WO2004059807A1 - Source laser de puissance a fibres optiques a source de pompage unique - Google Patents

Source laser de puissance a fibres optiques a source de pompage unique Download PDF

Info

Publication number
WO2004059807A1
WO2004059807A1 PCT/EP2003/051031 EP0351031W WO2004059807A1 WO 2004059807 A1 WO2004059807 A1 WO 2004059807A1 EP 0351031 W EP0351031 W EP 0351031W WO 2004059807 A1 WO2004059807 A1 WO 2004059807A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
fibers
fiber
power
dichroic
Prior art date
Application number
PCT/EP2003/051031
Other languages
English (en)
Inventor
Arnaud Brignon
Jean-Pierre Huignard
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU2003303404A priority Critical patent/AU2003303404A1/en
Publication of WO2004059807A1 publication Critical patent/WO2004059807A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/36682D cross sectional arrangements of the fibres with conversion in geometry of the cross section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to a fiber laser power source with a single pumping source.
  • solid state laser sources with a power greater than 1 kW is important for many industrial applications.
  • Such sources have already been produced from Nd: YAG bars pumped by laser diodes.
  • Two types of architecture make it possible to achieve such performances: those with a single oscillator and those called "MOPA" configuration which consist of a master oscillator and amplifiers.
  • Continuous powers greater than 100 W can be obtained from a single single-mode amplifier fiber.
  • the power is then limited by the damage thresholds of the fiber.
  • Using a multimode fiber with a large diameter would make it possible to further increase the power of the laser source and reach, for example, 1 kW.
  • the multimode beam from the fiber can then be converted to a single-mode beam by means of a non-linear two-wave interaction in a medium with index variation or a fixed holographic component. Considering an optical-optical conversion efficiency of around 30%, to obtain 1 kW, it is necessary to pump the doped fiber with a laser diode pumping source producing a power of at least 3 kW.
  • Longitudinal pumping (that is to say along the axis of the fiber) remains the simplest way to pump the amplifying laser fibers.
  • a typical double-core fiber having a doped core diameter of 50 ⁇ m and an undoped core of diameter 500 ⁇ m, with a numerical aperture of 0.4. It is then possible to pump such a fiber longitudinally with a power of up to 500 W and supplied by a pumping source composed of stacks of arrays of laser diodes and a beam shaping optic. If we wanted to have a pumping power of 3 kW, the diameter of the undoped part of the amplifying fiber should be 6 times larger than in the example just cited, which would be completely unrealistic in the current state of the art.
  • the subject of the present invention is a solid laser source of MOPA type capable of delivering a power of at least 1 kW using means currently available, without risk of destruction of its components, and which is as inexpensive as possible.
  • the laser source according to the invention comprises a single pumping source illuminating, through a single focusing optic, followed by a dichroic blade, one end of a set of N optical fibers grouped together, these fibers each comprising a first doped core surrounded by a second undoped core, and being coupled with N single-mode fibers, the other ends of which are connected, with one end of an undoped auxiliary fiber, by a coupler 1 to N + 1, to an oscillating laser at the desired emission wavelength for the power source, the other end of the auxiliary fiber being followed by an optical imaging device at a non-linear energy transfer medium positioned opposite from the return face of the dichroic plate, the reference beam coming from the auxiliary fiber being amplified by the energy transfer medium by the amplified energy coming from the dichroic plate.
  • FIG. 1 is a block diagram of a laser power source according to the invention
  • FIG. 2 is a partial detailed diagram of the amplifying optical fibers used in the source of FIG. 1,
  • FIG. 3 is a simplified perspective view of a tool which can be used to make the junctions of the two-core fibers with undoped single-mode fibers, to produce the source of FIG. 1, and
  • FIG. 4 is a detailed block diagram of the mode conversion device of the source of Figure 1.
  • the power laser source represented in FIG. 1 comprises a single pumping source 1 composed, for example, of several laser diodes, which is imaged by a single focusing optics 2 on the plane front face 3 formed by the aligned ends of a set 4 of N optical fibers with two hearts welded together at this end.
  • each of the N optical fibers of the assembly 4 comprises a central core 5 doped in a conventional manner and surrounded by a concentric core 5a which is undoped.
  • Such fibers can be standard telecommunications components, or, more advantageously, fibers with a large core capable of accepting high powers.
  • N two-core optical fibers are grouped so as to form a compact fiber bundle with a substantially circular outline and joined or welded in a protective and retaining sheath 7.
  • the front face of the set of fibers thus welded together is polished so as to form the flat surface 3 on which the source 1 is imaged to pump the undoped hearts of these fibers longitudinally.
  • the power of the pump is distributed in a substantially homogeneous manner in these undoped and doped hearts.
  • Each of the N two-core fibers is coupled (as explained with reference to FIG. 3) to a single-mode fiber 6.
  • the other ends of the fibers 6 are connected, at the same time as an undoped single-mode auxiliary fiber 8, to the output of a coupler 9 at the input of which a single fiber 10 is connected (the coupler 9 is therefore of the " 1 to N + 1 ").
  • the fiber 10 is connected at its other end to an oscillator 11, for example of the single-mode optical fiber type.
  • the wavelength ⁇ ⁇ of the oscillator 11 is equal to the wavelength that the power wave produced at the output of the device of FIG. 1 must have, and it is different from the wavelength ⁇ p pumping the source 1.
  • the other end of the optical fiber 8 is placed at the focus of a collimating optic 12 which thus produces a collimated single-mode beam 13, which serves as a reference beam, as explained below.
  • the beam 13 is sent to a first face of a non-linear crystal 14, of the type with index variation for example. Furthermore, there is between the optics 2 and the face 3 of the optical fibers a dichroic blade 15 inclined at 45 ° relative to the axis 2a of the optic 2. The blade 15 is produced so as to be highly reflective at the wavelength ⁇ ⁇ and highly transmissive at the wavelength ⁇ p .
  • axis 15a perpendicular to axis 2a (it is perpendicular to axis 2a in this example, but this is not necessary), and cutting this axis 2a on the face of the blade 15 facing towards fiber assembly 4, there is a focusing optic 16 focusing the beam 15b which it receives from the blade 15 on one of the faces of the crystal 14.
  • An insulator 17 is inserted in the path of the fiber 10 which prevents any harmful transmission power to the oscillator 11.
  • an isolator can be inserted on each of the fibers 6. This isolator 17 does not lets pass that the wavelength ⁇ ⁇ in the direction 11 to 9 and blocks that of the pump in the opposite direction (from 9 to 11).
  • the device described above operates in the following manner.
  • the pumping beam is transmitted almost without losses by the blade 15 towards the front face 3 of the set of fibers 4 to pump their doped and undoped hearts longitudinally.
  • the N undoped fibers 6 receive the wavelength ⁇ e -
  • the two-core fibers collect the optical wave at the level of the doped heart at this wavelength ⁇ ⁇ and amplify it to send a beam at this wavelength ⁇ ⁇ to the plate 15.
  • the latter being highly reflective at ⁇ ⁇ , reflects this beam towards the optics 16 which concentrates it on the crystal 14, in which it combines with the beam reference 13 of low power to transfer the power it carries, This amplified energy is transported by the output beam 14a of the crystal 14.
  • This beam 14a is an amplified single-mode beam.
  • the transfer of energy in the crystal 14 taking place without phase transfer, the amplified beam 14a has the same spatial characteristics as the reference beam 13 of which it retains the spatial quality of coherence.
  • Crystal 14 is either a photorefractive crystal such as LiNbO 3 , BaTiO 3 , SBN or a transparent nonlinear medium in which third order nonlinearities occur, such as the Brillouin effect or the Kerr effect.
  • FIG. 3 shows a tool 18 making it possible to inject the N single-mode fibers towards the N multimode amplifying fibers.
  • This tool essentially comprises two anvils 19 and 20, of rectangular parallelepiped shape, arranged side by side, the upper face of the anvil 19 being slightly higher than that of the anvil 20, these two faces being parallel to each other.
  • N number of notches in the shape of "V" of dimensions appropriate to the respective diameters of the fibers 6 and 23, these notches being perpendicular to the junction plane of the two anvils.
  • the notches made in the anvil 19 are referenced 21, and those made in the anvil 20 are referenced 22.
  • each notch 21 is in the same plane perpendicular to the upper faces of the two anvils as the axis of each notch 22 corresponding.
  • a fiber 6 (comprising a core undoped 6a surrounded by a sheath 6b).
  • each notch 22 there is the end of a multimode fiber 23, each of these fibers consisting of a doped heart 24, surrounded by an undoped heart 25, itself surrounded by a sheath 26.
  • the dimensions of the notches 21 and 22 and their relative positions are such that the axes of the fibers 23 are in the extension of the axes of the corresponding fibers 6.
  • the fibers 6 are then injected towards the fibers 23 coaxially, or are connected to them using N appropriate connectors.
  • the mode conversion crystal 14 generally works with linearly polarized beams.
  • the beam, at the wavelength ⁇ ⁇ leaving the face 3 of the assembly 4 in the direction of the blade 15, and formed of N amplified beams from the multimode fibers is, in principle, depolarized.
  • a polarization splitter is used to separate the two vertical and horizontal linear polarization components.
  • a cube 27 separating polarizations is then placed on the path of the beam 15b.
  • a cube 28 is directed opposite the 45 ° inclined surface of the cube 27 (on an axis perpendicular to the axis 15a of the beam 15b) so as to return towards the crystal 14, in the area of direct incidence of the beam 15b, the beam (vertically polarized in the present case) which it receives from the cube 27.
  • This mirror 28 is followed by a half-wave plate 29 (as a variant, this plate can be placed on the path direct from beam 15a, between cube 27 and crystal 14).
  • the blade 29 rotates the polarization of the beam passing through it by 90 °, the vertical polarization of which then becomes horizontal.
  • the direct beam 15a from the cube 27 is also horizontally polarized. Consequently, the two beams arriving on the crystal 14 (coming from the cube 27 and the blade 29) have the same polarization, and therefore do not risk disturbing the operation of this crystal.
  • N 6. Fibers of 50 ⁇ m in diameter of doped core and 500 ⁇ m in outside diameter of undoped core (numerical aperture ⁇ 0.38). Doping at Yb (fiber with gain at the emission wavelength of
  • Crystal 14 operating at the wavelength of 1.053 ⁇ m, in
  • BaTiO 3 doped with Rhodium or LiNbO 3 isoped with Rhodium or LiNbO 3 .
  • Oscillator Yb fiber laser, delivering a power ranging from 1 to 10 W.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Abstract

La source laser de puissance de l'invention comporte une source de pompage unique (1) illuminant, à travers une optique de focalisation unique (2), suivie d'une lame dichroïque (15), une extrémité d'un ensemble de N fibres (4) optiques groupées ensemble, ces fibres comportant chacune un premier coeur dopé entouré d'un second coeur non dopé, et étant couplées avec N fibres monomodes, dont les autres extrémités sont reliées, avec une extrémité d'une fibre auxiliaire non dopée (8), par un coupleur 1 vers N+1 (9) , à un laser (11) oscillant à la longueur d'onde d'émission désirée pour la source de puissance, l'autre extrémité de la fibre auxiliaire étant suivie d'un dispositif optique d'imagerie (14) à un milieu non linéaire de transfert d'énergie positionné vis-à-vis de la face de renvoi de la lame dichroïque, le faisceau de référence issu de la fibre auxiliaire étant amplifié par le milieu à transfert d'énergie par l'énergie amplifiée provenant de la lame dichroïque.

Description

SOURCE LASER DE PUISSANCE A FIBRES OPTIQUESA SOURCE DE
POMPAGE UNIQUE
La présente invention se rapporte à une source laser de puissance à fibres optiques à source de pompage unique.
La réalisation de sources laser à l'état solide, de puissance supérieure à 1 kW est importante pour de nombreuses applications industrielles. De telles sources ont déjà été réalisées à partir de barreaux de Nd :YAG pompés par des diodes laser. Deux types d'architecture permettent d'atteindre de telles performances : celles à oscillateur unique et celles dites à configuration « MOPA » qui sont constitués d'un oscillateur maître et d'amplificateurs.
Des puissances continues supérieures à 100 W peuvent être obtenues à partir d'une seule fibre amplificatrice monomode. La puissance est ensuite limitée par les seuils de dommage de la fibre. L'utilisation d'une fibre multimode à grand diamètre permettrait d'augmenter encore davantage la puissance de la source laser et d'atteindre par exemple 1 kW. Le faisceau multimode issu de la fibre peut ensuite être converti en un faisceau monomode au moyen d'une interaction non linéaire à deux ondes dans un milieu à variation d'indice ou d'un composant holographique fixe. En considérant un rendement de conversion optique-optique d'environ 30%, pour obtenir 1 kW, il faut pomper la fibre dopée avec une source de pompage à diodes laser produisant une puissance d'au moins 3 kW. Le pompage longitudinal (c'est-à-dire selon l'axe de la fibre) reste le moyen le plus simple de pomper les fibres laser amplificatrices. Pour illustrer les problèmes posés par de telles structures, on considère par exemple une fibre à double coeur typique ayant un diamètre de coeur dopé de 50 μm et un coeur non dopé de diamètre 500 μm, avec une ouverture numérique de 0,4. On peut alors pomper longitudinalement une telle fibre avec une puissance allant jusqu'à 500 W et fournie par une source de pompage composée d'empilements de barrettes de diodes laser et d'une optique de mise en forme de faisceau. Si l'on voulait disposer d'une puissance de pompage de 3 kW, le diamètre de la partie non dopée de la fibre amplificatrice devrait être 6 fois plus grand que dans l'exemple qui vient d'être cité, ce qui serait totalement irréaliste en l'état actuel de la technique.
La présente invention a pour objet une source laser solide de type MOPA pouvant délivrer une puissance d'au moins 1 kW utilisant des moyens couramment disponibles, sans risques de destruction de ses composants, et qui soit la moins onéreuse possible.
La source laser conforme à l'invention comporte une source de pompage unique illuminant, à travers une optique de focalisation unique, suivie d'une lame dichroïque, une extrémité d'un ensemble de N fibres optiques groupées ensemble, ces fibres comportant chacune un premier coeur dopé entouré d'un second coeur non dopé, et étant couplées avec N fibres monomodes, dont les autres extrémités sont reliées, avec une extrémité d'une fibre auxiliaire non dopée, par un coupleur 1 vers N+1 , à un laser oscillant à la longueur d'onde d'émission désirée pour la source de puissance, l'autre extrémité de la fibre auxiliaire étant suivie d'un dispositif optique d'imagerie à un milieu non linéaire de transfert d'énergie positionné vis-à-vis de la face de renvoi de la lame dichroïque, le faisceau de référence issu de la fibre auxiliaire étant amplifié par le milieu à transfert d'énergie par l'énergie amplifiée provenant de la lame dichroïque.
La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel :
- la figure 1 est un bloc-diagramme d'une source laser de puissance conforme à l'invention,
- la figure 2 est un schéma partiel de détail des fibres optiques amplificatrices utilisées dans la source de la figure 1 ,
- la figure 3 est une vue simplifiée en perspective d'un outil pouvant servir à réaliser les jonctions des fibres à deux coeurs avec des fibres monomodes non dopées, pour réaliser la source de la figure 1 , et
- la figure 4 est un bloc-diagramme détaillé du dispositif de conversion de mode de la source de la figure 1.
La source laser de puissance représentée en figure 1 comporte une source de pompage unique 1 composée, par exemple, de plusieurs diodes laser, qui est imagée par une optique de focalisation unique 2 sur la face frontale plane 3 formée par les extrémités alignées d'un ensemble 4 de N fibres optiques à deux coeurs soudées entre elles à cette extrémité. Comme représenté en détail en figure 2, chacune des N fibres optiques de l'ensemble 4 comprend un coeur central 5 dopé de façon classique et entouré d'un coeur concentrique 5a non dopé. De telles fibres peuvent être des composants standard de télécommunications, ou, plus avantageusement, des fibres à grand coeur pouvant accepter des puissances élevées. Les extrémités de ces N fibres optiques à deux coeurs sont groupées de façon à former un faisceau de fibres compact à contour sensiblement circulaire et réunies ou soudées dans une gaine de protection et de maintien 7. La face frontale de l'ensemble de fibres ainsi soudées ensemble est polie de façon à former la surface plane 3 sur laquelle est imagée la source 1 pour pomper longitudinalement les coeurs non dopés de ces fibres. La puissance de la pompe se répartit de façon sensiblement homogène dans ces coeurs non dopés et dopés. Chacune des N fibres à deux coeurs est couplée (de façon expliquée en référence à la figure 3) à une fibre 6 monomode. Les autres extrémités des fibres 6 sont reliées, en même temps qu'une fibre monomode auxiliaire non dopée 8, à la sortie d'un coupleur 9 à l'entrée duquel est reliée une fibre unique 10 (le coupleur 9 est donc de type « 1 vers N+1 » ). La fibre 10 est reliée à son autre extrémité à un oscillateur 11, par exemple de type à fibre optique monomode. La longueur d'onde λθ de l'oscillateur 11 est égale à la longueur d'onde que doit avoir l'onde de puissance produite à la sortie du dispositif de la figure 1 , et elle est différente de la longueur d'onde λp de pompage de la source 1. L'autre extrémité de la fibre optique 8 est placée au foyer d'une optique de collimation 12 qui produit ainsi un faisceau monomode collimaté 13, qui sert de faisceau de référence, comme expliqué ci-dessous. Le faisceau 13 est envoyé sur une première face d'un cristal non linéaire 14, du type à variation d'indice par exemple. Par ailleurs, on dispose entre l'optique 2 et la face 3 des fibres optiques une lame dichroïque 15 inclinée à 45° par rapport à l'axe 2a de l'optique 2. La lame 15 est réalisée de façon à être hautement réfléchissante à la longueur d'onde λθ et hautement transmissive à la longueur d'onde λp . Sur l'axe 15a, perpendiculaire à l'axe 2a ( il est perpendiculaire à l'axe 2a dans le présent exemple, mais ce n'est pas nécessaire), et coupant cet axe 2a sur la face de la lame 15 tournée vers l'ensemble de fibres 4, on dispose une optique de focalisation 16 focalisant le faisceau 15b qu'elle reçoit de la lame 15 sur une des faces du cristal 14. On intercale sur le trajet de la fibre 10 un isolateur 17 qui évite toute transmission dommageable de puissance vers l'oscillateur 11. En variante, on peut intercaler un isolateur sur chacune des fibres 6. Cet isolateur 17 ne laisse passer que la longueur d'onde λθ dans le sens 11 vers 9 et bloque celle de la pompe dans le sens contraire (de 9 vers 11).
Le dispositif décrit ci-dessus fonctionne de la façon suivante. Le faisceau de pompage est transmis presque sans pertes par la lame 15 vers la face frontale 3 de l'ensemble de fibres 4 pour pomper longitudinalement leurs coeurs dopés et non dopés. A leur extrémité reliées au coupleur 9, les N fibres 6 non dopées reçoivent la longueur d'onde λe - Les fibres à deux coeurs recueillent l'onde optique au niveau du coeur dopé à cette longueur d'onde λθ et l'amplifient pour envoyer un faisceau à cette longueur d'onde λθ vers la lame 15. Cette dernière, étant hautement réfléchissante à λθ , réfléchit ce faisceau vers l'optique 16 qui le concentre sur le cristal 14, dans lequel il se combine avec le faisceau de référence 13 de faible puissance pour lui transférer la puissance qu'il transporte, Cette énergie amplifiée est transportée par le faisceau de sortie 14a du cristal 14. Ce faisceau 14a est un faisceau monomode amplifié. Le transfert d'énergie dans le cristal 14 se faisant sans transfert de phase, le faisceau amplifié 14a a les mêmes caractéristiques spatiales que le faisceau de référence 13 dont il conserve la qualité spatiale de cohérence. Le cristal 14 est soit un cristal photoréfractif tel que LiNbO3, BaTiO3, SBN soit un milieu non linéaire transparent dans lequel se produisent des non linéarités du troisième ordre, telles que l'effet Brillouin ou l'effet Kerr.
On a représenté en figure 3 un outil 18 permettant d'injecter les N fibres monomodes vers les N fibres amplificatrices multimodes. Cet outil comporte essentiellement deux enclumes 19 et 20, de forme parallélépipédique rectangle, disposées côte-à-côte, la face supérieure de l'enclume 19 étant légèrement plus haute que celle de l'enclume 20, ces deux faces étant parallèles entre elles. Sur les faces supérieures de ces deux enclumes, on pratique plusieurs par exemple N) entailles en forme de « V » de dimensions appropriées aux diamètres respectifs des fibres 6 et 23, ces entailles étant perpendiculaires au plan de jonction des deux enclumes. Les entailles pratiquées dans l'enclume 19 sont référencées 21, et celles pratiquées dans l'enclume 20 sont référencées 22. L'axe de chaque entaille 21 est dans le même plan perpendiculaire aux faces supérieures des deux enclumes que l'axe de chaque entaille 22 correspondante. Dans chacune des entailles 21, on dispose l'extrémité d'une fibre 6 (comportant un coeur non dopé 6a entouré d'une gaine 6b). Dans chaque entaille 22, on dispose l'extrémité d'une fibre multimode 23, chacune de ces fibres se composant d'un coeur dopé 24, entouré d'un coeur non dopé 25, lui-même entouré d'une gaine 26. Les dimensions des entailles 21 et 22 et leurs positions relatives sont telles que les axes des fibres 23 soient dans le prolongement des axes des fibres 6 correspondantes. Les fibres 6 sont alors injectées vers les fibres 23 de façon coaxiale, soit leur sont reliées à l'aide de N connecteurs appropriés.
Le cristal 14 de conversion de mode fonctionne en général avec des faisceaux polarisés linéairement. Or, le faisceau, à la longueur d'onde λθ sortant de la face 3 de l'ensemble 4 en direction de la lame 15, et formé des N faisceaux amplifiés issus des fibres multimodes est, en principe, dépolarisé. Dans ce cas, selon une caractéristique avantageuse de l'invention, schématisée en figure 4, on utilise un séparateur de polarisations pour séparer les deux composantes de polarisation linéaires verticale et horizontale. On place alors sur le trajet du faisceau 15b un cube 27 séparateur de polarisations. On dispose en vis-à-vis de la surface inclinée à 45° du cube 27 (sur un axe perpendiculaire à l'axe 15a du faisceau 15b) un miroir 28 dirigé de façon à renvoyer vers le cristal 14, dans la zone d'incidence directe du faisceau 15b, le faisceau (à polarisation verticale dans le cas présent) qu'il reçoit du cube 27. Ce miroir 28 est suivi d'une lame demi-onde 29 (en variante, cette lame peut être placée sur le trajet direct du faisceau 15a, entre le cube 27 et le cristal 14). La lame 29 fait tourner de 90° la polarisation du faisceau qui la traverse, et dont la polarisation verticale devient alors horizontale. Or, le faisceau direct 15a issu du cube 27 est à polarisation horizontale également. Par conséquent, les deux faisceaux arrivant sur le cristal 14 (en provenance du cube 27 et de la lame 29) ont la même polarisation, et ne risquent donc pas de perturber le fonctionnement de ce cristal. Selon un exemple de réalisation de la source conforme à l'invention, on avait les valeurs suivantes :
- Puissance de la pompe : 3 kW en continu
- Nombre de fibres multimodes : N=6 . Fibres de 50 μm de diamètre de coeur dopé et 500 μm de diamètre extérieur de coeur non dopé (ouverture numérique≈ 0,38). Dopage à Yb (fibre présentant du gain à la longueur d'onde d'émission de
1,053 μm).
Cristal 14 : fonctionnant à la longueur d'onde de 1,053 μm, en
BaTiO3 dopé au Rhodium ou LiNbO3.
Oscillateur : laser à fibre en Yb, délivrant une puissance pouvant aller de 1 à 10 W.

Claims

REVENDICATIONS
1. Source laser de puissance caractérisée en ce qu'elle comporte une source de pompage unique (1) illuminant, à travers une optique de focalisation unique (2), suivie d'une lame dichroïque
(15), une extrémité (4) d'un ensemble de N fibres optiques groupées ensemble, ces fibres comportant chacune un premier coeur dopé (5, 24) entouré d'un second coeur non dopé (5a, 25), et étant couplées avec N fibres monomodes (6), dont les autres extrémités sont reliées, avec une extrémité d'une fibre auxiliaire non dopée (8), par un coupleur 1 vers N+1 (9), à un laser (11) oscillant à la longueur d'onde d'émission désirée pour la source de puissance, l'autre extrémité de la fibre auxiliaire étant suivie d'un dispositif optique d'imagerie (12) à un milieu non linéaire de transfert d'énergie (14) positionné vis-à-vis de la face de renvoi de la lame dichroïque, le faisceau de référence issu de la fibre auxiliaire étant amplifié par le milieu à transfert d'énergie par l'énergie amplifiée provenant de la lame dichroïque.
2. Source laser selon la revendication 1, caractérisée en ce quil comporte un dispositif correcteur de polarisation (27 à 29) entre la lame dichroïque et le milieu non linéaire.
PCT/EP2003/051031 2002-12-31 2003-12-16 Source laser de puissance a fibres optiques a source de pompage unique WO2004059807A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003303404A AU2003303404A1 (en) 2002-12-31 2003-12-16 Power laser source with optical fibres having a single pump source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0216904A FR2849545B1 (fr) 2002-12-31 2002-12-31 Source laser de puissance a fibres optiques a source de pomp age unique
FR0216904 2002-12-31

Publications (1)

Publication Number Publication Date
WO2004059807A1 true WO2004059807A1 (fr) 2004-07-15

Family

ID=32480323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/051031 WO2004059807A1 (fr) 2002-12-31 2003-12-16 Source laser de puissance a fibres optiques a source de pompage unique

Country Status (3)

Country Link
AU (1) AU2003303404A1 (fr)
FR (1) FR2849545B1 (fr)
WO (1) WO2004059807A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575828B (zh) * 2015-01-23 2017-03-21 羅光英國有限公司 藉由均勻抽吸放大介質之雷射光束放大法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571126A2 (fr) * 1992-05-12 1993-11-24 Hughes Aircraft Company Appareil et procédé pour l'amplification d'énergie optique utilisants le couplage de deux faisceaux
US5689522A (en) * 1995-10-02 1997-11-18 The Regents Of The University Of California High efficiency 2 micrometer laser utilizing wing-pumped Tm3+ and a laser diode array end-pumping architecture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571126A2 (fr) * 1992-05-12 1993-11-24 Hughes Aircraft Company Appareil et procédé pour l'amplification d'énergie optique utilisants le couplage de deux faisceaux
US5689522A (en) * 1995-10-02 1997-11-18 The Regents Of The University Of California High efficiency 2 micrometer laser utilizing wing-pumped Tm3+ and a laser diode array end-pumping architecture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRIGNON A ET AL: "Beam cleanup of a multimode yb-doped fiber amplifier with an infrared sensitive Rh:BaTiO3 crystal", CONFERENCE ON LASERS AND ELECTRO-OPTICS. (CLEO 2001). TECHNICAL DIGEST. POSTCONFERENCE EDITION. BALTIMORE, MD, MAY 6-11, 2001, TRENDS IN OPTICS AND PHOTONICS. (TOPS), US, WASHINGTON, WA: OSA, US, vol. 56, 6 May 2001 (2001-05-06), pages 220 - 221, XP010559759, ISBN: 1-55752-662-1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575828B (zh) * 2015-01-23 2017-03-21 羅光英國有限公司 藉由均勻抽吸放大介質之雷射光束放大法

Also Published As

Publication number Publication date
AU2003303404A1 (en) 2004-07-22
FR2849545A1 (fr) 2004-07-02
FR2849545B1 (fr) 2005-04-08

Similar Documents

Publication Publication Date Title
EP0401064B1 (fr) Lasers de puissance pompés par diodes lasers
FR2655435A1 (fr) Dispositif d'addition coherente de faisceaux laser.
EP0390662B1 (fr) Générateur laser de puissance avec contrôle de la direction d'émission du faisceau de sortie
JPH11503575A (ja) 外部キャビティ大面積のレーザダイオードを受動光学キャビティに結合する技術
EP3885827A1 (fr) Guide d'onde multimode configuré pour générer une radiation monomode à partir d'une radiation monomode
EP2147487B1 (fr) Laser a puce pulse
EP0452838A1 (fr) Dispositif de conjugaison de phase optique avec guide de lumière pour combinaison de plusieurs rayons lumineux
EP0847115B1 (fr) Dispositif amplificateur de lumière à deux faisceaux incidents
FR2768267A1 (fr) Amplificateur optique
FR2759208A1 (fr) Dispositif de controle du pointage et de la focalisation des chaines laser sur une cible
WO2004059807A1 (fr) Source laser de puissance a fibres optiques a source de pompage unique
FR2818814A1 (fr) Source laser
EP2206011B1 (fr) Source laser comportant un dispositif de balayage angulaire
EP0977327A1 (fr) Laser en espace libre avec sortie fibre autoalignée
EP0637109A1 (fr) Amplificateur optique à fibre optique en verre fluoré dopé et procédé de fabrication de cet amplificateur
EP0180509B1 (fr) Procédé et dispositif de modulation de phase optique contrôlable stable
FR2885743A1 (fr) Dispositif de pompage optique
WO2003055016A2 (fr) Dispositif d'amplification et de mise en phase pour sources laser de puissance
EP1212814A1 (fr) Laser pompe et milieu laser optimise
WO2005015698A1 (fr) Source laser de puissance a grande finesse spectrale
FR2767996A1 (fr) Amplificateur d'impulsions optiques
CN1186662C (zh) 多波长光学参量高功率光纤放大装置
EP1030412B1 (fr) Amplificateur optique
FR2756110A1 (fr) Oscillateur optique a agilite de pointage et source laser utilisant cet oscillateur optique
FR2739732A1 (fr) Dispositif d'amplification optique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP