WO2004056947A1 - Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues - Google Patents

Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues Download PDF

Info

Publication number
WO2004056947A1
WO2004056947A1 PCT/EP2003/014545 EP0314545W WO2004056947A1 WO 2004056947 A1 WO2004056947 A1 WO 2004056947A1 EP 0314545 W EP0314545 W EP 0314545W WO 2004056947 A1 WO2004056947 A1 WO 2004056947A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
heavy
distillation
fraction
hydrotreatment
Prior art date
Application number
PCT/EP2003/014545
Other languages
French (fr)
Inventor
Romolo Montanari
Mario Marchionna
Nicoletta Panariti
Alberto Delbianco
Sergio Rosi
Original Assignee
Eni S.P.A.
Snamprogetti S.P.A.
Enitecnologie S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ITMI20022713 external-priority patent/ITMI20022713A1/en
Priority claimed from ITMI20030692 external-priority patent/ITMI20030692A1/en
Priority to CA2510290A priority Critical patent/CA2510290C/en
Priority to AU2003293938A priority patent/AU2003293938B2/en
Priority to SI200330422T priority patent/SI1572839T1/en
Priority to JP2005502552A priority patent/JP2006511682A/en
Application filed by Eni S.P.A., Snamprogetti S.P.A., Enitecnologie S.P.A. filed Critical Eni S.P.A.
Priority to DE60306422T priority patent/DE60306422T2/en
Priority to BRPI0317365-8B1A priority patent/BR0317365B1/en
Priority to EP03789342A priority patent/EP1572839B1/en
Priority to MXPA05006599A priority patent/MXPA05006599A/en
Priority to US10/538,886 priority patent/US8123932B2/en
Publication of WO2004056947A1 publication Critical patent/WO2004056947A1/en
Priority to NO20052931A priority patent/NO20052931L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/049The hydrotreatment being a hydrocracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil

Definitions

  • PROCESS FOR THE CONVERSION OF HEAVY FEEDSTOCKS SUCH AS HEAVY CRUDE OILS AND DISTILLATION RESIDUES
  • the present invention relates to a process for the conversion of heavy feedstocks, among which heavy crude oils, bitumens from oils sands, distillation residues, various kinds of coal, using three main process units: hydroconversion of the feedstock using catalysts in dispersed phase, distillation and deasphalting, suitably connected and fed with mixed streams consisting of fresh feedstock and conversion products, a post-treatment unit of the light distillates, naphtha and gas oil, being added to said three main units.
  • the conversion of heavy crude oils, bitumens from oil sands and oil residues into liquid products can be substantially effected by means of two methods: one exclusively thermal, the other through hydrogenating treatment .
  • the hydrogenating processes consist in treating the feedstock in the presence of hydrogen and suitable catalysts .
  • Hydroconversion technologies currently on the market use fixed bed or ebullated bed reactors and catalysts generally consisting of one or more transition metals (Mo, W, Ni, Co, etc.) supported on silica/alumina (or equivalent material) .
  • transition metals Mo, W, Ni, Co, etc.
  • Slurry technologies are characterized by the pres- ence of catalyst particles having very small average dimensions and being effectively dispersed in the medium: for this reason the hydrogenation processes are simpler and more efficient in all points of the reactor.
  • the formation of coke is greatly reduced and the upgrading of the feedstock is high.
  • the catalyst can be introduced as a powder with sufficiently reduced dimensions or as an oil-soluble precursor.
  • the active form of the catalyst generally the metal sulfide
  • the metal sulfide is formed in-situ by ther- mal decomposition of the compound used, during the reaction itself or after suitable pretreatment.
  • the metal constituents of the dispersed catalysts are generally one or more transition metals (preferably Mo, W, Ni, Co or Ru) .
  • Molybdenum and tungsten have much more satisfactory performances than nickel, cobalt or ruthenium and even more than vanadium and iron (N. Panariti et al., Appl. Catal . A: Gen. 2000, 204, 203).
  • the catalyst can be used at a low concentration (a few hundreds of ppm) in a "once-through" configuration, but in this case the upgrading of the reaction products is generally insufficient (A. Delbianco et al . , Chemtech, November 1995, 35) .
  • extremely active catalysts for example molybdenum
  • concentrations of catalysts for example molybdenum
  • concentrations of catalysts for example molybdenum
  • the catalyst leaving the reactor can be recovered by separation from the product obtained by hydrotreatment (preferably from the bottom of the distillation column downstream of the reactor) by means of the conventional methods such as decanting, centrifugation or filtration (US-3,240,718; US-4 , 762 , 812 ) . Part of said catalyst can be recycled to the hydrogenation process without further treatment.
  • the catalyst recovered using the known hydrotreatment processes normally has a reduced activity with respect to the fresh catalyst making an ap-storyte regeneration step necessary in order to restore the catalytic activity and recycle at least part of said catalyst to the hydrotreatment reactor. Furthermore, these recovery processes of the catalyst are costly and also extremely complex from a technological point of view.
  • This process comprises the following steps:
  • hydroconversion with catalysts in slurry phase (HT) , distillation or flash (D) , deasphalting (SDA) is characterized in that the three units operate on mixed streams consisting of fresh feedstock and recycled streams, using the following steps:
  • HT catalytic hydrogenation unit
  • SDA extraction process
  • hydroconversion with catalysts in slurry phase (HT) , distillation (D) , deasphalting (SDA) comprises the following steps: • mixing at least part of the heavy feedstock and/or at least most of the stream containing asphaltenes obtained in the deasphalting unit with a suitable hydrogenation catalyst and sending the mixture obtained to a hydrotreatment reactor (HT) into which hydrogen or a mix- ture of hydrogen and H 2 S is charged;
  • the light fraction obtained by means of the high pressure separation step can be sent to a hydrotreatment section, producing a lighter fraction containing C ⁇ -C gas and H 2 S and a heavier fraction containing hy- drotreated naphtha and gas oil.
  • the insertion of the secondary post-treatment hydrogenation section of the C-500°C fraction, preferably the C 5 -350°C fraction, exploits the availability of this fraction together with hydrogen at a relatively high pressure, which is approximately that of the hydrotreat- ment reactor, allowing the following advantages to be obtained: it allows the production, starting from oil feedstocks extremely rich in sulfur, of fuels in line with the most severe specifications on the sulfur content ( ⁇ 10- 50 ppm of sulfur) and improved with respect to other characteristics of diesel gas oil such as density, pol- yaromatic hydrocarbon content and cetane number; the distillates produced do not suffer from problems of stability.
  • the hydrogenation post-treatment on a fixed bed consists in the preliminary separation of the reaction effluent of the hydrotreatment reactor (HT) by means of one or more separators operating at a high pressure and a high temperature.
  • a C 2 -500°C fraction preferably a C 5 -350°C fraction
  • a secondary treatment section in the presence of hydrogen, available at a high pressure, wherein the reactor is a fixed bed reactor and contains a typical desulfuration/dearomatization catalyst, in order to obtain a product which has a much lower sulfur content and also lower levels of nitrogen, a lower total density and, at the same time, as far as the gas oil fraction is concerned, increased cetane numbers.
  • the hydrotreatment section normally consists of one or more reactors in series; the product of this system can then be further fractionated by distillation to obtain a totally desulfurated naphtha and a diesel gas oil within specification as
  • the hydrodesulfuration step with a fixed bed generally uses typical fixed bed catalysts for the hydrodesulfuration of gas oils; this catalyst, or possibly also a mixture of catalysts or a set of reactors with different catalysts having different properties, considerably refines the light fraction, by significantly reducing the sulfur and nitrogen content, increasing the hydrogenation degree of the feedstock, thus decreasing the density and increasing the cetane number of the gas oil fraction, at the same time reducing the formation of coke.
  • the catalyst generally consists of an amorphous part based on alumina, silica, silico-alumina and mixtures of various mineral oxides on which a hydrodesulfurating component is deposited (with various methods) together with a hydrogenating agent.
  • Catalysts based on molybdenum or tungsten, with the addition of nickel and/or cobalt deposited on an amorphous mineral carrier are typical catalysts for this type of operation.
  • the hydrogenating post-treatment reaction is carried out at an absolute pressure slightly lower than that of the primary hydrotreatment step, generally ranging from 7 to 14 MPa, preferably from 9 to 12 MPa; the hydrodesulfuration temperature ranges from 250 to 500°C, preferably from 280 to 420°C; the temperature normally depends on the desulfuration level required.
  • the space velocity is another important variable in controlling the quality of the product obtained: it can range from 0.1 to 5 h -1 , preferably from 0.2 to 2 h "1 .
  • the quantity of hydrogen mixed with the feedstock is fed to a stream between 100 and 5000 Nm 3 /m 3 , preferably between 300 and 1000 Nm 3 /m 3 .
  • a further secondary post-treatment section of the flushing stream can also optionally be a further secondary post-treatment section of the flushing stream.
  • Said secondary section consists in the post- treatment of the flushing stream in order to significantly reduce its entity and allow at least part of the catalyst, still active, to be recycled to the hydrotreatment reactor.
  • the fraction of stream containing asphaltenes, coming from the deasphalting section (SDA) is sent to a treatment section with a suitable solvent for the separation of the product into a solid fraction and a liquid fraction from which said solvent can be subsequently removed.
  • the optional treatment section of the flushing effluent preferably in a quantity ranging from 0.5 to 10% by volume with respect to the fresh feedstock, consists in a deoiling step with a solvent (toluene or gas oil or other streams rich in aromatic components) and a separation of the solid fraction from the liquid fraction.
  • a solvent toluene or gas oil or other streams rich in aromatic components
  • At least part of said liquid fraction can be fed:
  • the solvent and fluxing liquid can coincide .
  • the solid fraction can be disposed of as such or, more advantageously, it can be sent to a selective recovery treatment of the transition metal or metals contained in the transition catalyst (for example molybdenum) (with respect to the other metals present in the starting residue, nickel and vanadium) and optional recycling of the stream rich in transition metal (molybdenum) to the hydrotreatment reactor (HT) .
  • the transition metal or metals contained in the transition catalyst for example molybdenum
  • the other metals present in the starting residue, nickel and vanadium optional recycling of the stream rich in transition metal (molybdenum) to the hydrotreatment reactor (HT) .
  • the deoiling step consists in the treatment of the flushing stream, which represents a minimum fraction of the asphaltene stream coming from the deasphalting section (SDA) at the primary hydrotreatment plant of the heavy feedstock, with a solvent which is capable of bringing the highest possible quantity of organic compounds to liquid phase, leaving the metallic sulfides, coke and more refractory carbonaceous residues (insoluble toluene or similar products), in solid phase.
  • SDA deasphalting section
  • solvents can be advantageously used in this deoiling step; among these, aromatic solvents such as toluene and/or xylene blends, hydrocarbon feedstocks available in the plant, such as the gas oil produced therein, or in refineries, such as Light Cycle Oil coming from the FCC unit or Thermal Gas oil coming from the Vis- breaker/Thermal Cracker unit, can be mentioned.
  • aromatic solvents such as toluene and/or xylene blends
  • hydrocarbon feedstocks available in the plant such as the gas oil produced therein, or in refineries, such as Light Cycle Oil coming from the FCC unit or Thermal Gas oil coming from the Vis- breaker/Thermal Cracker unit
  • the operating rate is facilitated by increases in the temperature and the reaction time but an excessive increase is unadvisable for economic reasons .
  • the operating temperatures depend on the solvent used and on the pressure conditions adopted; temperatures ranging from 80 to 150°C, however, are recommended; the reaction times can vary from 0.1 to 12 h, preferably from 0.5 to 4 h
  • the effluent maintained under stirring is sent to a separation section of the liquid phase from the solid phase.
  • This operation can be one of those typically used in industrial practice such as decanting, centrifugation or filtration.
  • the liquid phase can then be sent to a stripping and recovery phase of the solvent, which is recycled to the first treatment step (deoiling) of the flushing stream.
  • the heavy fraction which remains, can be advantageously used in refineries as a stream practically free of metals and with a relatively low sulfur content. If the treatment operation is effected with a gas oil, for example, part of said gas oil can be left in the heavy product to bring it within the specification of pool fuel oil .
  • the liquid phase can be recycled to the hydrogenation reactor.
  • the solid part can be disposed of as such or it can be subjected to additional treatment to selectively recover the catalyst (molybdenum) to be recycled to the hy- drotreatment reactor.
  • the solid phase is dispersed in a sufficient quantity of organic phase (for example deasphalted oil coming from the same process) to which acidulated water is added.
  • organic phase for example deasphalted oil coming from the same process
  • the ratio between aqueous phase and organic phase can vary from 0.3 to 3; the pH of the aqueous phase can vary from 0.5 to 4, preferably from 1 to 3.
  • heavy feedstocks can be treated: they can be selected from heavy crude oils, bitumens from oil sands, various types of coals, distillation residues, heavy oils coming from catalytic treatment, for example heavy cycle oils from catalytic cracking treatment, bottom products from hydroconversion treatment, thermal tars (coming for example from visbreaking or similar thermal processes) , and any other high-boiling feedstock of a hydrocarbon origin generally known in the art as black oils .
  • all the heavy feedstock can be mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment reactor (HT) , whereas at least 60%, preferably at least 80% of the stream containing asphaltenes, which also contains catalyst in dispersed phase and possibly coke and is enriched with metal coming from the initial feedstock, can be recycled to the hydrotreatment zone .
  • HT hydrotreatment reactor
  • part of the heavy feedstock and at least most of the stream containing asphaltenes, which also contains catalyst in dispersed phase and possibly coke, are mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment reactor, whereas the remaining part of the quantity of the heavy feedstock is sent to the deasphalting section.
  • at least most of the stream containing asphaltenes, which essentially consists of said asphaltenes is mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment reactor, whereas all the heavy feedstock is fed to the deasphalting section.
  • At least part of the remaining quantity of said distillation or flash residue can be sent to the hydrotreatment reactor, optionally together with at least part of the stream containing asphaltenes coming from the deasphalting section (SDA) .
  • the catalysts used can be selected from those obtained from precursors decomposable in-situ (metallic naphthenates, metallic derivatives of phosphonic acids, metal-carbonyls, etc.) or from preformed compounds based on one or more transition metals such as Ni, Co, Ru, W and Mo: the latter is preferred due to its high catalytic activity.
  • concentration of the catalyst defined on the basis of the concentration of the metal or metals present in the hydroconversion reactor, ranges from 300 to 20,000 ppm, preferably from 1,000 to 10,000 ppm.
  • the hydrotreatment step is preferably carried out at a temperature ranging from 370 to 480°C, more preferably from 380 to 440°C, and at a pressure ranging from 3 to 30 MPa, more preferably from 10 to 20 MPa.
  • the hydrogen is fed to the reactor, which can operate with both the down-flow and, preferably, up-flow pro- cedure. Said gas can be fed to different sections of the reactor.
  • the distillation step is preferably effected at reduced pressure ranging from 0.0001 to 0.5 MPa, preferably from 0.001 to 0.3 MPa.
  • the hydrotreatment step can consist of one or more reactors operating within the range of conditions specified above. Part of the distillates produced in the first reactor can be recycled to the subsequent reactors.
  • the deasphalting step effected by means of an ex- traction with a solvent, hydrocarbon or non-hydrocarbon (for example with paraffins or iso-paraffins having from 3 to 6 carbon atoms), is generally carried out at temperatures ranging from 40 to 200°C and at a pressure ranging from 0.1 to 7 MPa. It can also consist of one or more sections operating with the same solvent or with different solvents; the recovery of the solvent can be effected under subcritical or supercritical conditions with one or more steps, thus allowing a further frac- tionation between deasphalted oil (DAO) and resins.
  • DAO deasphalted oil
  • the stream consisting of deasphalted oil (DAO) can be used as such, as synthetic crude oil (syncrude) , optionally mixed with the distillates, or it can be used as feedstock for fluid bed Catalytic Cracking or Hydrocrack- ing treatment .
  • DAO deasphalted oil
  • synthetic crude oil syncrude
  • hydrocrack- ing treatment Depending on the characteristics of the crude oil (metal content, sulfur and nitrogen content, carbonaceous residue) , the feeding to the whole process can be advantageously varied by sending the heavy residue alternately either to the deasphalting unit or to the hydrotreatment unit, or contemporaneously to the two units, modulating:
  • the fractions of fresh feedstock to be fed to the deasphalting section and hydrotreatment section can be modulated in the best possible way.
  • the application described is particularly suitable when the heavy fractions of the complex hydrocarbon mix- tures produced by the process (bottom of the distillation column) are to be used as feedstock for catalytic cracking plants, both Hydrocracking (HC) and fluid bed Catalytic Cracking (FCC) .
  • HC Hydrocracking
  • FCC fluid bed Catalytic Cracking
  • HT catalytic hydrogenation unit
  • SDA extractive process
  • the heavy feedstock (1) or at least a part thereof (la) , is sent to the deasphalting unit (SDA) , an operation which is effected by means of extraction with a solvent .
  • SDA deasphalting unit
  • Two streams are obtained from the deasphalting unit (SDA): one stream (2) consisting of deasphalted oil (DAO), the other containing asphaltenes (3).
  • DAO deasphalted oil
  • the stream containing asphaltenes is mixed with the fresh make-up catalyst (5) necessary for reintegrating that lost with the flushing stream (4) , with part of the heavy feedstock (lb) noc fed to the deasphalting section and part of the tar (24) not fed to the deasphalting section (SDA) and optionally with the stream (15) coming from the optional treatment section of the flushing (whose description will be dealt with further on in the text) to form the stream (6) which is fed to the hydrotreatment reactor (HT) into which hydrogen is charged (or a mixture of hydrogen and H 2 S) (7) .
  • HT hydrotreatment reactor
  • a stream (8) containing the hydrogenation product and the catalyst in dispersed phase, leaves the reactor and is first fractionated in one or more separa- tors operating at high pressure (HP Sep) .
  • the fraction at the head (9) is sent to a fixed bed hydrotreatment reactor (HDT C 5 -350) where a light fraction containing C ⁇ -C gas and H 2 S (10) and a C 5 -350°C fraction (11) containing hydrotreated naphtha and gas oil, are produced.
  • a heavy fraction (12) leaves the bottom of the high pressure separator and is fractionated in a distillation column (D) from which the vacuum gas oil (13) is separated from the distillation residue containing the dispersed catalyst and coke.
  • This stream, called tar (14) is com- pletely or mostly (25) recycled to the deasphalting reactor (SDA), with the exception of the fraction (24) mentioned above.
  • the flushing stream (4) can be sent to a hydrotreatment section (Deoiling) with a solvent (16) forming a mixture containing liquid and solid fractions (17) .
  • Said mixture is sent to a treatment section of solids (Solid Sep) from which a solid effluent (18) is separated and also a liquid effluent (19), which is sent to a recovery section of the solvent (Solvent Recovery) .
  • the recovered solvent (16) is sent back to the deoiling section whereas the heavy effluent (20) is sent to the Fuel Oil fraction (22), as such or with the addition of a possible fluxing liquid (21) .
  • the solid fraction (18) can be disposed of as such or it can be optionally sent to a section for additional treatment (Cake Treatment) , such as that described, for example, in the text and examples, to obtain a fraction which is practically free of molybdenum (23) , which is sent for disposal and a fraction rich in molybdenum (15) , which can be recycled to the hydrotreatment reactor.
  • a section for additional treatment such as that described, for example, in the text and examples
  • Feedsuock 300 g of vacuum residue from Ural crude oil (Table 1) • Deasphalting agent; 2000 cc of liquid propane (extrac- tion repeated three times)
  • Reactor 3000 cc, steel, suitably shaped and equipped with magnetic stirring
  • the ratio between the quantity of fresh feedstock and quantity of recycled product reached under these op- erating conditions was 1:1.
  • Atmospheric gas oil (AGO 170-350°C) : 17%
  • the asphaltene stream recovered at the end of the test contains all the catalyst fed initially, the sul- fides of the metals Ni and V produced during the ten hydrotreatment reactions and a quantity of coke in the order of about 1% by weight with respect to the total quantity of Ural residue fed. In the example indicated, it is not necessary to effect a flushing of the recycled stream.
  • Table 2 specifies the characterization of the product obtained.
  • EXAMPLE 2 Following the scheme represented in Figure 1, the products leaving the head of a high pressure separator are sent to a fixed bed reactor, fed with a stream of reagents with a downward movement. The reactor is charged with a typical commercial hydrodesulfuration catalyst based on molybdenum and nickel.
  • the operating conditions are the following: LHSV: 0.5 h -1
  • Example 3 The same procedure is used as described in Example 3; 10.6 g of flushing stream (composition indicated in Table 4) are treated with 62 ml of gas oil, produced during a hydrotreatment test of Ural residue, as described in Example 1 above and with the quality specified in Table 2; the gas oil/flushing ratio is 5 and the operation is carried out at 130°C for 6 h. The resulting fraction is subjected to centrifugation (5000 rpm) . 1.78 g of solid are collected (composition indicated in Table 7) together with 8.82 g of heavy oil (after removal of the gas oil by evaporation) .
  • the total amount (> 99%) of molybdenum remains in the organic phase, whereas the nickel and vanadium are found in the aqueous phase in quantities corresponding to an extraction efficiency of 23.5% and 24.4%, respec- tively.
  • the total amount of molybdenum remains in the organic phase, whereas the nickel and vanadium are found in the aqueous phase in quantities corresponding to an extraction efficiency of 41.0% and 26.8%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

Process for the conversion of heavy feedstocks selected from heavy crude oils, distillation residues, heavy oils coming from catalytic treatment, thermal tars, oil sand bitumens, various kinds of coals and other high-boiling feedstocks of a hydrocarbon origin known as black oils, by the combined use of the following three process units: hydroconversion with catalysts in slurry phase (HT), distilla tion or flash (D), deasphalting (SDA), comprising the follow ing steps: mixing at least part of the heavy feedstock and/or at least most of the stream containing asphaltenes obtained in the deasphalting unit with a suitable hydrogenation catalyst and sending the mixture obtained to a hydrotreatment reactor (HT) into which hydrogen or a mixture of hydrogen and H2S is charged; sending the stream containing the hydrotreatment reaction product and the catalyst in dispersed phase to one or more distillation or flash steps (D) whereby the different frac tions coming from the hydrotreatment reaction are separated; recycling at least part of the distillation residue (tar) or liquid leaving the flash unit, containing the catalyst in dispersed phase, rich in metal sulfides produced by demetallation of the feedstock and possibly coke, to the deasphalting zone (SDA) in the presence of solvents, optionally also fed with at least a fraction of the heavy feedstock, obtaining two streams, one consisting of deasphalted oil (DAO) and the other containing asphaltenes, characterized in that the stream containing the hydrotreatment reaction product and the catalyst in dispersed phase, before being sent to one or more distillation or flash steps, is subjected to a high pressure separation pre-step in order to obtain a light fraction and a heavy fraction, the heavy fraction alone being sent to said distillation step(s) (D).

Description

PROCESS FOR THE CONVERSION OF HEAVY FEEDSTOCKS SUCH AS HEAVY CRUDE OILS AND DISTILLATION RESIDUES
The present invention relates to a process for the conversion of heavy feedstocks, among which heavy crude oils, bitumens from oils sands, distillation residues, various kinds of coal, using three main process units: hydroconversion of the feedstock using catalysts in dispersed phase, distillation and deasphalting, suitably connected and fed with mixed streams consisting of fresh feedstock and conversion products, a post-treatment unit of the light distillates, naphtha and gas oil, being added to said three main units.
The conversion of heavy crude oils, bitumens from oil sands and oil residues into liquid products can be substantially effected by means of two methods: one exclusively thermal, the other through hydrogenating treatment .
Current studies are mainly directed towards hydro- genating treatment, as thermal processes have problems linked to the disposal of the by-products, particularly coke (also obtained in quantities higher than 30% by weight with respect to the feedstock) and to the poor quality of the conversion products . The hydrogenating processes consist in treating the feedstock in the presence of hydrogen and suitable catalysts .
Hydroconversion technologies currently on the market use fixed bed or ebullated bed reactors and catalysts generally consisting of one or more transition metals (Mo, W, Ni, Co, etc.) supported on silica/alumina (or equivalent material) .
Fixed bed technologies have considerable problems in treating particularly heavy feedstocks containing high percentages of heteroatoms, metals and asphaltenes, as these contaminants cause a rapid deactivation of the catalyst.
Ebullated bed technologies have been developed and commercialized for treating these feedstocks; these pro- vide interesting performances but are complex and costly. Hydrotreatment technologies operating with catalysts in dispersed phase can provide an attractive solution to the drawbacks encountered in the use of fixed bed or ebullated bed technologies. Slurry processes, in fact, com- bine the advantage of a wide flexibility for the feed- stock with high performances in terms of conversion and upgrading, making them, in principle, simpler from a technological point of view.
Slurry technologies are characterized by the pres- ence of catalyst particles having very small average dimensions and being effectively dispersed in the medium: for this reason the hydrogenation processes are simpler and more efficient in all points of the reactor. The formation of coke is greatly reduced and the upgrading of the feedstock is high.
The catalyst can be introduced as a powder with sufficiently reduced dimensions or as an oil-soluble precursor. In the latter case, the active form of the catalyst (generally the metal sulfide) is formed in-situ by ther- mal decomposition of the compound used, during the reaction itself or after suitable pretreatment.
The metal constituents of the dispersed catalysts are generally one or more transition metals (preferably Mo, W, Ni, Co or Ru) . Molybdenum and tungsten have much more satisfactory performances than nickel, cobalt or ruthenium and even more than vanadium and iron (N. Panariti et al., Appl. Catal . A: Gen. 2000, 204, 203).
Even though the use of dispersed catalysts solves most of the problems listed for the technologies de- scribed above, it still has disadvantages mainly linked to the life cycle of the catalyst itself and quality of the products obtained.
The conditions of use of these catalysts (type of precursors, concentration, etc.) are, in fact, extremely important both from an economic point of view and also with respect to environmental impact.
The catalyst can be used at a low concentration (a few hundreds of ppm) in a "once-through" configuration, but in this case the upgrading of the reaction products is generally insufficient (A. Delbianco et al . , Chemtech, November 1995, 35) . When operating with extremely active catalysts (for example molybdenum) and with higher concentrations of catalysts (thousands of ppm of metal) , the quality of the product obtained is much better but a re- cycling of the catalyst is compulsory.
The catalyst leaving the reactor can be recovered by separation from the product obtained by hydrotreatment (preferably from the bottom of the distillation column downstream of the reactor) by means of the conventional methods such as decanting, centrifugation or filtration (US-3,240,718; US-4 , 762 , 812 ) . Part of said catalyst can be recycled to the hydrogenation process without further treatment. The catalyst recovered using the known hydrotreatment processes, however, normally has a reduced activity with respect to the fresh catalyst making an ap- propriate regeneration step necessary in order to restore the catalytic activity and recycle at least part of said catalyst to the hydrotreatment reactor. Furthermore, these recovery processes of the catalyst are costly and also extremely complex from a technological point of view.
All the hydroconversion processes described above allow more or less high conversion levels to be reached depending on the feedstock and type of technology used, but in any case generating a non-converted residue at the stability limit, herein called tar, which, from case to case, can vary from 15 to 85% of the initial feedstock. This product is used to produce fuel oil, bitumens or it can be used as a feedstock in gasification processes. In order to increase the overall conversion level of the cracking processes of residues, schemes have been proposed which comprise the recycling of more or less significant quantities of tar in the cracking unit. In the case of hydroconversion processes with catalysts dis- persed in slurry phase, the recycling of the tar also allows the recovery of the catalyst, insomuch that the same applicants in IT-95A001095 describe a process which allows the recovered catalyst to be recycled to the hydrotreatment reactor without the necessity of a further regeneration step, at the same time obtaining a good- quality product without the production of residue (zero residue refinery) .
This process comprises the following steps:
• mixing the heavy crude oil or distillation residue with a suitable hydrogenation catalyst and sending the mixture obtained to a hydrotreatment reactor into which hydrogen or a mixture of hydrogen and H2S is charged,-
• sending the stream containing the hydrotreatment reaction product and the catalyst in dispersed phase to a distillation zone in which the most volatile fractions
(naphtha and gas oil) are separated;
• sending the high-boiling fraction obtained in the distillation step to a deasphalting step, thus producing two streams, one consisting of deasphalted oil (DAO) , the other consisting of asphaltenes, catalyst in dispersed phase and possibly coke and enriched with metals coming from the initial feedstock;
• recycling at least 60%, preferably at least 80%, of the stream consisting of asphaltenes, catalyst in dispersed phase and possibly coke, rich in metals, to the hydrotreatment zone .
It was then found, as described in patent application IT-MI2001A-001438, that, in the upgrading of heavy crude oils or bitumens from oil sands to complex hydro- carbon mixtures to be used as raw material for further conversion processes to distillates, different process configurations can be used, with respect to those described above.
The process, described in patent application It- MI2001A-001438, for the conversion of heavy feedstocks with the combined use of the following three process units : hydroconversion with catalysts in slurry phase (HT) , distillation or flash (D) , deasphalting (SDA) , is characterized in that the three units operate on mixed streams consisting of fresh feedstock and recycled streams, using the following steps:
• sending at least a fraction of the heavy feedstock to a deasphalting section (SDA) in the presence of solvents obtaining two streams, one consisting of deasphalted oil (DAO) , the other of asphaltenes;
• mixing the asphaltenes with the remaining fraction of heavy feedstock not sent to the deasphalting section and with a suitable hydrogenation catalyst and sending the mixture obtained to a hydrotreatment reactor (HT) into which hydrogen or a mixture of hydrogen and H2S is charged;
• sending the stream containing the hydrotreatment reaction product and the catalyst in dispersed phase to one or more distillation or flash steps (D) whereby the most volatile fractions, among which the gases produced in the hydrotreatment reaction, naphtha and gas oil, are separated;
• recycling at least 60% by weight, preferably at least 80%, more preferably at least 95%, of the distillation residue (tar) or the liquid leaving the flash unit, containing catalyst in dispersed phase, rich in metal sulfides produced by demetallation of the feedstock and possibly coke and various kinds of carbonaceous residues, to the deasphalting zone. It is generally necessary to effect a flushing on the asphaltene stream leaving the deasphalting section (SDA) to ensure that these elements do not accumulate too much in the hydrotreatment reactor and, in the case of deacti- vation of the catalyst, to remove part of the catalyst which is replaced with fresh catalyst. This however is generally not the case as the catalyst maintains its activity for a long period; as it is necessary however to effect a flushing for the above reasons, some of the catalyst must obviously be used up even if it is nowhere near being completely deactivated. Furthermore, although the volumes of the flushing stream (0.5-4% with respect to the feedstock) , are extremely limited compared with other hydrotreatment technologies, they still create considerable problems relating to their use or disposal. The application described is particularly suitable when the heavy fractions of complex hydrocarbon mixtures when the heavy fractions of complex hydrocarbon mixtures produced by the process (bottom of the distillation column) must be used as feedstock for catalytic cracking plants, both Hydrocracking (HC) and fluid bed Catalytic Cracking (FCC) .
The combined action of a catalytic hydrogenation unit (HT) with an extraction process (SDA) allows deasphalted oils to be produced with a reduced content of pollutants (metals, sulfur, nitrogen, carbonaceous residue) , and which can therefore be more easily treated in catalytic cracking processes .
A further aspect to be taken into consideration, however, is that the naphtha and gas oil produced di- rectly by the hydrotreatment unit still contain numerous contaminants (sulfur, nitrogen, ...) and must in any case be reprocessed to obtain the end-products.
It has now been found that both the process described in patent application IT-MI2001A-001438 and also the process described in patent application IT-95A001095, now fully incorporated in the present patent application, can be further improved by the insertion of an additional secondary post-treatment hydrogenation section of the C- 500°C fraction, preferably the Cs-350°C fraction. The secondary post-treatment hydrogenation section consists in the further hydrotreatment of the C2-500°C fraction, preferably the C5-350°C fraction, deriving from the high pressure separator section upstream of the distillation. The process, object of the present invention, for the conversion of heavy feedstocks selected from heavy crude oils, distillation residues, heavy oils coming from catalytic treatment, thermal tars, bitumens from oil sands, various kinds of coals and other high-boiling feedstocks of a hydrocarbon origin known as black oils, by the combined use of the following three process units: hydroconversion with catalysts in slurry phase (HT) , distillation (D) , deasphalting (SDA) , comprises the following steps: • mixing at least part of the heavy feedstock and/or at least most of the stream containing asphaltenes obtained in the deasphalting unit with a suitable hydrogenation catalyst and sending the mixture obtained to a hydrotreatment reactor (HT) into which hydrogen or a mix- ture of hydrogen and H2S is charged;
• sending the stream containing the hydrotreatment reaction product and the catalyst in dispersed phase to one or more distillation or flash steps (D) whereby the different fractions coming from the hydrotreatment reaction are separated; • recycling at least part of the distillation residue (tar) or liquid leaving the flash unit, containing the catalyst in dispersed phase, rich in metal sulfides produced by demetallation of the feedstock and possibly coke, to the deasphalting zone (SDA) in the presence of solvents, optionally also fed with at least a fraction of the heavy feedstock, obtaining two streams, one consisting of deasphalted oil (DAO) and the other containing asphaltenes, characterized in that the stream containing the hydrotreatment reaction product and the catalyst in dispersed phase, before being sent to one or more distillation or flash steps, is subjected to a high pressure separation pre-step in order to obtain a light fraction and a heavy fraction, the heavy fraction alone being sent to said distillation step(s) (D) .
The light fraction obtained by means of the high pressure separation step can be sent to a hydrotreatment section, producing a lighter fraction containing Cι-C gas and H2S and a heavier fraction containing hy- drotreated naphtha and gas oil.
The insertion of the secondary post-treatment hydrogenation section of the C-500°C fraction, preferably the C5-350°C fraction, exploits the availability of this fraction together with hydrogen at a relatively high pressure, which is approximately that of the hydrotreat- ment reactor, allowing the following advantages to be obtained: it allows the production, starting from oil feedstocks extremely rich in sulfur, of fuels in line with the most severe specifications on the sulfur content (< 10- 50 ppm of sulfur) and improved with respect to other characteristics of diesel gas oil such as density, pol- yaromatic hydrocarbon content and cetane number; the distillates produced do not suffer from problems of stability.
The hydrogenation post-treatment on a fixed bed consists in the preliminary separation of the reaction effluent of the hydrotreatment reactor (HT) by means of one or more separators operating at a high pressure and a high temperature. Whereas the heavy part, extracted from the bottom, is sent to the main distillation unit, the part extracted at the head, a C2-500°C fraction, preferably a C5-350°C fraction, is sent to a secondary treatment section in the presence of hydrogen, available at a high pressure, wherein the reactor is a fixed bed reactor and contains a typical desulfuration/dearomatization catalyst, in order to obtain a product which has a much lower sulfur content and also lower levels of nitrogen, a lower total density and, at the same time, as far as the gas oil fraction is concerned, increased cetane numbers. The hydrotreatment section normally consists of one or more reactors in series; the product of this system can then be further fractionated by distillation to obtain a totally desulfurated naphtha and a diesel gas oil within specification as fuel.
The hydrodesulfuration step with a fixed bed generally uses typical fixed bed catalysts for the hydrodesulfuration of gas oils; this catalyst, or possibly also a mixture of catalysts or a set of reactors with different catalysts having different properties, considerably refines the light fraction, by significantly reducing the sulfur and nitrogen content, increasing the hydrogenation degree of the feedstock, thus decreasing the density and increasing the cetane number of the gas oil fraction, at the same time reducing the formation of coke.
The catalyst generally consists of an amorphous part based on alumina, silica, silico-alumina and mixtures of various mineral oxides on which a hydrodesulfurating component is deposited (with various methods) together with a hydrogenating agent. Catalysts based on molybdenum or tungsten, with the addition of nickel and/or cobalt deposited on an amorphous mineral carrier are typical catalysts for this type of operation.
The hydrogenating post-treatment reaction is carried out at an absolute pressure slightly lower than that of the primary hydrotreatment step, generally ranging from 7 to 14 MPa, preferably from 9 to 12 MPa; the hydrodesulfuration temperature ranges from 250 to 500°C, preferably from 280 to 420°C; the temperature normally depends on the desulfuration level required. The space velocity is another important variable in controlling the quality of the product obtained: it can range from 0.1 to 5 h-1, preferably from 0.2 to 2 h"1.
The quantity of hydrogen mixed with the feedstock is fed to a stream between 100 and 5000 Nm3/m3, preferably between 300 and 1000 Nm3/m3.
In addition to the secondary post-treatment hydrogenation section, there can also optionally be a further secondary post-treatment section of the flushing stream. Said secondary section consists in the post- treatment of the flushing stream in order to significantly reduce its entity and allow at least part of the catalyst, still active, to be recycled to the hydrotreatment reactor. In this case, the fraction of stream containing asphaltenes, coming from the deasphalting section (SDA) , called flushing stream, is sent to a treatment section with a suitable solvent for the separation of the product into a solid fraction and a liquid fraction from which said solvent can be subsequently removed. The optional treatment section of the flushing effluent, preferably in a quantity ranging from 0.5 to 10% by volume with respect to the fresh feedstock, consists in a deoiling step with a solvent (toluene or gas oil or other streams rich in aromatic components) and a separation of the solid fraction from the liquid fraction.
At least part of said liquid fraction can be fed:
• to the "pool fuel oil", as such or after being separated from the solvent and/or after the addition of a suitable fluxing liquid;
• and/or to the hydrotreatment reactor (HT) as such. In specific cases, the solvent and fluxing liquid can coincide .
The solid fraction can be disposed of as such or, more advantageously, it can be sent to a selective recovery treatment of the transition metal or metals contained in the transition catalyst (for example molybdenum) (with respect to the other metals present in the starting residue, nickel and vanadium) and optional recycling of the stream rich in transition metal (molybdenum) to the hydrotreatment reactor (HT) .
This composite treatment has the following advantages with respect to a traditional process:
• the entity of the flushing fraction is greatly reduced; • a large part of the flushing fraction is upgraded to fuel oil by separating the metals and coke;
• the fraction of fresh catalyst to be added to the feedstock to the primary hydrotreatment is reduced, as at least a part of the molybdenum extracted from the selec- tive recovery treatment is recycled.
The deoiling step consists in the treatment of the flushing stream, which represents a minimum fraction of the asphaltene stream coming from the deasphalting section (SDA) at the primary hydrotreatment plant of the heavy feedstock, with a solvent which is capable of bringing the highest possible quantity of organic compounds to liquid phase, leaving the metallic sulfides, coke and more refractory carbonaceous residues (insoluble toluene or similar products), in solid phase. Considering that the components of a metallic nature can become pyrophoric when they are very dry, it is advisable to operate in an inert atmosphere, containing as little oxygen and humidity as possible.
Various solvents can be advantageously used in this deoiling step; among these, aromatic solvents such as toluene and/or xylene blends, hydrocarbon feedstocks available in the plant, such as the gas oil produced therein, or in refineries, such as Light Cycle Oil coming from the FCC unit or Thermal Gas oil coming from the Vis- breaker/Thermal Cracker unit, can be mentioned. Within certain limits, the operating rate is facilitated by increases in the temperature and the reaction time but an excessive increase is unadvisable for economic reasons . The operating temperatures depend on the solvent used and on the pressure conditions adopted; temperatures ranging from 80 to 150°C, however, are recommended; the reaction times can vary from 0.1 to 12 h, preferably from 0.5 to 4 h. The volumetric ratio solvent/flushing stream is also an important variable to be taken into consideration; it can vary from 1 to 10 (v/v), preferably from 1 to 5 , more preferably from 1.5 to 3.5.
Once the mixing phase between the solvent and flush- ing stream has been completed, the effluent maintained under stirring is sent to a separation section of the liquid phase from the solid phase.
This operation can be one of those typically used in industrial practice such as decanting, centrifugation or filtration.
The liquid phase can then be sent to a stripping and recovery phase of the solvent, which is recycled to the first treatment step (deoiling) of the flushing stream. The heavy fraction which remains, can be advantageously used in refineries as a stream practically free of metals and with a relatively low sulfur content. If the treatment operation is effected with a gas oil, for example, part of said gas oil can be left in the heavy product to bring it within the specification of pool fuel oil . Alternatively, the liquid phase can be recycled to the hydrogenation reactor.
The solid part can be disposed of as such or it can be subjected to additional treatment to selectively recover the catalyst (molybdenum) to be recycled to the hy- drotreatment reactor.
It has been found, in fact, that by adding a heavy feedstock but without metals such as, for example, part of the Deasphalted Oil (DAO) coming from the deasphalting unit of the plant itself, to the above solid phase, and mixing said system with acidulated water (typically with an inorganic acid) , almost all of the molybdenum is maintained in the organic phase whereas substantial quantities of other metals migrate towards the aqueous phase. The two phases can be easily separated and the organic phase can then be advantageously recycled to the hydrotreatment reactor.
The solid phase is dispersed in a sufficient quantity of organic phase (for example deasphalted oil coming from the same process) to which acidulated water is added. The ratio between aqueous phase and organic phase can vary from 0.3 to 3; the pH of the aqueous phase can vary from 0.5 to 4, preferably from 1 to 3.
Various kinds of heavy feedstocks can be treated: they can be selected from heavy crude oils, bitumens from oil sands, various types of coals, distillation residues, heavy oils coming from catalytic treatment, for example heavy cycle oils from catalytic cracking treatment, bottom products from hydroconversion treatment, thermal tars (coming for example from visbreaking or similar thermal processes) , and any other high-boiling feedstock of a hydrocarbon origin generally known in the art as black oils .
As far as the general process conditions are con- cerned, reference should be made to what is already specified in patent applications IT-MI2001A-001438 and IT-95A001095.
According to what is described in patent application IT-95A001095, all the heavy feedstock can be mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment reactor (HT) , whereas at least 60%, preferably at least 80% of the stream containing asphaltenes, which also contains catalyst in dispersed phase and possibly coke and is enriched with metal coming from the initial feedstock, can be recycled to the hydrotreatment zone .
According to what is described in patent application IT-MI2001A-001438, part of the heavy feedstock and at least most of the stream containing asphaltenes, which also contains catalyst in dispersed phase and possibly coke, are mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment reactor, whereas the remaining part of the quantity of the heavy feedstock is sent to the deasphalting section. According to what is described in patent application IT-MI2001A-001438, at least most of the stream containing asphaltenes, which essentially consists of said asphaltenes, is mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment reactor, whereas all the heavy feedstock is fed to the deasphalting section.
When only part of the distillation residue (tar) or liquid leaving the flash unit is recycled to the deasphalting zone (SDA) , at least part of the remaining quantity of said distillation or flash residue can be sent to the hydrotreatment reactor, optionally together with at least part of the stream containing asphaltenes coming from the deasphalting section (SDA) .
The catalysts used can be selected from those obtained from precursors decomposable in-situ (metallic naphthenates, metallic derivatives of phosphonic acids, metal-carbonyls, etc.) or from preformed compounds based on one or more transition metals such as Ni, Co, Ru, W and Mo: the latter is preferred due to its high catalytic activity. The concentration of the catalyst, defined on the basis of the concentration of the metal or metals present in the hydroconversion reactor, ranges from 300 to 20,000 ppm, preferably from 1,000 to 10,000 ppm.
The hydrotreatment step is preferably carried out at a temperature ranging from 370 to 480°C, more preferably from 380 to 440°C, and at a pressure ranging from 3 to 30 MPa, more preferably from 10 to 20 MPa.
The hydrogen is fed to the reactor, which can operate with both the down-flow and, preferably, up-flow pro- cedure. Said gas can be fed to different sections of the reactor.
The distillation step is preferably effected at reduced pressure ranging from 0.0001 to 0.5 MPa, preferably from 0.001 to 0.3 MPa. The hydrotreatment step can consist of one or more reactors operating within the range of conditions specified above. Part of the distillates produced in the first reactor can be recycled to the subsequent reactors.
The deasphalting step, effected by means of an ex- traction with a solvent, hydrocarbon or non-hydrocarbon (for example with paraffins or iso-paraffins having from 3 to 6 carbon atoms), is generally carried out at temperatures ranging from 40 to 200°C and at a pressure ranging from 0.1 to 7 MPa. It can also consist of one or more sections operating with the same solvent or with different solvents; the recovery of the solvent can be effected under subcritical or supercritical conditions with one or more steps, thus allowing a further frac- tionation between deasphalted oil (DAO) and resins. The stream consisting of deasphalted oil (DAO) can be used as such, as synthetic crude oil (syncrude) , optionally mixed with the distillates, or it can be used as feedstock for fluid bed Catalytic Cracking or Hydrocrack- ing treatment . Depending on the characteristics of the crude oil (metal content, sulfur and nitrogen content, carbonaceous residue) , the feeding to the whole process can be advantageously varied by sending the heavy residue alternately either to the deasphalting unit or to the hydrotreatment unit, or contemporaneously to the two units, modulating:
• the ratio between the heavy residue to be sent to the hydrotreatment section (fresh feedstock) and that to be sent for deasphalting; said ratio preferably varies from 0.01 to 100, more preferably f.'om 0.1 to 10, even more preferably from 1 to 5; • the recycling ratio between fresh feedstock and tar to be sent to the deasphalting section; said ratio preferably varies from 0.01 to 100, more preferably from 0.1 to 10; • the recycling ratio between fresh feedstock and asphaltenes to be sent to the hydrotreatment section; said ratio can vary in relation to the variations in the previous ratios;
• the recycling ratio between tar and asphaltenes to be sent to the hydrotreatment section; said ratio can vary in relation to the variations in the previous ratios ,-
This flexibility is particularly useful for fully exploiting the complementary characteristics of the deasphalting units (discrete nitrogen reduction, and dearomatization) and hydrogenation units (high removal of metals and sulfur) .
Depending on the type of crude oil, the stability of the streams in question and quality of the product to be obtained (also in relation to the particular treatment downstream) , the fractions of fresh feedstock to be fed to the deasphalting section and hydrotreatment section can be modulated in the best possible way.
The application described is particularly suitable when the heavy fractions of the complex hydrocarbon mix- tures produced by the process (bottom of the distillation column) are to be used as feedstock for catalytic cracking plants, both Hydrocracking (HC) and fluid bed Catalytic Cracking (FCC) .
The combined action of a catalytic hydrogenation unit (HT) with an extractive process (SDA) allows deasphalted oils to be produced with a reduced content of contaminants (metals, sulfur, nitrogen, carbonaceous residue) , and which can therefore be more easily treated in the catalytic cracking processes . A preferred embodiment of the present invention is provided hereunder with the help of the enclosed figure 1 which, however, should in no way be considered as limiting the scope of the invention itself.
The heavy feedstock (1) , or at least a part thereof (la) , is sent to the deasphalting unit (SDA) , an operation which is effected by means of extraction with a solvent .
Two streams are obtained from the deasphalting unit (SDA): one stream (2) consisting of deasphalted oil (DAO), the other containing asphaltenes (3).
The stream containing asphaltenes, with the exception of a flushing (4) , is mixed with the fresh make-up catalyst (5) necessary for reintegrating that lost with the flushing stream (4) , with part of the heavy feedstock (lb) noc fed to the deasphalting section and part of the tar (24) not fed to the deasphalting section (SDA) and optionally with the stream (15) coming from the optional treatment section of the flushing (whose description will be dealt with further on in the text) to form the stream (6) which is fed to the hydrotreatment reactor (HT) into which hydrogen is charged (or a mixture of hydrogen and H2S) (7) . A stream (8) , containing the hydrogenation product and the catalyst in dispersed phase, leaves the reactor and is first fractionated in one or more separa- tors operating at high pressure (HP Sep) . The fraction at the head (9) is sent to a fixed bed hydrotreatment reactor (HDT C5-350) where a light fraction containing Cχ-C gas and H2S (10) and a C5-350°C fraction (11) containing hydrotreated naphtha and gas oil, are produced. A heavy fraction (12) leaves the bottom of the high pressure separator and is fractionated in a distillation column (D) from which the vacuum gas oil (13) is separated from the distillation residue containing the dispersed catalyst and coke. This stream, called tar (14) , is com- pletely or mostly (25) recycled to the deasphalting reactor (SDA), with the exception of the fraction (24) mentioned above.
The flushing stream (4) can be sent to a hydrotreatment section (Deoiling) with a solvent (16) forming a mixture containing liquid and solid fractions (17) . Said mixture is sent to a treatment section of solids (Solid Sep) from which a solid effluent (18) is separated and also a liquid effluent (19), which is sent to a recovery section of the solvent (Solvent Recovery) . The recovered solvent (16) is sent back to the deoiling section whereas the heavy effluent (20) is sent to the Fuel Oil fraction (22), as such or with the addition of a possible fluxing liquid (21) .
The solid fraction (18) can be disposed of as such or it can be optionally sent to a section for additional treatment (Cake Treatment) , such as that described, for example, in the text and examples, to obtain a fraction which is practically free of molybdenum (23) , which is sent for disposal and a fraction rich in molybdenum (15) , which can be recycled to the hydrotreatment reactor.
Some examples are provided hereunder for a better illustration of the invention, which however should in no way be considered as limiting its scope. EXAMPLE 1 Following the scheme represented in figure 1, the following experiment was effected. Deasphalting step
• Feedsuock: 300 g of vacuum residue from Ural crude oil (Table 1) • Deasphalting agent; 2000 cc of liquid propane (extrac- tion repeated three times)
• Temperature: 80°C
• Pressure: 35 bar
Table 1: Characteristics Ural of vacuum residue 500°C+
Figure imgf000029_0001
Hydrotreatment step
• Reactor: 3000 cc, steel, suitably shaped and equipped with magnetic stirring
• Catalyst; 3000 ppm of Mo/feedstock added using molybdenum naphthenate as precursor • Temperature: 410°C
• Pressure: 16 MPa of hydrogen
• Residence time: 4 h Flash step
• Effected with a laboratory apparatus for liquid evapo- ration (T = 120°C)
Experimental results
Ten consecutive deasphalting tests were effected using for each test a feedstock consisting of Ural vacuum residue (fresh feedstock) and atmospheric residue ob- tained from the hydrotreatment reaction of C3 asphaltenes of the previous step in order to allow the complete recycling of the catalyst added during the first test. For each step, the autoclave was fed with a quantity of feedstock consisting of Ural vacuum residue (fresh feedstock) and C3 asphaltenes deriving from the deasphalting unit so as to bring the total mass of feedstock (fresh feedstock + recycled C3 asphaltenes) to the initial value of 300 g.
The ratio between the quantity of fresh feedstock and quantity of recycled product reached under these op- erating conditions was 1:1.
The data relating to the outgoing streams after the last recycling (weight % with respect to the feedstock) are provided hereunder.
• Gas: 7% • Naphtha (C5-170°C) : 8%
• Atmospheric gas oil (AGO 170-350°C) : 17%
• Deasphalted oil (VGO + DAO) : 68%
The asphaltene stream recovered at the end of the test contains all the catalyst fed initially, the sul- fides of the metals Ni and V produced during the ten hydrotreatment reactions and a quantity of coke in the order of about 1% by weight with respect to the total quantity of Ural residue fed. In the example indicated, it is not necessary to effect a flushing of the recycled stream. Table 2 specifies the characterization of the product obtained.
Table 2 : characteristics of test reaction products according to Example 1
Figure imgf000031_0001
EXAMPLE 2 Following the scheme represented in Figure 1, the products leaving the head of a high pressure separator are sent to a fixed bed reactor, fed with a stream of reagents with a downward movement. The reactor is charged with a typical commercial hydrodesulfuration catalyst based on molybdenum and nickel.
The operating conditions are the following: LHSV: 0.5 h-1
Hydrogen pressure: 10 Mpa Reactor temperature: 390°C Table 3 indicates the quality of the feeding entering the fixed bed reactor and of the product obtained. Table 3 : Hydrotreatment of the C5-350°C fraction coming from the treatment of Ural residue 500°C+
Figure imgf000032_0001
EXAMPLE 3
20.7 g of flushing stream (composition indicated in Table 4) , coming from the conversion plant of a Ural residue 500+, are treated with 104 g of toluene (w/w ratio solvent/flushing = 5) at 100°C for 3 h. The resulting fraction is subjected to filtration. 3.10 g of solid are collected (composition indicated in Table 5) together with 17.60 g of heavy oil (after removal of the toluene by evaporation) , which has a metal content as specified in Table 6. Table 4 : Characteristics of the flushing stream coming from Ural treatment 500°C+
Figure imgf000033_0001
Table 5 : Characteristics of the solid (cake) coming from the treatment with toluene of the Ural 500°C+ flushing stream
Figure imgf000033_0002
Table 6 : Metal content in the heavy oil extracted from the treatment of the flushing stream coming from Ural 500°C+ treatment
Figure imgf000033_0003
EXAMPLE 4
The same procedure is used as described in Example 3; 10.6 g of flushing stream (composition indicated in Table 4) are treated with 62 ml of gas oil, produced during a hydrotreatment test of Ural residue, as described in Example 1 above and with the quality specified in Table 2; the gas oil/flushing ratio is 5 and the operation is carried out at 130°C for 6 h. The resulting fraction is subjected to centrifugation (5000 rpm) . 1.78 g of solid are collected (composition indicated in Table 7) together with 8.82 g of heavy oil (after removal of the gas oil by evaporation) .
Table 7 : Characteristics of the solid (cake) coming from treatment with gas oil of the Ural 500°C+ flushing stream
Figure imgf000034_0001
EXAMPLE 5
1,0 g of solid residue deriving from the treatment described in Example 3 and with the composition specified in Table 5, is treated with a mixture of 50 ml of acidulated water (pH = 2) and 50 ml of Deasphalted Oil, DAO, with the composition indicated in Table 8.
After 24 h at 70°C, the liquid phases are left to decant and the analysis of the metals is effected in the two phases.
The total amount (> 99%) of molybdenum remains in the organic phase, whereas the nickel and vanadium are found in the aqueous phase in quantities corresponding to an extraction efficiency of 23.5% and 24.4%, respec- tively.
The organic phase containing molybdenum was then fed with fresh Ural residue to a hydrotreatment test, carried out with the procedure described in Example 1 : the molybdenum maintains its catalytic activity properties . Table 8 : Characteristics of the DAO coming from the treatment of Ural 500°C+ residue
Figure imgf000035_0001
EXAMPLE 6
The same procedure is adopted as described in Example 5 but using, instead of DAO, a gas oil produced during a hydrotreatment test of Ural residue (see Example 1) and acidulated water (pH = 2)
The total amount of molybdenum remains in the organic phase, whereas the nickel and vanadium are found in the aqueous phase in quantities corresponding to an extraction efficiency of 41.0% and 26.8%, respectively.

Claims

CLAIMS 1. A process for the conversion of heavy feedstocks selected from heavy crude oils, distillation residues, heavy oils coming from catalytic treatment, thermal tars, bitumens from oil sands, various kinds of coals and other high-boiling feedstocks of a hydrocarbon origin known as black oils, by the combined use of the following three process units: hydroconversion with catalysts in slurry phase (HT) , distil- lation or flash (D) , deasphalting (SDA) , comprising the following steps:
• mixing at least part of the heavy feedstock and/or at least most of the stream containing asphaltenes obtained in the deasphalting unit with a suitable hydrogenation catalyst and sending the mixture obtained to a hydrotreatment reactor (HT) into which hydrogen or a mixture of hydrogen and H2S is charged;
• sending the stream containing the hydrotreatment reaction product and the catalyst in dispersed phase to one or more distillation or flash steps (D) whereby the different fractions coming from the hydrotreatment reaction are separated;
• recycling at least part of the distillation resi- due (tar) or liquid leaving the flash unit, contain- ing the catalyst in dispersed phase, rich in metal sulfides produced by demetallation of the feedstock and possibly coke, to the deasphalting zone (SDA) in the presence of solvents, optionally also fed with at least a fraction of the heavy feedstock, obtaining two streams, one consisting of deasphalted oil (DAO) and the other containing asphaltenes, characterized in that the stream containing the hydrotreatment reaction product and the catalyst in dispersed phase, before being sent to one or more distillation or flash steps, is subjected to a high pressure separation pre-step in order to obtain a light fraction and a heavy fraction, the heavy fraction alone being sent to said distillation step(s) (D) .
2. The process according to claim 1, wherein the light fraction obtained by means of the high pressure separation step is sent to a secondary hydrogenation post-treatment section, producing a lighter fraction containing Cι-C4 gas and H2S and a heavier fraction containing hydrotreated naphtha and gas oil.
3. The process according to claim 2, wherein the hydrogenation post-treatment reaction is effected at a pressure ranging from 7 to 14 MPa.
4. The process according to at least one of the claims from 1 to 3, wherein all the heavy feedstock is mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment reactor (HT) , whereas at least 60% of the stream containing asphaltenes, which also contains catalyst in dispersed phase and possibly coke and is enriched with metals coming from the initial feedstock, is recycled to the hydrotreatment zone.
5. The process according to claim 4, wherein at least 80% of the stream containing asphaltenes is recycled to the hydrotreatment zone .
6. The process according to at least o & of the claims from 1 to 3 , wherein part of the heavy feedstock and at least most of the stream containing asphaltenes, which also contains catalyst in dispersed phase and possibly coke, are mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment reactor, whereas the remaining part of the heavy feedstock is sent to the deasphalting section.
7. The process according to at least one of the claims from 1 to 3 , wherein at least most of the stream containing asphaltenes, which essentially consists of said asphaltenes, is mixed with a suitable hydrogenation catalyst and sent to the hydrotreatment re- actor, whereas all the heavy feedstock is fed to the deasphalting section.
8. The process according to claim 1, wherein part of the distillation residue (tar) or liquid leaving the flash unit is recycled to the deasphalting zone (SDA) and at least part of the remaining part of said distillation or flash residue is sent to the hydrotreatment reactor.
9. The process according to claim 8, wherein at least part of the distillation or flash residue is sent to the hydrotreatment reactor together with at least part of the stream containing asphaltenes coming from the deasphalting section (SDA) .
10. The process according to claim 1, wherein at least 80% by weight of the distillation residue is recy- cled to the deasphalting zone.
11. The process according to claim 10, wherein at least 95% by weight of the distillation residue is recycled to the deasphalting zone.
12. The process according to claim 1, wherein at least part of the remaining quantity of distillation residue (tar) , not recycled to the deasphalting zone is recycled to the hydrotreatment section.
13. The process according to claim 1, wherein the distillation steps are carried out at a reduced pres- sure ranging from 0.0001 to 0.5 MPa.
14. The process according to claim 13, wherein the distillation steps are carried out at a reduced pressure ranging from 0.001 to 0.3 MPa.
15. The process according to claim 1, wherein the hy- drotreatment step is carried out at a temperature ranging from 370 to 480°C and at a pressure ranging from 3 to 30 MPa.
16. The process according to claim 15, wherein the hydrotreatment step is carried out at a temperature ranging from 380 to 440°C and at a pressure ranging from 10 to 20 MPa.
17. The process according to claim 1, wherein the deasphalting step is carried out at temperature ranging from 40 to 200°C and at a pressure ranging from 0.1 to 7 MPa.
18. The process according to claim 1, wherein the deasphalting solvent is a light paraffin with from 3 to 7 carbon atoms .
19. The process according to claim 1, wherein the deasphalting step is carried out under subcritical or supercritical conditions with one or more steps.
20. The process according to claim 1, wherein the stream consisting of deasphalted oil (DAO) is fractionated by means of conventional distillation.
21. The process according to claim 1, wherein the stream consisting of deasphalted oil (DAO) is mixed with the products separated in the distillation step after being condensed.
22. The process according to claim 1, wherein the hydro- genation catalyst is a decomposable precursor or a preformed compound based on one or more transition metals .
23. The process according to claim 22, wherein the transition metal is molybdenum.
24. The process according to claim 1, wherein the concentration of the catalyst in the hydroconversion reactor, defined on the basis of the concentration of the metal or metals present, ranges from 300 to 20000 ppm.
25. The process according to claim 24, wherein the concentration of the catalyst in the hydroconversion reactor ranges from 1000 to 10000 ppm.
26. The process according to at least one of the claims from 1 to 3 , wherein a fraction of the stream con- taining asphaltenes, coming from the deasphalting section (SDA) , called flushing stream, is sent to a treatment section with a suitable solvent for the separation of the product into a solid fraction and a liquid fraction from which said solvent can be subsequently separated.
27. The process according to claim 26, wherein the flushing stream is in a quantity ranging from 0.5 to 10% by volume with respect to the fresh feedstock.
28. The process according to claim' 26, wherein at least part of the liquid fraction deriving from the treatment section of the flushing is sent as such or after being separated from the solvent and/or after the addition of a suitable fluxing liquid to the Fuel Oil fraction.
29. The process according to claim 28, wherein at least part of the liquid fraction deriving from the treatment section of the flushing is recycled to the hydrotreatment reactor (HT) .
30. The process according to claim 26, wherein the sol- vent used in the treatment section of the flushing is an aromatic solvent or a mixture of gas oils produced in the process itself or available in refineries .
31. The process according to claim 30, wherein the aro- atic solvent is toluene and/or xylene blends.
32. The process according to claim 26, wherein the volumetric ratio solvent/flushing stream varies from 1 to 10.
33. The process according to claim 32, wherein the volu- metric ratio solvent/flushing stream varies from 1 to 5.
34. The process according to claim 33, wherein the volumetric ratio solvent/flushing stream varies from 1.5 to 3.5.
35. The process according to claim 26 and 22, wherein the solid fraction of the solid treated is sent to a further selective recovery treatment of the transition metal (s) contained in the hydrogenation catalyst.
36. The process according to claim 35, wherein the transition metal (s) recovered, is recycled to the hydrotreatment reactor (HT) .
PCT/EP2003/014545 2002-12-20 2003-12-12 Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues WO2004056947A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US10/538,886 US8123932B2 (en) 2002-12-20 2003-12-12 Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
MXPA05006599A MXPA05006599A (en) 2002-12-20 2003-12-12 Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues.
AU2003293938A AU2003293938B2 (en) 2002-12-20 2003-12-12 Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
SI200330422T SI1572839T1 (en) 2002-12-20 2003-12-12 Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
JP2005502552A JP2006511682A (en) 2002-12-20 2003-12-12 Method for converting heavy feedstocks such as heavy crude oil and distillation residue
CA2510290A CA2510290C (en) 2002-12-20 2003-12-12 Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
DE60306422T DE60306422T2 (en) 2002-12-20 2003-12-12 CRACKING PROCESSES FOR HEAVY DUTIES SUCH AS HEAVY RAW OILS AND DISTILLATION SOLIDS
BRPI0317365-8B1A BR0317365B1 (en) 2002-12-20 2003-12-12 HEAVY LOAD CONVERSION PROCESS
EP03789342A EP1572839B1 (en) 2002-12-20 2003-12-12 Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
NO20052931A NO20052931L (en) 2002-12-20 2005-06-15 Process for the conversion of heavy feeders such as heavy crude oils and distillation residues

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ITMI2002A002713 2002-12-20
ITMI20022713 ITMI20022713A1 (en) 2002-12-20 2002-12-20 PROCEDURE FOR THE CONVERSION OF HEAVY CHARGES SUCH AS
ITMI2003A000692 2003-04-08
ITMI20030692 ITMI20030692A1 (en) 2003-04-08 2003-04-08 PROCEDURE FOR THE CONVERSION OF HEAVY CHARGES SUCH AS HEAVY CRUDE AND DISTILLATION RESIDUES

Publications (1)

Publication Number Publication Date
WO2004056947A1 true WO2004056947A1 (en) 2004-07-08

Family

ID=32684048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/014545 WO2004056947A1 (en) 2002-12-20 2003-12-12 Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues

Country Status (19)

Country Link
US (1) US8123932B2 (en)
EP (1) EP1572839B1 (en)
JP (1) JP2006511682A (en)
AT (1) ATE331014T1 (en)
AU (1) AU2003293938B2 (en)
BR (1) BR0317365B1 (en)
CA (1) CA2510290C (en)
DE (1) DE60306422T2 (en)
DK (1) DK1572839T3 (en)
EC (1) ECSP055874A (en)
ES (1) ES2266896T3 (en)
MX (1) MXPA05006599A (en)
NO (1) NO20052931L (en)
PL (1) PL205246B1 (en)
PT (1) PT1572839E (en)
RU (1) RU2352615C2 (en)
SA (1) SA04250027B1 (en)
SI (1) SI1572839T1 (en)
WO (1) WO2004056947A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066911A1 (en) * 2004-12-22 2006-06-29 Eni S.P.A. Process for the conversion of heavy charges such as heavy crude oils and distillation residues
US7618530B2 (en) 2006-01-12 2009-11-17 The Boc Group, Inc. Heavy oil hydroconversion process

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20011438A1 (en) * 2001-07-06 2003-01-06 Snam Progetti PROCEDURE FOR THE CONVERSION OF HEAVY CHARGES SUCH AS HEAVY FATS AND DISTILLATION RESIDUES
ITMI20032207A1 (en) * 2003-11-14 2005-05-15 Enitecnologie Spa INTEGRATED PROCEDURE FOR THE CONVERSION OF CHARGES CONTAINING CARBON IN LIQUID PRODUCTS.
EP1753846B1 (en) 2004-04-28 2016-06-08 Headwaters Heavy Oil, LLC Ebullated bed hydroprocessing methods and systems
ES2662605T3 (en) * 2004-04-28 2018-04-09 Hydrocarbon Technology & Innovation, Llc Procedures and systems of fixed bed hydroprocessing and procedures for the improvement of an existing fixed bed system
US10941353B2 (en) 2004-04-28 2021-03-09 Hydrocarbon Technology & Innovation, Llc Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock
US7678732B2 (en) 2004-09-10 2010-03-16 Chevron Usa Inc. Highly active slurry catalyst composition
US7972499B2 (en) 2004-09-10 2011-07-05 Chevron U.S.A. Inc. Process for recycling an active slurry catalyst composition in heavy oil upgrading
US8372266B2 (en) * 2005-12-16 2013-02-12 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7938954B2 (en) * 2005-12-16 2011-05-10 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8435400B2 (en) 2005-12-16 2013-05-07 Chevron U.S.A. Systems and methods for producing a crude product
US8048292B2 (en) 2005-12-16 2011-11-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7931796B2 (en) 2008-09-18 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7943036B2 (en) 2009-07-21 2011-05-17 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7431822B2 (en) 2005-12-16 2008-10-07 Chevron U.S.A. Inc. Process for upgrading heavy oil using a reactor with a novel reactor separation system
ITMI20061512A1 (en) * 2006-07-31 2008-02-01 Eni Spa PROCEDURE FOR THE TOTAL CONVERSION OF HEAVY DUTIES TO DISTILLATES
ITMI20061511A1 (en) * 2006-07-31 2008-02-01 Eni Spa PROCEDURE FOR THE TOTAL CONVERSION TO HEAVY DISTILLATES
US7566394B2 (en) * 2006-10-20 2009-07-28 Saudi Arabian Oil Company Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent
US8246814B2 (en) 2006-10-20 2012-08-21 Saudi Arabian Oil Company Process for upgrading hydrocarbon feedstocks using solid adsorbent and membrane separation of treated product stream
US9315733B2 (en) * 2006-10-20 2016-04-19 Saudi Arabian Oil Company Asphalt production from solvent deasphalting bottoms
US7763163B2 (en) * 2006-10-20 2010-07-27 Saudi Arabian Oil Company Process for removal of nitrogen and poly-nuclear aromatics from hydrocracker feedstocks
JP2010529286A (en) * 2007-06-11 2010-08-26 エイチエスエム システムズ,インコーポレーテッド Improvement of bitumen quality using supercritical fluid
US8034232B2 (en) 2007-10-31 2011-10-11 Headwaters Technology Innovation, Llc Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US8142645B2 (en) * 2008-01-03 2012-03-27 Headwaters Technology Innovation, Llc Process for increasing the mono-aromatic content of polynuclear-aromatic-containing feedstocks
US7897036B2 (en) * 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US8236169B2 (en) 2009-07-21 2012-08-07 Chevron U.S.A. Inc Systems and methods for producing a crude product
US7897035B2 (en) 2008-09-18 2011-03-01 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7931797B2 (en) * 2009-07-21 2011-04-26 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US7935243B2 (en) 2008-09-18 2011-05-03 Chevron U.S.A. Inc. Systems and methods for producing a crude product
US20100122934A1 (en) * 2008-11-15 2010-05-20 Haizmann Robert S Integrated Solvent Deasphalting and Slurry Hydrocracking Process
US9062260B2 (en) * 2008-12-10 2015-06-23 Chevron U.S.A. Inc. Removing unstable sulfur compounds from crude oil
US8110090B2 (en) * 2009-03-25 2012-02-07 Uop Llc Deasphalting of gas oil from slurry hydrocracking
US8759242B2 (en) 2009-07-21 2014-06-24 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9068132B2 (en) 2009-07-21 2015-06-30 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US8927448B2 (en) 2009-07-21 2015-01-06 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
SG188922A1 (en) * 2009-12-11 2013-04-30 Uop Llc Process and apparatus for producing hydrocarbon fuel and composition
IT1397514B1 (en) * 2009-12-14 2013-01-16 Eni Spa PROCEDURE FOR RECOVERING METALS FROM A CURRENT RICH IN HYDROCARBONS AND IN CARBON RESIDUES.
CN103228355A (en) 2010-12-20 2013-07-31 雪佛龙美国公司 Hydroprocessing catalyst and method for making thereof
US8802587B2 (en) 2010-12-30 2014-08-12 Chevron U.S.A. Inc. Hydroprocessing catalysts and methods for making thereof
US9790440B2 (en) 2011-09-23 2017-10-17 Headwaters Technology Innovation Group, Inc. Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker
US9644157B2 (en) 2012-07-30 2017-05-09 Headwaters Heavy Oil, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
US9321037B2 (en) 2012-12-14 2016-04-26 Chevron U.S.A., Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US9687823B2 (en) 2012-12-14 2017-06-27 Chevron U.S.A. Inc. Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units
US9028674B2 (en) * 2013-01-17 2015-05-12 Lummus Technology Inc. Conversion of asphaltenic pitch within an ebullated bed residuum hydrocracking process
US11440815B2 (en) 2013-02-22 2022-09-13 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9708196B2 (en) 2013-02-22 2017-07-18 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
CA2843041C (en) 2013-02-22 2017-06-13 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9364773B2 (en) 2013-02-22 2016-06-14 Anschutz Exploration Corporation Method and system for removing hydrogen sulfide from sour oil and sour water
US9650312B2 (en) 2013-03-14 2017-05-16 Lummus Technology Inc. Integration of residue hydrocracking and hydrotreating
US9994780B2 (en) 2015-07-27 2018-06-12 Saudi Arabian Oil Company Integrated enhanced solvent deasphalting and coking process to produce petroleum green coke
US11414608B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor used with opportunity feedstocks
US11414607B2 (en) 2015-09-22 2022-08-16 Hydrocarbon Technology & Innovation, Llc Upgraded ebullated bed reactor with increased production rate of converted products
RU2614755C1 (en) * 2015-11-03 2017-03-29 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Method for heavy hydrocarbons hydroconversion (versions)
US11421164B2 (en) 2016-06-08 2022-08-23 Hydrocarbon Technology & Innovation, Llc Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product
HRP20231566T1 (en) 2016-10-18 2024-05-10 Mawetal Llc Method for reducing emissions at port
US10883056B2 (en) 2016-10-18 2021-01-05 Mawetal Llc Fuel compositions from light tight oils and high sulfur fuel oils
CN109803754B (en) 2016-10-18 2021-11-02 马威特尔有限责任公司 Polished turbine fuel
IT201600122525A1 (en) 2016-12-02 2018-06-02 Eni Spa PROCEDURE FOR THE PRODUCTION OF LIPIDS AND OTHER BIOMASS ORGANIC COMPOUNDS
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US20190233741A1 (en) 2017-02-12 2019-08-01 Mag&#275;m&#257; Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
MX2018002577A (en) 2017-03-02 2018-11-09 Hydrocarbon Tech & Innovation Llc Upgraded ebullated bed reactor with less fouling sediment.
US11732203B2 (en) 2017-03-02 2023-08-22 Hydrocarbon Technology & Innovation, Llc Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling
FR3075811B1 (en) * 2017-12-21 2020-09-11 Ifp Energies Now PROCESS FOR THE CONVERSION OF HEAVY LOADS OF HYDROCARBONS INCLUDING HYDROCONVERSION STEPS IN A TRAINED BED AND A RECYCLE OF A DESASPHALTED OIL
US11001766B2 (en) * 2018-02-14 2021-05-11 Saudi Arabian Oil Company Production of high quality diesel by supercritical water process
CA3057131C (en) 2018-10-17 2024-04-23 Hydrocarbon Technology And Innovation, Llc Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms
WO2020190784A1 (en) * 2019-03-15 2020-09-24 Lummus Technology Llc Configuration for olefins production
US11066607B1 (en) * 2020-04-17 2021-07-20 Saudi Arabian Oil Company Process for producing deasphalted and demetallized oil
CN114058405B (en) * 2020-07-30 2023-09-05 中国石油化工股份有限公司 Hydroconversion reaction method and system for inferior oil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723294A (en) * 1971-10-18 1973-03-27 Universal Oil Prod Co Conversion of asphaltene-containing hydrocarbonaceous charge stocks
US4400264A (en) * 1982-03-18 1983-08-23 Shell Oil Company Process for the preparation of hydrocarbon oil distillates
US4640762A (en) * 1985-06-28 1987-02-03 Gulf Canada Corporation Process for improving the yield of distillables in hydrogen donor diluent cracking
US5242578A (en) * 1989-07-18 1993-09-07 Amoco Corporation Means for and methods of deasphalting low sulfur and hydrotreated resids
WO2001060952A1 (en) * 2000-02-15 2001-08-23 Exxonmobil Research And Engineering Company Heavy feed upgrading based on solvent deasphalting followed by slurry hydroprocessing of asphalt from solvent deasphalting

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559285A (en) * 1948-01-02 1951-07-03 Phillips Petroleum Co Catalytic cracking and destructive hydrogenation of heavy asphaltic oils
NL7507484A (en) * 1975-06-23 1976-12-27 Shell Int Research PROCESS FOR CONVERTING HYDROCARBONS.
JPS541306A (en) * 1977-06-07 1979-01-08 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation of heavy hydrocarbon oil
GB2011463B (en) * 1977-12-21 1982-05-19 Standard Oil Co Process for the hydrotreating of heafy hydrocarbon streams
US4211634A (en) * 1978-11-13 1980-07-08 Standard Oil Company (Indiana) Two-catalyst hydrocracking process
DE3141646C2 (en) * 1981-02-09 1994-04-21 Hydrocarbon Research Inc Process for processing heavy oil
US4405441A (en) * 1982-09-30 1983-09-20 Shell Oil Company Process for the preparation of hydrocarbon oil distillates
US5124026A (en) * 1989-07-18 1992-06-23 Amoco Corporation Three-stage process for deasphalting resid, removing fines from decanted oil and apparatus therefor
JPH0790282A (en) * 1993-09-27 1995-04-04 Asahi Chem Ind Co Ltd Cracking and hydrogenation treatment of heavy oil
IT1275447B (en) * 1995-05-26 1997-08-07 Snam Progetti PROCEDURE FOR THE CONVERSION OF HEAVY CRUDE AND DISTILLATION DISTILLATION RESIDUES
ITMI20011438A1 (en) 2001-07-06 2003-01-06 Snam Progetti PROCEDURE FOR THE CONVERSION OF HEAVY CHARGES SUCH AS HEAVY FATS AND DISTILLATION RESIDUES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723294A (en) * 1971-10-18 1973-03-27 Universal Oil Prod Co Conversion of asphaltene-containing hydrocarbonaceous charge stocks
US4400264A (en) * 1982-03-18 1983-08-23 Shell Oil Company Process for the preparation of hydrocarbon oil distillates
US4640762A (en) * 1985-06-28 1987-02-03 Gulf Canada Corporation Process for improving the yield of distillables in hydrogen donor diluent cracking
US5242578A (en) * 1989-07-18 1993-09-07 Amoco Corporation Means for and methods of deasphalting low sulfur and hydrotreated resids
WO2001060952A1 (en) * 2000-02-15 2001-08-23 Exxonmobil Research And Engineering Company Heavy feed upgrading based on solvent deasphalting followed by slurry hydroprocessing of asphalt from solvent deasphalting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066911A1 (en) * 2004-12-22 2006-06-29 Eni S.P.A. Process for the conversion of heavy charges such as heavy crude oils and distillation residues
US7691256B2 (en) 2004-12-22 2010-04-06 Eni S.P.A. Process for the conversion of heavy charges such as heavy crude oils and distillation residues
US7618530B2 (en) 2006-01-12 2009-11-17 The Boc Group, Inc. Heavy oil hydroconversion process

Also Published As

Publication number Publication date
US8123932B2 (en) 2012-02-28
AU2003293938B2 (en) 2010-05-20
CA2510290C (en) 2011-02-15
DK1572839T3 (en) 2006-10-23
PL205246B1 (en) 2010-03-31
SI1572839T1 (en) 2006-10-31
JP2006511682A (en) 2006-04-06
AU2003293938A8 (en) 2004-07-14
AU2003293938A1 (en) 2004-07-14
BR0317365A (en) 2005-11-16
PT1572839E (en) 2006-10-31
MXPA05006599A (en) 2005-09-30
NO20052931D0 (en) 2005-06-15
RU2005117790A (en) 2006-02-27
CA2510290A1 (en) 2004-07-08
EP1572839A1 (en) 2005-09-14
DE60306422D1 (en) 2006-08-03
NO20052931L (en) 2005-09-20
PL375816A1 (en) 2005-12-12
RU2352615C2 (en) 2009-04-20
DE60306422T2 (en) 2006-12-28
ECSP055874A (en) 2005-09-20
SA04250027B1 (en) 2007-07-31
ES2266896T3 (en) 2007-03-01
BR0317365B1 (en) 2013-11-19
US20060175229A1 (en) 2006-08-10
EP1572839B1 (en) 2006-06-21
ATE331014T1 (en) 2006-07-15

Similar Documents

Publication Publication Date Title
US8017000B2 (en) Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
US8123932B2 (en) Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
AU2004289810B2 (en) Integrated process for the conversion of feedstocks containing coal into liquid products
CA2530906C (en) Process for the conversion of heavy charge stocks such as heavy crude oils and distillation residues
US7691256B2 (en) Process for the conversion of heavy charges such as heavy crude oils and distillation residues
AU2002358182B2 (en) Process for the conversion of heavy charges such as heavy crude oils and distillation residues

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003789342

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 375816

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 2510290

Country of ref document: CA

Ref document number: 2005502552

Country of ref document: JP

Ref document number: 2003293938

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/006599

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2005117790

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20038A90397

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003789342

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0317365

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2006175229

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538886

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003789342

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538886

Country of ref document: US