that is not ionized increases, and the encapsulation rate decreases.
  • the inner diameter of the cylinder 513 is preferably 2.5 to 3.0 times the diameter of the plasma flow 508. More preferably, it is 2.7 to 2.8 times. If it is less than 5, the interaction between the plasma flow 508 and the cylinder 5 13 becomes large, the plasma retention is reduced, and the yield of endohedral fullerene is reduced. If it exceeds 3.0, the duration of the plasma will be shortened, and the yield of endohedral fullerene will be reduced.
  • the introduction speed of the fullerene may be controlled by the temperature rise rate of the fullerene oven 504.
  • the temperature rise rate is preferably 100 ° C./min or more.
  • the upper limit is the temperature rise rate at which bumping does not occur.
  • the distance 1 u between the RF antenna 50 3 (1.5 to 2.0) is preferably set such that X ( ⁇ DH 2/4) .
  • DH is the diameter of the RF antenna 503.
  • the deposition plate 505 is divided concentrically as shown in FIG. In the example shown in FIG. 2, the plate is divided into three plates 505a, 505b, and 505c.
  • the central deposition plate 505a is circular
  • a ring-shaped deposition plate 505b which is electrically insulated from the deposition plate 505a, is provided around the periphery of the deposition plate 505a.
  • 505 c is arranged.
  • the number of deposition plates is not limited to three.
  • Each of the deposition plates 505a, 505b, and 505c is provided with bias applying means 509a, 509b, and 509c so that a bias voltage can be independently applied.
  • the shape of the deposition plate is not limited to a circular or circular ring as long as the shape of the vacuum vessel is not limited, and may be, for example, a square to square ring or other shapes.
  • the radius of the central deposition plate 505a is preferably R + 5 mm, where R is the radius of the RF antenna 503. There is a low probability that endohedral fullerenes will be formed outside the area of R + 5 mm on the deposition plate. It is preferable to reduce the size of the manufacturing apparatus from the viewpoint of improving the degree of background vacuum and shortening the evacuation time.From the viewpoint of using the generated plasma without waste and miniaturizing the manufacturing apparatus, Centrally located It is preferable that the radius of the divided plate be R + 5 mm or less. However, even when the deposition voltage is not divided and the entire plate is set to the same bias voltage, it is possible to form the endohedral fullerene by optimizing the deposition conditions.
  • the radius of the plasma flow confined by the magnetic field of the magnetic field strength B is larger than the radius of the RF antenna generating the plasma by the Larmor radius RL of the ions constituting the plasma.
  • B 0. 3 T
  • under conditions of plasma temperature 250 0 ° C is, C 6.
  • R L 4. 0 mm
  • a bias voltage is applied to the central deposition plate 505a. It is preferable to apply a negative bias voltage. As a result, the velocity of the halogen ions, which are the target atoms, is reduced, and the interaction with the fullerene ions is increased, so that the target atoms are easily included. However, even when a floating state is applied without applying a bias voltage to the central deposition plate 505a, it is possible to form the endohedral fullerene by optimizing the deposition conditions. '
  • the encapsulation rate is increased by controlling the bias voltage so that fullerene ions have a distribution having a peak at the center of the plasma flow 508. be able to.
  • the optimum bias voltage varies depending on the atoms to be included, the type of fullerene, and other film formation conditions, but may be determined in advance by experiments.
  • a halogen element as encapsulated target atom when using a C 60 as fullerenes, the deposition plate 505 a of the central portion, it is preferable to apply a bias voltage one 20V rather phi & [rho Ku + 5 V.
  • a bias voltage one 20V rather phi & [rho Ku + 5 V.
  • One 18 ⁇ ap ⁇ OV is particularly preferred.
  • the outer deposition plates 505b and 505c may be set to either the floating potential state or the bias voltage application. Even when both of the outer deposition plates 506b and 506c are in a floating state, the same amount of endohedral fullerene is deposited on the deposition plate 505b as in the conventional method. Therefore, the increase in the yield on the central deposition plate 505a was Rate is higher.
  • a bias voltage is also applied to the deposition plate 505b to reduce the density of the fullerene ions. Even if it is high, The spatial distribution of plasma may be measured during film formation using an ion measurement probe, and the bias voltage applied to the deposition plates 505b and 505c may be automatically controlled by a computer. The same applies to the automatic control of the application to the deposition plate 505a.
  • the vacuum vessel 501 is provided with a pump 510 so that the inside of the vacuum vessel 501 can be evacuated to a vacuum.
  • the magnetic filter 506 is composed of, for example, a magnet 511 and a wire mesh 512 arranged outside the vacuum vessel 501.
  • the magnetic filter 506 is set to pass only the ions of the atoms to be included and the ions of fullerene, and reflect or restrict the other ions, that is, electrons, and the positively charged inert gas or CF 3 +. Have been.
  • the magnet 5 11 may be either a permanent magnet or an electromagnet. If an electromagnet is used, the strength of the magnetic field can be changed in accordance with the halogen gas to be included and the inert gas introduced from the gas inlet 502.
  • the magnetic filter 506 has a double structure, and one of the magnetic filters reflects or restricts electrons, and the other filter reflects or restricts positively charged inert gas or CF 3 +. You may.
  • fluorine-containing C 60 (hereinafter, referred to as “F @ C 6 ”) fullerene was formed.
  • the vacuum vessel 501 has a diameter of 100 mm and a length of 1200 mm. Using.
  • an RF antenna having a diameter of 20 mm was used.
  • CF 4 gas was introduced into the vacuum vessel 501 from the gas introduction port 502 to generate plasma.
  • a three-division type deposition plate 505 was used.
  • the diameter of the central deposition plate 505a was 14 mm
  • the diameter of the outer deposition plate 505b was 32 mm
  • the diameter of the outer deposition plate 505c was 5 Omm.
  • the deposition plates 505b and 505c were at floating potential. Note that ⁇ ap is a DC voltage, and ⁇ s is a plasma space potential.
  • the thin film containing endohedral fullerene (F @ C 6 in this example) deposited on the deposition plate was analyzed.
  • a high content of endohedral fullerene was formed.
  • a deposition film containing endohedral fullerene was observed on the deposition plate 505b outside the center.
  • the endohedral fullerene was deposited by changing the bias value on the central deposition plate in the range of 120 V to +10 V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

A method and an apparatus enabling to produce a halogen atom containing fullerene at higher yield are disclosed. The apparatus comprises a vacuum chamber (501), a gas supply port (502) for supplying a halogen gas into the vacuum chamber (501), a means for producing a plasma (an RF antenna (503)), a means for bringing a fullerene into the plasma (a fullerene oven (504)), a deposition plate (505) for depositing a halogen atom containing fullerene thereon, and a magnetic filter (506) arranged between the means for bringing a fullerene into the plasma and the deposition plate (505).

Description

明 細 書 ハロゲン原子内包フラーレンの製造方法及ぴ製造装置 技術分野  Description Production method and production equipment for halogen-containing fullerenes
本発明は、 ハロゲン原子内包フラーレンの製造方法及び製造装置に係る。 背景技術  The present invention relates to a method and an apparatus for producing a halogen-containing fullerene. Background art
非特許文献 1 Non-patent document 1
プラズマ ·核融合学会誌 第 75巻 第 8号 P. 927 - 933 (1999年 8月)  Journal of Plasma and Fusion Science Vol. 75, No. 8, P. 927-933 (August 1999)
非特許文献 2 Non-patent document 2
Thin Solid Fi lms Vol. 386 P. 286-290 (2001)  Thin Solid Films Vol. 386 P. 286-290 (2001)
非特許文献 1では、 内包フラーレンの製造技術として、 図 3に示す技術が提案さ れている。  Non-Patent Document 1 proposes a technique shown in FIG. 3 as a technique for producing an endohedral fullerene.
この技術は、真空容器内において、内包対象原子をイオン化させたプラズマ流に、 フラーレンを噴射し、プラズマ流の下流に配置した堆積プレートに内包フラーレン を堆積させることにより内包フラーレンを製造する技術である。  This technology is to produce endohedral fullerenes by injecting fullerenes into a plasma stream in which atoms to be included are ionized in a vacuum vessel and depositing the endohedral fullerenes on a deposition plate located downstream of the plasma stream. .
この技術によれば、低温において、収率よく内包フラーレンを製造することが可 能となる。  According to this technique, it is possible to produce endohedral fullerenes at a low temperature and with good yield.
しかし、 この技術においては、堆積プレートの中心部においては内包率が良くな いという問題点を有している。すなわち、内包フラーレンはほとんどプラズマ流の 半径方向外側の部分に堆積しており、プラズマ流の半径方向内側には内包フラーレ ンはほとんど堆積しないという問題点を有している。  However, this technique has a problem that the encapsulation rate is not good at the center of the deposition plate. In other words, the endohedral fullerene is deposited almost entirely on the radially outer portion of the plasma flow, and the endohedral fullerene is hardly deposited on the radially inner side of the plasma flow.
また、 近時、 内包フラーレンの各種有用性が着目され、 より収率性良く内包フラ 一レンを製造する技術が望まれている。  In recent years, various usefulness of endohedral fullerenes has attracted attention, and a technique for producing endohedral fullerenes with higher yield has been desired.
非特許文献 2では、 C F 4ガスをチャンパ一内に導入してプラズマを発生させる ことによりフッ化フラーレンを基板上に堆積させる技術が提案されている。 Non-Patent Document 2 proposes a technique of depositing fullerene fluoride on a substrate by generating a plasma by introducing a CF 4 gas into a chamber.
しかしこの技術において堆積される膜は内包フラーレンではなく、化学修飾フラ 一レンである。 W However, the film deposited in this technique is not an endohedral fullerene but a chemically modified fullerene. W
2 Two
本発明は、より収率性よく内包フラーレンを製造することが可能なハロゲン原子 内包フラーレンの製造方法及び製造装置を提供することを目的とする。 発明の開示  An object of the present invention is to provide a method and an apparatus for producing a halogen-containing endohedral fullerene that can produce an endohedral fullerene with higher yield. Disclosure of the invention
本発明のハロゲン原子内包フラーレンの製造方法は、真空容器内にハロゲンガス を導入してプラズマを発生させるとともにプラズマ流を形成し、該プラズマ乃至プ ラズマ流にフラーレンを導入し、さらに磁気フィルタを通過させて該プラズマ流の 下流に配置した堆積プレートに内包フラーレンを堆積させることを特徴とする。 本発明のハロゲン原子内包フラーレンの製造装置は、真空容器と、該真空容器内 にハロゲンガスを導入するガス導入口と、負に帯電したハロゲン原子を含むプラズ マを発生させるための手段と、該プラズマにフラーレンを導入するための手段と、 内包フラーレンを堆積させるための堆積プレートと、該堆積プレートと該プラズマ との間に設けられた磁気フィルタとを有することを特徴とする。  In the method for producing a halogen atom-containing fullerene of the present invention, a halogen gas is introduced into a vacuum vessel to generate plasma, form a plasma flow, introduce fullerene into the plasma or plasma flow, and further pass through a magnetic filter. Then, the endohedral fullerenes are deposited on a deposition plate disposed downstream of the plasma flow. An apparatus for producing a halogen atom-containing fullerene according to the present invention includes a vacuum vessel, a gas inlet for introducing a halogen gas into the vacuum vessel, a means for generating plasma containing a negatively charged halogen atom, Means for introducing fullerene into the plasma, a deposition plate for depositing the endohedral fullerene, and a magnetic filter provided between the deposition plate and the plasma.
(作用)  (Action)
本発明では例えばフッ素原子を内包させるために、 フッ化炭素ガス (C m F nガ ス) を真空容器内に導入してプラズマを発生させる。 C F 4ガスを用いた場合は、 プラズマ中には C F 3 +と F—が存在する。 For the for encapsulating, for example, fluorine atom in the present invention, plasma is generated by introducing the fluorocarbon gas (C m F n gas) in the vacuum chamber. When CF 4 gas is used, CF 3 + and F— exist in the plasma.
またはハロゲンガス或いはその化合物と、不活性ガスを真空容器内に導入する。 この場合には、プラズマ中には正に帯電した不活性ガスと負に帯電したハロゲンガ スが存在する。  Alternatively, a halogen gas or a compound thereof and an inert gas are introduced into a vacuum vessel. In this case, the plasma contains a positively charged inert gas and a negatively charged halogen gas.
プラズマの発生は、 例えば R F (Radio Frequency, 高周波) アンテナを用いる ことにより高いエネルギー成分を有するプラズマが得られる。  For plasma generation, plasma having a high energy component can be obtained by using, for example, an RF (Radio Frequency) antenna.
このプラズマ中にフラーレンを導入すると、フラーレン中の電子がたたき出され る。特に、本発明によるプラズマは電離プラズマであり高いプラズマエネルギーを 有しているためフラーレンから容易に電子がたたき出される。その結果、高密度の フラーレンイオン (例えば C 6 0 +) が得られる。 When fullerene is introduced into this plasma, electrons in the fullerene are knocked out. In particular, the plasma according to the present invention is an ionized plasma and has a high plasma energy, so that electrons are easily knocked from fullerene. As a result, high density fullerene ions (eg, C 60 +) are obtained.
なお、真空容器外に永久磁石または電磁石を配置しておき、プラズマを閉じ込め るとともに方向性を持たせることが好ましい。 またこのことにより、プラズマ流が 形成される。 本発明では、 プラズマと堆積プレートとの間に磁気フィルタを設けておく。磁気 フィルタを通過することにより、正に帯電したフラーレンイオンと負に帯電したハ ロゲンイオンのみがプラズマ流の下流に流れていくことになる。 It is preferable that a permanent magnet or an electromagnet is arranged outside the vacuum vessel to confine the plasma and to provide directionality. This also creates a plasma flow. In the present invention, a magnetic filter is provided between the plasma and the deposition plate. By passing through the magnetic filter, only positively charged fullerene ions and negatively charged halogen ions will flow downstream of the plasma flow.
その結果、正及ぴ負イオンの相互作用により、収率よく内包フラーレンを堆積さ せることができる。  As a result, endohedral fullerene can be deposited with a high yield by the interaction of positive and negative ions.
なお、堆積プレートを同心円状に分割した複数の分割されたプレートとすること が好ましい。中心部の堆積プレートの半径は前記プラズマの発生孔の半径を Rとし て R + 5 mm以下とするとともに、該中心部の堆積プレートにバイアス電圧を印加 しながら成膜を行なうことが、 より一層収率を向上させる上で好ましい。  It is preferable that the deposition plate be a plurality of divided plates that are concentrically divided. The radius of the central deposition plate is R + 5 mm or less, where R is the radius of the plasma generation hole, and film formation is performed while applying a bias voltage to the central deposition plate. It is preferable for improving the yield.
前記堆積プレートのそれぞれに、任意のバイアス電圧を印加することを特徴とす る。  An arbitrary bias voltage is applied to each of the deposition plates.
前記フラーレンは C 6。であることを特徴とする。 C 6。よりも C原子が多く、 直 径が大きいフラーレンに比べて C 6。は内包化が困難であるが、 本発明においては C 6 0でも容易に内包化が高収率で達成することができる。 The fullerene is C 6 . It is characterized by being. C 6. C 6 has more C atoms than fullerene, which has a larger diameter. Although encapsulation is difficult, in the present invention, encapsulation can be easily achieved in high yield even with C 60 .
中心部の堆積プレートへ、一 2 0 Vく Δ φ & ρく + 5 Vのバイアス電圧 Δ a ρ を印加することを特徴とする。  The method is characterized in that a bias voltage Δaρ of 120 V × Δφ & ρ + 5 V is applied to the central deposition plate.
上記プラズマ流の途中に、 プラズマ流の内直径の 2 . 5〜3 . 0倍の直径を有す る筒を設けることを特徴とする。  A cylinder having a diameter 2.5 to 3.0 times the inner diameter of the plasma flow is provided in the middle of the plasma flow.
少なくとも前記筒の下流側端から下流側における前記真空容器の壁を冷却する ための冷却手段を設けることを特徴とする。 図面の簡単な説明  A cooling means for cooling the wall of the vacuum vessel at least downstream from the downstream end of the cylinder is provided. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、本発明の実施の形態に係る内包フラーレンの製造装置を示す概念図で ある。  FIG. 1 is a conceptual view showing an apparatus for producing an endohedral fullerene according to an embodiment of the present invention.
第 2図は、 第 1図の堆積プレートを示す正面図である。  FIG. 2 is a front view showing the deposition plate of FIG.
第 3図は、 従来の内包フラーレンの製造技術を示す概念図である。  FIG. 3 is a conceptual diagram illustrating a conventional technology for producing an endohedral fullerene.
(符号の説明)  (Explanation of code)
5 0 1 真空容器 5 0 1 Vacuum container
5 0 2 ガス導入口 5 0 3 R Fアンテナ 5 0 2 Gas inlet 5 0 3 RF antenna
5 0 4 フラーレン才ープン  5 0 4 Fullerene
5 0 5、 5 0 5 a 5 0 5 b、 5 0 5 c  5 0 5 5 0 5 a 5 0 5 b 5 0 5 c
5 0 6 磁気フィルタ  5 0 6 Magnetic filter
5 0 7 磁石 5 0 7 Magnet
5 0 9、 5 0 9 a , 5 0 9 b、 55 00 99 cc バイアス電圧の印加手段  509, 509a, 509b, 55 00 99 cc bias voltage applying means
5 1 0 排気ポンプ  5 1 0 Exhaust pump
5 1 1 磁石  5 1 1 Magnet
5 1 2 金網  5 1 2 Wire mesh
5 1 3 筒 発明を実施するための最良の形態 5 1 3 Tube Best Mode for Carrying Out the Invention
図 1に本発明の実施の形態による内包フラーレンの製造装置を示す。  FIG. 1 shows an apparatus for producing an endohedral fullerene according to an embodiment of the present invention.
真空容器 5 0 1と、 真空容器 5 0 1内に例えばフッ化炭素ガス C F 4を導入する ガス導入口 5 0 2と、 プラズマを発生させるための手段 (R Fアンテナ 5 0 3 ) と 該プラズマにフラーレンを導入するための手段(フラーレンオーブン 5 0 4 ) と、 内包フラーレンを堆積させるための堆積プレート 5 0 5と、該プレートと該プラズ マとの間に設けられた磁気フィルタ 5 0 6とを有する。 A vacuum vessel 501, a gas inlet 502 for introducing, for example, a fluorocarbon gas CF 4 into the vacuum vessel 501, a means for generating plasma (RF antenna 503), and A means for introducing fullerene (fullerene oven 504), a deposition plate 505 for depositing the encapsulated fullerene, and a magnetic filter 506 provided between the plate and the plasma. Have.
以下にこの装置を詳細に説明する。  Hereinafter, this device will be described in detail.
第 1図の実施例では、 プラズマをフッ化炭素ガス C F 4の放電により発生させる。 C F 3 +と F—に電離したプラズマの発生は、 R F (Radio Frequency, 高周波) ァ ンテナ 5 0 3により行なわれる。 R Fアンテナ 5 0 3は誘導結合型を用いるのが好 ましい。スパイラル型など平面板のものを用いる方法もあるが、 この場合はアンテ ナの材料または付着している汚れが真空容器内に浮遊してプラズマの発生と内包 フラーレンの形成が悪くなるという問題が発生する。 In the embodiment of FIG. 1, a plasma is generated by discharge fluorocarbon gas CF 4. The generation of plasma ionized by CF 3 + and F— is performed by an RF (Radio Frequency) antenna 503. The RF antenna 503 preferably uses an inductive coupling type. There is also a method of using a flat plate such as a spiral type, but in this case, the problem arises that the material of the antenna or attached dirt floats in the vacuum vessel, causing the generation of plasma and the formation of encapsulated fullerenes to deteriorate. I do.
またガス導入口から内包対象ハロゲンガス或いはその化合物と、不活性ガスを導 入するようにしてもよい。 この場合は、 R Fアンテナ 5 0 3で正に帯電した不活性 ガスと負に帯電したハロゲンガスからなるプラズマが発生される。  Also, the halogen gas or its compound to be included and the inert gas may be introduced from the gas inlet. In this case, the RF antenna 503 generates a plasma composed of a positively charged inert gas and a negatively charged halogen gas.
発生したプラズマは磁石 5 0 7、例えば真空容器 5 0 1の外側で S極と N極が交 互に並べられている永久磁石、 もしくは電磁石により形成された均一磁場(B = 2 〜7 k G) に沿って、真空容器 5 0 1内の軸方向に閉じ込められる。 荷電粒子は真 空容器 5 0 1の内壁に衝突すると中性化して失われるが、内壁近傍に磁力線を張つ ておくことにより、 荷電粒子の損失を防ぐことができる。 The generated plasma has a magnet 507, for example, where the S and N poles cross outside the vacuum vessel 501. It is confined axially within the vacuum vessel 501 along a uniform magnetic field (B = 2-7 kG) formed by permanent magnets or electromagnets arranged next to each other. The charged particles are neutralized and lost when colliding with the inner wall of the vacuum container 501, but the loss of the charged particles can be prevented by providing magnetic force lines near the inner wall.
R Fアンテナ 5 0 3の半径にプラズマを構成するイオンのラーモア半径(約 5 m m) を加算した値が、 プラズマ流の半径となる。 従ってプラズマ流の半径は、 R F アンテナの半径を変えることにより、装置の大きさなどに対応させて適宜の大きさ に任意に選択することができる。  The value obtained by adding the Larmor radius (about 5 mm) of the ions constituting the plasma to the radius of the RF antenna 503 is the radius of the plasma flow. Therefore, the radius of the plasma flow can be arbitrarily selected to an appropriate size according to the size of the apparatus by changing the radius of the RF antenna.
なお、 真空容器 5 0 1の外周には冷却手段 (図示せず) を設けてある。 冷却手段 によって真空容器 5 0 1の内壁を冷却することにより、 中性ガス分子をトラップ (内表面への吸着)するようにしてある。 中性ガス分子を内壁にトラップすること により不純物を含まないプラズマが発生可能となり、堆積プレート 5 0 5上には純 度の高い内包フラーレンを形成することが可能となる。  A cooling means (not shown) is provided on the outer periphery of the vacuum vessel 501. By cooling the inner wall of the vacuum vessel 501 with cooling means, neutral gas molecules are trapped (adsorbed on the inner surface). By trapping neutral gas molecules on the inner wall, a plasma containing no impurities can be generated, and a highly pure endohedral fullerene can be formed on the deposition plate 505.
またプラズマ流の周囲には筒 5 1 3を設けることが好ましレ、。筒 5 1 3を設けた 場合は、その筒 5 1 3の下流側端から堆積プレート 5 0 5までの間の真空容器 5 0 1の内壁を少なくとも冷却するようにすることが好ましい。真空容器 5 0 1の内壁 温度としては室温以下とすることが好ましく、 o °c以下とすることがより好ましレ、。 かかる温度とすることにより中性ガス分子のトラップが行なわれやすくなり、より 高純度の内包フラーレンを得ることが可能となる。  It is preferable to provide a cylinder 5 13 around the plasma flow. When the cylinder 513 is provided, it is preferable to cool at least the inner wall of the vacuum vessel 501 between the downstream end of the cylinder 513 and the deposition plate 505. The temperature of the inner wall of the vacuum vessel 501 is preferably equal to or lower than room temperature, and more preferably equal to or lower than o ° C. At such a temperature, trapping of neutral gas molecules is facilitated, and it becomes possible to obtain a higher-purity endohedral fullerene.
プラズマ流 5 0 8の途中にプラズマ流を覆うように筒 5 1 3を設けた場合は、こ の筒 5 1 3を 4 0 0〜6 5 0 °Cに加熟する。筒 5 1 3に導入された後にプラズマ中 でイオン化されずに筒の内面に付着したフラーレンは再昇華される。筒 5 1 3の温 度が 4 0 0 °Cより低い場合には効率よく再昇華が行なわれず、 6 5 0 °Cより高い場 合には C 6 0が余分に再昇華されるため、 ハロゲン原子との反応による内包フラー レンの形成に寄与しない C 6 0が増えることになり、 C 6 0が効率的に利用されない という問題がある。従って筒 5 1 3の温度は、 4 0 0〜6 5 0 °Cとすることが好ま しい。 When the cylinder 513 is provided so as to cover the plasma flow in the middle of the plasma flow 508, the cylinder 513 is ripened to 400 to 65 ° C. Fullerene that has not been ionized in the plasma after being introduced into the cylinder 5 13 and adheres to the inner surface of the cylinder is sublimated again. If the temperature of the cylinder 5 13 is lower than 400 ° C, re-sublimation is not performed efficiently, and if the temperature is higher than 65 0 C, C 60 is re-sublimated excessively, so halogen C 60, which does not contribute to the formation of endohedral fullerene by reaction with atoms, increases, and there is a problem that C 60 is not used efficiently. Therefore, it is preferable that the temperature of the cylinder 513 is set at 400 to 65 ° C.
より好ましくは 4 8 0〜 6 2 0 °Cが好ましい。 4 8 0 °Cより低い場合はフラーレ ンイオンの密度が低くなり、 内包フラーレンの収率が低下する。 6 2 0 °Cを超える とイオン化されない中性のフラーレンの量が多くなり、 内包化率が低下する。 More preferably, the temperature is 480 to 62 ° C. When the temperature is lower than 480 ° C, the density of fullerene ions decreases, and the yield of endohedral fullerene decreases. Exceeds 62 ° C The amount of neutral fullerene that is not ionized increases, and the encapsulation rate decreases.
筒 5 1 3の内直径としては、 プラズマ流 50 8の直径の 2. 5〜3. 0倍とする ことが好ましい。 より好ましくは 2. 7〜2. 8倍である。 2. 5未満ではプラズ マ流 508と筒 5 1 3との相互作用が大きくなり、プラズマ保持が低下して内包フ ラーレンの収率が減少してしまう。 3. 0を超えると、 プラズマの持続時間が短く なり、 ひいては内包フラーレンの収率が低下してしまう。  The inner diameter of the cylinder 513 is preferably 2.5 to 3.0 times the diameter of the plasma flow 508. More preferably, it is 2.7 to 2.8 times. If it is less than 5, the interaction between the plasma flow 508 and the cylinder 5 13 becomes large, the plasma retention is reduced, and the yield of endohedral fullerene is reduced. If it exceeds 3.0, the duration of the plasma will be shortened, and the yield of endohedral fullerene will be reduced.
フラーレンの導入速度は、フラーレンオーブン 504の温度上昇率により制御す ればよい。 温度上昇率としては、 1 00°C/分以上が好ましい。 上限としては、 突 沸が生じない温度上昇率である。  The introduction speed of the fullerene may be controlled by the temperature rise rate of the fullerene oven 504. The temperature rise rate is preferably 100 ° C./min or more. The upper limit is the temperature rise rate at which bumping does not occur.
筒 5 1 3の上流側端と、 RFアンテナ 50 3との間の距離 1 uは、 (1. 5〜2. 0) X (π DH2/4) となるように設定することが好ましい。 DHは RFアンテ ナ 5 03の直径である。 かかる 1 uとすることにより、筒 5 1 3は RFアンテナ 5 03からの熱による影響を受けることを回避することができ経時的にも安定した プラズマの維持を図ることが可能となる。 An upstream end of the tube 5 1 3, the distance 1 u between the RF antenna 50 3 (1.5 to 2.0) is preferably set such that X (π DH 2/4) . DH is the diameter of the RF antenna 503. By setting the value to 1 u, the cylinder 5 13 can be prevented from being affected by heat from the RF antenna 503, and can maintain stable plasma over time.
堆積プレート 5 05は、図 2に示すように同心円状に分割されている。 図 2に示 す例では、 3つのプレート 505 a、 505 b、 50 5 cに分割されている。 すな わち中心部の堆積プレート 5 05 aは円形であり、この堆積プレート 505 aの外 周には、堆積プレート 5 05 aとは電気的に絶縁されたリング状の堆積プレート 5 05 b、 5 0 5 cが配置されている。 なお、 堆積プレートの数は 3つに限定するも のではない。 それぞれの堆積プレート 505 a、 50 5 b、 50 5 cには、 パイァ ス電圧を独立に印加することができるように、バイアス印加手段 50 9 a, 509 b、 5 09 cが設けられている。 なお堆積プレートの形状は、真空容器の形状に制 限がなければ円形乃至円状リングに限らず、例えば四角形乃至四角形状リングある いはその他の形状でもよい。  The deposition plate 505 is divided concentrically as shown in FIG. In the example shown in FIG. 2, the plate is divided into three plates 505a, 505b, and 505c. In other words, the central deposition plate 505a is circular, and a ring-shaped deposition plate 505b, which is electrically insulated from the deposition plate 505a, is provided around the periphery of the deposition plate 505a. 505 c is arranged. The number of deposition plates is not limited to three. Each of the deposition plates 505a, 505b, and 505c is provided with bias applying means 509a, 509b, and 509c so that a bias voltage can be independently applied. The shape of the deposition plate is not limited to a circular or circular ring as long as the shape of the vacuum vessel is not limited, and may be, for example, a square to square ring or other shapes.
中心部の堆積プレート 505 aの半径は、 RFアンテナ 503の半径を Rとした ときに R+ 5 mmとすることが好ましい。堆積プレート上の R+ 5 mmより外側の 部分で内包フラーレンが形成される確率は低い。背景真空度の向上や、真空引き時 間の短縮などの点から、製造装置を小型化することが好ましく、発生したプラズマ を無駄なく利用して、 かつ製造装置を小型化するという点からは、 中心部に配置さ れた分割プレートの半径を R+ 5 mm以下とすることが好ましい。ただし堆積プレ ートを分割せずに、プレート全面を同一のバイアス電圧にする場合でも、堆積条件 を最適化することにより内包フラーレンを形成することは可能である。 The radius of the central deposition plate 505a is preferably R + 5 mm, where R is the radius of the RF antenna 503. There is a low probability that endohedral fullerenes will be formed outside the area of R + 5 mm on the deposition plate. It is preferable to reduce the size of the manufacturing apparatus from the viewpoint of improving the degree of background vacuum and shortening the evacuation time.From the viewpoint of using the generated plasma without waste and miniaturizing the manufacturing apparatus, Centrally located It is preferable that the radius of the divided plate be R + 5 mm or less. However, even when the deposition voltage is not divided and the entire plate is set to the same bias voltage, it is possible to form the endohedral fullerene by optimizing the deposition conditions.
磁場強度 Bの磁界により閉じ込められたプラズマ流の半径は、プラズマを発生さ せる R Fアンテナの半径に対し、 プラズマを構成するイオンのラーモア半径 RL だけ大きくなる。 は Bに反比例し、 例えば B = 0. 3 T、 プラズマ温度 250 0°Cの条件では、 C6。は RL=4. 0 mm, Fは RL= 1. 0 mmN C Iは RL= 1. 4mm、 . . . と見積もることができる。 従って、 磁場強度や、 プラズマ温度など の製造条件の適用範囲を考慮して、 R + 5 mmを基準として、堆積プレートの大き さを設計することが好ましい。 The radius of the plasma flow confined by the magnetic field of the magnetic field strength B is larger than the radius of the RF antenna generating the plasma by the Larmor radius RL of the ions constituting the plasma. Is inversely proportional to B, for example, B = 0. 3 T, under conditions of plasma temperature 250 0 ° C is, C 6. R L = 4. 0 mm, F is R L = 1. 0 mm N CI is R L = 1. 4 mm is... And can be estimated. Therefore, it is preferable to design the size of the deposition plate based on R + 5 mm in consideration of the applicable range of the manufacturing conditions such as the magnetic field strength and the plasma temperature.
中心部の堆積プレート 50 5 aには、バイアス電圧を印加する。負のバイアス電 圧を印加することが好ましい。 これにより、 内包対象原子であるハロゲンイオンの 速度が低下してフラーレンイオンとの相互作用が大きくなり、内包対象原子が内包 されやすくなる。ただし中心部の堆積プレート 505 aにバイアス電圧を印加せず に、浮遊状態にする場合であっても、堆積条件を最適化することにより内包フラー レンを形成することは可能である。 '  A bias voltage is applied to the central deposition plate 505a. It is preferable to apply a negative bias voltage. As a result, the velocity of the halogen ions, which are the target atoms, is reduced, and the interaction with the fullerene ions is increased, so that the target atoms are easily included. However, even when a floating state is applied without applying a bias voltage to the central deposition plate 505a, it is possible to form the endohedral fullerene by optimizing the deposition conditions. '
また中心部の堆積プレート 505 aにバイアス電圧を印加する場合に、フラーレ ンイオンがプラズマ流 508の中心にそのピークを有する分布となるように、バイ ァス電圧を制御することにより内包率を高くすることができる。その最適バイアス 電圧は内包対象原子、フラーレンの種類その他の成膜条件によつて変化するが予め 実験により把握しておけばよい。  When a bias voltage is applied to the central deposition plate 505a, the encapsulation rate is increased by controlling the bias voltage so that fullerene ions have a distribution having a peak at the center of the plasma flow 508. be able to. The optimum bias voltage varies depending on the atoms to be included, the type of fullerene, and other film formation conditions, but may be determined in advance by experiments.
内包対象原子としてハロゲン元素を用い、 フラーレンとして C60を用いる場合、 中心部の堆積プレート 505 aには、一 20Vく φ & ρく + 5 Vのバイアス電圧を 印加することが好ましい。 一 1 8ν≤ φ a p≤ OVが特に好ましい。 A halogen element as encapsulated target atom, when using a C 60 as fullerenes, the deposition plate 505 a of the central portion, it is preferable to apply a bias voltage one 20V rather phi & [rho Ku + 5 V. One 18ν≤φap≤OV is particularly preferred.
中心部の堆積プレート 505 aと同様に、外側の堆積プレート 50 5 b、 5 05 cも浮遊電位状態あるいはバイアス電圧印加のどちらに設定してもよい。外側の堆 積プレート 5 0 6 b、 506 cの両方とも浮遊状態にした場合であっても、堆積 プレート 50 5 bの部分には、従来方式と同様量の内包フラーレンが堆積する。従 つて、中心部の堆積プレート 50 5 aにおいて収率が高くなった分全体としての収 率が高くなる。 Similarly to the central deposition plate 505a, the outer deposition plates 505b and 505c may be set to either the floating potential state or the bias voltage application. Even when both of the outer deposition plates 506b and 506c are in a floating state, the same amount of endohedral fullerene is deposited on the deposition plate 505b as in the conventional method. Therefore, the increase in the yield on the central deposition plate 505a was Rate is higher.
もちろん、成膜条件の変動により、堆積プレート 5 0 5 bに対応する部分のフラ 一レンイオンの密度が低くなる場合は、堆積プレート 5 0 5 bにもバイアス電圧を 印加してフラーレンイオンの密度を高くしてもょレ、。イオン測定用プローブを用い て成膜中にプラズマの空間分布を測定し、コンピュータで堆積プレート 5 0 5 b、 5 0 5 cに印加するバイァス電圧を自動的に制御すればよい。堆積プレート 5 0 5 aへの印加の自動制御も同様である。  Of course, if the density of fullerene ions in the portion corresponding to the deposition plate 505b becomes low due to the change of the film formation conditions, a bias voltage is also applied to the deposition plate 505b to reduce the density of the fullerene ions. Even if it is high, The spatial distribution of plasma may be measured during film formation using an ion measurement probe, and the bias voltage applied to the deposition plates 505b and 505c may be automatically controlled by a computer. The same applies to the automatic control of the application to the deposition plate 505a.
真空容器 5 0 1には、 ポンプ 5 1 0が設けられ、真空容器 5 0 1内を真空に排気 可能になっている。  The vacuum vessel 501 is provided with a pump 510 so that the inside of the vacuum vessel 501 can be evacuated to a vacuum.
本発明におけるフラーレンとしては、 例えば、 C n ( n = 6 0、 7 0、 7 4、 8 2、 8 4 ) があげられる。 Examples of the fullerene in the present invention include C n (n = 60, 70, 74, 82, 84).
前記筒 5 1 3の下流側端から前記堆積プレート 5 0 5までの距離 1 dと筒 5 1 3の長さ 1 cとの関係を、 1 d≥ 2 1 cとした場合には、堆積プレート 5 0 5上に 堆積する膜中における中性フラーレンの濃度を一層低くすることができる。すなわ ち、 膜中における内包フラーレンの濃度をより一層高くすることが可能となる。 磁気フィルタ 5 0 6は、例えば真空容器 5 0 1の外側に配置された磁石 5 1 1と 金網 5 1 2とにより構成される。磁気フィルタ 5 0 6で内包対象原子のイオンとフ ラーレンのイオンのみを通過させ、 それ以外のイオン、すなわち電子と、正に帯電 した不活性ガスまたは C F 3 +などを反射或いは束縛するように設定されている。 磁石 5 1 1は永久磁石もしくは電磁石のどちらでもよい。電磁石を用いれば、ガス 導入口 5 0 2から導入する内包対象ハロゲンガス及ぴ不活性ガスに応じて磁界の 強さを変えることができる。 If the relationship between the distance 1 d from the downstream end of the cylinder 5 13 to the accumulation plate 505 and the length 1 c of the cylinder 5 13 is 1 d ≥ 21 c, the accumulation plate The concentration of neutral fullerene in the film deposited on 505 can be further reduced. That is, the concentration of the endohedral fullerene in the film can be further increased. The magnetic filter 506 is composed of, for example, a magnet 511 and a wire mesh 512 arranged outside the vacuum vessel 501. The magnetic filter 506 is set to pass only the ions of the atoms to be included and the ions of fullerene, and reflect or restrict the other ions, that is, electrons, and the positively charged inert gas or CF 3 +. Have been. The magnet 5 11 may be either a permanent magnet or an electromagnet. If an electromagnet is used, the strength of the magnetic field can be changed in accordance with the halogen gas to be included and the inert gas introduced from the gas inlet 502.
また磁気フィルタ 5 0 6を二重構成にして、一方の磁気フィルタで電子を反射或 いは束縛し、 他方のフィルタで正に帯電した不活性ガスまたは C F 3 +などを反射 或いは束縛するようにしてもよい。 In addition, the magnetic filter 506 has a double structure, and one of the magnetic filters reflects or restricts electrons, and the other filter reflects or restricts positively charged inert gas or CF 3 +. You may.
(実施例 1 )  (Example 1)
図 1に示す装置を用いてフッ素内包 C 6 0 (以下、 「F @ C 6。」 と表記する。 )フ ラーレンの形成を行なった。 Using the apparatus shown in FIG. 1, fluorine-containing C 60 (hereinafter, referred to as “F @ C 6 ”) fullerene was formed.
本例では、真空容器 5 0 1として、 直径 1 0 0 mm、 長さ 1 2 0 0 m mのものを 用いた。 In this example, the vacuum vessel 501 has a diameter of 100 mm and a length of 1200 mm. Using.
また、 本例では RFアンテナとして、 φ 20 mmのものを用いた。  In this example, an RF antenna having a diameter of 20 mm was used.
真空容器 50 1内にガス導入口 502から CF4ガスを導入し、 プラズマを発生 させた。 CF 4 gas was introduced into the vacuum vessel 501 from the gas introduction port 502 to generate plasma.
なお、 真空容器 501内は、 1 X 10— 4P aとし、 磁場強度 Bは B = 0. 3 T とした。 Note that the vacuum chamber 501, and 1 X 10- 4 P a, the magnetic field intensity B is set to B = 0. 3 T.
次いで、 フラーレンオーブン 504からフラーレンを導入した。  Next, fullerene was introduced from the fullerene oven 504.
一方、堆積プレート 5 05として 3分割タイプのものを用いた。 中心部の堆積プ レート 50 5 aの直径は 1 4 mm、その外側の堆積プレート 505 bの直径は 3 2 mm、 さらに外側の堆積プレート 50 5 cの直径は 5 Ommとした。  On the other hand, a three-division type deposition plate 505 was used. The diameter of the central deposition plate 505a was 14 mm, the diameter of the outer deposition plate 505b was 32 mm, and the diameter of the outer deposition plate 505c was 5 Omm.
中心部の堆積プレート 505 aにはバイアス電圧 Δ a p (= a ρ - φ s ) と して Δ φ a p =— 5 Vを印加した。堆積プレート 505 b、 5 0 5 cは浮遊 電位の状態とした。 なお Δ φ a pは直流電圧、 φ sはプラズマ空間電位である。 イオン測定用プローブを用いて成膜途中におけるイオン分布を測定したところ、 C60 +イオンは中心領域に集中する結果が得られた。 Δ φ ap = —5 V was applied as a bias voltage Δ ap (= a ρ-φ s) to the central deposition plate 505a. The deposition plates 505b and 505c were at floating potential. Note that Δφap is a DC voltage, and φs is a plasma space potential. When the ion distribution in the course of film formation was measured using an ion measurement probe, it was found that C 60 + ions were concentrated in the central region.
成膜を 30分行なった後、堆積プレート上に堆積した内包フラーレン(本例では F@C6。) 含有薄膜を分析した。 中心部における堆積プレート 50 5 aには内包 フラーレンが高い含有率で形成されていた。 また、 中心部の外側における堆積プレ ート 505 b上には内包フラーレン含有の堆積膜が認められた。 After the film was formed for 30 minutes, the thin film containing endohedral fullerene (F @ C 6 in this example) deposited on the deposition plate was analyzed. In the central part of the deposition plate 505a, a high content of endohedral fullerene was formed. In addition, a deposition film containing endohedral fullerene was observed on the deposition plate 505b outside the center.
(実施例 2 )  (Example 2)
本例では、中心の堆積プレートへのバイアス値を一 20 V〜+ 1 0 Vの範囲で変 化させて内包フラーレンの堆積を行なった。  In this example, the endohedral fullerene was deposited by changing the bias value on the central deposition plate in the range of 120 V to +10 V.
- 20 Δ ρ <+ 5 Vの範囲で優れた収率が示された。 - 1 8ν≤Δ φ α ρ≤ 0Vの範囲でより優れた収率が示された。 産業上の利用可能性  Excellent yields were shown in the range of −20 Δ ρ <+5 V. A better yield was shown in the range of −18ν≤Δφαρ≤0V. Industrial applicability
本発明によれば、 内包フラーレンの収率性を高くすることが可能となる。  According to the present invention, it is possible to increase the yield of endohedral fullerenes.

Claims

請 求 の 範 囲  The scope of the claims
1 ·真空容器内にハロゲンガスを導入してプラズマを発生させるとともにプラズマ 流を形成し、該プラズマ乃至プラズマ流にフラーレンを導入し、 さらに磁気フィル タを通過させて該プラズマ流の下流に配置した堆積プレ一トに内包フラーレンを 堆積させることを特徴とするハロゲン原子内包フラーレンの製造方法。 1Halogen gas was introduced into the vacuum vessel to generate plasma and form a plasma flow, fullerene was introduced into the plasma or the plasma flow, and further passed through a magnetic filter and placed downstream of the plasma flow. A method for producing a halogen atom-encapsulated fullerene, comprising depositing an endohedral fullerene on a deposition plate.
2 . 前記プラズマ流は、磁石により形成することを特徴とする請求項 1記載のハ口 ゲン原子内包フラーレンの製造方法。  2. The method according to claim 1, wherein the plasma flow is formed by a magnet.
3 . 前記フラーレンは C 6。であることを特徴とする請求項 1又は請求項 2記载の ハロゲン原子内包フラーレンの製造方法。 3. The fullerene is C 6 . 3. The method for producing a halogen atom-encapsulated fullerene according to claim 1 or 2, wherein:
4 .前記堆積プレートにはバイアス電圧を印加することを特徴とする請求項 1乃至 3のいずれか 1項記載のハロゲン原子内包フラーレンの製造方法。  4. The method for producing a halogen atom-encapsulated fullerene according to any one of claims 1 to 3, wherein a bias voltage is applied to the deposition plate.
5 . 前記堆積プレートを同心円状に分割した複数の堆積プレートとし、 中心部の堆 積プレートの半径は前記プラズマ流の半径以下とするとともに、該中心部の堆積プ レートにバイアス電圧を印加しながら堆積を行なうことを特徴とする請求項 1乃 至 4のいずれ力 1項記載のハロゲン原子内包フラーレンの製造方法。  5. The deposition plate is divided into a plurality of concentric deposition plates, the radius of the deposition plate at the center is not more than the radius of the plasma flow, and a bias voltage is applied to the deposition plate at the center. 5. The method for producing a halogen atom-encapsulated fullerene according to claim 1, wherein the deposition is performed.
6 . 前記中心部の堆積プレートへ、 一 2 0 Vく Δ φ & ρく + 5 Vのバイァス電圧厶 a pを印加することを特徴とする請求項 1乃至 5のいずれか 1項記載のハロゲン 原子内包フラーレンの製造方法。  6. A halogen atom according to any one of claims 1 to 5, wherein a bias voltage m ap of 120 V × Δφ & ρ + 5 V is applied to the central deposition plate. Manufacturing method of endohedral fullerene.
7 .前記プラズマの発生は R Fアンテナで行なうことを特徴とする請求項 1乃至 6 のいずれか 1項記載のハロゲン原子内包フラーレンの製造方法。 7. The method for producing a halogen atom-encapsulated fullerene according to any one of claims 1 to 6, wherein the plasma is generated by an RF antenna.
8 . 真空容器内にハロゲンガスを導入するガス導入口と、プラズマを発生させるた めの手段と、該プラズマにフラーレンを導入するための手段と、内包フラーレンを 堆積させるための堆積プレートと、該堆積プレートと該プラズマとの間に設けられ た磁気フィルタとを有することを特徴とするハロゲン原子内包フラーレンの製造 装置。  8. A gas inlet for introducing a halogen gas into the vacuum vessel, a means for generating plasma, a means for introducing fullerene into the plasma, a deposition plate for depositing endohedral fullerene, An apparatus for producing a halogen atom-encapsulated fullerene, comprising: a magnetic filter provided between a deposition plate and the plasma.
9 . 前記堆積プレートは、 同心円状に分割された複数の堆積プレートからなること を特徴とする請求項 8記載のハロゲン原子内包フラーレンの製造装置。  9. The apparatus for producing fullerene containing halogen atoms according to claim 8, wherein the deposition plate comprises a plurality of deposition plates divided concentrically.
1 0 .前記堆積プレートのそれぞれに任意のバイアス電圧を印加するためのバイァ ス印加手段を有することを特徴とする請求項 9記載のハロゲン原子内包フラーレ ンの製造装置。 10. Vias for applying an arbitrary bias voltage to each of the deposition plates 10. The apparatus for producing a halogen atom-containing fullerene according to claim 9, further comprising a source applying means.
1 1 .前記バイアス印加手段は可変であることを特徴とする請求項 1 0記載のハロ ゲン原子内包フラーレンの製造装置。  11. The apparatus for producing a halogen atom-encapsulated fullerene according to claim 10, wherein the bias applying means is variable.
1 2 . 前記バイアスは、 中心部に配置された堆積プレートへ一 2 0 Vく Δ φ & ρく + 5 Vのバイアス電圧 Δ φ a pを印加するようにしたことを特徴とする請求項 9 乃至 1 1のいずれか 1項記載のハロゲン原子内包フラーレンの製造装置。 12. The bias is such that a bias voltage Δφap of 20 V × Δφ & ρ + 5 V is applied to a centrally located deposition plate. 11. The apparatus for producing fullerene containing halogen atoms according to any one of 1 to 11.
1 3 . 中心部に配置された堆積プレートの内半径は、前記プラズマ発生手段のブラ ズマ発生孔の半径を Rとして R + 5 mm以下であることを特徴とする請求項 9乃 至 1 2のいずれか 1項記載のハロゲン原子内包フラーレンの製造装置。 13. The inner radius of the deposition plate disposed at the center is not more than R + 5 mm, where R is the radius of the plasma generating hole of the plasma generating means. The apparatus for producing a halogen atom-encapsulated fullerene according to any one of the above.
1 4 .前記ブラズマ発生手段は R Fァンテナであることを特徴とする請求項 8乃至 1 3のいずれか 1項記載のハロゲン原子内包フラーレンの製造装置。  14. The apparatus for producing fullerene containing halogen atoms according to any one of claims 8 to 13, wherein the plasma generating means is RF antenna.
1 5 . 上記プラズマ流の途中に、 プラズマ流の内直径の 2 . 5〜3 . 0倍の直径を 有する筒を設けたことを特徴とする請求項 8乃至 1 4のいずれか 1項記載のハロ ゲン原子内包フラーレンの製造装置。  15. The method according to any one of claims 8 to 14, wherein a cylinder having a diameter of 2.5 to 3.0 times the inner diameter of the plasma flow is provided in the middle of the plasma flow. Equipment for producing fullerenes containing halogen atoms.
1 6 .少なくとも前記筒の下流側端から下流側における前記真空容器の壁を冷却す るための冷却手段を設けたことを特徴とする請求項 1 5記載のハロゲン原子内包 フラーレンの製造装置。  16. The apparatus for producing a halogen atom-encapsulated fullerene according to claim 15, wherein cooling means for cooling at least a wall of the vacuum vessel at a downstream side from a downstream end of the cylinder is provided.
PCT/JP2003/016994 2002-12-31 2003-12-26 Method and apparatus for producing halogen atom containing fullerene WO2004060799A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003292705A AU2003292705A1 (en) 2002-12-31 2003-12-26 Method and apparatus for producing halogen atom containing fullerene
JP2004564555A JPWO2004060799A1 (en) 2002-12-31 2003-12-26 Method and apparatus for producing halogen atom-containing fullerene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002383739 2002-12-31
JP2002-383739 2002-12-31

Publications (1)

Publication Number Publication Date
WO2004060799A1 true WO2004060799A1 (en) 2004-07-22

Family

ID=32708749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016994 WO2004060799A1 (en) 2002-12-31 2003-12-26 Method and apparatus for producing halogen atom containing fullerene

Country Status (4)

Country Link
JP (1) JPWO2004060799A1 (en)
AU (1) AU2003292705A1 (en)
TW (1) TW200422255A (en)
WO (1) WO2004060799A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103101902B (en) * 2013-01-28 2014-10-29 深圳青铜剑电力电子科技有限公司 Preparation equipment of nano material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HATAKEYAMA R. ET AL.: "6 fullerene plasma no seishitsu to oyo", JOURNAL OF PLASMA AND FUSION RESEARCH, vol. 75, no. 8, 25 August 1999 (1999-08-25), pages 927 - 933, XP002976400 *
HATAKEYAMA R. ET AL.: "Formation of alkali- and Si-endohedral fullerenes based on plasma technology", ELECTROMECHANICAL SOCIETY PROCEEDINGS, vol. 2001, no. 11, 2001, pages 341 - 348, XP002976399 *
YANG SUNG-CHAE ET AL.: "Production of fluoridated fullerene film by CF4RF plasma", THIN SOLID FILMS, vol. 386, no. 2, 15 May 2001 (2001-05-15), pages 286 - 290, XP004232066 *

Also Published As

Publication number Publication date
TW200422255A (en) 2004-11-01
JPWO2004060799A1 (en) 2006-05-11
AU2003292705A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP5380464B2 (en) Plasma processing apparatus, plasma processing method, and method of manufacturing element including substrate to be processed
US8092605B2 (en) Magnetic confinement of a plasma
US5022977A (en) Ion generation apparatus and thin film forming apparatus and ion source utilizing the ion generation apparatus
JPS58151028A (en) Magnetically strengthened plasma treating method and device
JP2001520433A (en) Apparatus and method for generating accelerated particles
JP5851899B2 (en) Plasma processing equipment
JPS59140375A (en) Magnetron electrode for use in low pressure chamber of plasma treatment device
JP2004218089A (en) Magnetron cathode and magnetron sputtering apparatus employing the same
JP4945566B2 (en) Capacitively coupled magnetic neutral plasma sputtering system
JP2004104095A (en) Magnetron plasma etching apparatus
KR20120023035A (en) Film-forming method and film-forming apparatus
JPH0653177A (en) Plasma generator, surface treatment apparatus, and surface treatment method
JP2774367B2 (en) Apparatus and method for plasma process
KR101124178B1 (en) Method and apparatus for producing gas atom containing fullerene, and gas atom containing fullerene
US5858162A (en) Plasma processing apparatus
WO2004060799A1 (en) Method and apparatus for producing halogen atom containing fullerene
JPS6128029B2 (en)
JPH10125665A (en) Plasma processing system
JP4384295B2 (en) Plasma processing equipment
JPH09245658A (en) Plasma generating mechanism utilizing ecr resonance by permanent magnet
JP4711614B2 (en) Method and apparatus for producing endohedral fullerene
JP2005340222A (en) Current stabilizing method of field emission element, and manufacturing method of field emission element
JPWO2004026763A1 (en) Method and apparatus for producing endohedral fullerene
JP3940465B2 (en) Reactive ion etching system
JP2005206408A (en) Apparatus and method of manufacturing doped fullerene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004564555

Country of ref document: JP

122 Ep: pct application non-entry in european phase