WO2004060404A1 - Drug carrier - Google Patents

Drug carrier Download PDF

Info

Publication number
WO2004060404A1
WO2004060404A1 PCT/JP2004/000004 JP2004000004W WO2004060404A1 WO 2004060404 A1 WO2004060404 A1 WO 2004060404A1 JP 2004000004 W JP2004000004 W JP 2004000004W WO 2004060404 A1 WO2004060404 A1 WO 2004060404A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
rate
hyaluronic acid
derivative
substituent
Prior art date
Application number
PCT/JP2004/000004
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Shimoboji
Teruo Nakamura
Hajime Miyamoto
Rie Shiokawa
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Publication of WO2004060404A1 publication Critical patent/WO2004060404A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present application relates to a hyaluronic acid (HA) derivative drug carrier that can extend and control the blood half-life of a drug and maintain sufficient drug efficacy, conjugation with a drug using the same, and in vivo
  • the present invention relates to a kinetic control technique for the drug.
  • PEG polyethylene glycol
  • Hyaluronic acid is a biomaterial (polysaccharide) isolated from the vitreous of bovine eyes in 1934 by K. Meyer, and has long been known as a major component of fine matrices.
  • HA is a type of darcosamide glycan composed of a disaccharide unit in which D-glucuronic acid and N-acetyltyl glucosamine are linked by a / 3 (1 ⁇ 3) glycosidic bond (formula (II)).
  • HA has no difference in chemical and physical structure, and humans also have a metabolic system. It is the safest biomaterial (Biomateria 1) in terms of immunity and toxicity. In recent years, aspects of bioactive substances such as induction of cell adhesion, proliferation and migration have been reported and attracted attention, and large-scale production of high molecular weight HA by microorganisms has become possible. It has also been put to practical use in the fields of cosmetics and the like.
  • HA as a drug conjugate carrier is safer and can be made larger in size than PEG, which has been widely studied so far. Alternatively, different types of drugs can be carried in one molecule. Therefore, compared to PEG, HA has much greater potential as a drug conjugate carrier for designing and developing conjugates with more advanced pharmacokinetic control functions such as targeting and sustained release. It is thought that. HA is one of the most excellent carriers in terms of safety because it is biodegradable and there is no species difference in its chemical structure.
  • HA has a rapid elimination rate in blood, and its half-life is reported to be 2 minutes when administered intravenously (IV) (J. Intel. Med. Vol. 242, No. 27- 33, 1997).
  • IV intravenously
  • the present inventor has also confirmed that simply conjugating HA to a protein does not extend blood retention and does not lead to improvement in sustained drug efficacy.
  • the main factors controlling the pharmacokinetics of HA, which are important in using HA as a drug carrier are unknown, and increase the kinetics of the HA derivative itself and its retention in blood. There are no reports on the prerequisites required for derivatives to be provided.
  • the main factors for controlling the pharmacokinetics of HA which are important for using HA as a drug carrier, are unknown.
  • there is no report on the kinetics of the modified HA itself or any modification method for increasing the retention in the blood and there is no known method for avoiding the internal metabolic system of HA and controlling the retention in the blood. Absent.
  • the inventor of the present invention has made intensive studies to solve the powerful problem, and by changing the rate of introduction of a substituent into the carboxylic acid of the glucuronic acid moiety in hyaluronic acid (HA), It has been found that the rate of HA disappearance can be adjusted. Furthermore, it has been found that the disappearance rate of HA can be adjusted by changing the molecular weight of HA. That is, the present invention relates to a method for controlling the disappearance rate of HA, and a method for producing a conjugate with a substance having a pharmacological action using the HA.
  • a method for adjusting the rate of disappearance of hyaluronic acid by changing the rate of introduction of a substituent into the carboxylic acid of the dalcuvic acid moiety in the hyaluronic acid derivative by changing the rate of introduction of a substituent into the carboxylic acid of the dalcuvic acid moiety in the hyaluronic acid derivative.
  • the change in the introduction rate of the substituent may be either increase or decrease, and the disappearance rate may be either decrease or increase.
  • the increase in the introduction rate of the substituent may reduce the disappearance rate. It is preferable to reduce the speed.
  • the hyaluronic acid derivative is not particularly limited as long as a substituent of the carboxylic acid of the glucuronic acid moiety is introduced, but is preferably represented by the formula (I):
  • X represents a linear or branched - alkyl group, straight or branched C - alkoxy group, a linear or branched C 2 _ 12 alkenyl, C 6 _ 18 Ariru group, C 3 - 8 cycloalkyl group, or a heterocyclic
  • Each substituent has at least one protecting group-introduced or free hydroxy group, amino group, hydrazide group, mercapto group, maleimide group, olepoxyl group, aldehyde group, or sulfonic acid group. And also includes a polyaddition product or a polycondensate of a substituent having the above functional group,
  • R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a linear or branched Ci-hydroxyalkyl group, an alkylene oxide group or a polyalkylene oxide group.
  • X 0 is _N (-Ri) N (_R 2 ) — or _N (-Ri) N (_R 2 ) CO—
  • X 2 is an amino A linear or branched alkyl group substituted with a hydrazide group or a hydrazide group, and preferably and R 2 is a hydrogen atom.
  • the hyaluronic acid derivative may form a conjugate with a substance having a pharmacological action.
  • the rate of disappearance is not particularly limited, but is preferably a rate of disappearance in blood.
  • a conjugate wherein a substance having a pharmacological action is bound to a hyaluronic acid derivative whose disappearance rate has been adjusted or reduced by the above method.
  • the substance having a pharmacological action is not particularly limited, but is preferably a protein or a peptide.
  • X 2 is linear or branched. 12 alkyl group, straight or branched ( ⁇ - 12 alkoxy group, linear or branched C 2 _ 12 alkenyl group, (6 _ 18 Ariru group, C 3 - is 8 cycloalkyl group or a heterocyclic group, Each substituent is a protecting group-introduced or free hydroxyl group, amino group, hydrazide group, mercapto group, maleimide group, hepoxyl group
  • An aldehyde group or a sulfonic acid group and also includes a polyadduct or a polycondensate of a substituent having the above functional group,
  • R 2 are each independently a hydrogen atom, a straight-chain or branched C-alkyl group, a straight-chain or branched- ⁇ hydroxyalkyl group, an alkylene oxide group or a polyalkylene oxide group.
  • hyaluronic acid derivative in the preparation of a conjugate in which a substance having a pharmacological action is bound to a hyaluronic acid derivative having one or more repeating structures represented by the following formulas in the molecule is provided.
  • X 0 is preferably —N (-R x ) N (—R 2 ) — or one N ( ⁇ R X ) N (—R 2 ) CO—, preferably X 2 is a straight-chain or branched alkylene group substituted with an amino group or a hydrazide group, and preferably and R 2 is a hydrogen atom.
  • the following steps (a) binding a substance having a pharmacological action to two or more hyaluonic acid derivatives having different introduction ratios of the substituents to the carboxylic acid in the darcnic acid moiety,
  • a method for preparing a conjugate of a hyaluronic acid derivative and a substance having a pharmacological action comprising: a step of preparing a hyaluronic acid derivative having an introduction rate calculated in (c).
  • the method for preparing the conjugate comprises the following steps:
  • the elimination rate is not particularly limited, but is preferably a blood elimination rate. According to yet another aspect of the invention, the following steps are provided:
  • the present invention provides a method for predicting the disappearance rate of a hyaluronic acid derivative containing:
  • the rate of disappearance is not particularly limited, but is preferably the rate of disappearance in blood.
  • the adjustment of the molecular weight of the hyaluronic acid derivative and the adjustment of the rate of introduction of a substituent into the carboxylic acid of the glucuronic acid portion of the hyaluronic acid derivative are combined to provide the hyaluronic acid derivative.
  • a method is provided for adjusting the rate of disappearance.
  • FIG. 1 is a graph showing the time-dependent change in the concentration of the HA derivative (a0-a3) in a plasma sample collected from a rat to which the HA derivative (a0-a3) was administered.
  • FIG. 2 is a graph showing a time-dependent change in the concentration of the HA derivative (b 0 -b 3) in a plasma sample collected from a rat to which the HA derivative was administered.
  • FIG. 3 is a graph showing a time-dependent change in the concentration of the HA derivative in a plasma sample collected from a rat to which the HA derivative (c 0 -c 3) was administered.
  • HA hyaluronic acid
  • the main sites of metabolism of HA are the liver and lymph glands, and its metabolism is mainly mediated through receptor membrane-mediated receptors such as CD44, RHAMM, and HARE (Receptor Mediated) cells. It is due to internal uptake and subsequent degradation by hyaluronidase. Both of these molecules have been reported to use the continuous free carboxylic acid (hexasaccharide) of HA as the main recognition site (Exp. Cell Res., Vol. 228, No. 16). — See page 228, 1996.) The present inventors have paid attention here, and have found that by modifying a carboxylic acid to ⁇ t so as to be hardly recognized by metabolic molecules, the blood retention can be controlled and prolonged. The modification rate of the carboxylic acid is determined by proton NMR.
  • the molecular weight of the HA derivative of the present invention is also an important factor for its pharmacokinetics.
  • the blood retention of the HA derivative of the present invention also depends on the molecular weight of HA, and the higher the molecular weight of HA, the longer its half-life in blood. Therefore, the half-life in blood of the HA derivative can be controlled by changing the molecular weight of HA and the modification rate of the carboxylic acid of HA.
  • various known methods such as a light scattering method and a viscosity method can be used.
  • the adjustment of the disappearance rate of HA refers to changing the disappearance rate of HA by increasing or decreasing the disappearance rate of HA, and is usually changed so as to have a target disappearance rate.
  • the change in the introduction ratio of the substituent is usually changed in the range of 0.001% to 99.999%, preferably in the range of 1% to 99%, More preferably, it is varied between 10% and 90%.
  • the substituent to be introduced into the carboxylic acid of dalc carboxylic acid in HA is not particularly limited, and any substituent that can be introduced can be used.
  • the introduced functional group is hydrophobic, the solubility of the HA derivative is reduced, so that a hydrophilic functional group is preferable.
  • the method for introducing the substituent is not particularly limited as long as a person skilled in the art can usually carry out the method.
  • a propyloxyl group is converted into an amide group, an ester group, or a hydrazide group, and the amide group and the hydrazide group are converted. It can be introduced as a substituent on a nitrogen atom or as a substituent on an oxygen atom of an ester group.
  • Specific examples of the substituent include a linear or branched alkyl group, an alkoxy group, an alkenyl group, an aryl group, an alkylene oxide group, a cycloalkyl group, and a heterocyclic group.
  • one or more selected from functional substituents such as a hydroxyl group, an amino group, a hydrazide group, a mercapto group, a hydroxyl group, and an aldehyde group. May have a substituent. Further, the functional substituent may have a protecting group in some cases.
  • the alkyl group has 1 to 12 carbon atoms, and preferably has 1 to 12 carbon atoms. ⁇ 6.
  • the alkoxy group has 1 to 12 carbon atoms, and preferably has 1 to 6 carbon atoms.
  • the alkenyl group has 2 to 12 carbon atoms, and preferably has 2 to 6 carbon atoms.
  • the aryl group has 6 to 18 carbon atoms, and preferably has 6 to 12 carbon atoms.
  • the alkylene oxide group is a group represented by — (CH (—R) CH (—R ′) ⁇ ) n- H ( where R and R ′ are a hydrogen atom or —5 alkyl group).
  • n is an integer of 1 to 20.
  • the cycloalkyl group has 3 to 8 carbon atoms, and preferably has 3 to 6 carbon atoms.
  • the heterocyclic group is, for example, a 5- to 6-membered heterocyclic group having one or more hetero atoms selected from a nitrogen atom, an oxygen atom, and a sulfur atom, and is unsaturated, saturated, or partially unsaturated. It may be saturated.
  • the polyaddition product or polycondensate of the substituent having a functional group is not particularly limited, and examples thereof include poly (oligo) C 6 alkylene glycol, poly (oligo) amino acid, and a combination of diamine and dicarponic acid. .
  • the modification charge is preferably nonionic or anionic.
  • the HA derivative disappearance rate is a rate at which HA is eliminated at invivo or invitro. Since the adjustment method of the present invention is particularly effective in invivo, it is preferable to measure the disappearance rate at invivo, in particular, blood retention (blood disappearance rate) as an index.
  • the measurement of the disappearance rate is not particularly limited, and can be measured by a method known to those skilled in the art.
  • the disappearance rate when measuring the disappearance rate of HA using the retention of HA in the blood as an index, the change over time in the blood concentration is measured, and the kinetic analysis is performed to quantify the clearance from the blood. This is defined as the disappearance rate.
  • the elimination rate is measured in vitro, for example, hyaluronidase is added, and the hyaluronan derivative is applied over time by gel permeation chromatography (ge 1 permeation on chroma to og raphy, GPC). May be measured.
  • HA used in the present invention is not particularly limited as long as it has an HA skeleton.
  • modified HA in which a part of HA is modified or a salt of HA and modified HA (sodium salt, potassium salt, magnesium salt, calcium salt) Salt, aluminum salt, etc.).
  • the HA used in the present invention may be HA obtained by any method, such as HA extracted from animal fiber, HA obtained by fermentation, or HA obtained by chemical synthesis. Not limited.
  • the substance having a pharmacological action is not particularly limited, and low molecular compounds, proteins, peptides, and the like can be used.
  • low molecular compounds include, for example, anti-cancer agents (eg, alkylating agents, chemotherapy drugs, alkaloids, etc.), immunosuppressants, anti-inflammatory drugs (steroid drugs, non-steroidal anti-inflammatory drugs, etc.), anti-rheumatic drugs Agents, anti-J (J-lactam antibiotics, aminoglycoside antibiotics, macrolide antibiotics, tetracycline antibiotics, new quinolone antibiotics, sulfa drugs, etc.).
  • anti-cancer agents eg, alkylating agents, chemotherapy drugs, alkaloids, etc.
  • immunosuppressants e.g., anti-inflammatory drugs (steroid drugs, non-steroidal anti-inflammatory drugs, etc.), anti-rheumatic drugs Agents, anti-J (J-lactam antibiotics, aminoglycoside antibiotics, macrolide antibiotics, tetracycline antibiotics, new quinolone antibiotics, sulfa drugs, etc.).
  • proteins and peptides include, for example, erythropoietin (EP ⁇ ⁇ ), granule oral site colony stimulating factor (G-CSF), interferon-one, ⁇ ⁇ r, (INF-hi, ⁇ , r), thrombopoietin (TPO), Serial Neutrokinetic Factor (CNTF), Tumeric Necrosis Factor-1 (TNF), Tumeric Necrosis Factor-1 Binding Protein (TNFbp), Interleukin-10 (IL-10), Similar to FMS Tyrosine kinase (F1t-3), Growth hormone (GH), Insulin, Insulin-like growth factor_1 (IGF-1), Platelet-derived growth factor (PDGF), Interleukin-11 receptor antagonist (IL — 1 ra), Brain-derived neurotrophic factor (BDNF), keratinocyte growth factor (KGF), stem cell factor (SCF), megakaryocyte Growth differentiation factor (MGDF), osteoprotegerin (OPG), lebutin,
  • the carboxylic acid of HA is condensed with ethylenediamine (EDA) or adipic dihydrazide (ADH) with 1-ethyl-3- (3-dimethylaminopropyl) carposimide (EDC) to have an amino group or hydrazide group.
  • EDA ethylenediamine
  • ADH adipic dihydrazide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carposimide
  • HA-AM, HA-HZ the size HA
  • AM and HZ are preferably treated with, for example, succinic anhydride, etc., and converted to carboxylic acid to make the total charge anion.
  • the order of conjugate of the substance having a pharmacological action with regulation of the rate of HA elimination is not limited.
  • a substance having a pharmacological action may be conjugated to the HA derivative whose disappearance rate has been adjusted, or the rate of HA disappearance may be adjusted after conjugating the pharmacological substance.
  • the method for preparing the conjugate comprising the HA derivative with a controlled blood elimination rate obtained in this way and a protein having a medicinal effect is based on the method used for conjugates of known polymers and proteins.
  • the above-mentioned amino- or hydrazide-modified HA (HA-AM, HA-AZ) is synthesized, and a part of this is synthesized with N-succinimidyl 3- [2-pyridyldithio] propionate (N-Succinimidyl 3- [ 2-pyr i dy 1 dithio] roionate, SPDP) to introduce a mercapto group and prepare HA-SA.
  • surplus AM and HZ are treated with, for example, anhydrous succinic acid, etc., and — converted into a group having a carboxyl group such as NHCOCH 2 CH 2 C ⁇ OH or NHNHCOC H 2 CH 2 COOH, and the total charge It is more preferable to use anion.
  • maleimide group, pinyl sulfo Introduce a functional group that specifically reacts with thiols such as thiol groups
  • a conjugate may be prepared by introducing a maleimide group into an amino group of a protein with maleimidobutylyloxysulfosuccin ether, and reacting this with HA-SH.
  • the length of the spacer between the protein and the backbone of the HA derivative may be adjusted or a site-specific conjugate may be used. it can.
  • a specific method for adjusting the disappearance rate of HA there is a method of measuring the disappearance time of a plurality of HAs having different substituent introduction rates, and selecting an HA having a desired disappearance time from the measured values. The disappearance times of multiple HAs with different ratios were measured, and the results were used to derive a correlation between the substituent introduction rate and the disappearance time of the HA, and based on the correlation, the substituents that resulted in the desired disappearance time And a method of calculating the introduction rate of the compound.
  • the correlation between the rate of introduction of the substituent and the rate of disappearance can be determined using a known method such as the least square method.
  • the least squares method is a method of determining a parameter of a model such that a sum of squares of a difference between a measurement result and a value obtained from a model function is minimized.
  • the least squares solution can be obtained by solving a system of linear equations where the model function is linear with respect to the parameters. If the model function is nonlinear linear with respect to the parameters, it is necessary to determine the parameters by iterative improvement, and it is possible to obtain a least squares solution by the steepest descent method, Marquardt method, Gauss-Newton method, etc. Become.
  • the production of the HA derivative in which the substituent is introduced at a desired ratio can be carried out by a method known to those skilled in the art.
  • EDA ethylenediamine
  • ADH adipic acid dihydrazide
  • the amount of EDC added to HA and the amount of substituent introduced based on the concentration of hyaluronic acid in the reaction solution can be adjusted.
  • the rate of disappearance may be adjusted by changing the introduction ratio of the substituent and the molecular weight of HA.
  • the NMR measurement was performed using a nuclear magnetic resonance apparatus JNM-ECA500 (manufactured by JEOL Ltd.) using heavy water as a solvent.
  • the rate of introduction of the substituent was determined from the integral ratio of the peak specific to the introduced substituent and the peak derived from hyaluronic acid.
  • Detection wavelength fluorescence (excitation 490 nm, fluorescence 5, 18 nm)
  • unit means a repetitive structure containing a disaccharide of D-dalcuronic acid and N-acetyldarcosamine as a skeleton contained in a hyaluronic acid (HA) derivative.
  • HA-HZ hyaluronic acid derivatives
  • HZ hydrazide groups
  • HA Dissolve hyaluronic acid having a molecular weight of 2.5 ⁇ 10 4 daltons (manufactured by Denki Kagaku Kogyo Co., Ltd.) at a concentration of 1.0% in distilled water, and adjust the pH to 4.7 to 4.8 with 5N: ⁇ . Was.
  • MWCO 12k-14k tareton
  • HZ hyaluronic acid
  • HA-HZ An HA derivative into which the title HZ was introduced (HA-HZ) was obtained in the same manner as in Example 1-1-1 above, and the introduction rate of HZ in the obtained HA-HZ was determined by proton NMR. As a result, 6% (b0), 49% (b2), and 71% (b3) of the carboxylic acid of HA were converted to HZ.
  • Example 1-1-1-3 Synthesis of hyaluronic acid mono-HZ (MW58 OKDa) In addition to dissolving HA (manufactured by Denki Kagaku Kogyo Co., Ltd.) with a molecular weight of 5.8 ⁇ 10 5 reton at a concentration of 0.25% in distilled water
  • HA-HZ HA derivative into which the title HZ was introduced
  • the HZ incorporation rate of the obtained HA-HZ was determined by proton NMR, and 8% (c 0), 56% (c 2), and 73% (c 3) of the carboxylic acid in HA were converted to HZ. It had been.
  • Fluorescein-1-isothiocyanate Fluorescein-1-isothiocyanate (Fluo rescein-4-isothiocyanate, FITC) dissolved in 1/10 volume of dimethyl sulfoxide (
  • SA / HZ (TNBS) 250 (a 0, b 0, c 0), 80 (a 2, b 2.c 2), 40 (a 3, b 3, c 3) (mo 1 / At a charging ratio of mo 1), succinic anhydride (SA) dissolved in 3.5 mL of DMSO was added and reacted similarly.
  • the reaction mixture was purified by dialysis against a large excess of distilled water, and the resulting aqueous solution was freeze-dried.
  • Each of the obtained samples was dissolved to a predetermined concentration, and the FITC concentration was quantified from the absorbance at 494 nm of the sample solution diluted to 0.25 mg ZmL, and the concentration of each unit was calculated according to the following formula.
  • conversion to molar fraction and calculation of the weight fraction derived from HA in the derivative were performed.
  • TNBS trinitrobenzenesulfonic acid
  • HZ group (%) HZ group (%) Unit Unit Unit HA
  • HA-HZ NMR TNBS (mol%) (mol%) (mol%) (weight%) a0 3-1.06 1.94 97.00 99.75 b0 6-1.35 4.65 94.00 98.24 c0 8-1.48 6.52 92.00 97.15 a2 42-1.36 40.64 58.00 79.30 b2 49 1 1.50 47.50 51.00 76.57 c2 56-1.77 54.23 44.00 74.14 a3 59-1.22 57.78 41.00 72.56 b3 71-1.25 69.75 29.00 68.55 c3 73-1.09 71.91 27.00 67.80
  • the nine HA derivatives of Example 1 were administered once intravenously at a dose of 10 mg / kg to rats intravenously, before administration, and after administration at 0.25, 1, 2, 4, 6, 8, 10, 12 and After 24 hours, the mixture was centrifuged at 0 L (heparin treatment) to obtain plasma. This plasma sample was stored at 120 ° C until measurement.
  • the standard sample for calibration curve and the sample for measurement were analyzed by GPC.
  • WinNonlin Ver 2.1 Belgium Science
  • MULTI RUNGE
  • the target parameters were calculated overnight.
  • WinNonlin performs a model-independent analysis using the data of the last three measurement points of each individual, and calculates the half-life (t 1/2), mean blood residence time (MRT), and total clearance (C 1) did.
  • Table 2 shows the results of model-independent kinetic analysis. Looking at the total clearance (C 1) value, a 0 is 2.4 times a 3, b 0 «b 3 3.7 times, and so on. 0 is. It was 5.8 times that of 3, indicating that the higher the introduction rate of HZ, the slower the HA derivative disappears from the blood. Comparing HA derivatives with similar HZ introduction rates, the HA derivative with a higher molecular weight has a smaller C1 value, and the higher the molecular weight of HA, the greater the degree of improvement in blood retention. Indicated. The same tendency was observed for MRT and t12 shown in Table 2.
  • Table 3 shows the results of the kinetic analysis of the HA derivative taking into account the nonlinear region.
  • MULTI RUNGE
  • Vds s and Vmax are equal for HA derivatives with the same molecular weight and that the affinity for the receptor involved in HA clearance changes with the HZ introduction rate.
  • the Vds s value, Vmax, and Km were calculated by fitting analysis (Table 3).
  • the Vmax of a0-a3 was 2.8 times the Vmax of c0_c3, indicating that the HA derivative having a smaller molecular weight disappeared from the blood earlier.
  • the introduction rate of HZ is high, such as the Km value of a3 is 3.6 times the Km value of a0 and the Km value of c3 is 18.9 times the Km value of c0. It was shown that Km became larger. That is, it was suggested by the fitting analysis that the higher the introduction rate of HZ, the lower the affinity with the receptor and the slower the disappearance of the HA derivative from the blood. As shown above, the results of both model-independent analysis and kinetic analysis taking into account nonlinearity indicate that the half-life in blood is prolonged as the carboxylic acid modification rate of the HA derivative and the molecular weight of the HA derivative increase. Rukoto has been shown.
  • the hyaluronic acid derivative of the present invention can control the rate of metabolism of the HA derivative in the body, and can control and prolong the blood retention property. To provide a biodegradable and safe pharmacokinetic control technology that enables adjustment of the blood exposure pattern that is optimal for the subject.

Abstract

A method of regulating the rate of extinction of a hyaluronic acid (HA) derivative, comprising changing the percentage of substituent introduction into the carboxylic acid of glucuronic acid of the HA derivative, or comprising changing the molecular weight of the HA derivative. Further, there is provided a drug conjugate wherein a hyaluronic acid derivative having its extinction rate regulated is used as a carrier so as to prolong or control the half-life period of drug in blood.

Description

明 細 書  Specification
薬物担体 技術分野  Drug carrier Technical field
本出願は、 薬物の血中半減期を延長、 制御し、 十分な薬効を維持することを可能 にするヒアルロン酸 (HA) 誘導体薬物担体、 これを用いた薬物とのコンジユゲー ト、 および生体内における当該薬物の動態制御技術に関する。 背景技術  The present application relates to a hyaluronic acid (HA) derivative drug carrier that can extend and control the blood half-life of a drug and maintain sufficient drug efficacy, conjugation with a drug using the same, and in vivo The present invention relates to a kinetic control technique for the drug. Background art
一般に、 タンパク質製剤の血中滞留性、 安定性向上のためにタンパク質と水溶性 ポリマ一とのコンジュゲートが試みられている。 特に、 ポリエチレングリコ一ル ( PEG) は、 その不活性 (i ne r t) な性質と、' タンパク質吸着を防ぐ効果によ り、 広く用いられており、 医薬品として実用化の段階に入っている。 しかし、 PE Gは生分解性ポリマーではない為、 腎排泄による排泄性、 蓄積した場合の安全性等 の問題が懸念される。  In general, conjugates of proteins and water-soluble polymers have been attempted to improve the protein retention and stability in blood. In particular, polyethylene glycol (PEG) is widely used due to its inert property and its effect of preventing protein adsorption, and is in the stage of practical application as a pharmaceutical. However, since PEG is not a biodegradable polymer, there are concerns about problems such as excretion by renal excretion and safety when accumulated.
ヒアルロン酸 (HA) は、 1934年、 K. Me ye rによって牛の眼の硝子体 から単離された生体材料 (多糖) であり、 細 マトリックスの主成分として古く から知られている。 HAは、 D—グルクロン酸と N—ァセチルダルコサミンとが /3 (1→3) グリコシド結合により連結された二糖単位から成るダルコサミドグリカ ンの一種である (式 (I I I) ) 。 Hyaluronic acid (HA) is a biomaterial (polysaccharide) isolated from the vitreous of bovine eyes in 1934 by K. Meyer, and has long been known as a major component of fine matrices. HA is a type of darcosamide glycan composed of a disaccharide unit in which D-glucuronic acid and N-acetyltyl glucosamine are linked by a / 3 (1 → 3) glycosidic bond (formula (II)).
Figure imgf000002_0001
HAは、 化学的、 物理的構造に種差が無く、 ヒトも代謝系を持っており、 免疫性 、 毒性といった面でも最も安全な医用生体材料 (B i oma t e r i a 1) である 。 近年、 その、 細胞の接着、 増殖、 移動の誘導といった生理活性物質としての側面 が報告され、 注目されてきており、 また、 微生物による高分子量 HAの大量生産が 可能となり、 変形性軟骨治療薬、 化粧品等の分野でも実用化されている。
Figure imgf000002_0001
HA has no difference in chemical and physical structure, and humans also have a metabolic system. It is the safest biomaterial (Biomateria 1) in terms of immunity and toxicity. In recent years, aspects of bioactive substances such as induction of cell adhesion, proliferation and migration have been reported and attracted attention, and large-scale production of high molecular weight HA by microorganisms has become possible. It has also been put to practical use in the fields of cosmetics and the like.
そんな中、 薬物を HAとコンジュゲートすることによる、 薬物の癌組織 (国際公 開第 92/06714号参照) 、 肝臓 (特開 2001— 81103号参照) への夕 —ゲッティング、 抗原性の低減 (特開平 2— 273176号参照) 、 血中滞留性の 延長 (特開平 5— 85942号公報、 国際公開第 01Z05434号、 国際公開第 01/60412号参照) 等の報告がある。  In the meantime, by conjugating the drug with HA, the drug is targeted to cancer tissue (see International Publication No. WO 92/06714) and liver (see Japanese Patent Application Laid-Open No. 2001-81103). (See Japanese Patent Application Laid-Open No. 2-273176) and prolonged blood retention (see Japanese Patent Application Laid-Open No. 5-85942, International Publication No. 01Z05434, and International Publication No. 01/60412).
薬物コンジユゲート担体としての H Aは、 これまで広く検討されている P E Gに 比較して、 より安全であり、 巨大なサイズ化が可能、 さらに、 1分子中に多くの反 応点を持っため、 複数の、 あるいは異なる種類の薬物を 1分子中に担持できる。 従 つて HAは、 PEGに比較して、 タ一ゲッティング、 徐放等、 より高度な薬物動態 制御機能を持つコンジユゲートを設計開発するための薬物コンジユゲート担体とし て格段に大きい潜在的可能性を有すると考えられる。 また、 HAは、 生分解性であ り、 その化学的構造に種差が無いことから安全性という点で最も優れた担体の 1つ と言える。  HA as a drug conjugate carrier is safer and can be made larger in size than PEG, which has been widely studied so far. Alternatively, different types of drugs can be carried in one molecule. Therefore, compared to PEG, HA has much greater potential as a drug conjugate carrier for designing and developing conjugates with more advanced pharmacokinetic control functions such as targeting and sustained release. It is thought that. HA is one of the most excellent carriers in terms of safety because it is biodegradable and there is no species difference in its chemical structure.
一方で、 HA自体の血中消失速度は速ぐ 静脈内投与 (I. V. ) した場合で半 減期は 2分と報告されている (J. I n t e r. Me d. 第242巻、 第27— 3 3頁、 1997年参照) 。 本発明者の検討でも、 B隹単に H Aをタンパク質にコンジ ユゲートすれば血中滞留性が延長され、 薬効の持続性向上に繋がるといったもので はないことを確認している。 しかしながら、 H Aを薬物担体として使用する上で重 要な、 H Aの体内動態をコントロールするための主要因は知られておらず、 また、 HA誘導体自体の動態、 並びにその血中滞留性を増加させる為の誘導体が備えるベ き必須条件に関する報告は全く無い。 上述した如く、 HAを薬物担体として使用する上で重要な、 HAの体内動態をコ ントロールするための主要因は知られていない。 また、 HA修飾体自体の動態報告 、 並びに血中滞留性を増加させる為の修飾方法に関する報告は全く無く、 HAの体 内代謝系を回避し、 血中滞留性を制御する方法は知られていない。 On the other hand, HA has a rapid elimination rate in blood, and its half-life is reported to be 2 minutes when administered intravenously (IV) (J. Intel. Med. Vol. 242, No. 27- 33, 1997). The present inventor has also confirmed that simply conjugating HA to a protein does not extend blood retention and does not lead to improvement in sustained drug efficacy. However, the main factors controlling the pharmacokinetics of HA, which are important in using HA as a drug carrier, are unknown, and increase the kinetics of the HA derivative itself and its retention in blood. There are no reports on the prerequisites required for derivatives to be provided. As described above, the main factors for controlling the pharmacokinetics of HA, which are important for using HA as a drug carrier, are unknown. In addition, there is no report on the kinetics of the modified HA itself or any modification method for increasing the retention in the blood, and there is no known method for avoiding the internal metabolic system of HA and controlling the retention in the blood. Absent.
本発明者は、 力かる問題点を解決する為に鋭意研究を進めたところ、 ヒアルロン 酸 (HA) 中のグルクロン酸部分のカルボン酸への置換基の導入率を変ィ匕させるこ とにより、 H Aの消失速度を調節できることを見出した。 さらに、 H Aの分子量を 変ィ匕させることでも、 H Aの消失速度を調節できることを見出した。 すなわち、 本 発明は、 HAの消失速度の調節方法、 及び該 HAを用いた薬理作用を有する物質と のコンジュゲートの製造方法に関する。  The inventor of the present invention has made intensive studies to solve the powerful problem, and by changing the rate of introduction of a substituent into the carboxylic acid of the glucuronic acid moiety in hyaluronic acid (HA), It has been found that the rate of HA disappearance can be adjusted. Furthermore, it has been found that the disappearance rate of HA can be adjusted by changing the molecular weight of HA. That is, the present invention relates to a method for controlling the disappearance rate of HA, and a method for producing a conjugate with a substance having a pharmacological action using the HA.
すなわち本願発明の一つの側面によれば、 ヒアルロン酸誘導体中のダルク口ン酸 部分のカルボン酸への置換基の導入率を変化させることにより、 ヒアルロン酸の消 失速度を調節する方法が提供される。 ここで、 当該置換基の導入率の変ィ匕は、 増加 または減少のどちらでもよく、 当該消失速度は低下または向上のどちらでもよいが 、 当該置換基の導入率を増加することにより、 当該消失速度を低下させることが好 ましい。  That is, according to one aspect of the present invention, there is provided a method for adjusting the rate of disappearance of hyaluronic acid by changing the rate of introduction of a substituent into the carboxylic acid of the dalcuvic acid moiety in the hyaluronic acid derivative. You. Here, the change in the introduction rate of the substituent may be either increase or decrease, and the disappearance rate may be either decrease or increase. However, the increase in the introduction rate of the substituent may reduce the disappearance rate. It is preferable to reduce the speed.
また、 前記ヒアルロン酸誘導体は、 グルクロン酸部分のカルボン酸への置換基が 導入されていれば特に限定されないが、 好ましくは、 式 (I ) :  The hyaluronic acid derivative is not particularly limited as long as a substituent of the carboxylic acid of the glucuronic acid moiety is introduced, but is preferably represented by the formula (I):
Figure imgf000004_0001
(式中、 X。は、 一〇一、 一 N (— ―、 一 S—、 -N (-R^ N (-R2) ―、 -N (-Rx) N (-R2) CO—、 または単結合であり、
Figure imgf000004_0001
(Where X is the number of one-one, one N (——, one S—, -N (-R ^ N (-R 2 ) —, -N (-R x ) N (-R 2 ) CO — Or a single bond,
X は、 直鎖または分枝 — アルキル基、 直鎖または分枝 C — アルコキシ基 、 直鎖または分枝 C2_12アルケニル基、 C6_18ァリール基、 C38シクロアルキル 基または複素環基であり、 各置換基は、 保護基を導入されたまたは遊離のヒドロキ シル基、 アミノ基、 ヒドラジド基、 メルカプト基、 マレイミド基、 力ルポキシル基 、 アルデヒド基、 スルホン酸基を 1つ以上有していてもよく、 また上記官能基を有 する置換基の重付加体あるいは重縮合体も含み、 X represents a linear or branched - alkyl group, straight or branched C - alkoxy group, a linear or branched C 2 _ 12 alkenyl, C 6 _ 18 Ariru group, C 3 - 8 cycloalkyl group, or a heterocyclic Each substituent has at least one protecting group-introduced or free hydroxy group, amino group, hydrazide group, mercapto group, maleimide group, olepoxyl group, aldehyde group, or sulfonic acid group. And also includes a polyaddition product or a polycondensate of a substituent having the above functional group,
および R2は、 それぞれ独立して、 水素原子、 直鎖または分枝 アルキ ル基、 直鎖または分枝 Ci- ヒドロキシアルキル基、 アルキレンォキシド基また はポリアルキレンォキシド基である。 ) And R 2 are each independently a hydrogen atom, a linear or branched alkyl group, a linear or branched Ci-hydroxyalkyl group, an alkylene oxide group or a polyalkylene oxide group. )
で表される繰り返し構造を、 分子内に 1またはそれ以上有するヒアルロン酸誘導体 である。 Is a hyaluronic acid derivative having one or more repeating structures in the molecule.
ここで、 式 (I) において、 好ましくは X0は、 _N (-Ri) N (_R2) —、 または _N (-Ri) N (_R2) CO—であり、 好ましくは X2は、 アミノ基また はヒドラジド基で置換された直鎖または分枝 アルキル基であり、 好ましく は および R2は、 水素原子である。 Here, in the formula (I), preferably X 0 is _N (-Ri) N (_R 2 ) — or _N (-Ri) N (_R 2 ) CO—, and preferably X 2 is an amino A linear or branched alkyl group substituted with a hydrazide group or a hydrazide group, and preferably and R 2 is a hydrogen atom.
また、 前記ヒアルロン酸誘導体は、 薬理作用を有する物質とのコンジュゲートを 形成していてもよい。 また、 消失速度とは、 特に限定されないが、 好ましくは血中 消失速度である。  Further, the hyaluronic acid derivative may form a conjugate with a substance having a pharmacological action. The rate of disappearance is not particularly limited, but is preferably a rate of disappearance in blood.
本願発明の別の側面によれば、 前記方法により消失速度が調節されたまたは低下 したヒアルロン酸誘導体に、 薬理作用を有する物質が結合しているコンジユゲート が提供される。  According to another aspect of the present invention, there is provided a conjugate wherein a substance having a pharmacological action is bound to a hyaluronic acid derivative whose disappearance rate has been adjusted or reduced by the above method.
ここで、 薬理作用を有する物質は、 特に限定されないが、 好ましくはタンパク質 又はペプチドである。  Here, the substance having a pharmacological action is not particularly limited, but is preferably a protein or a peptide.
本願発明のさらに別の側面によれば、 式 (I I) : According to yet another aspect of the present invention, formula (II):
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 X。は、 _〇_、 — N (-Rx) ―、 一 S―、 一 N (_R N (― R2) ―、 ― N (-Ri) N (-R2) CO—または単結合であり、 (Where X is _〇_, — N (-R x ) —, one S—, one N (_R N (—R 2 ) —, — N (-Ri) N (-R 2 ) CO — Or a single bond,
X2は、 直鎖または分枝。 12アルキル基、 直鎖または分枝 (^— 12アルコキシ基 、 直鎖または分枝 C2_12アルケニル基、 (:6_18ァリール基、 C38シクロアルキル 基または複素環基であり、 各置換基は、 保護基を導入されたまたは遊離のヒドロキ シル基、 アミノ基、 ヒドラジド基、 メルカプト基、 マレイミド基、 力ルポキシル基X 2 is linear or branched. 12 alkyl group, straight or branched (^ - 12 alkoxy group, linear or branched C 2 _ 12 alkenyl group, (6 _ 18 Ariru group, C 3 - is 8 cycloalkyl group or a heterocyclic group, Each substituent is a protecting group-introduced or free hydroxyl group, amino group, hydrazide group, mercapto group, maleimide group, hepoxyl group
、 アルデヒド基、 スルホン酸基を 1つ以上有していてもよく、 また上記官能基を有 する置換基の重付加体あるいは重縮合体も含み、 , An aldehyde group or a sulfonic acid group, and also includes a polyadduct or a polycondensate of a substituent having the above functional group,
および R2は、 それぞれ独立して、 水素原子、 直鎖または分枝 C — アルキ ル基、 直鎖または分枝 —^ヒドロキシアルキル基、 アルキレンォキシド基また はポリアルキレンォキシド基である。 ) And R 2 are each independently a hydrogen atom, a straight-chain or branched C-alkyl group, a straight-chain or branched- ^ hydroxyalkyl group, an alkylene oxide group or a polyalkylene oxide group. )
で表される繰り返し構造を、 分子内に 1またはそれ以上有する、 ヒアルロン酸誘導 体に薬理作用を有する物質が結合しているコンジユゲート作製における、 前記ヒア ルロン酸誘導体の使用が提供される。 The use of the above-mentioned hyaluronic acid derivative in the preparation of a conjugate in which a substance having a pharmacological action is bound to a hyaluronic acid derivative having one or more repeating structures represented by the following formulas in the molecule is provided.
ここで、 式 (I I) において、 好ましくは X0は、 —N (-Rx) N (― R2) - または一N (~RX) N (― R2) CO—であり、 好ましくは X2は、 アミノ基また はヒドラジド基で置換された直鎖または分枝 アルキレン基であり、 好まし くは および R2は、 水素原子である。 Here, in the formula (II), X 0 is preferably —N (-R x ) N (—R 2 ) — or one N (~ R X ) N (—R 2 ) CO—, preferably X 2 is a straight-chain or branched alkylene group substituted with an amino group or a hydrazide group, and preferably and R 2 is a hydrogen atom.
本願発明のさらに別の側面によれば、 以下の工程、 すなわち、 (a) ダルク口ン酸部分のカルボン酸への置換基の導入率が異なる 2つ以上のヒ アル口ン酸誘導体に、 それぞれ薬理作用を有する物質を結合させる工程、 According to yet another aspect of the present invention, the following steps: (a) binding a substance having a pharmacological action to two or more hyaluonic acid derivatives having different introduction ratios of the substituents to the carboxylic acid in the darcnic acid moiety,
(b) (a) で作製したコンジュゲートの消失速度を測定する工程、  (b) measuring the disappearance rate of the conjugate prepared in (a),
(c) 測定結果を基に、 目的の消失速度に対応する置換基の導入率を算出するェ 程、  (c) calculating the introduction rate of the substituent corresponding to the target disappearance rate based on the measurement result,
(d) (c) で算出された導入率を有するヒアルロン酸誘導体を作製する工程、 を含む、 ヒアルロン酸誘導体と薬理作用を有する物質のコンジユゲートの作製方法 が提供される。  (d) A method for preparing a conjugate of a hyaluronic acid derivative and a substance having a pharmacological action, comprising: a step of preparing a hyaluronic acid derivative having an introduction rate calculated in (c).
また、 当該コンジュゲートの作製方法は、 以下の工程、 すなわち:  In addition, the method for preparing the conjugate comprises the following steps:
(a) グルクロン酸部分のカルボン酸への置換基の導入率が異なる 2つ以上のヒ アル口ン酸誘導体の消失速度を測定する工程、  (a) measuring the rate of disappearance of two or more hydranoic acid derivatives having different rates of introduction of substituents into the carboxylic acid of the glucuronic acid moiety,
(b) 測定結果を基に、 目的の消失速度に対応する置換基の導入率を算出するェ 程、  (b) calculating the introduction ratio of the substituent corresponding to the target disappearance rate based on the measurement result,
(c) (b) で算出された導入率を有するヒアルロン酸誘導体に薬理作用を有す る物質を結合させる工程、  (c) a step of binding a substance having a pharmacological action to the hyaluronic acid derivative having the introduction rate calculated in (b),
を含んでいてもよい。 May be included.
ここで、 消失速度は、 特に限定されないが、 好ましくは血中消失速度である。 本願発明のさらに別の側面によれば、 以下の工程、 すなわち:  Here, the elimination rate is not particularly limited, but is preferably a blood elimination rate. According to yet another aspect of the invention, the following steps are provided:
( a ) ダリレク口ン酸部分のカルボン酸への置換基の導入率が異なる 2つ以上のヒ アル口ン酸誘導体、 またはダルク口ン酸部分のカルボン酸への置換基の導入率が異 なる 2つ以上のヒアルロン酸誘導体に薬理作用を有する物質を結合させたコンジュ ゲートの消失速度を測定する工程、  (a) Different rates of introduction of substituents to carboxylic acid in Daryrek's carboxylic acid moiety Different in introduction rates of substituents to carboxylic acid in two or more hyal sulfonic acid derivatives or darcylic acid moiety Measuring the disappearance rate of a conjugate in which a substance having a pharmacological action is bound to two or more hyaluronic acid derivatives,
(b) (a) で測定した結果を基に、 置換基の導入率と消失速度の相関関係を得 る工程、  (b) obtaining a correlation between the rate of introduction of the substituent and the rate of disappearance based on the result measured in (a),
(c) (b) で得た相関関係を基に、 置換基の導入率から消失速度を予測するェ 程、  (c) Based on the correlation obtained in (b), estimating the disappearance rate from the substituent introduction rate,
を含むヒアルロン酸誘導体の消失速度を予測する方法が提供される。 The present invention provides a method for predicting the disappearance rate of a hyaluronic acid derivative containing:
ここでも、 消失速度は、 特に限定されないが、 好ましくは血中消失速度である。 本願発明のさらに別の側面によれば、 ヒアルロン酸誘導体の分子量の調整と、 ヒ アルロン酸誘導体のグルクロン酸部分のカルボン酸への置換基の導入率の調整とを 組み合わせることにより、 ヒアルロン酸誘導体の消失速度を調節する方法が提供さ れる。 図面の簡単な説明 Again, the rate of disappearance is not particularly limited, but is preferably the rate of disappearance in blood. According to still another aspect of the present invention, the adjustment of the molecular weight of the hyaluronic acid derivative and the adjustment of the rate of introduction of a substituent into the carboxylic acid of the glucuronic acid portion of the hyaluronic acid derivative are combined to provide the hyaluronic acid derivative. A method is provided for adjusting the rate of disappearance. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 HA誘導体 (a 0-a 3) を投与したラットから採取した血漿サンプル における、 当該 HA誘導体の濃度の経時変化を示すグラフである。  FIG. 1 is a graph showing the time-dependent change in the concentration of the HA derivative (a0-a3) in a plasma sample collected from a rat to which the HA derivative (a0-a3) was administered.
図 2は、 HA誘導体 (b 0— b 3) を投与したラットから採取した血漿サンプル における、 当該 HA誘導体の濃度の経時変化を示すグラフである。  FIG. 2 is a graph showing a time-dependent change in the concentration of the HA derivative (b 0 -b 3) in a plasma sample collected from a rat to which the HA derivative was administered.
図 3は、 HA誘導体 (c 0-c 3) を投与したラッ卜から採取した血漿サンプル における、 当該 H A誘導体の濃度の経時変化を示すグラフである。 発明を実施するための好ましい形態  FIG. 3 is a graph showing a time-dependent change in the concentration of the HA derivative in a plasma sample collected from a rat to which the HA derivative (c 0 -c 3) was administered. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を更に具体的に説明する。  Hereinafter, the present invention will be described more specifically.
本発明者らが、 ヒアルロン酸 (HA) の血中半減期制御に重要と考えた要素は、 カルボン酸修飾率、 HA分子量の 2要素である。 これらの要素が異なる H A誘導体 を合成、 さらに H A誘導体にタンパク質をコンジュゲートする事で、 H Aのタンパ ク質コンジユゲートキャリァ一としての有用性、 およびその効果を最適化するパラ メ一ターを明らかにした。  The factors considered by the present inventors to be important for controlling the half-life of hyaluronic acid (HA) in blood are two factors, the carboxylic acid modification rate and the HA molecular weight. By synthesizing an HA derivative with these different elements and conjugating the protein to the HA derivative, the usefulness of HA as a protein conjugate carrier and the parameters for optimizing its effects are clarified. I made it.
H Aの主代謝部位は肝臓、 リンパ腺であり、 その代謝は、 主に CD 44、 RHA MM、 HARE等の HAに特異的に結合する細胞膜局在レセプ夕一を介した (Rece ptor Mediated) 細胞内への取り込みと、 それに引き続くヒアルロニダーゼ (hy a l u r on i d a s e) による分解によるものである。 これらの分子は共に、 H Aの連続した遊離のカルボン酸 (6糖) を主な認識部位にしていることが報告され ている (Exp. Ce l 1 Re s. , 第 228巻、 第 2 1 6— 228頁、 1 99 6年参照) 。 本発明者らは、 ここに着目し、 代謝系分子に認識され難いように ¾tにカルボン 酸を修飾することで血中滞留性を制御、 延長できることを見出した。 尚、 カルボン 酸の修飾率は、 プロトン NMRで定量される。 The main sites of metabolism of HA are the liver and lymph glands, and its metabolism is mainly mediated through receptor membrane-mediated receptors such as CD44, RHAMM, and HARE (Receptor Mediated) cells. It is due to internal uptake and subsequent degradation by hyaluronidase. Both of these molecules have been reported to use the continuous free carboxylic acid (hexasaccharide) of HA as the main recognition site (Exp. Cell Res., Vol. 228, No. 16). — See page 228, 1996.) The present inventors have paid attention here, and have found that by modifying a carboxylic acid to Δt so as to be hardly recognized by metabolic molecules, the blood retention can be controlled and prolonged. The modification rate of the carboxylic acid is determined by proton NMR.
また、 本発明の HA誘導体の分子量もその体内動態に重要な要因である。 本発明 の HA誘導体の血中滞留性は HAの分子量にも依存し、 分子量の大きな HA程その 血中半減期は長い。 従って、 H Aの分子量と H Aのカルボン酸の修飾率を変化させ ることで、 H A誘導体の血中半減期を制御できる。 ヒアルロン酸重量平均分子量の 測定方法については、 光散乱法、 粘度法等、 各種の公知の方法を利用することがで さる。  The molecular weight of the HA derivative of the present invention is also an important factor for its pharmacokinetics. The blood retention of the HA derivative of the present invention also depends on the molecular weight of HA, and the higher the molecular weight of HA, the longer its half-life in blood. Therefore, the half-life in blood of the HA derivative can be controlled by changing the molecular weight of HA and the modification rate of the carboxylic acid of HA. As a method of measuring the weight average molecular weight of hyaluronic acid, various known methods such as a light scattering method and a viscosity method can be used.
本発明において HAの消失速度の調節とは、 HAの消失速度を大きくし、 または 小さくすることにより変ィ匕させることであり、 通常、 目的とする消失速度になるよ うに変化させる。 一般的に、 置換基の導入率を高くした場合には H Aの消失速度は 小さくなり、 逆に、 置換基の導入率を小さくした場合には H Aの消失速度は大きく なる。 また、 置換基の導入率の変化は、 通常、 導入率が 0 · 0 0 1 %〜 9 9 . 9 9 9 %の間で変化させ、 好ましくは 1 %〜9 9 %の間で変化させ、 さらに好ましくは 1 0 %〜 9 0 %の間で変化させる。  In the present invention, the adjustment of the disappearance rate of HA refers to changing the disappearance rate of HA by increasing or decreasing the disappearance rate of HA, and is usually changed so as to have a target disappearance rate. In general, when the rate of introduction of the substituent is increased, the disappearance rate of HA decreases, and conversely, when the rate of introduction of the substituent is decreased, the disappearance rate of HA increases. In addition, the change in the introduction ratio of the substituent is usually changed in the range of 0.001% to 99.999%, preferably in the range of 1% to 99%, More preferably, it is varied between 10% and 90%.
本発明において、 HA中のダルク口ン酸のカルボン酸に導入される置換基として は、 特に制限されず、 導入可能な置換基であればどのような置換基でも用いること が可能である。 しかし、 導入された官能基が疎水性の場合は、 HA誘導体の溶解度 が下がる為、 親水性の官能基が好ましい。  In the present invention, the substituent to be introduced into the carboxylic acid of dalc carboxylic acid in HA is not particularly limited, and any substituent that can be introduced can be used. However, when the introduced functional group is hydrophobic, the solubility of the HA derivative is reduced, so that a hydrophilic functional group is preferable.
当該置換基の導入方法としては、 当業者が通常なし得る方法であれば特に制限さ れないが、 例えば、 力ルポキシル基をアミド基、 エステル基、 ヒドラジド基に変換 し、 アミド基およびヒドラジド基の窒素原子上の置換基として、 またはエステル基 の酸素原子上の置換基として導入することができる。 置換基の具体的な例としては 、 直鎖もしくは分岐したアルキル基、 アルコキシ基、 アルケニル基、 ァリール基、 アルキレンォキシド基、 シクロアルキル基、 複素環基などを挙げることができ、 各 置換基は、 例えば、 ヒドロキシル基、 アミノ基、 ヒドラジド基、 メルカプト基、 力 ルポキシル基、 アルデヒド基などの官能性置換基から選ばれる 1つまたはそれ以上 の置換基を有していてもよい。 また、 当該官能性置換基は、 場合によっては保護基 を有していてもよい。 The method for introducing the substituent is not particularly limited as long as a person skilled in the art can usually carry out the method.For example, a propyloxyl group is converted into an amide group, an ester group, or a hydrazide group, and the amide group and the hydrazide group are converted. It can be introduced as a substituent on a nitrogen atom or as a substituent on an oxygen atom of an ester group. Specific examples of the substituent include a linear or branched alkyl group, an alkoxy group, an alkenyl group, an aryl group, an alkylene oxide group, a cycloalkyl group, and a heterocyclic group. , For example, one or more selected from functional substituents such as a hydroxyl group, an amino group, a hydrazide group, a mercapto group, a hydroxyl group, and an aldehyde group. May have a substituent. Further, the functional substituent may have a protecting group in some cases.
ここでアルキル基は、 炭素数 1〜1 2のものであり、 好ましくは炭素数:!〜 6で ある。 また、 アルコキシ基は、 炭素数 1〜1 2のものであり、 好ましくは炭素数 1 〜6である。 また、 アルケニル基は、 炭素数 2〜1 2のものであり、 好ましくは炭 素数 2〜6である。 また、 ァリール基は炭素数 6〜1 8のものであり、 好ましくは 6〜1 2である。 また、 アルキレンォキシド基は、 ― (CH (— R) CH (― R ' ) 〇) n-H (式中、 Rおよび R ' は水素原子、 または — 5アルキル基) で示さ れる基であり、 好ましくは、 ポリエチレンオキサイド基、 ポリプロピレンォキサイ ド基であり、 また好ましくは nは、 1〜2 0の整数である。 また、 シクロアルキル 基は、 炭素数 3〜 8のものであり、 好ましくは炭素数 3〜 6である。 また、 複素環 基は、 例えば、 窒素原子、 酸素原子、 硫黄原子から選ばれるヘテロ原子を 1つまた はそれ以上有する 5〜 6員環複素環基であり、 不飽和、 飽和、 または部分的に飽和 していてもよい。 Here, the alkyl group has 1 to 12 carbon atoms, and preferably has 1 to 12 carbon atoms. ~ 6. The alkoxy group has 1 to 12 carbon atoms, and preferably has 1 to 6 carbon atoms. The alkenyl group has 2 to 12 carbon atoms, and preferably has 2 to 6 carbon atoms. The aryl group has 6 to 18 carbon atoms, and preferably has 6 to 12 carbon atoms. The alkylene oxide group is a group represented by — (CH (—R) CH (—R ′) 〇) n- H ( where R and R ′ are a hydrogen atom or —5 alkyl group). It is preferably a polyethylene oxide group or a polypropylene oxide group, and preferably n is an integer of 1 to 20. The cycloalkyl group has 3 to 8 carbon atoms, and preferably has 3 to 6 carbon atoms. The heterocyclic group is, for example, a 5- to 6-membered heterocyclic group having one or more hetero atoms selected from a nitrogen atom, an oxygen atom, and a sulfur atom, and is unsaturated, saturated, or partially unsaturated. It may be saturated.
また、 官能基を有する置換基の重付加体あるいは重縮合体は、 特に限定されない が、 ポリ (オリゴ) C 6アルキレングリコール、 ポリ (オリゴ) アミノ酸、 ジァ ミンとジカルポン酸の組み合わせなどが挙げられる。 The polyaddition product or polycondensate of the substituent having a functional group is not particularly limited, and examples thereof include poly (oligo) C 6 alkylene glycol, poly (oligo) amino acid, and a combination of diamine and dicarponic acid. .
また、 置換基が導入された HA誘導体の電荷に関しては、 導入された置換基が、 カチオン性であった場合、 トータルの電荷がプラス側に振れ、 血中滞留性の短縮に 繋がるため、 ヒアルロン酸の消失速度を遅くする場合には修飾電荷は非イオン性か 、 ァニオン性であることが好ましい。  Regarding the charge of the HA derivative into which the substituent has been introduced, if the introduced substituent is cationic, the total charge shifts to the positive side, leading to a reduction in the retention in blood. In order to reduce the disappearance rate of the compound, the modification charge is preferably nonionic or anionic.
本発明において H A誘導体消失速度とは、 HAが i n v i v o又は i n v i t r oで消失される速度である。 本発明の調節方法は i n V i v oにおいて特に 効果が高いので、 i n v i v oでの消失速度、 特に血中滞留性 (血中消失速度) を指標に消失速度を測定することが好ましい。  In the present invention, the HA derivative disappearance rate is a rate at which HA is eliminated at invivo or invitro. Since the adjustment method of the present invention is particularly effective in invivo, it is preferable to measure the disappearance rate at invivo, in particular, blood retention (blood disappearance rate) as an index.
消失速度の測定は特に制限されず、 当業者に公知の方法で測定することができる 。 例えば、 HAの血中滞留性を指標に HAの消失速度を測定する場合、 血中濃度の 経時的変化を測定し、 この動態解析を行うことで血中からのクリアランスを定量し 、 これを消失速度と定義する。 消失速度を i n V i t r oで測定する場合には、 例えば、 ヒアルロニダ一ゼを添加し、 経時的にゲル浸透クロマトグラフィー (ge 1 pe rme a t i on chr oma t og r aphy、 GPC) にて HA誘 導体の消失速度を測定すればよい。 The measurement of the disappearance rate is not particularly limited, and can be measured by a method known to those skilled in the art. For example, when measuring the disappearance rate of HA using the retention of HA in the blood as an index, the change over time in the blood concentration is measured, and the kinetic analysis is performed to quantify the clearance from the blood. This is defined as the disappearance rate. When the elimination rate is measured in vitro, for example, hyaluronidase is added, and the hyaluronan derivative is applied over time by gel permeation chromatography (ge 1 permeation on chroma to og raphy, GPC). May be measured.
本発明に用いられる HAは HA骨格を有していれば特に限定されず、 例えば、 H Aの一部を修飾した修飾 HAや、 HA及び修飾 HAの塩 (ナトリウム塩、 カリウム 塩、 マグネシウム塩、 カルシウム塩、 アルミニウム塩、 等) なども含まれる。 本発明に用いられる HAは、 どのようにして得られた HAでもよく、 動物糸纖か ら抽出された HA、 発酵法で得られた HA、 化学合成で得られた HAなど、 その由 来は限定されない。  HA used in the present invention is not particularly limited as long as it has an HA skeleton. For example, modified HA in which a part of HA is modified, or a salt of HA and modified HA (sodium salt, potassium salt, magnesium salt, calcium salt) Salt, aluminum salt, etc.). The HA used in the present invention may be HA obtained by any method, such as HA extracted from animal fiber, HA obtained by fermentation, or HA obtained by chemical synthesis. Not limited.
薬理作用を有する物質は特に限定されず、 低分子化合物、 タンパク質、 ペプチド 等を用いることが可能である。  The substance having a pharmacological action is not particularly limited, and low molecular compounds, proteins, peptides, and the like can be used.
低分子化合物の例としては、 例えば、 制癌剤 (例えば、 アルキル化剤、 代諭抗 剤、 アルカロイド等) 、 免疫抑制剤、 抗炎 (ステロイド剤、 非ステロイド剤系 抗炎症剤、 等) 、 抗リウマチ剤、 抗鋪 J ( -ラクタム系抗生物質、 アミノグリコ シド系抗生物質、 マクロライド系抗生物質、 テトラサイクリン系抗生物質、 新キノ ロン系抗生物質、 サルファ剤、 等) などを挙げることができる。  Examples of low molecular compounds include, for example, anti-cancer agents (eg, alkylating agents, chemotherapy drugs, alkaloids, etc.), immunosuppressants, anti-inflammatory drugs (steroid drugs, non-steroidal anti-inflammatory drugs, etc.), anti-rheumatic drugs Agents, anti-J (J-lactam antibiotics, aminoglycoside antibiotics, macrolide antibiotics, tetracycline antibiotics, new quinolone antibiotics, sulfa drugs, etc.).
タンパク質、 ペプチドの例としては、 例えば、 エリスロポエチン (EP〇) 、 グ ラニュ口サイトコロニー剌激因子 (G—CSF) 、 インタ一フエロン一 、 βゝ r 、 (INF—ひ、 β、 r) 、 トロンポポェチン (TPO) 、 シリアリ一ニュートロ フイクファクター (CNTF) 、 チューマーネクロ一シスファクタ一 (TNF) 、 チュ一マーネクローシスファクタ一結合タンパク質 (TNFbp) 、 インターロイ キン一 10 (I L— 10) 、 FMS類似チロシンカイネース (F 1 t— 3) 、 成長 ホルモン (GH) 、 インシュリン、 インシュリン類似成長因子 _1 (I GF— 1) 、 血小板由来成長因子 (PDGF) 、 インターロイキン一 1レセプ夕一アンタゴニ スト (I L— 1 r a) 、 ブレイン由来ニューロトロフイクファクター (BDNF) 、 ケラチノサイト成長因子 (KGF) 、 幹細胞因子 (SCF) 、 メガカリオサイト 成長分化因子 (MGDF) 、 ォステオプロテゲリン (OPG) 、 レブチン、 副甲状 腺ホルモン (PTH) 、 塩基性フイブロブラスト成長因子 (b— FGF) 、 骨形成 タンパク質 (BMP) 、 グルカゴン様ペプチド一 1 (GLP— 1) 、 抗体、 ダイァ ボディー等を挙げることができる。 なお、 ここでいうタンパク質、 ペプチドは、 そ れぞれ構成するアミノ酸の 1または 2以上の置換、 欠失、 もしくは 1または 2以上 のアミノ酸を付加した改変体あるいは共有結合的に化学修飾した修飾体を含む。 Examples of proteins and peptides include, for example, erythropoietin (EP ニ ュ), granule oral site colony stimulating factor (G-CSF), interferon-one, β ゝ r, (INF-hi, β, r), thrombopoietin (TPO), Serial Neutrokinetic Factor (CNTF), Tumeric Necrosis Factor-1 (TNF), Tumeric Necrosis Factor-1 Binding Protein (TNFbp), Interleukin-10 (IL-10), Similar to FMS Tyrosine kinase (F1t-3), Growth hormone (GH), Insulin, Insulin-like growth factor_1 (IGF-1), Platelet-derived growth factor (PDGF), Interleukin-11 receptor antagonist (IL — 1 ra), Brain-derived neurotrophic factor (BDNF), keratinocyte growth factor (KGF), stem cell factor (SCF), megakaryocyte Growth differentiation factor (MGDF), osteoprotegerin (OPG), lebutin, parathyroid Examples include glandular hormone (PTH), basic fibroblast growth factor (b-FGF), bone morphogenetic protein (BMP), glucagon-like peptide-11 (GLP-1), antibodies, and Diabody. The proteins and peptides referred to herein are, respectively, one or more substitutions, deletions, or modifications of one or more amino acids or covalently modified modifications of the constituent amino acids. including.
HA誘導体の調製方法は、 既知のカルボン酸修飾方法を用いることができる。 例 えば、 HAのカルボン酸をエチレンジァミン (EDA) やアジピン酸ジヒドラジド (ADH) を 1—ェチルー 3— (3—ジメチルァミノプロピル)カルポジイミド (E DC) で縮合させ、 アミノ基、 あるいはヒドラジド基を有する HA (HA— AM、 HA— HZ) を合成する。 この際、 AM、 HZは、 例えば無水コハク酸等で処理、 カルボン酸に戻してトータル電荷をァニオンにした方が血中滞留性の延長に好まし レ^ あるいは、 同様の方法で、 アミノ酸、 ペプチド等のアミノ基で修飾しても良い 本発明の HA誘導体と薬理作用を有する物質のコンジユゲー卜を作製する場合、 H Aの消失速度の調節と薬理作用を有する物質のコンジュゲートの順番は限定され ず、 例えば、 消失速度を調節した HA誘導体に薬理作用を有する物質をコンジュゲ 一トしてもよいし、 薬理作用を有する物質をコンジユゲートした後に HAの消失速 度を調節してもよい。  As a method for preparing the HA derivative, a known carboxylic acid modification method can be used. For example, the carboxylic acid of HA is condensed with ethylenediamine (EDA) or adipic dihydrazide (ADH) with 1-ethyl-3- (3-dimethylaminopropyl) carposimide (EDC) to have an amino group or hydrazide group. Synthesize HA (HA-AM, HA-HZ). At this time, AM and HZ are preferably treated with, for example, succinic anhydride, etc., and converted to carboxylic acid to make the total charge anion. When preparing a conjugate of the HA derivative of the present invention and a substance having a pharmacological action, the order of conjugate of the substance having a pharmacological action with regulation of the rate of HA elimination is not limited. For example, a substance having a pharmacological action may be conjugated to the HA derivative whose disappearance rate has been adjusted, or the rate of HA disappearance may be adjusted after conjugating the pharmacological substance.
さらに、 こうして得られた血中消失速度を制御された H A誘導体と薬利作用を持 つタンパク質とからなるコンジュゲートの調製方法は、 既知のポリマーとタンパク 質のコンジュゲートで使用されている方法を用いることができる。 例えば、 上述の アミノ基、 あるいはヒドラジド基修飾された HA (HA— AM、 HA-AZ) を合 成、 この一部を N—スクシンィミジル 3— [2—ピリジルジチォ] プロピオネー ト (N-Succinimidyl 3- [2-pyr i dy 1 d i t h i o] r o i onat e, SPDP) と反応させ、 メル カプト基を導入、 HA—SAを調製する。 この際、 余剰の AM, HZは、 例えば無 水コハク酸等で処理し、 — NHCOCH2CH2C〇OHまたは一 NHNHCOC H2 CH2 C OOHなどのカルボキシル基を有する基に変換してトータル電荷をァ 二オンにした方が好ましい。 一方で、 タンパク質にマレイミド基、 ピニルスルフォ ン基等チオールと特異的に反応する官能基を導入する。 例えば、 マレイミドブチリ ロキシスルフォサクシンエーテルでタンパク質のァミノ基にマレイミド基を導入、 これを H A— S Hと反応させコンジュゲートを調製すればよい。 Furthermore, the method for preparing the conjugate comprising the HA derivative with a controlled blood elimination rate obtained in this way and a protein having a medicinal effect is based on the method used for conjugates of known polymers and proteins. Can be used. For example, the above-mentioned amino- or hydrazide-modified HA (HA-AM, HA-AZ) is synthesized, and a part of this is synthesized with N-succinimidyl 3- [2-pyridyldithio] propionate (N-Succinimidyl 3- [ 2-pyr i dy 1 dithio] roionate, SPDP) to introduce a mercapto group and prepare HA-SA. At this time, surplus AM and HZ are treated with, for example, anhydrous succinic acid, etc., and — converted into a group having a carboxyl group such as NHCOCH 2 CH 2 C〇OH or NHNHCOC H 2 CH 2 COOH, and the total charge It is more preferable to use anion. On the other hand, maleimide group, pinyl sulfo Introduce a functional group that specifically reacts with thiols such as thiol groups For example, a conjugate may be prepared by introducing a maleimide group into an amino group of a protein with maleimidobutylyloxysulfosuccin ether, and reacting this with HA-SH.
ここで、 このコンジユゲートにおいて、 コンジユゲートの生物活性を有効に保つ ために、 タンパク質と H A誘導体主鎖間のスぺーサ一の長さを調節したり、 部位特 異的なコンジュゲ一トとすることもできる。  In this conjugate, in order to keep the biological activity of the conjugate effective, the length of the spacer between the protein and the backbone of the HA derivative may be adjusted or a site-specific conjugate may be used. it can.
H Aの消失速度を調節する為の具体的な方法としては、 置換基の導入率の異なる 複数の HAの消失時間を測定し、 その中から目的の消失時間となる HAを選択する 方法や、 導入率の異なる複数の H Aの消失時間を測定し、 その結果から置換基の導 入率と HAの消失時間の相関関係を導きだし、 その相関関係をもとに目的の消失時 間となる置換基の導入率を算出する方法などを挙げることができる。  As a specific method for adjusting the disappearance rate of HA, there is a method of measuring the disappearance time of a plurality of HAs having different substituent introduction rates, and selecting an HA having a desired disappearance time from the measured values. The disappearance times of multiple HAs with different ratios were measured, and the results were used to derive a correlation between the substituent introduction rate and the disappearance time of the HA, and based on the correlation, the substituents that resulted in the desired disappearance time And a method of calculating the introduction rate of the compound.
置換基の導入率と消失速度の相関関係は、 例えば、 最小二乗法などの公知方法を 用いて求めることができる。 最小二乗法は、 測定結果とモデルとなる関数から得ら れる値の差の二乗和が最小となるようなモデルのパラメ一夕を決定する方法である 。 モデル関数がパラメ一夕に対して線形の塲合、 連立一次方程式を解くことにより 最小二乗解を得ることが可能となる。 モデル関数がパラメ一夕に対して非線形線形 の場合には、 反復改良によってそのパラメータを決定する必要があり、 最急降下法 、 Marquardt法、 Gauss- Newton法などにより最小二乗解を得ることが可能となる。 置換基が目的の割合で導入された HA誘導体の製造は当業者に公知の方法を用い て行うことができる。 例えば、 ED Cで HAのカルボン酸にエチレンジァミン (E DA) やアジピン酸ジヒドラジド (ADH) を縮合、 修飾する場合は、 ED Cの H Aに対する添加量および反応溶液中ヒアルロン酸濃度で置換基の導入量を調節でき る。  The correlation between the rate of introduction of the substituent and the rate of disappearance can be determined using a known method such as the least square method. The least squares method is a method of determining a parameter of a model such that a sum of squares of a difference between a measurement result and a value obtained from a model function is minimized. The least squares solution can be obtained by solving a system of linear equations where the model function is linear with respect to the parameters. If the model function is nonlinear linear with respect to the parameters, it is necessary to determine the parameters by iterative improvement, and it is possible to obtain a least squares solution by the steepest descent method, Marquardt method, Gauss-Newton method, etc. Become. The production of the HA derivative in which the substituent is introduced at a desired ratio can be carried out by a method known to those skilled in the art. For example, when ethylenediamine (EDA) or adipic acid dihydrazide (ADH) is condensed with HA carboxylic acid and modified with EDC, the amount of EDC added to HA and the amount of substituent introduced based on the concentration of hyaluronic acid in the reaction solution Can be adjusted.
また、 H Aの分子量も HA消失速度に影響を与えることから、 置換基の導入率を 変化させるとともに、 HAの分子量も変化させて、 消失速度を調節してもよい。 実施例 以下、 本発明の好適な実施例についてさらに詳細に説明するが、 本発明はこれら の実施例に限定されるものではない。 Further, since the molecular weight of HA also affects the rate of disappearance of HA, the rate of disappearance may be adjusted by changing the introduction ratio of the substituent and the molecular weight of HA. Example Hereinafter, preferred embodiments of the present invention will be described in more detail, but the present invention is not limited to these embodiments.
NMR測定は、 核磁気共鳴装置 JNM-ECA500 (日本電子株式会社製) を用いて重水を溶媒に用いて測定した。 また置換基の導入率の決定は、 導入した置 換基特有のピークとヒアル口ン酸由来のピークの積分比より決定した。  The NMR measurement was performed using a nuclear magnetic resonance apparatus JNM-ECA500 (manufactured by JEOL Ltd.) using heavy water as a solvent. The rate of introduction of the substituent was determined from the integral ratio of the peak specific to the introduced substituent and the peak derived from hyaluronic acid.
ゲル浸透ク口マトグラフィー (GPC) 分析は、 HP LCシステム (Waters™ 600S Controller, Waters™ 616 Pump, Waters™ 717puls Autos ampler, Waters™ 474 Scanning Fluorescence Detector Aliance) を用い、 以下の測定条件より行った。  Gel permeation mouth chromatography (GPC) analysis was performed using the HP LC system (Waters ™ 600S Controller, Waters ™ 616 Pump, Waters ™ 717puls Autos ampler, Waters ™ 474 Scanning Fluorescence Detector Aliance) under the following measurement conditions. .
GPCカラム: TSKg e 1 G6000 PWXL GPC column: TSKg e 1 G6000 PW XL
移動相:リン酸食塩水バッファー (PBS、 pH7. 4)  Mobile phase: phosphate buffered saline (PBS, pH 7.4)
溶離方法:イソクラチック  Elution method: Isocratic
流速: 0. 5mL/m i n  Flow rate: 0.5mL / min
使用サンプル量: 40 L  Sample volume used: 40 L
検出波長:蛍光 (励起 490 nm, 蛍光 5, 1 8 nm)  Detection wavelength: fluorescence (excitation 490 nm, fluorescence 5, 18 nm)
解析ソフト: M i 1 1 e n i um32 V e r. 3. 21  Analysis software: M i 11 e n i um 32 V e r. 3.21
また、 「ユニット」 という用語は、 ヒアルロン酸 (HA) 誘導体中に含まれる、 D—ダルクロン酸と N—ァセチルダルコサミンの 2糖を骨格とする繰り返し構造を 意味する。  Further, the term “unit” means a repetitive structure containing a disaccharide of D-dalcuronic acid and N-acetyldarcosamine as a skeleton contained in a hyaluronic acid (HA) derivative.
実施例 1 :ヒアルロン酸誘導体の合成  Example 1 Synthesis of Hyaluronic Acid Derivative
[実施例 1 - 1 - 1] ヒアルロン酸— H Z (MW 25KDa) の合成  [Example 1-1-1] Synthesis of hyaluronic acid—HZ (MW 25KDa)
修飾率の異なるヒドラジド基 (HZ) が導入されたヒアルロン酸誘導体 (HA- HZ) の合成を以下の手順で行った。  The synthesis of hyaluronic acid derivatives (HA-HZ) into which hydrazide groups (HZ) with different modification rates were introduced was performed by the following procedure.
分子量 2. 5X 104ダルトンのヒアルロン酸 (HA) (電気化学工業株式会社 製) を 1. 0 %濃度で蒸留水に溶解し、 5N:^でpHを4. 7〜4. 8に調整し た。 3つのロットにおいて、 1ーェチルー 3— ( 3一ジメチルァミノプロピル) 力 ルポジイミド (EDC) とアジピン酸ジヒドラジド (ADH) を、 HA : EDC : ADH=1 : 0. 1 : 40 (a 0) 、 1 : 1 : 40 (a 2) 、 および 1 : 5 : 40Dissolve hyaluronic acid (HA) having a molecular weight of 2.5 × 10 4 daltons (manufactured by Denki Kagaku Kogyo Co., Ltd.) at a concentration of 1.0% in distilled water, and adjust the pH to 4.7 to 4.8 with 5N: ^. Was. In the three lots, 1-ethyl-3- (3-dimethylaminopropyl) power Ruposimide (EDC) and adipic dihydrazide (ADH) were converted into HA: EDC: ADH = 1: 0.1: 40 (a0), 1 : 1:40 (a 2) and 1: 5: 40
(a 3) モル比になるようそれぞれに添加し、 5N塩酸で pHを 4. 7〜4. 8に 保ちながら室温で 2時間反応させた。 大過剰量の 10 OmM塩化ナトリウム溶液、 25%エタノール溶液、 蒸留水に対して順に透析 (スぺクトラポア 7、 分画分子量(a 3) Add each to a molar ratio and adjust the pH to 4.7-4.8 with 5N hydrochloric acid. The reaction was carried out at room temperature for 2 hours while maintaining. Dialysis against large excess of 10 OmM sodium chloride solution, 25% ethanol solution and distilled water in order (Spectrapore 7, molecular weight cutoff)
(MWCO) : 12k— 14kタレトン) し、 凍糸吉乾燥して標題のヒドラジド基 ( HZ) が導入されたヒアルロン酸 (HA-HZ) を得た。 (MWCO): 12k-14k tareton), and dried to form hyaluronic acid (HA-HZ) into which the title hydrazide group (HZ) was introduced.
得られた HA— HZ中の HZ導入率を ADH導入率としてプロトン NMR法で定 量したところ、 HAのカルボン酸の 3% (aO) 、 42% (a2) 、 および 59% When the HZ introduction rate in the obtained HA-HZ was determined by the proton NMR method as the ADH introduction rate, 3% (aO), 42% (a2), and 59% of the carboxylic acid of HA were obtained.
(a 3) が HZ化されていた (HA由来の N—ァセチル基 (2. 1 ppm) と、 ァ ジピン酸ヒドラジド由来のメチレン基 X 4 (1. 7 ppm, 2. 4 ppm) を比較 [実施例 1—1一 2] ヒアルロン酸—HZ (MW19 OKDa) の合成 分子量 1. 9X 105ダルトンの HA (電気化学工業株式会社製) を 0. 5%濃 度で蒸留水に溶解したほかは前述の実施例 1-1-1と同様の方法で、 標題の HZ が導入された HA誘導体 (HA-HZ) を得た。 得られた HA— HZ中の HZ導入 率をプロトン NMR法で定量したところ、 HAのカルポン酸の 6% (b 0) 、 49 % (b 2) 、 71% (b 3) が HZ化されていた。 (a 3) was converted to HZ (comparison of N-acetyl group from HA (2.1 ppm) and methylene group X4 from adipic hydrazide (1.7 ppm, 2.4 ppm) [ Example 1-1-1 2] Synthesis of hyaluronic acid-HZ (MW19 OKDa) Except that HA (manufactured by Denki Kagaku Kogyo Co., Ltd.) having a molecular weight of 1.9 × 10 5 daltons was dissolved in distilled water at a concentration of 0.5%. An HA derivative into which the title HZ was introduced (HA-HZ) was obtained in the same manner as in Example 1-1-1 above, and the introduction rate of HZ in the obtained HA-HZ was determined by proton NMR. As a result, 6% (b0), 49% (b2), and 71% (b3) of the carboxylic acid of HA were converted to HZ.
[実施例 1— 1— 3] ヒアルロン酸一HZ (MW58 OKDa) の合成 分子量 5. 8X 105夕レトンの HA (電気化学工業株式会社製) を 0. 25% 濃度で蒸留水に溶解したほかは前述の実施例 1-1-1と同様の方法で、 標題の H Zが導入された HA誘導体 (HA-HZ) を得た。 得られた HA— HZ中の HZ導 入率をプロトン NMR法で定量したところ、 HAのカルポン酸の 8% (c 0) 、 5 6% (c 2) , 73% (c 3) が HZ化されていた。 [Example 1-1-1-3] Synthesis of hyaluronic acid mono-HZ (MW58 OKDa) In addition to dissolving HA (manufactured by Denki Kagaku Kogyo Co., Ltd.) with a molecular weight of 5.8 × 10 5 reton at a concentration of 0.25% in distilled water In the same manner as in Example 1-1-1 described above, an HA derivative (HA-HZ) into which the title HZ was introduced was obtained. The HZ incorporation rate of the obtained HA-HZ was determined by proton NMR, and 8% (c 0), 56% (c 2), and 73% (c 3) of the carboxylic acid in HA were converted to HZ. It had been.
[実施例 1-2] 蛍光ラベル化ヒアルロン酸一 HZ誘導体の合成  [Example 1-2] Synthesis of fluorescently labeled hyaluronic acid mono-HZ derivative
実施例 1一 1で調製された 9種類の H A— H Zを蒸留水に溶解させた後, 等量の 10 OmM炭酸ナトリウム (pH9. 0) を加えて終濃度を 1 mgZmLに調整し た。 これに HA— HZ溶液の 1/10容量のジメチルスルホキシド (DMSO) に 溶解させたフルォレセイン一4—イソチオシァネート (F l uo r e s c e i n— 4- i s o t h i ocyana t e, F ITC) を、 F I TC/HAユニット = 3 . 0 (a 0, b 0, c 0) 、 0. 5 (a 2, b 2. c 2) 、 0. 3 (a 3, b 3, c 3) (mo 1 /mo 1) の仕込比で, 添加し, 室温, «下に 1時間反応させ た。 反応溶液 25 mLを予め 5 OmM炭酸ナトリウム (pH9. 0) で平衡化した PD-10 (10本) に投入し, 未反応の F ITCを余去した。 精製した溶液に S A/HZ (TNBS) =250 (a 0, b 0, c 0) 、 80 (a 2, b 2. c 2) , 40 (a 3, b 3, c 3) (mo 1/mo 1) の仕込比で、 3. 5mLの DM SOに溶解させた無水コハク酸 (SA) を添加し同様に反応させた。 反応混合物を 大過剰量の蒸留水に対して透析精製し, 得られた水溶液を凍結乾燥した。 Example 11 Nine types of HA-HZ prepared in Example 11 were dissolved in distilled water, and the final concentration was adjusted to 1 mgZmL by adding an equal amount of 10 OmM sodium carbonate (pH 9.0). Fluorescein-1-isothiocyanate (Fluo rescein-4-isothiocyanate, FITC) dissolved in 1/10 volume of dimethyl sulfoxide (DMSO) of HA-HZ solution was added to FITC / HA. Unit = 3.0 (a 0, b 0, c 0), 0.5 (a 2, b 2.c 2), 0.3 (a 3, b 3, c 3) The mixture was added at a charge ratio of (mo 1 / mo 1) and reacted at room temperature for 1 hour. 25 mL of the reaction solution was poured into 10 PD-10s previously equilibrated with 5 OmM sodium carbonate (pH 9.0) to remove unreacted FITC. SA / HZ (TNBS) = 250 (a 0, b 0, c 0), 80 (a 2, b 2.c 2), 40 (a 3, b 3, c 3) (mo 1 / At a charging ratio of mo 1), succinic anhydride (SA) dissolved in 3.5 mL of DMSO was added and reacted similarly. The reaction mixture was purified by dialysis against a large excess of distilled water, and the resulting aqueous solution was freeze-dried.
得られた各試料を所定濃度に溶解させ、 0. 25mgZmLに希釈した試料溶液 の 494 nmにおける吸光度から F I TC濃度を定量し, 以下の式に従って各ュニ ットの濃度を算出した。 さらに, モル分率への変換, 誘導体中 HA由来の重量分率 算出を行った。  Each of the obtained samples was dissolved to a predetermined concentration, and the FITC concentration was quantified from the absorbance at 494 nm of the sample solution diluted to 0.25 mg ZmL, and the concentration of each unit was calculated according to the following formula. In addition, conversion to molar fraction and calculation of the weight fraction derived from HA in the derivative were performed.
各試料について、 トリニトロベンゼンスルホン酸 (TNBS) によるァミノ基の 定量を行った。 当該定量は、 「学会出版センター 生物化学実験法 12 蛋白質の 化学修飾く上〉 初版」 37ページに記載の方法 (TNBS法) に従った。 ただし、 TNBS溶液は 0. 5 Mに調製し、 ヒドラジド基を定量するために 500 nmの吸 光度を測定した。  For each sample, quantification of amino groups with trinitrobenzenesulfonic acid (TNBS) was performed. The quantification was performed according to the method (TNBS method) described on page 37, “Society Publishing Center, Biochemistry Experimental Method, 12 Chemical Modification of Proteins, First Edition”, page 37. However, the TNBS solution was adjusted to 0.5 M, and the absorbance at 500 nm was measured to quantify the hydrazide group.
修飾を受けていない (非修飾) HAユニット: X nmo 1 /mL  Unmodified (unmodified) HA unit: X nmo1 / mL
残存 HZ基に無水コハク酸が導入されたュニット: y nmo 1 ZmL  Units with succinic anhydride introduced into the remaining HZ groups: y nmo 1 ZmL
-式 1 : (379.3 X x) + (635.57 X y) + (924.88 X (FITC cone.)) = 250 mg ·式 2 : x / (y + (FITC cone.)) = (100 - HZ (¾)) HZ (%)  -Formula 1: (379.3 X x) + (635.57 X y) + (924.88 X (FITC cone.)) = 250 mgFormula 2: x / (y + (FITC cone.)) = (100-HZ (¾ )) HZ (%)
得られた結果を表 1. にまとめた。 The results obtained are summarized in Table 1.
表 1. 薬物導体学的パラメ一ター算出用の F I TC標識化 HA誘導体 導入きれた 残存 HA-FITC HA-SUC 非修飾 HATable 1. F ITC-labeled HA derivatives for the calculation of pharmacokinetic parameters Residual HA-FITC HA-SUC unmodified HA introduced
HZ基 (%) HZ基 (%) ユニット ユニット ユニット HA HZ group (%) HZ group (%) Unit Unit Unit HA
HA-HZ NMR TNBS (mol %) (mol %) (mol %) (weight %) a0 3 - 1.06 1.94 97.00 99.75 b0 6 - 1.35 4.65 94.00 98.24 c0 8 - 1.48 6.52 92.00 97.15 a2 42 - 1.36 40.64 58.00 79.30 b2 49 一 1.50 47.50 51.00 76.57 c2 56 - 1.77 54.23 44.00 74.14 a3 59 - 1.22 57.78 41.00 72.56 b3 71 - 1.25 69.75 29.00 68.55 c3 73 - 1.09 71.91 27.00 67.80  HA-HZ NMR TNBS (mol%) (mol%) (mol%) (weight%) a0 3-1.06 1.94 97.00 99.75 b0 6-1.35 4.65 94.00 98.24 c0 8-1.48 6.52 92.00 97.15 a2 42-1.36 40.64 58.00 79.30 b2 49 1 1.50 47.50 51.00 76.57 c2 56-1.77 54.23 44.00 74.14 a3 59-1.22 57.78 41.00 72.56 b3 71-1.25 69.75 29.00 68.55 c3 73-1.09 71.91 27.00 67.80
-:定量限界以下 実施例 2 :血中滞留性評価 -: Below the limit of quantification Example 2: Evaluation of blood retention
H A誘導体投与ラット血漿サンプル  Rat plasma sample administered with HA derivative
実施例 1の 9種類の HA誘導体を 10mg/k gの用量でラット静脈内に単回投 与し、 投与前、 および投与後 0. 25, 1, 2, 4, 6, 8, 10, 12および 2 4時間経過時に ¾0L (へパリン処理) し、 遠心分離により血漿を得た。 この血漿サ ンプルは測定まで一 20°Cで保存された。  The nine HA derivatives of Example 1 were administered once intravenously at a dose of 10 mg / kg to rats intravenously, before administration, and after administration at 0.25, 1, 2, 4, 6, 8, 10, 12 and After 24 hours, the mixture was centrifuged at 0 L (heparin treatment) to obtain plasma. This plasma sample was stored at 120 ° C until measurement.
測定方法  Measuring method
GP Cにより検量線用標準試料および測定用試料の分析を行った。  The standard sample for calibration curve and the sample for measurement were analyzed by GPC.
検量線用試料の調製  Preparation of sample for calibration curve
各蛍光標識 HA誘導体を PBS (pH7. 4) を用いて希釈し、 1, 5, 10, 50, 100, 500 gZmLおよび 0 / gZmL (対照 PBS (pH7. 4 ) ) の標準液を調製する。 この標準液に等容量の正常ラット血漿を添加し検量線用 試料を調製した。  Dilute each fluorescently labeled HA derivative using PBS (pH 7.4) to prepare standard solutions of 1, 5, 10, 50, 100, 500 gZmL and 0 / gZmL (control PBS (pH 7.4)). An equal volume of normal rat plasma was added to this standard solution to prepare a sample for a calibration curve.
測定用試料の調製  Preparation of sample for measurement
HA誘導体投与ラット血漿サンプルに等容量の PBS (pH7. 4) を添加して 測定用試料を調製した。  An equal volume of PBS (pH 7.4) was added to the HA derivative-administered rat plasma sample to prepare a measurement sample.
血漿中 HA誘導体濃度の算出 . 解析ソフト Milleniumを用いてピーク面積を算出した。 各標準試料のピーク面積 から得られた検量線より血漿中 H A誘導体濃度を算出した。 Calculation of plasma HA derivative concentration. The peak area was calculated using analysis software Millenium. The concentration of the HA derivative in plasma was calculated from the calibration curve obtained from the peak area of each standard sample.
HA誘導体の血中濃度推移の変化を図 1〜 3に示す。  Changes in the blood concentration transition of the HA derivative are shown in FIGS.
また、 H A誘導体の血中濃度推移のデータについて、 WinNonlin Ver 2.1 (ベル ギーサイエンス社) および MULTI (RUNGE) (K. Yamaoka, et al., J Pharmacobiodyn 6; 595-606, 1983) で薬物動態学的パラメ一夕一を算出した。 WinNonlinでは、 各 個体の最終測定点 3点のデータを用いてモデル非依存的解析を行い、 半減期 (t 1 /2) 、 平均血中滞留時間 (MRT) 、 総クリアランス (C 1) を算出した。 MULT KRUNGE)では、 非線形性を考慮した解析として、 式 3を基にして、 分子量が同じ H A誘導体毎に、 最大消失速度 (Vmax) 、 定常状態分布容積 (Vds s) は共通 変数とし、 ミカエリス定数 (Km) は、 各 H A誘導体の固有の変数とした 3つの連 立微分方程式を設定し、 あてはめ解析により Km、 Vmax, Vds sを算出した  The pharmacokinetics of HA derivatives in blood concentration data were determined using WinNonlin Ver 2.1 (Belgium Science) and MULTI (RUNGE) (K. Yamaoka, et al., J Pharmacobiodyn 6; 595-606, 1983). The target parameters were calculated overnight. WinNonlin performs a model-independent analysis using the data of the last three measurement points of each individual, and calculates the half-life (t 1/2), mean blood residence time (MRT), and total clearance (C 1) did. (MULT KRUNGE), as an analysis taking into account nonlinearity, based on Equation 3, for each HA derivative with the same molecular weight, the maximum elimination rate (Vmax) and the steady state distribution volume (Vds s) are common variables, and the Michaelis constant For (Km), three simultaneous differential equations were set as unique variables for each HA derivative, and Km, Vmax, and Vdss were calculated by fitting analysis.
dC/dt = - (Vmax I (Km I c(t))) % c(t) I Vdss dC / dt =-(Vmax I (Km I c (t)))% c (t) I Vdss
F I TC標識化 HA誘導体の薬物動態学的パラメ Pharmacokinetic parameters of F ITC labeled HA derivatives
( inNonlinにより算出)  (Calculated by inNonlin)
HZ導入率 CI MET tl72HZ introduction rate CI MET tl72
(%:NME) (mL/hrkg) (h) (h) a0 3 29.6 ±1.8 1.36土 0.08 0.871 ±0.068 a2 42 22.3 ±10 2.16士 0.48 1.43 ±0.30 a3 59 12.4 ±0.7 3.87土 0.63 2.40 ±0.55 b0 6 16.9 ±3.3 2.02士 0.22 1.30 ±0.20 b2 49 12.5 ±2.7 2.74士 0.27 1.41 ±0.15 b3 71 4.58 ±0.42 10.1 + 1.1 7.01 ±0.78 cO 8 14.6 ±1.7 2.19士 0.16 1.42 ±0.15 c2 56 4.97 ±0.58 5.72士 0.72 3.17 ±0.73 c3 73 2.52 ±0.41 16.3 + 3.7 11.2 ±2.9 F I TC標識化 HA誘導体の薬物動態学的パラメ (%: NME) (mL / hrkg) (h) (h) a0 3 29.6 ± 1.8 1.36 Sat 0.08 0.871 ± 0.068 a2 42 22.3 ± 10 2.16 0.48 1.43 ± 0.30 a3 59 12.4 ± 0.7 3.87 Sat 0.63 2.40 ± 0.55 b0 6 16.9 ± 3.3 2.02 0.22 1.30 ± 0.20 b2 49 12.5 ± 2.7 2.74 0.27 1.41 ± 0.15 b3 71 4.58 ± 0.42 10.1 + 1.1 7.01 ± 0.78 cO 8 14.6 ± 1.7 2.19 0.16 1.42 ± 0.15 c2 56 4.97 ± 0.58 5.72 0.72 3.17 ± 0.73 c3 73 2.52 ± 0.41 16.3 + 3.7 11.2 ± 2.9 Pharmacokinetic parameters of FITC-labeled HA derivatives
(MULTI (RUNGE) により算出)  (Calculated by MULTI (RUNGE))
HZ導入率 Vmax Vdss Em HZ introduction rate Vmax Vdss Em
(%NME) (mgmnv (mLkg) (mg/mL)  (% NME) (mgmnv (mLkg) (mg / mL)
aO 3 127.2 51.7 146.9 a2 42 127.2 51.7 290.3  aO 3 127.2 51.7 146.9 a2 42 127.2 51.7 290.3
a3 59 127.2 51.7 523.9  a3 59 127.2 51.7 523.9
cO 8 44.9 38.0 48.6 c2 56 44.9 38.0 396.7  cO 8 44.9 38.0 48.6 c2 56 44.9 38.0 396.7
c3 73 44.9 38.0 ' 916.5  c3 73 44.9 38.0 '916.5
モデル非依存的な動態解析の結果を表 2に示す。 総クリアランス (C 1) 値に着 目すると、 a 0は a 3の 2. 4倍、 b0«b3 3. 7倍、 。 0は。 3の5. 8倍 となり、 H Zの導入率が高くなるほど H A誘導体の血中からの消失が遅くなる事が 示された。 HZ導入率が同程度の H A誘導体で比較すると、 分子量が大きい H A誘 導体の方が C 1値が小さくなつており、 H Aの分子量が増大するほど血中滞留性の 改善度が大きくなることが示された。 表 2に示す MRT、 t 1 2についても同様 の傾向が認められた。 Table 2 shows the results of model-independent kinetic analysis. Looking at the total clearance (C 1) value, a 0 is 2.4 times a 3, b 0 «b 3 3.7 times, and so on. 0 is. It was 5.8 times that of 3, indicating that the higher the introduction rate of HZ, the slower the HA derivative disappears from the blood. Comparing HA derivatives with similar HZ introduction rates, the HA derivative with a higher molecular weight has a smaller C1 value, and the higher the molecular weight of HA, the greater the degree of improvement in blood retention. Indicated. The same tendency was observed for MRT and t12 shown in Table 2.
非線形領域を考慮した H A誘導体の動態解析の結果を表 3に示す。 分子量が同じ HA誘導体では Vds sおよび Vmaxは等しく、 HAのクリアランスに関与する 受容体との親和性が HZ導入率により変化すると仮定して、 aO— a3, c O— c 3について MULTI (RUNGE) によるあてはめ解析を行い、 Vds s値、 Vmax、 K mを算出した (表 3) 。 a 0— a 3の Vmaxは c 0_c 3の Vmaxの 2. 8倍 となつており、 分子量が小さい H A誘導体の方が血中から早く消失していく事が示 された。 分子量が同じ H A誘導体では、 a 3の Km値が a 0の Km値の 3. 6倍、 c 3の Km値が c 0の Km値の 18. 9倍になる等、 HZの導入率が高くなるほど Kmが大きくなる事が示された。 即ち、 HZの導入率が高くなると、 受容体との親 和性が低下して、 H A誘導体の血中からの消失が遅くなる事があてはめ解析により 示唆された。 以上に示したように、 モデル非依存性解析および非線形性を考慮した動態解析の いずれの結果からも、 H A誘導体のカルボン酸修飾率、 H A誘導体分子量が増大す るにつれて血中半減期が延長されることが示された。 Table 3 shows the results of the kinetic analysis of the HA derivative taking into account the nonlinear region. MULTI (RUNGE) for aO-a3, cO-c3, assuming that Vds s and Vmax are equal for HA derivatives with the same molecular weight and that the affinity for the receptor involved in HA clearance changes with the HZ introduction rate. The Vds s value, Vmax, and Km were calculated by fitting analysis (Table 3). The Vmax of a0-a3 was 2.8 times the Vmax of c0_c3, indicating that the HA derivative having a smaller molecular weight disappeared from the blood earlier. For HA derivatives with the same molecular weight, the introduction rate of HZ is high, such as the Km value of a3 is 3.6 times the Km value of a0 and the Km value of c3 is 18.9 times the Km value of c0. It was shown that Km became larger. That is, it was suggested by the fitting analysis that the higher the introduction rate of HZ, the lower the affinity with the receptor and the slower the disappearance of the HA derivative from the blood. As shown above, the results of both model-independent analysis and kinetic analysis taking into account nonlinearity indicate that the half-life in blood is prolonged as the carboxylic acid modification rate of the HA derivative and the molecular weight of the HA derivative increase. Rukoto has been shown.
上記実施例に例示された、 ヒアルロン酸誘導体を用いることで、 H A誘導体を薬 物担体として使用する上で重要な、 H A誘導体の体内代謝系を回避し、 最大限血中 滞留性を延長することが可能である。 産業上の利用の可能性  By using the hyaluronic acid derivative exemplified in the above example, it is possible to avoid the in vivo metabolic system of the HA derivative, which is important in using the HA derivative as a drug carrier, and to prolong the maximum blood retention. Is possible. Industrial potential
本発明のヒアルロン酸誘導体は、 HA誘導体の体内代謝速度をコントロールし、 血中滞留性を制御、 延長することが可能であり、 これをキャリアに用いた薬物コン ジユゲート製剤とすることで、 薬効発現に最適な血中暴露パターンの調節を可能と する生分解性で安全な体内動態制御技術を提供する。  The hyaluronic acid derivative of the present invention can control the rate of metabolism of the HA derivative in the body, and can control and prolong the blood retention property. To provide a biodegradable and safe pharmacokinetic control technology that enables adjustment of the blood exposure pattern that is optimal for the subject.

Claims

請求の範囲 The scope of the claims
1. ヒアルロン酸誘導体中のダルク口ン酸部分のカルボン酸への置換基の導入率 を変化させることにより、 ヒアルロン酸の消失速度を調節する方法。 1. A method of adjusting the rate of disappearance of hyaluronic acid by changing the rate of introduction of a substituent into the carboxylic acid in the darkuvic acid moiety in the hyaluronic acid derivative.
2. ヒアルロン酸中のグルクロン酸部分のカルボン酸に置換基を導入することを 特徴とする、 ヒアルロン酸誘導体の生体内での消失速度を低下させる方法。 2. A method for reducing the in vivo disappearance rate of a hyaluronic acid derivative, which comprises introducing a substituent into the carboxylic acid of the glucuronic acid moiety in hyaluronic acid.
3. ヒアルロン酸誘導体中のダルク口ン酸部分のカルボン酸への置換基の導入率 を高くすることにより、 ヒアルロン酸誘導体の消失速度を低下させる方法。  3. A method of reducing the rate of disappearance of the hyaluronic acid derivative by increasing the rate of introduction of a substituent into the carboxylic acid in the darkuvic acid moiety in the hyaluronic acid derivative.
4. 前記ヒアルロン酸誘導体が、 式 (I) :  4. The hyaluronic acid derivative has the formula (I):
Figure imgf000021_0001
Figure imgf000021_0001
(式中、 X。は、 一 O—、 一 N (-Rx) 一、 一 S―、 一 N (-Ri) N (— R2) 一、 — N (— R N (― R2) CO—または単結合であり、 (Where, X is one O—, one N (-R x ) one, one S—, one N (-Ri) N (— R 2 ) one, — N (— RN (— R 2 ) CO — Or a single bond,
は、 直鎖または分枝 アルキル基、 直鎖または分枝 C _12アルコキシ基 、 直鎖または分枝 C2_12アルケニル基、 C6_18ァリール基、 C38シクロアルキル 基または複素環基であり、 各置換基は、 保護基を導入されたまたは遊離のヒドロキ シル基、 アミノ基、 ヒドラジド基、 メルカプト基、 マレイミド基、 力ルポキシル基 、 アルデヒド基、 スルホン酸基を 1つ以上有していてもよく、 また上記官能基を有 する置換基の重付加体あるいは重縮合体も含み、 Represents a linear or branched alkyl group, straight or branched C _ 12 alkoxy group, linear or branched C 2 _ 12 alkenyl, C 6 _ 18 Ariru group, C 3 - 8 cycloalkyl group or a heterocyclic Wherein each substituent has at least one protecting group-introduced or free hydroxy group, amino group, hydrazide group, mercapto group, maleimide group, propyloxyl group, aldehyde group, or sulfonic acid group. And also includes a polyaddition product or a polycondensation product of the substituent having the functional group,
および R2は、 それぞれ独立して、 水素原子、 直鎖または分枝 C — 12アルキ ル基、 直鎖または分枝 ヒドロキシアルキル基、 アルキレンォキシド基また はポリアルキレンォキシド基である。 ) And R 2 are each independently a hydrogen atom, a straight-chain or branched C- 12 alkyl group, a straight-chain or branched hydroxyalkyl group, an alkylene oxide group or Is a polyalkylene oxide group. )
で表される繰り返し構造を、 分子内に 1またはそれ以上有する、 請求項 1または 3 に記載の方法。 The method according to claim 1, wherein the molecule has one or more repeating structures represented by the following formulas.
5. ヒア^!レロン酸誘導体が薬理作用を有する物質とのコンジュゲ一トを形成して いることを特徴とする、 請求項 1〜4のいずれか 1項に記載の方法。  5. The method according to any one of claims 1 to 4, wherein the derivative of here ^! Reonic acid forms a conjugate with a substance having a pharmacological action.
6. 消失速度が血中消失速度である、 請求項 1〜 5のいずれか 1項に記載の方法  6. The method according to any one of claims 1 to 5, wherein the elimination rate is a blood elimination rate.
7. 請求項 1〜 6のいずれか 1項に記載の方法により消失速度が調節されたまた は低下したヒアル口ン酸誘導体に、 薬理作用を有する物質が結合しているコンジュ ゲート。 7. A conjugate wherein a substance having a pharmacological action is bound to a hyaluronate derivative whose elimination rate has been adjusted or reduced by the method according to any one of claims 1 to 6.
8. 薬理作用を有する物質がタンパク質又はペプチドである、 請求項 7に記載の コンジュゲート。  8. The conjugate according to claim 7, wherein the substance having a pharmacological action is a protein or a peptide.
9. 式 (I I) :  9. Formula (II):
Figure imgf000022_0001
Figure imgf000022_0001
(式中、 X。は、 — O—、 — N (― R 一、 一 S—、 一 N (-Rx) N (― R2) 一、 -N (― R N (― R2) CO—または単結合であり、 (Where X. is — O—, — N (— R one, one S—, one N (-R x ) N (— R 2 ) one, -N (— RN (— R 2 ) CO— Or a single bond,
X2は、 直鎖または分枝 C i 2アルキル基、 直鎖または分枝 ^— アルコキシ基 、 直鎖または分枝 C212アルケニル基、 C618ァリール基、 C38シクロアルキル 基または複素環基であり、 各置換基は、 保護基を導入されたまたは遊離のヒドロキ シル基、 アミノ基、 ヒドラジド基、 メルカプト基、 マレイミド基、 力ルポキシル基 、 アルデヒド基、 スルホン酸基を 1つ以上有していてもよく、 また上記官能基を有 する置換基の重付加体あるいは重縮合体も含み、 X 2 represents a linear or branched C i 2 alkyl group, straight or branched ^ - alkoxy group, a linear or branched C 2 - 12 alkenyl group, C 6 - 18 Ariru group, C 3 - 8 cycloalkyl Group or heterocyclic group, and each substituent is a protecting group-introduced or free hydroxy group, amino group, hydrazide group, mercapto group, maleimide group, olepoxyl group , An aldehyde group or a sulfonic acid group, and also includes a polyadduct or a polycondensate of a substituent having the above functional group,
および R2は、 それぞれ独立して、 水素原子、,直鎖または分枝 Ci- アルキ ル基、 直鎖または分枝じト^ヒドロキシアルキル基、 アルキレンォキシド基また はポリアルキレンォキシド基である。 ) And R 2 are each independently a hydrogen atom, a linear or branched Ci-alkyl group, a linear or branched trihydroxyalkyl group, an alkylene oxide group or a polyalkylene oxide group . )
で表される繰り返し構造を分子内に 1またはそれ以上有するヒアルロン酸誘導体の 、 ヒアルロン酸誘導体に薬理作用を有する物質が結合しているコンジユゲート作製 における使用。 Use of a hyaluronic acid derivative having one or more repeating structures represented by the following formulas in a molecule in which a substance having a pharmacological action is bonded to the hyaluronic acid derivative.
10. 以下の工程を含む、 ヒアルロン酸誘導体と薬理作用を有する物質のコンジ ュゲートの作製方法:  10. A method for preparing a conjugate of a hyaluronic acid derivative and a substance having a pharmacological action, comprising the following steps:
(a) ダルク口ン酸部分のカルボン酸への置換基の導入率が異なる 2つ以上のヒ アル口ン酸誘導体に、 それぞれ薬理作用を有する物質を結合させる工程、  (a) binding a substance having a pharmacological action to two or more hyaluonic acid derivatives having different introduction ratios of the substituents to the carboxylic acid in the darcnic acid moiety,
(b) (a) で作製したコンジュゲートの消失速度を測定する工程、  (b) measuring the disappearance rate of the conjugate prepared in (a),
(c) 測定結果を基に、 目的の消失速度に対応する置換基の導入率を算出するェ 程、  (c) calculating the introduction rate of the substituent corresponding to the target disappearance rate based on the measurement result,
(d) (c) で算出された導入率を有するヒアルロン酸誘導体を作製する工程。 (d) a step of producing a hyaluronic acid derivative having the introduction ratio calculated in (c).
11. 以下の工程を含む、 ヒアルロン酸誘導体と薬理作用を有する物質のコンジ ユゲー卜の作製方法: 11. A method for preparing a conjugate of a hyaluronic acid derivative and a substance having a pharmacological action, comprising the following steps:
( a ) ダルク口ン酸部分のカルボン酸への置換基の導入率が異なる 2つ以上のヒ アルロン酸誘導体の消失速度を測定する工程、  (a) a step of measuring the rate of disappearance of two or more hyaluronic acid derivatives having different introduction ratios of substituents to the carboxylic acid of the darcynic acid moiety;
(b) 測定結果を基に、 目的の消失速度に対応する置換基の導入率を算出するェ 程、  (b) calculating the introduction ratio of the substituent corresponding to the target disappearance rate based on the measurement result,
(c) (b) で算出された導入率を有するヒアルロン酸誘導体に薬理作用を有す る物質を結合させる工程。  (c) a step of binding a substance having a pharmacological action to the hyaluronic acid derivative having the introduction rate calculated in (b).
12. 消失速度が血中消失速度である請求項 10または 11に記載の方法。 12. The method according to claim 10 or 11, wherein the elimination rate is a blood elimination rate.
13. 以下の工程を含むヒアルロン酸誘導体の消失速度を予測する方法: 13. A method for predicting the rate of disappearance of a hyaluronic acid derivative comprising the following steps:
(a) ダルク口ン酸部分のカルボン酸への置換基の導入率が異なる 2つ以上のヒ アル口ン酸誘導体、 またはダルク口ン酸部分のカルボン酸への置換基の導入率が異 なる 2つ以上のヒアルロン酸誘導体に薬理作用を有する物質を結合させたコンジュ ゲートの消失速度を測定する工程、 (a) The introduction ratio of substituents to carboxylic acids in the darcylic acid moiety is different Two or more hyaluronic acid derivatives, or the introduction rates of substituents to the carboxylic acid in the darcylic acid moiety are different Measuring the disappearance rate of a conjugate in which a substance having a pharmacological action is bound to two or more hyaluronic acid derivatives.
(b) ( a) で測定した結果を基に、 置換基の導入率と消失速度の相関関係を得 る工程、  (b) obtaining a correlation between the rate of introduction of the substituent and the rate of disappearance based on the results measured in (a),
( c ) (b) で得た相関関係を基に、 置換基の導入率から消失速度を予測するェ 程。  (c) A process of estimating the elimination rate from the substituent introduction rate based on the correlation obtained in (b).
1 4. 消失速度が血中消失速度である、 請求項 1 3に記載の方法。  14. The method according to claim 13, wherein the elimination rate is a blood elimination rate.
1 5. ヒアルロン酸誘導体の分子量の調整と、 ヒアルロン酸誘導体のグルクロン 酸部分のカルボン酸への置換基の導入率の調整とを組み合わせることにより、 ヒア ルロン酸誘導体の消失速度を調節する方法。  1 5. A method for adjusting the disappearance rate of a hyaluronic acid derivative by combining the adjustment of the molecular weight of the hyaluronic acid derivative with the adjustment of the rate of introduction of a substituent into the carboxylic acid in the glucuronic acid portion of the hyaluronic acid derivative.
PCT/JP2004/000004 2002-12-27 2004-01-05 Drug carrier WO2004060404A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-380391 2002-12-27
JP2002380391 2002-12-27

Publications (1)

Publication Number Publication Date
WO2004060404A1 true WO2004060404A1 (en) 2004-07-22

Family

ID=32708436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000004 WO2004060404A1 (en) 2002-12-27 2004-01-05 Drug carrier

Country Status (1)

Country Link
WO (1) WO2004060404A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028110A1 (en) * 2004-09-07 2006-03-16 Chugai Seiyaku Kabushiki Kaisha Process for producing water-soluble hyaluronic acid modification
WO2006082184A3 (en) * 2005-02-01 2007-06-07 Organon Nv Conjugates of a polypeptide and a pentasaccharide
US8524885B2 (en) * 2006-03-07 2013-09-03 Prochon Biotech Ltd. Hydrazido derivatives of hyaluronic acid
US9701940B2 (en) 2005-09-19 2017-07-11 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216453A2 (en) * 1985-07-08 1987-04-01 FIDIA S.p.A. Esters of hyaluronic acid and their salts.
WO1995015168A1 (en) * 1993-11-30 1995-06-08 The Research Foundation Of State University Of New York Functionalized derivatives of hyaluronic acid
WO1997024111A2 (en) * 1995-12-27 1997-07-10 Hyal Pharmaceutical Corporation Novel hyaluronic acid receptors binding agents and the use thereof
WO2000001733A1 (en) * 1998-07-06 2000-01-13 Fidia Advanced Biopolymers S.R.L. Amides of hyaluronic acid and the derivatives thereof and a process for their preparation
WO2000016818A1 (en) * 1998-09-18 2000-03-30 Orthogene L.L.C. Functionalized derivatives of hyaluronic acid and formation of hydrogels in situ using same
WO2001060412A2 (en) * 2000-02-15 2001-08-23 Genzyme Corporation Modification of biopolymers for improved drug delivery
WO2001066601A1 (en) * 2000-03-10 2001-09-13 Fidia Farmaceutici S.P.A. Clathrate complexes formed by hyaluronic acid derivatives and use thereof as pharmaceuticals
WO2002018448A2 (en) * 2000-08-31 2002-03-07 Fidia Farmaceutici S.P.A. Percarboxylated polysaccharides, and a process for their preparation
WO2002018450A1 (en) * 2000-08-31 2002-03-07 Fidia Farmaceutici S.P.A. New cross-linked derivatives of hyaluronic acid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216453A2 (en) * 1985-07-08 1987-04-01 FIDIA S.p.A. Esters of hyaluronic acid and their salts.
WO1995015168A1 (en) * 1993-11-30 1995-06-08 The Research Foundation Of State University Of New York Functionalized derivatives of hyaluronic acid
WO1997024111A2 (en) * 1995-12-27 1997-07-10 Hyal Pharmaceutical Corporation Novel hyaluronic acid receptors binding agents and the use thereof
WO2000001733A1 (en) * 1998-07-06 2000-01-13 Fidia Advanced Biopolymers S.R.L. Amides of hyaluronic acid and the derivatives thereof and a process for their preparation
WO2000016818A1 (en) * 1998-09-18 2000-03-30 Orthogene L.L.C. Functionalized derivatives of hyaluronic acid and formation of hydrogels in situ using same
WO2001060412A2 (en) * 2000-02-15 2001-08-23 Genzyme Corporation Modification of biopolymers for improved drug delivery
WO2001066601A1 (en) * 2000-03-10 2001-09-13 Fidia Farmaceutici S.P.A. Clathrate complexes formed by hyaluronic acid derivatives and use thereof as pharmaceuticals
WO2002018448A2 (en) * 2000-08-31 2002-03-07 Fidia Farmaceutici S.P.A. Percarboxylated polysaccharides, and a process for their preparation
WO2002018450A1 (en) * 2000-08-31 2002-03-07 Fidia Farmaceutici S.P.A. New cross-linked derivatives of hyaluronic acid

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BULPITT P, ET AL: "New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels", J. BIOMED. MATER. RES., vol. 47, no. 2, 1999, pages 152 - 169, XP000913609 *
POUYANI T, ET AL: "Biotinylated hyaluronic acid: a new tool for probing hyaluronate-receptor interactions.", BIOCONJUG. CHEM., vol. 5, 1994, pages 370 - 372, XP002976493 *
POUYANI T, ET AL: "Functionalized derivatives of hyaluronic acid oligosaccharides: drug carriers and novel biomaterials", BIOCONJUG. CHEM., vol. 5, 1994, pages 339 - 347, XP002274514 *
POUYANI T, ET AL: "Novel hydrogels of hyaluronic acid: synthesis, surface morphology, and solid-state nmr", J. AM. CHEM. SOC., vol. 116, 1994, pages 7515 - 7522, XP001146495 *
PRESTWICH G D, ET AL: "Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives", JOURNAL OF CONTROLLED RELEASE, vol. 53, no. 1-3, 1998, pages 93 - 103, XP004121260 *
VERCRUYSSE K P, ET AL: "Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid", BIOCONJUG. CHEM., vol. 8, no. 5, 1997, pages 686 - 694, XP002977286 *
YANG B, ET AL: "Biotinylated hyaluronic acid as a probe for identifying hyaluronic acid-binding proteins", ANAL. BIOCHEM., vol. 228, no. 2, 1995, pages 299 - 306, XP002976494 *
ZHONG S P, ET AL: "Biodegradation of hyaluronic acid derivatives by hyaluronidase", BIOMATERIALS, vol. 15, no. 5, 1994, pages 359 - 365, XP002976495 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028110A1 (en) * 2004-09-07 2006-03-16 Chugai Seiyaku Kabushiki Kaisha Process for producing water-soluble hyaluronic acid modification
WO2006082184A3 (en) * 2005-02-01 2007-06-07 Organon Nv Conjugates of a polypeptide and a pentasaccharide
US8106007B2 (en) 2005-02-01 2012-01-31 N.V. Organon Conjugates of a polypeptide and a pentasaccharide
US9701940B2 (en) 2005-09-19 2017-07-11 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
US8524885B2 (en) * 2006-03-07 2013-09-03 Prochon Biotech Ltd. Hydrazido derivatives of hyaluronic acid
US8940888B2 (en) 2006-03-07 2015-01-27 Prochon Biotech Ltd. Hydrazido derivatives of hyaluronic acid
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
US11555172B2 (en) 2014-12-02 2023-01-17 Ocugen, Inc. Cell and tissue culture container

Similar Documents

Publication Publication Date Title
Yin et al. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid
Bai et al. β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH-and esterase-dual-responsive drug delivery
Johnson et al. Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP
ES2601143T3 (en) Biodegradable triblock copolymers, synthesis methods thereof, and hydrogels and biomaterials prepared therefrom.
EP1666518B1 (en) Hyaluronic acid modification products and drug carriers using them
Lee et al. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor
EP2443156B1 (en) Process for the synthesis of conjugates of glycosaminoglycanes (gag) with biologically active molecules, polymeric conjugates and relative uses thereof
Fu et al. Conjugating an anticancer drug onto thiolated hyaluronic acid by acid liable hydrazone linkage for its gelation and dual stimuli-response release
EP1790665A1 (en) Process for producing water-soluble hyaluronic acid modification
CA2136492C (en) Pharmaceutical composition containing diclofenac and 2-hydroxypropyl-.beta.-cyclodextrin
Chen et al. Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier
WO2005054301A1 (en) Crosslinked polysaccharide microparticles and process for producing the same
ZA200309357B (en) Negatively charged amphiphilic block copolymer as drug carrier and complex thereof with positively charged drug
WO2008136536A1 (en) Hybrid gel comprising chemically cross-linked hyaluronic acid derivative, and pharmaceutical composition using the same
Cai et al. Redox-responsive self-assembled chain-shattering polymeric therapeutics
JP2003525980A (en) Clathrate complexes formed by hyaluronic acid derivatives and their use as pharmaceuticals
Juriga et al. Kinetics of dopamine release from poly (aspartamide)-based prodrugs
Zhang et al. Avidin-biotin technology to synthesize multi-arm nano-construct for drug delivery
WO2004046200A1 (en) Sustained release drug carrier
Manzi et al. “Click” hyaluronan based nanohydrogels as multifunctionalizable carriers for hydrophobic drugs
Tai et al. A novel rapamycin-polymer conjugate based on a new poly (ethylene glycol) multiblock copolymer
Huerta-Ángeles et al. Grafting of steroids to hyaluronan towards the design of delivery systems for antioxidants: The role of hydrophobic core
Dogan et al. Engineering selective molecular tethers to enhance suboptimal drug properties
WO2004060404A1 (en) Drug carrier
Buffa et al. Synthesis and study of branched hyaluronic acid with potential anticancer activity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP